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In the last decade, Light Detection and Ranging (LIDAR) became a leading technology of detailed and 
reliable 3D environment perception. This paper gives an overview of the wide applicability of LIDAR 
sensors from the perspective of signal processing for autonomous driving, including dynamic and static 
scene analysis, mapping, situation awareness which functions significantly point beyond the role of a 
safe obstacle detector, which was the sole typical function for LIDARs in the pioneer years of driver-less 
vehicles. The paper focuses on a wide range of LIDAR data analysis applications of the last decade, and 
in addition to the presentation of a state-of-the-art survey, the article also summarizes some issues and 
expected directions of the development in this field, and the future perspectives of LIDAR systems and 
intelligent LIDAR based information processing.
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1. Introduction

This paper gives an overview of the rich applicability of LIDAR 
sensors from the perspective of signal processing for autonomous 
driving, including dynamic and static scene analysis. We focus on a 
wide range of LIDAR data analysis applications, giving a first hand 
experience about the state-of-the-art and the challenges of a new 
depth mapping device category.

1.1. Motivation and significance

In recent decades, remarkable progress has been made in sen-
sor development for environment analysis, which greatly influ-
ences the scientific progress in the fields of object detection and 
classification, scene segmentation, and understanding. Light Detec-
tion and Ranging (LIDAR) sensors became one of the most widely 
used sensing technologies in various applications of geo-data anal-
ysis, including perception, mapping and localization.

LIDAR is an active remote sensing technology that uses elec-
tromagnetic waves in the optical range to detect an object (target), 
determines the distance between the target and the sensor (range), 
and measures further physical properties of the target surface such 
as scattering and reflection [1]. The sensor calculates the distance 
of the target objects from the echo time of the emitted and the de-
tected laser beam where the beam spreads with the speed of light. 
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The result of the measurement is a highly accurate 3D point cloud 
where the coordinates of the points are given in a local or global 
coordinate system depending on the type of the LIDAR system and 
the application area.

LIDAR scanners can be mounted either to static terrestrial sta-
tions or to ground based and aerial moving vehicles. By using 
terrestrial LIDAR sensors, high density point clouds and notably 
accurate and largely detailed 3D models can be created, which 
properties are required in architectural and engineering applica-
tions. Mobile laser scanning (MLS) allows quick surveys of the road 
network and environment, furthermore, it can contribute to the lo-
calization and control of mobile robots and autonomous vehicles.

This paper addresses the main aspects of the broad applica-
tion area of mobile LIDAR sensors in autonomous driving related 
fields. LIDARs have special roles in autonomous driving and trans-
portation and special vehicle based intelligent control systems, as 
they are used parallel to the camera systems. Novel high-resolution 
pieces can be built in the car’s body, and they give an important 
accessory to the on-board safety. Although LIDARs are currently the 
most expensive pieces of the on-board sensor systems, the prices 
are going down quickly, while the application areas are rapidly ex-
panded. The authors, working in the Machine Perception Research 
Laboratory of SZTAKI, Hungary, have focused on a wide range of LI-
DAR data analysis applications for several years, thus in addition to 
the presentation of a state-of-the-art survey, this article also sum-
marizes their first hand experiences in the field.

Today the LIDAR itself is still most frequently considered as the 
sensor of safety, since its usage is mainly limited to reliable free 
le under the CC BY-NC-ND license 

https://doi.org/10.1016/j.dsp.2021.103193
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dsp.2021.103193&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sziranyi.tamas@sztaki.hu
https://doi.org/10.1016/j.dsp.2021.103193
http://creativecommons.org/licenses/by-nc-nd/4.0/


C. Benedek, A. Majdik, B. Nagy, Z. Rozsa and T. Sziranyi Digital Signal Processing 119 (2021) 103193
Fig. 1. Data sample of a Velodyne HDL-64 RMB Lidar.

space verification. However, as we will demonstrate in this study, 
the potential of this technology goes far beyond simple obstacle 
detection, since the development of LIDAR technology in terms of 
temporal and spatial resolution and noise elimination led us to 
more sophisticated 3D measurements for various real-time percep-
tion, navigation and mapping problems.

Next, we introduce the reader to the latest exciting results and 
their background in real-life LIDAR applications.

1.2. Outline of the paper

First, we show the diversity of laser scanner devices to get a 
point cloud of the 3D environment. Next, we present an overview 
of a wide range of LIDAR-based application modules built on each 
other, which implement various functions, including object percep-
tion, classification, mapping and localization. We also discuss the 
opportunities in challenging situations such as extreme weather 
conditions or the availability of low-range one-beam (plane) sen-
sors only. Finally, we show the on-the-fly calibration of the LIDAR 
and camera system.

2. LIDAR sensors and resources

2.1. LIDAR sensor types

LIDAR equipments give us a versatile application and op-
erational richness: static/mobile, 360◦/wide angle/narrow scan, 
equidistant scanning resolution/special beam-patterns, single echo/
multiple echos. We will see that LIDARS can be used in any area 
of imaging the world.

Rotating Multi-beam (RMB) Lidar systems provide a 360◦ field 
of view of the scene, with a vertical resolution equal to the num-
ber of the sensors, while the horizontal angle resolution depends 
on the speed of rotation. Although RMB Lidars can produce high 
frame-rate point cloud videos enabling dynamic event analysis in 
the 3D space, the measurements have a low spatial density, which 
quickly decreases as a function of the distance from the sensor, and 
the point clouds may exhibit particular patterns typical to sensor 
characteristic (see Fig. 1). In special cases, only one or a few beams 
are available.

Mobile laser scanning (MLS) platforms equipped with time syn-
chronized Lidar sensors and navigation units can rapidly provide 
very dense and accurate static point clouds from large environ-
ments, where the 3D spatial measurements are accurately regis-
tered to a geo-referenced global coordinate system (Fig. 2). These 
point clouds may act as a basis for detailed and up-to-date 3D 
2

Fig. 2. Data of a Riegl VMX-450 Mobile Laser Scanning (MLS) system.

High Definition (HD) maps of the cities, which can be utilized by 
self-driving vehicles for navigation.

Another recently emerging new technology is the Doppler-
LIDAR (First mention is [2] for wind measurements): e.g., Black-
more1 has just introduced a LIDAR for autonomous driving with 
velocity or rotation speed data output. Very recent models, such 
as the Livox sensors, use advanced non-repetitive scanning pat-
terns to deliver highly-accurate details. These scanning patterns 
even provide relatively high point density in a short period of time, 
which can build up a higher density as the duration increases. The 
actually available models can achieve the same or greater point 
density as conventional 32-line RMB LIDAR sensors.

2.2. LIDAR resources

Numerous autonomous driving datasets have been released in 
the recent years with LIDAR data. The most important ones are 
listed in Table 1 with their purpose. As we can observe, for typical 
benchmark problems, such as object detection, tracking or Simulta-
neous Localization and Mapping (SLAM), one can choose between 
various public resources, corresponding to different sensor charac-
teristic and scenario types. A main challenge in the future, how-
ever, will be the timely completion of the available benchmark 
datasets with reliable measurement and ground truth information, 
following the appearance of newer and newer LIDAR sensors tech-
nologies.

3. LIDAR based object perception

Object perception and recognition is a central objective in LI-
DAR based 3D point cloud processing. Though several 3D object 
detection and classification approaches can be found in the litera-
ture, due to the large differences in data characteristics obtained 
by different LIDAR sensors, object perception methods are still 
strongly sensor dependent making very challenging to adopt them 
between different types of LIDAR data.

Since LIDAR sensors provide very accurate 3D geometric infor-
mation, the localization and shape recognition of the objects can 
be more intuitively compared to 2D image processing. However, 
beyond the different sensor data characteristics, several challenges 
occur in automatic LIDAR-based object detection and classifica-
tion, such as the sparsity of the data, variable point density, non-
uniform sampling and in addition, in cluttered scenes objects often 

1 https://blackmoreinc .com.

https://blackmoreinc.com
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Table 1
LIDAR datasets with different purposes.

Name of the dataset Lane detection Object detection/tracking Segmentation Localization and mapping

Standford Track [3] X
Ford [4] X
KITTI [5] X X X X
Málaga urban [6] X
Oxford RobotCar [7] X
Apolloscape [8] X X X X
KAIST Urban dataset [9] X
KAIST Multispectral [10] X
Multivehicle Stereo Event [11] X
UTBM RoboCar [12] X
Unsupervised Llamas (Bosch) [13] X
PandaSet* X X
BLVD [14] X
H3D (Honda) [15] X
Lyft level 5 [16] X
NuScenes [17] X X
Waymo Open [18] X
Argoverse [19] X X
SZTAKI-Velo64Road [20] X
SZTAKI CityMLS [21] X X

* https://scale .com /open -datasets /pandaset
occlude each other causing partially extracted object blobs in the 
measurements.

Based on the object perception literature, we can define two 
main groups: traditional geometry based methods and deep learn-
ing based approaches. To handle the expensive calculations be-
tween huge amount of 3D points geometry based methods usually 
adopt some space partitioning techniques such as Kd-tree, Octree 
[22,23] or 3D voxel [24] and 2D grid based methods [25]. Some 
approaches apply different region growing techniques over tree-
based structures to obtain coherent objects. The authors of [26]
present an Octree based occupancy grid representation to model 
the dynamic environment surrounding the vehicle and to detect 
moving objects based on inconsistencies between scans.

In general, building and maintaining a tree-based structure is 
expensive, so usually, some kind of 3D voxel or 2D grid approaches 
are applied for streaming data. In [25] the authors propose a fast 
segmentation of point clouds into objects, which is accomplished 
by a standard connected component algorithm in a 2D occupancy 
grid, and object classification is done on the raw point cloud seg-
ments with 3D shape descriptors and a SVM classifier. Different 
voxel grid structures are also widely used to complete various 
scene understanding tasks, including segmentation, detection and 
recognition [24]. The data is stored here in cubic voxels for efficient 
retrieval of the 3D points. Among geometry based 2D grid ap-
proaches [20] implements a pipeline of a geometry based ground 
separation step, a two-layer grid structure based an efficient object 
extraction, and a deep learning based object classification which 
represents the extracted objects in the range image domain.

Other recent techniques focus on deep learning based object 
detection and classification in 3D point clouds. VoxelNet [28] is 
able to predict accurate bounding boxes utilizing discriminative 
feature learning. PointPillars [27] (Fig. 3) is a state-of-the-art real-
time object detection method, which can predict object-candidates 
from multiple classes, together with their 3D oriented bounding 
boxes and class confidence values.

4. The limits of usage: low-resolution LIDAR perception and 
extreme circumstances

The previous section (Sect. 3) shows that Lidar pattern evalua-
tion can result in semantic interpretation; now we see that a very 
limited (diluted) information of LIDAR scans can also be used for 
accurate perception. In this section, limitations of LIDAR sensors, 
resulted challenges, and current solutions are discussed. Besides 
3

Fig. 3. LIDAR Object detection results with deep learning based PointPillars approach 
[27]. Red boxes show detected vehicles, blue boxes pedestrians. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this arti-
cle.)

the developing high-end 3D LIDAR sensors, it is also worth inves-
tigating the capability of sensors of lower or extremely low resolu-
tion (equipped with a few or even only one laser channel) because 
of cost-efficiency and increasing robustness. As one of the main ef-
fects of extreme circumstances (e.g., harsh weather) is information 
loss; and installing more than one planar or a few-layer LIDARs in 
task-based optimized positions [29] may result in a better alterna-
tive (in some point of view) than using one with high-resolution. 
The limited information content of scanners with low vertical reso-
lution makes a high-level semantic interpretation of the data more 
challenging and makes the easier real-time running of the algo-
rithms. Naturally, machine vision in this subfield has gone through 
rapid development in recent years as well.

4.1. Vision with LIDARs of extremely low resolutions

2D range scanners and their applications have a relatively long 
history in robotics [30]. Automated Guided Vehicles (AGVs) have 
been using these sensors for decades for safety and navigation 
purposes. Today, there are products available in the market with 
extremely high horizontal angular resolution, high scanning fre-
quency, and safety guarantee of the manufacturer. Also, fully devel-

https://scale.com/open-datasets/pandaset
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Fig. 4. Examples of planar LIDAR sensor and point cloud acquired by a planar LIDAR.

oped, real-time scan matching and Simultaneous Localization and 
Mapping algorithms [31] available in industrial and market prod-
ucts based on only 2D laser scanner data; making localization and 
mapping one of their primary application area.

Besides navigation, we would like to extract as much informa-
tion from the available data as possible about the environment. 
The point cloud processing algorithms can directly utilize point 
clouds of these 2D scanners. So there are various solutions for ob-
ject detection and recognition from this type of data. One can use 
handcrafted general [32], data specific features [33], image descrip-
tors [34] or neural networks [35]. Applying LIDARs with (still very) 
narrow vertical field of view [36] makes the information content 
richer and semantic interpretation easier.

We can distinguish two different reasons that result in dealing 
with low (vertical) resolution LIDAR point clouds. The first case is 
when the hardware limits the resolution (LIDAR layers) because 
we measure with a planar LIDAR or one with 4-8 layers. The sec-
ond case when our LIDAR has a sufficient number of layers (16 
and above), but its usage scenario limits the acquired point cloud’s 
vertical resolution. A typical example of this kind of scenario is a 
highway. We would like to look far (because of the high speed and 
straight road sections), but distant objects will occupy only a very 
few layers of our LIDAR (with high vertical resolution) measure-
ment. We will show what kind of solutions have been developed 
to these two particular cases of low-resolution LIDAR perception 
recently.

4.1.1. Hardware limited low-resolution perception
As mentioned earlier, planar and narrow vertical field LIDARs 

(a 2D LIDAR sensor and frame acquired by it in tilted position is 
illustrated in Fig. 42) are frequently used in logistic transportation 
systems (on AGVs), not just for navigation but for specific purposes 
(e.g., overhang detection, see Fig. 5). The sensors with specific po-
sitions, the speed of the transport vehicle (about 1 m/s), and the 
presence of positioning sensor [37] in the vehicle (for navigation 
purpose) are making adequate to use the 2D sensor data in a 3D 
reconstruction. This will result in a very special partial point cloud 
data, incrementally giving more and more information about ob-
jects. We proposed a solution to deal with this specific kind of 
LIDAR data in [38].

The proposed method’s main idea to deal with partial clouds 
to compare statistics of local structures. The steps of it are sum-
marized below: First, local surface definition around each point is 
needed. We measure the saliency of the point by 3D Harris [39]
operator. Next, to determine a repeatable number of keypoints, a 
local scale is assigned to significant points, and a local surface de-
scriptor characterizes keypoints. After it, we define local patterns 
as graphs of keypoints. In the last step, the frequency of local pat-
terns is compared.

2 https://www.sick.com.
4

Fig. 5. Tilted sensor installation for overhang detection. Photo source: SICK - Efficient 
solutions for material transport vehicles in factory and logistics automation.

Besides our measurements, we used an MLS database for real-
life testing. (These types of point clouds are acquired similarly as 
described above.) In this database, we measured 73.3% classifica-
tion accuracy for 5 classes when only about 20% of the 3D object 
was visible, and 80.0% accuracy for 30% visibility which results in 
a usable and safe incremental prediction for early decisions. For 
more details, see [38].

4.1.2. Scenario limited low resolution perception
It follows from the LIDAR measurement principle that the den-

sity of the acquired point cloud decreases with distance from 
the sensor. Resulting in the phenomenon of measuring a high-
resolution sensor but distant objects are not observable in suffi-
cient resolution. In the case of a sensor with a lower number of 
channels, it happens in the near-field too. (The case when we per-
ceive an object only in one layer is also not rare.)

In this type of object, local surface information is not ex-
tractable, so we cannot expect methods based on that, designed 
for 2.5D point clouds, to work. To solve this problem, we relied 
on methods designed for 2D point clouds and extended them to 
utilize all the information available [40]; we proposed a method 
to classify objects with this point cloud characteristic constructed 
from the steps below: First, generating a shape descriptor for 
object segments using low-frequency components to be robust 
against angular resolution drop; Then, we extract statistical mea-
sures of geometries coding the 3D location of the (approximately) 
2D curve. After it, we group tracklets (tracks up to 5 frames) of 
segments (if there are any available). The next step is classifying 
of segments (or tracklets of segments) with CNN (Convolutional 
Neural Network). Finally, an object-level decision is made with 
maximum likelihood aggregation of segment class probabilities (if 
more than one segment is available from an object).

With the proposed method, we reached 96,6% classification ac-
curacy (and even better if we could perceive and track and object 
segment more than one frame) for 6 categories on such point 
clouds of the KITTI [5] database where objects were present at 
maximum 4 LIDAR layers (with 41 m average distance to the 
sensor). These point clouds cannot be handled with conventional 
methods (and so ignored in most cases). Illustration of object clas-
sification with the proposed method of a typical scenario (highway 
observed with relatively narrow vertical field LIDAR) is shown in 
Fig. 6. For further details and experimental proof see [40].

https://www.sick.com
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Fig. 6. Classification of objects observed at max 4 layers. Colormap: Red - vehicle, 
Blue - guard rail, Green - ground.

4.2. Robustness in harsh weather conditions

Harsh weather conditions call for challenging problems: LIDARs 
have decreased performance in snow/rain or fog. This kind of lim-
itation has to be addressed by semantic-based methods or physi-
cally modeled filters.

Recent researches target hardware [41] and software [42] de-
velopments to eliminate this effect. To avoid the problem above, 
alternative devices can be used, noisy measurement has to be fil-
tered [43] and incomplete data has to be completed. Researchers 
have just started developing the first stages of the solution, rec-
ognizing the given weather conditions [44], and examining the 
influence of different ones [45]. To support that, pursuit datasets 
in adverse weather have been released latterly [46].

5. LIDAR based localization and mapping

The capability of recognizing patterns in LIDAR point clouds 
led to high precision odometry techniques in SLAM and similar 
methods. Next, we will briefly summarize the state-of-the-art algo-
rithms and current trends in LIDAR-based ego-motion estimation, 
3D mapping, and localization.

5.1. Visual-odometry using LIDARs

Recently, several visual-odometry algorithms were proposed to 
compute the motion of a vehicle in real time using only the con-
tinuously streaming data gathered by the LIDAR sensor. Creating 
thus LIDAR-only odometry methods eliminates the need for any 
other supplementary sensor, e.g., Inertial Measurement Unit (IMU), 
wheel encoder, and satellite based Global Positioning System (GPS). 
One of the best performing algorithms in terms of translational 
and rotational errors on the KITTI [47] dataset is the LOAM [47]
algorithm, which estimates the six DoF (Degree of Freedom) dis-
placement of the vehicle on short trajectories with very low drift 
in scenes of high-density feature points and available reference 
ground planes. The algorithm can process the measurements ro-
bustly for different LIDAR sensors with varying point cloud densi-
ties. However, in the case of long trajectories and since the drift is 
continuously accumulated, a significant error could build up in the 
position estimation.
5

5.2. Simultaneous localization and mapping with LIDARs

In order to correct the accumulated error in the odometry 
backend, loop-closure situations can be detected by place recogni-
tion algorithms whenever the vehicle returns to previously visited 
places in the navigation area. In the case of Simultaneous Localiza-
tion and Mapping (SLAM) algorithms, it is assumed that the vehi-
cle explores for the first time the given environment, and therefore 
there is no a priori map to localize itself against. Recently, the 
SegMap [48] algorithm was proposed to extract and match LIDAR 
segments in 3D point clouds. SegMap computes a data-driven com-
pact descriptor to extract distinctive and meaningful features from 
point cloud segments in order to identify loop-closure situations 
along the trajectory.

In order to increase the robustness and precision of the local-
ization algorithm in feature-poor environments, a framework was 
proposed in LIO-SAM [49] to tightly couple LIDAR and inertial 
measurements obtained from an IMU. Also, the proposed archi-
tecture allows the integration of GPS measurements in case these 
are available. Further on, by adapting the factor graph optimiza-
tion framework the LIDAR Inertial Sub-system (LIS) was fused with 
a traditional monocular-based Visual Inertial Sub-system (VIS) to 
create a Lidar-Visual-Inertial (LVI-SAM) localization and mapping 
system [50]. Conversely to these methods, next we will show the 
outcomes of a LIDAR-only odometry and localization method for 
urban environments where a target map exists to localize within.

5.3. LIDAR-only odometry and localization in 3D point cloud maps

Accurate 3D city models and high-definition maps are becom-
ing increasingly available with recent mapping technology ad-
vancements. In addition, in many real-world applications, maps 
are available to localize against. Therefore, these should be uti-
lized to correct the accumulated drift along the vehicle’s trajectory 
whenever a geometrically similar location is detected between the 
online 3D point cloud and the offline map.

In [51] we proposed LOL, a LIDAR-only Odometry and Local-
ization algorithm that integrates the advantages of the LOAM [47]
odometry and the SegMap [48] algorithm. In the odometry back-
end, the LOAM algorithm estimates the six DoF odometry in real 
time based only on the continuously streaming point cloud data 
from a Velodyne LIDAR sensor. In a scene of high-density feature 
points and available reference ground planes, the algorithm com-
putes the displacement of the vehicle on short trajectories with 
very low drift using only the consecutive Lidar measurements. 
The algorithm can process the measurements robustly for differ-
ent Velodyne sensors with varying point cloud densities. On the 
other hand, in the case of long trajectories and since the drift 
is continuously accumulated, a significant error could be accumu-
lated in the estimation that needs to be canceled by a localization 
method whenever a correct match is detected between the online 
Lidar stream and the offline reference map. Therefore, for the lo-
calization frontend, we integrated the SegMap method that is a 
state-of-the-art algorithm for the extraction and matching of 3D 
point cloud segments.

We also included some additional improvements in the ac-
ceptance of correct matches by applying further geometrical con-
straints complementing the feature similarity ones. Namely, once a 
good match is detected between the online measurements and the 
target map, we only search for similar 3D Lidar segments (with 
relaxed similarity constraints) in the neighborhood of the current 
location defined by the location uncertainty. In addition, we only 
use the shift between the target map and the online source seg-
ments centroids as a prior, and we refine the final transformation 
by applying a fine-grained ICP matching between the two point 
clouds.
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Fig. 7. Results of the LOL localization algorithm with respect to the ground truth 
map on various length KITTI [5] datasets: LOL algorithm (green line), LOAM trajec-
tory (red line) with respect to the ground truth point cloud map.

We tested the proposed algorithm on several Kitti [5] datasets, 
cf. Fig. 7, and found a considerable improvement in term of preci-
sion without adding a significant computational cost increase.

5.4. Localization in dense LIDAR maps

LIDAR measurements can also be utilized for accurate self lo-
calization of self-driving vehicles (SDV) in high resolution 3D point 
cloud maps of the environment. A solution provided in [52] can 
robustly register the sparse RMB Lidar point clouds of the SDVs 
to the dense Mobile Laser Scanning (MLS) point cloud data, start-
ing from a GPS based initial position estimation of the vehicle. The 
main steps of the method are robust object extraction and trans-
formation estimation based on multiple keypoints extracted from 
the objects and additional semantic information derived from the 
previously segmented MLS based map.

6. Semantic segmentation of MLS point clouds

Dense MLS point clouds can act as a basis for detailed and up-
to-date 3D High Definition (HD) maps of the cities, which can be 
utilized by self-driving vehicles for navigation, or by city author-
ities for road network management and surveillance, architecture, 
or urban planning. All of these applications require semantic la-
beling of the data (Fig. 8). While the high speed of point cloud 
acquisition is a clear advantage of MLS, due to the huge data size 
yielded by each daily mission, applying efficient automated data 
filtering and interpretation algorithms in the processing side is 
crucially needed, which steps still introduce a number a key chal-
lenges.

Taking the raw MLS measurements, one of the critical issues 
is the phantom effect caused by independent object motions [21]. 
Due to the sequential nature of the environment scanning process, 
scene objects moving concurrently with the MLS platform (such 
as passing vehicles and walking pedestrians) appear as phantom-
like longdrawn, distorted structures in the resulting point clouds 
[53]. It is also necessary to recognize and mark all movable scene 
elements such as pedestrians, parking vehicles [54] or trams from 
the MLS scene. On the one hand, they are not part of the reference 
background model, thus these regions must be eliminated from the 
HD maps. On the other hand, the presence of these objects may 
indicate locations of sidewalks, parking places, etc. Column-shaped 
objects, such as poles, traffic sign bars [55], tree trunks are usu-
ally good landmark points for navigation. Finally, vegetation areas 
(bushes, tree foliage) should also be specifically labeled [56]: since 
they are dynamically changing over the whole year, object level 
change detection algorithms should not take them into account.

While a number of various approaches have already been pro-
posed for general point cloud scene classification, they are not 
focusing on all practical challenges of the above introduced work-
flow of 3D map generation from raw MLS data. In particularly, only 
6

a few related works have discussed the problem of phantom re-
moving. Point-level and statistical feature based methods such as 
[57] and [58] examine the local density of a point neighborhood, 
but as noted in [59] they do not take into account higher level 
structural information, limiting the detection rate of phantoms. The 
task is significantly facilitated if the scanning position (e.g., by tri-
pod based scanning [60]) or a relative time stamp (e.g., using a 
rotating multi-beam Lidar [61]) can be assigned to the individ-
ual points or point cloud frames, which enables the exploitation 
of multi-temporal feature comparison. However, in the case of our 
examined MLS point clouds, no such information is available, and 
all points are represented in the same global coordinate system.

Several techniques extract various object blob candidates by ge-
ometric scene segmentation [55,20], then the blobs are classified 
using shape descriptors, or deep neural networks [20]. Although 
this process can be notably fast, the main bottleneck of the ap-
proach is that it largely depends on the quality of the object de-
tection step.

Alternative methods implement a voxel level segmentation of 
the scene, where a regular 3D voxel grid is fit to the point 
cloud, and the voxels are classified into various semantic categories 
such as roads, vehicles, pole like objects, etc. [56,62,63]. Here a 
critical issue is feature selection for classification, which has a 
wide bibliography. Handcrafted features are efficiently applied by 
a maximum-margin learning approach for indoor object recogni-
tion in [64]. Covariance, point density, and structural appearance 
information is adopted in [65] by a random forest classifier to seg-
ment MLS data with varying density. However, as the number and 
complexity of the recognizable classes increase, finding the best 
feature set by hand induces challenges.

Deep learning techniques have been widely used for point cloud 
scene classification in recent years, following either global or local
(window based) approaches. Global approaches consider informa-
tion from the complete 3D scene for classification of the individual 
voxels, thus the main challenge is to keep the time and mem-
ory requirements tractable in large scenes. The OctNet method 
implements a new complex data structure for efficient 3D scene 
representation, which enables the utilization of deep and high res-
olution 3D convolutional networks [66]. From a practical point of 
view, by OctNet’s training data annotation operators should fully 
label complete point cloud scenes, which might be an expensive 
process.

Sliding window based techniques are usually computationally 
cheaper, as they move a 3D box over the scene, using locally avail-
able information for the classification of each point cloud segment. 
The Vote3Deep [62] assumes a fixed-size object bounding box for 
each class to be recognized, which might be less efficient if the 
possible size range of certain objects is wide. A CNN based voxel 
classification method has recently been proposed in [63], which 
uses purely local features, coded in a 3D occupancy grid as the 
input of the network. Nevertheless, they did not demonstrate the 
performance in the presence of strong phantom effects, which re-
quire accurate local density modeling [58,59].

The multi-view technique [67] projects the point cloud from 
several (twelve) different viewpoints to 2D planes, and trains 2D 
CNN models for the classification. Finally, the obtained labels are 
backprojected to the 3D point cloud. This approach presents high 
quality results on synthetic datasets and in point clouds from fac-
tory environments, where due to careful scanning, complete 3D 
point cloud models of the scene objects are available. Application 
for MLS data containing partially scanned objects is also possible, 
but the advantages over competing approaches are reduced here 
[67].

PointNet++ [68] introduces a hierarchical neural network for 
point set classification. The method takes random samples within 
a given radius of the examined point, so it does not exploit density 
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Fig. 8. Labeling result of the proposed 3D CNN based scene segmentation approach (test data provided by Budapest Közút Zrt.)
features. Results are demonstrated on synthetic and indoor data 
samples, with dense and accurate spatial data and RGB color infor-
mation.

The Similarity Group Proposal Network (SGPN) [69] uses Point-
Net++ as a backbone feature extractor, and presents performance 
improvement by adding several extra layers to the top of the net-
work structure. However, as noted by the authors, SGPN cannot 
process large scenes on the order 105 or more points [69], due 
to using a similarity matrix whose size scales quadratically as the 
number of points increases. This property is disadvantageous for 
MLS data processing, where a typical scene may contain over 107

points.
The Sparse Lattice Network (SPLATNet3D) [70] is a recent tech-

nique which able to deal with large point cloud scenes efficiently 
by using a Bilateral Convolution Layer (BCL). SPLATNet3D [70]
projects the extracted features to a lattice structure, and it applies 
sparse convolution operations. Similarly to voxel based approaches, 
the lattice structure implements a discrete scene representation, 
where one should address under- and oversegmentation problems 
depending on the lattice scales.

The C2CNN technique introduced in [21] is based on two-
channel 3D convolutional neural network (CNN), and is specifically 
improved to segment MLS point clouds into nine different seman-
tic classes, which can be used for high definition city map gener-
ation. The main purpose of semantic point labeling is to provide 
a detailed and reliable background map for self-driving vehicles 
(SDV), which indicates the roads and various landmark objects for 
navigation and decision support of SDVs. This approach consid-
ers several practical aspects of raw MLS sensor data processing, 
including the presence of diverse urban objects, varying point den-
sity, and strong measurement noise of phantom effects caused by 
objects moving concurrently with the scanning platform. We eval-
uate the proposed approach on a manually annotated new MLS 
benchmark set, and compare our solution to three general refer-
ence techniques proposed for semantic point cloud segmentation.

A numerical comparison between many of the above mentioned 
methods is shown in Table 2, using the SZTAKI CityMLS Bench-
mark Set [21].3

3 url: http://mplab.sztaki.hu/geocomp/SZTAKI-CityMLS-DB.html.
7

7. Change detection using onboard Lidar and MLS maps

For self-driving car navigation and environment perception, 
change detection between the instantly sensed RMB Lidar measure-
ments and the MLS based reference environment model appears as 
a crucial task, which indicates a number of key challenges. Particu-
larly, there is a significant difference in the quality and the density 
characteristics of the i3D and MLS point clouds, due to a trade-off 
between temporal and spatial resolution of the available 3D sen-
sors.

In recent years various techniques have been published for 
change detection in point clouds, however, the majority of the 
approaches rely on dense terrestrial laser scanning (TLS) data 
recorded from static tripod platforms [71,72]. As explained in [71], 
classification based on calculation of point-to-point distances may 
be useful for homogeneous TLS and MLS data, where changes can 
be detected directly in 3D. However, the point-to-point distance is 
very sensitive to varying point density, causing degradation in our 
addressed i3D/MLS cross-platform scenario. Instead, [71] follows 
a ray tracing and occupancy map based approach with estimated 
normals for efficient occlusion detection, and point-to-triangle dis-
tances for more robust calculation of the changes. Here the De-
launay triangulation step may mean a critical point, especially in 
noisy and cluttered segments of the MLS point cloud, which are 
unavoidably present in a city-scale project. [72] uses a nearest 
neighbor search across segments of scans: for every point of a seg-
ment they perform a fixed radius search of 15 cm in the reference 
cloud. If for a certain percentage of segment points no neighboring 
points could be found for at least one segment-to-cloud compar-
ison, the object is labeled there as moving entity. A method for 
change detection between MLS point clouds and 2D terrestrial im-
ages is discussed in [73]. An approach dealing with purely RMB 
Lidar measurements is presented in [74], which uses a ray tracing 
approach with nearest neighbor search. A voxel based occupancy 
technique is applied in [75], where the authors focus on detect-
ing changes in point clouds captured with different MLS systems. 
However, the differences in data quality of the inputs are less sig-
nificant than in our discussed case.

In [76] authors proved that change detection can be accel-
erated if they compare only keyframes to the map or previous 
frames. Here, keyframes are the ones that contain changes with 
high probability. [76] proposed a solution to find these keyframes 
by exploiting mapping residuals. The authors demonstrated the 

http://mplab.sztaki.hu/geocomp/SZTAKI-CityMLS-DB.html


C. Benedek, A. Majdik, B. Nagy, Z. Rozsa and T. Sziranyi Digital Signal Processing 119 (2021) 103193

Table 2
Quantitative comparison of various point cloud segmentation techniques [63], [67], [68], [70] and [21] on the SZTAKI CityMLS bench-
mark set.

Class OG-CNN [63] Multi-view [67] PointNet++ [68] SPLATNetxyz
rgb [70] C2CNN [21]

Pr Rc F-r Pr Rc F-r Pr Rc F-r Pr Rc F-r Pr Rc F-r

Phantom 85.3 34.7 49.3 76.5 45.3 56.9 82.3 76.5 79.3 83.4 78.2 80.7 84.3 85.9 85.1
Pedestrian 61.2 82.4 70.2 57.2 66.8 61.6 86.1 81.2 83.6 80.4 78.6 79.5 85.2 85.3 85.2
Car 56.4 89.5 69.2 60.2 73.3 66.1 80.6 92.7 86.2 81.1 89.4 85.0 86.4 88.7 87.5
Vegetation 72.4 83.4 77.5 71.7 78.4 74.9 91.4 89.7 90.5 86.4 87.3 86.8 98.2 95.5 96.8
Column 88.6 74.3 80.8 83.4 76.8 80.0 83.4 93.6 88.2 84.1 89.2 86.6 86.5 89.2 87.8
Tram/Bus 91.4 81.6 86.2 85.7 83.2 84.4 83.1 89.7 86.3 79.3 82.1 80.7 89.5 96.9 93.0
Furniture 72.1 82.4 76.9 57.2 89.3 69.7 84.8 82.9 83.8 82.6 81.3 81.9 88.8 78.8 83.5

Overall 76.9 74.2 75.5 72.5 73.4 72.9 85.6 87.5 86.5 82.5 83.7 83.0 90.4 90.2 90.3

Note: Voxel level Precision (Pr), Recall (Rc) and F-rates (F-r) are given in percent (overall values weighted with class significance).
performance of the proposed method in real-life experiments with 
an AGV equipped with a 2D LIDAR sensor.

In [77] the authors introduced a new technique for change de-
tection in urban environment based on the comparison of 3D point 
clouds with significantly different density characteristics. This ap-
proach extracts moving objects and environmental changes from 
sparse and inhomogeneous instant 3D (i3D) measurements, us-
ing as reference background model dense and regular point clouds 
captured by mobile laser scanning (MLS) systems (see Fig. 9). The 
introduced workflow consists of consecutive steps of point cloud 
classification, crossmodal measurement registration, Markov Ran-
dom Field (MRF) based change extraction in the range image do-
main and label back projection to 3D. Experimental evaluation has 
been conducted in four different urban scenes, and the advantage 
of the proposed change detection step is demonstrated against a 
reference voxel based approach.

8. Camera-Lidar calibration

Nowadays, state-of-the-art autonomous systems rely on a wide 
range of sensors for environment perception such as optical cam-
eras, radars and Lidars, therefore efficient sensor fusion is a highly 
focused research topic in the fields of self-driving vehicles and 
robotics. Though the resolution and the operation speed of these 
sensors have significantly improved in recent years, and their 
prices have become affordable in mass production, their measure-
ments have highly diverse characteristics, which makes the effi-
cient exploitation of the multimodal data challenging. While real 
time Lidars, such as Velodyne’s rotating multi-beam (RMB) sensors 
provide accurate 3D geometric information with relatively low ver-
tical resolution, optical cameras capture high resolution and high 
quality image sequences enabling to perceive low level details from 
the scene. A common problem with optical cameras is that ex-
treme lighting conditions (such as dark, or strong sunlight) largely 
influence the captured image data, while Lidars are able to provide 
reliable information much less depending on external illumination 
and weather conditions. On the other hand, by simultaneous uti-
lization of Lidar and camera sensors, accurate depth with detailed 
texture and color information can be obtained in parallel from the 
scenes.

Accurate Lidar and camera calibration is an essential step to 
implement robust data fusion, thus, related issues are extensively 
studied in the literature [78–80]. Existing calibration techniques 
can be grouped based on a variety of aspects [78]: based on the 
level of user interaction, they can be semi- or fully automatic, 
methodologically we can distinguish target-based and target-less 
approaches, and in the term of operational requirements offline 
and online approaches can be defined.

As their main characteristics, target-based methods use spe-
cial calibration targets such as 3D boxes [79], checkerboard pat-
terns [81], a simple printed circle [82], or a unique polygonal pla-
8

Fig. 9. Top: Detected changes at a tram stop in Kálvin tér, Budapest using [77]. Red, 
blue and green points represent background objects, foreground objects and ground 
regions, respectively. Bottom: MLS laser scan of the tram stop.

nar board [83] during the calibration process. In the level of user 
interactions, we can subdivide target-based methods into semi-
automatic and fully-automatic techniques. Semi-automatic meth-
ods may consist of many manual steps, such as moving the calibra-
tion patterns in different positions, manually localizing the target 
objects both in the Lidar and in the camera frames, and adjust-
ing the parameters of the calibration algorithms. Though semi-
automatic methods may yield very accurate calibration, these ap-
proaches are very time consuming and the calibration results 
highly depend on the skills of the operators. Moreover, even a well 
calibrated system may periodically need re-calibration due to arti-
facts caused by vibration and sensor deformation effects.

Fully-automatic target-based methods attempt to automatically 
detect previously defined target objects, then they extract and 
match features without user intervention: Velas et al. [84] de-
tect circular holes on planar targets, Park et al. [83] calibrate 
Lidar and camera by using white homogeneous target objects, 
Geiger et al. [81] use corner detectors on multiple checkerboards 
and Rodriguez et al. [85] detect ellipse patterns automatically. 
Though the mentioned approaches do not need operator interac-
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Fig. 10. Workflow of the on-the-fly Lidar-camera registration technique [95].
tions, they still rely on the presence of calibration targets, which 
often should be arranged in complex setups (i.e., [81] uses 12 
checkerboards). Furthermore, during the calibration both the plat-
form and the targets must be motionless.

On the contrary, target-less approaches rely on features ex-
tracted from the observed scene without using any calibration 
objects. Some of these methods use motion-based [86–88] infor-
mation to calibrate the Lidar and camera, while alternative tech-
niques [78,89] attempt to minimize the calibration errors using 
only static features.

Among motion-based approaches, Huang and Stachniss [87] im-
prove the accuracy of extrinsic calibration by the estimation of the 
motion errors, Shiu and Ahmad [86] approximate the relative mo-
tion parameters between the consecutive frames, and Shi et al. [90]
calculate sensor motion by jointly minimizing the projection error 
between the Lidar and the camera residuals. These methods first 
estimate the trajectories of the camera and Lidar sensors either by 
visual odometry and scan matching techniques, or by exploiting 
IMU and GNSS measurements. Thereafter they match the recorded 
camera and Lidar measurement sequences assuming that the sen-
sors are rigidly mounted to the platform. However, the accuracy of 
these techniques strongly depends on the performance of trajec-
tory estimation, which may suffer from visual featureless regions, 
low resolution scans [91], lack of hardware trigger based synchro-
nization between the camera and the Lidar [90], or urban scenes 
without sufficient GPS coverage.

We continue the discussion with single frame target-less and 
feature-based methods. Moghadam et al. [89] attempt to detect 
correspondences by extracting lines both from the 3D Lidar point 
cloud and the 2D image data. While this method proved to be 
efficient in indoor environments, it requires a large number of 
line correspondences, a condition that cannot often be satisfied in 
outdoor scenes. A mutual information based approach has been in-
troduced in [92] to calibrate different range sensors with cameras. 
Pandey et al. [78] attempt to maximize the mutual information 
using the camera’s grayscale pixel intensities and the Lidar re-
flectivity values. Based on Lidar reflectivity values and grayscale 
images Napier et al. [93] minimize the correlation error between 
the Lidar and the camera frames. Scaramuzza et al. [94] introduce 
a new data representation called the Bearing Angle image (BA) 
which is generated from the Lidar’s range measurements. Using 
conventional image processing operations, the method searches for 
correspondences between the BA and the camera image. As a lim-
itation, target-less feature-based methods require a reasonable ini-
9

tial transformation estimation between the different sensors mea-
surement [90], and mutual information based matching is sensi-
tive to inhomogeneous point cloud inputs and illumination arti-
facts, which are frequently occurring problems when using RMB 
Lidars [78].

In [95], authors proposed a new fully automatic and target-less 
extrinsic calibration approach between a camera and a rotating 
multi-beam (RMB) Lidar mounted on a moving car. This technique 
adopts a structure from motion (SfM) method to generate 3D point 
clouds from the camera data, which can be matched to the Lidar 
point clouds; thus, the extrinsic calibration problem is addressed 
as a registration task in the 3D domain (see Fig. 10). The method 
consists of two main steps: an object level matching algorithm per-
forming a coarse alignment of the camera and Lidar data, and a 
fine alignment step that implements a control point based point 
level registration refinement. The superiority of the method is that 
it relies on only the raw camera and Lidar sensor streams with-
out using any external Global Navigation Satellite System (GNSS) 
or Inertial Measurement Unit (IMU) sensors. Moreover, it is able 
to automatically calculate the extrinsic calibration parameters be-
tween the Lidar and camera sensors on-the-fly which means we 
only have to mount the sensors on the top of the vehicle and start 
driving in a typical urban environment.

Note that there exist a few end-to-end deep learning based 
camera and Lidar calibration methods [80,96] in the literature, 
which can automatically estimate the calibration parameters within 
a bounded parameter range based on a sufficiently large training 
dataset. However, the trained models cannot be applied for arbi-
trary configurations, and re-training is often more resource inten-
sive than applying a conventional calibration approach. In addition, 
the failure case analysis and analytical estimation of the limits of 
operations are highly challenging for black box deep learning ap-
proaches.

9. Conclusion and future directions

When LIDARs started in autonomous driving systems, it was 
mainly a part of the supporting development toolkit. For a long 
time up to now, it was seriously considered that LIDAR was not 
needed as a traffic controller sensor, since (i) it cannot see through 
bad weather (ii) vulnerable opto-mechanics and (iii) its relative 
high price. However, today we can get high quality but much 
cheaper LIDAR sensors, with more robust opto-mechanical solu-
tions; bad weather problems can be partly eliminated and so on. 
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This technology cannot be stopped, the intense research carried 
out in the past decade has shown significant progress. Today LI-
DARs are indispensable sensors in many autonomous robotic appli-
cations, and they will have a definite place in autonomous driving. 
Nevertheless, there are still many opportunities to further enhance 
their capabilities in the future by exploiting, e.g., multiple reflec-
tion patterns, the Doppler effect, reflection intensity. Its main ad-
vantage that LiDAR is the only sensor that gives high resolution at 
range: the power to recognize objects very fine and very accurately 
in space, even from afar.

In the methodology of the above tasks, based on huge testing 
databases, Deep Learning methods are widely used for detection 
and classification. In 3D calibration and positioning tasks, the clas-
sical 3D geometry based mathematical framework, e.g., [97], is still 
used. However, the results of direct mathematical methods can 
also be adopted to the data feeding step of Deep Learning train-
ing methods, especially in 3D geometry tasks, to obtain a more 
complete set of input variations.

As the industrial tendency of LIDAR sensor development offers 
in parallel quick increment of spatial and temporal resolution of 
the 3D measurement sequences and reduced measurement noise, 
LIDAR sensors in the near future may act as general tools to reli-
ably capture dense and accurate 3D environmental information for 
various real-time perception, navigation and mapping problems.

Over the past decade, another defining trend is noticeable to-
wards producing smaller and more compact LIDAR devices. These 
tendencies facilitate the use of LIDAR sensors on small Unmanned 
Aerial Vehicles (UAVs) [98], enabling further directions of research 
and many novel applications [99].
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