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Abstract— Based on the Fundamental Lemma by Willems
et al., the entire behaviour of a Linear Time-Invariant (LTI)
system can be characterised by a single data sequence of
the system as long the input is persistently exciting. This is
an essential result for data-driven analysis and control. In
this work, we aim to generalise this LTI result to Linear
Parameter-Varying (LPV) systems. Based on the behavioural
framework for LPV systems, we prove that one can obtain a
result similar to Willems’. Based on an LPV representation, i.e.,
embedding, of nonlinear systems, this allows the application of
the Fundamental Lemma for systems beyond the linear class.

Index Terms— Data-Driven Analysis, Linear Parameter-
Varying Systems, Behavioural System Theory.

I. INTRODUCTION

Data-driven methods are attractive to obtain system prop-
erties or stabilising controllers from data, without identi-
fying a mathematical description of the system itself. One
particular result is by Willems et al. [1], referred to as
the Fundamental Lemma, which has been a corner stone
for many powerful methods in data-driven analysis and
control. This lemma uses the behavioural system theory for
(Discrete-Time (DT)) Linear Time-Invariant (LTI) systems
[2] to obtain a characterisation of the system behaviour,
based on a single data sequence. More precisely, when one
obtains T input-output (IO) data points from an LTI system,
where the input is Persistently Exciting (PE), i.e., the input
excited “all dynamics” of the system, then the Fundamental
Lemma shows that the obtained data spans all possible IO
solutions of length L < T . For LTI systems, this has led
to numerous results including (but not limited to) data-
based simulation and control [3], data-driven state-feedback
control [4], [5], data-based dissipativity analysis [6], [7] and
data-driven predictive control [8]. There exists preliminary
work that aims to extend the Fundamental Lemma towards
nonlinear (NL) [9] and Linear Time-Varying (LTV) [10]
systems. However, these results impose heavy restrictions
on the systems as they leverage model transformations and
linearisations. More precisely, these results are modifying
the considered system in such a way that on the resulting
LTI like description, Willems’ Fundamental Lemma can be
applied: using feedback linearisation [9], redefining inputs
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are with the Control Systems Group, Eindhoven University of Technology,
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and outputs for Wiener or Hammerstein systems [11], using a
lumped LTI representation for cyclic LTV systems [10], or by
treating the nonlinearity as a disturbance with a priori known
norm bounds [5]. Hence, there are no general results for NL
systems analogous to those of the Fundamental Lemma.

This paper aims to generalise the Fundamental Lemma
to the Linear Parameter-Varying (LPV) system class. LPV
systems are linear systems, where the model parameters,
describing the linear signal relation, are dependent on a
time-varying variable, referred to as the scheduling variable.
The latter variable is used to express nonlinearities, time
variation, or exogenous effects. The main difference with
respect to LTV systems is that the scheduling variable is
not known a priori; it is only assumed that it is measurable
and allowed to vary in a given set. The LPV framework has
been shown to be able to capture a relatively large subset of
NL systems in terms of LPV surrogate models. Therefore,
by extending Willems’ result for LPV systems, which is the
main contribution of the paper, we make a significant step
towards data-driven analysis and control for NL systems.

In [12], some preliminary results on data-driven control for
LPV systems with an affine scheduling dependency structure
based representation have been introduced using the Funda-
mental Lemma with additional constraints. In this paper, we
obtain results for general LPV systems with representations
allowed to have dynamic meromorphic scheduling depen-
dency using the behavioural theory for LPV systems [13],
[14]. These results allow data-driven analysis and simulation
for a wide range of LPV representation forms and scheduling
dependencies. Moreover, as an additional contribution of the
paper, we show that the results in [12] are a special case of
the developed theory.

The paper is structured as follows. The problem statement
in Section II is followed by a presentation of the mathemat-
ical building blocks of the behavioural LPV framework in
Section III. The LPV Fundamental Lemma and supporting
core results are given in Section IV, while we show in
Section V that the special case of the LPV Fundamental
Lemma boils down to the results in [12]. We give the
conclusions and outlooks in Section VI.
Notation: Let A and B be vector spaces, the notation BA

indicates the collection of all maps from A to B. Consider
the set D ⊆ A×B with elements (a, b). The projection of D
onto the elements of A is denoted by πaD ⊆ A, i.e, πaD =
{a ∈ A | (a, b) ∈ D}. The degree of a polynomial function f
is denoted deg(f). Ai,• and A•,j denote the ith row and the
jth column of a matrix A ∈ Rn×m, respectively. For a DT
signal w : Z → Rnw , we denote its value at discrete time-



step k ∈ Z by w(k). The forward and backward time-shift
operators are denoted as q and q−1, respectively, such that
for a signal w, qw(k) = w(k+1) and q−1w(k) = w(k−1).
For a time-interval [t1, t2] ⊂ Z, the sequence of the values of
w on that interval is denoted by w[t1,t2], such that w[t1,t2] :
[t1, t2] → Rnw . For two trajectories w1 ∈ (Rnw)[t1,t2] and
w2 ∈ (Rnw)[t3,t4], the concatenation of w1 and w2, such that
t3 = t2 + 1, is denoted w1 ∧ w2. The Hankel matrix of the
data-sequence w̃ := w[1,T ], with t1 block rows is denoted by

Ht1,t2(w̃) :=


w̃(1) w̃(2) · · · w̃(t2)
w̃(2) w̃(3) · · · w̃(t2 + 1)

...
...

. . .
...

w̃(t1) w̃(t1 + 1) · · · w̃(t1 + t2 − 1)

 ,
where t2 ≤ T − t1 + 1 and t1, t2 > 0. We denote with
Ht1(w̃), the Hankel matrix Ht1,t2(w̃) with the maximal
possible number of columns, i.e., t2 = T − t1 + 1. The
vector of the values of w[1, T ] at every time-step is denoted
vec(w[1, T ]) =

[
w>(1) · · · w>(T )

]>
.

II. PROBLEM STATEMENT

First, we define a parameter-varying (PV) dynamic system,

Definition 1 (PV dynamic system [13]). A PV dynamic
system Σ is a quadruple Σ = (T,P,W,B) with T the time-
axis, P ⊆ Rnp the scheduling space, W ⊆ Rnw the signal
space, and B⊆(W×P)T is the behaviour. �

In this paper, we consider DT systems, i.e, T = Z. Due
to linearity of the considered system class with scheduling
dependent parameter variations, B is linear in the sense that
for any (w, p), (w̃, p) ∈ B, and α, α̃ ∈ R, (αw+α̃w̃, p) ∈ B.
Furthermore, B is shift invariant, i.e., qB = B. If Σ is not
autonomous, we can partition the signal w into a maximal
free signal u, called the input, with corresponding input space
U, and the signal y, called the output, with corresponding
output space Y, satisfying w = col(u, y) ∈ (U × Y) = W.
Note that y does not contain free components, i.e., given u,
none of the components of y can be chosen freely for every
p ∈ πpB [2], [14]. Moreover, in this paper we also consider
finite-time trajectories on the time-interval [t1, t2] ⊂ Z, for
which we use the notation

B|[t1,t2] :=
{

(w, p) ∈ (W× P)[t1,t2]
∣∣∃ (ω, ρ) ∈ B s.t.

(w(t), p(t)) = (ω(t), ρ(t)) for t1 ≤ t ≤ t2
}
. (1)

Problem statement: Given a data-sequence of an unknown
LPV system Σ with behaviour B, IO partition w = col(u, y)
and scheduling signal p. Under which conditions does the
data-sequence span the solution set of the underlying LPV
system?

The solution to this problem allows to use a single
sequence of data as a data-driven LPV representation in
prediction and simulation problems to determine the future
response in time.

III. LPV BEHAVIOURS AND REPRESENTATIONS

In order to formulate our results we need a brief overview of
the LPV behavioural framework [13], [14] and the introduc-
tion of the associated algebraic tools and key representation
forms.

A. Algebraic structure for LPV representations
Let P be an open subset of Rnp and let Rτ (P) denote the set
of real-meromorphic functions of the form r : Pτ → R in
npτ variables. For τ̂ > τ , any r ∈ Rτ (P) is called equivalent
with a r̂ ∈ Rτ̂ (P) if r̂(η1, . . . , ητ̂ ) = r(η1, . . . , ητ ) for all
η1, . . . , ητ ∈ P, as r̂ is not essentially dependent on its
arguments. Define the set operator �, such that Rτ+1(P)�
Rτ (P) contains all r ∈ Rτ+1(P) not equivalent with any
element of Rτ (P). This prompts to considering the set
R(P) =

⋃∞
τ=0Rτ (P) � Rτ−1(P) where R0(P) = R and

R−1(P) = ∅. We can define addition and multiplication
in R(P) analogous to that of [13]: if r1, r2 ∈ R(P), then
ri ∈ Rτi(P)�Rτi−1(P), for some integer τi ≥ 0, i = 1, 2,
and, by taking τ = max{τ1, τ2}, the equivalence described
above implies that there exist equivalent representations of
these functions in Rτ (P). Then r1 + r2, r1 · r2 can be
defined as the usual addition and multiplication of functions
in Rτ (P) and the result, in terms of the equivalence, is
considered to be a r ∈ R(P). For a p ∈ PZ and r ∈ R(P),
r � p : Z→ R is

(r � p)(k) = r
(
p(k), p(k + 1), p(k − 1), . . . , p(k − τ−1

2 )
)
,

where τ > 0 is an odd integer such that r ∈ Rτ (P) �
Rτ−1(P). Similar definition can be given if τ is even with the
last argument being p(k+ τ

2 ). It can be shown that R(P) is a
field. We denote by Rn×m(P) the set of all n×m matrices
whose entries are elements of R(P) which also extends
the operator � to matrices whose entries are functions from
R(P). It is an important property that multiplication of � with
q is not commutative, in other words, q(r � p) 6= (r � p)q.
To handle this multiplication, for r ∈ R(P) we define the
shift operations −→r ,←−r such that q(r � p) = (−→r � p)q,
q−1(r � p) = (←−r � p)q−1 where −→r ,←−r ∈ R(P) s.t.
(−→r � p)(t) = (r � p)(t+ 1) and (←−r � p)(t) = (r � p)(t− 1).

Next, we define the algebraic structure of the representa-
tions that we use to describe LPV systems, which allows us
to use the associated operations to prove our main result.
Introduce R[ξ] as all polynomials in the indeterminate ξ
with coefficients in R(P). R[ξ] is a ring as it is a general
property of polynomial spaces over a field, that they define a
ring. With the above defined non-commutative multiplicative
rules, R[ξ] defines an Ore algebra and it is a left and right
Euclidean domain [13]. Finally, let R[ξ]n×m denote the set
of matrix polynomial functions with elements in R[ξ].

B. Kernel representations
Using R[ξ] and the operator �, we are now able to define a
PV difference equation or so-called kernel representation:

Definition 2 (PV difference equation [14]). Consider R(ξ) =∑n
i=0riξ

i ∈ R[ξ]nr×nw and (w, p) ∈ (Rnw × Rnp)Z.

(R(q) � p)w :=
∑n
i=0(ri � p)qiw = 0 (2)



is a PV difference equation with order n = order(R). �

The associated behaviour is defined as follows.

Definition 3 (KR-LPV representation [14]). The PV dif-
ference equation (2) is a kernel representation, denoted by
RK, of the LPV system Σ = (Z,P ⊆ Rnp ,Rnw ,B) with
scheduling variable p and signals w, if

B =
{

(w, p) ∈ (Rnw ,P)Z
∣∣ (R(q) � p)w = 0

}
, (3)

where R ∈ R[ξ]·×nw . �

From [14, Thm. 3.6] we know that for any kernel R in (3),
there always exists a RK with full row rank. The order of the
kernel representation is the degree of R, i.e., n in (2). The
set of admissible scheduling trajectories is denoted by BP =
πpB. The projected behaviour that defines all the signal tra-
jectories compatible with a given fixed scheduling trajectory
p ∈ BP is denoted Bp =

{
w ∈WZ

∣∣ (w, p) ∈ B
}

. Finite
time intervals for these sets are denoted as in (1).

C. Input-output and state-space representations

The behaviours associated with the following representations
are required for our main result.

Definition 4 (LPV-IO representation [14]). The IO rep-
resentation of Σ = (Z,P ⊆ Rnp ,Rnu+ny ,B) with IO
partition w = col(u, y) and scheduling p is denoted by RIO

and defined as a parameter-varying difference-equation with
order na, where for any (col(u, y), p) ∈ B,∑na

i=0 (ai � p) qiy =
∑nb

j=0 (bj � p) qju, (4)

with ai ∈ Rny×ny and bj ∈ Rny×nu , ana
6= 0 and bnb

6=
0 being the meromorphic parameter-varying coefficients of
the matrix polynomials Ru(ξ) =

∑nb

j=0 bjξ
j and full rank

Ry(ξ) =
∑na

i=0 aiξ
i with na ≥ nb ≥ 0 and na > 0. �

Finally, we introduce the LPV-SS representation.

Definition 5 (LPV-SS representation [14]). The SS repre-
sentation of Σ = (Z,P ⊆ Rnp ,Rnu+ny ,B) is denoted by
RSS and defined by a first-order PV difference equation in
the latent (i.e., state) variable x : Z→ X ⊆ Rnx , with X the
state-space,

qx = (A � p)x+(B � p)u; y = (C � p)x+(D � p)u, (5)

where (u, y) is the IO partition of Σ, the manifest behaviour

BSS ={(col(u, y), p) ∈ B | ∃x ∈ (X)Z s.t. (5) holds}, (6)

is such that B = π(u,p,y)BSS. Moreover, A ∈ Rnx×nx ,
B ∈ Rnx×nu , C ∈ Rny×nx , and D ∈ Rny×nu . �

Next, some integer invariants of the behaviours associated
with the representations are introduced. Let n(B) denote
the minimal state dimension among all RSS qualifying as a
representation of B. As in [1], the lag is denoted by L(B),
and is the smallest possible lag over all kernel representations
RK, i.e., L(B) is equal to the order of a minimal RK.
The lag for RIO is equal to the order na in Definition 4.

Furthermore, note that n(B) ≥ L(B) in the MIMO case,
while in the SISO case n(B) = L(B).

D. Notions of minimality, observability and reachability

For RSS, we introduce the notions of observability and
reachability in the almost everywhere sense, i.e., structural
state-observability/reachability1, followed by the concepts of
minimality for the aforementioned representations. We start
with the notion of structural observability, for which we need
the n-step state-observability matrix function:

Definition 6 (Observability matrix [14]). The n-step state-
observability matrix On ∈ Rnny×nx of RSS with state
dimension nx is defined as On =

[
o>1 o>2 ··· o>n

]>
, with

o1 =C∈ Rny×nx and oi+1 =−→oiA∈ Rny×nx for all i>1. �

With the n-step state-observability matrix function, we can
define structural observability as follows,

Definition 7 (Structural state-observability [14]). RSS with
state dimension nx is called structurally state-observable if
its nx-step observability matrix Onx

is full (column) rank. �

This is full rank in the functional sense as it does not
guarantee that Onx

is invertible for all t ∈ Z and p ∈ BP.
Note that for RSS, L(B) is the minimum integer for which
rank

(
OL(B)

)
= nx over all p in an almost everywhere sense.

Therefore, let P(obs)
SS,L ⊆ PZ, associated with a structurally

state observable RSS, denote the set of scheduling sequences
for which rank

((
OL(B) � p

)
(k)
)

= nx for all k ∈ Z, i.e.,

P(obs)
SS,L :=

{
p ∈ PZ

∣∣∣ rank
((

OL(B) � p
)
(k)
)

= nx for

L ≥ L(B), and ∀k ∈ Z, with OL(B)∈ R
nny×nx

L(B) (P)
}
. (7)

Note that for L ≤ L(B), P(obs)
SS,L = {0}. Also, for an

appropriate measure µ on PZ, µ(PZ \ P(obs)
SS ) = 0, when

L ≥ L(B), corresponding to the almost everywhere sense
of structural observability. Structural reachability can be
defined in a similar fashion. We first define the n-step state-
reachability matrix function.

Definition 8 (Reachability matrix [14]). The n-step state-
reachability matrix function Rn ∈ Rnx×nnu of RSS with
state dimension nx is defined as Rn = [r1 r2 ··· rn], with
r1 =B ∈ Rnx×nu and ri+1 =A←−ri ∈ Rnx×nu for all i>1. �

With the n-step state-reachability matrix function, we can
define structural reachability as follows,

Definition 9 (Structural state-reachability [14]). RSS with
state dimension nx is called structurally state-reachable if its
nx-step reachability matrix Rnx

is full (row) rank. �

1Complete state-observability/reachability is defined in the everywhere
sense and is a stronger property than structural state-observability/-
reachability, and we have complete state-observability/reachability im-
plies structural state-observability/reachability. However, structural state-
observability/reachability is a necessary and sufficient property to generate
the respective canonical forms [14].



This is full rank in the functional sense as it does not
guarantee that Rnx is invertible for all t ∈ T and p ∈ BP.
We are now ready to define minimality of RSS.

Theorem 1 (Induced minimality [14]). The representation
RSS is induced minimal if and only if it is structurally state-
observable and it is state-trim, i.e., for all x ∈ X there exists
a (u, x, y, p) ∈ BSS such that x(0) = x.

This result yields the following definition of minimality for
a SS representation RSS.

Definition 10 (Minimality [14]). The RSS is minimal if
the representation is induced minimal and structurally state-
reachable. �

Minimality in terms of a RK is that R ∈ R[ξ]nr×nw has full
row rank, i.e., rank(R) = nr. The minimal degree of RK is
the order of the system, and is the highest polynomial degree
in the rows of R of a minimal RK, i.e., the order is equal
to L(B). We are now ready to present our main results.

IV. MAIN RESULTS

First we show results on the continuation of initial trajecto-
ries, which will allow the characterisation of the dimension-
ality of a behaviour.

A. Dimensionality of the restricted behaviour

The nth impulse response coefficient of an LPV system Σ
based on its RSS is

hn =


0, if n < 0,
D, if n = 0,
−→
C

(n)∏n−1
i=1

−→
A

(i)
B, if n > 0.

The Toeplitz matrix containing the impulse response coeffi-
cients of Σ is defined as follows

Tt1 :=


h0 0 0 · · · 0

h1
−→
h0 0

. . .
...

...
...

. . . . . . 0

ht1 −1

−→
ht1 −2 · · ·

−→
h1

(t1 −2) −→
h0

(t1 −1)

 . (8)

If we assume RSS is completely state-observable, there exists
always an injective linear map that can be used to reproduce
any state, given any (u, p, y) ∈ B. However, the notion of
complete state-observability is rather conservative and the
weaker notion of structural state-observability is adequate
for our purposes. Note that if RSS is minimal, and thus
structurally state-observable, then P(obs)

SS is trivially non-
empty. With the following lemma we show that for a finite
trajectory there always exists an initial condition when the
LPV system admits a SS representation (see e.g. [15] for a
similar result).

Lemma 1 (Initial condition existence). Let RSS be a minimal
realization of Σ, with B = π(w,p)BSS and IO partitioning
w = col(u, y). For any (w, p) ∈ B|[1,T ], there exists an
x ∈ X, such that

vec(y) = (OT � p)(1)x + (TT � p)(1)vec(u). (9)

Proof. ⇐=: Take any x(1) = x ∈ X and any (u, p) ∈
π(u,p) B|[1,T ]. As (5) is a representation of B, the evolution
of the trajectories are governed by (5). By definition, (9) is a
recursive application of (5), hence vec(y) has to satisfy (9).
=⇒ : As (w, p) is part of the restricted behaviour B|[1,T ],
it has a completion in B. Therefore, for any (w, p), there
exists a state trajectory x ∈ πx BSS|[1,T ] associated with
(w, p). Taking x = x(1) of that state trajectory necessarily
satisfies (9). �

Note that in Lemma 1, the associated state trajectory x, and
thus x, is not necessarily unique.

Lemma 2 (Initial condition uniqueness). Let RSS be a
minimal SS realization of Σ, such that B = π(u,p,y)BSS.
Then for all (wini, pini) ∈ B|[1,Tini]

, where Tini ≥ L(B)

and pini ∈ P(obs)
SS,Tini

,

(wini, pini) ∧ (col(ur, yr), pr) ∈ B|[1,Tini+Tr]
(10)

implies that there is a unique x ∈ X, such that

vec(yr) = (OTr
� pr)(1)x + (TTr

� pr)(1)vec(ur). (11)

Proof. Given initial trajectories wini and pini, we need to
prove the existence of a unique initial vector x ∈ X, such
that the implication holds, for all ur ∈ U[1,Tr]. We do this
constructively. Let col(uini, yini) be an IO partitioning of wini

and observe that

(wini, pini) ∧ (col(ur, yr), pr) ∈ B|[1,Tini+Tr]

=⇒ (wini, pini) ∈ B|[1,Tini]
(12)

Since (wini, pini) is a trajectory of B|[1,Tini]
, it follows from

Lemma 1 that there exists some x̄ such that

vec(yini) = (OTini � pini)(1)x̄ + (TTini � pini)(1)vec(uini).
(13)

Since RSS is minimal, pini ∈ P(obs)
SS,Tini

and Tini ≥ L(B)
imply that the Tini-step observability matrix OTini is full
column rank over pini. Therefore, (13) has a unique solution
in terms of x̄ = x(1). The initial condition x is equal to the
state x(Tini+1), i.e.

x = x(Tini + 1) =
(∏Tini−1

k=0 (A � pini)(Tini − k)
)
x(1)+

+
[
r1 · · · rTini

]
vec(uini). (14)

where rTini = (B � p) (Tini) and ri = (A � p) (Tini)
←−ri+1.

Uniqueness of x follows from uniqueness of x̄. �

We can now characterise the dimensionality of B|[1,L].

Corollary 1 (Behaviour dimensionality). Let RSS be such
that B = π(u,p,y)BSS. Then, dim(B|[1,L]) = nuL + n(B)
if and only if L ≥ L(B).

Proof. For any L ∈ N, we know from Lemma 1 that there
always exists some x, such that

(u, p, (OL � p) x + (TL � p)u = y) ∈ B|[1,L] . (15)



Hence, dim(y) = dim((OL � p) x) + dim((TL � p)u) ≥
dim(B|[1,L]) for any L. However, when L ≥ L(B),
there is a unique x such that (15) holds from Lemma 2.
Hence, dim(y) = dim((OL � p) x) + dim((TL � p)u) ≤
dim(B|[1,L]). Therefore, dim(B|[1,L]) = nuL+n(B). �

B. Fundamental Lemma of LPV systems

Consider BSS associated with a minimal RSS, i.e., RSS is
structurally observable and reachable. We follow the same
steps of reasoning as in [1].
1) The module of annihilators: The module of annihilators
in the Ore algebra can be seen as the collection of all kernel
type of representations of a given B:

NB :=
{
n ∈ Rnw [ξ]

∣∣n>(q)�B = 0
}

(16)

where the notation n>(q)�B = 0 means

n>(q)�B = 0 ⇐⇒ (n(q) � p)> w = 0, ∀̄(w, p) ∈ B,

where ∀̄ indicates for all (w, p) ∈ B in the almost every-
where sense. Similar to [1], we require a ‘special’ submodule
of the annihilators in (16). Let for τ ∈ N, the annihilators of
degree less than τ be defined as

Nτ
B := {n ∈ Rnw [ξ] | n ∈ NB, deg(n) ≤ τ} (17)

Using the notion of the annihilators, we can show the
following important property.

Corollary 2 (Annihilator dimensionality). Let RSS be such
that B = π(u,p,y)BSS. If L ≥ L(B), then dim(NL−1

B ) =
nyL− n(B).

Proof. First note that by [14, Cor. 4.3, Sec. 4.2], the SS
representation RSS can always be rewritten into a minimal
kernel representation with behaviour B′ and kernel matrix
R′ ∈ R[ξ]ny×nw , where deg(R′) = nx, such that B′ = B in
the almost everywhere sense [16, Thm. 8.7], due to algebraic
structure of the behavioural LPV framework. Based on the
rows [R′]i,• of R′, we can define its structure indices as
(L1,L2, . . . ,Lny) with Li := deg([R′]i,•). These rows form
the basis of the annihilator. More precisely, similarly to [17,
Lem. 4] we can generate a matrixM whose rows span NL−1

B

by populating it with rows ξi[R′]j,• for i = 0, ... , L−1−Lj ,
and j = 1, ... , ny. If L − Li ≥ 0 for all i = 1, ... , ny, or
equivalently if L ≥ L(B), then this leads to a full row rank
matrix M with nyL−

∑ny

i=1Li rows. Hence,

dimNL−1
B = rowrank(M) = nyL−

∑ny

i=1Li.

Due to the algebraic structure of the LPV behavioural
framework, the following result from [16] for LTI systems
also holds for a minimal RK: n(B) =

∑nr

i=1 Li. Therefore,
we have that the nyL− n(B) linearly independent rows of
M span NL−1

B . Hence, dim(NL−1
B ) = nyL− n(B). �

2) Kernel, span and PE: We require a more generic notion
of the left kernel and the column span of a PV matrix and a

generic PE notion. The left kernel of a matrix M ∈ Rn×m
w.r.t. a p ∈ BP is defined as

Kernelleft
R,p(M) =

{
r∈ R1×n(P)

∣∣
(
∑n
i=1riMi,k � p) (k) = 0,∀k ∈ [1,m]

}
. (18)

The column span of M ∈RLn×m w.r.t. p∈BP is defined as

Spancol
R,p(M) =

{
w ∈ (Rn)[1,L] | ∃ r1, . . . , rm ∈ R1×n(P),

s.t. wk =
∑m
i=1(riM̄k,i � p)(k),∀k ∈ [1, L]

}
. (19)

where M̄k,i = [M ](k−1)n+1:kn, i. Observe that

NL−1
B =

⋂
p∈BP

Kernelleft
R,p(Bp|[1,L]) ·QL−1, (20)

with QL−1 := [I Iξ Iξ2 · · · IξL−1]>. From these defini-
tions, we assume the following:

Assumption 1 (Orthogonality). For a given M and
p, Kernelleft

R,p(M) is the orthogonal complement of
Spancol

R,p(M) with respect to R.

Next, consider the finite trajectories (w, p) of length T . The
Hankel matrix of depth L associated with w ∈ Bp|[1,T ], i.e.,
HL(w), has columns that form system trajectories of length
L, each shifted one time-step. Hence, as w ∈ Bp|[1,T ], any
n ∈ NL−1

B ensures

(−→n (i) � p)> [HL(w)]•,i = 0, (21)

for all i = 1, . . . , T − L + 1. The last concept we need to
derive the Fundamental Lemma is the notion of PE, which
we define w.r.t. a minimal RK of Σ of a given order and
dependency class.

Definition 11 (PE). The pair (u, p) ∈ (U× P)[1,T ] is PE of
order L w.r.t. to a minimal RK of order ≤ L−1 and nr ≤ ny,
if for (col(u, y), p) ∈ B|[1,T ] it holds that there exists a
[τs, τe] ⊆ [1, T ], s.t. (R(q) � p)(k) is well-defined for all k ∈
[τs, τe] and for all RK of a given order, and if there is only
one R, s.t. for w̃ = w[τs,τe] we have (R(q) � p)(k)HL(w̃) =
0, and HL(w̃) is full row rank. �

In order to verify the above PE definition in practice, we
need assumptions on the order and dependency class of the
representation of Σ, see the example in Section V or [18]
for PE conditions for the specific ARX form.
3) The LPV Fundamental Lemma: The following result
generalises Willems’ Fundamental Lemma for LPV systems.

Theorem 2 (LPV Fundamental Lemma). Consider the PV
system Σ = (Z,P ⊆ Rnp ,Rnw ,B) where B = π(w,p)BSS

for a minimal RSS with an IO partition w = col(u, y).
Assume Assumption 1 holds and let (w̃, p̃) ∈ B|[1,T ] with
w̃ = col(ũ, ỹ). If (ũ, p̃) is persistently exciting of order L+nx

according to Definition 11, then

Kernelleft
R,p(HL(w̃))QL−1 = NL−1

B , (22)

where QL−1 :=
[
I Iξ Iξ2 . . . IξL−1

]>
, and

Spancol
R,pHL(w̃)) = Bp|[1,L] , ∀p ∈ BP. (23)



Proof. By Assumption 1, we only have to prove (22). Let

KL := Kernelleft
R,p(HL(w̃))QL−1

for brevity. The inclusion KL ⊇ NL−1
B is obvious, as HL(w̃)

is not guaranteed to fully ‘contain’ Bp|[1,L]. Consider the
reverse inclusion: KL ⊆ NL−1

B . Assume the contrary, i.e.,
that there exists some r, such that

0 6= r =
[
r0 ··· rL−1

]
∈ Kernelleft

R,p(HL(w̃)) (24)

but r(ξ) = r0 + r1ξ + · · · + rL−1ξ
L−1 /∈ NL−1

B . Consider
HL+n(B)(w̃). Obviously, KL+n(B) contains N

L+n(B)−1
B +

R, with R ⊂ Rnw [ξ] the (normal) linear span over R of

R = Spanrow
R

{
r(ξ), ξr(ξ), . . . , ξn(B)r(ξ)

}
. (25)

Recall from Corollary 2 that we have

dim(N
L+n(B)−1
B ) = (L+ n(B))ny − n(B) (26)

Clearly, dim(R) = n(B) + 1 as (25) contains n(B) + 1
independent elements by multiplication with ξ. We now show
that the PE assumption implies R ∩ N

L+n(B)
B 6= {0}. If

R ∩N
L+n(B)
B = {0}, then

dim(N
L+n(B)−1
B + R) = (L+ n(B))ny + 1. (27)

However, the PE condition (Definition 11) implies that p̃ ∈
P(obs)

SS,L+n(B) and

rank(HL+n(B)(w̃)) ≥ (L+ n(B))nu =⇒

dim
(

Kernelleft
R,p(HL+n(B)(w̃))

)
≤ (L+ n(B))ny. (28)

Hence,

dim(N
L+n(B)−1
B + R) = (L+ n(B))ny + 1

≤ dim
(

Kernelleft
R,p(HL+n(B)(w̃))

)
≤ (L+ n(B))ny. (29)

Therefore R ∩ N
L+n(B)
B 6= {0}. Consequently, there is a

linear combination of

r>(ξ), ξr>(ξ), . . . , ξn(B)r>(ξ), (30)

that is contained in N
L+n(B)
B . In terms of the minimal

kernel representation (R(q) � p)w = 0 of B, this means
that there is a 0 6= f ∈ R[ξ], such that fr = FR, for
some 0 6= F ∈ R1×rowdim(R)[ξ]. If deg(f) ≥ 1, then there
is a λ′ ∈ C such that f(λ′) = 0, hence F (λ′)R(λ′) = 0.
Next, we use the fact that RSS has an equivalent minimal
kernel representation based on the Elimination Lemma [14,
Thm. 3.3]. Furthermore, (R(q) � p)w = 0 of B is a minimal
kernel representation, therefore combination of its rows spans
N
L+n(B)
B . Hence, f can be reduced to deg(f) = 0 by

cancelling the common factors between f and F . Then
r = FR. This contradicts the assumption r /∈ NL−1

B . Hence,
KL ⊆ NL−1

B and (22) holds, concluding the proof. �

Remark 1. Suppose we obtained the kernel that spans all
the annihilators associated with the behaviour, it is possible

to construct the (left-)module in Rnr×nw [ξ] generated by
the kernel (see [14, Ch. 4] for a definition). This module
is the building block for all the equivalent minimal SS
representations associated with the system. This links our
result to subspace identification, see [15] and references
therein.

V. FUNDAMENTAL LEMMA UNDER AFFINE DEPENDENCE

In this section, we discuss Theorem 2 for the special case of
static, affine dependence, which recover the results derived in
[12], and give a simulation example for this particular case.

A. Simplified results

Consider an LPV system Σ with LPV-IO representation

y(k)+

na∑
i=1

ai(p(k−i))y(k−i) =

nb∑
i=1

bi(p(k−i))u(k−i), (31)

where the functions ai, bi have affine dependence, i.e.,

ai(p(k − i)) =
∑np

j=0 ai,jpj(k − i), ai,j ∈ Rny×ny , (32a)

bi(p(k − i)) =
∑np

j=0 bi,jpj(k − i), bi,j ∈ Rny×nu . (32b)

This gives that Σ has the behaviour

B :=
{

(u, p, y)∈(Rnu×P×Rny)Z
∣∣ (31) holds with (32)

}
.

The representation (31) under the considered affine depen-
dence (32) can be rewritten as an implicit LTI form [12]

Ey(k) +
∑na

i=1Aiy(k−i) =
∑nb

i=1Biu(k−i), (33)

with E = [I 0], Ai =
[
ai,0 · · · ai,np

]
similar Bi, and

u(k) :=
[

u(k)
p(k)⊗u(k)

]
, y(k) :=

[
y(k)

p(k)⊗y(k)

]
, (34)

with ⊗ the Kronecker product. For this special case, Theo-
rem 2 and the application of the LTI Fundamental Lemma
(adapted for (33) in [12]) both give

HL (u)
HL (p⊗ u)− P̄nu

HL (u)
HL (y)

HL (p⊗ y)− P̄nyHL (y)

 g =


vec(ū)

0
vec(ȳ)

0

 , (35)

where P̄n is a block-diagonal matrix with diagonal blocks
p̄(k)⊗ In×n, (u, p, y) ∈ B′|[1,T ] and (ū, p̄, ȳ) ∈ B′|[1,L].

B. The link with Theorem 2

We show how the application of the LTI Fundamental
Lemma on (33) derived in [12] result in a special case of
Theorem 2. Note that with the dependency (32), there is a
minimal kernel representation of (31), i.e.,

(R(q) � p)(k)w(k) = 0, R(q) = r0 +
∑n
i=1riq

i, (36)

with ri ∈ R(P)nr×nw and rank(R) = nr. Hence, for any
w̃ ∈ Bp̃|[1,L], with L ≥ n(B),(

r̄ � p̃
)
(1) · [HL(w̃)]•,1 = 0,

where r̄ =
[
r̄0 . . . r̄L−1

]
with r̄(ξ) =

∑L−1
i=0 r̄iξ

i and

r̄(ξ) ∈ Spanrow
R {R(ξ), ξR(ξ), . . . , ξL−nR(ξ)}.



Fig. 1. Results of the simulation problem. The blue coloured data
corresponds to the initial trajectory of length Tini in Lemma 2. The purple
coloured data corresponds to the predicted trajectory of length L, which is
obtained using Theorem 2.

Introduce the set of affine coefficients with static dependence
(as in (32)) as Raff(P), which is a subclass of R1(P). Let

Raff [ξ] := {R ∈ R[ξ] | R(ξ) =
∑n
i=0riξ

i, −→ri ∈ Raff(P)}

be the collection of kernel representations with coeffi-
cients having shifted affine dependence on p. Note that
if R is defined as in (36), where (ri � p) (k) = ri,0 +∑np

j=1 ri,jpj(k−i), with pj the jth element of the scheduling
vector, then

r̄(ξ)∈Spanrow
R {R(ξ), ξR(ξ), ···, ξL−nR(ξ)} 6={0}∈Raff [ξ],

and having also only affine shifted dependence. Furthermore,
this restricted span fulfils all the properties of the proof in
Theorem 2. Therefore, due to Assumption 1, the orthogonal
complement w.r.t. R of Spancol

R,p̃
(
HL(w̃)

)
of a PE sequence

w ∈ BW|[1,T ] of order L + nx can also be restricted to
Raff(P), without loss of generality. This means that

(r̄� p̃)(1) =
[
r̄0,0+

∑np

j=1r̄0,j p̃j(1) r̄1,0+
∑np

j=1r̄1,j p̃j(2) ··· ···
]
.

Hence, (r̄ � p̃)(1)HL,1(w̃) = 0 implies r̃HL
(

w̃
p̃⊗w̃

)
= 0,

with r̃ ∈ Rnr×(1+np)nw , containing all r̄i,j . Now, we can
repeat the whole derivation for r̃HL

(
w̃
p̃⊗w̃

)
= 0, using the

orthogonal complement property under R as a special case
of Theorem 2 (retrieving the original result in [1]).

C. Numerical example

We present a simulation example using the SISO LPV system
from [12] in the form (31)–(32) with na = nb = np = 2 and

A1 = [1 −0.5 −0.1], A2 = [0.5 −0.7 −0.1],

B1 = [0.5 −0.4 0.01], B2 = [0.2 −0.3 −0.2].

We use Lemma 2 to simulate the system for L = 30
steps, given an initial trajectory (ũ, p̃, ỹ) of length Tini, the
future input and scheduling trajectories (ū, p̄) of length L,
and a data-dictionary (u, p, y) of persistently exciting data.
The data-dictionary is generated using a random input and
scheduling trajectories of length 193, and is used to represent
the ‘unknown’ LPV system using Theorem 2. Note that
L(B) = 2, i.e., Tini = 2. We can now solve (35) for Hankel
matrices of depth Tini+L in order to obtain the output ȳ such
that (ũ, p̃, ỹ)∧ (ū, p̄, ȳ) ∈ B|[1,Tini+L]. The results in Fig. 1,
show that we can reproduce the output exactly for the full
horizon L, by only solving (35), which only contains data-
sequences from the unknown LPV system. See [19] for more
plots and an additional example.

VI. CONCLUSIONS AND FUTURE WORK

By establishing the LPV form of Willems’ Fundamental
Lemma, we have shown that a single sequence of data gener-
ated by an unknown LPV system is sufficient to characterise
its behaviour and describe its future responses. We have also
shown that in case the system can be represented by an
IO representation with simple shifted affine dependency, the
Fundamental Lemma results in a simple algebraic relation
that can be efficiently used for characterising the future
system response. We have illustrated the applicability of the
latter relation in a simulation example. Our result can be seen
as a stepping stone towards data-driven analysis and control
for general NL systems.
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