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SUMMARY

In this paper, we present a virtual control contraction metric (VCCM) based nonlinear parameter-varying
(NPV) approach to design a state-feedback controller for a control moment gyroscope (CMG) to track a
user-defined trajectory set. This VCCM based nonlinear stabilization and performance synthesis approach,
which is similar to linear parameter-varying (LPV) control approaches, allows to achieve exact guarantees of
exponential stability and L2-gain performance on nonlinear systems with respect to all trajectories from the
predetermined set, which is not the case with the conventional LPV methods. Simulation and experimental
studies conducted in both fully- and under-actuated operating modes of the CMG show effectiveness of this
approach compared to standard LPV control methods. Copyright c© 2020 John Wiley & Sons, Ltd.
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1. INTRODUCTION

With increasing performance expectations and growing complexity of engineered systems, it
requires industrial control practice to achieve stabilization and shaping of the behavior of nonlinear
dynamical systems. To address these problems, one possible methodology, which has seen rapid
growth over the last few decades with many successful applications, is the so-called linear
parameter-varying (LPV) approach. In the LPV framework, the behavior, i.e., solution set, of
a nonlinear system is embedded in an LPV representation, which has a linear dynamic relation
between its inputs and output [1]. This linear relation is dependent on a so-called scheduling
variable, a function of the states, inputs and/or outputs, that represents the nonlinear dynamical
aspects of the original nonlinear system. The scheduling variable is assumed to be measurable in
the system. This idea has allowed the successful extension of many analysis and synthesis tools of
the linear time-invariant (LTI) framework, such as the L2-gain stability and performance concept
[2, 3, 4, 5], to provide convex analysis and controller synthesis for nonlinear systems through
the LPV framework. More recently, extensions have been made to so-called nonlinear parameter-
varying (NPV) systems, where some nonlinear dynamics are still included in the model allowing
for a less conservative representation of the nonlinear system [6, 7, 8]. However, convex analysis
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and synthesis results are more difficult to obtain, due to the system not being linear, as is the case in
the LPV framework.

While, the analysis and synthesis results of the LPV framework have successfully been applied
in many engineering problems [9, 10], recent research has shown that naively applying these results
to nonlinear systems can result in incorrect analysis results or unwanted closed-loop behavior in
case of synthesis [11, 12, 13]. These issues stem from the fact that unlike LTI systems, stability
properties of the origin and other forced equilibria are not equivalent for nonlinear systems. As a
consequence, stability guarantees of an LPV/NPV embedding for the origin extend to that of the
respective nonlinear model, but such guarantees are not sufficient to imply stability of all forced
equilibria of the represented nonlinear system [13].

As it turns out, the loss of guarantees are attributed to the used equilibrium-dependent stability
notion – widely applied in LPV control – raising the question if with a different equilibrium-
free stability concept such problems could be avoided without losing the convexity and attractive
properties of LPV approaches. As an alternative, the concept of universal stabilization aims to
achieve exponential stability of all trajectories of the system [14]. By a so-called control contraction
metric (CCM), analogous to the control Lyapunov function (CLF) for a single equilibrium (or
trajectory) [15], convex conditions can be derived for analysis and synthesis under universal
stabilization [16]. The ideas behind of these methods build on the concept of contraction analysis
[17, 18], where analysis of convergence of the infinitesimal variations of the system around all
trajectories (i.e., local stability of all trajectories) is equivalent with universal stability of the system
(i.e., global stability of all trajectories). This leads to analysis and synthesis problems for a family
of local linear systems, called differential dynamics, that can be elegantly expressed as an LPV
system and solved by LPV synthesis tools to give exact stability and performance guarantees on the
resulting closed-loop nonlinear system through the CCM approach.

While the use of CCM allows to achieve universal stability and performance with LPV control,
it may be a too strict notion if stabilization of only a particular subset of reference trajectories
is required, as is common in tracking control. Hence, the notion of B∗-universal stabilizability
has been introduced where stability of a subset of trajectories, denoted by B∗, is aimed at, and
which can be analyzed through so-called virtual control contraction metrics (VCCMs) [19]. The
concept of VCCMs combines the notion of virtual systems [20] and CCMs. An earlier work of
virtual contraction theory in control design can be found in [21]. Some recent works include control
synthesis for a special case of mechanical systems [22] and further extension to port-Hamiltonian
systems [23]. The main idea of virtual systems is that a nonlinear system, which is not itself
contracting, may have weaker stability properties that can be established via construction of an
auxiliary (virtual) system which is contracting. Furthermore, the virtual system can be seen as a
NPV embedding of the dynamics of the original system. Then, its differential dynamics can be
still expressed as an LPV system, which allows the use of convex LPV synthesis results through the
CCM approach, but with extended feasibility due to the reduced conservativeness of the embedding.
The VCCM based control approach can achieve B∗-universal stabilization and L2-gain performance
guarantees for nonlinear systems. In contrast to the reference-dependent variable-gain tracking
control approaches for linear systems [24, 25], the VCCM approach can deal with nonlinear systems
and yield controllers whose gain depends on both states and references.

In this paper the VCCM based controller design is applied in order to achieve B∗-universal
stabilizability and performance shaping for a control moment gyroscope (CMG). CMGs have been
widely applied in attitude control of ships [26], satellites[27], and the international space station
[28]. They represent a challenging nonlinear system and are often used for the demonstration of
nonlinear control methods [29, 30]. Two control configurations (fully- and under-actuated modes)
of the CMG are considered. Furthermore, the influence of the used LPV or NPV embedding for
the CMG on the achieved controller performance is investigated by constructing controllers using
both type of embeddings in the VCCM based controller design approach. The simulation and
experimental studies show how the choice of embedding model and control realization affects
the closed-loop tracking performance. This type of question is not well-addressed in the LPV
literature. The comparison results show that the NPV approach can ensure closed-loop stability
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and performance for user-specified tracking tasks while the conventional LPV approach may not
provide such guarantees.

The paper is structured as follows. In Section 2, a formal problem formulation is given, along
with a description of the considered dynamical model for the CMG. Section 3 describes the VCCM
based controller design for NPV embeddings. In Section 5, a simulation study is presented for the
CMG using the introduced controller design methods and the results are thoroughly analyzed both
form the view point of stability and achieved performance. Finally, in Section 6, concluding remarks
on the presented work are given.

Notation

R is the set of real numbers, while R+ is the set of non-negative reals. Let (x, y) denote the vector
concatenation of x ∈ Rn, y ∈ Rm, i.e., (x, y) := [x> y>]> ∈ Rn+m. L2 is the space of square-

integrable vector signals on R+, i.e., ‖x‖2 :=
√∫∞

0
|x(t)|2dt <∞where | · | is the Euclidean norm.

The causal truncation (·)T is defined by (x)T (t) := x(t) for t ∈ [0, T ] and 0 otherwise. Le
2 is the

space of vector signals on R+ whose causal truncation belongs to L2. For a matrix A, A � 0
or A � 0 means that A is positive definite or positive semi-definite. Similarly A ≺ 0 or A � 0
means that A is negative definite or negative semi-definite. A Riemannian metric is a smooth matrix
function M : Rn → Rn×n with M(x) � 0 for all x ∈ Rn. A metric M(x) is said to be uniformly-
bounded if there exist a2 ≥ a1 > 0 such that a1I �M(x) � a2I for all x ∈ Rn. Let γ(x0, x1) be the
set of smooth paths connecting x0 to x1, that is, each c ∈ Γ(x0, x1) is a smooth map c : [0, 1]→ Rn
with c(0) = x0 and c(1) = x1. Given a metricM(x), a geodesic γ is a (non-unique) minimum length
path defined by γ := arg infc∈Γ(x0,x1) E(c) where E(c) :=

∫ 1

0
c>s M(c(s))csds. If M is independent

of x, then γ is the straight line γ(s) = (1− s)x0 + sx1.

2. PROBLEM FORMULATION

In this paper, we consider a 3-DOF CMG, see Figure 1(a), consisting of three gimbals (A, B and C)
along with a symmetric disk (D), called the fly-wheel. The configuration of the CMG is depicted in
Figure 1(b). Let q = (q1, q2, q3, q4) be the generalized angular position vector and i = (i1, i2, i3, i4)
be the motor currents vector. Here the index j = 1, 2, 3, 4 refers to the frame D,C,B,A, respectively.
The dynamics of the gyroscope can be represented by ([31, 32])

H(q)q̈ + [C(q, q̇) + Fv]q̇ = Kmi, (1)

where Fv = diag(fv) with fv as the viscous friction vector, Km = diag(km) with km as the motor
constant vector. The inertia matrix is given as H(q) =

∑
k∈S Hk(q2, q3) where the inertia matrices

for each frame in S = {A,B,C,D} are listed as follows:

HA =

0 0 0 0
? 0 0 0
? ? 0 0
? ? ? KA

 , HB =

0 0 0 0
? 0 0 0
? ? JB 0
? ? ? IBs

2
3 +KBc

2
3

 ,

HC =

0 0 0 0
? IC 0 −ICs3

? ? JCc
2
2 +KCs

2
2 α1s2c2c3

? ? ? ICs
2
3 + (JCs

2
2 +KCc

2
2)c23

 ,

HD =

JD 0 JDc2 JDs2c3
? ID 0 −IDs3

? ? IDs
2
2 + JDc

2
2 α2s2c2c3

? ? ? IDs
2
3 + (IDc

2
2 + JDs

2
2)c23

 ,
with α1 = JC −KC and α2 = JD − ID. For compactness and readability, sinusoidal functions are
abbreviated as si and ci, e.g., sin q2 = s2 and cos2 q3 = c23. The terms Ik, Jk, Kk with k ∈ S are the
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Figure 1. 3-DOF CMG.

scalar moments of inertia about the x, y, z axes respectively in the bodies k. The symbol ? denotes
terms required to make the matrix symmetric.

The elements of the Coriolis matrix C(q, q̇) can be computed as:

C(q, q̇) =


q̇> 0 0 0
0 q̇> 0 0
0 0 q̇> 0
0 0 0 q̇>


Γ1(q)

Γ2(q)
Γ3(q)
Γ4(q)

 , (2)

where

Γ1 =
1

2

0 0 0 0
? 0 −JDs2 JDc2c3
? ? 0 −JDs2s3

? ? ? 0

 , Γ2 =
1

2

0 0 JDs2 −JDc2c3
? 0 0 0
? ? −2α3s2c2 α3(c22c3 − s2

2c3)− α4c3
? ? ? α3c2c

2
3s2

 ,

Γ3 =
1

2

0 −JDs2 0 JDs2s3

? 0 2α3s2c2 α4c3 + α3(c3s
2
2 − c22c3)

? ? 0 0
? ? ? −(α5 + α3s

2
2)c3s3

 ,

Γ4 =
1

2

0 JDc2c3 −JDs2s3 0
? 0 α3(c3s

2
2 − c22c3)− α4c3 −α3c2c

2
3s2

? ? α3c2s2s3 (α5 + α3s
2
2)c3s3

? ? ? 0

 ,
with α3 = ID − JC − JD +KC, α4 = IC + ID and α5 = IB + IC −KB −KC. The physical
parameters of the gyroscope are given in the Table I. Here we are interested in tracking control
for the following two operating modes:

• OM-1: The gimbal A is locked, i.e. (q4, q̇4) = 0 and i4 = 0. The control objective is to track
a set of reference signals of q̇1, q2 and q3 using the input (i1, i2, i3).

• OM-2: The gimbal B is locked, i.e. (q3, q̇3) = 0 and i3 = 0. The control objective is set-point
tracking for q̇1 and q4 by using the input (i1, i2). In this case, the motor on gimbal A is
switched off, i.e. i4 = 0, and hence the system is underactuated.

Note that OM-1 is relatively easy to control as the CMG is fully-actuated. For OM-2, control design
is a challenging task as the dynamics is highly nonlinear and under-actuated.
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Table I. Model parameters of CMG.

Index Moments Index Constants

k I J K i fv km

A 0.0902 0.0534 0.0374 1 1.1050× 10−5 0.0680
B 0.0039 0.0186 0.0200 2 1.2420× 10−5 0.1006
C 9.2087× 10−4 0.0016 0.0026 3 0.0141 0.1053
D 0.0030 0.0055 0.0374 4 0.0327 0.0606

3. PARAMETER-VARYING EMBEDDINGS AND VIRTUAL CONTROL CONTRACTION
METRICS

3.1. Control via NPV embedding

Consider nonlinear (NL) systems of the form

ẋ = f(x, u), (3)

where x(t) ∈ X ⊆ Rn is the measured state and u(t) ∈ U ⊆ Rm is the control input. The function
f is assumed to be sufficiently smooth. We define a reference trajectory (x∗, u∗) to be a forward-
complete solution of (3). A reference trajectory is said to be globally exponentially stabilizable if
there exist a state feedback controller of the form

u = κ(x, x∗, u∗), (4)

where κ : X×X×U→ U such that the closed-loop (CL) system ẋ = f(x, κ(x, x∗, u∗)) is globally
exponentially stable at (x∗, u∗), i.e.,

|x(t)− x∗(t)| ≤ Re−λt|x(0)− x∗(0)|, ∀t > 0, (5)

for some constants λ,R > 0.
We will present a systematic approach to design controllers of the form (4) that achieve globally

exponential stability for any reference trajectory (x∗, u∗) from a user-defined set B∗. If such
controllers exist, we call system (3) B∗-universally stabilizable. Furthermore, if B∗ contains all
reference trajectories, we simply call (3) universally stabilizable. Note that depending on the choice
of B∗, the task could be regulation, set-point tracking or reference tracking.

In this work, we will first construct a virtual system for (3), which is a new system of the form:

χ̇ = F (χ, x, µ), (6)

with the property of F (x, x, u) = f(x, u), ∀(x, u) ∈ X×U, where the virtual state χ(t) ∈ X and the
virtual input µ(t) ∈ U live in a copy of the state/input spaces of (3), and the external variable x(t)
is taken as the state of (3). Note that the virtual system (6) can also be understood as a nonlinear
parameter-varying (NPV) embedding of (3) since the behavior (solution set) of (3) can be embedded
into the behavior of (6) via the map F , which is called the behavior embedding principle. The
control design based on behavior embedding principle usually includes three steps: the choice of a
NPV model (6), the control synthesis based on it and the realization of the controller for the original
system (3).

Note that the NPV embedding (6) is not unique as there are various choices in terms of what
level of nonlinearity is “hidden” in the external parameter. For example, the linear parameter-
varying (LPV) form ([1, 10]) is an embedding where F is linear in χ and µ. Furthermore, the
system (3) is a trivial embedding of itself when the full nonlinearity is considered. Note that an LPV
embedding allows for simpler control synthesis but may lead to conservative results. Compared to
the linear (standard LPV) case, some recent works [8] show that the performance can be improved
by considering certain level of system nonlinearity. Here we construct the NPV embedding (6) such
that the following two conditions are satisfied:
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C1) For any trajectory x of system (3), the virtual system (6) can be universally stabilized by a
controller of the form

µ = µ∗ + κfb(χ, χ∗, x), (7)

with κfb : X×X×X→ U and κfb(χ∗, χ∗, x) = 0, ∀χ∗, x ∈ X, where (χ∗, x, µ∗) is an
admissible trajectory of (6).

C2) There exists a controller κff : X×X×U→ U such that for any reference trajectory
(x∗, u∗) ∈ B∗ and any trajectory x of system (3), (x∗, x, µ∗) is a feasible solution to (6),
where the feed-forward input µ∗ is given by

µ∗ = κff(x, x∗, u∗). (8)

The following theorem gives a NPV controller that achieves B∗-universal stability for (3).

Theorem 1 ([19])
Consider the NL system (3) and a reference set B∗. If there exists a NPV embedding (6) such that
Conditions C1 and C2 hold, then (3) is B∗-universally stable under the controller

u = κff(x, x∗, u∗) + κfb(x, x∗, x). (9)

Proof
Note that the above theorem is a special case of [19, Thm. 2]. Here we give a sketch proof as
follows. By Condition C2 and the behavior embedding principle, the trajectories (x∗, x, µ∗) and
(x, x, u) with u given in (9) are two solutions of the CL virtual system of (6) and (7). Then, x(t)
converges to x∗(t) exponentially as the CL system is contracting according to Condition C1.

Note that the NPV controller (9) contains two parts: a feedback term that achieves universal
stability for the NPV system and a feed-forward term that ensures any x∗ from B∗ is admissible to
the NPV embedding for all possible x. Note that the universal stability notion used in Condition
C1 is much stronger than the standard stability concept. Under this strong notion, control synthesis
for NPV systems can have a convex formulation similar to the LPV approach, as shown in the next
section. The necessity of Condition C2 for CL stability guarantees will be discussed in Section 3.4.

3.2. VCCM based control design

This section presents a constructive approach [19] to the universal stabilization problem in Condition
C1. For any fixed exogenous signal x generated by the original NL dynamics (3), the virtual system
(6) becomes a time-varying NL system, we can then apply the CCM-based method [14] to design a
universally stabilizing controller. In this approach, one considers a prolonged system consisting of
(6) and its differential dynamics:

δ̇χ = A(χ, x, µ)δχ +B(χ, x, µ)δµ :=
∂F (χ, x, µ)

∂χ
δχ +

∂F (χ, x, µ)

∂µ
δµ, (10)

defined along solutions (χ, µ). Here (δχ, δµ) represents the infinitesimal variations between (χ, µ)
and its neighborhood solutions. Note that we do not include variation on x as it only needs to
consider the contraction property of all virtual state trajectories χ which are generated under the
same exogenous signal x. In this differential setting, many existing tools from the linear system
theory (e.g. LMI based control design) can be applied.

A virtual control contraction metric (VCCM) M(χ, x) is a uniformly bounded matrix function
M : X×X→ Rn×n (i.e., there exist some a2 ≥ a1 > 0 such that a1I �M(χ, x) � a2I for all χ, x)
such that the following implication is true for all (χ, x, µ) ∈ X×X×U:

δχ 6= 0, δ>χMB = 0 ⇒ δ>χ (Ṁ +A>M +MA+ 2λM)δχ < 0. (11)

The existence of a VCCM implies that (6) is universally stabilizable [14]. Furthermore, we can find
a dual metric W = M−1 and a matrix function Y (χ, x) ∈ Rm×n satisfying

− Ẇ +AW +WA> +BY + Y >B> + 2λW � 0 (12)
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for all (χ, x, µ) ∈ X×X×U. Note that the above formulation is convex, but infinite dimensional, as
the decision variables M,Y are smooth matrix functions. Finite-dimensional LMI approximations
include LPV synthesis techniques [1] or sum-of-squares relaxation [33]. The pointwise LMI (12)
yields a differential state-feedback controller

δµ = K(χ, x)δχ := Y (χ, x)W−1(χ, x)δχ. (13)

Note that the above differential controller design can be treated as LPV synthesis problem since the
differential dynamics satisfies the properties of an LPV system [34].

The realization task is to construct a controller satisfying Condition C1 from the differential gain
K. One solution is the path integral based realization [14] of the local LPV controller (13):

µ = µ∗ +

∫ 1

0

K(γ(s), x)γs(s)ds︸ ︷︷ ︸
κfb(χ,χ∗,x)

(14)

where γ is a geodesic connecting χ∗ to χ with respect to the metric M(χ, x) = W−1(χ, x). The
above realization satisfies κfb(χ∗, χ∗, x) = 0, ∀χ∗, x ∈ X and µs = K(γ(s), x)γs, that is, it is an
exact realization of (13) with δµ = µs and δχ = γs along the path γ.

The realization (14) has an LPV interpretation as follows. First, we take sufficiently many sample
points of the path γ (i.e. 0 = s0 < s1 < · · · < sN = 1) such that γ(si+1)− γ(si) ≈ γs(si)∆si where
∆si = si+1 − si, as shown in Figure 2. Then, we can define a control sequence for those points by

ν(si+1) = ν(si) +K(γ(si), x)γs(si)∆si = ν(si) +K(γ(si), x)(γ(si+1)− γ(si)) (15)

with ν(s0) = µ∗. This can be understood as a series of local LPV controllers where each control
action ν(si+1) tries to make γ(si+1) exponentially converge to γ(si). Thus, it also makes γ(si+1)
exponentially converges to the reference point χ∗ = γ(s0). When the number of intermediate states
approaches infinity at each sampling point t, the sequence (15) becomes a smooth control path
ν : [0, 1]→ U defined as the path integral of local LPV controller (13):

ν(s) := µ∗ +

∫ s

0

K(γ(s), x)γs(s)ds. (16)

The controller (14) is the end point of this path, i.e. µ = ν(1). If M,K are independent of χ and µ
respectively, we can obtain an explicit controller of the form

µ = µ∗ +

[∫ 1

0

K(χ̃(s), x)ds

]
(χ− χ∗), (17)

where χ̃(s) = χ∗ + s(χ− χ∗). For the general case where M is χ-dependent, the controller (14)
usually requires solving an online optimization problem to construct a geodesic. For fast-sampling
applications, there exist some real-time approximation methods, e.g. pseudo-spectral method [35]
and gradient flows [36].

3.3. Performance design

We will also consider the performance design for the B∗-specified tracking problem under load
disturbance such as additive friction offsets, imbalance etc. As shown in Figure 3, the performance
outputs of state error and control effort are defined by z1 = W1(x− x∗) and z2 = W2(u− u∗),
respectively, where W1,W2 are stable linear weighting filters. With minor abuse of notation, we use
x to refer to the state of the augmented system consisting of G,W1 and W2. The augmented system
can be represented by the following general form

ẋ = f(x, u, d), z = h(x, u, d), (18)

where z = (z1, z2). Applying the controller (4) to (18) yields the CL system

ẋ = f(x, κ(x, x∗, u∗), d), z = h(x, κ(x, x∗, u∗), d). (19)
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Figure 3. Diagram for the NPV based performance design.

Definition 1
The CL system (19) is said to achieve L2-gain bound of α at (x∗, u∗, d∗, z∗) if for all T > 0

‖z − z∗‖2T ≤ α2‖d− d∗‖2T + β(x(0), x∗(0)), (20)

for some function β(x1, x2) ≥ 0 with β(x, x) = 0, where d∗ = 0, z∗ = 0 are the nominal values of
the disturbance and performance output, respectively. The controlled system (19) is said to have a
B∗-universal L2-gain bound of α, if (20) holds for all reference trajectories (x∗, u∗) ∈ B∗. If B∗ is
the set of all feasible reference trajectories, we simply call (19) universal L2-gain bounded by α.

Note that the B∗-universal gain condition (20) is stronger than the standard L2-gain bound, but
weaker than the incremental L2 gain bound [16]. To extend the NPV approach for the disturbance
rejection problem, we first construct a NPV virtual system of the form

χ̇ = F (χ, x, µ, d), ζ = H(χ, x, µ, d), (21)

where χ(t), µ(t), ζ(t) live in the same spaces as x(t), u(t), z(t), respectively. From the NPV
embedding principle, we have F (x, x, u, d) = f(x, u, d) and H(x, x, u, d) = h(x, u, d).

The associated differential dynamics of (21) is

δ̇χ = A(σ)δχ +B(σ)δµ +Bd(σ)δd,

δζ = C(σ)δχ +D(σ)δµ +Dd(σ)δd,
(22)

where σ = (χ, x, µ, d), A = ∂F
∂χ , B = ∂F

∂µ , Bd = ∂F
∂d , C = ∂H

∂χ , D = ∂H
∂µ and Dd = ∂H

∂d . Applying
the differential state feedback (13) to (22) gives the CL differential dynamics:

δ̇χ = (A+BK)δχ +Bdδd,

δζ = (C +DK)δχ +Ddδd.
(23)

To establish an L2-gain bound for (23), the choice of VCCM is a uniformly bounded metric
M(χ, x), satisfying

V̇ (χ, x, δχ) ≤ − 1

α
|δζ |2 + α|δd|2, (24)
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where V (χ, x, δχ) = δ>χM(χ, x)δχ can be interpreted as a differential storage function. Integration
of the above dissipation condition along the geodesics gives the universal L2-gain bound of α [16].

Similar to the case of H∞ state-feedback control for linear systems (e.g., [37]), the condition (24)
can be converted into the following pointwise LMI: W Bd (CW +DY )>

B>d −αI D>d
(CW +DY ) Dd −αI

 ≺ 0, (25)

where W = M−1, Y = KW andW = −Ẇ +AW +WA> +BY + Y >B>. Note that the above
formulation is infinite dimensional but convex in W and Y . The finite-dimensional approximation
techniques for (12) can also be applied here.

From [16, Th. 1] and the behavior embedding principle, the CL system (19) achieves an L2-
gain bound of α from d− d∗ to z − ζ∗ where ζ∗ = H(x∗, x, κff(x, x∗, u∗), d∗) satisfies ζ∗ = z∗ if
x = x∗. If there exists a constant α1 > 0 such that |ζ∗ − z∗| ≤ α1|x− x∗|, we can obtain the L2-
gain bound from d− d∗ to ζ∗ − z∗ as α1α2 where α2 is the L2-gain bound from δd to δχ of (23)
with K = YW−1. Then, the performance bound from d− d∗ to z − z∗ is given as follows.

Theorem 2 ([19])
Consider the system (18) and its NPV embedding (21). Assume that the LMI (25) is feasible and
Condition C2 holds for (21) and the reference set B∗. Then, the controller (9) achieves a B∗-
universal L2-gain bound of α̃ =

√
α2 + (α1α2)2.

Remark 1
When d = d∗, the tracking cost JT (x0, x

∗
0) :=

∫ T
0
|z(t)|2dt is bounded by

JT (x0, x
∗
0) ≤ J∞(x0, x

∗
0) ≤ α2E(γ), (26)

where γ is a geodesic joining x∗0 to x0.

3.4. Comparison with the LPV embedding approach

In LPV based state-feedback control, system (3) is rewritten into an LPV embedding of the form

ẋ = Â(σ)x+ B̂(σ)u, (27)

where σ = φ(x) is the scheduling variable such that Â(φ(x))x+ B̂(φ(x))u = f(x, u). Note that this
embedding can be understood as an LPV virtual system as follows:

χ̇ = A(x)χ+B(x)µ (28)

with A(x) = Â(φ(x)) and B(x) = B̂(φ(x)). Since the virtual system is linear in χ and µ, we can
use the VCCM based synthesis formulation (12) to construct an LPV controller µ = K(x)χ such
that the CL system χ̇ = Ac(x)χ := [A(x) +B(x)K(x)]χ is exponentially stable with respect to a
Lyapunov function V (χ) = χ>M(x)χ.

The standard LPV realization for reference tracking takes the form of

u = u∗ +K(x)(x− x∗), (29)

where (x∗, u∗) is a feasible solution of (3). The VCCM approach uses a different realization, denoted
as LPV-VCCM controller, which has the form of

u = κff(x, x∗, u∗) +K(x)(x− x∗), (30)

where the feed-forward term κ satisfies Condition C2, i.e., ẋ∗ = A(x)x∗ +B(x)κff(x, x∗, u∗). Note
that when x∗ is the origin, the standard LPV and LPV-VCCM controllers have the same realization
as u = K(x)x. For general cases, they are not identical, resulting in different CL behaviors. Stability
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of the VCCM-LPV approach can be rigorously guaranteed by Theorem 1 while the standard LPV
controller may not offer such guarantees [11, 12, 13].

Here we give a brief explanation for the loss of stability guarantees of the standard LPV controller,
see [19, Section 5.2] for details. From (28) - (29), we can derive the error dynamics as follows

ė = A(x)x+B(x)[u∗ +K(x)(x− x∗)]−A(x∗)x∗ −B(x∗)u∗

= Ac(x)e+ [A(x)−A(x∗)]x∗ + [B(x)−B(x∗)]u∗ = [Ac(x) + ∆(x, x∗, u∗)]e,

where e := x− x∗ and

∆(x, x∗, u∗)(x− x∗) = [A(x)−A(x∗)]x∗ + [B(x)−B(x∗)]u∗. (31)

Note that the term ∆ vanishes when x∗ is the origin, otherwise it is generally non-zero. Now we
look into the time derive of the Lyapunov function V (e) = e>M(x)e:

V̇ (e) = e>Qe+ e>(∆>M +M∆)e, (32)

where Q = Ṁ +MAc +AcM � −2λM . When ∆ is sufficiently large, a smaller converge rate
or even instability can be observed, see the academic example in [19, Section 5.2.2]. The above
analysis also applies to the performance design where the bound (26) may not hold if Condition C2
is not satisfied. The VCCM approach can provide stability and performance guarantees since the
feed-forward term κff satisfying Condition C2 also ensures ∆(x, x∗, u∗) ≡ 0.

4. CONTROL DESIGN FOR CMG

4.1. Fully-actuated operating mode: OM-1

Since the outer-most gimbal A is locked in this mode (i.e., (q4, q̇4) = 0 and i4 = 0), we only need
to take into account part of the CMG dynamics whose state and input are x = (q2, q3, q̇1, q̇2, q̇3) and
u = (i1, i2, i3), respectively. The fly-wheel angle q1 can be ignored since it does not directly affects
the dynamics of other states. Then, the state-space model of OM-1 can be written as follows

ẋ = A(x1, x2)x+B(x1)u :=

[
0 E
0 H(x1)−1(C(x1, x2) + Fv)

] [
x1

x2

]
+

[
0

H(x1)−1Km

]
u, (33)

where x = (x1, x2), x1 = (q2, q3), x2 = (q̇1, q̇2, q̇3) and E =
[
0 I

]
. Here H, C,Fv,Km are

constructed by eliminating the 4th row and column of the matricesH,C, Fv,Km in (1), respectively.
Note that the above dynamics are fully-actuated. For performance design, we consider the following
perturbed dynamics:

ẋ = A(x1, x2)x+B(x1)u+Dd, z =

[
W1(x− x∗)
W2(u− u∗)

]
, (34)

with D =
[
0 I

]> ∈ R5×3, where d(t) ∈ R3 is the input perturbation and the weighting matrices is
chosen as W1 = 1,W2 = 0.2.

Here we only present the details about Lyapunov design as the performance design has the same
procedure except solving a different point-wise LMI.

Standard LPV control. We consider the following LPV virtual system of (33):

χ̇ = A(x1, x2)χ+B(x1)µ (35)

where the scheduling variables satisfy q2, q3 ∈ [−π3 ,
π
3 ], q̇1 ∈ [30, 60] and q̇2, q̇3 ∈ [−1, 1]. For

Lyapunov design, the pointwise LMI (12) is solved by the grid-based method [38] with λ = 0.5 and
constant dual metric W . To be specific, the grid based approach approximates the LPV embedding
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Figure 4. LPV models and control gains defined on a rectangular grid

(35) as a state-space model array defined on a finite grid domain, as shown in Figure 4. For each
grid point xk, there is a corresponding LTI system (A(xk), B(xk)) which describes the dynamics of
(35) where the scheduling variable x is held constant. For control of CMG, we use three grid points
for each scheduling variable. Then, the pointwise LMI (12) is approximated by 243 LMIs of grid-
dependent matrices Y k ∈ R5×3 with k = 1, 2, . . . , 243 and a dual metric W ∈ R5×5. The control
synthesis problem is solved by YALMIP [39] with the solver SDPT3 [40], which takes roughly 6.5s
on MacBook Pro with Intel Core i5, 8GB memory and Matlab 2020a.

We determine the LPV control gain KLPV(x) via linear interpolation of grid-dependent gain
Kk = Y kW−1, 1 ≤ k ≤ 243. The tracking controller for the reference (x∗, u∗) takes the form of

standard LPV: u = u∗ +KLPV(x)(x− x∗). (36)

For the two conditions of Theorem 1, the above realization only satisfies Condition C1.

LPV-VCCM control. We use the same design procedures of the standard LPV approach except
the control realization. Here we choose the following controller

LPV-VCCM: u = kff
LPV(x∗, u∗, x) +KLPV(x)(x− x∗), (37)

where kff
LPV(x∗, u∗, x) := K−1

m [H(x1)ẋ∗2 + (C(x1, x2) + Fv)x∗2]. Note that Conditions C1 - C2 hold
for the above LPV-VCCM controller.

NPV-VCCM control. We choose the following NPV embedding of (33):

χ̇ = A(x1, χ2)χ+B(x1)µ, (38)

which explicitly considers the quadratic nonlinearity of x2 in the OM-1 dynamics. The nonlinearity
of x1 is hidden in the external parameter so that theB matrix is independent of χ, allowing a simpler
formulation of (12) as it becomes independent of µ [14].

The associated differential dynamics of (38) is

δ̇χ = A(σ)δχ +B(σ)δµ, (39)

where

A(σ) =

[
0 E
0 H(x1)−1(2C(x1, χ2) + Fv)

]
with σ = (x1, χ2) as the scheduling variable. For control synthesis, the operating range of σ is
chosen to be the same as the LPV case. We solve (12) via grid-based approach to obtain the
differential control gain KNPV(x1, χ2). The control realization takes the form as follows:

NPV-VCCM: u = kff
NPV(x, x∗, u∗) +

[∫ 1

0

KNPV(x1, χ2(s))ds

]
(x− x∗) (40)
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with χ2(s) = (1− s)x∗2 + sx2, where the feed-forward term is chosen as

kff
NPV(x, x∗, u∗) := K−1

m [H(x1)ẋ∗2 + (C(x1, x
∗
2) + Fv)x∗2]. (41)

Note that the above realization satisfies both Conditions C1 and C2. For online computation, the
integral in (40) is approximated by∫ 1

0

KNPV(x1, χ2(s))ds ≈ 1

N

N−1∑
i=0

KNPV(x1, x
∗
2 + i(x2 − x∗2)/N) (42)

where a large N can improve the accuracy but result in online computation delay. Here we found
that N = 10 can provide a good accuracy with minor control latency in this case.

4.2. Under-actuated operating mode: OM-2

For the operating mode OM-2, the CMG becomes an under-actuated system as there is no motor
torque acting on the gimbal A. The motion of the gimbal A is then mainly driven by the gyroscopic
effect from the disk D and the gimbal C. Specifically, when the disk D satisfies q̇1 > 0, the motion
of the gimbal C towards the direction q2 > 0 will generate a torque to drive the frame A towards the
direction q4 < 0, and vice versa. Thus, the variables q2 and q4 cannot be independently controlled,
e.g. we cannot move (q2, q4) to the region R2

+. To avoid the difficulties of constructing an embedding
satisfying Condition C1 under such constraints, we exclude q2 from the state value and treat it as a
scheduling variable. The dynamics of OM-2 can be represented by

ẋ = A(q2, x2)x+B(q2)u :=

[
0 E
0 H(q2)−1(C(q2, x2) + Fv)

] [
x1

x2

]
+

[
0

H(q2)−1Km

]
u, (43)

where x = (x1, x2) with x1 = q4 and x2 = (q̇1, q̇2, q̇4) is the state, and u = (i1, i2) the control input.
It is important to note that the scheduling variable q2 is not a free external parameter as it is affected
by the internal state q̇2 of (43). HereH, C,Fv are constructed by eliminating the 3rd row and column
of the matrices H,C, Fv in (1), respectively, and Km is obtained by removing the 3rd row and 3-4th
columns of Km.

For performance design, we consider the following model:

ẋ = A(q2, x2)x+B(q2)u+Dd, z =

[
W1(x− x∗)
W2(u− u∗)

]
, (44)

with D = [0 1 0 0]>, where d(t) ∈ R is input perturbation. The weighting matrices is chosen as
W1 = diag(5, 0.1, 1, 4) andW2 = diag(20, 10), which will be explained later in Section 5.2. Similar
to control design for OM-1, the rest of this section focuses on the Lyapunov design.

Standard LPV control. Here we consider the following LPV embedding of (43):

χ̇ = A(q2, x2)χ+B(q2)µ, (45)

where the scheduling variable (q2, x2) is chosen to be within the range of q2 ∈ [−π3 ,
π
3 ], q̇1 ∈ [30, 60]

and q̇2, q̇4 ∈ [−1, 1]. We use the grid-based method to solve the pointwise LMI (12) with λ = 0.5
and constant dual metric W . The control realization is similar to (36).

LPV-VCCM control. We use the same LPV embedding model and synthesis result from the
standard LPV control design for OM-2. The corresponding LPV-VCCM controller can be written
in the form of (37) but with a different feed-forward term

kff
LPV(x, x∗, u∗) := K†m[C(q2, x2) + Fv]x∗2, (46)

where K†m = (K>mKm)−1K>m denotes the general inverse. Since OM-2 is under-actuated, it is easy
to verify that Condition C2 is not satisfied for any feed-forward term. The choice in (46) minimizes
the residual term (31) so that CL performance loss as analyzed in Section 3.4 is reduced.
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Figure 5. OM-1 simulation results of different tracking tasks with controllers obtained from (12).

NPV-VCCM control. We choose the trivial NPV embedding (i.e. the true system itself) of (43):

χ̇ = A(q2, χ2)χ+B(q2)µ. (47)

The reason for such choice is that Condition C2 can be easily satisfied by simply using the feed-
forward term µ∗ = u∗. The NPV-VCCM control realization can be expressed as

u = u∗ +

[∫ 1

0

KNPV(q2, χ2(s))ds

]
(x− x∗), (48)

where χ2(s) = (1− s)x∗2 + sx2. Here the control gain KNPV(q2, χ2) is obtained by solving (12)
with grid-based method subject to the same operation range as the standard LPV approach.

5. DISCUSSIONS ON SIMULATION AND EXPERIMENTAL RESULTS

5.1. Operating mode OM-1

We first compare the standard LPV, LPV-VCCM, and NPV-VCCM controllers obtained from
Lyapunov design. The control tasks include tracking of set-points and a dynamic reference. The
simulation results are depicted in Figure 5 where the LPV-VCCM and NPV-VCCM controllers
have similar CL convergence rate as they both satisfy Conditions C1 and C2. The standard LPV
controller has similar convergence rate for set-point tracking but fails to track the dynamic reference.
As analyzed in Section 3.4, this is mainly due to the violation of Condition C2 for the standard LPV
controller, which yields a residual term for the error dynamics as follows

∆(x, x∗)(x− x∗) = [H(x1)−H(x∗1)]ẋ∗2 + [C(x1, x2)− C(x∗1, x∗2)]x∗2. (49)

Note that ∆ is relatively small for set-points as ẋ∗2 = 0. The standard LPV controller can still have
comparable performance to other controllers. However, it fails to converge to dynamic references as
∆ increases significantly with non-zero ẋ∗2.

We also compare the controllers from performance design for tracking of dynamic references. In
the simulation, neither exogenous input disturbance nor model uncertainty is considered. Figure 6(a)
depicts the response for a periodic reference with frequency of 0.8Hz under large initial error.
The experimental test contains both input disturbance (i.e. friction) and various type of model
uncertainties (e.g., unmodeled velocity filter and input saturation). The response for a periodic
reference with frequency of 0.2Hz and small initial error is shown in Figure 6(b). Both the
simulation and experimental results reveal that the LPV-VCCM and NPV-VCCM controller have
similar tracking performance while the standard LPV controller does not converge to the reference
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Table II. Control performance comparison in OM-1: simulation - fast-varying reference and large initial
error; experiment - slow-varying reference and small initial error.

Embedding Gain bound α Realization JT=4 (simulation) JT=20 (experiment)

LPV 0.4585 standard LPV 446.3 32.8
LPV-VCCM 19.9 19.5

NPV 0.4711 NPV-VCCM 19.3 7.7
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Figure 6. Comparison of controller obtained from (25) for OM-1: simulation - fast-varying reference and
large initial error; experiment - slow-varying reference and small initial error.

trajectory. This also can be seen from the performance comparison in Table II. Note that for the
standard LPV control design better performance can possibly be obtained using different weights
and/or a different controller structure. However, the guarantees of converging towards the reference
trajectory are always absent, while for the VCCM based designs one does have these guarantees.

5.2. Operating mode OM-2

We first simulate the CL responses of the standard LPV, LPV-VCCM and NPV-VCCM controllers
obtained from Lyapunov design. Both small and large set-point are considered for the gimbal A,
i.e., |q∗4 | = 0.36π and |q∗4 | = 0.9π. As shown in Figure 7(a) where |q∗4 | is small, due to the violation
of Condition C2, the convergence speed of the standard LPV and LPV-VCCM controllers is slower
than the NPV-VCCM approach. The performance deterioration of LPV-VCCM is less severe due to
the specific choice of the feed-forward input (46) where the residual term ∆ in (31) is minimized.

For moderate set-points |q∗4 | = 0.45π, the experimental result in Figure 8 reveals a significant
performance loss for standard LPV controller compared with the VCCM approach. This is due to
the small stability margin of the standard LPV approach and the large uncertainties presented in the
experimental setting (i.e., friction force, unmodeled velocity filter and input saturation).

When |q∗4 | further increases, unstable CL behaviors are observed for both LPV-VCCM and NPV-
VCCM controllers in simulation, as shown in Figure 7(b). The main cause is that the variable q2

exceeds the operation range for a large |q∗4 |. Those two controllers fail to keep q2 within its operation
range because the Lyapunov design does not take q2 into account. Moreover, since the variables q2

and q4 are correlated, the LPV-VCCM and NPV-VCCM controllers give fast responses to q4 by
pushing q2 towards the operation boundary, as shown in Figure 7(a).

Although the correlation between q2 and q4 causes stability issues, it also offers us a solution to
address these issues via performance design. By choosing large weighting coefficients on q4 and q̇4,

Copyright c© 2020 John Wiley & Sons, Ltd. (2020)
Prepared using acsauth.cls



15

0 5 10 15 20 25 30 35 40

30

40

50

60

Reference

standard LPV

LPV-VCCM

NPV-VCCM

0 5 10 15 20 25 30 35 40

-0.5

0

0.5

0 5 10 15 20 25 30 35 40

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40

30

40

50

60

Reference

standard LPV

LPV-VCCM

NPV-VCCM

0 5 10 15 20 25 30 35 40

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40

-2

0

2

(a) q∗4 = ±0.36π (b) q∗4 = ±0.9π

Figure 7. OM-2 simulation results of different set-points with controllers obtained from (12).
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Figure 8. OM-2 experimental result of controllers obtained from (12) for moderate set-points.

it can help to keep q2 within its operation range. We observe acceptable simulation and experimental
responses for the choice ofW1 = diag(5, 0.1, 1, 4) andW2 = diag(20, 10). LargeW2 is used to cope
with the uncertainty from input saturation.

The synthesis results (Table III) show that the universal L2-gain bounds for the LPV and NPV
embedding are very close. Figure 9(a) shows that the standard LPV controller slightly outperforms
the other two controllers in simulation. However, as shown in Figure 9(b), it leads to CL instability
in the experiment where large uncertainties are presented. The loss of robustness is mainly due to the
residual term in the Lyapunov analysis (32) for set-point tracking. This term is caused by violation
of Condition C2 as analyzed in Section 3.4. Although the LPV-VCCM controller also violates this
condition, it is more robust than the stand LPV controller as it uses a feed-forward term (46) that
minimizes the residual term. For the NPV-VCCM controller which uses the same feed-forward term
as the standard LPV approach, the difference is that it satisfies Condition C2 due to the choice of
the particular NPV embedding (47). Then, its robust stability and performance can be guaranteed
by Theorem 1 and (2) if q2 is kept within its operation range.

6. CONCLUSION

In this paper, we applied a virtual control contraction metric (VCCM) based nonlinear parameter-
varying (NPV) approach to design state-feedback tracking controllers for two (both fully- and under-
actuated) operation modes of a control moment gyroscope. This approach includes three steps: 1)
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Table III. Performance comparison with different embedding models and realizations for OM-2.

Embedding Gain bound α Realization JT=40 (simulation) JT=40 (experiment)

LPV 1.2035 standard LPV 2.1314× 104 unstable
LPV-VCCM 2.6816× 104 1.0901× 105

NPV 1.2094 NPV-VCCM 2.8506× 104 1.2753× 105
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Figure 9. OM-2 set-point tracking comparison of controllers obtained from (25).

choose a NPV embedding, 2) search for a VCCM and 3) realize the controller back into the original
state/input space. Since the NPV embedding is non-unique but essential for control synthesis and
realization, we provided two conditions for the choice of NPV models: (C1) the NPV virtual system
is universally stabilizable, and (C2) the desired reference is an admissible state trajectory of the NPV
embedded system. Condition C1 can be easily verified via a convex control synthesis formulation
similar to the conventional LPV approach. Condition C2 determines whether a control realization
can provide closed-loop stability and performance guarantees or not. As shown in simulation
and experimental comparisons, the standard LPV control realization does not ensure closed-loop
stability and performance as it does not satisfy Condition C2 while the VCCM based realization
addresses this issue by utilizing additional freedom in feed-forward control design. Future works
include dynamic controller realizations to relax Condition C2.
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34. Tóth R, Willems JC, Heuberger PS, Van den Hof PM. The behavioral approach to linear parameter-varying systems.
IEEE Transactions on Automatic Control 2011; 56(11):2499–2514.

35. Leung K, Manchester IR. Nonlinear stabilization via control contraction metrics: A pseudospectral approach for
computing geodesics. Proceedings American Control Conference, Seattle, WA, 2017; 1284–1289.

36. Wang R, Manchester IR. Continuous-time dynamic realization for nonlinear stabilization via control contraction
metrics. Accepted by American Control Conferenance, 2020.

37. Dullerud GE, Paganini F. A course in robust control theory: A convex approach, vol. 36. Springer Science &
Business Media, 2013.

38. Wu F. Control of Linear Parameter Varying Systems. PhD Thesis, University of California at Berkeley 1995.
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