
System-aware dynamic partitioning for batch
and streaming workloads?

Zoltán Zvara1, Péter G.N. Szabó3, Balázs Barnabás Lóránt2, and András A. Benczúr1

1Institute For Computer Science and Control, Eötvös Lóránd Research Network (ELKH)
{zoltan.zvara, benczur}@sztaki.hu

2 Eötvös University Budapest, Doctoral School of Informatics babuafi@inf.elte.hu
3 University of Pécs, Faculty of Engineering and Information Technology

szabo.peter@mik.pte.hu

Abstract. When processing data streams with highly skewed and non-
stationary key distributions, we often observe overloaded partitions when
the hash partitioning fails to balance data correctly. To avoid slow tasks
that delay the completion of the whole stage of computation, it is neces-
sary to apply adaptive, on-the-fly partitioning that continuously recom-
putes an optimal partitioner, given the observed key distribution. While
such solutions exist for batch processing of static data sets and stateless
stream processing, the task is difficult for long-running stateful streaming
jobs where key distribution changes over time. Careful checkpointing and
operator state migration is necessary to change the partitioning while the
operation is running.
Our key result is a lightweight on-the-fly Dynamic Repartitioning (DR)
module for distributed data processing systems (DDPS), including Apache
Spark and Flink, which improves the performance with negligible over-
head. DR can adaptively repartition data during execution using our
Key Isolator Partitioner (KIP). In our experiments with real workloads
and power-law distributions, we reach a speedup of 1.5-6 for a variety of
Spark and Flink jobs.

Keywords: Stream processing · Data skew · Partitioning

1 Introduction

In the era of Big Data, complex, parallel data analytic tools for both batch
and stream processing are essential for the industry and research. A few years
ago, the term fast data [20] arose to capture the idea that streams of data
are generated at very high rates and that these need to be analyzed quickly to
arrive at actionable intelligence [2].

Fast data is not just about processing power, but also about fast changes in
semantics. Large databases available for mining currently have been gathered

? This work was supported by project ”Integrated program for training new generation
of researchers in the disciplinary fields of computer science” (EFOP-3.6.3-VEKOP-
16-2017-00002), by the European Union and co-funded by the European Social Fund.

ar
X

iv
:2

10
5.

15
02

3v
1 

 [
cs

.D
C

] 
 3

1 
M

ay
 2

02
1



2 Zvara et al.

over months or years, and the underlying processes that generate them have
changed over time, sometimes radically [16,39]. Examples include webshop traf-
fic at Black Friday, a music recommendation system after an album release, or a
news portal during an election or a disaster. In data analysis tasks, fundamental
properties of the data can change quickly, which makes gradual manual model
adjustment procedures inefficient and even infeasible [39]. Traditional batch dis-
tributed data processing systems assume finite, static, identically distributed
datasets. By contrast, stateful stream processors need to adapt to distributions
that evolve. Processing strongly depends on the order of examples generated
from a continuous, non-stationary flow of data. Performance is hence affected by
potential statistical changes in the data called concept drift [10].

In this paper, we address the challenge of skewed key distributions that
severely degrade the automatic scaling and load balancing capabilities of the
DDPS. We concentrate on tasks with concept drift where the set of heavy keys
change in long-running stateful jobs. In such cases, it may be necessary to rebal-
ance the keys several times without stopping and restarting the job. Our goal is
to address repartitioning needs in all data stream processing, be it micro-batch,
such as Spark [36], or real streaming, such as Flink [3].

The main technical difficulty of skew mitigation is an appropriate design for
efficient integration with the underlying system. We design Dynamic Reparti-
tioning as a pluggable framework that can be integrated with most MapReduce-
based data processing frameworks. In the simplest tasks, such as counting, we
can apply Map-side combiners to reduce the load of heavy keys in the next stage.
We concentrate on more complex, stateful tasks, such as join and groupBy, where
we cannot combine operations inside the Mapper. Examples of such tasks with
high sensitivity to skewed key distribution include building an inverted search
index and maintaining order in a windowed state.

To our best knowledge, our DR system is the first to integrate into two
completely different DDPS frameworks, Spark and Flink. By adding only a few
hundred lines of DDPS-specific code, we give general APIs to interface with
key grouping, the general mechanism to process individual partitions on parallel
operator instances. We also implement an efficient replay and state migration
strategy close to the DDPS to handle keys assigned to a new reducer partition.

Our universal architecture fits both batch and stateful stream processing:
• It adapts to concept drift in the distribution in a long-running data streaming

process and introduces no additional latency, as there is no separate sampling
job or pre-aggregation stage before it makes a partitioning decision.

• It works for any operator, including complex stateful tasks, by state migra-
tion that existing streaming skew mitigation methods cannot handle.

• It reuses normal DDPS communication, thus incurs minimal overhead.

In our experiments, we obtained significant speedup in Spark and Flink tasks.
For example, for random data with Zipf distribution, we reached 1.5–2.0 times
speedup for both data streaming systems and 6 times on a web-crawl dataset.

Our main results are the following:



System-aware dynamic partitioning for batch and streaming workloads 3

• We demonstrate that after our system measures a small data portion, we can
deploy replay (batch) and state migration (stream) as universal low-overhead
solutions for mitigating data skew in modern distributed data processing
systems. We measure speedup in all batch, micro-batch, and streaming en-
vironments with stateful operators.

• We devise a low-memory-footprint sampling mechanism that, in combina-
tion with our hybrid hash function, provides better load balance with lower
communication cost than in prior works [12].

The paper is organized as follows. After related results, in Section 3 we
show the general design concept of DR. Our drift respecting balanced hash-
ing procedure is in Section 4; our low-memory distributed approximate heavy
hitter counting method is in the full paper. In Sections 5 and 6, we evaluate
the performance of our system over Spark and Flink with batch and stream
processing tasks. Our source codes and extended paper with additional de-
tails on the algorithms, implementation, and measurements are available at
https://github.com/zzvara/dynamic-repartitioning-paper.

2 Related works

Database partitioning. Results on database partitioning or sharding [30,37]
concentrate on selecting the attribute for partitioning in conjunction with the
SQL executor optimizer and use static, predetermined sampling. By contrast,
we address the lower level execution after the developer or the DDPS optimizer
selects the partitioning attribute, and we focus on the partitioning function.

Skew in MapReduce. The first related solutions mitigate reducer skew
by measuring the key distribution during the Map operation [33,13]. In general,
these methods are not appropriate for long-running streaming tasks with concept
drifts in key distribution, nor for stateful operators that require state migration
after repartitioning.

The drawback of straggler detection methods [18,19] is that the same keys
may end up in different partitions, hence they are not applicable to stateful
operators or cannot be supported without extra merging steps.

Another possibility is to obtain count estimates by a static, predetermined
sample typically run as a separate job [11,23]. These methods are best suited for
large jobs with static key distributions: even if the underlying system is for data
stream processing, frequent sampling would be too costly.

The main drawback of all Hadoop-based repartitioning techniques is either
high migration [33,18,19] or high sample counting cost [11]. In our micro-batch
or data stream skew mitigation task, both measurement and reallocation must
incur at least an order of magnitude lower cost than the micro-batch or the
stream intra-checkpoint job.

Skew in data streaming systems. Other than the very early first results
[35,1], all recent results focus on Storm [32] or S4 [26]. We are unaware of similar
results in the most popular systems, Spark [36] and Flink [3].

https://github.com/zzvara/dynamic-repartitioning-paper


4 Zvara et al.

Fig. 1. Integration of Dynamic Repartitioning with DDPS. Dashed lines represent
communication between DR and DDPS components.

The critical step for optimal balance is fission [15], the method to partition
the stream to multiple workers. Fission is cumbersome for stateful operators
such as groupBy. Most solutions are unsafe [9,14] or at least strongly restricted
in this sense. Safe data parallelism is considered in [31] without runtime data
distribution considerations. State migration cost is not considered in [17], while
previous work [12,9] details its necessity in maintaining low latency.

Several results consider data skew in Storm. Nasir et al. [25,24] perform
streaming load balancing at data sources for the first stage of computation where
the user-defined function (UDF) is an associative monoid (i.e., Map-side combine
is feasible). Other works [28,29] ignore migration cost and sampling overhead,
which are dominant costs in a long-running streaming job with frequent unpre-
dictable concept drifts.

The experiments in [8] show that Storm (that just recently added support
for stateful operations [32]) execution becomes faster despite a relatively costly
optimization algorithm and a state migration process that relies on Zookeeper
for worker synchronization. However, Zookeeper based coordination is too costly
for Spark and Flink streaming execution that allows frequent repartitioning.

Related work on Storm uses external databases to store state, thus limited
to simple word-count cases. Nevertheless, we make the best effort to enumerate
and, as baselines, partly reconstruct the ideas in publications for S4 and Storm
repartitioning. Experimentally comparing these systems against Spark and Flink
is beyond the scope of this paper.

Unlike our solution, which dynamically repartitions stateful operators on-
the-fly without state migration, most of the above results either find a balanced
partitioning at the beginning of the distributed job [8,28,29] or repartition by
reallocating keys, and do not apply to stateful operators [25,24,9,14].

Partitioning and top-k approximation. A first result in the area of iden-
tifying heavy hitters [7] lists simple heuristics for partitioning and load schedul-
ing. Algorithms such as low space heavy hitter identification [22] were designed
for data streams.

In our experiments, sketch algorithms and their variants are either only ac-
curate for highly skewed data or consume unacceptable amounts of memory. We



System-aware dynamic partitioning for batch and streaming workloads 5

use Lossy Counting [21] and SpaceSaving [22], two key results in finding frequent
items in data streams, as a baseline method in our experiments.

Gedik [12] formalizes and develops partitioning functions for stateful oper-
ators based on a combination of consistent and explicit hashing. The author
assumes a theoretical general-purpose stream processing system and considers
the trade-off between migration cost and load balance. Our hash functions are
closest to [12], but provide a better load balance as shown in our experiments.

3 Architecture

DR is a standalone library written in Scala, which is pluggable for any DDPS.
Generic components are implemented in 2,000 lines of code, while the patches
for Flink (an asynchronous system) and Spark (a strictly synchronous system)
are under 500 lines each. Our architecture is shown in Figure 1. The Dynamic
Repartitioning Master (DRM) is our central authority, integrated into the Driver
component of the DDPS. Dynamic Repartitioning Workers (DRW) are parts of
the DDPS Workers.

There is a fundamental difference between the batch and the streaming oper-
ation in the timing and the cost of repartitioning. When we repartition a batch
job, we may have to buffer the Mapper output after processing and use the new
partitioning function as soon as it becomes ready. Ideally, we intervene while
the data is still in the buffers and before it is evicted to the disk at the Map-
pers. Since during eviction, the system distributes data by using the actual hash
partitioner, changing the partitioning function after data has been written to
disk requires recomputing partition assignments (replay) using the new parti-
tioner. Hence a batch job is repartitioned only in an early stage of the execution
so that the cost of replay does not exceed the expected gains of better par-
titioning. Repartitioning actions in streaming can be taken at checkpoints or
micro-batch boundaries. In stateful applications, repartitioning incurs state mi-
gration, hence the gains for repartitioning should exceed state migration costs.
To ensure that a partitioner construction is useful in the long run, we keep a
record of past histograms.

We implemented DR for Spark by injecting the partitioner into the job di-
rected acyclic graph (DAG) that describes the streaming application. Due to the
micro-batch nature of Spark Streaming, it uses the new partitioner when it gen-
erates micro-batches from the streaming DAG. Spark performs state migration
automatically in the shuffle phase. In our Flink implementation, we make use of
the Asynchronous Distributed Snapshot mechanism [3] used for fault tolerance.

4 The Key Isolator Partitioner

The default partitioning option in Flink and Spark is the Uniform Hash Parti-
tioning (UHP), which yields suboptimal performance in case of data skew. The
naive solution of routing keys to partitions explicitly requires a large in-memory
routing table and involves computationally heavy bin packing.



6 Zvara et al.

Algorithm 1 KIPUpdate (KI,Hash, H,Hist, N, ε)

1: maxload← max(1/N,Hist[1].freq) + ε . allowed level
2: hostload← (1−

∑
i
Hist[i].freq)/H . average host load

3: for all keys k with frequency f in Hist do . heavy keys
4: p← KI(k)

. try to place k into the same partition as before
5: if the load of partition p is less than maxload− f then
6: keep k in p; increase load of p by f ; continue

7: p← Hash(k) . Try the hash location
. to reduce potential migration later

8: if the load of partition p is less than maxload− f then
9: put k in p; increase load of p by f ; continue

10: Put k explicitly to lowest current load partition

11: for all partitions p do
12: Compute the load by adding up the relative frequency of the heavy keys in p
13: Add hostload times the number of hosts mapped to p by KI to the load

14: for all partitions p with load more than maxload do
15: Move hosts from p to the first partitions with load below maxload−hostload

16: return the new partitioning function

Our method, Key Isolator Partitioner (KIP) is a heuristic combination
of an explicit hashing for the heaviest keys and a weighted hash partitioner for
filling up the partitions to roughly the same load. For a repartitioning decision,
we also try to make minimal modifications to the previous partitioner to reduce
migration costs. This is done by reusing the previous function and rerouting only
those heavy keys that would cause imbalance.

In our method, first, we need a distributed top-k histogram computation.
While several sampling and heavy hitter identification methods exist in the lit-
erature [12], when experimenting with these methods, we observed either high
memory footprint or low performance in improving partitioning balance. For this
reason, we implemented a counter-based heuristic algorithm that we describe in
our extended paper.

We describe our method to update an existing KIP and prepare for a potential
repartitioning in Algorithm 1. Let N be the number of partitions and KI be the
KIP in the previous stage, which maps the keys to one of the N partitions.
For keys with no explicit routing, the partition is defined by our weighted hash
partitioner Hash, which first maps the keys to one of the H hosts by uniform
hashing, and then maps the hosts to partitions.

First, we order the approximate heaviest keys by decreasing frequency in a
histogram object Hist. Hist is obtained by merging the local histograms that
the workers compute during sampling. We only gather the top B = λN keys
where λ is a global parameter. The i-th element of Hist consists of a key and its
relative frequency estimate, Hist[i].key and Hist[i].freq. Frequency is measured
as the fraction of all input, that is, the key frequencies, including also those not



System-aware dynamic partitioning for batch and streaming workloads 7

in Hist, add up to 1. The ideal maximal load of the partitions with slack ε is
maxload = max(1/N,Hist[1].freq) + ε.

In Algorithm 1, we first try to keep a heavy key j in its current partition to
minimize migration costs. Next, we try Hash(j), the default location for non-
heavy keys, which will be the future location of j in case it becomes non-heavy. If
both of these partitions are full, i.e., if adding key j to either of these partitions
increases their current load above maxload, we resort to assigning j to the
lowest current load partition.

Next, we deal with all other keys. These keys are handled by the weighted
hash partitioner Hash, which first maps the keys to one of the H � N hosts and
then maps the hosts to partitions. Given no histogram information, we assume
that the hosts form a balanced partition of the low frequency keys. The average
load of a host, hostload, is computed by adding up the frequency estimates of
the heavy keys and dividing the remaining frequency by the number of hosts H.
Formally, hostload = (1−

∑
i Hist[i].freq)/H. Finally, the hosts are rerouted as

necessary by greedy bin packing.

5 Evaluation

First, we analyze our hashing technique, and then we perform speedup exper-
iments of DR in Spark and Flink streaming. We ran component tests on Intel
i7 processors with sample data preloaded into the memory and system tests on
on-prem cloud environments. We use two datasets, LFM of 4M tags of LastFM
music listening records, and ZIPF of 4M element parametrized Zipfian datasets
of 100K distinct items, with an exponent between 1–3.

Evaluation of hashing techniques We measured and compared the running
time, load balance, and state migration cost of KIP to UHP, to our implemen-
tation of partitioning methods Readj, Redist, and Scan from [12], and to parti-
tioning strategy Mixed from [9]. We set λ = 2 for KIP. We run Readj, Redist,
and Scan with linear resource functions, balance constraints θs = θc = θn = 0.2
and utility function U = ρ+ γ, and Mixed with the same histogram size bound
(Amax) as for KIP and with load balance upper bound θmax obtained through
an extra optimization loop. As data, we use LFM and ZIPF of exponent 1.

In Figure 2, we investigate load imbalance (the fraction of the maximal load
and the average load) over ZIPF as an average of 100 independent experiments.
We compare different partitioning methods, as well as KIP with varying global
histogram scale factor λ ∈ {1, 2, 3, 4}. The load imbalance of Hash and Readj
grows linearly with the number of partitions; Redist and Scan performs very
similarly to Readj. Imbalance grows much slower for Mixed and stays below 1.2
for KIP. Mixed requires a user-supplied load balance upper bound θmax that
we optimized in advance. KIP reaches better load balance for higher values of
λ. The more heavy keys handled by explicit hashing, the more control KIP has
over load balance.



8 Zvara et al.

Fig. 2. Effect of parallelism on load imbalance over ZIPF of exponent 1 with different
partitioning methods (left), and with KIP with varying global histogram scale factor
λ (right).

Fig. 3. Load imbalance (left) and relative state migration (right) over a stream of LFM
consisting of 20 batches, each of size 100K. Update 0 marks the first replacement of
UHP.

In the last two experiments in Figure 3, we compare load imbalance and
relative state migration of KIP to Scan and Readj over LFM. We also plot
the load imbalance of Hash for comparison. We omit Redist as it yields very
similar results to Scan. We split LFM into 20 batches of size 100K, and used 20
partitions. States were assumed to be linear in the size of the corresponding key-
groups and were kept in a sliding state window of size 5. We forced a partitioner
update on each batch. We averaged measurements over 10 iterations, replacing
keys with randomly generated strings in each round. All partitioning methods
started with a load imbalance of around 2.0 and a relatively heavy migration
caused by switching from Hash to one of the dynamic partitioners.

We conclude that KIP improves load imbalance by 41%, 29%, and 26% com-
pared to Hash, Scan, and Readj, respectively, and handles fluctuations in key
distribution much better than the other methods. In terms of state migration,
KIP outperforms Readj by a factor of 4 and yields a practically acceptable mi-
gration cost, while maintaining consistently lower load imbalance. Scan, which
explicitly optimizes migration, performs even better at the cost of load balance.

Our measurements in our extended paper show benefits of KIP in other areas,
for example, we confirm that the cost of KIP update is significantly less than that
of the other partitioning methods. The detailed parameters of our KIP methods
are found in our source code.



System-aware dynamic partitioning for batch and streaming workloads 9

Fig. 4. Load imbalance (left) and total Spark processing time (right) for 10M ZIPF
records.

Evaluation of Apache Spark DR We experimented with Spark 2.4.0 over a
4-node cluster running Hadoop, with each node being equipped with 10 cores.
We generated Zipfian distributions using exponents between 1 and 2. We set
the number of keys to be 1M and used the MurmurHash3 algorithm to generate
word tokens, including a payload of a timestamp. In a Spark Streaming program,
we group events by tokens, then sort them by their timestamp, and feed them
to an NLP model, a common operation that requires key-grouping.

In Figure 4, we show how load balance can be improved with DR, using
35 partitions and an incoming data rate of 50,000 (0.4 GB) per partition. We
also show the time required to process 10M ZIPF records, including the Mapper
and Reducer phases as well as any scheduling overhead that comes with over-
partitioning. We observe that DR is beneficial for the moderate values of the Zipf
exponent. For an exponent near 1, DR is not required since the key distribution
is not significantly skewed, and not even the partitions of the heaviest keys
become stragglers. On the other end, for very large exponents, the heaviest key
dominates the processing time and other keys randomly hashed to the partition
of the heaviest key make little difference in the relative running time of the
straggler partition.

Figure 5 shows how DR compares to over-partitioning with ZIPF data of
exponent 1.5. The optimal number of partitions for a resource configuration dif-
fers in the case of Spark with and without DR. Over-partitioning is beneficial
in both cases; DR performs best when the number of partitions is equal to 2–3
times the number of available compute slots. For DR, a higher number of parti-
tions incurs more overhead, while without DR, processing time keeps improving.
Nevertheless, we cannot reach the speedup of DR by over-partitioning.

Evaluation of Apache Flink DR Measurements of our Flink integration
were conducted on a 15-node Dockerized cloud environment with recommended
and default configuration, including network buffers. We used Flink 1.3 with
14 TaskManagers, each with 4 CPUs and 16 GB RAM, that is, all available
resources used.



10 Zvara et al.

Fig. 5. Processing time (left) and load imbalance (right) of Spark with and without
DR, over ZIPF data of exponent 1.5, as the function of the number of partitions.

Fig. 6. (Left) Relative increase in Flink throughput achieved by DR, with parallelism
14 and 28. (Right) Improvement in running time achieved by Flink with DR compared
to Flink without DR, with parallelism 28.

We measured the effectiveness and the overhead of DR on Zipfian distribu-
tions with 1M keys. We used a reducer that simply stores a count for each key
as task state. We experimented with an under-utilized cluster of 14 sources and
reducers and a fully utilized cluster of 28 sources and reducers. Each source gen-
erated 57,500 (0.5 GB) records per second. Note that overpartitioning in Flink
is not beneficial. Flink deploys long-running tasks that cannot be scheduled one
after another. Hence they compete for resources, which results in performance
degradation. For this reason, we omit the Flink counterpart of the measurements.

Figure 6 shows the relative increase in throughput over Zipfian distributions
of different exponents with and without DR. Each measurement represents a
throughput measured in the first 10 minutes of the Flink job. Figure 6 shows the
processing time for 10M records with 28 executors. Similar to Spark in Figure 4,
we observe improvement for the moderate exponents.

6 Web crawl load balancing

In this section, we describe a real-world use case of Dynamic Repartitioning. We
show how DR can improve fetch list partitioning in a web crawl. As we show, in
several cases, web crawl data has to be processed and partitioned by web hosts.



System-aware dynamic partitioning for batch and streaming workloads 11

Fig. 7. Record balance (left) and processing time (right) of Spark with and without
DR, over web crawl data in the 7th round of crawl.

Fig. 8. (Left) Speedup of Spark DR of consecutive crawl rounds compared to Spark
hash. (Right) Processing time of Spark with and without DR, over the NER streaming
application.

The amount of information from hosts has a heavily skewed distribution, which
is not necessarily known before starting the crawl.

Next, we show two applications: first, we improve on the hash partitioned
web page fetching and processing tasks, and then we perform host-level content
analysis by using named entity recognition.

Balancing in distributed crawl ordering We perform web fetching and link
extraction partitioned by domains. The reason for domain partitioning stems
from the crawler politeness requirements [27]. After fetching the elements of a
web page, a typically complex step is to process the content to extract text
and links. Our crawler implementation maintains a static pool of web browser
drivers to fully load dynamic pages of news articles that require JavaScript. This
involves heavy processing with an a priori unpredictable heavy-tailed resource
distribution depending on the content management technology [5].

In our experiment, we injected a list of 64 news sites into the crawler, and
to facilitate faster experiments, allowed depth one to crawl domains referenced
from the initial domain pool, but no further. Results are similar with increased
depth. In each crawl round, we partitioned the fetch lists by host and assigned



12 Zvara et al.

a web browser instance to load websites dynamically. Then, we used wrapper
induction techniques to extract articles.

We measured performance with an 8-node Kubernetes cluster running 8
Spark executors, each with 8 cores and 50 GB of memory. Figure 7 shows how
Spark DR improves the balance of fetch lists across all partitions. The running
time of the final 7th crawl round (processing of 230 GB of data) is significantly
reduced compared to partitioning with Spark’s uniform hashing. Figure 8 shows
how DR improves crawl speed in consecutive crawl rounds. On the 7th round,
the time required to crawl and parse articles has been reduced from 69.1 to 24.9
minutes.

Entity recognition in web domains In the second use case, we partition the
result of a web crawl by hosts for web domain classification. This typical task
reaches better accuracy than single page-level classification [6,4], since pages from
the same host are typically strongly inter-related, sometimes even dependent
on each other. By partitioning, we are also capable of domain adaptation by
processing and analyzing a large interrelated set of documents in one executor.

In our experiment, we feed the web crawler output into a Spark Streaming
application. Then a NER model [34] is used to calculate frequent mentions of the
recognized entities in 60-minute time windows. Here, we partition by host, since
NER tools on the web require domain adaptation [38]. Calculating frequent
mentions requires sorting of entities within the time window and a mutable
update of state per domain key. NLP tools such as named entity recognition
are sensitive to the length of text, therefore certain domains require increased
processing time.

Experiments were conducted on a Kubernetes cluster of 6 nodes, running 6
Spark executors, each with 6 cores and 15 GB of memory. Figure 8 shows the time
required to process a reference of 40,000 records (0.9 GB). In our experiments,
DR was capable of speeding up the completion of the NER task by a factor of
6 for all partition configurations. The reason for strong gains compared to the
simple counting tasks is that the map-reduce tasks require heavy processing with
large states. Such tasks, in general, can greatly benefit from DR.

Conclusions We described our design and architecture of a lightweight dy-
namic repartitioning, which is universally adaptable for distributed batch and
stream data processing systems. The novelty of our system lies in the possi-
bility to handle long-running stateful streaming tasks as well. By interacting
with the underlying system components, our system approximately computes
key histograms, heuristically determines adaptive partitioning strategies on the
fly, and injects the new partitioner either between micro-batches or at stream-
ing checkpoints. We measured our solution over Spark and Flink. We reached
a 1.5 to 6-times speedup with synthetic power-law key distributions and with
real Spark-based web crawling tasks. Our source codes and extended paper are
available at https://github.com/zzvara/dynamic-repartitioning-paper.

https://github.com/zzvara/dynamic-repartitioning-paper


System-aware dynamic partitioning for batch and streaming workloads 13

References

1. Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang,
J.H., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., et al.: The design of the
borealis stream processing engine. In: CIDR. vol. 5, pp. 277–289 (2005)

2. Bifet, A., Kirkby, R., Pfahringer, B.: Data stream mining: a practical approach.
Tech. rep., University of Waikato (2011)

3. Carbone, P., Fóra, G., Ewen, S., Haridi, S., Tzoumas, K.: Lightweight asynchronous
snapshots for distributed dataflows (2015)

4. Castillo, C., Donato, D., Gionis, A., Murdock, V., Silvestri, F.: Know your neigh-
bors: Web spam detection using the web topology. In: Proc. 30th SIGIR. pp. 423–
430. ACM (2007)

5. Choudhary, S., Dincturk, M.E., Mirtaheri, S.M., Moosavi, A., Von Bochmann,
G., Jourdan, G.V., Onut, I.V.: Crawling rich internet applications: the state of
the art. In: Proc. of the 2012 Conference of the Center for Advanced Studies on
Collaborative Research. pp. 146–160. IBM Corp. (2012)

6. da Costa Carvalho, A.L., Chirita, P.A., De Moura, E.S., Calado, P., Nejdl, W.:
Site level noise removal for search engines. In: Proc. 15th WWW. pp. 73–82. ACM
(2006)

7. DeWitt, D.J., Naughton, J.F., Schneider, D.A., Seshadri, S.: Practical skew han-
dling in parallel joins. UW-Madison. Computer Sciences Department (1992)

8. Ding, J., Fu, T.Z., Ma, R.T., Winslett, M., Yang, Y., Zhang, Z., Chao, H.: Op-
timal operator state migration for elastic data stream processing. arXiv preprint
arXiv:1501.03619 (2015)

9. Fang, J., Zhang, R., Fu, T.Z., Zhang, Z., Zhou, A., Zhu, J.: Parallel stream pro-
cessing against workload skewness and variance. arXiv:1610.05121 (2016)

10. Gama, J., Sebastião, R., Rodrigues, P.P.: On evaluating stream learning algo-
rithms. Machine learning 90(3), 317–346 (2013)

11. Gates, A., Dai, J., Nair, T.: Apache pig’s optimizer. IEEE Data Engineering Bul-
letin 36(1), 34–45 (2013)

12. Gedik, B.: Partitioning functions for stateful data parallelism in stream processing.
The VLDB Journal 23(4), 517–539 (2014)

13. Gufler, B., Augsten, N., Reiser, A., Kemper, A.: The partition cost model for load
balancing in mapreduce. In: Cloud Computing and Services Science, pp. 371–387.
Springer (2012)

14. Hidalgo, N., Wladdimiro, D., Rosas, E.: Self-adaptive processing graph with oper-
ator fission for elastic stream processing. JSS 127, 205–216 (2017)

15. Hirzel, M., Soulé, R., Schneider, S., Gedik, B., Grimm, R.: A catalog of stream
processing optimizations. ACM Computing Surveys (CSUR) 46(4), 46 (2014)

16. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In:
Proc. 7th SIGKDD. pp. 97–106. ACM (2001)

17. Katsipoulakis, N.R., Labrinidis, A., Chrysanthis, P.K.: A holistic view of stream
partitioning costs. Proc. VLDB 10(11), 1286–1297 (2017)

18. Kwon, Y., Balazinska, M., Howe, B., Rolia, J.: Skewtune: mitigating skew in mapre-
duce applications. In: Proc. SIGMOD. pp. 25–36. ACM (2012)

19. Kwon, Y., Ren, K., Balazinska, M., Howe, B., Rolia, J.: Managing skew in hadoop.
IEEE Data Engineering Bulletin 36(1), 24–33 (2013)

20. Lam, W., Liu, L., Prasad, S., Rajaraman, A., Vacheri, Z., Doan, A.: Muppet:
Mapreduce-style processing of fast data. Proc. VLDB 5(12), 1814–1825 (2012)



14 Zvara et al.

21. Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In:
Proc. of the 28th international conference on Very Large Data Bases. pp. 346–357.
VLDB Endowment (2002)

22. Metwally, A., Agrawal, D., El Abbadi, A.: Efficient computation of frequent and
top-k elements in data streams. In: International Conference on Database Theory.
pp. 398–412. Springer (2005)

23. Metwally, A., Faloutsos, C.: V-smart-join: A scalable mapreduce framework for
all-pair similarity joins of multisets and vectors. Proc. VLDB 5(8), 704–715 (2012)

24. Nasir, M.A.U., Morales, G.D.F., Garcia-Soriano, D., Kourtellis, N., Serafini, M.:
Partial key grouping: Load-balanced partitioning of distributed streams. arXiv
preprint arXiv:1510.07623 (2015)

25. Nasir, M.A.U., Morales, G.D.F., Kourtellis, N., Serafini, M.: When two choices are
not enough: Balancing at scale in distributed stream processing. In: 2016 IEEE
32nd International Conference on Data Engineering. pp. 589–600. IEEE (2016)

26. Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: Distributed stream computing
platform. In: 2010 IEEE ICDMW. pp. 170–177 (2010)

27. Olston, C., Najork, M., et al.: Web crawling. Foundations and Trends® in Infor-
mation Retrieval 4(3), 175–246 (2010)

28. Rivetti, N., Anceaume, E., Busnel, Y., Querzoni, L., Sericola, B.: Proactive online
scheduling for shuffle grouping in distributed stream processing systems. Ph.D.
thesis, LINA-University of Nantes; Sapienza Università di Roma (Italie) (2015)

29. Rivetti, N., Busnel, Y., Mostéfaoui, A.: Efficiently summarizing data streams over
sliding windows. In: 2015 IEEE NCA. pp. 151–158 (2015)

30. Schneider, D.A., DeWitt, D.J.: A performance evaluation of four parallel join al-
gorithms in a shared-nothing multiprocessor environment. In: Proc. SIGMOD. pp.
110–121 (1989)

31. Schneider, S., Hirzel, M., Gedik, B., Wu, K.L.: Safe data parallelism for general
streaming. IEEE Transactions on Computers 64(2), 504–517 (2015)

32. Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J.M., Kulkarni, S.,
Jackson, J., Gade, K., Fu, M., Donham, J., et al.: Storm @ Twitter. In: Proc.
SIGMOD. pp. 147–156 (2014)

33. Vernica, R., Balmin, A., Beyer, K.S., Ercegovac, V.: Adaptive mapreduce using
situation-aware mappers. In: Proc. of the 15th International Conference on Ex-
tending Database Technology. pp. 420–431. ACM (2012)

34. Whitelaw, C., Kehlenbeck, A., Petrovic, N., Ungar, L.: Web-scale named entity
recognition. In: Proc. of the 17th ACM conference on Information and knowledge
management. pp. 123–132. ACM (2008)

35. Xing, Y., Zdonik, S., Hwang, J.H.: Dynamic load distribution in the borealis stream
processor. In: Proc. ICDE. pp. 791–802. IEEE (2005)

36. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster
computing with working sets. HotCloud 10(10-10), 95 (2010)

37. Zhang, H., Chen, G., Ooi, B.C., Tan, K.L., Zhang, M.: In-memory big data man-
agement and processing: A survey. IEEE Transactions on Knowledge and Data
Engineering 27(7), 1920–1948 (2015)

38. Zhu, J., Uren, V., Motta, E.: Espotter: Adaptive named entity recognition
for web browsing. In: Biennial Conference on Professional Knowledge Manage-
ment/Wissensmanagement. pp. 518–529. Springer (2005)

39. Žliobaite, I., Bifet, A., Gaber, M., Gabrys, B., Gama, J., Minku, L., Musial,
K.: Next challenges for adaptive learning systems. ACM SIGKDD Explorations
Newsletter 14(1), 48–55 (2012)


	System-aware dynamic partitioning for batch and streaming workloads

