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Abstract: High aspect ratio aircraft built from lighter and therefore more flexible materials are
increasingly used in aviation. One of the challenges in designing a Fault Detection and Isolation
(FDI) system for a flexible aircraft is to obtain an appropriate flexible model of it as opposed to
rigid aircraft where modelling (or identification) is more traditional. Such a model is in general
more complex and its construction requires special expertise. This paper demonstrates that
fast and accurate FDI indeed necessitates the use of a flexible model but if the performance
criteria can be relaxed and the sensor configuration can be changed, a rigid aircraft model
can also be sufficient. Our case study revolves around an unmanned flexible aircraft built for
flutter experimentation. H,, synthesis is used to design filters that detect the fault of the
elevator actuator and the angle of attack sensor. Various sensor configurations and bandwidth
specifications are used to compare the performance of the rigid and the flexible model-based

designs.
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1. INTRODUCTION

The purpose of Fault Detection and Isolation (FDI) is
to develop tools with which faulty behaviour of onboard
equipment can be identified. Using sensor signals, flight
controller commands and possibly other data, an FDI
algorithm detects faults in the actuators and sensors, e.g.
stuck control surfaces or bias in the sensor measurement.
An FDI solution is often part of a safety system that is
capable of reconfiguring other components of the flight
control system to compensate for the detected failure as
described by Vanek et al. (2014).

A popular approach to FDI is to design optimal filters that
estimate the difference between the actual control surface
deflection and the control command, or the actual mea-
sured quantity and the sensor signal, calculating suitable
residuals. (See Chen and Patton (2012)). An optimal H
filter is designed by Marcos et al. (2005) to detect faults in
the elevator actuator and pitch rate sensor for the Boeing
747. To use optimal filter design for FDI, an appropriate
model of the aircraft is required. With the rise of flexible
airframes even in commercial aviation, models that include
flexible behaviour may be required for certain tasks. A
flexible aircraft model is generally difficult to obtain as
opposed to the classical rigid model which is usually the
result of identification. The flexible model also requires
more expertise to create, is generally more complex than
the rigid one and it is subject to more uncertainty due to
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the substantial increase in model parameters. To compare
the difficulties, see e.g. the construction of a flexible air-
craft model by Meddaikar et al. (2019) and the classical
rigid model by Beard and McLain (2012). This paper aims
to give guidelines on what FDI performance requirements
necessitate the use of a flexible aircraft model.

Our case study focuses on the unmanned aircraft of the
FLiPASED (2019) project built for flutter control exper-
imentation which was the subject of numerous papers,
e.g. by Venkataraman et al. (2019). The airframe is de-
picted in Fig. 1. We want to detect two faults in the
longitudinal motion of the aircraft: angle of attack sensor
and elevator actuator faults. (Note that the tail of the
aircraft is outfitted with ruddervators, therefore it would
be more precise to say that we want to detect a fault in
the ruddervators that affect the longitudinal motion of the
aircraft. We will continue to refer to the control surface as
elevator for simplicity.) The block diagram of the FDI filter
design problem is depicted in Fig. 2. We design optimal
FDI filters with different bandwidths using the rigid and
the flexible model of the aircraft. Then, utilizing a simple
decision mechanism, we calculate the smallest detectable
fault and the detection time for each fault and for each
filter. Based on these results, we make recommendations
on what sensor configuration and which model to use for
certain performance requirements.

The rest of the paper is structured as follows. In Section 2,
the flexible and the rigid model of the aircraft is outlined
along with the sensors and actuators. Section 3 describes
how the optimal FDI filters are designed. The details of
the performance evaluation of the filters (the calculation
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Fig. 1. The demonstrator aircraft built for the FLIPASED
project.

of the smallest detectable fault and detection time among
others) is given in Section 4. Section 5 compares the
achievable performance of the various filter designs and
gives recommendations on when to use a flexible aircraft
model. Finally, our findings are summarised in Section 6.

2. THE FLEXIBLE AND RIGID AIRCRAFT MODEL

The flexible aircraft, illustrated in Fig. 1, was built for
flutter experimentation for the FLEXOP (2015) and sub-
sequently for the FLIPASED (2019) H2020 projects. It is a
single-engine aircraft, featuring a wing span of 7m, aspect
ratio of 20, and takeoff weight between 55 and 65kg. The
sensor and actuator configuration is illustrated in Fig. 3.
Two models of this aircraft are used for filter design in this
paper: a low order rigid body and a higher order flexible
model. Both are linear longitudinal models obtained in
straight and level flight (at 38m/s). A detailed description
is given by Takarics and Vanek (2019) and Meddaikar et al.
(2019).

The outputs are the sensor signals that consist of the angle
of attack (), pitch angle (©), pitch rate (¢q), speed (V),
vertical acceleration in the centre of gravity (a,.), and
the mean of the acceleration and angular rate signals from
the IMU’s located close to the wing tips (a,w = (a, L +
a:r)/2, ¢w = (qu + qr)/2, the 'w’ stands for 'wing’). The
sensors are modelled as first order low pass filters of the
form
1

—- (1)
m—l-l

where 6 is the bandwidth. Additive white noise is assumed
on the sensor outputs. Based on the documentation of the
sensors and experimental data, the standard deviations of
the sensor noises along with the bandwidths are listed in
Table 1.

C"Ysens (5) -

The thrust command for the engine is denoted by uyy,. The
tail control surfaces are ruddervators with the commands
Ury, L1, Ury, 125 Urv,R1, a0d Upy r1 in Fig. 3. These are used
symmetrically, i.e. Ury 1.1 = Upy 12 a0d Ury R1 = Ury,R2- The
elevator command considered in this paper is obtained by
Uyrv, L1 + Urv,R1 Uyv, L2 + Uyrv,R2

U = 5 = 5 . (2)
Thus, the input of the system is the control command u. =
[te uth]T. Based on experiments, the engine dynamics can
be approximated by

Gact,th(s) -

1
8s+1°

3)

The actuator dynamics for the elevator (for the rudderva-
tors) is
1817

Gacre(8) = 51035 1 1817 )
Since the ruddervators are transformed to a single elevator,
only one actuator is included in the model. The input of
the aerodynamics consists of the control surface deflection,
its derivative and second derivative, hence the derivatives
of the output of Gacy e (s) are also connected to the system.

The state of the system consist of the velocity components
along the longitudinal and vertical axis of the body frame
(u and w respectively), pitch angle (©), pitch rate (q), five
modal coordinates and their derivatives, two lag states,
and three actuator states. The frequency of the short
period mode and the first bending mode of the structural
dynamics have special significance in the final analysis (in
Section 5). These are wgp, = 9rad/s and wp, = 18 rad/s,
respectively.

The rigid aircraft model is obtained by residualising the
flexible states (modal coordinates, their derivatives, and
the lag states). In practice, a rigid model is usually the re-
sult of parameter identification of a standard rigid model.
Our approach aims to avoid any differences between the
two models that do not arise from flexibility.

3. FAULT DETECTION FILTER DESIGN

The FDI filter design is articulated as an H.,, optimal
synthesis problem similarly to the solution of Marcos
et al. (2005). The generalised plant interconnection is

depicted in Fig. 4. Here, f = [fa fs]T is the fault which
is modelled as an additive disturbance on the elevator
actuator command and the angle of attack measurement.
The output of the FDI filter F'(s) is called the residual. It
is the estimate of the fault signal hence it is denoted by

f = [ fa fs]T. The control command u. is normally the
output of the flight controller but since no controller is

considered in the design process, it is treated as a known
external disturbance.

The desired response of the residual signals to the faults
is defined as

1
Tdes(s) = s + 1127 (5)

where I5 is a 2 x 2 identity matrix. The time constant x is a
design parameter that sets the required bandwidth (hence
the speed of the response). Noise cancellation is required
on the frequency range beyond the bandwidth of Tyes(s).
This is captured by the noise weighting function

10v26s + 1

2K
0 5 T 1

where R is a diagonal matrix with the standard deviations
of the individual noise signals in the diagonal. The weight
of the estimation error is also chosen to correspond to the
bandwidth of Tyes(s). It is defined as

0.0lks +1
— 5. 7
ks +1 2 ( )

The weight of the input multiplicative uncertainty is
(s +24.71) (32 + 12195+ 2 - 104)
(s +64.24) (s2 + 138.25 + 2.6 - 164)°

Wa(s) = R (6)

We(s) =

Wu(s) =

(8)
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Fig. 2. Block diagram of the joint actuator and sensor fault detection problem.
Table 1. Sensor bandwidth and standard deviation of the measurement noise.
| @ | g | O | v | a | dew | 4w
type MTI-G-710 xSense micro Air Data System 2.0 MPU-9250
bandwidth (6) 200 Hz 50 Hz 200 Hz
std. dev. of the noise || 0.08m/s? [ 0.3°/s | 0.6°/s 0.33m/s | 0.33°/s 0.72m/s? | 5.4°/s
90% of the P(A, s) = Fu(M(s), A(s)) - (13)
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Fig. 3. Control surface configuration and sensor positions
of the flexible aircraft. The control inputs and sen-
sor signals are marked at the corresponding control

surfaces and sensors.

This is chosen so that the uncertain plant
Gplant (3) (IQ + Wu(S) A(S)) (9)

has 30% uncertainty on low frequencies, 50% at the ele-
vator actuator bandwidth, and 100% at high frequencies.
Notice that Wy (s) does not depend on & since it describes
the accuracy of the model regardless of the bandwidth
requirement. These weighting functions for k = 1s are
compared in Fig. 5.

Denote the interconnected system depicted in Fig. 4 with
F(s) and A(s) cut out by

wA
ZA f
y‘fn = M(s) Zﬁ (10)
Ue f

To connect A(s) and F'(s), let us define the Linear Frac-
tional Transformations (LFTs). For any two complex ma-

{Xﬂ Xu] and Y, the

tri d i t X
rix (or dynamic system) X1 Xon

upper LFT exists if X7 has the same size as Y7 and it is
defined as

Fu(X,Y) =XV (I - X11Y) ™" X1 + Xoo.
Similarly, if X5, has the same size as Y7, then

FL(X,Y) = X12Y (I — X22V) ' Xo1 + Xu1.
The uncertain generalised plant is then

(11)

(12)

The objective of the design is to find a filter F'(s) such
that the Ho, norm of Fr(P(A, s), F(s)) is minimal for all
possible uncertainties, i.e the optimisation problem is

IFL(P(A, s), F(s))

min max

F(s) [[A(s)|| oo <1

Since P(A, s) is robustly stable (stable for all admissible
A(s)), this is equivalent to

gg)l | FL(M(s), F(s))

(14)

oo - (15)
This optimization is solved using the standard H., syn-
thesis tool implemented in the hinfsyn function of MAT-
LAB. For details about the robust design technique, see
Skogestad and Postlethwaite (2007).

4. EVALUATION OF THE FAULT DETECTION
PERFORMANCE

For the evaluation of the FDI filter, the weighting func-
tions and performance output channels are removed from
the generalized plant in Fig. 4. Hence, we consider the
interconnection in Fig. 6. Here, F(s) is the filter designed
by the process described in Section 3. Let us denote the
system in Fig. 6 by

For simplicity, we only describe the tools we use to
evaluate the performance of the actuator fault detection.
The calculations employed for the sensor fault detection
evaluation are identical. The theoretical background of
the computations involved in this section is described by
Skogestad and Postlethwaite (2007).

!
Uc
n

f

T(A, s) (16)

The effect of the control command on the residual is
measured by the worst-case gain of T(A, s) from the input
U to the output f,. Denote this gain by

(A, 8) Al (17)

o

Ua

= TA
A <1 H facue

where A, = diag(15°, 0.2) is a scaling matrix that rep-
resents the maximum control input. We use the approx-
imation that if there is no noise and fault in the system
(i.,e. n =0 and f = 0), then the residual produced by the
control command alone is at most ¥, (i.e. fo < ¢,) for
all admissible values of the uncertainty A(s). Note that
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Fig. 4. Generalized plant interconnection for the H,, FDI filter design
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Fig. 5. Weighting functions used for the H., synthesis. The
value of the design parameter is kK = 1s. (Since the
standard deviations of the noise channels are different,
Wi (s) is represented by multiple lines.)

Fig. 6. Interconnection of the uncertain aircraft model and
the H,, FDI filter design used in the performance
evaluation.

strictly speaking, instead of the H,, norm, the induced
Lo, should be used. However, the induced L., norm is
difficult to compute in the presence of uncertainty. Also,
these two norms bound each other up to a constant factor,
therefore trends we want to observe are not influenced by
the choice of the norm.

The effect of the noise on the residual is captured by the
standard deviation of f, due to the noise. This is calculated
as the Hs norm of T(A, s) from n to fa, i.e.

jTAaM(o, s)RHz.

o= (18)
Recall that R is a diagonal matrix with the standard
deviations of the noise signals on the diagonal. We use
A(s) = 0 to indicate that the value of A(s) is arbitrary in
this computation since our model assumes no uncertainty
in the system in the channels from the noise to the residual.

The above quantities are used to define the detection time
and the smallest robustly detectable fault. We use a simple
threshold decision logic to decide whether a fault actu-
ally occurred. In the practical implementation of an FDI
system, an integration-based or an up-down counter-based
decision logic is usually used as described by Ossmann and
Pusch (2019), and Wheeler (2011) respectively. Our simple
threshold logic approximates the behavior of those more

fa when
n=20

0 !
0 Ta

time [s]

Fig. 7. Definition of the detection time and smallest
detectable fault.

complex solutions. The decision threshold is the maximum
residual caused by the control input plus one standard
deviation of the residual signal, i.e. ¥, + 4.

If the residual is ¥, + 1.30, in steady-state and without
noise, then the probability that f, > ¥, + o, in the
presence of noise is 90%. Therefore, we call the fault corre-
sponding to this residual the smallest robustly detectable
fault. It is denoted by ¢, and is defined by the equation
Tfa<—fa(0’ 0) pa = Vo + 1.30,. (19)
Note that similarly to the noise, there is no uncertainty
in the channels form f to f. Therefore, the uncertainty
sample A(s) = 0 is used again in the computations.
In accordance with the definition of ¢,, the detection
time 7, is defined as the time when the step response
of T; (0, s) ¢, crosses the threshold ¥, + o,. These

fasfa ‘ -
quantities are illustrated in Fig. 7.

To contrast the results with frequency domain data, we
also define the bandwidth of the FDI filter F'(s). We define
the bandwidth as the frequency above which the singular
value of the filter to the f, output channel is less than
—6dB. Le. B, is the bandwidth of F; (s) if o(F}, (jw)) <
—6 dB for w > B,. This deﬁni:cion means that almost
all of the frequency content of f, is concentrated in the
frequency interval [0, B,].

Finally, we demonstrate these analysis metrics by evaluat-
ing the filter design for K = 0.5s and k£ = 0.2s. For this
filter design, we use the measurements «, ©, ¢, V, and
azc. (A detailed evaluation for multiple values of x and
different sensor configurations is presented in Section 5.)

When x = 0.5s, the resulting filter bandwidths are B, =
3.11rad/s and By = 3.41rad/s. At these frequencies, the
model uncertainty is still low, therefore design conditions
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can be met. The effect of the control input to the residuals
is ¥, = 4.08° and ¥ = 0.06°. Since f, acts on the input
of the system and the input dynamics are uncertain, ¥, is
much greater than 5. The noise on the other hand affects
the estimation of fs more. This is reflected by the values
0, = 2.62° and o5 = 4.35°. The smallest detectable faults
and detection times are ¢, = 8.16°, ¢5 = 5.67°, 7, = 1.165,
and 7, = 0.78s. According to both performance measures,
the sensor fault detection problem proves easier to solve.
If we conduct this analysis using the filter designed for the
rigid model, we get ¢, = 8.21°, ¢s = 5.90°, 7, = 1.17s,
and 75 = 0.81s. These values are very close to the previous
ones therefore we can conclude that if this performance is
satisfactory to our goals, it is sufficient to carry out the
filter design using the rigid model.

If Kk = 0.2 s however, the difference is greater for the
actuator fault estimation. In this case, the bandwidths
are higher: B, = 7.96 rad/s and Bs; = 8.54 rad/s. This
causes the detection time to decrease to 7, = 0.41s and
7s = 0.31s. This is achieved at the cost of lower sensitivity
to the faults which is expressed by the increase in the
smallest detectable faults: ¢, = 11.16° and ¢5 = 7.08°.
When the filter is designed for the rigid model, these values
become 7, = 0.558, 75 = 0.32s, ¢, = 13.57° @5 = 7.59°.
At this bandwidth, the rigid and flexible models are more
different than in the previous case (for x = 0.5s) therefore
the difference between the performance measures are more
pronounced. The degradation is especially significant for
the actuator fault estimation.

5. COMPARISON OF THE RIGID AND FLEXIBLE
MODEL BASED DESIGNS

In this section, we compare the FDI filters designed for
the rigid and flexible aircraft models. The performance
metrics we consider are the detection time, smallest de-
tectable fault and filter bandwidth as defined in Section 4.
In order to study the usefulness of acceleration measure-
ments (and gy ), three sensor configurations are compared:

no acc.: «, 09,q,V

acc.: a,0,q,V,a,.

acc. +w: qa, @7 q, Va Azcy Gz ws Qw-
Our calculations revealed that the accelerometers placed
close to the wing tips do not improve FDI performance
since there is no difference in performance between the
configurations labelled ’acc.” and ’acc. +w’. Hence, we only
compare configuration 'no acc.” and ’acc.” in the rest of this
section. Figs. 8-13 present the data that are the basis of
the comparison. Each figure has graphs that corresponds
to the flexible and rigid model-based designs (flex. and
rigid) and to sensor configuration 'no acc.” and ’acc’.

Fig. 8 presents the trade-off between the smallest de-
tectable fault and the detection time for the actuator fault
detection. If accelerometer measurements are used, the
performance of the filters designed for the rigid and flexible
models are very similar for 7, > 0.8s. If we aim to achieve
lower detection time than 0.8 s, then a flexible model is
clearly required, since the performance curves diverge in
this domain. In terms of filter bandwidth, this divergence
in observable above half of the frequency of the shot period
mode (wsp/2) in Figs. 9 and 10.

Without accelerometer measurements, the achievable per-
formance is strictly worst but it is not affected by the
choice of design model so heavily. There is noticeable

25 T ’ ‘ﬂ
20 - ——acc., nex.

' ----acc., rigid
----mo acc., flex. -
no acc., rigid

15

¢a [°]

10|

~~~~~
i
,,,,,,,
‘‘‘‘‘‘‘‘

8

| | |
%.1 0.8 4 10
Ta [5]

Fig. 8. Trade-off between the smallest detectable fault and
the detection time for the actuator fault detection.

7 | ‘ T o _
25 ——acc., flex. /'
20 -~ acc., rigid p ]
5 15 hoacc, flex. o |
< no acc., rigid 0 2
< >
2l " 2% |
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| | ‘ | | |
1 2 3 weyp/2 b 1408 )
B, [rad/s]

Fig. 9. Comparison of the smallest detectable actuator

faults as a function of filter bandwidth.

- 0.8 X ’ i
e ——acc., flex.  TRIo----7
E . .
0.3 -----acc., rigid
----no acc., flex.
0.1 no acc., rigid
: : ‘ \ L
1 2 3 wsp/2 Wsp 14 Wib 40
B, [rad/s]

Fig. 10. Comparison of the detection times of the actuator
fault detection as a function of filter bandwidth.

difference between the two 'no acc.” curves in Fig. 8 but
the difference is less pronounced. As demonstrated by
Fig. 9, there is only a couple of degrees difference between
the smallest detectable fault in the two cases. However,
this difference persists on the entire bandwidth range of
interest. On the other hand, the detection times are very
close as illustrated in Fig. 10. The ¢, and 7, values are only
plotted up to around 14 rad/s (close to ws,) because fur-
ther improvement in the performance requires more than
60rad/s filter bandwidth. (The corresponding data points
are still shown in Fig. 8, however.) This discontinuity
occurs, because the lack of a, . measurement hides the high
frequency behaviour of the aircraft which results in a local
peak in the filter gain that tends towards high frequencies.
This local peak becomes prominent (greater than —6 dB)
at around 60 rad/s, causing the filter bandwidth to jump
above 60rad/s.

The angle of attack sensor fault estimation is not affected
as much by the model uncertainty and flexibility as the
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Fig. 11. Trade-off between the smallest detectable fault
and the detection time for the sensor fault detection.

11F T T T T T 5
9 [
OT, Tr —— acc., flex.
< .
----acc., rigid
5 ----no acc., flex. |
no acc., rigid
4.2 \ \ \ \ L o
1 2 3 weyp/2 Wsp 14 Wib 40
B [rad/s]

Fig. 12. Comparison of the smallest detectable sensor
faults as a function of filter bandwidth.

3

— a‘ucc.l flex.
----acc., rigid
----n0 acc., flex.
no acc., rigid

Ts [S]

0.3

| |
3 wep/2 W

B [rad/s]

14 wib 40

Fig. 13. Comparison of the detection times of the sensor
fault detection as a function of filter bandwidth.

elevator actuator fault. Hence, faster and more precise
fault detection is attainable overall. For low filter band-
widths (high detection times), the ¢ and 74 values are
very close for all four options in Figs 11-13. Similarly to
the elevator fault detection, the difference between flexible
and rigid model-based designs only show if we aim for
low detection times. The difference however, is small (less
than one degree) for the domain of our analysis. The
worst performance clearly corresponds to the case when no
acceleration measurement is used and the filter is designed
for the rigid model. But since the performance measures
track close to each other for all four cases, we conclude
that the performance of the angle of attack sensor fault
detection is not impacted greatly by the choice of design
model or sensor configuration.

6. CONCLUSIONS

Using a specific case study, guidelines are established on
when a flexible model is required for FDI filter design

for a flexible aircraft. It is concluded that only minor
performance improvement is attainable for the angle of
attack sensor FDI with the involvement of the flexible
model. In contrast, the elevator FDI is greatly impacted
by the choice of sensor configuration and design model. If
good performance is expected at high frequencies (beyond
the frequency of the first bending mode), then both
acceleration measurement at the center of gravity and the
flexible model are required. Still using the acceleration
measurement, good performance is achieved using the rigid
model up to half of the frequency of the short period
mode. At the cost of some loss in accuracy, a design
based on the rigid model is capable of providing acceptable
performance up the frequency of the first bending mode if
the acceleration measurement is not used.
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