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Abstract: A novel systems theory-based structural reduction method is proposed in this paper
that can be applied to chemical reaction networks (CRNs) including subsystems consisting of
linear reactions, i.e. a linear sub-CRN. The reduced model is a delayed CRN with distributed
delays having less complexes (monomials) and reactions than the original model. The reduction
is based on the fact that the input/output response of a linear sub-CNR can be seen as a time-
delayed input to output relationship, therefore linear sub-CNRs can be interpreted as reactions
with distributed delay from their input to their output complexes. The practically important
example of a kinetic model describing the spread of the COVID-19 epidemic is used as a case
study to illustrate the basic concepts and the computation method.
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1. INTRODUCTION

Mathematical models of complex nonlinear systems de-
rived from engineering principles often have a large num-
ber of state variables and a complicated nonlinear struc-
ture that makes them unsuitable for dynamic analysis,
model-based control, diagnosis or parameter estimation.
Therefore, the need arises to derive more simple versions
from these detailed dynamic models that have the same
or similar dynamical properties but can be handled by
the tools and techniques of nonlinear systems and control
theory.
Kinetic systems, also called chemical reaction networks
(CRNs) cover a large set of nonlinear nonnegative systems,
and their associated directed graph structure (i.e., the
reaction graph) can be successfully used in dynamical anal-
ysis and even in control design [Sontag, 2001, Chellaboina
et al., 2009]. Due to the possible complexity of interactions
and the large graph size in biochemical applications, sev-
eral effective model reduction methods have been proposed
utilizing special model properties (see, [Hangos, 2010] for a
review). A significant part of the approaches use the multi-
scale nature of such CRNs when fast and slow reactions are
both present and preserve the type of nonlinearities (e.g.
polynomial) present in the original model. Besides of the
usual steady-state approximation based reduction method,
more advanced reduction schemes are also proposed, see
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e.g. Cappelletti and Wiuf [2017] for a recent paper. An-
other widely applied reduction method for CRNs is the so
called variable lumping (see in Farkas [1999] and in Li et al.
[1994] for the nonlinear CRN case) that can be applied for
state variables with similar dynamics. A model reduction
method of complex balanced CRNs based on algebraic
approaches has been proposed in Rao et al. [2013], that
results in a similar structure than variable lumping.
A possible way of achieving the reduction of the number
of state variables in CRNs is to allow the introduction
of delay into the reduced model. In order to have an
equivalent dynamics of the non-intermediate species in
the original and reduced models, distributed delays are
proposed in e.g. Hinch and Schnell [2004] or Leier et al.
[2014]. This approach and the so called chain method
used for approximating finite delays with a chain of linear
reactions (see e.g. Repin [1965] or Krasznai et al. [2010])
show that these linear reaction chains can be reduced
to a single reaction between the starting and the ending
complex of the chain equipped with a distributed delay.
Our earlier work (see [Lipták and Hangos, 2018] and
[Lipták and Hangos, 2019]) generalizes these results for
arbitrary connected chains of irreversible linear reactions.
Kinetic models often contain linear subsystems of signif-
icant size due to e.g., degradations, first order reactions
or simple transitions between different compartments. A
typical example of these is the presence of linear reaction
chains both with reversible and irreversible linear reac-
tions. Therefore, the aim of the present work is to extend
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the above mentioned results to the case of arbitrary linear
connected subsystems within a CRN model structure.

2. BASIC NOTIONS

In this section, we will introduce the basic notions of
chemical reaction networks with and without of time delay.

2.1 CRNs with mass action law

A CRN obeying the mass action law is a closed system
where chemical species X1, X2, . . . , Xn take part in chem-
ical reactions. An elementary reaction step R has the form

C
κ

GGGGGA C ′,

where C and C ′ are the source and product complexes,
respectively. They are defined by the linear combinations
of the species C =

∑n
i=1 ηi Xi and C ′ =

∑n
i=1 η′

i Xi

where the nonnegative integer vectors η and η′ are called
stoichiometric coefficients. The positive real number κ is
the reaction rate coefficient. Therefore, a CRN can be de-
scribed by the set of stoichiometric coefficients/complexes
C ⊂ Rn

+ and the set of reactions R ⊂ C × C × R+.
The reaction rate ρ of the reaction Rk obeying the so-called
mass action law can be described as

ρ(x) = κ
n∏

i=1
xηi

i = κxη, (1)

where x(t) ∈ Rn

+ is the concentration of species.
The dynamics of a mass action CRN can be described by
a system of ordinary differential equations as follows

ẋ(t) =
∑

(η,η′,κ)∈R

κ x(t)η [η′ − η] . (2)

Reaction graph Similarly to Feinberg [1979] and many
other authors, we can represent the set of individual
reaction steps by a weighted directed graph called reaction
graph. The reaction graph consists of a set of vertices
and a set of directed edges. The vertices correspond to
the complexes, while the directed edges represent the
reactions, i.e. if we have a reaction between C ∈ C and
C ′ ∈ C then there is an edge in the reaction graph between
the complexes C and C ′ with the corresponding weight κ.

Example 1. (Chain of linear reactions). Let us consider the
simple case, when n species participate in n − 1 first order
(i.e. linear) chemical reactions. Then, the dynamics can be
described by ODEs as follows

ẋ1(t) = −κ1 x1(t),
ẋi(t) = κi−1 xi−1(t) − κi xi(t) i = 2, ..., (n − 1),
ẋn(t) = κn−1 xn−1(t),

and the corresponding reaction graph has the form

X1
κ1

GGGGGGA X2
κ2

GGGGGGA . . .
κn−2

GGGGGGGGGA Xn−1

κn−1
GGGGGGGGGA Xn.

2.2 Delayed chemical reaction networks

It has been long noticed in chemical reaction networks,
in particular enzyme kinetics, that the reaction rate of

enzyme-catalyzed reactions deviate from the mass action
law such that there is a time delay between the availability
of the reactants and the starting of the reaction itself.
Therefore, the usual notion of CRNs have been extended
by introducing delays into the dynamics of the reactions
(see e.g. [Mincheva and Roussel, 2007] or [Erneux, 2009]),
where examples of such kinetic schemes can also be found.
Besides of the above mentioned slow initialization steps,
other mechanisms, such as the fixed lifetime of the enzyme-
substrate complex that leads to the product with this fixed
delay (see [Hinch and Schnell, 2004]) or a slow inter cellular
convection can also be considered as the cause of the
apparent delays. In these cases, too, delays are most often
associated to or approximated with a series of activation
steps that form a chain of linear activation reactions
involving species that are difficult or even impossible to
measure.

Reactions with constant delays Motivated by the above,
we can extend CRN models with delays in such a way,
that each reaction has also a nonnegative real number
associated to it that represents the time delay of the
reaction

C
κ, τ

GGGGGGGGA C ′.

The dynamics of a CRN with time delay will be considered
in the form of delay differential equations (DDEs) as
follows

ẋ(t) =
∑

(η,η′,κ,τ)∈R

κ [x(t − τ)η η′ − x(t)η η] . (3)

In the special case, when each τ is zero, the DDEs of the
delayed CRN (3) reduces to the ODEs of the non-delayed
CRN model (2).
Solutions of (3) are generated by initial data x(t) = θ(t)
for −τ ≤ t ≤ 0, where τ is the maximum delay and θ is a
nonnegative vector-valued continuous initial function over
the time interval [−τ , 0].

Reaction graph with constant time delay We can simply
extend the reaction graph of a CRN with time delays. In
this case, it is a directed and labelled multigraph, where
the label of an edge is not only the reaction rate constant,
but also the time delay. Reactions with the same source
and product complexes, but different time delays occur as
parallel edges in the reaction graph.
Recently, stability analysis results have appeared in [Lip-
ták et al., 2018] for this class, too.

Reactions with distributed delays We can further extend
CRN models with delays if we consider that the delay
associated to a reaction is not a real number, but it has
a distribution given by the so called distribution functions
or weighting kernels g : (−∞, 0] → [0, ∞), are piecewise
continuous functions satisfying∫ 0

−∞
g(r) dr = 1.

Then the delay differential equation that describes the
dynamics of a CRN with distributed delay is an integro-
differential equation
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the above mentioned results to the case of arbitrary linear
connected subsystems within a CRN model structure.

2. BASIC NOTIONS

In this section, we will introduce the basic notions of
chemical reaction networks with and without of time delay.

2.1 CRNs with mass action law

A CRN obeying the mass action law is a closed system
where chemical species X1, X2, . . . , Xn take part in chem-
ical reactions. An elementary reaction step R has the form

C
κ

GGGGGA C ′,

where C and C ′ are the source and product complexes,
respectively. They are defined by the linear combinations
of the species C =

∑n
i=1 ηi Xi and C ′ =

∑n
i=1 η′

i Xi

where the nonnegative integer vectors η and η′ are called
stoichiometric coefficients. The positive real number κ is
the reaction rate coefficient. Therefore, a CRN can be de-
scribed by the set of stoichiometric coefficients/complexes
C ⊂ Rn

+ and the set of reactions R ⊂ C × C × R+.
The reaction rate ρ of the reaction Rk obeying the so-called
mass action law can be described as

ρ(x) = κ
n∏

i=1
xηi

i = κxη, (1)

where x(t) ∈ Rn

+ is the concentration of species.
The dynamics of a mass action CRN can be described by
a system of ordinary differential equations as follows

ẋ(t) =
∑

(η,η′,κ)∈R

κ x(t)η [η′ − η] . (2)

Reaction graph Similarly to Feinberg [1979] and many
other authors, we can represent the set of individual
reaction steps by a weighted directed graph called reaction
graph. The reaction graph consists of a set of vertices
and a set of directed edges. The vertices correspond to
the complexes, while the directed edges represent the
reactions, i.e. if we have a reaction between C ∈ C and
C ′ ∈ C then there is an edge in the reaction graph between
the complexes C and C ′ with the corresponding weight κ.

Example 1. (Chain of linear reactions). Let us consider the
simple case, when n species participate in n − 1 first order
(i.e. linear) chemical reactions. Then, the dynamics can be
described by ODEs as follows

ẋ1(t) = −κ1 x1(t),
ẋi(t) = κi−1 xi−1(t) − κi xi(t) i = 2, ..., (n − 1),
ẋn(t) = κn−1 xn−1(t),

and the corresponding reaction graph has the form

X1
κ1

GGGGGGA X2
κ2

GGGGGGA . . .
κn−2

GGGGGGGGGA Xn−1

κn−1
GGGGGGGGGA Xn.

2.2 Delayed chemical reaction networks

It has been long noticed in chemical reaction networks,
in particular enzyme kinetics, that the reaction rate of

enzyme-catalyzed reactions deviate from the mass action
law such that there is a time delay between the availability
of the reactants and the starting of the reaction itself.
Therefore, the usual notion of CRNs have been extended
by introducing delays into the dynamics of the reactions
(see e.g. [Mincheva and Roussel, 2007] or [Erneux, 2009]),
where examples of such kinetic schemes can also be found.
Besides of the above mentioned slow initialization steps,
other mechanisms, such as the fixed lifetime of the enzyme-
substrate complex that leads to the product with this fixed
delay (see [Hinch and Schnell, 2004]) or a slow inter cellular
convection can also be considered as the cause of the
apparent delays. In these cases, too, delays are most often
associated to or approximated with a series of activation
steps that form a chain of linear activation reactions
involving species that are difficult or even impossible to
measure.

Reactions with constant delays Motivated by the above,
we can extend CRN models with delays in such a way,
that each reaction has also a nonnegative real number
associated to it that represents the time delay of the
reaction

C
κ, τ

GGGGGGGGA C ′.

The dynamics of a CRN with time delay will be considered
in the form of delay differential equations (DDEs) as
follows

ẋ(t) =
∑

(η,η′,κ,τ)∈R

κ [x(t − τ)η η′ − x(t)η η] . (3)

In the special case, when each τ is zero, the DDEs of the
delayed CRN (3) reduces to the ODEs of the non-delayed
CRN model (2).
Solutions of (3) are generated by initial data x(t) = θ(t)
for −τ ≤ t ≤ 0, where τ is the maximum delay and θ is a
nonnegative vector-valued continuous initial function over
the time interval [−τ , 0].

Reaction graph with constant time delay We can simply
extend the reaction graph of a CRN with time delays. In
this case, it is a directed and labelled multigraph, where
the label of an edge is not only the reaction rate constant,
but also the time delay. Reactions with the same source
and product complexes, but different time delays occur as
parallel edges in the reaction graph.
Recently, stability analysis results have appeared in [Lip-
ták et al., 2018] for this class, too.

Reactions with distributed delays We can further extend
CRN models with delays if we consider that the delay
associated to a reaction is not a real number, but it has
a distribution given by the so called distribution functions
or weighting kernels g : (−∞, 0] → [0, ∞), are piecewise
continuous functions satisfying∫ 0

−∞
g(r) dr = 1.

Then the delay differential equation that describes the
dynamics of a CRN with distributed delay is an integro-
differential equation

ẋ(t) =
∑

(η,η′,κ,τ)∈R

κ

[∫ 0

−∞
g(r)x(t + r)η ds η′ − x(t)η η

]
.

(4)
Similarly to the constant time delay case, we can extend
the reaction graph of a CRN to have a directed and
labelled multigraph, where the label of an edge is not
only the reaction rate constant, but also the distribution
function.

3. STRUCTURAL REDUCTION OF CRNS WITH
LINEAR SUB-CRNS

3.1 Linear connecting sub-CRNs

We start with defining sub-CRNs with different properties.
Definition 2. (sub-CRN). Let us assume a CRN given by
its complexes C and reactions R. Then, for a given subset
of complexes Csub ⊆ C, we can define a sub-CRN with its
complexes Csub, and reactions Rsub, such that

Rsub = {(C, C ′, κ) ∈ R | C, C ′ ∈ Csub} .

Definition 3. (Entrance and exit of a sub-CRN). Let us as-
sume a sub-CRN given by its complexes Csub and reactions
Rsub. Then we can define the entrance Rsub,in, and exit
reactions Rsub,out such that
Rsub,in = {(C, C ′, κ) ∈ R | C ∈ C \ Csub, and C ′ ∈ Csub} ,
Esub = {C | ∃ (C, C ′, κ) ∈ Rsub,in} ,

and
Rsub,out = {(C, C ′, κ) ∈ R | C ∈ Csub, and C ′ ∈ C \ Csub} ,
Xsub = {C ′ | ∃ (C, C ′, κ) ∈ Rsub,out} ,

respectively, where Esub and Xsub are the sets of entrance
and exit complexes.
Definition 4. (Independent sub-CRNs). Let us assume two
sub-CRNs such that their source complexes (the complexes
that appear only as reactants in the reactions) do not have
any common species. Then, we say that two sub-CRNs are
independent.
Definition 5. (Complementary sub-CRN). Let us assume
a sub-CRN given by its complexes Csub and reactions Rsub.
Then, we define the complementary sub-CRN such that
Csub,c = C\Csub and Rsub,c = R\(Rsub∪Rsub,in∪Rsub,out).
Definition 6. (Linear sub-CRN). Let us assume a sub-
CRN given by its complexes Csub and reactions Rsub. We
call a sub-CRN as a linear sub-CRN if each complex in
Csub is a one-specie complex.

3.2 State space description and decomposition

Assume we have a CRN (C, R) and it has a linear sub-CRN
(CL, RL) with the complementary sub-CRN (CL,c, RL,c).
Furthermore, we assume that (CL, RL) and (CL,c, RL,c)
are independent. Therefore, we can partition the states
into xL,c and xL, without loss of generality. This partition
decompose the original dynamics system into two parts

ẋL,c(t) =
∑

(η,η′,κ)∈RL,c

κ xL,c(t)η [η′ − η]

−
∑

(η,η′,κ)∈RL,in

κ xL(t)η η

+
∑

(η,η′,κ)∈RL,out

κ xL,c(t)η η′,

(5)

and
ẋL(t) =

∑
(η,η′,κ)∈RL

κ xL(t)η [η′ − η]

+
∑

(η,η′,κ)∈RL,in

κ xL,c(t)η η′

−
∑

(η,η′,κ)∈RL,out

κ xL(t)η η.

(6)

The second equation (6) is a linear sub-system with
constant parameters, so we can write its dynamics in an
LTI from such that

ẋL(t) = ALxL(t) + BLuL(t),
yL(t) = CLxL(t). (7)

3.3 Structural reduction in the SISO case

In this subsection, we consider the simple case, when the
independent linear sub-CRN has only one entrance, and
one exit. In that case, we have the following reaction

C
κ

GGGGGA Linear sub-CRN GGGA C ′. (8)

We can represent this subsystem with a SISO LTI
ẋL = ALxL + BLuL , yL = CLxL. (9)

We are interested in the input-output behavior of this
SISO LTI system that can be obtained by using its impulse
response function hL in the following form

yL(t) =
∫ t

0
hL(t−τ)uL(τ)dτ , hL(t) = CLeALtBL. (10)

In the structural reduction, we simplify the reaction graph
(8) by replacing the sub-CRN with a distributed delay
reaction such that

C
κ, g

GGGGGGGA C ′,

where the delay distribution function g is given by using
the impulse response function of the linear sub-CRN as
follows

g(r) = hL(−r)∫ ∞
0 hL(τ)dτ

,

and

κ = κ

∫ ∞

0
hL(τ)dτ.

In the next subsections, we show three special cases of this
reduction.

Linear irreversible homogeneous reaction chains The
simplest linear sub-CRN is a stand alone linear irreversible
homogeneous reaction chain with a uniform reaction rate
constant v > 0, where we can compare our approach to
the well known "linear chain trick" from the literature (see
e.g. Repin [1965] or Krasznai et al. [2010]).
The reaction graph is in the form

C
κ

GGGGGA X1
v

GGGGGA X2
v

GGGGGA · · ·
v

GGGGGA XN

v
GGGGGA C ′.

where the single specie complexes X1, X2, . . . , XN form
the linear sub-CRN.
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Let us model the dynamics of a reaction chain with an LTI
state space model, where the concentration at the entrance
reaction is considered as its input, and the concentrations
of the linear complexes xL,i(t) are the state variables. The
output is the exit reaction, i.e. yL(t) = vxL,N (t).
The state space matrices of the linear sub-CRN (9) has
the form

AL =




−v 0 · · · · · · · · · 0
v −v 0 · · · · · · 0
0 v 0 0 · · · 0

...
0 · · · · · · v −v 0
0 · · · · · · 0 v −v




, BL =




1
0
...
0


 ,

CL = [ 0 0 . . . v ] .

In this special case, the impulse response function hL can
be analytically derived using the inverse Laplace transform
L−1 of the transfer function HL(s) = CL(sI − AL)−1BL

This results in the following transfer function

HL(s) = vN

(s + v)N
.

From this we obtain for the impulse response function

hL(t) = L−1[HL(s)] = vN

(N − 1)! t
N−1e−vt.

We can compare the above impulse response function with
the one obtained by using the well known linear chain trick
for the chain of linear irreversible reactions. It is seen that
hL is a Gamma distribution function.
Note that the well-known "linear chain trick" (see e.g.
Repin [1965] or Krasznai et al. [2010]) from the theory of
delay differential equations (DDEs) establishes an equiv-
alence between a set of linear ODEs and a DDE with
Gamma distribution function. This coincides with the
above result.

Generalization to linear inhomogeneous irreversible reac-
tion chains Let us now consider the inhomogeneous case
of stand alone linear irreversible reaction chains with the
following reaction graph

C
κ

GGGGGA X1
v1

GGGGGGA X2
v2

GGGGGGA · · ·
vN−1

GGGGGGGGGA XN

vN
GGGGGGGA C ′.

The state space matrices of the linear sub-CRN (9) have
the form

AL =




−v1 0 · · · · · · · · · 0
v1 −v2 0 · · · · · · 0
0 v2 0 0 · · · 0

...
0 · · · · · · vN−2 −vN−1 0
0 · · · · · · 0 vN−1 −vN




, BL =




1
0
...
0


 ,

CL = [ 0 0 . . . vN ] .

The transfer function of this model is

HL(s) =
N∏

i=1

vi

s + vi
.

Assuming that all reaction rate constants vi > 0 are
different, the kernel function of the equivalent distributed
delay model is a sum of exponential functions

hL(t) = L−1[HL(s)] =
N∑

i=1
πie

−vit,

where the coefficients πi are positive constants.

Generalization to linear reversible reaction chains Let
us consider a chain of linear reversible reactions with an
initial irreversible step with the following reaction graph

C
κ

GGGGGA X1
d1

E GGGGGGGGGGGGC

d1 + v1
. . .

dN+1
E GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGC

dN+1 + vN+1
XN

dN + vN
GGGGGGGGA C ′.

Note that the homogeneous case is obtained when di =
d, vi = v for i = 1, ..., N .
In this case, the state space matrices in the linear sub-CRN
(9) are in the form

AL =




−(d1 + v1) d1 · · · 0
d1 + v1 −(d1 + d2 + v2) · · · 0

0 d2 + v2 · · · 0
. . .

0 · · · · · · 0
0 · · · · · · dN−1
0 · · · · · · −(dN−1 + dN + vN )




BL =




1
0
...
0


 , CL =

[
0 0 . . . dN + vN

]
.

Here we can only have the general analytical expression
hL(t) = CLeALtBL for the impulse response function,
where the equivalent chemical reaction with distributed
delay can be obtained by straightforward numerical com-
putations. Note that AL is a Metzler compartmental ma-
trix (weakly diagonally dominant with nonnegative off-
diagonal elements). Therefore, its the matrix exponential
can be computed analytically [Varon et al., 2012].
The following figure (Fig. 1) shows different kernel (im-
pulse response) functions in the homogeneous case ob-
tained with different v and d values.

−14 −12 −10 −8 −6 −4 −2 0
r

0.0

0.1

0.2

0.3

0.4

g(
r)

d = 0
d = 0.5
d = 5
d = 10

Fig. 1. Distribution functions of different linear reversible
reaction chains

3.4 Structural reduction in the MIMO case

We have already seen in subsection 3.3 that a linear inde-
pendent sub-CRN SCRN with one entrance and one exit

can be substituted with a distributed delayed reaction. We
can generalize this idea to the case of multiple entrances
and multiple exits in a straightforward way.
We consider the product of entrance and exit reac-
tions Rin,out = RL,in × RL,out. We have for each
(Cin, C ′

in, κin, Cout, C ′
out, κout) ∈ Rin,out a corresponding

impulse response function h. When
∫ ∞

0 hL(τ)dτ > 0, there
will be a distributed delay reaction

Cin

κ, g
GGGGGGGA C ′

out

with the distribution function

g(r) = hL(−r)∫ ∞
0 hL(τ)dτ

,

and reaction rate coefficient

κ = κ

∫ ∞

0
hL(τ)dτ.

4. CASE STUDY: A DISTRIBUTED DELAY CRN
MODEL OF THE COVID-CRN SYSTEM

By using the structural reduction method in Section 3 one
can derive a distributed delay CRN model of the COVID-
CRN system.

4.1 A simple CRN model of the COVID infection system

A simple CRN type dynamic model of the COVID infec-
tion mechanism [Péni et al., 2020] is as follows.

Ṡ(t) = −β [P (t) + I(t) + δA(t)] S(t)/N
L̇(t) = β [P (t) + I(t) + δA(t)] S(t)/N − αL(t)
Ṗ (t) = αL(t) − pP (t)
İ(t) = qpP (t) − ρII(t)
Ȧ(t) = (1 − q)pP (t) − ρAA(t)
Ḣ(t) = ρIηI(t) − hH(t)
Ṙ(t) = ρI(1 − η)I(t) + ρAA(t) + (1 − µ)hH(t)
Ḋ(t) = µhH(t)

(11)

where the state variables represent the following com-
partments. S: susceptible, L: latent (not yet infectious),
P : pre-symptomatic infectious, I: symptomatic infected,
A: asymptomatic, H: hospitalized, R: recovered, D: de-
ceased.
The model parameters were determined using the epidemic
data in Hungary (see, Péni et al. [2020]) and have the
following values: α = 0.4, p = β = 0.33, δ = 0.75,
ρA = ρI = 0.25, µ = 0.145, N = 9800000, h = 0.1, q = 0.6,
η = 0.076.
Fig. 2 shows the reaction graph of a simple CRN form
model that describes the dynamics of COVID infection
above, with the following reaction rate constants
kP = α , kA = (1 − q)p , kI = qp , kH = ρI

k1R = ρA , k2R = (1 − η)ρI , k3R = (1 − µ)h , kD = h
(12)

One can define two possible linear sub-CRNs of the above
model.
(1) The full line rectangle depicts a linear sub-CRN S(1)

CRN
from the complex L (concentration of latent infected
people) to the complex D (concentration of dead
people).

Fig. 2. The reaction graph of a simple COVID-CRN model
and two of its linear sub-CRNs

(2) The dashed polygon is also a linear sub-CRN S(COV ID)
CRN

with its entrance EL = {L} and but with an extended
exit XL = {R, D}.

4.2 Model structure

The reaction graph of the COVID-CRN model in Fig.
2 contains a linear sub-CRN S(COV ID)

CRN (depicted by a
dash-dotted polygon) that connects the complex L to the
two exit complexes R and D. Therefore, we can develop
a reduced model of this connecting sub-CRN using two
reactions:

L
κ1,g1

GGGGGGGGGA R , L
κCOV ID,D,gCOV ID,D

GGGGGGGGGGGGGGGGGGGGGGGGGGGA D (13)

Furthermore, Fig. 2 shows, that the reaction graph of the
linear sub-CRN S(COV ID)

CRN contains only connected chains
of irreversible linear reactions.

4.3 Decoupling the reaction chains

The structure of the model enables to apply the decoupling
and reducing method presented in [Lipták and Hangos,
2018] and [Lipták and Hangos, 2019] to decompose the
chains from the complex L to D and R. The decomposition
can be started from the complex H at the end of the chain
and we proceed backwards towards complex P.
Fig. 3 shows the decoupled independent chains of linear
reactions in the connecting sub-CRN. The reaction rate
constants of the decomposed model are as follows

kHS = kD + k3R , kIS = kH + k2R ,
kP S = kA + kI ,

kP 1 = kP

kP S
kA , kP 2 = kP

kP S

kI

kIS
k2R ,

kP 3 = kP

kP S

kI

kIS

kH

kHS
k3R , kP 4 = kP

kP S

kI

kIS

kH

kHS
kD

(14)

4.4 The parameters of the delayed reaction from L to D

There is only one stand alone reaction chain that connects
complex L to D that is linear, irreversible and inhomo-
geneous. So we can use the results in subsection 3.3.2 to
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can be substituted with a distributed delayed reaction. We
can generalize this idea to the case of multiple entrances
and multiple exits in a straightforward way.
We consider the product of entrance and exit reac-
tions Rin,out = RL,in × RL,out. We have for each
(Cin, C ′

in, κin, Cout, C ′
out, κout) ∈ Rin,out a corresponding

impulse response function h. When
∫ ∞

0 hL(τ)dτ > 0, there
will be a distributed delay reaction

Cin

κ, g
GGGGGGGA C ′

out

with the distribution function

g(r) = hL(−r)∫ ∞
0 hL(τ)dτ

,

and reaction rate coefficient

κ = κ

∫ ∞

0
hL(τ)dτ.

4. CASE STUDY: A DISTRIBUTED DELAY CRN
MODEL OF THE COVID-CRN SYSTEM

By using the structural reduction method in Section 3 one
can derive a distributed delay CRN model of the COVID-
CRN system.

4.1 A simple CRN model of the COVID infection system

A simple CRN type dynamic model of the COVID infec-
tion mechanism [Péni et al., 2020] is as follows.

Ṡ(t) = −β [P (t) + I(t) + δA(t)] S(t)/N
L̇(t) = β [P (t) + I(t) + δA(t)] S(t)/N − αL(t)
Ṗ (t) = αL(t) − pP (t)
İ(t) = qpP (t) − ρII(t)
Ȧ(t) = (1 − q)pP (t) − ρAA(t)
Ḣ(t) = ρIηI(t) − hH(t)
Ṙ(t) = ρI(1 − η)I(t) + ρAA(t) + (1 − µ)hH(t)
Ḋ(t) = µhH(t)

(11)

where the state variables represent the following com-
partments. S: susceptible, L: latent (not yet infectious),
P : pre-symptomatic infectious, I: symptomatic infected,
A: asymptomatic, H: hospitalized, R: recovered, D: de-
ceased.
The model parameters were determined using the epidemic
data in Hungary (see, Péni et al. [2020]) and have the
following values: α = 0.4, p = β = 0.33, δ = 0.75,
ρA = ρI = 0.25, µ = 0.145, N = 9800000, h = 0.1, q = 0.6,
η = 0.076.
Fig. 2 shows the reaction graph of a simple CRN form
model that describes the dynamics of COVID infection
above, with the following reaction rate constants
kP = α , kA = (1 − q)p , kI = qp , kH = ρI

k1R = ρA , k2R = (1 − η)ρI , k3R = (1 − µ)h , kD = h
(12)

One can define two possible linear sub-CRNs of the above
model.
(1) The full line rectangle depicts a linear sub-CRN S(1)

CRN
from the complex L (concentration of latent infected
people) to the complex D (concentration of dead
people).

Fig. 2. The reaction graph of a simple COVID-CRN model
and two of its linear sub-CRNs

(2) The dashed polygon is also a linear sub-CRN S(COV ID)
CRN

with its entrance EL = {L} and but with an extended
exit XL = {R, D}.

4.2 Model structure

The reaction graph of the COVID-CRN model in Fig.
2 contains a linear sub-CRN S(COV ID)

CRN (depicted by a
dash-dotted polygon) that connects the complex L to the
two exit complexes R and D. Therefore, we can develop
a reduced model of this connecting sub-CRN using two
reactions:

L
κ1,g1

GGGGGGGGGA R , L
κCOV ID,D,gCOV ID,D

GGGGGGGGGGGGGGGGGGGGGGGGGGGA D (13)

Furthermore, Fig. 2 shows, that the reaction graph of the
linear sub-CRN S(COV ID)

CRN contains only connected chains
of irreversible linear reactions.

4.3 Decoupling the reaction chains

The structure of the model enables to apply the decoupling
and reducing method presented in [Lipták and Hangos,
2018] and [Lipták and Hangos, 2019] to decompose the
chains from the complex L to D and R. The decomposition
can be started from the complex H at the end of the chain
and we proceed backwards towards complex P.
Fig. 3 shows the decoupled independent chains of linear
reactions in the connecting sub-CRN. The reaction rate
constants of the decomposed model are as follows

kHS = kD + k3R , kIS = kH + k2R ,
kP S = kA + kI ,

kP 1 = kP

kP S
kA , kP 2 = kP

kP S

kI

kIS
k2R ,

kP 3 = kP

kP S

kI

kIS

kH

kHS
k3R , kP 4 = kP

kP S

kI

kIS

kH

kHS
kD

(14)

4.4 The parameters of the delayed reaction from L to D

There is only one stand alone reaction chain that connects
complex L to D that is linear, irreversible and inhomo-
geneous. So we can use the results in subsection 3.3.2 to
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Fig. 3. The decoupled reaction graph of a linear connecting
sub-CRN in the COVID-CRN model

obtain the reduced delayed single reaction parameters. The
transfer function is now

HCOV ID,D(s) = kP 4

(s + kP S)
kP S

(s + kIS)
kIS

(s + kHS) (15)

Here we can assume that all reaction rate constants k∗
are different, so the kernel function of the equivalent
distributed delay model is a sum of exponential functions:

gCOV ID,D(t) = L−1[HCOV ID,D(s)] =
= π1e−kP St + π2e−kISt + π3e−kHSt (16)

and κCOV ID,D = kP 4 using the parameters in Eq. (14).

4.5 Discussion

We note that the linear sub-CRN S(COV ID)
CRN is not in-

dependent, as the first equation in the model (11) con-
tains the concentrations of the species P, I and A from
the linear sub-CRN. However, these concentrations can-
not be measured in practice, so the obtained reaction

L
κCOV ID,D,gCOV ID,D

GGGGGGGGGGGGGGGGGGGGGGGGGGGA D with distributed delay can

be applied to construct a simple and numerically stable
state estimator for P from the measured values of the
concentration of specie D.

5. CONCLUSIONS

A structure reduction method is proposed in this paper
that can be applied to kinetic models with linear indepen-
dent sub-CRNs consisting of linear reactions. Based on
the input-output description of the linear sub-CRNs, the
proposed method reduces them into a single reaction with
distributed time delay. Therefore, one obtains a delayed
CRN with possibly different distributed delays but with
less complexes and reactions than the original model.
We emphasize that the result of this reduction is not
an approximation of the original model, since the input-
output dynamics of the reduced system is the same as that
of the original model.
A previously published simple kinetic model of epidemic
spread is used as a case study to illustrate the basic
concepts and the reduction method.
Further work will be directed to use the reduced complex
structures for dynamic analysis and controller design.
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