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Abstract: The paper addresses the identification of spatial-temporal mirror surface deforma-
tions as a result of laser-based heat load within the lithography process of integrated circuit
production. The thermal diffusion and surface deformation are modeled by separation of the
spatial-temporal effects using data-driven orthogonal decomposition. A novel tree adjoining
grammar (TAG) and sparsity enhanced symbolic-regression-based learning methods are de-
ployed to discover temporal dynamics that connect the spatial variation. The resulting data-
driven procedure is applied to automatically synthetise a compact model representation of

synthetic thermal effects induced mirror surface deformations.
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1. INTRODUCTION

In extreme ultraviolet lithography (EUVL), a set of guiding
mirrors align a laser beam to print chip patterns over
silicon wafers. These mirrors are exposed to significant
thermal loads and build up thermal-induced surface defor-
mation over time. If not corrected for, these deformations
affect the laser beam alignment and can lead to errors
in the printed features. In order to perform correcting
actions upon the mirrors, the heat-induced deformation
should be precisely modeled. As first principle modeling
has proven to be ineffective in describing the process due
to the modalities of each physical system, an identified
spatial-temporal model of the process is required. As such,
the goal of the present paper is to propose an automated
data-driven strategy based on known numeric and sym-
bolic regression methods that captures the behavior of a
thermal mechanical deformation system.

The heat-induced deformation model can be seen as a
coupled partial differential equation (PDE) model, where
the first PDE describes the heat-flux to temperature dif-
fusion and the second PDE describes the temperature
diffusion to surface deformations. In the literature, several
distributed-parameter system identification methods have
been developed (e.g. see (Li and Qi, 2011)). By Follow-
ing the separation of variables principle, the large scale
spatial-temporal identification problem is often split into
a spatial model reduction problem and a temporal sys-
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tem identification problem. The spatial model reduction
problem is thoroughly discussed in Boyd (2000) where
the spectral Galerkin method is proposed to transform
the dense numerical representation of the system into a
smaller, approximated form that can be used for computer-
aided simulations. Using this technique, the spatial distri-
bution of heat, temperature and deformation signals are
described through a set of spatial basis functions (SBFs).
The remaining temporal system identification problem is
seen as the identification of two multi-input multi-output
(MIMO) temporal models.

A main challenge posed by identifying the above-mentioned
MIMO system is the unknown dynamic structure that
generates the data. There are two main approaches to
learn these structures from data. The first one, known as
non-parametric identification, proposes candidate models
under a flexible function approximation approach. These
methods usually utilize large, fine tuned, dynamic struc-
tures that can offer reliable candidate models. Some down-
sides of these approaches are the existence of a large num-
ber of interconnected parameters as in artificial neuron
network (ANN - (Goodfellow et al., 2016)) or the fact that
the entire model is constructed on and grows with acquired
data, as in Gaussian Process based kernel methods (Chiuso
and Pillonetto, 2019). These non-parametric methods of-
ten lack the interpretability in the sense that it is difficult
to extract the significant dynamic modes representing each
SBF. As opposed to this, parametric learning procedures
such as tree adjoining grammar guided genetic program-
ming (TAG3P - (Khandelwal, 2020), (Nechita and Téth,
2021)) and equation giscovery (ED - (Simidjievski et al.,
2020)) can evolve or construct a compact candidate model
that yields the most dominant dynamic modes active in
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Fig. 1. Schematics of the guiding mirror. X: in-depth slice.
Y, X;: surface of the in-depth slice (dotted green).

the data. Usually, the parametric solutions are described
directly in the time-domain as a mathematical equation
and the dynamic properties, such as input delay time
or interconnection of SBFs can be directly observed in
the model. Moreover the user can define the maximum
complexity of the candidate model and indicate the model
search space. The remainder of the paper is organized as
follows. Section 2 discusses the coupled PDE modelling
framework. Section 3 elaborates on the MIMO learning
approaches that are applied for identifying the synthetic
thermal deformation model described in Section 4. Finally
the identification results are reported and discussed in
Section 5.

2. PRELIMINARIES
2.1 Coupled PDE modeling framework

This section presents the first-principles-based modeling
concept of the spatial-temporal heat-induced temperature
diffusion and mechanical surface deformation of an in-
depth 2D mirror slice. A visual representation of the mirror
is indicated by Figure 1. The 2D X = [0,L,,] x [0, Lg,]
space, with the sample grid sizes Az, Axs, represents the
in-depth 2D mirror slice and the Y = [0,LL,] space, with
the sample grid size Ay, represents the 1D surface side of
the in-depth slice of the mirror. Since these spaces repre-
sent the same physical object, L, = L,, but Ay # Aws.
Consider the space X; C X, X; = [0,L,,] as the subspace
that represents the surface of the in-depth slice. The laser
generated heat flux Q(X| k) is the spatial-temporal signal
that excites the model via space X. The heat flux Q(X| k)
generates a 2D in-depth diffusion of temperature denoted
as a spatial-temporal signal 7 (X, k). The mechanical sur-
face deformation D(Y, k) is a direct result of the surface
temperature T (X, k) and inner temperature diffusion.
The heat-flux, temperature and deformation signals are
considered to be measurable over the X and Y spaces
at the grid points delivered by by Az;, Azy and Ay. In
practice, the grid sampling between signals can be different
due to the different used sensors (e.g. infrared camera for
temperature diffusion and laser Doppler vibrometer for
deformation). The heat flux - deformation phenomenon
can be written in the form:

D(Y, k) = F(q,Q(X, k), (1)

where q is the forward time-shift operator, k is the time-
sample and F(-) described a discrete time PDE, i.e it
represents a function in Q(X, k) and its shifted ...xxxxx...

q *Q(X, k). The deformation is often considered to be a
direct result of the temperature distribution. Moreover,
temperature diffusion is a result of the heat-flux, thus (1)
can be described by

T(X k) ( q, (X, k)) ) (2&)
T(Y k) 1nter (T(X57 k)) (Qb)
D(Y, k) = Fou (¢, T(Y, k), (2¢)

where Fi, and Fy, are PDEs, Fiuer iS an interpolation
function (further described in Section 4.1).

2.2 Temporal modeling framework

+Usually, the signals described through PDEs are consid-
ered to be infinite dimensional, due to the spatial compo-
nent. A reduced order approximation of the signals, done
via the separation of variables principle (see Chapter 3 in
(Boyd, 2000)). In short, the separation of variable principle
decomposes the complex spatial-temporal signal in two
components: temporal coefficients and spatial variation
captured by SBFs. Consider the discrete-space discrete-
time heat-flux Q(X, k), temperature 7 (X, k), T(Y, k) and
deformation D(Y, k) signals and their respective collec-
tions of SBFs Ugo(X), Ur(X), &7(Y) and ®p(Y). Also
applying truncation to finite expansions by the Galerkin
method, the spatial-temporal signals can be described as

ZQZ ¢Ql Zaz 1/)7—7' 7
(3)
Zt JoT,i(Y Zb )oY
=1
Collect Q<k>:[qz-w)];?il,A(k):[axk)];, "
T(k) = [t:(R)];Z, , B(k) = [b:(k)];Z,
and
Wo(X) = [th0.(X)]2 Ur(X) = [ra(X)]7 .
O (Y) = [pra (V|7 p(Y) = [ppa(Y)]?

Then, compactly we can write (2a)-(2¢) as
T(X7 k) = A(k)\I/T(X)u (6)
D(Y,k) = B(k)®Pp(Y).

Following the above approximation, the temporal evolu-
tion of the spatial-temporal signals T (X, k) and D(Y, k)
is represented solely by the evolution of the temporal
coefficients sets A(k) and B(k). Further, we can assume
that the temporal evolution of the sets A(k) and B(k) is
described by two temporal dynamic models such as:

A(k) = Fu({A(k =)}y {QUk =) 12y),  (T)

B(k) = Fou({B(k — i)} AT (k=) }i2y). (8
with ng, ng, n: and np are finite time-shift values and
A(k) = Am(k) + Ea(k)v T(k) = Tm(k) + Ef(k) and
B(k) = Bm(k) + Ep(k) are measured temporal expansion
coefficients of T (X, k),T (Y, k) and D(Y, k) signals respec-
tively. Thus, the heat-flux - temperature - deformation
spatial-temporal phenomenon is described by two tempo-
ral (MIMO) dynamic models in a serial connection.
2.8 Spatial basis functions
Within the Galerkin method, the spatial distribution of
the signals is represented through a set of SBFs. These
SBFs can be a priori constructed based on analytical
expresions or computed based on data. Furthermore we
describe two methods to construct the SBFs.
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Cosine Fourier basis Due to the finite 1D space V in
terms of the interval [0, L], the orthonormal cosine Fourier
SBF set @p(V) = {py}52, is generated by

ole) = [ 2 co (). (9)

where z € V. Due to the finite 2D space W = [z; X z2] in
terms of the interval [0, L;]x [0, Lq], the orthonormal cosine
Fourier SBF set ®p(W) = {pw, ; };21 ;- is generated by
convolution of 1D cosine basis:

(x1,22) = 2 cos iy cos Jme: (10)
Pw; ;\T1, L2) = \/m L, L, .

Considering this convolutive nature, in order to compute
a finite approximation form of the 2D spatial-temporal
signal S(W,t), one have to select first ry,,r,, € N 1D
cosine Fourier basis that span the [0, L1] and [0, Ls] spaces.
The resulting ® (W) SBF set is

cI)F(VV) = {@Wi,j(m17x2)}7 (11)
Card(@ (W) = |02 (W)][o =ty * 14y

As a consequence, the approximation of the signal S(W, )
requires r,, Xr,, temporal expansion coefficients. Since the
spatial distribution of the SBF's is not optimal with respect
to the signal S(W,t), the required reduction orders r,,
and ry, are often high (see (Li and Qi, 2011)). Moreover,
this considerable number of temporal coefficients implies
that the dynamic relations (7) and (8) are governed
by large MIMO systems. Thus, using non-optimal SBF's
increases the difficulty of the system identification task.
On the other hand, these SBFs are used to simulate the
thermal PDE equation under various material properties
and spatial distributions of the heat-flux signal.

2.4 Proper Orthogonal Decomposition (POD) basis

A data-driven alternative to find an optimal number of
SBF's is by computing the singular value decomposition
(SVD) of the ”snapshot” matrix of the spatial signal. Con-
sider the signal S(W, k) sampled both in time and space
denoted by S(Z;,kTs) and a snapshot matrix [W];; =
S(Zi,j )11\2\1 j—1, where Z; are the discrete space points and j
are discrete time samples of period Ts. Let d = min(M, N)
then, the SVD UsvT — W, (12)

where U € RM*M v ¢ RNXN and ¥ = diag{o;}%, €
RMXN s diagonal matrix filled with the singular values
of W, U = [wM, and V = [15]); are the sets of
orthonormal right and left singular vectors of W. Based
on the properties of SVD (see (Antoulas, 2005)) and the
values of o;, we can select the first r columns of U or a
linear combination of the first r columns of V as a set
of orthonormal SBFs ®pop(W). If there are more time
samples than spatial samples(N > M), then

®pon(W) = {¢vrop, (W) = u;}i_, (13)
else when (N < M) )
®rop(W) = {grop, (W) = —Wvili, (14)

The amount of information captured by the i** POD basis
is represented by the magnitude of the i*" singular value.
The error measure 7, [%] based on selecting the first r
POD basis to represent the signal S(Z;, kTs) is

= (1= 29100, 7 =Y 00,70 = o1 = o = . (15)
Vd i=1

For an arbitrary value r, a reduced order signal captures
7 % amount of information of a spatial-temporal signal.
Since this is an optimal data-driven method to obtain the
set of SBF's, most of the signal information is captured by
a compact set of POD basis under the assumption that
the trajectories of the system will have also similar spatial
distribution. This reduces the difficulty of the dynamic
system identification task.

3. SYSTEM IDENTIFICATION PROBLEM
3.1 Heat-Temperature Identification problem

In van den Hurk et al. (2018), the authors show that the
2D thermal diffusion PDE equation can be represented as
a reduced order linear-time invariant state space (LTI-SS)
model by applying the Galerkin method. Thus, the LTI-
SS temporal model captures and describes the temporal
evolution of the thermal diffusion PDE. Following this
idea, for a real heat-flux to temperature distribution set-
up, the identification problem of the temporal MIMO
dynamic model depicted in Equation (7) can be simplified
by considering the discrete-time LTI structure (16)

A(k) = Frm({A(k — i)}y, {Q(k — i) }i2)) + Ea(k), (16)
where E, (k) is the measured output noise of the temporal
expansion coefficients A(k). Therefore the heat to temper-
ature temporal model identification problem turns into a
Output Error (OE) model identification problem described
as the following minimization problem

) 1 & 1 N ]
ath) ;; Nkzzl(ai(k)—ai(k)))z (17)

where {a,(k)}\T, = A(k) = Froo({A(k — i)}, {QUk —
i)}72,) is the multi-channel simulation model output. The
input and output dimensions of the system (16) are de-
termined by the arbitrary values rg and ry. To solve the
minimisation problem (17) a prediction error state space
method can be deployed. The ssest() Matlab function
performs a gradient descent parameter optimization over
an LTI state space structure that is a priori initialised by a
subspace identification (detailed in Van Overschee and De
Moor (1994)). To obtain a candidate model we used the
ssest () function together with the ndsid algorithm and
canonical variate algorithm weighting scheme for initial-
izing the state space model. Another method to obtained
a compact representation of system (16) is by evolving
a candidate model through genetic programming. The
TAG3P identification framework, with grammar Gyrr,
proposes, by automated structure selection, candidates
that can capture the LTI dynamic structure of the model
(16) under a compact discrete time-domain representation.
For MIMO system identification problems, this method is
further detailed in (Nechita and Téth, 2021).

3.2 Temperature-Deformation Identification problem

In Section 3.3 of (van den Hurk et al., 2018) the authors
show that under certain material properties and grid sam-
pling conditions ”the dynamics of the thermal diffusion
process are approximately a factor 10® times slower than
the mechanical elasticity waves”. Therefore, the elastic
deformation can be considered static if you view it from
the time frame of the thermal dynamics. Thus the value
of the deformation temporal expansion coefficient B(k) at
any time-sample k, is determined by the values of T'(k)
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alone. Following this idea, in order to scale down the iden-
tification problem of the reduced order temporal model
depicted in Equation (8), we consider that a candidate
temporal model is defined by a discrete-time static MIMO
function. Thus, Equation (8) can be written as
B = Fal{tBNL) + 50, (9
where T'(k) = {t,(k)},[; and Z(k) is the measured
output noise of the temporal expansion coefficients B(k).
Hence, the evolution of B(k) is not influenced by past
values {B(k — j)};2, and {T'(k — j)}7~,. Therefore the
MIMO (r7 to rp) static relation depicted in Equation (18)
can be written as
bi(k) frse({tp(R)},21) + &1 (k)
Bk)=| : |= :
bep (K)] [ frp.se({tp(R)},00) + &brp (K)
The temperature to deformation temporal model iden-
tification problem turns into a rp x MISO (r7 to 1)
identification problems in terms of (20)

N

3 ()~ b))

t=0

(19)

(20)

min
bi(k)
where {b;(k)}2, = {fise({t,(k)};21)}2,. The set of
static polynomial terms of an arbitrary order p is large
enough to represent most of the core structures that form
a wide range of signals. Therefore, we assume that the
static functions f; sy can be well described by a linear
combination of polynomial terms. For a predefined input
polynomial (IP) basis set P = {P}®, of order p, the
candidate models for each f; st can be defined by:
p
Bt 0YI) =S a P ({t,MYI) (1)
1=1
where n, = Card(P) is the number of polynomial basis.
Thus, the minimisation problem (20) can be written as

- 1 N np . 2
min N; <bi(k);cliﬂi ({tp(k)}p_1)> (22)

where C = {¢,} is a coefficient array. Equation (22)
can be interpreted as: which subset of P, approximates
the best the signal b;(k). Considering the possible large
dimension ry of signal T'(k), its finite, but arbitrary
large time shift values {T'(k — j)}7L, and the polynomial
order p, the set P contains a considerable amount of
polynomial terms P ({tp(k)};Tzl). The task of selecting
the polynomial terms that together form a model for
approximating each of the b; signal is called equation
discovery (ED). This can be completed through at least
two methods: enhancing model sparsity starting from a
large set P or evolving the polynomial terms via TAG3P.
Equation discovery wvia enhancing model sparsity  To
select the subset Ppin = {Ps € P} of polynomial terms
with minimum cardinality and from a predefined library
of polynomial terms P, the problem (22) turns

N Np 2
|1 r
i (2 (509 -F (@8] 4l €9
t=0 =1
where || - ||p is the [y pseudo norm. In order to solve

the problem of sparse signal recovery, which is NP hard,

Algorithm 1 Sparse signal recovery (Pmin,i; Cmin,s, l;l(k:))

Define C = {cl}lzl_l_"p
Define D® =1

> (parameter array)
)

> (initial weight matrix

n
Define v i > (weight regularization factor [0,1])
Define € > (non-zero parameter)
Define p > (parameter threshold)
Define m > (Number of maximum iterations)
forj=1,5+1,j5 <mdo

Solve:

cY = min

N "p 2
1 o Dp .
BE) NZ<Z"<’“> > l.’,iPz,x{tp(k)}pL)) t s
be t=0 1=1

;HD(J 1)0;])”1

1
Update: D’ = diag ROA (24)
clfi +e
end for
Construct I = {S e{l...np} ICE"Z) > /‘} (25)
n; = Card(Z;)
Re-optimize 2
N
1 r
Cmin,i = min — E bi(k) — g es,iPsi({tp(R)},11) (26)
{es,itsez; N
v t=0 sE€EZL,
Construct
bilk) = Filtp M7 = D eaiPosto®MBT) (o)
SEL;

in (Candes et al., 2007), the authors showed that the
sequential solving of a weighted [, problems leads to the
solution of the [y regularization form. Algorithm 1 is built
around the guidelines in (Candes et al., 2007). In order

to identify the evolution of the entire B(k) deformation
temporal coefficients, we ran Algorithm 1 for each ¢ =
1...rp, using a pre-defined set of polynomials P and
determined rp MISO temporal models.

Equation Discovery via TAG3P  The main goal of this
strategy is to construct the candidate solution via genetic
programming that solves the problem (22) by evolving
a population of candidates. This genetic population evo-
lution has the goal of exploring the polynomial search
space and selecting the terms that minimize the cost
function (22). In contrast to the ESS method, the search
space within MIMO TAG3P method is not defined by
the polynomial order p but by the number of possible
combinations of finite number of auxiliary trees up to a
given maximum limit. The TAG3P with grammar Gip
aims to construct candidate models that minimize problem
(20). In order to identify the evolution of all deformation
temporal coefficients B(k), we ran the TAG3P with Gip
foreachi=1...rp.

Both selection and genetic programming solutions provide
candidate models that can be used to generate predictions

Model enhancement via Gaussian process modeling  Re-
gardless of the chosen parametric identification strategy
to propose a candidate for the temperature-deformation
temporal model (18), there will be uncaptured signal
modes due to imposed search space restrictions (limited
computational memory or limited run-time). Therefore,
to compensate for the uncaptured dynamics consider the
approximation error signal

E(k) = B(k) — B(k). (29)

We can further model each error signal e; (k) as a Gaussian
process (GP) with the regression model

ei(k) = fi(T(k)) + &e(k) (30)
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where f;(T'(k)) = GP;(m,K) is a Gaussian process defined
by the mean function m and covariance matrix K and &, (k)
is the modeling error or measured noise. For simplicity,
consider the target data points e;(k) = e;r and input
data points T(k) = Tj. For a collection of data points
D = {e; = {e;x}8_;, T = {T:}}_,}, a prior distribution
is constructed upon the mean values m(T) = E(f;(T))
and the kernel [K];, ;, = cov(T;,,T;,) = E(fi(T;,) —
m(T;,)E(fi(T;,) — m(T;,)). Based on the joint distribu-
tion of the prior and the known data:
e | K(T,T) + 021, K(T,T.)

o] =V (0 MRS Gw)]) e
where T, is a set of new data points, prediction values over
a test point T; can be obtained by applying the mazimum
a posteriori estimation(MAP)

Fi(T)ID, Ty ~ N (fi(T), cov(fi(T})))

(1) = K] [K+ 0] e

COV(fi(Tj)) = Kj,j — K;r [K + 012]]“} -t K
with K; = K(T,7;), K = K(T,T), K,; = K(T},T}).
For a full description and derivation of the Gaussian
processes modeling and inference method see Chapter 2
in Rasmussen and Williams (2006). To compute the GP
models we used the gpml Matlab Toolbox introduced in
Rasmussen and Williams (2006) with polynomial kernels
of order up to 4.

(32)
where

(33)

4. MIRROR MODEL
4.1 Heat-Deformation data-generating system

We have tested the proposed identification solutions on
a simplified synthetic mirror model. The first part of the
model simulates the 2D thermal dissipation and it is based
on the continuous-time thermal diffusion PDE over space
X described in Equation (34).
aTXt kaQTXt 82’7'Xt o(X,t) (34)
pegy TOG ) =h{ 3 TOL 04 55 T(,1) + QK.
with Dirichlet boundary conditions, where p, ¢, and k are
material density, heat capacity and thermal conductivity.
The material coefficients were selected to match a natural
thermal diffusion evolution. In order to simulate the ther-
mal diffusion (34) we applied the separation of variable
framework using the 2D cosine Fourier basis set ®p(X)
described in (10) with r,; = r,, = 40. As described
in van den Hurk et al. (2018) the outcome of this is
a continuous-time state-space linear model. The reduced
orders ry; = 1z, = 40 correspond to a trade-off between
representation error and model complexity. Discrete-time
spatial temperature values 7(Z;, kTs), sampled at Ty =
500s are obtained by applying form (6). For the considered
thermal behavior the sampling frequency fs = 0.025Hz was
chosen to be at least two times faster than the bandwidth
of the state-space linear model.
The second part of the model represents a simplified model
for the static thermal deformation on the surface of the in-
depth mirror slice. The spatial deformation model Fj,1y is
assumed to be second order polynomial mapping of the
temperature signal: (35)

D(yv k) = FPOIY(T(ya k)),vy S (35)
Using the Fourier cosine 1D SBFs, the temperature signal

T(Y,k) is obtained by re-mapping the temporal coeffi-
cients defined on X, to Y. Thus,

Temperature (C)
Temperature (C)

18 2oy
Tz} *:.'; i
e . 3 i de
£l gl
0 5 e ,'l?-;
=T oS b Nd
E150%aY & 2l

et e

4!5 -

0 50 100 150 200 250 300 350 400 450 500
Time samplas

(c)
Fig. 2. (2a) The synthetic noisy temperature profile at k
= 400, (2b) The subspace identified model simulated
temperature profile at k& = 400, (2c¢) Spatial error

Ss (If(i‘j, k);vlzl) over DV(Nid).

Nz

T(Y, k) = Finter(T(Xs, k))) = Z aXs,i(k)QOi(Y): (36)

axsyi(k) = <T(Xsa k))v‘pl(xs»a
where ;(X;), ¢;(Y) are the SBFs described in (9) and
formulated on X, and Y.
4.2 Spatio-temporal input signal
The input signal Q(X, k) was designed to represent a
generic laser exposure pattern over an in-depth mir-
ror slice. The input signal is spatially located at the
top layer of the 2D in-depth slice, and it is formed
by three separated gaussian profile signals Q(X k) =

{01(X, k), Q2(X, k), Q3(X, k) } with centers at %, L—;, %

bounded between [0, %}, (%,%] and (%’LQ}. All
three gaussian profiles have a maximum spatial amplitude
of 1 and spatial variance of 0.65. The temporal variantion
of the signals is a normal distributed random variable.

In order to determine the POD basis (5) we constructed
a data set Dpop(N) with N = 10000 and applied the
SVD procedure described in Section 2.4. For the identi-
fication of the heat-temperature (7) and the temperature-
deformation (8) relationship we have defined 10 estimation
De(Niq), testing D¢(N;jq) and validation data sets D (Niq)
with Njg = 500. For each data set, the temporal evolu-
tion of the heat Q(X, k), temperature T (X, k), T(Y,k)
and deformation D(Y, k) signals is described by 4 sets of
rg =3, r7 = 23, r7 = 23 and rp = 19 temporal signals
respectively. As a consequence, the candidate temporal
models Frri(+) and Fgi(-) are described by a 3 x 23 and
nineteen 23 x 1 input output models respectively. The
reduction orders rg, rr and rp were selected based on
a accepted representation error n,. = 99.9% as described
in Equation (15). Over the temperature signal 7 (X, k)
we have added a point-wise £0.3C'° measurement noise
resulting in a signal to noise ratio SNR = 76.

5. IDENTIFICATION RESULTS
The spatial-temporal error between two generic signals
S(%;, k) and S(Z;, k) is quantified as the spatial root mean
square error in percentage S depicted in Equation (37).
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(1)

M

L
M -
K3

where M is the number of spatial sampled points.

(S(:Ei,k) -

1

S(S(@i, k), 8(@i, k) = (37)

£

ﬁ p 18(‘@7 k)Q

5.1 Heat-Tempemperature identification results

The ssest() Matlab function was deployed to solve the
minimisation problem (17). Based on the initial subspace
identification, we set the state number to 19. The identified

1.62%

over 10 validation Dy (Njq) data sets. Figure 2 shows a
comparison between generated noisy temperature profile,
simulated temperature profile at k& = 400 and S error over
an entire Dy (Njq) data set.

The TAG3P with the grammar Gy was used to solve the
minimisation problem (17). Within this solution we used
the following genetic parameters: Pop = 50, Gen = 200,
Complexity = 120. The identified heat-flux to temperature

model achieved an average S, (7—(@,16);\4:1) =

model yields an average spatial error S, (7‘(56]-, k)g/[ﬂ) =
2.14% over 10 validation data sets Dy (Niq).
5.2 Temp-Deformation identification results

For the deformation temporal models we have used the
average root mean square prediction error:

D N
RMS,, = % > %Z(bi(k) —bi(k)2  (38)
=1 k=1

where b; (k) are predicted identified output values.
Equation discovery via enhancing signal sparcity  The
enhancing model sparsity solution described in Section
3.2.1 was deployed with a predefined polynomial set (39)
parameters: v = 0.6, €e = 1e—200, 4 = le—4, m = 5.
P ={P, ({t,(k)},L1) = ti(k)" t; (k)" }
where 7,5 =1...r7 and p1,p2 € {0,1,2}.
The resulting model is formed by rp = 19 functions of
form (27) and nineteen GP models.
Equation discovery via TAGSP  The TAG3P with the
grammar Gip was deployed to solve the minimisation
problem (20). For all rp identified MISO model we used
the following genetic parameters: Pop = 50, Gen = 1200
Complexity = 65. The agregate model is formed by
rp = 19 MISO models and nineteen GP models. Fig-
ures 3a shows the synthetic deformation profile, predicted
deformation profiles produced by the complete solution
(TAG3P+GP) at k = 400. The spatial error in percentage
of the predicted signals are shown in Figure 3b.
Table 1 presents averaged values for predicted spatial de-

(39)

formation error S, (ﬁ(gjj, k);vlzl and predicted temporal
error RMS,, over 10 validation data sets Dy, (Njq). For
both parametric solutions, the nineteen GP models are

an additional enhancement step.

Table 1. Identified deformation model averaged metrics over
10 Dy (500), ESS + GP and TAG3P + GP solutions

ESS+GP TAG3P+GP  ESS  TAGS3P
Sp 2.10% 1.67% — -
RMSp[dB] —35.69 —37.91 —14.78 —15.61
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Fig. 3. (3a) Comparison of the true deformation D(Y, k)
and D(Y,k) and the individual TAG3P and GP
components at k = 400, (3b) Spatial simulation error

Sp (ﬁ(gjj, k);vlzl) over 500 time samples.
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