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Keywords: The challenge in modeling and solving assembly planning problems lies in integrating combinatorial opti-
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to ensure the geometrical and technological feasibility of the assembly plans. This paper proposes a Benders
decomposition approach that separates the macro-level planning problem, responsible for task sequencing and
resource assignment, from micro-level validation on detailed geometrical and technological models. Feedback
from the micro to the macro level is provided in the form of disjunctive constraints generated during search,
which precludes the repeated occurrence of the collisions encountered in earlier iterations. A disjunctive
programming approach is proposed to solve the macro-level planning problem with the added constraints. The
efficiency of the approach is demonstrated both in industrial case studies and in computational experiments
on generated problem instances.

1. Introduction

This paper proposes an efficient solution method for the assembly
planning problem that can be briefly stated as follows. Given a set
of parts (components), and a set of candidate assembly tasks to join
these parts, find a subset of the tasks, along with a sequence of the
selected tasks and an assignment of resources to the selected tasks,
such that (i) the selected tasks construct the final product from the
individual parts, (ii) the sequence of tasks with the assigned resources
has a technologically and geometrically feasible physical realization,
and (iii) a cost function is minimized. Checking whether a sequence of
assembly tasks has a feasible realization may be tricky, just think about
how the 27 parts of the Rubik cube (in case of the original Rubik brand)
can be assembled together.

Assembly planning must match often conflicting aspects of product
design, production technology, production system configuration, and
production economics. To achieve this, it must combine combinatorial
optimization techniques with geometrical reasoning over models of the
product and the applicable equipment, knowledge-based techniques
for technological feasibility, etc. This complexity results that assembly
planning is the least automated field in production informatics. Never-
theless, this paper proposes a Benders decomposition based approach
that combines discrete optimization in the master problem with geo-
metrical reasoning in the subproblem, where the subproblem returns
disjunctive constraints if the solution of the master problem has no
feasible realization.

* Corresponding author.

Compared to classical approaches to assembly planning, which
compose the complete combinatorial problem model from the geometry
of the product and the equipment in a preprocessing phase (Wilson and
Latombe, 1994), the proposed approach generates constraints during
search. The novel approach enables lifting some of the limiting assump-
tions of the earlier contributions: e.g., it allows arbitrary assembly paths
instead of the former linear movements in a few predefined directions.
The latter assumption was necessary in order to generate all constraints
on the assembly task sequence by performing a finite number collision
detections during preprocessing.

This work is partly based on the Benders solution approach pre-
sented in Kardos et al. (2020), nevertheless, with more sophisticated
and efficient solution techniques. The underlying models are similar
apart from minor differences (e.g., the set of parts that can be grasped
by a fixture are characterized in different ways), yet, the solution tech-
niques differ substantially: mixed-integer linear programming is used
to solve the Benders master problem instead of constraint programming
(CP); sophisticated modeling techniques are proposed for encoding the
connectivity status of the parts in different stages of the assembly
process; the constraints fed back from the subproblem to the master
problem are significantly stronger, which results in less iterations in the
Benders approach. In our approach, the subproblem provides violated
disjunctive constraints that can be modeled by additional binary vari-
ables and linear constraints in the master problem. To the best of our
knowledge, the combination of Benders decomposition with disjunctive
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programming is new. Finally, various techniques, including caching,
have been added to speed up the solution of the subproblems as well.
Moreover, the computational efficiency of the proposed techniques are
investigated in a large set of generated problem instances, which has
not been performed for the earlier approach. The generated problem
instances are freely available, and they can be used by other researchers
for benchmark purposes.

We describe the problem in Section 2, and briefly summarize the
related results in Section 3. In Section 4, we provide a mixed-integer
linear programming formulation of the problem. As the mathematical
program may contain an exponential number of disjunctive constraints,
we turn to logic-based Benders decomposition to solve it, which is the
topic of Section 5. The disjunctive constraints are generated by analyz-
ing the assembly sequence found by solving the master problem, and
the analysis is based on geometric reasoning as explained in Section 6.
We present computational results on some industrial test cases and also
on generated instances in Section 7. We compare our results to previous
work in Section 8, and conclude the paper in Section 9.

Terminology An undirected graph is an ordered pair G = (V (G), E(G)),
where V (G) is a set of elements, called nodes, and E(G) C V(G)XV (G) is
a set of unordered pairs of nodes, called edges. All graphs in this paper
are simple, that is, undirected and contains no loop edges, i.e., edges
e = {v,v} for some node v.

A graph G’ is a subgraph of G, if V(G') C V(G) and E(G’) C E(G).
For a subset S C V(G) of nodes, the subgraph induced by S is the graph
G[S] :=(S,0(S)) where 6(S) := {{u,v} € E(G) :ue s, veS).

For a subset S C V(G) of nodes let [S,S]l; := {{u,v} € EG) :
|S N {u,v}| = 1} be the set of edges between S and S := V(G)\ S, also
called a cut. A cut [S,S]g is an r—s cut, if r € S and s € S. Moreover,
we use notation dg(S) := |[.5, S1g| and dg(v) = dg({v}). The graph G
is connected if [S,S]g # @ for all § # S € V(G). A tree is a minimally
connected graph, i.e., if any one edge was removed, the graph does not
remain connected. A subgraph T of G is a spanning tree of G if T is a tree
and V(T) = V(G). A path P is a tree with d(v) < 2 for each v € V(P). In
other words, a path is a finite sequence of edges which joins a sequence
of nodes which are all distinct, and a graph is connected if there is a
path between every pair of its nodes.

A connected graph is biconnected if any one node was removed, the
graph remains connected. A biconnected component is an inclusion-wise
maximal biconnected induced subgraph.

2. Problem statement

In the assembly planning problem, there is a set of parts V, and
a set of candidate assembly tasks T for joining them. Each task r € T
comprises an unordered pair of parts, (a, b), to be joined. The additional
technological data associated to the task, such as the required motion of
the parts, will be discussed in detail in Section 6. These candidate tasks
define the so-called liaison graph of the product, i.e., a graph G = (V,T)
with set of nodes V, and set of edges T. All the possible subassemblies
can be compactly represented as connected subgraphs of G.

There is a set of conjunctive constraints given in the input (while
additional constraints will be generated during search), each of which
prescribes that a subassembly W C V must be joined before executing
task .

Each assembly task requires two types of resources: a fixture and
a tool, which must be selected from the predefined sets F and Z,
respectively. Each fixture f € F can grasp one specific part v, directly.
Moreover, there is a maximal subassembly V, with v, € V, defined for
f that it can hold indirectly via the grasped part. Then, for an arbitrary
subassembly W, fixture f can hold W if and only if W is connected,
v, € W, and W C V,. While the two parts joined by an assembly task
are not differentiated in the input, the selection of the fixture in the
assembly plan distinguishes the base part held (potentially indirectly,
via another grasped part) in the fixture from the moved part. In contrast,
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Fig. 1. Illustrative example: ball valve product.

the set of tools applicable for task ¢ € T is given in the input, and it is
denoted by Z,.

The processing time of task ¢ is denoted by p,, whereas d, and
d, stand for the changeover times related to fixture f € F and tool
z € Z, respectively. It is noted that in reality, the processing and
changeover times depend on the layout of the assembly cell (e.g., the
location of the parts storage and the fixture), the applied resources
(e.g., the robot), and the assembly path. Since assembly planning
precedes cell configuration in the planning workflow considered, it is
reasonable to assume estimated processing times given in the input.
Many papers in the literature overcome the difficulty caused by the
mutual interrelation of assembly planning and cell configuration by
simply minimizing the number of changeovers; the proposed approach
can be used in this way by using unit processing and changeover times.

Monotonous binary (i.e., two-handed) assembly is assumed, i.e., each
assembly task fixes the relative position of the two involved parts as
required in the assembled final product, and this connection cannot
be untied later. Hence, the initially separated parts are gradually built
into larger subassemblies, until they are finally joined in one final
product. Consequently, beyond assembling the directly involved two
parts, an assembly task also connects all parts in the two corresponding
subassemblies.

An assembly plan consists of a subset of tasks that constitute a
spanning tree of G, and a total ordering of the selected tasks. The
assembly plan is feasible if there is a technologically and geometrically
feasible (explained below) way of building the product using the given
sequence of tasks so that no collision occurs during the execution of
any of the assembly tasks. The assembly planning problem consists in
finding a feasible assembly plan which minimizes the total assembly
time, which contains the fixture and tool changing times plus the total
processing time of the selected tasks.

The computed assembly plan must be geometrically and technologi-
cally feasible, i.e., it has to be ensured that each selected task can be
realized by a motion of the involved objects, including parts and tools,
that respect the technological specification of the given task and does
not incur any collisions. The characterization of the assembly motions is
presented in Section 6, with further details of the applied technological
and geometrical models in the Appendix.

2.1. Illustrative example

Throughout the paper, the proposed approach will be illustrated
on the assembly planning problem of the standard ball valve product
shown in Fig. 1. An optimal assembly plan for this product is displayed
in Fig. 2. The product is built from 13 individual parts. After merging
the four identical screws that join the cover to the house into a
composite part, the model contains 10 parts and 11 tasks. Hence, the
liaison graph of the product contains 11 edges (11 tasks), out of which
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Init Task 1 Task 2
F: Hand F: Hand
T: Hand T: Hand
Task 5 Task 6 Task 7
F: Fixtl F: Fixt2 F: Fixt2
T: Hand T: Hand T: Hand
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Task 3 Task 4
F: Fixt1l F: Fixt1
T: Hand T: Hand
Task 8 Task 9
F: Fixt2 F: Fixt2

T: Screwdriver T: Screwdriver

Fig. 2. Optimal assembly plan for the ball valve product. Fixtures (F) and tools (T) are shown only below the figures, without geometries.

9 edges (9 tasks) that constitute a spanning tree must be selected for
inclusion in the assembly plan. An example of alternative tasks is that
the O-ring that ensures sealing between the house and the cover can be
placed either on the cover (see Tasks 3 in Fig. 2) or on the house, before
the house and the cover themselves are joined. A part of the precedence
relations between the tasks must be inferred by geometrical reasoning:
for example, the two inlets must be placed on the ball (Tasks 1 and 2)
before inserting the ball into the house (Task 6).

However, finding a feasible plan is just one part of the challenge;
beyond that, a plan that minimizes the total assembly time is looked
for. This requires considering the resources and the corresponding
changeover times as well. In this example, four different fixtures can
be applied: two fixtures can grasp the cover or the house (two physical
fixturing devices with given geometry), or the human operator can hold
one of the plastic inlets while putting the ball and the other inlet on
it (two virtual fixtures without a fixed geometry, see Tasks 1 and 2 in
Fig. 2). The two available tools are the human hand (without geometry)
for placing and insertion tasks, and a screwdriver (with geometry)
for screwing tasks. One interesting question is how the number of
changeovers can be reduced while respecting the precedence relations
stemming from geometry.

3. Literature review
3.1. Assembly planning

The main challenge of assembly planning lies in performing effi-
cient optimization to maximize assembly system performance while
ensuring that the complex technological and geometrical constraints
are satisfied. Classical approaches to assembly planning aim to explore
geometrical and technological constraints before search, and then look
for a solution that respects the given constraints. An approach that
generates all geometrically feasible task sequences for a product is
presented in De Fazio and Whitney (1987). In Wilson and Latombe
(1994) and Romney et al. (1995), the concept of non-directional block-
ing graphs (NDBG) is introduced to characterize the blocking relations
between pairs of parts. Given the NDBG, polynomial-time graph al-
gorithms can be applied to extract geometrically feasible assembly
sequences. These sequences can be evaluated later using various per-
formance measures related to the efficiency and ease of the assembly

process. In Thomas et al. (2003), the stereographical projections of
parts are used to generate constraints on the assembly sequence, and
then to build the AND/OR graph representation that contains all feasi-
ble assembly sequences. A more sophisticated approach to generating
precedence constraints from geometrical models is proposed in Morato
et al. (2013). However, product geometry can be translated efficiently
into precedence constraints between assembly tasks only in the pres-
ence of strict assumptions. In most of the above papers, assembly
motions correspond to a linear translation of the part, typically, along
one of the few given direction vectors. With this assumption, it is
sufficient to perform pairwise collision detection between parts along
a few candidate linear motions, instead of solving a complex path
planning problem involving different subsets of the parts. Moreover,
none of the above approaches capture resource requirements.

When geometrical and technological feasibility cannot be fully en-
sured by constraints generated in a preprocessing phase, the applicable
approach is solving the planning problem iteratively, with constraints
added during search based on the evaluation of earlier plan candidates.
For this purpose, it is typical to separate the so-called macro-level
planning problem, which is the combinatorial optimization problem
responsible for task sequencing and resource assignment, from the
micro-level problem related to evaluating the plans considering detailed
geometrical and technological modes.

A Benders decomposition approach to integrating macro- and micro-
level planning was presented in Kardos et al. (2016, 2017). The pro-
posed method departs from a so-called feature-based representation of
the assembly process to define technologically correct execution of
the assembly task, and uses mixed-integer linear programming (MILP)
to minimize the total assembly time, considering fixture and tool
changeovers as well. In case of any collision identified on the micro
level, a disjunctive precedence constraints is fed back to the macro
level. The significant limitation that the liaison graph had to be a tree
was lifted in a subsequent paper Kardos et al. (2020), where CP was
used to solve the macro-level planning problem. Again, the subproblem
provided conjunctive constraints for the macro level, but this could lead
to a high number of iterations for intricate cases.

In order to speed up the search for geometrically feasible assem-
bly sequences, Rodriguez et al. (2019) proposed iteratively refined
simulations, starting with free-flying parts and ending with a detailed
simulation of the complete robotic assembly system. The solution space
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of sequence planning is discovered using a simple depth-first search,
and any collision detected during simulation is propagated to assembly
sequence planning to prune the search tree. In Hui et al. (2009),
a meta-heuristic that combines a genetic algorithm with ant colony
optimization is presented for solving the assembly sequencing problem,
considering also the required resources. The validity of the computed
sequences is checked by interactive path planning, with the support
of swept volumes generated by a B-rep filling algorithm. If the path
found for an assembly task is not satisfactory, either due to collisions
or its difficulty, a feedback is provided to the macro level to modify the
sequence. In Le et al. (2009), the authors look at the assembly planning
problem from the path planning point of view, and iterate an ML-RRT
algorithm (Cortés et al., 2008), which is a variant of the classical RRT
path planner (Lavalle and Kuffner, 2000), until it removes all parts
one-by-one from the assembly. Yet, the approach does not capture
resource requirements, and settles for finding an arbitrary feasible,
collision-free assembly sequence. Focusing on assembly/disassembly
for maintenance, the paper Hassan and Yoon (2010) proposes an inte-
grated approach to assembly sequence and path planning. On the macro
level, a genetic algorithm aims to minimize a criterion composed of the
number of gripper changes, number of orientation changes, and path
length. On the micro level, a potential field path planner is used to
compute collision-free (dis)assembly paths. At the end, the computed
sequences and paths are validated in a virtual environment with haptic
control.

Typical optimization criteria are minimizing the number of
changeovers (including the changes of orientations, tools, or assembly
task types), the assembly time, the tool travel distance, or the assembly
cost (Bahubalendruni and Biswal, 2016). Apart from early models that
solve assembly planning as a graph search problem, all formulations
are NP-hard, and hence, (meta-)heuristics, soft computing techniques,
and mathematical programming approaches are frequently applied for
solving them (Bahubalendruni and Biswal, 2016; Rashid et al., 2012).
Recent surveys on solution methods include Jiménez (2013), Hu et al.
(2011), Bahubalendruni and Biswal (2016) and Neb (2019).

3.2. Logic-based benders decomposition

This paper applies a Logic-based Benders decomposition (LBBD)
approach to solving the assembly planning problem. LBDD, intro-
duced by Hooker and Ottosson (2003), generalizes Benders decom-
position (Benders, 1962; Geoffrion, 1972) by replacing the linear
programming dual used in the classical method with an “inference
dual". By solving the “dual problem”, new inequalities, so-called Ben-
ders cuts, are computed that exclude superfluous solutions. LBBD has
been successfully applied to a host of applications, see Hooker (2011,
2019). The most typical ones are planning and scheduling (Hooker,
2007; Roshanaei et al., 2017), facility location (Fazel-Zarandi and Beck,
2012; Wheatley et al., 2015), route planning (Kloimiillner and Raidl,
2017; Fachini and Armentano, 2020), to name but a few examples.
Unlike in most of the applications, in our case the constraints derived
from the inference dual of the assembly planning problem will take
the form of disjunctive constraints, which cannot be modeled by a single
linear inequality in general. Such a constraint takes the form

\Vxeo,

ier

where I' is a finite index set, the C; are sets of possible values, and
the constraint prescribes that x must be a member of one of these
sets. Balas (1975, 1979, 1998) pioneered mathematical programming
with disjunctive constraints (MP-DC). MP-DC has gained a tremendous
interest over the last decades, for an overview we refer to the text-
book Balas (2018) (when the C; are polyhedra, and besides disjunctive
constraints, there are only linear inequalities in the program), and to
the review paper Grossmann (2002) in case of mixed-integer nonlinear
programs. In this paper we consider a special case, where each term
x € C; of a disjunction can be described by a single linear inequality,
and we will simply aggregate these constraints into a single inequality,
see Section 4.8.
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Table 1

Notation.
14 Set of parts (nodes of the liaison graph G)
T Set of tasks (edges of the liaison graph G)
POS Set of positions
z Set of tools
F Set of fixtures
X, Assignment variables (T - POS)
Gprs Connection variables (if g,,, = | then G,(x) contains an r — s path)
T, Tool assignment variables (Z — POS)
[ Fixture assignment variables (F — PO.S)
el Tooling cost variables (POS — R)
c/»/ ixt Fixturing cost variables (PO.S — R)

4. Formulation by a mixed-integer linear program

In this section, we present a mixed-integer linear program for
modeling the assembly planning problem. Recall that the liaison graph
is G = (V,T), where node set V' corresponds to the parts, and edge set
T represents the tasks, thus, in order to ease our notation, we use terms
part and node, as well as task and edge interchangeably.

Recall that an assembly plan (aside from tools and fixtures) can
be represented by a selection of n := |V| — 1 tasks along with a
bijective mapping of the selected tasks to positions from the set POS :=
(1,....n}.

To describe a solution, we introduce the assignment variables x,, that
specify for each task + € T and position p € POS, whether task ¢
is assigned to position p (x,p = 1) or not (x,p = 0). An assignment is
feasible if and only if exactly one task is assigned to each position, and
each task is assigned to at most one position. Note that if there are
more tasks than positions, then some tasks are necessarily unassigned
in any feasible assignment. Clearly, any feasible assignment selects a
spanning tree in the liaison graph G. Let G,(x) denote the subgraph
of G containing those edges that correspond to the tasks assigned to
the first p positions by a feasible assignment x. We also need the
connection variables q,,; expressing whether parts r and s belong to the
same subassembly after performing the first p tasks in the determined
sequence. Basically, we will only require g, to be 0, if there is no r—s
path in G,(x). Finally, to express the objective function, we will use the
variables cl’,”"’ and c‘{ X' for expressing the tooling and fixturing costs for
each position p € POS (see Table 1).

Now we are ready to describe the mathematical programming for-
mulation of the problem. In the objective function, we aim to minimize
the total assembly time, that is, the sum of processing times of the
selected tasks, and the total changeover time incurred by the tool and
fixture changes at each step:

Minimize Z c;‘"”+ Z cf’“+2 Z PrXpr (€]

pEPOS pEPOS (€T pePOS

Subject to the constraints (to be declared in subsequent sections):

Assignment: (2a)—(2c),
Connectivity: (3a)-(3i),

Tooling and fixturing: (4a)-(4k),
Maximal subassemblies: (5),
Component limits: (6),
Graspable constraint: (7),
Conjunctive: (8),

Disjunctive: (9).

4.1. Assignment

We formulate the assignment constraints as follows:

2 X <1, forallteT (2a)
peEPOS
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SB

B

Fig. 3. Example for a graph and its biconnected components. Biconnected components
are indicated with dashed boundary. Nodes r; and s are the first and last nodes,
respectively, that belong to biconnected component B when traversing along a path
from node r to node s.

Z x,, =1, for all pe POS (2b)
teT
x,, €{0,1}, forallt € T, p € POS. (20)

Each task can be assigned to at most one position by (2a), to each
position exactly one task must be assigned by (2b), and the x,, variables
are binary by (2c).

4.2. Connectivity constraints

The purpose of the connectivity constraints is to ensure that g,,., = 0
for some p € POS, and r,s € V if there is no r — s path in G,(x).
This is easy to guarantee by linear constraints if the liaison graph is a
tree, see Kardos et al. (2017), but it becomes a challenging modeling
problem if G contains one or more cycles. The connectivity constraints
(for general G), will be declared in several steps. We start with the
following set:

Qprs = Qpsr> for all p € POS, r,s €V (32)
Gys=1,forallr,seV (3b)

dors =0, forall r,seV :r#s (30)
gpr=1,forall pe POSU{0}, reV 3d)
dprs € 10,1}, for all pe POSU {0}, r,s € V. (3e)

Constraint (3a) expresses the symmetry of the variables. Constraint (3b)
requires that all of the parts must be connected after the final, nth step.
In the beginning, distinct parts are unconnected due to constraint (3c),
however, by constraint (3d), any single part is always connected with
itself.

Consider the liaison graph G. Note that G,(x) contains an r — s path
if and only if each r — s cut [S,S] of G contains at least one edge
of G,(x). Therefore, we need Qprs 1O be zero, if there is an r — s cut
containing no edge of G,(x). If G is a tree, then G,(x) is a forest, and
the latter condition is easy to verify since each r — s cut corresponds to
an edge of the unique r — s path in G. However, if G has biconnected
components, then the number of r — s cuts can be large. Let BCy
be the set of biconnected components of G, and for an edge ¢ €
E(G), let B;(e) € BCg be the unique biconnected component that
contains e, and for a node v € V(G), let B;(v) C BCy be the set
of biconnected components that contain v. The cardinality |B| of a
biconnected component B € BC; is the number of its nodes. It is
well-known that one can determine the set BC; in linear time using
a depth-first-search procedure (Hopcroft and Tarjan, 1973). In Fig. 3
we depict a graph and its biconnected components.

Consider a biconnected component B € BC in the form of B =
G[S] = (S,0(S)) for a certain subset S C V(G). Let K be the set of
all inclusion-wise minimal cuts of G[S], and K,, € K be the set of

Computers and Operations Research 138 (2022) 105603

all inclusion-wise minimal r — s cuts of G[S]. For each cut C € K
and position p € POS we introduce a binary variable y, with the
following meaning: if y,- = 1 then C contains at least one edge
of G,(x). By this, for each biconnected component B = (S,0(S)) we
add the following constraints to the model:

)4

Ve € O Y x4 forallpe POS, C=[X.X]ek (30
i=1 te[X,X]

dprs < Vpoo forallpe POS, r,se S :r#s, CeK, (3g)

Constraint (3f) ensures that y, - = 0 holds if Cn E(G,(x)) = 4, and thus
dprs = 0 holds for all nodes r and s such that C is an r — s cut due to
constraint (3g).

The set of inclusion-wise minimal cuts of a graph can be enumerated
in linear time per cut (Tsukiyama et al., 1980). We also remark that as
long as we only have lower bounds on variables g,,, in the model, it
suffices to require g,,, to be 0 if there is no r — s path in G,(x).

Now we turn to paths in the liaison graph. Assume that parts r and s
belong to different biconnected components of the liaison graph G, that
is, B;(r)N Bg(s) = @. Consider an arbitrary »—s path P in G. Let E,, :=
{e € E(P) : |Bg(e)| = 2} be the set of edges of the path that belongs
to a biconnected component which consists of a single edge, and let
B,, 1= {Bg(e) C BCq : e € E(P), 3 <|Bg(e)|} be the set of biconnected
components with at least three nodes that the path traverses (i.e., uses
at least one edge from it). Note that the definitions of E,, and B, do
not depend on path P but only on r and s. Traversing along path P
from node r to node s, for each B € BC let rp be the first and sp
be the last node that belongs to the component, respectively. Note that
rg = sp might hold. For the designated nodes r and s in Fig. 3, the
corresponding sets E, and B,, contain three edges, and one component,
respectively, moreover, for component B nodes rp and sz are also
depicted. For a later use we also define the set K, := Jpez K
of cuts. "

For each position p € POS and for each pair of parts r,s € V such
that B;(r) # Bg(s) we have the following constraints:

"B-SB

p
Qprs < Z x,;, forallt € E,, (3h)

i=1

Gprs < Gprp.s,s fOr all B€ B, (3i)

Constraints (3h) and (3i) ensure that Qprs =0 if there is no r — s path in
Gp(x).

Note that we do not require g,,, to be 1 if there exists an r — s path
in G,(x) since it would demand a large number of constraints, and due
to our preliminary experiments it makes the problem hard to solve.
Thus, upper bounds on variables g,,; cannot be applied directly, but
the biconnected decomposition described above can be used. That is,
for example, instead of constraint g,,; < 0, the following inequality can
be used:

P
Z thi+ z yp,CS|E~rs|+|lerx|_1~

t€E, i=1 Cek,,
4.3. Tooling and fixturing

In order to express the constraints regarding tools and fixtures, we
add the following constraints to the model:

Y 7. =1, forall pe POS (4a)
z€Z

7,, €{0,1}, forall pe POSU {0}, z€ Z (4b)

7, =0, forall ze Z (40)

Z ¢, =1, for all p e POS (4d)
fer

¢,r €1{0,1}, forall pe POSU {0}, f€F (4e)
dor =0, forall f e F (4f)
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xp,+1, <1 forallpe POS, teT, ze Z\ Z,
(48)

for all p € POS, f €F

xrp + ¢pf - qp—l,vf,a - qp—l,l}f,b <1 t= <(1, b> eT. (4h)

Constraints (4a) and (4d) ensure that for each position exactly one
tool and exactly one fixture must be assigned. Inadmissible task-tool
assignments are prohibited by constraint (4g). With constraint (4h) we
ensure that a task can be used in a fixture only if the grasped part of
the fixture is in one of the two subassemblies which are connected by
the task.

Recall that d, and d, denote the sequence independent changeover
time for fixture f and tool z, respectively. We add the following
constraints to the model:

¢/ 2 d;(@,; ~ b1, forall p€ POS, [ € F 40
c;oo, 2dy(T); = Tp1.2)s forall pe POS, z€ Z “4)
/M 20, ¢ >0, for all p € POS. (4

Clearly, the fixture changeover time variable clf ™ js forced to take a
value of at least d, if and only if ¢,, = 1, while ¢,_, ; = 0, and in an
optimal solution equality holds. An analogous statement holds for the

tool changeover time variables.
4.4. Maximal subassemblies

For a maximal subassembly V, that can be held in fixture f we add
the following constraints to the model:

)4
¢pf + Z ZX" + z Yo < |E.Y,Uf | + |K~s,vll

tel?m,f i=1 cek

svf

for all pe POS, seV\ V. 5)

applying the technique described at the end of Section 4.2. That is, if
fixture f is used in position p (¢,, = 1), then no part s out of V', can be
assembled with the grasped part v, in the first p positions (q,,y,,fys =0
for all s € V' \ V,). Note that this constraint does not forbid to join
prohibited parts (i.e., one part from V, and one from V'\ V) in fixture f
in the pth position.

These constraints are the transcription of constraints ¢, +q,, , s S 1

4.5. Component limits

Clearly, from any connected component (S, c(S)) at most |.S| — 1
edges can be selected. We add the following constraints to the model:

Y x,<IS|-1 forall B=(S,0(S) € BCq. (6)
1€ (S) pePOS
Note that it is not necessary to add these constraints to the model
(i.e., the model is also valid without these constraints), however, due
to our preliminary experiments they strengthen the model.

4.6. Graspable constraint

Clearly, a task ¢ = (a,b) € T can be performed only if either part a
or b is already connected to a graspable part (that is, a part which can
be grasped by a fixture). Let V&*? :={v €V : v =, for some f € F}
be the set of graspable parts. We add the following constraints to the
model:

X < Z (4p-tua+dp14p) forallteT, pe POS. @)
uelsrasp

These constraints are satisfied by all feasible solutions, and they are
added to the model to strengthen the LP relaxation.
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4.7. Conjunctive constraints

A conjunctive constraint is formalized as (+ @ W) where r € T and
W C V, and it prescribes that task 7 can be performed in some position
of the assembly sequence only if the parts in W are already joined by
some assembly tasks in positions 1, ..., p— 1. To express this constraint,
we choose and fix a part r € W, and add the following inequalities to
the model:

Xp < gyt for all pe POS, s€ W\ {r}. €))

We expect to generate all such constraints in an offline preprocess-
ing phase (using geometric reasoning), and not during search. Note that
these constraints can be aggregated into a single one, however, our
preliminary experiments showed that (8) is more efficient.

4.8. Disjunctive constraints

A disjunctive constraint is used to express that the assembly sequence
must satisfy at least one from a couple of logical conditions. It is
formalized as (t © W, W,,z, fywitht e T, W, W, CV,z€ Z, f €F,
where task ¢t = (a, b) joins parts a and b. The constraint states that either
task 7 is not executed at all, or:

« part a is not connected to at least one of the parts in W, before
the execution of task ¢, or

« part b is not connected to at least one of the parts in W, before
the execution of task ¢, or

* tool z is not used for the execution of task ¢, or

- fixture f is not used for the execution of task ¢.

Some fields of the constraint can be left empty (but task ¢ is always
specified), which will be denoted by W, = @ or z = @, etc. Hence, (+ ©
W,,0,8, f) and (t+ © #,0,z, f) are all valid constraints. In such cases,
the corresponding terms of the disjunction are ignored. The number of
disjunctive constraints is usually exponential in the number of parts,
fixtures, and tools. Therefore, we only generate violated constraints
during the search, see Section 5.

For a disjunctive constraint (t & W,;,W,,z, f) with ¢t = (a,b), we
add the following linear constraint to the model for all p € POS:

p—

X+ T+ P+ Z Z

weW| \uek,, i=

i
X, + Z Vp-10 [T
1 CEK“M,‘

€©)

p-1
+ 2 2 me-" 2 yp—l,C S2+|an|+|K:aw|+IEbu,‘l'Fllchwl'

weW, \ ueEy,, i=1 Ceky,

If task ¢ is not executed at all, then X, =0 for all p € POS,
and thus constraint (9) holds. Otherwise, if task ¢ is executed, say in
position p, i.e., x,, = 1, then the rest of the left-hand side can be at most
L+|E, | + Kyl + | Epy | + 1Ky, |, that is, either 7,, = 0 (i.e., tool z is not
used during execution of 1), or ¢,, = 0 (i.e., fixture f is not used during
execution of ), or Ywew, ek, Z‘;:ll Xy + Deek,, Yp-1.0) < |E,,| +
K.l —1 (.e., part a is not connected to at least one of the parts in W,
before the execution of 1), or ¥,ep, (e, Zf;ll X+ Dcek,, Vp-1.0) <
|Eppl+ 1Ky, | —1 (i.e., part b is not connected to at least one of the parts
in W, before the execution of 7).

Note that if some field of the constraint is left empty, then the cor-
responding expressions are omitted and the right-hand side is modified.
For example, the constraints corresponding to a disjunctive constraint
of the form (+ © 8.4,z f) are x,, + 7,, + ¢,, < 2 for all p € POS.
Also note that if at least one of the fields W, or W, are given, then
constraint (9) is omitted for position 1, since it is undefined and the
disjunction is always satisfied in that case.
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Add feasibility cuts to
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Fig. 4. Sketch of the LBBD solution approach.

4.9. Solving the MILP

The MILP formulation presented above can be solved by arbi-
trary MILP solver. Yet, in order to improve the default branch-and-cut
procedure of the commercial solver, several problem-specific branch-
ing strategies were experimented. Surprisingly, the best results were
yielded by a simple strategy that assigns fixtures to given positions.
That is, in each node of the search tree, the first position p without an
assigned fixture is determined (i.e., there is no fixture f such that ¢, is
fixed to 1). Then, |F| branches are created by assigning the ith fixture
to position p on the ith branch, i.e., fixing ¢,, to 1. When for each
position there is an assigned fixture, the default branching rule of the
solver is used. The evaluation of this branching strategy is presented in
the computational experiments.

5. Logic-based Bender’s decomposition

Since the number of disjunctive constraints that may have to be
added to the mathematical program (1)-(8) can be exponential, and
identifying all of them may be an arduous task, we apply logic-based
Bender’s decomposition to solve the above problem. Initially, the mas-
ter problem consist of the constraints (1)—(8), and the disjunctive con-
straints (9) are added in gradually. This means that initially, geometric
and technological feasibility are neglected.

The sketch of the solution procedure is depicted in Fig. 4. Once an
assembly plan is built by solving the master problem, the subproblem
checks whether this assembly plan admits a feasible, collision-free
realization. If not, then one or more constraints violated by the current
assembly plan are generated and added to the master problem, and
the procedure is repeated until no violated constraint is found. Since
the master problem is solved to optimality in each iteration, the final,
collision-free assembly plan is also optimal for the entire assembly
problem.

To see this, we call the subproblem solver complete if for any
assembly plan (x*,¢*, 7%, ¢*) satisfying (1)-(8) and those disjunctive
constraints (9) that are already added to the master problem, if and
only if the plan is geometrically or technologically infeasible, it returns
a disjunctive constraint (t © W,, W,, z, f) that is violated by the current
plan, but should be satisfied by all feasible plans.

Proposition 1. If the subproblem solver is complete, then the above
procedure terminates in a finite number of steps with an optimal solution
for the assembly planning problem.

Proof. Since the constraints returned by the subproblem solver must
be respected by all assembly sequences (this follows from the com-
pleteness of the subproblem solver), the procedure terminates with
an optimal solution provided that in the last iteration, an optimal
solution is found for the master problem. The finite number of steps is
ensured by the fact that the number of distinct disjunctive constraints
is finite. [

The subproblem solver does work on a geometric representation of
the components, and that of the assembly plan. Hence, it solves the in-
ference dual, a method initiated by Hooker and Ottosson (2003). While
Hooker and Ottosson bound the objective function value of the master
problem, in our application the objective function value is influenced
only indirectly by the disjunctive cuts, i.e., they can exclude inte-
ger solutions of the master problem, which represent technologically
infeasible assembly sequences.

6. Geometrical reasoning for solving the inference dual
6.1. Overview

In the proposed decomposition approach, the inference dual inves-
tigates the geometrical feasibility of the assembly plans by checking
if the plans can be realized without any collisions. Validation is per-
formed separately for each task in the fully specified assembly plan.
For an arbitrary static configuration of the objects in the 3D space,
potential collisions or distances between pairs of objects can be queried
using open source collision detection libraries, such as the Proximity
Query Package (PQP) (Larsen et al., 2000) or the Flexible Collision
Library (FCL) (Pan et al.,, 2012). Collision detection for static con-
figurations offered directly by these libraries has been extended to
checking continuous motions using a conservative advancement (CA)
approach (Schwarzer et al., 2004).

The feature-based assembly model defines the following important
relative positions of the base and the moved subassemblies during their
motion (see Fig. 5):

+ The final position Py is the relative position of the two parts or
subassemblies in their assembled state.

+ The near position Py is a relative position near to the final position
without touching or colliding geometries. During the execution of
the corresponding task, the subassembly is moved from Py to Pp
by a linear translation defined by the technological parameters of
the corresponding task.
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Fig. 5. Noteworthy positions of the moved part during the execution of a task: the
remote (red), near (yellow), and final (transparent with wireframe) position of the inlet
relative to the ball in the ball valve assembly.

+ The remote position Py, is a virtual position of the moved subassem-
bly far from the base subassembly and the fixture in the open
space where the collision-free motion of the moved subassembly
can be guaranteed. Since assembly planning precedes workstation
layout design in the proposed workflow, the true starting position
of the moved subassembly, such as a storage location, is not
known. Hence, the virtual remote position will be used instead.

From now on, the fully defined linear motion from Py to P is called
the feature motion, whereas the motion from Py to Py, which is not
determined in the assembly task, is named approach motion.

Geometrical validation takes place in the configuration space of the
relative positions of the moved subassembly to the base subassembly,
denoted by C. Let Cg,. denote the set of collision-free configurations.
A fully defined linear motion P; P, is said to be collision-free, denoted
by PP, € Cgee, if it is fully located in Cpee, i.€., P! € Cpee for any
P =(1-1)P, +tP, with t € [0,1].

If there exists no predefined motion between two end points P,
and P,, then P, and P, can be connected without any collisions,

denoted by P, P, € Cgee, if there exists a finite sequence of way points
{4145, ..., 4, } with ¢, = P; and g, = P, such that g;g;;] € Cg, for all
i=1,....,k—1.

Now, a task is collision-free if and onl}; if for the above defined

positions it holds that Py Pr € Cgee and PgPr € Cgee. The following
two subsections present the algorithms to verify these two conditions.

6.2. Validation of the feature motion

The validation of the fully defined feature motion Py Py in a given
assembly task consists in (1) identifying the base and moved subassem-
blies in the task from the assembly sequence; (2) positioning the fixture
geometry w.r.t. the base, as well as the tool geometry w.r.t. the moved
subassembly; and (3) performing collision detection for Py P, using the
above CA method. In case of any collision, all colliding pairs of objects
are unambiguously identified. Each colliding pair consists of one base
object (a part or the fixture) and one moved object (a part or the tool).

In case of collisions, the algorithm generates a disjunctive constraint
(t © W, W,,z, f) for each colliding pair of objects as follows (see also
Section 4.8 and Eq. (9)):

« Task 7 is the task that incurs a collision.

« If the colliding base object is part w,, then W, = {w,} and f = @;
otherwise, the colliding base object is fixture f;, which incurs
W,=@and f = f,.

+ Similarly, if the colliding moved object is part w,, then W, = {w,}
and z = §J; otherwise, the colliding moved object is tool z;, which
incurs W, =@ and z = z,.

Computers and Operations Research 138 (2022) 105603

The generated constraint expresses that at least one of the colliding
objects, w;, w,, f|, or z; must not be present during the execution of
task 7.

Finally, in order to speed up the validation of feature motions,
caching is applied: for each task and each pair of objects, successful
collision checks (i.e., tests resulting in no collision) are stored in a
cache. In case the same pair of objects in the same task is investigated
in another plan later during subsequent iterations, this precludes the
repeated execution of the collision test. Observe that there is no need
to store the results of unsuccessful collision tests, since the generated
disjunctive constraint will prevent the repeated occurrence of the same
collision.

6.3. Validation of the approach motion

In contrast to the feature motion, there is no predefined motion

available for the approach motion Py Pr. Accordingly, the validation of
the approach motion requires solving a path planning problem, where
the base subassembly and the fixture define the obstacles for moving
the ensemble of the moved subassembly and the tool, represented as
a single 3D solid object. For solving this path planning problem, an
implementation of the Rapidly-exploring Random Trees (RRT) (Lavalle
and Kuffner, 2000) algorithm is applied in the configuration space of
the relative positions of the base and the moved subassemblies. RRT is
known to be probabilistically complete, i.e., given sufficient computa-
tion time, it finds a solution with a probability converging to one. On
the other hand, RRT is unable to provide a proof of infeasibility. Hence,
search is stopped if a given iteration limit is reached, in which case
the approach motion is regarded as colliding, and a single disjunctive
constraint (t © W, W,, z, ) is generated as follows (see also Section 4.8
and Eq. (9)):

« Task ¢ is the task incurring a collision.

+ Part sets W, and W, contain the complete base and moved
subassemblies.

» Fixture f and tool z are the resources assigned to task ¢ in the
plan.

The generated constraint states that task ¢ cannot be executed with
this configuration of the base and moved subassemblies (or with a
superset of these subassemblies), by using the given fixture and tool.

It is highlighted that in almost all cases, the moved subassembly
can be translated directly between the remote and the near positions.
This direct translation is tested before performing actual RRT search.
For typical assemblies, this greatly reduces the time required for the
validation of the approach motion. Since path planning is a computa-
tionally demanding problem, approach motions are validated only if all
feature motions in the plan are feasible. Also, validation is interrupted
upon the first failure.

The generated constraint could be strengthened by executing path
planning problems with reduced subassembly configurations. One
straightforward approach can be trying to eliminate parts one-by-one
from the two subassemblies using direct translation. Nevertheless, colli-
sions during the approach motion were atypical for all the investigated
industrial use cases (see Section 7). Therefore, the strengthening of
the constraints shall be the focus of future research after identifying
applications where this requirement is relevant.

6.4. Discussion on the generated disjunctive constraints

The above disjunctive constraints aim at avoiding a collision by
formulating the cause of the collision in terms of part connectivity
and resource assignments. For a feature motion, a collision can be
characterized by the triplet of the involved task, the base object, and
the moving object. It can be observed that the disjunctive constraint
(t © W[, W,,z, f), as defined in Section 6.2, provides a necessary and
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sufficient condition for avoiding the particular collision, as it expresses
that upon the execution of the given task, either the colliding base
object or the colliding moving object must not be present. In contrast,
the disjunctive constraints proposed in Kardos et al. (2020) focus
on the precedence relations between the tasks (edges) that connect
the colliding parts (vertices) in the liaison graph in the particular
master solution. This is a necessary, but not sufficient condition for
avoiding the given collision: if the liaison graph contains cycles, then
the two colliding objects can be connected by multiple paths, and the
disjunctive constraint of Kardos et al. (2020) precludes only one of
those paths. Consequently, Kardos et al. (2020) can require as many
iterations to prevent a collision as the number of paths between the
two involved vertices, whereas the proposed approach generates a
disjunctive constraint that eliminates the collision in a single iteration.
If the liaison graph is a tree, then the two approaches are equivalent.
Moreover, both types of feasibility cuts are definitely stronger than a
classical no-good cut that excludes only a specific task sequence with a
specific resource assignment.

For collisions during the incompletely defined approach motion, the
disjunctive constraint proposed in Section 6.3 is a necessary, but not
sufficient condition for avoiding future collisions during the execution
of a specific task, since specific parts or resources whose presence re-
sults in geometrical infeasibility cannot be identified. Yet, the proposed
constraints on part connectivity and resource assignment are definitely
stronger than the earlier cuts of Kardos et al. (2020) that preclude only
a subset of the task sequences that realize the given connectivity status.

7. Experimental evaluation

Experimental evaluation investigated two questions: the applica-
bility and effectiveness of the overall planning approach in industrial
case studies, and the computational efficiency of the disjunctive pro-
gramming approach to solve the Benders master problem on a large
set of randomly generated benchmark instances of different sizes. For
the sake of these experiments, the proposed models and algorithms
were implemented in a prototype planning system. The master problem
solver was implemented in the C++ programming language using
LEMON! for graph algorithms, and the callable library of FICO Xpress.>
The subproblem solver was implemented in C++ using the Proximity
Query Package (PQP) of Larsen et al. (2000) for collision detection and
OpenGL visualization. Part geometries were available in triangle mesh
models, which were parsed using the Assimp model loader.?

The performance of the proposed solver was also compared to the
CP approach adapted from Kardos et al. (2020). The adaptation of
the problem model involved taking the sum of the tool and fixture
changeover times instead of their maximum in the objective (1); re-
placing the original weight limit for the fixtures with the maximal
subassemblies constraint (5); and using the stronger disjunctive cuts on
part connectivity proposed in this paper (9) instead of the precedence
constraints of Kardos et al. (2020). The CP approach was implemented
in MiniZinc constraint modeling language® using Google OR-Tools CP
solver.® Since the performance with the most recent version 9.0.9048
(9.0, shortly) of OR-Tools is remarkably worse than what could be
expected based on Kardos et al. (2020), we repeated the experiments
with version 7.1.6720 (7.1, shortly) used in that paper, and present the
results with both versions wherever relevant.

1 Library for Efficient Modeling and Optimization in Networks, version
1.3.1, https://lemon.cs.elte.hu/trac/lemon.

2 FICO Xpress Optimization, version 8.8.0, https://www.fico.com/en/
products/fico-xpress-optimization.

3 Open Asset Import Library, version 5.0.0, https://www.assimp.org/.

4 MiniZinc open-source constraint modeling language, version 2.5.5, https:
//www.minizinc.org.

5 OR-Tools optimization suite, versions 9.0.9048 and 7.1.6720, https://
developers.google.com/optimization.
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Fig. 6. Industrial case study: automotive supercharger.

7.1. Industrial case studies

The applicability and effectiveness of the approach was investigated
on two real industrial sample products of medium complexity: the stan-
dard ball valve introduced in the illustrative example in Section 2.1,
and an automotive supercharger assembly, see Fig. 6.

The supercharger assembly consists of 29 individual parts. After
merging multiple elementary tasks and parts into so-called composites
whenever, by engineering considerations, those tasks and parts must be
handled together (e.g., merging four parallel-axis screws that join the
same parts into a single composite part, as well as the four screwing
tasks into a single composite screwing task), the processed model
contains 18 parts joined by 17 assembly tasks arranged in a tree-
structured liaison graph (see the number of raw/processed parts in
Table 2).

Five different fixtures can be applied for the assembly process,
including an option that the human operator holds a given base part
in his hand, and uses his other hand to join the moved part. The
geometrical model of these fixtures was not available in the industrial
data set, hence, they were used in the master problem but ignored
during collision detection in the subproblem (see the total number
of fixtures and fixtures with geometry in Table 2). Two tools were
assumed: a screwdriver for the screwing tasks, modeled as a rigid body
with a given geometry; and a human hand for placing and insertion
tasks, whose geometry could not be specified as a rigid body, and
therefore, was excluded from collision detection (see the total number
of tools and tools with geometry).

Over 1.3 million triangles were required to capture the complex ge-
ometry of this product with a suitable resolution. A particular difficulty
with this product is that some assembly tasks exploit the flexibility of
the parts (e.g., insulation and cable connectors) to join them. For this
reason, the appropriate pairs of parts had to be excluded from collision
detection when checking the corresponding task.

The reported experiments were run on a laptop computer with
Intel i7 2.70 GHz CPU and 16 GB RAM under Windows 10 operating
system. Experimental results are presented in Table 2. The upper part of
the table displays problem sizes, the middle part presents the number
and the type of disjunctive constraints generated by the subproblem,
whereas the lower part shows the computation times. The total solution
time is divided into three parts: subproblem time contains the total
time required for collision detection, path planning, and constraint
generation in all the iterations. Similarly, master time reflects the total
computation time required for solving the series of master problems
in every iteration. Model loading time is by far dominated by the time
of parsing the large STL geometries. Since loading time is independent


https://lemon.cs.elte.hu/trac/lemon
https://www.fico.com/en/products/fico-xpress-optimization
https://www.fico.com/en/products/fico-xpress-optimization
https://www.assimp.org/
https://www.minizinc.org
https://www.minizinc.org
https://developers.google.com/optimization
https://developers.google.com/optimization
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Table 2
Characteristics of the industrial case studies and computational results.
Supercharger Ball valve

Num. tasks 17 11
Num. parts (raw/processed) 29/18 13/10
Num. fixtures (total/with geom.) 5/0 4/2
Num. tools (total/with geom.) 2/1 2/1
Num. triangles 1327738 148546
Num. iterations 4 2
Num. disjunctive constraints 33 3
Disj. from part-part collision 26 3
Disj. from part-tool collision 7
Loading time [s] 12.8 1.2
Subproblem time (total) [s] 6.6 0.9
Subproblem time (per iteration) [s] 1.7 0.5
Master solver MILP CP v7.1 MILP CP v7.1
Master time (total) [s] 25.0 7183.0 2.0 2.5
Master time (per iteration) [s] 6.3 1795.8 1.0 1.3
Total computation time [s] 31.6 7189.6 2.9 3.4

of the proposed algorithms, it is excluded from the total computation
time reported in the table. Moreover, master times are reported for two
versions of the master problem solver: the MILP solution approach
proposed in this paper, and the adapted version of the CP approach
from Kardos et al. (2020) as a reference solver.

The results demonstrate that the proposed decomposition approach
with the MILP master solver could solve both case studies efficiently:
the supercharger assembly required 4 iterations and a total computa-
tion time of 31.6 s to find the optimal solution, which was dominated
by the solution time of the Benders master problem. During these iter-
ations, 33 disjunctive constraints were generated by the subproblem,
mostly due to part-to-part collisions, and partly due to tool-to-part
collisions along the feature motion. For the ball valve, the constraints
generated by the subproblem in the first iteration successfully elim-
inated all collisions, resulting in a feasible and optimal plan in the
second iteration, with a very short total computation time of 2.9 s (see
the computed plan in Fig. 2). It is noted that other types of collisions,
such as collisions between a tool and a fixture or collisions during the
approach motion could also be observed in some preliminary experi-
ments, but these were atypical, since product designs and equipment
designs are formed to preclude accessibility issues if the parts are
assembled in a feasible order.

It is also stimulating to compare these results to those achieved
using a CP master solver, adapted from Kardos et al. (2020). The
two solution approaches found equivalent master solutions in each
iteration, and computation times were also comparable on the smaller
ball valve problem. However, on the more challenging supercharger
problem, the CP approach required considerably, nearly 300 times
higher computation times than the proposed MILP. Yet, these results
do not contradict the findings of Kardos et al. (2020): there, the master
solver was run with a time limit of 120 s per iteration, sometimes
terminating with a suboptimal solution. A potential cause of some
further increase of computation time can be using the sum instead of
the maximum of the tool and fixture changeover times in the objective,
since sum-type objectives are usually more challenging for CP solvers.
The experiments were repeated with the most recent version 9.0 of
OR-Tools, but that version terminated with suboptimal solutions or no
feasible solution at all even with very high time limits.

7.2. Computational experiments on generated instances

Computational experiments on randomly generated instances were
performed in order to find the limits of the proposed MILP solution
approach, that is, to find the maximum instance size that can be solved
in a reasonable time, and to compare this solution approach to the CP
approach of Kardos et al. (2020).

10
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Since the computational challenge lies in solving the master prob-
lem, and because the randomized generation of product geometries
could hardly result in realistic products, the experiments focused solely
on the master problem. This way, one problem instance corresponds to
one iteration in the complete Benders procedure. Yet, to cover all as-
pects that can arise during the Benders iterations, artificially generated
disjunctive constraints were also added to the instances, corresponding
to cuts computed in previous iterations by the subproblem solver.
All experiments were performed on a workstation with an i9-7960X
2.80 GHz CPU with 16 cores, under Debian 9 operating system using
4 threads.

Due to space limitations, a Supplementary Material is associated to
the paper at hand, which contains

the description of the procedure for generating the instances,
the properties of the generated five instance families,

the evaluation of the proposed MILP approach on these instances,
an analysis of how certain characteristics of the instances, e.g., the
number of conjunctive and disjunctive constraints affect the effi-
ciency of the solver,

and the evaluation of a problem-specific branching strategy to
improve the MILP solution approach.

The main conclusions from those experiments are briefly sum-
marized below, whereas a comparison to the CP approach adapted
from Kardos et al. (2020) is presented in detail on instances with cycles
in the liaison graph.

The first four instance families, containing 10-30 parts, were gener-
ated to investigate the effect of conjunctive and disjunctive constraints.
The experiments showed that conjunctive constraints have a significant
impact on computation time: while all instances without conjunctive
constraints were solved to optimality by the MILP, the solver ter-
minated with a considerable optimality gap on some instances with
conjunctive constraints, with at least 26 parts, after the 7200 s time
limit. Average gaps were between 0.40% and 9.50%, while maximum
gaps between 2.10% and 19.00% depending on instance family and
problem size. On the other hand, disjunctive constraints have only a
minor impact on computation times, implying that the solver can be ef-
ficient even with a high number of Benders iterations, and accordingly,
with many disjunctive constraints fed back from the subproblem.

In the experiments, the problem-specific branching strategy im-
proved significantly the efficiency of the MILP: computation times
decreased and final gaps could also be reduced (0.00%-4.10% average
gaps and 0.00%-11.5% maximum gaps). Finally, on instances with
tree-shaped liaison graphs or very few cycles in the liaison graph,
MILP and CP yielded disparate results: the latest version 9.0 of the
CP solver hit the time limit on all instanced with more than 15 parts.
The performance of the legacy CP version 7.1 was significantly better,
even comparable to the MILP on small-to-medium instances, but it was
still outperformed by the MILP. Further details are provided in the
Supplementary Material.

Below, we present in detail the comparison of the MILP and the
CP solvers on instances with cycles in the liaison graph (Family 5).
In Fig. 7, the curves show the average computation time for each
solver (average over instances with the same number of parts), whereas
the bars in the background display the average number of additional
edges (tasks) in the liaison graph, i.e., |T| — (JV| — 1). The lowest bar
corresponds to 2 extra tasks, while the highest to 7 extra tasks.

The results show that MILP scales well with instance size: instances
with at most 16 parts are solved to optimality within a second, instances
with at most 23 parts in a minute. Even the largest instances with 30
parts could be solved within 2000 seconds on average. The MILP-based
approach with the problem-specific branching strategy performs even
better, namely, on instances with at least 25 parts, this branching rule
reduced solution times significantly (for the largest instances this im-
provement is 74%, on average). The latest CP version 9.0 struggles on
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these instances, thus, it is tested only on instances with at most 18 parts.
The legacy CP version 7.1 performed better than that, however, it is still
clearly inferior to the proposed MILP, as it could not solve to optimality
any of the instances with more than 20 parts. The minimum, average
and maximum optimality gaps achieved by CP version 7.1 on these
instances were 1.8%, 20.0% and 42.5%, respectively.

8. Summary of main contributions

This section summarizes the main contributions made by the paper
to solving the assembly planning problem using LBBD.

« Efficient handling of cycles in the liaison graph: Allowing cycles in
the liaison graph is a substantial extension compared to the pre-
vious model by Kardos et al. (2017), where only tree-structured
liaison graphs were considered. This enables handling alternative
assembly tasks. Although cycles were already introduced by Kar-
dos et al. (2020), that paper applied a less efficient, straight-
forward CP-based approach to solving the master problem. The
efficiency of the proposed MILP-based approach compared to CP-
based has been illustrated in computational experiments both
on industrial problems and on generated instances. The novel
MILP-based approach solved larger instances (e.g., up to 7 extra
edges instead of 3 extra edges), and it computed proven optimal
solutions in less than a minute for various problems for which CP
could not find any feasible solution at all.

* Modeling graph connectivity in the MILP: The handling of cycles
in the liaison graph necessitated introducing new, sophisticated
modeling techniques for capturing the connectivity status of the
graph, see Section 4.2.

» New types of cuts from the subproblem to the master problem: In
both previous papers Kardos et al. (2017) and Kardos et al.
(2020), the disjunctive constraints fed back from the subproblem
to the master problem express generalized precedence constraint
between tasks. In contrast, the current paper proposes constraints
on the connectivity of parts, irrespective of the tasks that realize
the connections. This type of constraint is substantially stronger
in case of cycles in the liaison graph, and results in less Benders
iterations.

Subproblem solver: Finally, this paper is the first to present the

subproblem solver in detail, together with various techniques to

increase its efficiency, including caching for the validation of the
feature motion.
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Results of different solution approaches on instances with cycles in the liaison graph (Family 5).

9. Conclusions

This paper proposes a novel combination of Benders decomposition
with disjunctive programming for solving the assembly planning prob-
lem. The Benders master problem is a MILP augmented with disjunctive
constraints, while the subproblem (inference dual) is based on the geo-
metrical modeling of the subassemblies, the fixtures and tools, and uses
path planning and collision detection algorithms to identify infeasible
assembly tasks in a plan. If a task in a sequence proves infeasible,
a disjunctive constraint is generated and fed back to the Benders
master problem. The geometric inference methods use adaptations of
well-known techniques to generate new, strong disjunctive constraints
on the assembly plan. The main benefit of the approach is that it
ensures the feasibility of the assembly plans on fine-grained models,
which is not tractable using classical approaches that aim to perfectly
characterize the set of all feasible task sequences before search.

The efficiency of the proposed approach is demonstrated both on
industrial case studies and on generated problem instances, which show
that the approach can solve problems of industrially relevant sizes in a
reasonable amount of time.
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Fig. A.8. Example of composite feature: joining a set of pre-positioned parts using four
identical parallel-axis screws.

Appendix A. Feature-based assembly model

The feature-based model applied in this research is an object-
oriented representation of all the geometrical and technological infor-
mation required to plan the assembly process of the given product. The
model consists of the following entities:

+ All parts of the assembly are modeled as 3D solid objects, see
Appendix B for details.

Features characterize the liaisons of parts with all relevant geo-
metrical and technological information. With binary (i.e., two-
handed) assembly assumed, each feature connects exactly two
sets of parts. When such a part set is not singleton (i.e,. it is a
subassembly), then the contained parts be must joined prior to the
execution of the current feature. Observe that even in this case,
the feature-based model can be represented by a classical liaison
graph, rather than a hyper-graph, by selecting an arbitrary part
from the subassembly as the end point of the classical binary edge,
and recording the additional precedence constraint (not directly
captured in the liaison graph).

The current implementation supports placing, insertion, and screw-
ing features. A detailed definition of a richer set of assembly
features is available, e.g., in Wang et al. (2011). The technological
parameters of the features used for planning include the direction
vector (direction of the feature motion Py P,), as well as the
insertion depth (for insertion and screwing features) and the safety
distance (all features) whose sum determines the length of m
Finally, the estimated duration of the assembly tasks is also part
of the feature model.

The applied model allows so-called composite features, i.e., a
grouping of individual features that must be performed together
by design, using identical resources. A typical example of a
composite feature is assembling a set of pre-positioned parts

Computers and Operations Research 138 (2022) 105603

(the base parts in the feature) using a set of identical screws
(moved parts), see Fig. A.8. In the macro-level planning model,
one task is generated for each assembly feature, either individual
or composite.

It is highlighted that the liaison graph defined by the features may
contain cycles, which represent significantly different alternatives
in the assembly process. In the ball valve case study, such alterna-
tives are placing the o-ring sealing on house or on the cover before
assembling the house and the cover themselves (Fig. A.9). When
the liaison graph is a tree, then all features must be executed.
Tools are characterized by their changeover times (for macro-
level planning) and their geometry (for micro-level validation).
Moreover, the applicability of a tool to perform an assembly
feature is given in the input together with the relative position
of the tool to the moved part.

Fixtures are defined by the grasped part, the maximal subassembly
that can be held by the fixture, and their changeover time (used
by macro-level planning), as well as their geometry, together with
the transformation matrix that specifies the relative position of
the grasped part w.r.t. the fixture (used for micro-level valida-
tion). In case a fixture can grasp multiple parts or one part in
multiple ways, then the physical fixture is described by multiple
fixture objects in the model.

Appendix B. Geometrical models of parts and resources

All physical objects involved in the assembly process, including
parts, fixtures, and tools are modeled as free-form 3D solid objects that
move during the assembly task according to the laws defined in the
corresponding assembly feature. Each solid object is described by a
triangle mesh, which has two key benefits: the mesh representation can
be generated from all major CAD systems in STL file format; and (2)
collision detection can be performed efficiently on this representation
of free-form geometries (Larsen et al.,, 2000; Pan et al.,, 2012). On
the other hand, a particular challenge related to this representation is
that mesh geometries are inevitably imprecise, see Fig. B.10. Conse-
quently, parts that touch each other in reality often occur as colliding
geometries in the model, which must be handled by the appropriate
post-processing of the raw results of the collision queries. The same dif-
ficulty arises with deformable parts, such as the sound protection parts
in our automotive case study. Algorithms for tackling these challenges
have been proposed in Kardos and Véancza (2018). For fixtures and tools
that cannot be described by a solid geometry, such as a human hand
used for holding or moving a part, geometries are omitted, and these
resources are exempt from collision checks.

Appendix C. Modeling the motion of the parts and resources

For collision detection during assembly, not only the geometry, but
also the relative motion of the above objects has to be captured. In

Fig. A.9.
study.
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Alternative assembly processes corresponding to cycles in the liaison graph: joining the o-ring sealing to the house (left) or to the cover (right) in the ball valve case
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Fig. B.10. The smooth geometry (left) and the triangle mesh model (right) of the ball
valve assembly.

two-handed assembly, two groups of objects move relative to each
other: (1) the base subassembly together with the fixture, and (2) the
moved subassembly together with the tool. Within either group, the
relative position of the objects is fixed. This motion can be described
in the configuration space of the relative positions of the base and the
moved objects. The current implementation assumes 3D translations
only, which is sufficient in most industrial use cases, but the proposed
techniques can be naturally extended to allow both translations and
rotations, according to the special Euclidean group SE(3). All mo-
tions considered are either linear (e.g., thewfeature motion Py Pr) or

piecewise linear (the approach motion PpPy) in this configuration
space.

Appendix D. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.cor.2021.105603.
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