
����������
�������

Citation: Károlyi, G.; Pózna, A.I.;

Hangos, K.M.; Magyar, A. An

Optimized Fuzzy Controlled

Charging System for Lithium-Ion

Batteries Using a Genetic Algorithm.

Energies 2022, 15, 481. https://

doi.org/10.3390/en15020481

Academic Editors: Chanwoo Park,

Gisuk Hwang and Marcin Kaminski

Received: 22 November 2021

Accepted: 1 January 2022

Published: 10 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

An Optimized Fuzzy Controlled Charging System for
Lithium-Ion Batteries Using a Genetic Algorithm
György Károlyi 1,*, Anna I. Pózna 1 , Katalin M. Hangos 1,2 and Attila Magyar 1

1 Department of Electrical Engineering and Information Systems, University of Pannonia, Egyetem Street 10,
H-8200 Veszprém, Hungary; pozna.anna@virt.uni-pannon.hu (A.I.P.);
hangos.katalin@virt.uni-pannon.hu (K.M.H.); magyar.attila@virt.uni-pannon.hu (A.M.)

2 Systems and Control Laboratory, Institute for Computer Science and Control, Kende Street 13-17,
H-1111 Budapest, Hungary

* Correspondence: karolyi.gyorgy@virt.uni-pannon.hu

Abstract: Fast charging is an attractive way of charging batteries; however, it may result in an unde-
sired degradation of battery performance and lifetime because of the increase in battery temperature
during fast charge. In this paper we propose a simple optimized fuzzy controller that is responsible
for the regulation of the charging current of a battery charging system. The basis of the method
is a simple dynamic equivalent circuit type model of the Li-ion battery that takes into account the
temperature dependency of the model parameters, too. Since there is a tradeoff between the charging
speed determined by the value of the charging current and the increase in temperature of the battery,
the proposed fuzzy controller is applied for controlling the charging current as a function of the
temperature. The controller is optimized using a genetic algorithm to ensure a jointly minimal
charging time and battery temperature increase during the charging. The control method is adaptive
in the sense that we use parameter estimation of an underlying dynamic battery model to adapt to
the actual status of the battery after each charging. The performance and properties of the proposed
optimized charging control system are evaluated using a simulation case study. The evaluation
was performed in terms of the charge profiles, using the fitness values of the individuals, and in
terms of the charge performance on the actual battery. The proposed method has been evaluated
compared to the conventional contant current-constant voltage methods. We have found that the
proposed GA-fuzzy controller gives a slightly better performance in charging time while significantly
decreasing the temperature increase.

Keywords: Li-ion battery; battery charging; fuzzy logic control; genetic algorithm; optimization

1. Introduction

Energy demand of our society is rapidly growing together with technological de-
velopment. The industry of electric vehicles, the increasing number of portable electric
devices and the depleting fossil fuel supply continue to pressure the revolutionization
of the power-handling capability input of the human race. Focusing on the amelioration
of the renewable energy should be the most reasonable method; nevertheless, it brings
immediately higher requirements for energy storage, which is one of the most difficult
challenges of energy production. The physical boundaries of 21st-century batteries cause
limitations to their utilization; for instance, using electric vehicles for long-distance travel
may decrease convenience and freedom, such that the traveler is forced to stop to charge
in case of critically low battery level. Because of their high energy density and low self-
discharge, lithium-ion batteries are widely used in applications requiring light-weight
batteries.
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1.1. Thermal Effects

It is widely known that the performance of lithium-ion batteries slowly degrades
during usage [1]. High temperature has been identified as one of the major sources of
increased ageing both during charging and discharging [2]. Therefore, the temperature
of batteries is closely monitored and controlled during their entire operation cycle (i.e.,
during charging and discharging) in modern battery management systems. The main
role of a battery thermal management system is to keep the battery pack working in a
proper temperature range. The system not only significantly affects the battery pack system
performance but is also vital for the safety and stability. The advantages and disadvantages
of various multi-physical battery thermal management systems are summarized in the
work [3]. Cooling is an important tool for battery thermal management, Ref. [4] proposes a
combined air and phase change material-based cooling system for lithium-ion batteries.

1.2. Optimal and Adaptive Charging

Charging is the critical operational step of a battery that can be and must be performed
in an optimal way; therefore, a huge literature is available on various charging strategies
and methods, see, e.g., [5] for a review.

It is well known that fast charging is a preferred way of charging batteries, but it
causes an increase in battery temperature that results in an undesired degradation of its
performance and in an accelerated ageing. The authors of [6] propose low complexity fast
charging strategies for Li-ion battery cells that take into account explicit reference governors.

As the parameters and properties of a battery are changing during its lifetime due to
its ageing, the charging methods need to be adapted to the ageing status of the battery. This
is commonly done by using parameter estimation methods (see e.g., [7–9]) to update the
reference model parameters that are used for optimization.

An adaptive multistage constant current-constant voltage (MCCCV) strategy for charg-
ing electric vehicles in different situations is reported in [10]. It involves the optimization
of the charging current using particle swarm optimization that can satisfy the preference of
users for reducing the charging time or the battery degradation.

Fuzzy logic is a widely used solution for the temperature control of battery charge.
In [11], a fuzzy logic control-based temperature feedback control method is presented for
the fast charging of Li-ion batteries. The authors of [12] also propose a fuzzy temperature
control based Li-ion battery charger with state of charge estimation. Of course, fuzzy logic
control is not the only approach for battery charge control in the literature. The usabilility
of model predictive control is proven in [13], where battery aging has also been taken into
consideration in the control aims of a cooling controller.

A fuzzy controlled active state of charge controller is proposed in [14], where the
charging operation mode is extended with a sense operation mode in which the charge
controlling fuzzy logic controller is being updated. A fuzzy charge controller is optimized
using particle swarm method in the work [15], where the fitness function of the optimization
procedure depends on the charge time and the normalized discharged capacity of the
battery. The performance of a temperature controlled fuzzy charge system is evaluated
in [16] and, compared to the conventional constant current-constant voltage method, the
proposed charging method reduces 23.2% of the average temperature rise and increases
the charge efficiency by 2.06% while maintaining similar charging time.

On the other hand, electrochemical model-based strategies, e.g., [17], and data-driven
methods e.g., [18] are superior to the simple equivalent circuit type model (ECM) used
in this work in terms of model accuracy. Of course, the parameter identification of such
models needs to be more sophicticated. The authors of paper [19] propose a cuckoo search
based data driven method for the parameter estimation of pseudo two-dimensional (P2D)
battery models.
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1.3. Aim of Our Research

To improve the effectiveness of battery usage, this research seeks the optimal parame-
ters for charging a battery as fast as possible without causing damage to it. In this paper
we propose a genetic algorithm based optimization of a fuzzy controller that is responsible
for the regulation of charging current of a battery charging system. The optimization is
regarded to charging time and battery temperature increase during the charging. Of course,
these two objectives are against each other, so the aim is to develop a model based flexible
charging procedure in which the user can choose between performance charging and gentle
charging. Note, that in order to keep the method computationally tractable, the built in
battery model is an electrical circuit model.

The structure of the paper is as follows. Section 2 presents the dynamic state space
model of the battery together with the method of the estimation of its parameters that is
used for the optimization and control. Section 3 describes the fuzzy controlled battery
system in details, and is followed by Section 4 dealing with the optimization of this fuzzy
controller using a genetic algorithm. In Section 5 a simulation case study illustrates the
performance and properties of the proposed optimized fuzzy battery charging controller.
Finally, conclusions are drawn.

2. Modeling and Identification

The parametric lithium-ion battery model, which is an important basis of the methods
to be proposed in the sequel is presented here. The model is a modified version of the one
used in [20].

2.1. Modelling Assumptions

The following assumptions were made for the battery model [21].

• The parameters are deduced from the discharge characteristics and assumed to be the
same for charging.

• The capacity of the battery does not change with the amplitude of the current (no
Peukert effect).

• The self-discharge of the battery is not represented.
• The battery has no memory effect.
• No ageing of the battery is assumed.
• The voltage and the current can be influenced by the user or the charger device.

2.2. Parametric Battery Model

From the potential modelling methodologies the equivalent electrical circuit type was
selected to construct the basic battery model. The selected model was originally developed
in [21], a detailed description of this model without the thermal effects can be found in our
previous work [8].

The equivalent electrical circuit of the battery can be seen in Figure 1.

R

i(t)

voc(t) vb(t)

Figure 1. Equivalent electrical circuit model of the battery. Voltage voc(t) of the controlled voltage
source is different in the case of charge and discharge.
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The input of the model is the battery current (i) and the output is the battery voltage
(vb). The open circuit voltage (voc) is represented by a controlled voltage source, and it can
be different if the battery is charged or discharged before the resting phase [22]. The open
circuit voltage hysteresis can be related to the diffusion that is represented by the second
term of Equation (3).

In this work only the charge model was used because the aim of the work was to
develop an optimal charging strategy for lithium-ion batteries. The model described in [8]
was modified to better approximate the behaviour of the battery that was used in the
simulations. The state space model of the lithium-ion battery is obtained in the form of
Equations (1)–(4) as follows.

State equations :
d
dt

q(t) =
1

3600
i(t) (1)

d
dt

i∗(t) = − 1
τ

i∗(t) +
1
τ

i(t) (2)

Output equation:

• Open circuit voltage

voc(t) =E0 − K1
Q

q(t) + 0.1Q
i∗(t)− K2

Q
Q− q(t)

q(t) + A exp(−Bq(t)) (3)

• Battery voltage
vb(t) = voc(t)− Ri(t) (4)

It can be seen that the output equation is nonlinear.

The state variables have the following meaning:

• q is the extracted charge of the battery, i.e., the amount of charge that was used up from
the total charge stored in the battery. The initial value of q is denoted by q(t0). If the
battery is fully charged, it means that that no charge was used from the total amount
of charge stored in the battery, therefore q(t0) = 0. If the battery is fully discharged it
means that all of the avaliable charge was used up, therefore q(t0) = Q.

• i∗ is the polarization current. It can be computed by applying a low-pass filter to the
battery current i, where τ is the time constant of the filter.

The parameters of the model have the following meaning:

• E0 is the constant potential of the electrodes (V)
• K1 is the polarization resistance (Ω)
• K2 is the polarization coefficient (V/Ah)
• Q is the battery capacity (Ah)
• A is the exponential voltage (V)
• B is the exponential capacity (Ah−1)
• R is the internal resistance (Ω)

For a more detailed list of notations, see Table A1 in the Appendix A.

The output of the model is the battery voltage vb that can be measured between the battery
terminals. It is composed of the open circuit voltage (voc) and the voltage drop across the
internal resistance (R i(t)). The open circuit voltage is the voltage of the battery when no
external load is connected to it.
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In battery related applications usually the State of Charge (SoC) is used as a state
variable instead of the extracted capacity. The SoC is the actual amount of charge in the
battery, that is usually expressed in the percentage of the nominal capacity. The SoC can be
simply computed from q with the following equation:

SoC(t) =
Q− q(t)

Q
· 100 [%] (5)

The SoC is 100% when a battery is fully charged and 0% when fully discharged.

2.3. Temperature Dependent Battery Model

The model parameters Q, E0, K1, K2, R depend on the ambient temperature (Ta) or the
battery cell temperature (Tc). The exact temperature dependency can be described with the
following equations [23]:

Q(Ta) = Q|Tre f +
∆Q
∆T

(Ta − Tre f ) (6)

E0(Tc) = E0|Tre f +
∂E
∂T

(Tc − Tre f ) (7)

R(Tc) = R|Tre f exp

(
β

(
1
Tc
− 1

Tre f

))
(8)

K1(Tc) = K1|Tre f exp

(
α1

(
1
Tc
− 1

Tre f

))
(9)

K2(Tc) = K2|Tre f exp

(
α2

(
1
Tc
− 1

Tre f

))
(10)

The meaning of the variables are the following:

• Q|Tre f , E0|Tre f , R|Tre f , K1|Tre f , K2|Tre f denote the parameter values at the reference tem-
perature Tre f

• ∆Q/∆T is the maximum capacity temperature coefficient (Ah/K)
• ∂E/∂T is the reversible voltage temperature coefficient (V/K)
• β is the Arrhenius rate constant for the internal resistance (K)
• α1 is the Arrhenius rate constant for the polarization resistance (K)
• α2 is the Arrhenius rate constant for the polarization coefficient (K)

The output voltage of the battery taking into accout the temperature dependency of
the parameters can be written by Equation (11).

vb(t, Ta, Tc) =E0(Tc)− K1(Tc)
Q(Ta)

q(t) + 0.1Q(Ta)
i∗(t)− K2(Tc)

Q(Ta)

Q(Ta)− q(t)
q(t)+

+ A exp(−Bq(t))− R(Tc)i(t)
(11)

It is often experienced that the temperature of the battery changes during the charge
process. The battery cell temperature can be modelled by using the following equations [24].

d
dt

Tc(t) =
1
tc
(Ta − Tc(t)) +

1
tc
(PlossRth) (12)

where
Ploss = [E0(Tc)− vb(Tc)] · |i(t)|+

∂E
∂T
· |i(t)|Tc(t) + ∆P (13)
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In the above equations the variables have the following meaning:

• tc is the thermal time constant, cell to ambient (s)
• Rth is the thermal resistance, cell to ambient (K/W)
• Ploss is the overall heat generated during charge/discharge (W)
• ∆P is the power loss difference between charge and discharge (W)

Substituting Ploss into Equation (12) the change in the battery cell temperature can be
expressed. This equation can be added to the battery model as an additional state equation.
The complete battery model Equations (1)–(13) describes the battery operation taking into
account the effect of ambient temperature and self heating.

2.4. Parameter Estimation

The aim of the parameter estimation in this work is to refine the model in parallel with
the optimization of the fuzzy controller. In this section the method of parameter estimation
is presented.

The temperature dependent battery model of Equations (1)–(11) introduced in Section 2.2
is used for parameter estimation. The parameters to be estimated are the parameter values
at the reference temperatures and the temperature coefficients. The parameter vector is
given in the following form:

θ =

[
Q|Tre f , E0|Tre f , R|Tre f , K1|Tre f , K2|Tre f ,

∆Q
∆T

,
∂E
∂T

, β, α1, α2

]T

Parameters A and B in Equation (3) can be determined from the typical discharge
curve of the battery which is usually provided by the manufacturer [23]. The parameters in
the battery cell temperature Equations (12) and (13) (∆P, tc,Rth) are not estimated, because
they are not affected by the temperature. ∆P is usually included in the battery datasheet,
while the thermal time constant (tc) and the thermal resistance (Rth) can be determined
from a preliminary parameter estimation step, e.g. from the step response of the battery.

The available measured data are the measured current and voltage of the battery, the
battery cell temperature and the ambient temperature. It is assumed, that the ambient
temperature is constant during the experiment.

Least Squares Parameter Estimation Method

In our case a simple least squares method was chosen from the potential parameter
estimation methods to estimate the ten parameters of the battery. The principle of the
method is to minimize a quadratic cost function that depends on the parameter vector and
measures the deviation between the measured and the estimated output of the model [25].
In our case the cost function that characterizes the deviation between the measured and the
estimated battery voltage is defined in Equation (14).

W(θ) =
1
n

n

∑
k=1

1
2
(v̂b(k)− vb(θ; k))2 (14)

where v̂b(k) is the measured value of the battery voltage at the k-th sample, vb(θ; k) is the
output of the model in Equation (11) when the parameters have the values in θ, and n
is the total number of samples. This cost function should be minimized in order to find
the estimated parameter values of the battery. Because of the nonlinear output equation
(Equation (4)) the cost function is also nonlinear and cannot be minimized analytically.
Therefore, numerical optimization methods (such as simplex or gradient method) need
to be used to find the local minimum of the cost function. In our case the parameters of
the cost function have physical meaning, therefore their typical values and ranges can be
known in advance. Utilizing this information, reasonable bounds can be defined for each
parameter to restrict the search space during the optimization. Then a suitable constrained
nonlinear optimization algorithm can be used to solve the parameter estimation problem.
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3. The Fuzzy Controlled Battery Charging System

In order to prevent the battery temperature from being too high, cooling and/or
the proper manipulation/control of the charging current is usually applied [26]. The
charging current of the battery is determined by a Fuzzy Logic Controller (FLC) described
in this section.

In this work, lithium-ion batteries with 2.3 Ah capacity and 3.3 V nominal voltage
were used. The proposed method described in the following sections uses a dynamical
model of the battery, so if a different battery is used, only the underlying model and/or its
parameters need to be changed.

The following quantities are measured or calculated during the charge cycle:

• Cell temperature Tc is measured during the charge cycle, as it will be an important
variable for the FLC.

• Ambient temperature Ta is also measured, since together with Tc is is necessary to
determine the temperature difference (∆T) which will be an important variable in the
fitness function (15).

• State of Charge SoC is also supposed to be known using e.g. Coulomb counting, i.e.,
integrating the charge current and calculating from q(t) according to Equations (1)
and (5).

• Battery voltage vb is supposed to be measured, and it is used during parameter
estimation (see Section 2.4).

3.1. The Fuzzy Logic Controller

The fuzzy logic controller (FLC) is the basis of the proposed method, its parameters
will be optimized using a genetic algorithm. The input linguistic variable of the fuzzy
inference system (FIS) is the fuzzified version of the actual cell temperature (TEMP), while
the output fuzzy variable is the charging current (CURRENT). The applied membership
functions for the input and output variables of the FLC are depicted in Figures 2 and 3.

The FIS is a Mamdani-type inference system [27] with parameters collected in Table 1.

Table 1. Parameters of the FIS.

Parameter Value

And method Min
Or method Max
Implication Min
Aggregation Max
Defuzzification Centroid

10 15 20 25 30
0

1

Tc [◦C]

µ
T
e
m
p
(T

c
)

Low

Med

High

Over

Figure 2. Membership functions for the input fuzzy sets corresponding to the linguistic variable TEMP.
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0 2 4 6 8 10
0

1

i [A]

µ
C
u
r
r
e
n
t
(i
)

Zero

Low

Med

High

Figure 3. Membership functions for the input fuzzy sets corresponding to the linguistic variable
CURRENT.

The rule base of the FLC consists of four rules summarized in Table 2.

Table 2. The rule base of the FIS consists of the following four IF-THEN rules.

Rule TEMP CURRENT

1 Low High
2 Med Med
3 High Low
4 Over Zero

The current output of the proposed FLC (defuzzified using the Centroid method)
determines the actual current value i used for charging the battery.

3.2. Interface to the Genetic Algorithm (GA)

The Fuzzy Logic Controller described above serves as a basic structure for the battery
charging. The optimization of the charging system is performed by the GA described in
Section 4 below.

The overall system is practically an optimizer, that finds the optimal FLC according
to the objective function that will be defined later (fitness function Equation (15)). The
search space within the set of all Fuzzy Logic Controllers is restricted to the structure
(variables, rule base, number of membership functions) of the fuzzy inference system. The
optimization variables are the membership functions {Low, Med, High} of the linguistic
variables TEMP and CURRENT.

4. Genetic Algorithm Based Optimization of the Fuzzy Logic Controller

The aim of the optimization is to fine tune the parameters of the Fuzzy Logic Controller
presented in Section 3.1 before. The optimization can be formalized as the minimization of
a cost function by modifying the membership functions of the fuzzy variables appearing in
the FLC. The optimization is realized as a genetic algorithm [28] presented here with the
following standard ingredients.

4.1. The Basic Ingredients of the Genetic Algorithm
4.1.1. The Fitness Function

The fitness function of an evolutionary genetic algorithm is responsible of the evalua-
tion of each individual in every single generation. The fitness function y is constructed from
the charging time tcharge, and the temperature increase ∆T = Tc − Ta of the cell according
to (15):
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y(tcharge, ∆T; γ) = γ ·
( tcharge

1000

)2
+ (1− γ) ·

(
∆T
2

)2
, (15)

where γ ∈ [0, 1] is a tuning parameter that can be used for weighting the more important
term in the fitness function (smaller γ values decrease the importance of tcharge, greater γ
values decrease the importance of ∆T).

4.1.2. The Genetic Representation of the Solution Space

The individuals of the genetic algorithm are described by their chromosome. Table 3
contains the details of the chromosome. The genes are the parameters of the membership
functions applied in the FLC. The membership function “Over” of the variable TEMP (see
Figure 2) is not involved in the evolution since it is a safety bound not to be modified.

Table 3. Structure of the chromosome.

Gene Description Involved In

TEMP.Low fuzzy membership function Crossover, Mutation
TEMP.Med fuzzy membership function Crossover, Mutation
TEMP.High fuzzy membership function Crossover, Mutation
CURRENT.Low fuzzy membership function Crossover, Mutation
CURRENT.Med fuzzy membership function Crossover, Mutation
CURRENT.High fuzzy membership function Crossover, Mutation
i(t) charge current timeseries Fitness evaluation, Selection
Tc(t) cell temperature timeseries Fitness evaluation, Selection

4.1.3. Model Based Simulations

The convergence of the genetic algorithm would be slow if the individuals were charge
profiles of the actual real battery. In order to speed up the convergence on the real battery,
the individuals of each generation are generated using simulated charging of the dynamical
battery model (1)–(13)). In each generation the individual with the best fitness value is
realized on the actual real battery, i.e., the FLC representing the individual is used during
the charge.

The input-output data (i, vb) from the real charge is then being used for estimating the
key parameters of the battery model (1)–(11). This step makes the method adaptive with
respect to small changes in the battery parameters. Note, that parameter changes due to
battery aging could also be tracked by this iterative parameter estimation; however, it is not
in the focus of the present work.

4.1.4. The Operation of the Ga as an Optimizer

Figure 4 presents the flowchart of the proposed GA that optimizes the parameters of
the FLC that is used for charging the battery.
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START

Initial population
generation and evaluation

Selection

Crossover

Mutation

Battery charge simulation

Evaluation

N < Nmax

Best from the generation

Battery charge

Parameter estimation

Parameter change

G < Gmax

STOP

G = G+ 1

N = N + 1

Yes

No

FIS

vb, i

No

θ̂

Yes

Figure 4. Flowchart of the system: N stands for the number of individuals of the current generation.
G means the number of the actual generation, while Gmax is the maximal number of generations.
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4.2. The Structure and Parameters of the Genetic Algorithm

The initial generation contains a set of individuals derived from a mutual ancestor. The
individuals of the initial population correspond to a set of differently tuned fuzzy charge
controllers. The FIS-es of the fuzzy controllers differ only in the membership functions
belonging to their chromosome (i.e., the ones listed in Table 3).

4.2.1. Selection

The selection phase is to select the fittest individuals and let them pass their genes to
the next generation. It is important to note, that the pool of parents involved in crossover
are selected from all generations appeared so far. The parents of the next generation are
selected as follows. The individuals of the pool of parents are ordered according to their
fitness value and Nmax pairs are constructed from the combinations with best fitness value.
(The fitness value of a pair is regarded as the sum of the members fitness value.)

In order to increase efficiency, elitism is used to provide a means for reducing the genetic
drift. This method ensures that the most fitting solutions (elites) among the candidates
for the selection are allowed to transmit their traits in the next generation. This strategy is
capable of improving the convergence speed.

In this research, elitism does not affect the engenders of the first generation, but
afterwards it reserves places for the best solutions in the following generations.

4.2.2. Crossover

Crossover is a genetic operator used to vary the chromosomes from one generation
to the next. Two parents are picked from the mating pool to crossover in order to produce
superior offspring. Each membership function involved in the evolution is of triangular
shape and thus has three parameters determining its form as it is shown in Figure 5. The
membership function parameters of the parent FIS-es are going to determine the new
offspring FIS. The calculation goes through each parameter of every membership function,
and shifting the new functions in the direction of the better parent. Figure 6 demonstrates
the crossover operation on the fuzzy membership functions.

0 A B C
0

1

i [A]

µ
C
u
r
r
e
n
t
(i
)

Figure 5. Each membership function is described by a vector v = [A, B, C]T .

Denote the membership function description vector corresponding to one of the genes
of the parents by vbetter and vworse. Moreover, the fitness value of the two parents are ybetter
and yworse. The vector vchild of their offspring is calculated by the formula (16) below:

vo f f spring = vbetter −
yworse − ybetter
yworse + ybetter

(vworse − vbetter) (16)
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0 1 2 3 4
0

1

i [A]

µ
C
u
r
r
e
n
t
(i

)

Worse parent

Better parent

Offspring

Figure 6. In the introduced example the parents are shifted to the two sides in order to visualize the
deviation. The fitness value of the better parent is 80% better than that of the worse parent, that is
why, the offspring is much closer to the the better parent.

4.2.3. Mutation

Mutation is a genetic operator used to maintain genetic diversity from one generation
of a population to the next. It is analogous to biological mutation. In this study, the mutation
was carried out using three different mutation layers. The probability of a mutation changes
at different levels. The mutation ratio on the first level is calculated using deterministic
dynamic adaptation, i.e., the chance of the mutation decreases along with the generations.

Pmutation =
1
2
− 0.3 · G

Gmax
(17)

The mutation operation is applied in three levels as follows

Level 1 Mutation happens with probability Pmutation.

Level 2 This level determines which linguistic variable is involved in the mutation. A
nonempty subset of the set of linguistic variables {TEMP; CURRENT} is being selected.

Level 3 This level chooses which fuzzy set of the linguistic variable(s) selected at Level 2
is affected by the mutation. An element is selected randomly (according to uniform
distribution) from the set {Low; Med; High}.

4.3. Estimation of the Simulation Model Parameters

In each generation, the individual with the best fitness value is applied to the actual
battery (i.e., the battery is charged operated in closed loop by the FLC with the parameters
of the individual with the best fitness value).

Based on the i, vb measurements, the parameters of the battery model (1)–(11) are
estimated in the simulation model to be used in the next generation. This makes it possible to
update the model parameters from actual measured data and thus follow the ageing process.

5. A Simulation Case Study

The properties and operation of the proposed genetic algorithm based optimization
of the fuzzy controlled battery charging system has been investigated using simulation
experiments.

For this purpose, models of lithium-ion batteries with 2.3 Ah capacity and 3.3 V nom-
inal voltage were used. The nominal parameters of the selected battery can be seen in
Table 4 [29]. The reference temperature was 25 ◦C and the ambient temperature was set to
15 ◦C. The initial SoC of the battery was set to 10% and the charge process was terminated
when the battery reached 100% SoC.
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Table 4. Nominal parameters of the simulated Li-ion battery.

Parameter Value Unit

Tre f 298.15 K
Ta 288.15 K

E0|Tre f 3.4511 V
R|Tre f 0.014 Ω
Q|Tre f 2.3 Ah
K1|Tre f 0.001 Ω
K2|Tre f 0.001 V/Ah

A 0.3499 V
B 26.5487 Ah−1

∂E
∂T 0.0189 V/K
∆Q
∆T 0.0037 Ah/K
α1 329.915 K
α2 329.915 K
β 1364.9 K

∆P 30 W
tc 500 s

Rth 0.05 K/W

5.1. Simulation Environment

The lithium-ion battery model and the charging operation is implemented in a sim-
ulation environment using Matlab/Simulink [21,24]. The charging and the fuzzy logic
control system of the battery model runs simultaneously with the genetic algorithm which
is responsible for optimizing the attributes of the membership functions of the fuzzy con-
trol system by manipulating the parameters that determine the behavior of the fuzzy
control system.

The goal of the optimization is to find a finest charge profile for the fuzzy logic control
with which it can reach accelerated charge combined with the lowest possible temperature
increase; thus, the objective of the GA is defined as minimization.

Besides the tuning of the charging profile, the implementation takes care of parameter
estimation using fmincon algorithm [30], in order to improve the battery model. The
estimator function is called every time a generation is produced, calculating and setting
new parameters for the battery model.

5.2. Simulation Experiments
5.2.1. Initial Population

As it was stated before, the initial population consist of pre-tuned fuzzy controllers
(and simulation results). In the present case five elements are defined, their membership
function parameters are listed in Table 5, the fitness related parameters are listed in Table 6.

Table 5. The membership functions of the initial population elements. The triangular membership
functions are represented by three dimensional vectors (see Figure 5).

CHROMOSOME FUZZY SET A B C

1 TEMP.Low 12.7963 16.5563 20.3463
1 TEMP.Med 17.5226 21.0126 24.8126
1 TEMP.High 21.1951 24.8951 28.5951
1 CURRENT.Low −0.1801 2.0370 4.1970
1 CURRENT.Med 3.4253 5.6573 7.8123
1 CURRENT.High 6.9476 9.1826 11.2576
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Table 5. Cont.

CHROMOSOME FUZZY SET A B C

2 TEMP.Low 11.3729 15.1329 18.9229
2 TEMP.Med 15.2393 18.7293 22.5293
2 TEMP.High 18.3727 22.0727 25.7727
2 CURRENT.Low 1.2363 3.4535 5.6135
2 CURRENT.Med 4.3556 6.5876 8.7426
2 CURRENT.High 7.6242 9.8592 11.9342

3 TEMP.Low 13.3391 17.0991 20.8891
3 TEMP.Med 17.1737 20.6637 24.4637
3 TEMP.High 19.8315 23.5315 27.2315
3 CURRENT.Low 1.2363 3.4535 5.6135
3 CURRENT.Med 4.3556 6.5876 8.7426
3 CURRENT.High 7.6242 9.8592 11.9342

{4,5} TEMP.Low 13.6245 17.3845 21.17455
{4,5} TEMP.Med 16.6663 20.1563 23.9563
{4,5} TEMP.High 18.9435 22.6435 26.3435

4 CURRENT.Low 1.2363 3.4535 5.6135
4 CURRENT.Med 4.3556 6.5876 8.7426
4 CURRENT.High 7.6242 9.8592 11.9342

5 CURRENT.Low 0.4117 2.6289 4.7889
5 CURRENT.Med 3.3408 5.5728 7.7278
5 CURRENT.High 7.6242 9.8592 11.9342

Table 6. The attributes of the initial population. This pool is the jumping-off place of the entire
population.

CHROMOSOME tcharge [s] ∆T [°C]

1 883 3.1710
2 1005 3.0449
3 868 3.1769
4 896 3.1450
5 1007 3.0161

5.2.2. Parameter Estimation during the Optimization

As it is apparent from Figure 4, the proposed method has a dual nature. On one hand,
the genetic algorithm gradually improves the fitness value of the modeled individuals. On
the other hand, after each generation (i.e., a group of Nmax individuals), the individual with
the best fitness value is realized by the battery charge fuzzy logic controller. The input-
output measurements (i and vb) of such a real charging operation are then used as an input
data set for the battery parameter estimation procedure described in Section 2. This way the
proposed method re-estimates the important model parameters generation-by-generation.

To validate the identified model, a different charge current was also applied to the battery
than it was used for the parameter estimation. The PRBS (Pseudo Random Binary Sequence)
input signal was chosen to this purpose. The current levels of the PRBS was set to 0.5C and
2C and the sample time was 200 s. The same input was applied to the real battery and the
identified battery model and the two output voltages were compared.

Figure 7 shows the results of the parameter estimation for the most important parame-
ters performed after each generation. It can be seen, that the estimated R̂|Tre f , Q̂|Tre f , K̂1|Tre f

and K̂2|Tre f parameter values definitely converge to a final value during the simulation.
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Figure 7. Estimated parameter values after the generation G.

Figure 8 illustrates the deviation of the estimated voltage from the simulated voltage
for the initial parameter set and after the first parameter estimation step. The objective
of the parameter estimation is to reduce the difference between the simulated and the
estimated battery voltages. At subsequent estimations this gap noticeably decreases while
the solutions are improving, as it is seen in the bottom of Figure 8.
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Figure 8. The measured battery voltage and the battery model output voltages for the initial parameter
set (top) and after the last (sixth) parameter estimation step (bottom).

5.3. Evaluation of the Results

The operation of the optimization algorithm has been evaluated

• in terms of the charge profiles,
• using the fitness values of the individuals, and
• in terms of the charge performance on the actual battery

5.3.1. Charge Profiles

In order to see the differences of the charge controlling system, the worst individual
and the best individual are compared in Figure 9 in the case of a simulation experiment
with a five element initial population, and with Gmax = 6, Nmax = 8 and γ = 0.8. The figure
includes the membership functions of the FIS, as well as the time series of the important
battery variables (i(t), SoC(t), vb(t) and Tc(t), respectively). The values for the worst
individual are in the left column, the values belonging to the best individual are in the right
column. Note, that the battery variables are the variables of the internal battery model of
the proposed charge controller system.

It can be seen that there is a significant difference between the charge profiles of
the worst and the best individuals. In case of the worst individual, the charge current is
continuously reduced during the charge process, while in case of the best individual it
is reduced at the end of the charge process only. Moreover the average amplitude of the
current is greater in case of the best individual. This affects the charge time of the battery,
too: in case of the worst individual the battery reaches 100 % state of charge in 1000 s, while
in case of the best individual the battery is fully charged in 800 s. The increase of the battery
cell temperature is slightly greater in case of the best individual, but there is no significant
difference between the two individuals.
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Figure 9. Results of the model based simulation for the individual with the worst fitness value
(left column) and the individual with the best fitness value (right column).
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5.3.2. Fitness Values of the Individuals

As expected, the fitness values of the individuals become lower with the increasing
number of generations. This is illustrated in Figure 10. The construction of the fitness
function (15) determines the behavior of the method. It can be seen from Figure 10 that the
fitness values converge relatively fast to a minimum value around four. It is important to
note, that only the best individual of each generation (black filled markers on the figure) is
implemented in the charge controller during the charge of a real battery.

5 10 15 20 25 30 35 40 45 50 55

1.1

1.2

1.3

1.4

individuals

fi
tn

es
s

va
lu

e

Figure 10. Fitness value of the different individuals along the generations. The different colors denote
the different generations. The first group is the initial generation with five individuals. In each
generation, the individual with the best fitness value is denoted by black filled marker. (five element
initial population, Gmax = 6, Nmax = 8 and γ = 0.8).

5.4. Dependence of the Results on the Algorithms’ Tuning Knobs

The proposed method has also been examined with resect to the different design
parameters of the GA. Four important parameters of the proposed charge controller method
has been identified: Gmax, Nmax, the size of the initial population and γ.

Figure 11 summarizes the results of four simulation experiments, where parameters
Gmax and Nmax were changed between a relatively small (3–4) and a large (10) value. The
empty markers show the best individuals of each generation for the four setups. It can be
seen that a smaller number of individuals per generation (Nmax) and/or a smaller number
of generations (Gmax) results in individuals that converge to the real battery results slower
with weaker fitness values (red, green and blue empty markers), while larger Gmax and
Nmax values resulted in better convergence and better fitness values (black).

The most important tuning knob of the proposed method is the trade-off parameter
γ of the fitness function (15). A set of simulation experiments have been performed in
order to illustrate the results of the charge controller based on different γ values. The initial
population size was five with Nmax = 10, Gmax = 10. Figure 12 shows the results in the
tcharge − ∆T plane together with the level curves of the fitness function for γ = 0.2. As a
reference, the tcharge and ∆T values of conventional CC-CV charging profiles for 2C, 3C and
4C, are depicted by green squares. (The charge current in the constant current phase for the
2C, 3C and 4C cases were 4.6 A, 6.9 A and 9.2 A, respectively.) It can be clearly seen that,
although the GA-fuzzy charge controller charges the battery in a much slower rate, it keeps
the temperature on a lower level (2.8 ◦C).
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Figure 11. The contour lines represent the fitness surface over the tcharge − ∆T plane. The four
different colours shows the results of the GA-fuzzy charge controller with four different parameter
setups for the number of generations (Gmax) and the number of individuals per generation (Nmax),
γ = 0.8.

800 900 1 000 1 100 1 200 1 300 1 400 1 500 1 600 1 700
2.6

2.8

3

3.2

3.4

3.6

1.4

1.6

1.6

1.6

1.8

1.8

1.8

1.8

2

2

2

2

2.2

2.2

2.2

2.2

2.4

2.4

2.4

2.4

2.6

2.6

2.6

2.6

2.8

2.8

2.8

3

tcharge [s]

∆
T

[◦
C

]

Fitness levels
GA-fuzzy charge, γ = 0.2

CC-CV charge (2C,3C,4C)

Figure 12. The contour lines represent the fitness surface over the tcharge − ∆T plane for γ = 0.2.
Blue dots represents the real battery data corresponding to the charge process using the fuzzy
charge controller generated in each generation of the genetic algorithm. Square markers denote the
performance of the conventional CC-CV charging profiles with 2C, 3C and 4C respectively.

Figure 13 shows the results for γ = 0.5. It is apparent, that the charge controllers
realized from the best individuals of each generations of the GA are faster than 900 s,
however the maximal temperature difference almost reaches 3.5 ◦C. The results can be
compared to the CC-CV charge for 3C and 4C. A very similar charge time could be reached
with a 0.3 ◦C lower cell temperature.
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Blue dots represents the real battery data corresponding to the charge process using the fuzzy
charge controller generated in each generation of the genetic algorithm. Square markers denote the
performance of the conventional CC-CV charging profiles with 2C, 3C and 4C respectively.

The final simulation experiment corresponds to γ = 0.8. The results are depicted
in Figure 14, where (apart from an outlier of the first generation) the GA-fuzzy charge
controllers are gathering around 750 s which can be regarded as a very good result; it is 50 s
faster and 0.2 ◦C cooler than the 4C CC-CV charge.
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Figure 14. The contour lines represent the fitness surface over the tcharge − ∆T plane for γ = 0.8.
Blue dots represents the real battery data corresponding to the charge process using the fuzzy
charge controller generated in each generation of the genetic algorithm. Square markers denote the
performance of the conventional CC-CV charging profiles with 2C, 3C and 4C respectively.

Summarized, it can be seen on Figures 12–14, that for different γ values the proposed
method yields approximately a 20% decrease in tcharge and a 5% decrease ∆T compared to
the conventional CC-CV method.
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6. Conclusions and Future Work

A simple optimized fuzzy controller is proposed in this paper that is responsible for
the regulation of charging current of a battery charging system. The basis of the method is
a simple dynamic electrical circuit type model of the Li-ion battery that takes into account
the temperature dependency of the model parameters, too.

Since there is a tradeoff between the charging speed determined by the value of the
charging current and the increase in temperature of the battery, the proposed simple fuzzy
controller is applied for controlling the charging current as a function of the temperature.
The controller is optimized using a genetic algorithm to ensure a jointly minimal charging
time and battery temperature increase during the charging. The parameters of the fuzzy
membership functions of the battery temperature and that of the charging current are
optimized using a fitness function that is a weighted sum of the charging time and the
temperature increase during charging.

The proposed GA-fuzzy control method is adaptive in the sense that we use parameter
estimation of an underlying dynamic battery model to adapt to the actual status of the
battery after each charging. The parameter estimation is performed in each charging cycle
using constrained direct minimization of a loss function.

The main advantage of the proposed method as opposed to similar optimized equiva-
lent circuit methods, that an off-line optimization is performed by the GA in each generation
that does not involve the real battery. Only the best fuzzy controller of each generation
is applied as an ultimate battery charge. This improves the convergence of the method
from the user point of view. Using a proper discretization, the simulation of the equivalent
circuit battery model can be implemented in a computationally effective way, and it can
also be run on a battery management system. Moreover, by changing the γ value of the
cost function, the optimization aim can be changed online. This means that, after a short
transient, the method is able to optimize for the new aim.

The performance and properties of the proposed optimized charging control system
are evaluated using a simulation case study. The evaluation was performed in terms
of the charge profiles, using the fitness values of the individuals, and in terms of the
charge performance on the actual battery. The charge performance has been compared
to the conventional CC-CV battery charge policy. We have found that the proposed GA-
fuzzy controller gives a slightly better performance by means of charging time as well as
temperature increase.

The effect of the most important tuning knobs of the proposed GA-fuzzy controller,
namely the weighting factor in the fitness function, the size of the initial population and
the maximal number of generations has also been thoroughly analyzed.

Further work will be directed to relate the estimated parameters to the ageing of the
battery and thus predict the speed of the ageing process.

The fuzzy charging controller will also be extended to take into account the actual
SoC value of the battery. This will make the fuzzy rule set more complex by increasing the
number of rules and their kind of predicates.
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Appendix A

Table A1. List of notations.

Quantity Description Unit

TEMP linguistic variable for cell temperature -
CURRENT linguistic variable for i -

n number of samples in a measurement -
µ fuzzy membership value -
i battery charging current A

vb battery voltage V
Tc cell temperature ◦C

SoC state of charge %
R internal resistance Ω
Q capacity Ah
E0 battery constant potential V
K1 polarization resistance Ω
K2 polarization coefficient V/Ah
T the battery internal (cell) temperature K
Ta the ambient temperature K
tc the thermal time constant, cell to ambient s

Rth the thermal resistance, cell to ambient K/W
Ploss the overall heat generated during charge/discharge W

∂E
∂T the temperature coefficient V/K
∆P the power loss difference between charge and discharge W
θ general parameter vector -
θ̂ estimated parameter vector -

tcharge charge time s
∆T temperature difference ◦C
N number of individuals in the actual generation -

Nmax maximal number of individuals in a generation -
G number of generations -

Gmax maximal number of generations -
y fitness value -
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