The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

A Multivariate Complexity Analysis
of the Material Consumption Scheduling Problem

Matthias Bentert,' Robert Bredereck,! > Péter Gyorgyi,’
Andrzej Kaczmarczyk,' and Rolf Niedermeier!
! Technische Universitit Berlin, Faculty IV, Algorithmics and Computational Complexity, Berlin, Germany
2 Humboldt-Universitit zu Berlin, Institut fiir Informatik, Algorithm Engineering, Berlin, Germany

3 Institute for Computer Science and Control, Budapest, Hungary
{matthias.bentert, a.kaczmarczyk, rolf.niedermeier } @tu-berlin.de, robert.bredereck@hu-berlin.de, gyorgyi.peter @sztaki.hu

Abstract

The NP-hard MATERIAL CONSUMPTION SCHEDULING
PROBLEM and related problems have been thoroughly stud-
ied since the 1980’s. Roughly speaking, the problem deals
with minimizing the makespan when scheduling jobs that
consume non-renewable resources. We focus on the single-
machine case without preemption: from time to time, the re-
sources of the machine are (partially) replenished, thus al-
lowing for meeting a necessary pre-condition for processing
further jobs, each of which having individual resource de-
mands. We initiate a systematic exploration of the parame-
terized computational complexity landscape of the problem,
providing parameterized tractability as well as intractability
results. Doing so, we mainly investigate how parameters re-
lated to the resource supplies influence the computational
complexity. Thereby, we get a deepened understanding of this
fundamental scheduling problem.

Introduction

Consider the following motivating example. Every day, an
agent works for a number of clients, all of equal importance.
The clients, one-to-one corresponding to jobs, each time re-
quest a service having individual processing time and indi-
vidual consumption of a non-renewable resource; examples
for such resources include raw material, energy, and money.
The goal is to finish all jobs as early as possible, known as
minimizing the makespan in the scheduling literature. Un-
fortunately, the agent only has a limited initial supply of the
resource which is to be renewed (with potentially different
amounts) at known points of time during the day. Since the
job characteristics (resource consumption, job length) and
the resource delivery characteristics (delivery amount, point
of time) are known in advance, the objective thus is to find
a feasible job schedule minimizing the makespan. Notably,
jobs cannot be preempted and only one at a time can be exe-
cuted. Figure 1 provides a concrete numerical example with
six jobs with varying job lengths and resource requirements.

The described problem setting is known as minimizing
the makespan on a single machine with non-renewable re-
sources. Notably, in our example we considered the spe-
cial but perhaps most prominent case of just one type of re-

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

11755

source. More specifically, we study the single-machine vari-
ant of the NP-hard MATERIAL CONSUMPTION SCHEDUL-
ING PROBLEM. Formally, we have a set R of resources and
aset J = {Jy,...,J,} of jobs to be scheduled on a sin-
gle machine without preemption. The machine can process
at most one job at a time. Each job has a processing time
p; € Z, and a resource requirement a;; € Z, from re-
source ¢ € R. We have resource supplies at g different
points of time 0 = u; < up < --- < u4, where the vec-

tor by = (bi¢)ier € Z‘fl represents the quantities supplied
at time u,. The starting time S; for each job J; is specified
by a schedule o, which is feasible if (i) the jobs do not over-
lap in time, and (ii) at any point of time ¢ the total supply
from each resource is at least the total request of the jobs
starting until ¢, that is,

Z Bi,éz Z Qjj, VieR.

Cup<t j:S;<t

Note that in case of just one resource type (as in our
starting example in Figure 1), we simply drop the indices
corresponding to the single resource. The objective is to
minimize the maximum job completion time (makespan)
Cmax = max;ec gy C;, where Cj is the completion time of
job J;. In the remainder of the paper, we make the follow-
ing simplifying assumptions (which can be easily achieved)
guaranteeing sanity of the instances and filtering out trivial
cases.

Assumption 1. Without loss of generality, we assume that
1.

there are enough resources supplied to process all jobs:
a 7 .

D oi—1 b0 > Zjej ajs

each job has at least one non-zero resource requirement:

Vjej ZiER Qi,j > 0; and

at least one resource unit is supplied at time O:

ZiER bq;,o > 0.

The MATERIAL CONSUMPTION SCHEDULING PROB-
LEM is NP-hard even in case of one machine, only two
supply dates (q 2), and if the processing time of
each job is the same as its resource requirement, that is,
p; = aj, Vj € J (Carlier 1984). While many variants of
the MATERIAL CONSUMPTION SCHEDULING PROBLEM



EAEA
I

t

Jo |
>

us Clnax = 12

Figure 1: An example (left) with one resource type and a solution (right) with makespan 12. The processing times and the
resource requirements are in the first table, while the supply dates and the supplied quantities are in the second. Note that .J3
and J, consume all of the resources supplied at u; = 0, thus we have to wait for the next supply to schedule further jobs.

have been studied in the literature in terms of heuristics,
polynomial-time approximation algorithms, or the detection
of polynomial-time solvable special cases, we are not aware
of any previous systematic studies concerning a multivariate
complexity analysis. In other words, we study, seemingly
for the first time, several natural problem-specific parame-
ters and investigate how they influence the computational
complexity of the problem. Doing so, we prove both param-
eterized hardness as well as encouraging fixed-parameter
tractability results for this NP-hard problem.

Related Work. Over the years, performing multivariate,
parameterized complexity studies for fundamental schedul-
ing problems became more and more popular (Bentert, van
Bevern, and Niedermeier 2019; van Bevern et al. 2015;
van Bevern, Niedermeier, and Suchy 2017; Bodlaender and
Fellows 1995; Bodlaender and van der Wegen 2020; Ga-
nian, Hamm, and Mescoff 2020; Fellows and McCartin
2003; Heeger et al. 2021; Hermelin et al. 2019a,b, 2020;
Hermelin, Shabtay, and Talmon 2019; Knop and Koutecky
2018; Mnich and van Bevern 2018; Mnich and Wiese 2015).
We contribute to this field by a seemingly first-time ex-
ploration of the MATERIAL CONSUMPTION SCHEDULING
PROBLEM, focusing on one machine and the minimization
of the makespan.

The problem was introduced in the 1980’s (Carlier 1984;
Slowinski 1984). Indeed, even a bit earlier a problem where
the jobs required non-renewable resources, but without any
machine environment, was studied (Carlier and Rinnooy
Kan 1982). The problem appears in several real-world ap-
plications, for instance, in the continuous casting stage of
steel production (Herr and Goel 2016), in managing deliv-
eries by large-scale distributors (Belkaid et al. 2012), or in
shoe production (Carrera, Ramdane-Cherif, and Portmann
2010).

Carlier (1984) proved several complexity results for dif-
ferent variants in the single-machine case, while Slowin-
ski (1984) studied the parallel machine variant of the
problem with preemptive jobs. Previous theoretical re-
sults mainly concentrate on the computational complex-
ity and polynomial-time approximability of different vari-
ants; in this literature review we mainly focus on the most
important results for the single-machine case and mini-
mizing makespan as the objective. We remark that there
are several recent results for variants with other objective
functions (Bérczi, Kirdly, and Omlor 2020; Gyorgyi and
Kis 2019, 2020), with a more complex machine environ-
ment (Gyorgyi and Kis 2017), and with slightly different
resource constraints (Davari et al. 2020).

Toker, Kondakci, and Erkip (1991) proved that the vari-

11756

ant where the jobs require one non-renewable resource re-
duces to the 2-MACHINE FLOW SHOP PROBLEM pro-
vided that the single non-renewable resource has a unit
supply in every time period. Later, Xie (1997) general-
ized this result to multiple resources. Grigoriev, Holthui-
jsen, and van de Klundert (2005) showed that the vari-
ant with unit processing times and two resources is NP-
hard, and they also provided several polynomial-time 2-
approximation algorithms for the general problem. There is
also a polynomial-time approximation scheme (PTAS) for
the variant with one resource and a constant number of sup-
ply dates and a fully polynomial-time approximation scheme
(FPTAS) for the case with ¢ 2 supply dates and one
non-renewable resource (Gyorgyi and Kis 2014). Gyorgyi
and Kis (2015b) presented approximation-preserving reduc-
tions between problem variants in case of ¢ = 2 and vari-
ants of the MULTIDIMENSIONAL KNAPSACK PROBLEM.
These reductions have several consequences, for example,
it was shown that the problem is NP-hard if there are two
resources, two supply dates, and each job has a unit process-
ing time, or that there is no FPTAS for the problem with two
non-renewable resources and ¢ = 2 supply dates, unless P
= NP. Finally, there are three further results (Gyorgyi and
Kis 2015a): (i) a PTAS for the variant where the number of
resources and the number of supply dates are constants; (ii) a
PTAS for the variant with only one resource and an arbitrary
number of supply dates if the resource requirements are pro-
portional to job processing times; and (iii) APX-hardness
when the number of resources is part of the input.

Preliminaries and Notation. We use the standard three
field | 5|y-notation (Graham et al. 1979), where a denotes
the machine environment, 5 the further constraints like ad-
ditional resources, and v the objective function. We always
consider a single machine, that is, there is a 1 in the «
field. The non-renewable resources are described by nr in
the S field and nr = r means that there are r different
resource types. In our work, the only considered objective
is the makespan Cy,,x. For example, the MATERIAL CON-
SUMPTION SCHEDULING PROBLEM variant with a single
machine, single resource type, and with the makespan as the
objective is expressed as 1|nr = 1|Ciyax. We also some-
times consider the so-called non-idling scheduling (intro-
duced by Chrétienne (2008)), indicated by NI in the « field,
in which a machine can only process all jobs continuously,
without intermediate idling. As we make the simplifying as-
sumption that the machine has to start processing jobs at
time 0, we drop the optimization goal C',,x Whenever con-
sidering non-idling scheduling. When there is just one re-
1), then we write a; instead of a; ; and b;

source (nr



q bmax quaX amax amax Jr q
llnr =1, p; = 1{Cmax pt
1|nr =1, p; = caj|Crax W[1]-h°, XP* p-NP-h®  FPTO  XPp4 FPT!
1)nr = 1, unary|Ciyax W[1]-h°, XP* p-NP-h®  FPT¢ XPpA FPTT
lnr =2, p; = 1, unary|Cpay  W[1]-hY, XP*  p-NP-h® Xp* open FPT#
1| nr = const, unary|Ciyax W[1]-h¥, XP* p-NP-h® Xp* open FPT*
1nr, pj = 1|Cmax p-NP-h" p-NP-hY  WJ1J-hY p-NP-hY W]J1}]-h"

Table 1: Our results for a single resource type (top) and multiple resource types (bottom). The results correspond to Theo-
rem 3 (I), Theorem 4 (), Theorem 2 (¢), Theorem 1 (M), Gyorgyi and Kis (2014) (&), Proposition 1 (9), Proposition 2 (#),
Theorem 5 (), Theorem 6 (A), and Theorem 7 (V). W[1]-h and p-NP-h stand for, respectively, W[1]-hard and para-NP-hard.

n number of jobs
q number of supply dates
J job index
¢ index of a supply
Dj processing time of job j
a;; | resource requirement of job j from resource ¢
uy | the ¢t" supply date
bi¢ | quantity supplied from resource ¢ at uy
bi¢ | total resource supply from resource ¢
over the first £ supplies, that is, Zizl bik

Table 2: Parameter overview. To simplify matters, we intro-
duce the shorthands pmax, Gmax, and bmax for max;e 7 pj,

max;e 7 iecr Gij, and maxye(1,...,q},ieR by e, respectively.

instead of b; ;, etc. We also write p; = 1 or p; = ca; when-
ever, respectively, jobs have solely unit processing times or
the resource requirements are proportional to the job pro-
cessing times. Finally, we use “unary” to indicate that all
numbers in an instance are encoded in unary. Thus, for ex-
ample, 1,NI|p; = 1, unary|— denotes a single non-idling
machine, unit-processing-time jobs and the unary encoding
of all numbers. We summarize the notation of the parameters
that we consider in Table 2.

Primer on Multivariate Complexity. To analyze the pa-
rameterized complexity (Cygan et al. 2015; Downey and
Fellows 2013; Flum and Grohe 2006; Niedermeier 2006) of
the MATERIAL CONSUMPTION SCHEDULING PROBLEM,
we declare some part of the input the parameter (e.g., the
number of supply dates). A parameterized problem is fixed-
parameter tractable if it is in the class FPT of problems
solvable in f(p) - [I|°M) time, where |I| is the size of a
given instance encoding, p is the value of the parameter,
and f is an arbitrary computable (usually super-polynomial)
function. Parameterized hardness (and completeness) is de-
fined through parameterized reductions similar to classical
polynomial-time many-one reductions. For our work, it suf-
fices to additionally ensure that the value of the parameter
in the problem we reduce to depends only on the value of
the parameter of the problem we reduce from. To obtain pa-
rameterized intractability, we use parameterized reductions

11757

from problems of the class W[1] which is widely believed to
be a proper superclass of FPT.

The class XP contains all problems that can be solved
in |I|f (P) time for a function f solely depending on the pa-
rameter p. While XP ensures polynomial-time solvability
when p is a constant, FPT additionally ensures that the de-
gree of the polynomial is independent of p. Unless P = NP,
membership in XP can be excluded by showing that the
problem is NP-hard for a constant parameter value (for
short, we say the problem is para-NP-hard).

Our Contribution. Most of our results are summarized
in Table 1. We focus on the parameterized computational
complexity of the MATERIAL CONSUMPTION SCHEDUL-
ING PROBLEM with respect to several parameters describ-
ing resource supplies. We show that the case of a single
resource and jobs with unit processing time is polynomial-
time solvable. However, if each job has a processing time
proportional to its resource requirement, then the MATE-
RIAL CONSUMPTION SCHEDULING PROBLEM becomes
NP-hard even for a single resource and when each supply
provides one unit of the resource. Complementing an algo-
rithm solving the MATERIAL CONSUMPTION SCHEDUL-
ING PROBLEM in polynomial time for a constant number ¢
of supply dates, we show, by proving W[1]-hardness, that
the parameterization by g presumably does not yield fixed-
parameter tractability. We circumvent the W[1]-hardness by
combining the parameter number ¢ of supply dates with the
maximum resource requirement a,,x Of a job, thereby ob-
taining fixed-parameter tractability for the combined param-
eter ¢+ amax. Moreover, we show fixed-parameter tractabil-
ity for the parameter u,,.x that denotes the last resource
supply time. Finally, we provide an outlook on cases with
multiple resources and show that fixed-parameter tractabil-
ity for ¢ + amax extends when we additionally add the num-
ber of resources r to the combined parameter, that is, we
show fixed-parameter tractability for ¢ + aax + . For the
MATERIAL CONSUMPTION SCHEDULING PROBLEM with
an unbounded number of resources, we show intractability
even for the case where all other previously discussed pa-
rameters are combined.

Missing details are due to space constraints deferred to
the full version (Bentert et al. 2021).



16

48 56 64 72

Figure 2: An example of the construction in Theorem 1 for an instance of UNARY BIN PACKING consisting of & = 2 bins
each of size B = 4 and four objects 01 to o4 of sizes s; = 1, s = s3 = 2, and s4 = 3. In the resulting instance of 1| nr =
1,p; = ca;j|Cmax, there are five jobs (J* and one job corresponding to each input object) and in each (whole) point in time in
the hatched periods there is a supply of one resource. An optimal schedule that first schedules J* is depicted. Notice that the
time periods between the (right-hand) ends of hatched periods correspond to a multiple of the bin size and a schedule is gapless
if and only if the objects corresponding to jobs scheduled between the ends of two consecutive shaded areas exactly fill a bin.

Computational Complexity Limits

We start our investigation on the computational complex-
ity of the MATERTAL CONSUMPTION SCHEDULING PROB-
LEM with outlining the limits of efficient computability. Set-
ting up clear borders of tractability, we identify potential
scenarios suitable for seeking efficient solutions. This ap-
proach seems especially justified because the MATERIAL
CONSUMPTION SCHEDULING PROBLEM is already NP-
hard for the quite constrained scenario of unit processing
times and two resources (Grigoriev, Holthuijsen, and van de
Klundert 2005).

Both hardness results in this section use reductions from
UNARY BIN PACKING. Given a number k£ of bins, a bin
size B, and a set O {01,02,...0,} of n objects
of sizes si,s3,...5, (encoded in unary), UNARY BIN
PACKING asks to distribute the objects to the bins such that
no bin exceeds its capacity. UNARY BIN PACKING is NP-
hard and W/[1]-hard parameterized by the number % of bins
evenif .1 | s; = kB (Jansen et al. 2013).

We first focus on the case of a single resource, for which
we find a strong intractability result. In the following theo-
rem, we show that even if each supply comes with a single
unit of a resource, then the problem is already NP-hard.

Theorem 1. 1|nr = 1,p; = ca;j|Cmax is para-NP-hard
with respect to the maximum number by, .y of resources sup-
plied at once even if all numbers are encoded in unary.

Proof. Given an instance /I of UNARY BIN PACKING
with Y7 | s; = kB, we construct an instance I’ of 1| nr =
1|Cmax With bpay = 1 as described below.

We define ’I”LjObS J1 = (pl, al), JQ = (pg,CLQ), ey Jn =
(pn,an) such that p; = 2Bs; and a; = 2s;. We also
introduce a special job J* = (p*, a*), with p* = 2B
and a* = 1. Then, we set 2k B supply dates as follows. For
eachi € {0,1,...,k—1}and z € {0,1,...,2B — 1}, we
create a supply date ¢F = (u?,b?) := ((2B+1i2B?) —x,1).
We add a special supply date ¢* := (0, 1). Next, we show
that [ is a yes-instance if and only if there is a gapless sched-
ule for I’, that is, Ciyax = 2(B? + B). An example of this
construction is depicted in Figure 2.

We first show that each solution to I can be efficiently
transformed to a schedule with Cp.x = 2(B2 + B). A
yes-instance for I is a partition of the objects into %k bins
such that each bin is (exactly) full. Formally, there are
k sets S1,S2,... Sk such that | J; S; = O, S; N S; = 0 for

11758

all i # j, and Zoiesj s; = B for all j. We form a schedule

for I' as follows. First, we schedule job j* and then, contin-
uously, all jobs corresponding to elements of set .Sy, Sa, and
so on. The special supply ¢* guarantees that the resource re-
quirement of job j* is met at time 0. The remaining jobs, cor-
responding to elements of the partitions, are scheduled earli-
est at time 2B, when j* is processed. The jobs representing
each partition, by definition, require in total 2B resources
and take, in total, 2B2 time. Thus, it is enough to ensure that
in each point 2B + i2B?, for i € {0,1,...,k — 1}, there
are at least 28 resources available. This is true because, for
alli € {0,1,...,k—1}, every time 2B+iB? when there is a
supply of a single resource is preceded with 2B — 1 supplies
of one resource. Furthermore, none of the preceding jobs
can use the freshly supplied resources as the schedule must
be gapless and all processing times are multiples of 2B. As
a result, the schedule is feasible.

Now we show that a gapless schedule for I’ implies that I
is a yes-instance. Let S be a gapless schedule for I’. Observe
that all processing times are multiples of 23; thus each job
has to start at a time that is a multiple of 2B. For each i €
{0,1,...,k—1}, we show that there is no job that starts be-
fore 2B +42B? and ends after this time. We show this by in-
duction on . Since at time 0 there is only one resource avail-
able, job J* (with processing time 25) must be scheduled
first. Hence the statement holds for ¢ = 0. Assuming that the
statement holds for all 7 < ¢’ for some ', we show that it
also holds for ¢’. Assume towards a contradiction that there
is a job J that starts before ¢ := 2B + i’2B? and ends after
this time. Let .S be the set of all jobs that were scheduled to
start between ¢ := 2B + (i’ — 1)2B? and t. Recall that for
each job J;» € S, we have that p;; = a; B. Hence, since J
ends after ¢, the number of resources used by S is larger
than (t—to)/B = 2B. Since only 2B resources are available
at time ¢, job J cannot be scheduled before time ¢ or there
is a gap in the schedule (a gap would allow to use some of
the 2B resources supplied in the 2B time units just before
time ¢), a contradiction. Hence, there is no job that starts be-
fore ¢ and ends after it. Thus, the jobs can be partitioned into
“phases,” that is, there are k + 1 sets Tp, 71, ..., ) such
that To = {J*}, UpsoTh = T \{J*}, T, N T = 0 for
all h # j, and ZJj er, Pi = 2B2 for all g. This corresponds
to a bin packing where o4 belongs to bin i > 0 if and only
if J, € Ty, O



Note that Theorem 1 excludes pseudopolynomial algo-
rithms for the case under consideration since the theorem
statement is true also when all numbers are encoded in
unary.

Theorem 1 motivates to study further problem-specific
parameters. Observe that in the reduction presented in the
proof of Theorem 1, we used an unbounded number of sup-
ply dates. Gyorgyi and Kis (2014) have shown a pseudopoly-
nomial algorithm for 1|nr = 1|Cpay for the case that the
number ¢ of supplies is a constant. Thus, the question is
whether we can even obtain fixed-parameter tractability for
our problem by taking the number of supply dates as a pa-
rameter. Devising a reduction from UNARY BIN PACKING,
we answer this question negatively in the following theorem.

Theorem 2. 1|nr = 1, p; = a;|Cmax parameterized by the
number of supply dates is W[1]-hard even if all numbers are
encoded in unary.

The theorems presented in this section show that our prob-
lem is (presumably) not fixed-parameter tractable either with
respect to the number of supply dates or with respect to the
maximum number of resources per supply. However, as we
show in the following section, combining these two parame-
ters allows for fixed-parameter tractability. Furthermore, we
present other algorithms that, partially, allow us to success-
fully evade the hardness presented above.

(Parameterized) Tractability

Our search for efficient algorithms for our variant of
the MATERIAL CONSUMPTION SCHEDULING PROBLEM
starts with an introductory part presenting two lemmata ex-
ploiting structural properties of problem solutions. After-
wards, we employ the lemmata and provide several tractabil-
ity results, including polynomial-time solvability for one
specific case.

Identifying Structured Solutions

A solution to the MATERIAL CONSUMPTION SCHEDUL-
ING PROBLEM is an ordered list of jobs to be executed on
the machine(s). Additionally, the jobs need to be associated
with their starting times. The starting times have to be cho-
sen in such a way that no job starts when the machine is
still processing another scheduled job and that each job re-
quirement is met at the moment of starting the job. We show
that, in fact, given an order of jobs, one can always com-
pute the times of starting the jobs minimizing the makespan
in polynomial time. Formally, we present in Lemma 1 a
polynomial-time Turing reduction from 1|nr = r|Cpax
to 1, NI | nr = r|—. The crux of this lemma is to observe that
there always exists an optimal solution to 1| nr = 7|Ciyax
that is decomposable into two parts. First, when the machine
is idling, and second, when the machine is continuously busy
until all jobs are processed.

Lemma 1. There is a polynomial-time Turing reduction
from 1| nr = 7|Cppax to 1, NI |nr = r|—.

Let us further explain the crucial observation back-
ing Lemma 1 since we will extend it in the subsequent
Lemma 2. Assume that, for some instance of the MATERIAL

11759

CONSUMPTION SCHEDULING PROBLEM, there is some op-
timal schedule where some job J starts being processed at
some time ¢ (in particular, the resource requirements of J
are met at t). If, directly after the job the machine idles for
some time, then we can postpone processing J to the lat-
est moment which still guarantees that .J is ended before
the next job is processed. Naturally, in any case, at the new
starting time of J we can only have more resources than at
the old starting time. Applying this observation exhaustively
produces a solution that is clearly separated into idling time
and busy time.

We will now further exploit the observation of the previ-
ous paragraph beyond only “moving” jobs without chang-
ing their mutual order. We first define a domination relation
over jobs; intuitively, a job dominates another job if it is not
shorter and at the same time it requires not more resources.

Definition 1. A job J; dominates a job J;/ (written J; <p
Jj)if pj > pjrand, foralli € R, a; 5 < a; .

When we deal with non-idling schedules, for a pair of jobs
Jj and J;, where J; dominates Jj/, it is better (or at least
not worse) to schedule J; before J; . Indeed, since among
these two, J;’s requirements are not greater and its process-
ing time is not smaller, surely after the machine stops pro-
cessing J; there will be at least as many resources available
as if the machine had processed .J;;. We formalize this ob-
servation in the following lemma.

Lemma 2. For an instance of 1,NI|ur|— let <p be an
asymmetric subrelation of <p. There always exists a feasi-
ble schedule where for every pair J; and Jj: of jobs it holds
that if J; <p Jj, then J; is processed before J;.

Note that in the case of two jobs J; and J;, dominating
eachother (i.e., J; <p Jj and J;» <p J;), Lemma 2 allows
for either of them to be processed before the other one.

Applying Structured Solutions

We start with a polynomial-time algorithm that applies
both Lemma 1 and Lemma 2 to solve a specific case of
the MATERIAL CONSUMPTION SCHEDULING PROBLEM
where each two jobs can be compared according to the dom-
ination relation (Definition 1). Recall that if this is the case,
then Lemma 2 almost exactly specifies the order in which
the jobs should be scheduled.

Theorem 3. 1,NI|nr|— and 1| nr |Ciax are solvable in,
respectively, cubic and quadratic time if the domination
relation is a weak order on a set of jobs. In particular,
for the time umax of the last supply, 1|nr = 1, p; =
1|Cmax and 1jnr = 1, a;j = 1|Cnax are solvable in
O(nlognlogumax) time and 1, NI |nr = 1, p; = 1|— and
1,NI|nr =1, a; = 1|— are solvable in O(nlogn) time.

Importantly, it is simple (requiring at most O(n?) com-
parisons) to identify the cases for which the above algorithm
can be applied successfully.

If the given jobs cannot be weakly ordered by domina-
tion, then the problem becomes NP-hard as shown in Theo-
rem 1. This is to be expected since when jobs appear which
are incomparable with respect to domination, then one can-
not efficiently decide which job, out of two, to schedule first:



the one which requires fewer resource units but has a shorter
processing time, or the one that requires more resource units
but has a longer processing time. Indeed, it could be the
case that sometimes one may want to schedule a shorter
job with smaller resource consumption to save resources for
later, or sometimes it is better to run a long job consum-
ing, for example, all resources knowing that soon there will
be another supply with sufficient resource units. Since NP-
hardness presumably excludes polynomial-time solvability,
we turn to a parameterized complexity analysis to get around
the intractability.

The time unax Of the last supply seems a promising pa-
rameter. We show that it yields fixed-parameter tractabil-
ity. Intuitively, we demonstrate that the problem is tractable
when the time until all resources are available is short.

Theorem 4. 1,NI|nr = 1|Cyax parameterized by the
time Umax Of the last supply is fixed-parameter tractable and
can be solved in O(2"m=x - n + nlogn) time.

Proof. We first sort all jobs by their processing time in O(n)
time using bucket sort. We then sort all jobs with the
same processing time by their resource requirement in over-
all O(nlogn) time. We then iterate over all subsets R
of {1,2,..., umax}- We will refer to the elements in R
by r1,72,...,7 Where k = |R| and r; < r; forall i < j.
For simplicity, we will use ro = 0. For each r; in ascend-
ing order, we check whether there is a job with a processing
time r; — r;_1 that was not scheduled before and if so, then
we schedule the respective job that is first in each bucket (the
job with the lowest resource requirement). Next, we check
whether there is a job left that can be scheduled at r; and
which has a processing time at least u,,,x — 7. Finally, we
schedule all remaining jobs in an arbitrary order and check
whether the total number of resources suffices to run all jobs.

We will now prove that there is a valid gapless sched-
ule if and only if all of these checks are met. Notice that
if all checks are met, then our algorithm provides a valid
gapless schedule. Now assume that there is a valid gapless
schedule. We will show that our algorithm finds a (possi-
bly different) valid gapless schedule. Let, without loss of
generality, J;,, Jj,, ..., J;, be a valid gapless schedule and
let ji be the index of the last job that is scheduled latest
at time umax. We now focus on the iteration where R =
{0,p5,,Pj, + Pjay-- - Zle pj, +. If the algorithm sched-
ules the jobs J;,, Jj,, . .., Jj, , then it computes a valid gap-
less schedule and all checks are met. Otherwise it schedules
some jobs differently but, by construction, it always sched-
ules a job with processing time p;; at position i < k. Due
to Lemma 2 the schedule computed by the algorithm is also
valid. Thus the algorithm computes a valid gapless schedule
and all checks are met.

It remains to analyze the running time. The sorting steps
in the beginning take O(n logn) time. There are 24=>= jter-
ations for R, each taking O(n) time. Indeed, we can check
in constant time for each r; which job to schedule and this
check is done at most n times (as afterwards there is no job
left to schedule). Searching for the job that is scheduled at
time 7, also takes O(n) time as we can iterate over all re-
maining jobs and check in constant time whether it fulfills

11760

both requirements. O

Another possibility for fixed-parameter tractability via
parameters measuring the resource supply structure comes
from combining the parameters g and by,,x. Although both
parameters alone yield intractability, combining them gives
fixed-parameter tractability in an almost trivial way: By
Assumption 1, every job requires at least one resource
80 bmax - q is an upper bound for the number of jobs. Hence,
with this parameter combination, we can try out all possi-
ble schedules without idling (which by Lemma 1 extends to
solving to 1, NI | nr = 1|Cipax)-

Motivated by this, we replace the parameter b, by the
presumably much smaller (and hence practically more use-
ful) parameter a,,,x. We consider scenarios with only few
resource supplies and jobs that require only small units of
resources as practically relevant.

Next, Theorem 5 employs the technique of Mixed Inte-
ger Linear Programming (MILP) (Bredereck et al. 2020) to
positively answer the question of fixed-parameter tractabil-
ity for the combined parameter q + Gpax-

Theorem 5. 1,NI|nr 1|Crax Is fixed-parameter
tractable for the combined parameter q + amax, Where q is
the number of supplies and a.x is the maximum resource
requirement per job.

Proof. Applying the famous theorem of Lenstra (1983), we
describe an integer linear program that uses only f(q, ¢max)
integer variables. Lenstra (1983) showed that an (mixed) in-
teger linear program is fixed-parameter tractable when pa-
rameterized by the number of integer variables (see also
Frank and Tardos (1987) and Kannan (1987) for later im-
provements). To significantly simplify the description of
the integer program, we use an extension to integer lin-
ear programs that allows concave transformations on vari-
ables (Bredereck et al. 2020).

Our approach is based on two main observations. First,
by Lemma 2 we can assume that there is always an optimal
schedule that is consistent with the domination order. Sec-
ond, within a phase (between two resource supplies), every
job can be arbitrarily reordered. Roughly speaking, a solu-
tion can be fully characterized by the number of jobs that
have been started for each phase and each resource require-
ment.

We use the following non-negative integer variables:

. Tw,s denoting the number of jobs requiring s resources
started in phase w,

xis denoting the number of jobs requiring s resources

started in all phases between 1 and w (inclusive),

a,, denoting the number of resources available in the be-
ginning of phase w,

d,, denoting the endpoint of phase w, that is, the time
when the last job started in phase w ends.

Naturally, the objective is to minimize d,.
First, we ensure that xas are correctly computed from
Ty,s by adding: 1’5,5 = Zz,zl Zy,s Second, we ensure
that all jobs are scheduled sometime. To this end, using #



to denote the number of jobs .J; with resource require-
ment a; = s we add: Vs € [amax] : Zwe[q] Tap,s = Fs-
Third, we ensure that the «,, variables are set correctly, by
setting a; = l~)1, and V2 < w < q : Qy = Qo1 +
b — Zse[amax] ZTy—1,s - 5. Fourth, we ensure that we al-

ways have enough resources: V2 < w < q : ay, > by.
Next, we compute the endpoints d,, of each phase, assum-
ing a schedule respecting the domination order. To this end,
let pf,p5, ..., p; denote the processing times of jobs with
resource requirement exactly s in non-increasing order. Fur-
ther, let 75(y) denote the processing time spent to schedule
the y longest jobs with resource requirement exactly s, that
is, we have 74(y) = Y.Y_, pi. Clearly, 7,(z) is a concave
function that can be precomputed for each s € [amax]. To
compute the endpoints, we add:

Yw € [q] : dy = Z Ts(xi

SE[amax]

o) ey

Since we assume gapless schedules, we ensure that there
isnogap: V1 <w < g—1:dy > uy4+1—1. This completes
the construction of the mixed ILP using concave transfor-
mations. The number of integer variables used in the ILP
iS 2¢ * amax (for x&?ﬁ variables) plus 2q (g for a,, and d,,
variables, respectively). Moreover, the only concave trans-
formations used in Constraint Set (1) are piecewise linear
with only a polynomial number of pieces (in fact, the num-
ber of pieces is at most the number of jobs), as required to
obtain fixed-parameter tractability of this extended class of
ILPs (Bredereck et al. 2020). O

Motivated by Theorem 5, we are interested in the com-
putational complexity of the MATERIAL CONSUMPTION
SCHEDULING PROBLEM for cases where only apa.x is
small. When a,,x = 1, then we have polynomial-time solv-
ability via Theorem 3. The next theorem shows that this
extends to every constant value of ap,,x. To obtain this re-
sults, we develop a dynamic-progamming-based algorithm
for 1, NI |nr = 1|— and apply Lemma 1.

Theorem 6. 1|nr = 1|Cpax can be solved in O(q - amax -
Umax * 1Og Umax * ’I’LQamax) time.

The question whether 1| nr = 1|Cpax is in FPTor W[1]-
hard with respect to an,ax remains open.

A Glimpse on Multiple Resources

So far we focused on scenarios with only one non-renewable
resource. In this section, we give a brief outlook on scenarios
with multiple resources (still considering only one machine).
Naturally, all hardness results transfer. For the tractability
results, we identify several cases where tractability extends
in some form, while other cases become significantly harder.

We start with showing that already with two resources
and unit processing times of the jobs, the MATERIAL CON-
SUMPTION SCHEDULING PROBLEM becomes computa-
tionally intractable, even when parameterized by the number
of supply dates. Note that NP-hardness for 1| nr = 2, p;
1|Chax can also be transferred from Grigoriev, Holthuijsen,

11761

and van de Klundert (2005)[Theorem 4] (the statement is for
a different optimization goal but the proof works).

Proposition 1. 1|nr = 2, p; = 1|Cax is W[1]-hard when
parameterized by the number of supply dates even if all num-
bers are encoded in unary.

Proposition 1 limits the hope for obtaining positive re-
sults for the general case with multiple resources. Still, when
adding the number of different resources to the combined
parameter, we can extend our fixed-parameter tractability re-
sult from Theorem 5. Since we expect the number of differ-
ent resources to be rather small in real-world applications,
we consider this result to be of practical interest.

Proposition 2. 1,NI|nr 7|Crnax is fixed-parameter
tractable for the combined parameter q+apyax+7, where q is
the number of supplies and a5 is the maximum resource

requirement of a job.

Finally, by a reduction from INDEPENDENT SET we show
that the MATERIAL CONSUMPTION SCHEDULING PROB-
LEM is intractable for an unbounded number of resources
even when combining all considered parameters.

Theorem 7. 1|nr,p; = 1|Crax is NP-hard and W(1]-hard
parameterized by Upmax even if Pmax = Gmax = b
and q = 2.

max

Conclusion

We provided a seemingly first thorough multivariate
complexity analysis of the MATERIAL CONSUMPTION
SCHEDULING PROBLEM on a single machine. Our main
concern was the case of one resource type (nr = 1).

Open questions here refer to the parameterized complex-
ity with respect to the single parameters dax and Pmax,
their combination, and the closely related parameter num-
ber of job types. Notably, this might be challenging to an-
swer because these questions are closely related to long-
standing open questions for BIN PACKING and P||Chax
(Mnich and van Bevern 2018; Knop and Koutecky 2018;
Knop, Koutecky, and Mnich 2020). Indeed, parameter com-
binations may be unavoidable to identify practically relevant
tractable cases. Note that it is not hard to derive from our
statements (particularly Assumption 1 and Lemma 1) fixed-
parameter tractability for by,,x + ¢ while for the single pa-
rameters by, and ¢ it is both times computationally hard.

Another challenge is to study the case of multiple ma-
chines, which is obviously computationally at least as hard
as the case of a single machine but possibly very relevant in
practice. It is, however, far from obvious to generalize our
algorithms to the multiple-machines case.

We have also seen that cases where the jobs can be or-
dered with respect to the domination ordering (Definition 1)
are polynomial-time solvable. It seems promising to con-
sider structural parameters measuring the distance from this
tractable case in the spirit of distance from triviality param-
eterization (Guo, Hiiffner, and Niedermeier 2004; Nieder-
meier 2006).

Our results for multiple resources certainly mean only
first steps. They invite to further investigations.



Acknowledgments

Main work done while RB was with TU Berlin. AK was
supported by the DFG project AFFA (BR 5207/1 and
NI 369/15). PG was supported by the National Research,
Development and Innovation Office — NKFIH (ED_18-2-
2018-0006), and by the J. Bolyai Research Scholarship.
Project started while RB, PG, and RN were attending
the Lorentz center workshop “Scheduling Meets Fixed-
Parameter Tractability” February 4-8, 2019, Leiden, the
Netherlands, organized by Nicole Megow, Matthias Mnich,
and Gerhard J. Woeginger.

References
Belkaid, F.; Maliki, F.; Boudahri, F.; and Sari, Z. 2012. A
Branch and Bound Algorithm to Minimize Makespan on
Identical Parallel Machines with Consumable Resources. In
Advances in Mechanical and Electronic Engineering, 217—
221. Springer.

Bentert, M.; van Bevern, R.; and Niedermeier, R. 2019. In-
ductive k-independent graphs and c-colorable subgraphs in
scheduling: a review. Journal of Scheduling 22(1): 3-20.

Bentert, M.; Bredereck, R.; Gyorgyi, P.; Kaczmarczyk, A.;
and Niedermeier, R. 2021. A Multivariate Complexity
Analysis of the Material Consumption Scheduling Problem.
arXiv preprint arXiv:2102.13642 [cs.GT] .

Bérczi, K.; Kirdly, T.; and Omlor, S. 2020. Scheduling with
Non-renewable Resources: Minimizing the Sum of Comple-
tion Times. In Proceedings of the 6th International Sympo-
sium on Combinatorial Optimization, 167-178. Springer.

van Bevern, R.; Mnich, M.; Niedermeier, R.; and Weller,
M. 2015. Interval scheduling and colorful independent sets.
Journal of Scheduling 18(5): 449-4609.

van Bevern, R.; Niedermeier, R.; and Suchy, O. 2017. A pa-
rameterized complexity view on non-preemptively schedul-
ing interval-constrained jobs: few machines, small loose-
ness, and small slack. Journal of Scheduling 20(3): 255—
265.

Bodlaender, H. L.; and Fellows, M. R. 1995. W[2]-hardness
of precedence constrained K -processor scheduling. Opera-
tions Research Letters 18(2): 93-97.

Bodlaender, H. L.; and van der Wegen, M. 2020. Parameter-
ized Complexity of Scheduling Chains of Jobs with Delays.
In Proceedings of the 15th International Symposium on Pa-
rameterized and Exact Computation (IPEC '20), 4:1-4:15.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik.

Bredereck, R.; Faliszewski, P.; Niedermeier, R.; Skowron,
P; and Talmon, N. 2020. Mixed integer programming
with convex/concave constraints: Fixed-parameter tractabil-
ity and applications to multicovering and voting. Theoretical
Computer Science 814: 86—105.

Carlier, J. 1984. Problemes d’ordonnancements a con-
traintes de ressources: algorithmes et complexité. Thése
d’état. Université Paris 6.

Carlier, J.; and Rinnooy Kan, A. H. G. 1982. Scheduling
subject to nonrenewable resource constraints. Operations
Research Letters 1: 52-55.

11762

Carrera, S.; Ramdane-Cherif, W.; and Portmann, M.-C.
2010. Scheduling supply chain node with fixed component
arrivals and two partially flexible deliveries. In Proceedings
of the 5th International Conference on Management and
Control of Production and Logistics (MCPL ’10), 6. IFAC
Publisher.

Chrétienne, P. 2008. On single-machine scheduling without
intermediate delays. Discrete Applied Mathematics 156(13):
2543-2550.

Cygan, M.; Fomin, F. V.; Kowalik, L.; Lokshtanov, D.;
Marx, D.; Pilipczuk, M.; Pilipczuk, M.; and Saurabh, S.
2015. Parameterized Algorithms. Springer.

Davari, M.; Ranjbar, M.; De Causmaecker, P.; and Leus, R.
2020. Minimizing makespan on a single machine with re-
lease dates and inventory constraints. European Journal of
Operational Research 286(1): 115-128.

Downey, R. G.; and Fellows, M. R. 2013. Fundamentals of
Parameterized Complexity. Springer.

Fellows, M. R.; and McCartin, C. 2003. On the parametric
complexity of schedules to minimize tardy tasks. Theoreti-
cal Computer Science 298(2): 317-324.

Flum, J.; and Grohe, M. 2006. Parameterized Complexity
Theory. Springer.

Frank, A.; and Tardos, E. 1987. An application of simultane-
ous Diophantine approximation in combinatorial optimiza-
tion. Combinatorica 7(1): 49-65.

Ganian, R.; Hamm, T.; and Mescoff, G. 2020. The Com-
plexity Landscape of Resource-Constrained Scheduling. In
Proceedings of the 29th International Joint Conference on
Artificial Intelligence (IJCAI "20), 1741-1747. ijcai.org.

Graham, R. L.; Lawler, E. L.; Lenstra, J. K.; and Kan, A. R.
1979. Optimization and approximation in deterministic se-
quencing and scheduling: a survey. Annals of Discrete Math-
ematics 5: 287-326.

Grigoriev, A.; Holthuijsen, M.; and van de Klundert, J. 2005.
Basic scheduling problems with raw material constraints.
Naval Research of Logistics 52: 527-553.

Guo, J.; Hiiffner, F.; and Niedermeier, R. 2004. A Structural
View on Parameterizing Problems: Distance from Triviality.
In Proceedings of the First International Workshop on Pa-
rameterized and Exact Computation, 162—173. Springer.

Gyorgyi, P;; and Kis, T. 2014. Approximation schemes
for single machine scheduling with non-renewable resource
constraints. Journal of Scheduling 17: 135-144.

Gyorgyi, P.; and Kis, T. 2015a. Approximability of schedul-
ing problems with resource consuming jobs. Annals of Op-
erations Research 235(1): 319-336.

Gyorgyi, P.; and Kis, T. 2015b. Reductions between schedul-
ing problems with non-renewable resources and knapsack
problems. Theoretical Computer Science 565: 63-76.

Gyorgyi, P.; and Kis, T. 2017. Approximation schemes for
parallel machine scheduling with non-renewable resources.
European Journal of Operational Research 258(1): 113—
123.



Gyorgyi, P.; and Kis, T. 2019. Minimizing total weighted
completion time on a single machine subject to non-
renewable resource constraints. Journal of Scheduling
22(6): 623-634.

Gyorgyi, P.; and Kis, T. 2020. New complexity and approx-
imability results for minimizing the total weighted comple-
tion time on a single machine subject to non-renewable re-
source constraints. arXiv preprint arXiv:2004.00972 .

Heeger, K.; Hermelin, D.; Mertzios, G. B.; Molter, H.; Nie-
dermeier, R.; and Shabtay, D. 2021. Equitable Scheduling
on a Single Machine. In Proceedings of the 35th AAAI Con-
ference on Artificial Intelligence (AAAI °21). AAAI Press.

Hermelin, D.; Kubitza, J.-M.; Shabtay, D.; Talmon, N.; and
Woeginger, G. J. 2019a. Scheduling two agents on a single
machine: A parameterized analysis of NP-hard problems.
Omega 83: 275-286.

Hermelin, D.; Manoussakis, G.; Pinedo, M.; Shabtay, D.;
and Yedidsion, L. 2020. Parameterized Multi-Scenario
Single-Machine Scheduling Problems. Algorithmica 82(9):
2644-2667.

Hermelin, D.; Pinedo, M.; Shabtay, D.; and Talmon, N.
2019b. On the parameterized tractability of single machine
scheduling with rejection. European Journal of Operational
Research 273(1): 67-73.

Hermelin, D.; Shabtay, D.; and Talmon, N. 2019. On
the parameterized tractability of the just-in-time flow-shop
scheduling problem. Journal of Scheduling 22(6): 663—676.

Herr, O.; and Goel, A. 2016. Minimising total tardiness for
a single machine scheduling problem with family setups and
resource constraints. European Journal of Operational Re-

search 248(1): 123-135.

Jansen, K.; Kratsch, S.; Marx, D.; and Schlotter, 1. 2013.
Bin packing with fixed number of bins revisited. Journal of
Computer and System Sciences 79(1): 39-49.

Kannan, R. 1987. Minkowski’s convex body theorem and
integer programming. Mathematics of Operations Research
12(3): 415-440.

Knop, D.; and Koutecky, M. 2018. Scheduling meets n-fold
integer programming. Journal of Scheduling 21(5): 493—
503.

Knop, D.; Koutecky, M.; and Mnich, M. 2020. Combina-
torial n-fold integer programming and applications. Mathe-
matical Programming 184(1): 1-34.

Lenstra, Jr, H. W. 1983. Integer Programming with a Fixed
Number of Variables. Mathematics of Operations Research
8(4): 538-548.

Mnich, M.; and van Bevern, R. 2018. Parameterized com-

plexity of machine scheduling: 15 open problems. Comput-
ers & Operations Research 100: 254-261.

Mnich, M.; and Wiese, A. 2015. Scheduling and fixed-
parameter tractability. Mathematical Programming 154(1-
2): 533-562.

Niedermeier, R. 2006. Invitation to Fixed-Parameter Algo-
rithms. Oxford University Press.

11763

Slowinski, R. 1984. Preemptive scheduling of independent
jobs on parallel machines subject to financial constraints.
European Journal of Operational Research 15: 366-373.

Toker, A.; Kondakci, S.; and Erkip, N. 1991. Scheduling
under a non-renewable resource constraint. Journal of the
Operational Research Society 42: 811-814.

Xie, J. 1997. Polynomial algorithms for single machine
scheduling problems with financial constraints. Operations
Research Letters 21(1): 39-42.



