

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Boyle, Stephen J

Title:
Drone cinematography and the generation of environment models for flight planning

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.

Drone Cinematography and the
Generation of Environment
Models for Flight Planning

STEPHEN JOHN BOYLE

Department of Electrical and Electronic Engineering

UNIVERSITY OF BRISTOL

A dissertation submitted to the University of Bristol in accordance with
the requirements of the degree of Doctor of Philosophy in the Faculty of
Engineering.

April 2022

Word Count: 41000

Abstract

The use of drones (UAV’s) as a camera platform has become widespread
in media production, finding application in a diverse range of genres such
as natural history, sport, news and movies. This thesis examines various
aspects of their use for the coverage of live events such as sports.

The techniques and heuristics used in standard cinematography that are
still applicable when filming from a drone are reviewed. Current drone cin-
ematography practice is examined and its limitations for live filming are
discussed. A novel shot hierarchy and taxonomy suitable for directing and
controlling a multiple drone platform to film sports is proposed. A method-
ology to determine suitable drone camera shot parameters (e.g. drone height
or speed), using the subjective testing of simulated camera shots (created
using Unreal Engine), is discussed and the results obtained from testing a
representative set of the proposed shot types are given.

For successful filming, preparation using a flight planning or training ap-
plication is an important requirement and for this to be effective the software
should incorporate a realistic model of the environment at the filming loca-
tion. A method of creating these 3D models using photogrammetry, with
image data obtained from existing resources such as Google Earth, is inves-
tigated. The theory behind the photogrammetry reconstruction process is
discussed. In cases where images for photogrammetry are not available, they
can be generated using a drone scan of the filming location. An outline of
current state of the art research in the optimization of image capture scans
for photogrammetry is given. A system built using the Python development
environment in Blender, designed to optimize scanning parameters given a
basic 3D model of an environment, is described. The system produces a met-
ric value for the expected quality of photogrammetric reconstruction from
a scan by calculating the accumulated coverage of surface points over all
images. The approach is evaluated to determine the variation in the recon-
struction metric with scan parameters and the results compared to those
obtained using simulated scans created in Unreal Engine. The optimum
height and camera angle calculated using the system were established to be
largely independent of other parameters such as the focal length and the
track separation distance. Using a methodology to adjust the parameters
of the coverage model to take into account photogrammetry image overlap
requirements, it has been found possible to calibrate the system so that the
calculated optimum height and camera angles were comparable with the
actual results obtained through photogrammetry (using scans simulated in
Unreal Engine). The developed system provides significant benefits for the
optimization of photogrammetry for 3D environment model creation.

Finally, conclusions are given on the benefits of simulation for camera
shot design, and the use and optimization of photogrammetry for 3D envi-
ronment model creation.

iii

Author’s Declaration

I declare that the work in this dissertation was carried out in accordance
with the requirements of the University’s Regulations and Code of Practice
for Research Degree Programmes and that it has not been submitted for
any other academic award. Except where indicated by specific reference in
the text, the work is the candidate’s own work. Work done in collaboration
with, or with the assistance of, others, is indicated as such. Any views
expressed in the dissertation are those of the author.

iv

Acknowledgements

I would like to thank my academic supervisor, Professor David Bull for
his help, support and advice throughout the PhD. I worked closely with
David and Dr Fan Zhang as part of the team on the MultiDrone project
and they have contributed to many aspects of the work described in this
thesis. I would also like to thank Matt Newton, Tao Xu and Yingfei Yu
whose project work has produced important insights into the optimization
of drone scans for photogrammetry and has greatly informed my own work
in this area.

v

Contents

List of Tables ix

List of Figures x

List of Abbreviations xiii

1 Introduction 1
1.1 Context . 1
1.2 Filming using Autonomous and Multiple Drone Systems . . . 1
1.3 Research Motivations . 3
1.4 Aims and Contribution . 4
1.5 Structure of Thesis . 6

2 Drone Cinematography 8
2.1 Standard Cinematography Techniques 8

2.1.1 Standard shot types 8
2.1.2 Camera Angles . 9
2.1.3 Rules and Heuristics of Cinematography 9

2.2 Current Filming Practice for Drone Cinematography 12
2.3 Previous Work on Drone Cinematography 12
2.4 Other Related Work . 16
2.5 Summary . 18

3 Shot Specifications for Filming Sports using a Drone Plat-
form 19
3.1 Limitations of Current Practice 19
3.2 Advantages and Potential of Drone Cinematography 19
3.3 Limitations of Standard Shot Types for Filming with Drones 21
3.4 Revised Shot Types and Grammar for Filming using a Single

Drone . 22
3.5 Revised Grammar for Multiple Drone Shots 24
3.6 Parametric Shot Definitions 25

3.6.1 Establishing Shot . 26
3.6.2 Chase/Lead Shot . 26
3.6.3 Flyby Shot . 27
3.6.4 Elevator/Ascent and Descent Shot 28
3.6.5 Orbit Shot . 28

3.7 Summary . 29

4 The Determination of Optimum Shot Parameters using
Subjective Testing 30
4.1 Simulation of Shot Scenarios using Unreal Engine 31

vi

4.1.1 Modelling Scenarios and Camera Shots using Unreal
Engine . 32

4.2 Subjective Testing of Camera Shots for the MultiDrone System 33
4.2.1 Methodology . 34
4.2.2 Pilot Study . 35
4.2.3 Subjective Testing of Camera Shots to Determine Op-

timum Drone Height and Speed 40
4.2.4 Validation using Real Footage 50

4.3 Adapting Optimum Parameter Values for Specific Filming
Requirements . 52

4.4 Summary . 54

5 Modelling Real-World Environments for Flight Planning
and Training 55
5.1 Existing Drone Flight Planning and Training Software 56
5.2 Data Sources for Environment Models 57

5.2.1 Satellite and Aerial Imagery 58
5.2.2 LIDAR . 59
5.2.3 3D Scanning . 60
5.2.4 Close Range, High Resolution Imagery 60

5.3 Creating Landscapes in Unreal Engine 61
5.3.1 The Unreal Engine Landscape Object 61
5.3.2 Importing Landscape Data from a Heightmap File . . 62

5.4 Environment Model Creation using Photogrammetry 64
5.4.1 Theory of Photogrammetry 64
5.4.2 Evaluation of Photogrammetry Software 72
5.4.3 3DF Zephyr Workflow 73
5.4.4 Recomendations for Photogrammetry Image Capture . 76
5.4.5 Common Problems with Models Reconstructed using

Photogrammetry . 76
5.4.6 Example Environment Models Created using Photogram-

metry from Google Earth Image Data 77
5.5 Viability of 3D Environment Model Production 80
5.6 A Simulation Environment for Drone Cinematography 81
5.7 Summary . 85

6 Optimization of Scanning Flight Paths for Photogrammetry 86
6.1 Related Work on the Optimization of Drone Flights for Pho-

togrammetry . 86
6.2 Variation of Model Reconstruction Quality with Image Number 91
6.3 Variation of Model Reconstruction Quality with Scanning

Overlap Parameters . 93
6.4 Variation of Reconstruction Quality with Camera Angle . . . 97

vii

6.5 Modelling Constant Height, Fixed Camera Angle Scans for
Photogrammetry Image Capture 101
6.5.1 Benefits of Simulation and Selection of the Program-

ming Environment . 102
6.5.2 Program Structure . 103
6.5.3 Program Testing and Response to Changes in Scan

Parameters . 107
6.5.4 Comparison of Estimated Reconstruction Quality with

Results from Actual Photogrammetry 114
6.5.5 Analysis of the View Coverage Reconstruction Metric 118
6.5.6 Configuration of View Coverage Parameters for a Scan 125
6.5.7 Choice of Scan and Camera Parameters 130
6.5.8 Improving the Reconstruction Metric 132

6.6 Summary . 134

7 Conclusions and Future Work 135
7.1 Research Summary . 135
7.2 Research Conclusions . 137
7.3 Future Work . 138

Appendices 140

A Shooting Requirements for MultiDrone 140

B Recommended Drone Parameters for Typical Shot Types
in a Cycling Scenario 143

C Post Processing of Photogrammetry Models using Blender144
C.1 Removing Isolated Mesh Components 144
C.2 Smoothing Flat Surfaces . 145
C.3 Directly Modifying the Object Mesh 147
C.4 Modifying Surface Textures in Texture Paint Mode 150
C.5 Editing the UV Map . 151

D Scan Optimization Class Methods and Program Functions 155
D.1 Class Methods . 155

D.1.1 Class Model Object 155
D.1.2 Class Camera . 155
D.1.3 Class Hemisphere . 156

D.2 Main Program Functions . 156

References 159

viii

List of Tables

1 The Revised Shot Types for MultiDrone 23
2 Scenarios for the Subjective Tests of the Pilot Study 36
3 Scenarios and Parameters for the Phase I Drone Height Tests . 42
4 Scenarios and Parameters for the Phase II Drone Speed Tests . 47
5 Scenarios and Parameters for the Validation Tests 50
6 Effect of Model Complexity and Scan Parameters on Metric

Calculation Time . 107
7 Effect of Changes to the Environment Model on the Recon-

struction Metric . 113
8 Effect of Parameter t0 on the Calculated Optimum Height . . . 129
9 Shot Types and Framing for MultiDrone 140
10 Recommended Drone Parameters for Typical Shot Types in a

Cycling Scenario . 143

ix

List of Figures

1 External Reverse Angle Shot 10
2 Internal Reverse Angle Shot . 10
3 The 180° Rule . 11
4 The Rule of Thirds . 11
5 Blending Two Basis Trajectories 16
6 Five Typical Target-based Shot Types 25
7 Example MultiDrone Shot Types 26
8 Sample Frames of Test Scenarios in the Pilot Study 37
9 The Average MOS for the Test Versions of each Scenario in the

Pilot Study . 39
10 Animating the Bicycle Wheel 41
11 Flyby Scenario for Cycling Race 43
12 Chase Scenario for Cars Racing 43
13 Results for Cycling Scenarios with Varying Drone Height . . . 44
14 Results for Car Racing Scenarios with Varying Drone Height . 45
15 Gender Preferences for Drone Height with Selected Scenarios . 46
16 Results for Cycling Scenarios with Varying Drone Speed 48
17 Results for Car Racing Scenarios with Varying Drone Speed . . 49
18 Gender Preferences for Drone Speed with Selected Scenarios . . 49
19 A Comparison Between UE4 Animated Content and Real Footage 50
20 Sample Frames of Test Sequences Shot at Müncheberg 51
21 Test Results on the Real Footage Shot at Müncheberg 51
22 Relationship Between Field of View and Camera Parameters . 52
23 A Material to Apply an Image onto a Landscape 63
24 Landscape of the Bristol Area Created from SRTM Data 63
25 Epiploar Geometry showing Correspondence between Projected

Positions for a Key-point in Two Views 70
26 Manually Scanned Environment Images of a Roundabout Cap-

tured from Google Earth . 73
27 A 3D Model of a Roundabout Reconstructed using 3DF Zephyr

Aerial Photogrammetry Software 73
28 Improving the Camera Alignment in 3DF Zephyr 74
29 Wills Memorial Building Reconstructed from Google Earth Views 78
30 Large-scale Model for Area of Filton, Bristol Reconstructed

from Google Earth Views . 78
31 Google Earth and Reconstructed Models for Lake Serru 79
32 Low Altitude Views of Lake Serru Models 79
33 Pre-defined Environment Modelling Clifton, Bristol 81
34 Pre-defined Environment Modelling the Harbour, Bristol 82
35 Pre-defined Moving Objects . 83
36 The Option Interface for a Drone in Editing Mode 83
37 The Option Interface for Simulation Mode 84

x

38 The Option Interface for Freeplay Mode 84
39 View Coverage for a Vertex . 88
40 Subjective Testing to Determine the Effect of Image Number

on Reconstruction Quality . 92
41 Results of the Experiment to Determine the Effect of Image

Number on Reconstruction Quality 93
42 Orthogonal Rectangular Grid Scanning Patterns 93
43 Definitions of In-track and Cross-track Overlap 94
44 Variation of Reconstruction Quality with In-Track Overlap . . 95
45 Orthogonal Scans of the Unreal Engine ‘Country Side’ Model . 98
46 3DF Zephyr Reconstructions from Multi-level Scans Differing

in Camera Pitch . 99
47 Reconstructions from Multi-level Scans Differing in Camera

Pitch Imported into Unreal Engine 99
48 Computed Camera Positions for Multi-level Scans 100
49 Building Details for Multi-level Scans 100
50 Blender Models of an Urban Environment used for Program

Testing . 109
51 Effect of Scan Parameters on Quality Metric 110
52 Effect of Number of Scan Lines on Quality Metric 111
53 Variation in Reconstruction Quality Metric with Scan Height

and Camera Angle. 113
54 Modifications to the Test Environment Model 115
55 ‘Industrial City’ Scan Simulation 116
56 ‘Industrial City’ Reconstructions for Scans Differing in Height . 118
57 ‘Industrial City’ Reconstructions for Scans Differing in Camera

Pitch . 119
58 Effect of Camera Height on Coverage for ‘Industrial City’ Model120
59 Lancaut Models . 121
60 Lancaut Reconstruction Metrics 122
61 Variation of the Reconstruction Metric with View Coverage Pa-

rameters for Lancaut Scans . 126
62 Reconstruction Metric for ‘Industrial City’ Scans 127
63 Analysis of ‘Industrial City’ using Modified Coverage Model . . 131
64 ‘Floating’ Artefacts in a Reconstructed Model 145
65 Selecting all Vertices in a ‘Floating’ Artefact 146
66 Selecting all ‘Floating’ Artefacts in a Reconstructed Model . . 146
67 Use of the ‘Smooth’ Tool in Blender 147
68 Use of the ‘Smooth Vertices’ command in Blender 147
69 Deep Holes in a Reconstructed Model 148
70 Distortions in Surfaces after Smoothing 149
71 Deleting a Spike on a Surface 149
72 Merging Vertices to Fill a Surface Hole 150
73 Painting on a Surface using the ‘Draw’ Tool 151

xi

74 Distorted Mesh Due to a Moving Vehicle 151
75 Repairing Distorted Geometry 152
76 UV Maps . 152
77 Creating a UV Map for New Geometry using ‘Unwrap’ 153
78 Editing a UV Map . 153
79 Painting Newly Created Geometry 154

xii

Acronyms

2AFC Two Alternative Forced Choice

ACR Absolute Category Rating

AFOV Angular Field of View

CUDA Compute Unified Device Architecture

DEM Digital Elevation Model

DMOS Difference Mean Opinion Score

DSCQS Double Stimulus Continuous Quality Scale

DSIS Double Stimulus Impairment Scale

FSM Finite State Machine

GPS Global Positioning System

GSD Ground Sampling Distance

HDR High Dynamic Range

IMU Inertial Measurement Unit

LIDAR Light Detection and Ranging

LOD Level of Detail

MOS Mean Opinion Score

MPC Model Predictive Control

NIR Near-Infrared

PTX Parallel Thread Execution

SIFT Scale Invariant Feature Transform

SLAM Simultaneous Localization and Mapping

SRTM Shuttle Radar Topography Mission

SSCQS Single Stimulus Continuous Quality Scale

SSDQS Single Stimulus Discrete Quality Scale

SWIR Short-wave Infrared

UAV Unmanned Aerial Vehicle

USGS United States Geological Survey

xiii

1 Introduction

The use of Unmanned Aerial Vehicles (UAVs), more commonly known as
drones, is becoming increasingly widespread in the film and television indus-
tries. They can be employed as a cost effective replacement for helicopters
and cranes when filming aerial shots and their flexibility makes them ideal
for filming live, dynamically changing events. The use of drones also sup-
ports the production of innovative types of shot which would not be possible
using conventional techniques.

1.1 Context

The movie industry was an early pioneer in the use of drones for filming.
The opening scene of Skyfall (2012), which took place on the rooftops of a
bazaar in Istanbul, was partially shot using drones. This was the first time
they had been used in a movie to film close-up action scenes rather than
wider shots such as landscapes. In the pool party scene of The Wolf of Wall
Street (2013) a drone was used to film a continuous shot beginning with a
wide view of the beach and ending with close-ups of the guests. This would
have been impossible to shoot using a helicopter because of the required
close proximity of the actors to the camera in the final stages of the shot.

Since their adoption for movie production, drones are now commonly
employed for filming in a diverse range of genres such as sports, natural his-
tory, archaeology, news and travelogues. The flexibility of drones to provide
a wide coverage without the need for fixed infrastructure and the unobtru-
siveness of small drones has made them particularly useful for the filming
of sporting events and natural history. Notable examples include the 2014
Winter Olympics in Sochi [1] [2], the 2016 Olympics in Rio de Janeiro [3]
and the BBC natural history documentary One Planet, Seven Worlds [4].
In news production drones have been used to provide coverage in dangerous
or inaccessible areas, e.g. in the reporting of the aftermath of Hurricane
Matthew in Haiti by NBC [5].

1.2 Filming using Autonomous and Multiple Drone Systems

The majority of filming from a drone is currently performed using one or
a small number of drones under manual control. A number of systems,
such as MultiDrone [6] and Red Dot [7], have recently been developed for
semi-autonomous filming using multiple drones. The use of autonomous and
multiple drone filming platforms can provide many benefits when filming live
action, especially for events taking place over a wide area.

1

The MultiDrone consortium [6] developed an innovative multiple drone plat-
form for use in filming outdoor sporting events such as cycling races and
rowing regattas. Autonomous features including intelligent shooting and
target tracking allows the system to be operated by a small team, making it
cost effective for many filming requirements. The system incorporates many
safety features such as crowd detection/avoidance and has built-in auto-
mated emergency landing procedures. The use of MultiDrone for filming
sports events can give many advantages over traditional techniques:

• Individual drones can be assigned to track specific targets so that
if unexpected events occur the video stream can be switched to the
appropriate drone (e.g. when a rider crashes in a cycling race).

• No complex fixed filming infrastructure is needed (e.g. cranes, booms
etc).

• Aerial shots are much more cost effective compared to filming from
helicopters.

• High level control of the drone swarm. Directors can concentrate on
specifying targets to film and shot types to use rather than spending
time communicating instructions to multiple camera operators and
pilots.

• Reduced crew size and operating costs.

• Drones needing recharging can be automatically replaced with standby
drones without any loss of continuity.

• New and innovative shot types can be employed to improve the viewing
experience (e.g. 360 degree panoramas and fly-through shots). Drone
camera shots can give an increased sense of movement and dynamism
compared with those created using conventional camera techniques,
allowing the viewer to feel more immersed in the action.

The MultiDrone consortium consisted of a number of partner institutions
and companies across Europe including:

• The Aristotle University of Thessaloniki :- responsible for the develop-
ment of target detection and tracking, crowd detection and intelligent
shooting capabilities.

• The University of Seville :- design of the high level decisional architec-
ture.

• Thales :- responsible for LTE communication infrastructure and inte-
gration.

2

• Deutsche Welle and RAI television companies.

• The University of Bristol :- Specifications for MultiDrone camera shots
and the drone operating envelope. Development of a flight planning
and training package.

1.3 Research Motivations

The research detailed in this thesis concerns various problems relating to
the filming of live action such as sports with drones and the modelling of
environments for drone flight simulations.

Some of the problems regarding shot types and shooting that were iden-
tified included:

• There is currently no universal standard for the naming and specifica-
tion of camera shot types and those in use are often complex, open to
ambiguity and require a technical grammar.

• Many of the shot types of traditional cinematography do not lend
themselves to filming events such as sports, being most useful for pre-
scribed motions of camera and subject.

• For live filming the task of directing multiple drones to shoot multiple
targets, or a single target from multiple angles, will be difficult. This
is especially true for the fast moving and unpredictable action involved
with sports.

It is evident that directing fast moving action, with multiple drones, using
current standard shot types would present many difficulties. Defining shots
in terms of the relative motion of the camera with respect to the target and
using a simple terminology for shot nomenclature will help to reduce shot
decision and selection time, easing the task of directing multiple cameras to
shoot multiple targets.

The control of a multi-drone filming system will also be simplified by
incorporating autonomous features such as target tracking, collision avoid-
ance and automatic shooting. Implementation of an automatic shooting
capability will require each shot type to be fully parameterized, enabling
the drone control system to calculate the desired drone camera position
and angle throughout the duration of the shot. Suitable default values and
operational ranges for these parameters will need to determined, taking
into account possible effects on the quality of the viewing experience. The
perceived quality is highly subjective in nature, varying according to each
viewer’s personal preferences and for some viewers certain parameter values
may give an unpleasant experience.

3

Flight planning and training applications are an important requirement for
any drone filming platform. Shots and shot sequences can be evaluated
for feasibility and viewing experience, and the response to various scenarios
practiced. Detailed flight planning and training for a shoot will be supported
by an ability to integrate accurate real world models into a simulation. There
are no readily available data sources for 3D environment models that have
complete world coverage and in many cases a model of the shooting location
will need to be created using techniques such as photogrammetry or laser
scanning. Models produced using such methods will often need editing to
remove unwanted artefacts or repair distortions.

1.4 Aims and Contribution

The aims of the research were as follows:

• Specify a library of shot types for integration into an automatic shoot-
ing system such as MultiDrone that is suitable for filming live events
such as sports.

• Develop a methodology to subjectively test the proposed shot types
and determine appropriate default parameters and operating envelopes.

• Assess the suitability of existing sources of environment data such as
Google Earth for the production of world models in a drone flight
planning and training program.

• Develop a system to help optimize a scan used to capture images for
environment model production with photogrammetry.

The contributions produced as a result of the research include:

• A library of shot types, fulfilling many of the shooting requirements
for filming sports events such as races, has been defined using a hierar-
chical taxonomy in terms of the relative motion between camera and
target. The shots can be specified with a simple grammar comprising
of commonly understood terms. The use of the proposed library can
simplify an automatic shooting control interface and help to ease the
task of the director by reducing the time to select a shot and communi-
cate instructions to members of the drone control team. The proposed
shot library will be especially beneficial for the filming of live events
such as sports with multiple drone cameras.

• Parametric definitions for the drone trajectories and camera gimbal
rotation angles of each shot have been produced, to facilitate their
integration in the control system of an autonomous filming platform.

4

• A method to assess the quality of the viewing experience for shots and
determine optimum shot parameters, by subjectively testing videos of
shots simulated using Unreal Engine, has been developed. A selection
of the proposed shot types for filming sports races have been studied
using this method and it has been successful at identifying a statisti-
cally significant range for parameters (e.g. drone height) that gives a
preferential viewing experience.

The technique can be used to configure the default values and op-
erating ranges of camera shot parameters in an automatic shooting
system. Only a limited number of single drone shots (for the scenario
of a race) have been tested and, for the full development of such a
system, shot libraries for all required types of scenario will need to be
defined and tested. The method could be extended to a case involving
multiple drones, for example, optimizing the transition between shots
from two drones.

• A methodology, using photogrammetry, to create 3D environment
models using images captured from data sources such as Google Earth
has been evaluated and techniques to optimize the procedure estab-
lished.

• Procedures using the Blender 3D modelling program to repair com-
mon problems found in models produced using photogrammetry (e.g.
distortions and artefacts) have been detailed.

• Previous research on the optimization of image capture for photogram-
metry has been surveyed, including work to determine the effect of
increasing the number of input images and the effect of the overlap
between scan lines.

• A Blender Python program has been developed to estimate the model
quality resulting from a photogrammetric reconstruction using images
captured during a scan. The system can be used to optimize image
capture scans employing a fixed drone height and camera angle, given
a simple model of the scan area. This novel approach to optimizing
scans can potentially reduce scan times and simplify drone control
when compared with techniques that attempt to optimize a 3D drone
trajectory with continually varying camera angles.

Papers published as a result of this research or containing elements of this
research are:

• S. Boyle, F. Zhang, and D. R. Bull, “A Subjective Study of the View-
ing Experience for Drone Videos,” in 2019 IEEE International Confer-
ence on Image Processing (ICIP), (Taipei, Taiwan, Sep. 22–25, 2019),
IEEE, 2019, pp. 1034–1038. doi: 10.1109/ICIP.2019.8803747

5

https://doi.org/10.1109/ICIP.2019.8803747

• S. Boyle, M. Newton, F. Zhang, et al., “Environment Capture and Sim-
ulation for UAV Cinematograhy Planning and Training,” in European
Signal Processing Conference, Satellite Workshop: Signal Processing,
Computer Vision and Deep Learning for Autonomous Systems, 2019.
[Online]. Available: https://research-information.bris.ac.uk/

ws/portalfiles/portal/199953761/Environment_Capture_and_

Simulation_for_UAV_Cinematography_Planning_and_Training.

pdf

• F. Zhang, D. Hall, T. Xu, et al., “A Simulation Environment for
Drone Cinematography,” IBC Technical Papers, 2020. [Online]. Avail-
able: https://www.ibc.org/technical-papers/a-simulation-

environment-for-drone-cinematography/6747.article

1.5 Structure of Thesis

The remainder of the thesis is structured as follows:

Chapter 2 provides an overview of the standard cinematographic techniques
and heuristics that are also relevant when filming using drones. Previous
research in drone cinematography is then examined, including work on sys-
tems to design and preview drone drone camera shots, the optimization of
drone trajectories and the autonomous filming of target subjects following
cinematographic principles. Details of other related work in fields such as
automatic camera control and problems related to multiple camera images
(e.g. camera calibration) are then given.

Chapter 3 gives an outline of current drone filming techniques and ex-
amines the application and limitations of this practice when filming live
action using single and multiple drone platforms. A new shot hierarchy and
taxonomy suitable for filming fast moving live action such as sports races
is presented. The parametric equations describing the drone trajectory and
camera gimbal rotation for each of the proposed shot types are given.

Chapter 4 describes a methodology employing the subjective testing of
simulated drone camera shots to determine optimum shot parameters and
operating envelopes. Results for studies with various shots in cycling and
car racing scenarios are given and compared with results obtained using real
footage. The procedure for converting shot parameter values for use with
different cameras is described.

Chapter 5 examines methods to create real-world models suitable for in-
corporation into drone planning and training systems. A review of currently
available software for flight planning and training is given. The prevalent
techniques for capturing data (such as height-maps), which can be used to
create 3D environment models, are described. Details of some useful, pub-
licly available resources for existing data are given. The use of the Land-

6

https://research-information.bris.ac.uk/ws/portalfiles/portal/199953761/Environment_Capture_and_Simulation_for_UAV_Cinematography_Planning_and_Training.pdf
https://research-information.bris.ac.uk/ws/portalfiles/portal/199953761/Environment_Capture_and_Simulation_for_UAV_Cinematography_Planning_and_Training.pdf
https://research-information.bris.ac.uk/ws/portalfiles/portal/199953761/Environment_Capture_and_Simulation_for_UAV_Cinematography_Planning_and_Training.pdf
https://research-information.bris.ac.uk/ws/portalfiles/portal/199953761/Environment_Capture_and_Simulation_for_UAV_Cinematography_Planning_and_Training.pdf
https://www.ibc.org/technical-papers/a-simulation-environment-for-drone-cinematography/6747.article
https://www.ibc.org/technical-papers/a-simulation-environment-for-drone-cinematography/6747.article

scape object to model terrain in Unreal Engine is discussed and a method
to import height-map data into a Landscape model is detailed. The applica-
tion of photogrammetry to generate environment models is then examined.
An introduction to the theory behind photogrammetry is given. A work-
flow to produce environment models from Google Earth images using 3DF
Zephyr photogrammetry software is described. A drone simulation package
for training and flight planning, which has been developed in Unreal Engine
and uses data from Google Earth to produce a realistic world environment,
is described.

Chapter 6 examines techniques to optimize photogrammetry reconstruc-
tions. A review of current research regarding the optimization of trajectories
and camera angles for drones being used to capture images for photogram-
metry is given. Studies looking at the effect of the number images used for a
photogrammetry reconstruction and the drone track overlap distance (when
scanning an area for image capture) on the quality of the final reconstructed
model are described. The development of a system (built in Blender using
the Python language) to estimate the quality of photogrammetric recon-
struction, given parameters defining a scan used for image capture and a
simple model of the environment, is detailed. The results from a number
of simulations, to determine the qualitative variation in the reconstruction
quality predicted by the program with changes to scan parameters, are dis-
cussed. The prediction of the Blender system, for the quantitative variation
in reconstruction quality with scan parameter values, is evaluated against
the results from actual reconstructions created using simulated scans in Un-
real Engine. The configuration of the program to match the results of real
photogrammetry software is discussed. Possible improvements to the pro-
gram, regarding the method used to calculate the metric estimating scan
coverage, are given.

Chapter 7 details the results and conclusions obtained from the research
and areas in which further investigation could be of benefit.

7

2 Drone Cinematography

2.1 Standard Cinematography Techniques

The terminology, techniques and heuristics used in standard cinematography
are also largely applicable when filming from a drone.

2.1.1 Standard shot types

Film-makers commonly use shots in which the framing conforms to conven-
tions known to give a pleasing appearance. Examples of such shot types
include:

• Wide Shot: The entire subject is visible and takes up nearly the whole
frame. A small safety gap at the top and bottom is used to prevent
the head and feet being ‘cut off’.

• Very Wide Shot: The subject appears just large enough to be visible.
It is often used as an establishing shot to help give the context of the
scene.

• Extreme Wide Shot (Extreme Long Shot): Often used as an estab-
lishing shot to depict the wider area in which the action of the scene
takes place with the main actors too small to be seen.

• Medium Shot (Mid Shot): Most of the frame is filled by one or more
actors with each having their head and much of their body above
the knee visible. This is the most common type of shot used in film
and television since it allows the facial expressions and gestures of the
actors to be easily seen [11]. The shot can be combined with a camera
pan to follow any action.

• Close Up: A particular feature of the subject (e.g. a persons face) fills
the entire frame.

• Medium Close Up: In-between the Close Up and Medium shots, typi-
cally showing the face and upper body of the actor.

• Extreme Close Up: A very high zoom is used so that a small area of
the subject or a particular detail fills the frame. Filming part of the
face such as the eyes can be used for dramatic effect (e.g. to convey
emotion).

For examples of the above and other shot-types see the Film Riot YouTube
channel [12].

8

2.1.2 Camera Angles

Film-makers often select camera angles to achieve a particular cinemato-
graphic effect. Mascelli [11] gives guidelines on how the purpose of a shot
and its desired effect on the viewer can be used to select a suitable camera
angle and framing for the subject:

• Eye Level: The most commonly used camera angle which gives a nat-
ural view of the subject.

• Low Angle: The camera points upwards towards the subject from a
low position. This angle can be used to make the subject appear more
powerful or prominent.

• High Angle: The camera looks down on the subject from above. In a
dramatic scene this angle can be used to make a person appear less
powerful or more submissive. Mascelli [11] states that a high angle will
make a moving subject appear slower (especially with large camera
distances) and so it should be used with care if filming fast-moving
action such as a race.

• Birds Eye: The camera is placed at a long distance directly above
the subjects. It is often used to give an overall perspective of a scene
showing the relative positions of the subjects or to to give a dramatic
effect emphasizing a sense of height.

For examples of the above camera angles see the Film Riot YouTube channel
[13].

2.1.3 Rules and Heuristics of Cinematography

There are a number of rules and heuristics that film-makers often follow to
produce visually pleasing shots and shot sequences that convey a storyline
without confusing the viewer. Arijon [14] provides a comprehensive overview
of such standard cinematographic techniques, giving suitable shot sequences
for various scenarios such as a dialogue between two people standing next to
each other, a conversation on the telephone and dialogues involving differing
numbers of people (e.g. groups of three or more than four people).

For a scene involving two principal actors in conversation the ‘line of
interest’ is given by the gaze direction of the participants [14]. The camera
positions for each shot are often placed at the corners of a triangle located
on one side of the line of interest, which has its base parallel to the line. By
following this Triangle Principle the film-maker keeps camera positions on
the same side of the line of interest which will result in each actor always
appearing on the same side of a frame. This ensures that the viewer will
not be confused at shot transitions by an actor appearing to change sides

9

with the other actor and that any motion of an actor will not appear to
reverse in direction. The exact locations and directions of the cameras on
the triangle will determine the type of shot. For an ‘external reverse angle’
shot (see Figure 1) the base-line cameras are located to the outside of the
players and pointed inwards towards them to give a shot of an actor from
over the shoulder of the other actor. For an ‘internal reverse angle’ shot (see
Figure 2) the base-line cameras are positioned between the actors and point
outwards towards a particular actor. A camera positioned at the apex of
the triangle is used for a shot showing the faces of both actors.

Figure 1: External Reverse Angle Shot [14].

Figure 2: Internal Reverse Angle Shot [14].

The Triangle Principle can be extended to a more general scenario (e.g.
in which the principal subjects are two football players and a football) by
defining the line of interest to be the line or composite line joining the
principals or the trajectory of a single moving subject of interest.

The knowledge embodied in the Triangle Principle is also expressed in
the 180 Degree Rule which states that once an establishing shot for a scene
has defined which side of the line of interest the camera is placed, the camera
should not move to the other side of this line in subsequent shots (see Figure
3 and Film Riot YouTube channel [15]).

10

Figure 3: The 180° Rule [11].

Composing a shot using the Rule of Thirds has been found to give visually
pleasing results. The key elements of the shot are placed at positions on
lines which divide the frame into thirds, both horizontally and vertically
(as shown in Figure 4). For a person looking towards a point off-screen or
a subject in motion the placement should be such that the person looks
towards or the subject moves towards the larger two-thirds portion of the
screen. Placing a subject on the top horizontal third line is also often used
to avoid ‘dead space’ above the subject. For examples of the use of the Rule
of Thirds see the Learn Online Video YouTube channel [16].

Figure 4: The Rule of Thirds [17].

Gebhardt et al. [18] states that the most pleasing shots are obtained by using
either a static camera, panning with a tripod mounted camera or using a
camera on a dolly. Transitions between shots should be jerk-free or made
using a cut. He et al. [19] also states a number of heuristics commonly used
by film-makers to give pleasing shots and a good scene development:

• An actor should initiate all movement with the camera following and
coming to rest before the actor.

11

• Establishing shots should be used for new developments and before
any close-up shots.

• A scene with motion should be broken in to two shots with the actor
appearing to move from one side of the screen to the other.

• Jump cuts from one scene to a similarly composed scene (regarding
number and placement of actors) should be avoided to prevent a jarring
transition.

2.2 Current Filming Practice for Drone Cinematography

Although many of the techniques and heuristics of standard cinematography
are also used when filming with a drone, there are cases where the conven-
tional rules do not apply or are less restrictive. One such example is the
Triangle Principle, which is applicable when using fixed camera positions to
prevent a shot that is jarring or confusing due to an abrupt change of view
from one side of the line of action to the other, but is not applicable when
using a continuous (i.e. smooth) drone camera transition.

Currently, most drone shoots are filmed using one, or a small number
of drones, under manual control. Typical shots include ‘Tracking’ shots of
moving subjects (e.g. of cars) or ‘Establishing’ shots used to show the con-
text for a scene [20]. Previously, using traditional techniques, these would
have been filmed from a moving vehicle (e.g. a car or motorbike) for close
range, low angle shots or from a helicopter for long range and high angle
shots. Aerial shooting using a drone rather than a helicopter can signifi-
cantly reduce filming costs, from around $25,000 a day to $5000 a day [21].
Drones can be used to produce shot sequences which would previously have
been impossible, such as uncut ‘Flythrough’ shots going through a window
into a building or along a narrow passage-way. Lightweight, low noise drones
are also commonly used in sports and nature filming since they can follow
target subjects and provide close-up shots without causing disturbance.

2.3 Previous Work on Drone Cinematography

Research in drone cinematography has largely focused on problems involv-
ing semi-autonomous and autonomous drone control, with early work often
concerned with filming a number of predetermined stationary targets.

Joubert et al. [22] developed a system to allow drone users to visually de-
sign and preview camera shots whilst ensuring adherence to constraints such
as the maximum thrust and velocity of the drone. The camera was assumed
to be positioned at the centre of mass of the drone and trajectories were
designed by specifying the look-from and look-at positions at key-frames,
with the system interpolating a smooth C4 continuous trajectory between

12

these points. A model simulating the actual dynamics of the drone calcu-
lated velocities, thrusts and gimbal angles along the path and any unfeasible
sections were highlighted for remediation (e.g. by modification of the easing
curves defining the timing of the drone along the trajectory). The control
input for the drone u was calculated using an equation governing drone
dynamics, relating the state of the drone q to u, given by:

H(q)q̈ + C(q, q̇)q̇ + G(q) = B(q)u (1)

In the above equation H models inertia, C models velocity dependent forces
(e.g. drag), G models the effect of gravity and B models the effect of the
control inputs. To find q and its derivatives is was necessary to calculate the
position, velocity, acceleration and orientation of the drone from the camera
trajectory. The acceleration of the drone (calculated using a finite difference
method) was used to determine the required thrust ft. The drone y-axis di-
rection yq was given by the thrust direction ft

‖ft‖ and assuming the drone
x-axis direction was equal to the camera look-at direction xc the drone z-
axis direction was calculated from zq = yq×xc, which fully determined the
orientation. The required drone input u was then calculated by substituting
values for q and its derivatives into Equation 1 and using a pseudo-inverse
for B. It was thus possible to determine if the trajectory was feasible from
the required drone inputs given by u. Virtual previews of the camera view
along the trajectory were generated from a 3D model of the environment to
give the user an insight in to the expected cinematographic quality of the
filmed sequence. The system could also generate control software to execute
the flight autonomously.

Later research often focused on the optimization of drone camera tra-
jectories. Gebhardt et al. [18] developed a tool for the generation of feasible
drone trajectories from sketched key-frames, each defining a time and the
corresponding desired drone position. The key-frame positions were used
as soft constraints in the trajectory optimization, allowing a trade off be-
tween drone position and feasibility. High level cinematographic constraints
(e.g. to minimize perspective distortion or to ensure smooth camera mo-
tion) and collision avoidance constraints could also be specified. Although
the optimization algorithm required knowledge of the location of the targets
to be filmed, it was implemented using an iterative quadratic programming
method allowing it to be used in real-time. Hence the control program could
continually update its calculation for the optimum trajectory using the cur-
rent position of moving targets obtained via tracking. For validation of the
trajectory the tool could generate a virtual preview showing the drone’s
camera image over its flight. To calculate the optimized trajectory a simpli-
fied linear model relating the drone inputs u (consisting of a thrust F and
torque about the drone body z-axis Mψ) to its dynamics was used:

u =
[
F, Mψ

]T
13

mr̈ = F +mg (2)

Iψψ̈ = Mψ (3)

In the above equations r is the position vector of the centre of mass for the
drone, ψ is the yaw angle and Iψ is the moment of inertia about the body
z-axis. The state of the drone is calculated at discrete time intervals of ∆t
using:

xi =
[
r, ψ, ṙ, ψ̇

]T
xi+1 = Adxi +Bdui + cd (4)

In the above equation Ad describes the response of the system due to its
inertia, Bd describes the response due to the drone inputs and cd describes
the effect of gravity. The variables xi and ui are optimized over N time
steps (i.e. i = 1. . .N) subject to constraints on ui due to maximum values
for force and torque inputs and minimization of the following cost functions:

1. Ek : measures the deviation of the drone position from the desired
key-frame position.

2. Ed : measures the jaggedness of the trajectory calculated from the
higher derivatives (using a finite difference approximation) of the drone
position with respect to time.

3. Ec : measures the difference between the camera direction and the
direction of specified targets at particular stages on the trajectory.

4. Es : measures the skewness of the target images.

The systems developed by Joubert et al. [22] and Gebhardt et al. [18] require
users to predefine drone trajectories. Recently the autonomous control of
drone cameras without the need for such advance planning has become a
common topic of research.

Nägeli et al. [17] implemented a Model Predictive Control (MPC) al-
gorithm for autonomously controlling a drone in which control inputs were
optimized in small time steps using the state of the drone at the beginning
of the time step and a model of drone dynamics. Constraints were added
to the optimization procedure to ensure collision avoidance, valid drone in-
puts (e.g. thrust in the body z-axis direction), a feasible drone state (e.g.
vertical and horizontal velocities less than the maximum allowable) and the
adherence to high level aesthetic requirements. The optimization algorithm
minimized a cost involving terms measuring the deviation of the projection
on the image plane of each target being filmed from its desired image (re-
garding position, size and view angle). For example, an image position cost
cimage is given by:

rcd =
[
md, 1

]T
14

cimage = ‖ρm‖Qm with ρm =
rcch
‖rcch‖

−
rcd
‖rcd‖

(5)

In the above equation rcd is the direction vector pointing from the camera
centre to the desired pixel location md in the image and rcch is the vector from
the camera to the target as measured in the camera frame. Camera intrinsics
(focal point and focal length) were used to calculate md given the desired
target location on the image plane. To implement collision avoidance soft
constraints were added for each known object in the environment (having
size Ωs and at a distance from the camera of rct), using a slack variable sc
to ensure the problem was solvable:

rTctΩsrct > 1− sc (6)

The MPC problem was solved for N time steps of duration ∆t with the
positions of targets over this period (N∆t) being estimated from the ini-
tial positions using a Kalman filter (based on a constant velocity Gaussian
model). The calculations were repeated after each time step which resulted
in a robust closed loop performance and enabled the successful filming of
targets moving unpredictably.

Joubert et al. [23] developed a system able to autonomously film one
or two human subjects using a predefined sequence of canonical shot types,
following well established visual composition principles. The particular shot
type, number of targets and target position(s) were used to calculate the
camera look-from and look-at positions for each shot, ensuring that the
resultant image adhered to principles such as the Rule of Thirds and the
Triangle Rule. For example, if there were two subjects the average eye po-
sition would lie at the centre of the top horizontal third line and the drone
was always positioned at the side of the line of action that initially showed
more of the subject(s) faces (as determined by the gaze direction). The
trajectory of the camera between shot positions was found by blending two
easily generated basis trajectories as shown in Figure 5. For two targets A
and B having position vectors PA and PB with the camera positions at the
first and second shot being C0 and C1, the blend trajectories σA and σB
are given by:

σi(u) = Pi + di(u) · vi(u) for u ∈
[
0, 1

]
, i =

{
A, B

}
(7)

In the above equation di(u) linearly interpolates between the initial subject
to camera distance (from subject i to C0) and the final distance (from
subject i to C1). The function vi(u) gives the spherical linear interpolation
between the direction from subject i to C0 and the direction from subject
i to C1. The two trajectories were blended together to form trajectory
σ(u) using a function w(u) that was optimized to minimize the distance of
the blend from the basis trajectories, enforce C4 continuity and adhere to

15

minimum camera to target separation constraints:

σ(u) = w(u) · σA(u) + (1− w(u)) · σB(u) (8)

Finally an easing curve defining how time varies with u was used to gen-
erate a time dependent trajectory. Targets were tracked using RTK GPS
and inertial measurement unit (IMU) sensors and the system was able to
produce real-time updates to the calculated trajectory in response to target
movements.

Figure 5: Blending Two Basis Trajectories [23].

Research on filming with drones has focused on trajectory planning and
the use of semi-autonomous or autonomous control to film targets using
standard shot types and composition. There has been little research on the
optimization, with regards to viewer experience, of drone camera shots. The
design of automatic shooting platforms will require existing shot types (or
novel shot types) to be assessed with regard to their applicability to partic-
ular genres of filming. Further research is also needed to fully exploit the
potential of filming using a multiple drone platform, including work on the
development of novel shot types, shot transitions and heuristics.

2.4 Other Related Work

He et al. [19] created ‘The Virtual Cinematographer’ which provided real-
time camera control for the filming of simulated 3D worlds. Each different
filming scenario was encapsulated in a film ‘idiom’ (e.g. a ‘2Talk’ idiom for
two actors talking to each other) which was implemented in software as a
hierarchical finite state machine (FSM). Camera modules which used cine-
matographic principles to determine subject framing were implemented for
common types of shot such as apex, internal, external, pan and tracking.
Each state of an idiom resulted in a particular camera module call such as
external(A,B) for an external shot of actor A over the shoulder of actor B.
Idioms changed state as a result of certain events such as a change in the
actor talking or a shot exceeding a time limit, resulting in a new camera
call. These changes of state were structured in such a way that the camera
shot sequence adhered to good cinematographic practice.

16

Christie et al. [24] give a comprehensive account of techniques to solve vari-
ous camera control problems in computer graphics. Topics covered include:

• Interactive control of virtual cameras.

• Assisted control methods to aid user navigation through 3D worlds
such as obstacle avoidance (e.g. by maintaining the camera at a fixed
distance to an object or by using repulsive potentials), road-map plan-
ners to optimize a route (e.g. by decomposing a scene into cells and
building a network linking the cells) and the creation of natural camera
transitions between a number of targets.

• Automated camera control methods. These techniques have many
applications in computer graphics such as the solution to the problem
of ensuring targets appear at given coordinates in a camera image and
in camera planning for multi-media guided tours. Optimization based,
constraint based and constrained optimization based approaches to
solve such problems are described. Reactive methods which directly
compute a response as a result of a change in an image (e.g. visual
servoing to control a set of visual image features) are also discussed.

• Assurance of occlusion free views using approaches such as ray-casting,
bounding volumes (around camera and target) and shadow volumes.

Hartley and Zisserman [25] give an extensive account of many techniques
that have been applied to problems involving multiple camera images such
as:

• Three-View computational methods using a trifocal tensor to calculate
the intrinsic and extrinsic camera matrices (up to a common projective
transformation) and the 2D projection of a world point on a plane
given its projection on two other planes.

• Automatic camera calibration using the images obtained from a rotat-
ing camera.

• N -View computational methods (such as bundle adjustment) which
when combined with automatic camera calibration enable the 3D scene
to be reconstructed by matching corresponding points in the N 2D
images.

17

2.5 Summary

There are many rules and heuristics governing composition, framing and
transitions when filming using fixed cameras (with or without panning). Re-
search on filming with moving camera platforms such as drones has focused
on trajectory planning and the semi-autonomous or autonomous control of
a drone to film targets using standard shot types and composition. There
has been little research on the optimization, with regards to viewer experi-
ence, of drone camera shots and the development of new types of shot and
techniques that can fully exploit the potential of drone cinematography.

The techniques and approaches employed when filming with a drone
mounted camera will be dependent on the particular requirements of the
genre involved. The following section examines the selection and definition
of a library of shots that has been designed to ease the task of filming and
directing live action such as sports using a single drone or a multiple drone
system.

18

3 Shot Specifications for Filming Sports using a
Drone Platform

A number of drone professionals from media production companies (e.g.
Deutsche Welle and Radiotelevisione Italiana), including directors, line pro-
ducers, camera operators and drone operators, were surveyed to gain insight
into current drone practice and its limitations, and to elicit shooting require-
ments for the MultiDrone system [6]. The results from the survey revealed
that most of the shot types currently employed in aerial shooting (e.g. from
a drone or helicopter) were adapted from standard cinematography practice
and few took advantage of the extra capabilities available when filming from
a drone. The majority of drone filming was carried out using a single drone
and the possibilities and advantages of filming using multiple drones were
not widely exploited.

3.1 Limitations of Current Practice

When filming live events with a single drone it can be difficult for the direc-
tor to anticipate what will happen next (especially for fast moving action
such as sports) and hence be able to position the drone to give the best
view of the action at all times. With a single drone it is difficult to pro-
vide uninterrupted coverage of prolonged events due to limitations in drone
battery life, although this can be mitigated with the use of standby sub-
stitute drones. If broadcasting is deferred any breaks in coverage can be
removed using post-production editing. Some of the limitations associated
with filming using a single drone can be overcome in the case of offline
(non-live) shooting with full post-production editing. For instance, if an
aerial sequence requires shots from a variety of camera angles then different
versions can be filmed in separate takes and the results edited together in
the post-production phase. Disadvantages of this method include the diffi-
culty in maintaining scene consistency across takes (especially when filming
outdoors due to varying lighting conditions) and the extra time and cost in-
volved in shooting multiple takes. Because of these shooting time and cost
constraints a compromise in the number of shots may be needed.

The coordination of multiple manually controlled drones for a live shoot
is difficult. It can also be costly due to the large crew size required, with
each drone potentially requiring both a pilot and camera operator. Manual
control is less of a problem for the case of a movie shoot since it is possible
for the drone pilots to rehearse shots in advance.

3.2 Advantages and Potential of Drone Cinematography

The use of drone mounted cameras gives the film-maker great flexibility in
shot design, with the movement of the drone relative to the target and the

19

camera tracking only limited by physical constraints on drone and camera
motion (e.g. the maximum drone speed). This increases the potential for
the creation of innovative shot types that can contribute to new and exciting
viewing experiences. However this flexibility also increases the potential for
inadvertently creating visually unappealing shots which confuse or disorient
the viewer. Hence any new shot types will need careful testing to determine
constraints on their use, and suitable ranges and optimum values for shot
parameters (e.g. parameters defining the drone trajectory relative to the
target and camera orientation or tracking).

The use of a multiple drone filming system provides a number of benefits
when compared with a single drone system. For filming live events such as
sports, cameras can be positioned so that the director can cut to alternative
views of the main action and (especially for events such as cycling road
races taking place over wide areas) respond quickly to evolving situations
away from the main focus. For non-live filming a multiple drone system will
allow sequences to be filmed from a variety of angles without having to use
multiple takes. Multiple drone cinematography offers a great potential for
innovative techniques which will enhance the viewing experience, improve
coverage and aid narrative, but the technology is still in its infancy and there
are few guidelines on how best to exploit it. Some of the possible shot types
and effects which can be employed in multi-drone filming systems include:

• Single drone movement transitions: For example upright to inverted
or a pass and then a lift to zoom out.

• Overtaking: Viewpoint moving from behind to in-front of subject (us-
ing a single drone or by transitions between multiple drone cameras).

• Seamless view transitions: Changing from the view of one drone to that
of another. One possible strategy could be to use a method similar to
that used by Joubert et al. [23] to ensure smooth transitions between
camera shots, so that both of the trajectories of the two drones involved
lie on a single smooth curve. Images from the two drones could also
be combined to produce a synthesized image approximating the view
mid-way between the drones.

• Panoramic shots: Transitions from one drone camera to the next in a
sequence giving an unbroken view of the surroundings.

• Multi-view shots: Virtual views generated from multiple drone cam-
eras (e.g. the views from multiple cameras could be stitched together
to give a Bird’s Eye View or 360° content).

• Dolly zoom (contra zoom): The zoom is adjusted as the camera moves
towards or away from the subject so that the subject appears the same
size but the background size changes, leading to perspective distortion.

20

• Hyperzoom: Continuous zoom using a combination of camera zoom
and view transitions to other drone cameras at varying distances to
the subject.

• Augmented reality: Methods to determine camera motion such as
those described by Hartley and Zisserman [25] will allow the use of
augmented reality video in which a computer generated 3D model is
superimposed on the video from a drone in such as way that the mo-
tion of the model in relation to the background is consistent with that
of a real object in the scene.

• Synthetic 3D views: Generated using scene reconstruction techniques
(as described by Hartley and Zisserman [25]).

• New image formats and camera technologies: HDR (High Dynamic
Range) and plenoptic (light field) cameras which allow images to be
post-processed to give the required depth of field and focus.

There are a number of barriers which have limited the use of multiple drone
filming systems, in particular the difficulty in coordinating the control of
multiple drones for a filming task and the cost of operation. The implemen-
tation of semi-autonomous operation (e.g. target tracking and automatic
shooting) can reduce the complexity of operation and crew size requirements
for a multiple drone system and hence make such a system a viable propo-
sition. However many of the shot types used with standard cinematography
may not be appropriate when filming from a drone and hence automatic
shooting systems will require suitable shot libraries (consisting of existing
or novel shot types) to be defined for particular genres of filming.

3.3 Limitations of Standard Shot Types for Filming with
Drones

There is no entirely consistent, standard language or grammar in use to
specify drone operation and camera shot types. Terms used in shot de-
scriptions are not always precisely defined and these ambiguities can lead
to differences in their interpretation. There are a large number of shot type
definitions with some being very similar (e.g. shots differing only in pan or
tilt camera tracking). Complex shot specifications are needed to precisely
define the required camera motion and tracking. Because of the similarity
between certain shots there is a degree of redundancy and in many shooting
situations a single shot type with a camera motion or tracking relative to
a target could replace multiple shot types with prescribed motion. When
filming sports many of the required camera shots have a camera motion
that is defined relative to the motion of a target subject, for example follow-
ing or overtaking the subject, and using shot specifications with prescribed

21

motions does not fit well with this type of shoot. A complex naming ter-
minology is necessary to identify each shot from all the categories available
along with its particular camera motion and tracking. The complexity of the
shot hierarchy makes the task of directing fast moving action such as sports
difficult because of the time needed to decide which of the many shots to
use and communicate this to the production team. Using these traditional
shot types in an automated shooting system such as MultiDrone would also
require a complex shot selection interface.

It is evident that with the increasing sophistication of drone operations
and the use of multiple drone systems, a simpler and unambiguous gram-
mar will be needed (especially for the filming of fast moving live events such
as sports). The creation of new customized shots types for particular well
defined situations (e.g. the filming of races) could reduce the number of
different types needed during filming. This, along with a more natural lan-
guage to specify each shot (encapsulating the motion of the camera relative
to the target), would ease the directors task and support the design of simple
and easy to use command interfaces for drone control systems.

3.4 Revised Shot Types and Grammar for Filming using a
Single Drone

The full list of shot types required for shooting sports events with Mul-
tiDrone, elicited from the survey of drone professionals [6], is given in Ap-
pendix A. Based on these requirements a number of types of shot class (given
in Table 1) were defined within a hierarchical structure [8]. The different
shots provided most of the types of camera transition (relative to the tar-
get subject) that were thought necessary for filming sporting events such as
races. The Chase, Lead and FlyBy sub-classes are typical of the shots used
in the filming of cycling races and are currently often accomplished using
a camera on a motorbike. The Static shots such as Fixed Cam are often
used when filming races to give a view from the perspective of a spectator.
The Orbit shot is commonly used in drone cinematography to highlight a
subject whilst giving an awareness of it’s place in the environment [26]. The
Establishing shot is also widely used in cinematography to set the context
for a scene [20].

The shot classes were defined as follows:

• FREE-FLYING [Scene/target-oriented]: This is the master category
in which the drone follows an arbitrary trajectory. The shot can be
scene or target orientated with the drone trajectory programmed in
absolute coordinates or relative to a tracked target. Each of the 6
degrees of freedom of the drone and camera can be controlled inde-
pendently using an arbitrary function. This class can also be used

22

Table 1: The Revised Shot Types for MultiDrone

S: FREE-FLYING

S0: STATIC
S0.0: FIXED CAM
S0.1: ROTATE CAM
S0.2: TRACK CAM

S1: FLY-THROUGH
S1.0: FIXED-CAM
S1.1: ROTATE-CAM

S2: APPROACH

S2.0: ESTABLISH
S2.1: CHASE
S2.2: LEAD
S2.3: FLYBY

S3: ELEVATOR
S3.0: ASCENT
S3.1: DESCENT

S4: ORBIT
S4.0: FULL ORBIT
S4.1: PARTIAL ORBIT

to combine multiple shots of its sub-class types. The FREE-FLYING
category is at the root of the class hierarchy and all other shots are
are defined as sub-classes of this super-class as follows:

• STATIC [Scene/target-oriented]: This is the simplest class of shot in
which the drone remains stationary and the camera can be stationary
or moving. Three sub-types are defined for this class:

– FIXED-CAM: There is no camera movement.

– ROTATE-CAM: The camera gimbal rotates (typically pans or
tilts) at a pre-programmed angle and speed.

– TRACK-CAM: The camera gimbal rotates to maintain focus on
and track a moving target.

• FLY-THROUGH [Scene-oriented]: The drone flies through the scene,
typically with a constant speed following a pre-programmed path. Two
sub-types are defined for this class:

– FIXED-CAM: There is no camera movement.

– ROTATE-CAM: The camera gimbal rotates (typically pans or
tilts) at a pre-programmed angle and speed.

• APPROACH [Target-oriented]: The drone moves linearly closer to,
away from, or maintains a fixed distance to the target. The approach
can be from the front or the back and the drone may be at the same
or a different height to the target. Four sub-types are defined:

– ESTABLISH: The drone typically moves closer to the target from
the front at a steadily decreasing altitude.

23

– CHASE: The drone chases the target from behind, with the dis-
tance between them decreasing or remaining constant.

– LEAD: The drone leads the target with the distance between
them decreasing or remaining constant.

– FLYBY: The drone flies past the target (offset from the target
trajectory) in a straight line, normally overtaking the target, with
camera tracking as it does so.

• ELEVATOR [Scene/target-oriented]: The drone moves vertically straight
up or down, normally tracking a target or with the camera fixed (e.g.
facing vertically downwards). Two sub-types are included for this
class:

– ASCENT: The drone moves up.

– DESCENT: The drone moves down.

• ORBIT [Target-oriented]: In the orbit class, the drone flies around the
target in a part or full circle, centred at the target. Two sub-types are
defined for this class:

– FULL ORBIT: The drone flies around the target in a full circle,
centred on the target.

– PARTIAL ORIBIT: The drone flies around the target following
a defined segment of a circle.

Examples of these shot types are illustrated in Figure 6.

3.5 Revised Grammar for Multiple Drone Shots

Current drone cinematography is mainly based on the use of single plat-
forms. The use of multiple drones in a cooperating swarm can significantly
enhance the cinematographic experience by providing multiple viewing an-
gles and framing styles, innovative shot transitions and the elimination of
dead time due to travel between shot locations.

The shot types described in Section 3.4 can be combined as complex shot
types when multiple drones are operated independently. Different shot types
can also be defined if one drone is considered as a MASTER drone following
one of the trajectories defined previously, and the other drone(s) are oper-
ated as SLAVES, moving relative to the MASTER. These two modes are
illustrated in see Figure 7 and summarised below:

• M1: MASTER/SLAVE: The MASTER drone follows one of the
trajectories defined for single drone shot types, with the SLAVE drone(s)
flying along a pre-programmed path offset from the trajectory of the

24

X

Z

Establishing

(a) ESTABLISH

X

Z

Chase

(b) CHASE

Flyby

X

Z

Y

(c) FLYBY

X

Z

Elevator

(d) ELEVATOR - ASCENT

Orbit

Z

XY

(e) FULL-ORBIT

Figure 6: Five Typical Target-based Shot Types. Blue curves represent
drone movement and black curves represent the target object movement.
The red dotted lines indicate the gimbal rotation angles. The starting points
of the drone and target are denoted with circles.

MASTER with their camera tracking the same target as the MASTER
but from a different viewpoint.

• M2: INDEPENDENT: Multiple drones fly independently follow-
ing different trajectories (as defined for a single drone shot), typically
following or tracking a common target.

The use of multiple drones allows a more complex shot specification. Each
drone can fly independently (e.g. each executing one of the previously de-
fined single drone shot types) or the drones can be operated in a MAS-
TER/SLAVE configuration.

3.6 Parametric Shot Definitions

Integration of a camera shot in a system having an automatic shooting
capability requires that the shot be fully parameterized, enabling the control
system to calculate the position and orientation of the drone and the gimbal
rotation of the camera throughout the shot.

25

MASTER/SLAVE-FLYBY

X

Z

Y

(a) MASTER/SLAVE

INDEPENDENT-ORBIT/CHASE

X

Z

Y

(b) Independent

Figure 7: Example MultiDrone Shot Types [6]. Blue curves represent drone
motion and black curves represent target motion. Red dotted lines indicate
the gimbal rotation angles. Starting points of the Master drone and target
are denoted with a single circle, starting point of the SLAVE with 2 circles.

3.6.1 Establishing Shot

An Establishing shot type (illustrated in Figure 6(a)) is used to present
scene context by showing the audience the wider area in which the action
will take place and can also help to set the mood. In this shot the drone
moves linearly towards the target from the front (or the back in some cases),
typically at a steadily decreasing altitude. During the shot the camera
gimbal normally rotates so that the target is correctly framed. Assuming a
fixed target with movement T(t) (a function of time t) defined by:

T(t) = (0, 0, 0) (9)

The drone movement D(t) relative to the target for the establishing shot is
given by:

D(t) =

(
t

t0
(xe − xs) + xs, 0,

t

t0
(ze − zs) + zs

)
(10)

In the above equation t0 represents the shot duration and xs, xe, zs and ze
are parameters which determine the drone start and end positions (relative
to the target) on the x and z axis respectively.
The roll, pitch and yaw angles (with a yaw of 0° corresponding to the direc-
tion of drone travel) defining the gimbal motion G(t) relative to the drone
are given by:

G(t) =

(
0◦, arctan

(
t(ze − zs) + t0zs
t(xe − xs) + t0xs

)
, 0◦

)
(11)

3.6.2 Chase/Lead Shot

In the Chase/Lead shot (illustrated in Figure 6(b)) the drone follows (or
leads) the target from behind (or from the front) with the gimbal keeping
the camera focused on the target. The distance between the drone and

26

the target can be either constant, for a follow shot, or decrease over time.
The position of the target T(t) (a function of time t), assuming a linear
movement along the x axis, is given by:

T(t) =

(
t

t0
d0, 0, 0

)
(12)

The drone movement relative to the target D(t) can be defined by:

D(t) =

(
t

t0
(xe − xs) + xs, 0, z0

)
(13)

In the above equation xs and xe are parameters which represent the start
and end positions (relative to the target) of the drone along the x axis.
Parameter z0 represents the difference between the height of the drone and
that of the target object (measured along the z axis).

The gimbal motion G(t) relative to the drone can also be described by:

G(t) =

(
0◦, arctan

(
t0z0

t(xe − xs) + t0xs

)
, 0◦

)
(14)

3.6.3 Flyby Shot

In the Flyby shot (illustrated in Figure 6(c)) the drone flies past the target
in a straight line with the camera gimbal rotating to keep the target object
in frame.
The position of the target T(t) (a function of time t), assuming a linear
movement along the x axis, is given by:

T(t) =

(
t

t0
d0, 0, 0

)
(15)

The drone movement relative to the target D(t) can be defined by:

D(t) =

(
t

t0
(xe − xs) + xs, y0, z0

)
(16)

In the above equation xs and xe are parameters which represent the start
and end positions (relative to the target) of the drone along the x axis.
Parameters y0 and z0 are the distances between the drone and the target
object along the y and z axes respectively.

The gimbal motion G(t) relative to the drone is given by:

G(t) =

(
0◦, arctan

(
t0z0

t(xe − xs) + t0xs

)
,−arctan

(
t0y0

t(xe − xs) + t0xs

))
(17)

27

3.6.4 Elevator/Ascent and Descent Shot

In an Ascent shot (illustrated in Figure 6(d)) the drone moves vertically
upwards whilst in the Descent shot the drone moves vertically downwards.
The camera gimbal will normally rotate so that the target remains correctly
framed at all times. The position of the target T(t), assuming it is station-
ary, is given by:

T(t) = (0, 0, 0) (18)

The drone movement relative to the target D(t) can be defined by:

D(t) =

(
x0, 0,

t

t0
(ze − zs) + zs

)
(19)

Here zs and ze are pre-determined parameters which represent the start and
end positions of the drone (relative to the target) along the z axis. If ze > zs
the shot is an Ascent whilst it is a Descent for ze < zs. The Parameter x0

represents the distance (along the x axis) between the drone and the target
object, which remains constant throughout the shot.

The gimbal motion G(t) relative to the drone can be defined by:

G(t) =

(
0◦, arctan

(
t(ze − zs) + t0zs

t0x0

)
, 0◦

)
(20)

3.6.5 Orbit Shot

In an Orbit shot the drone flies around the target in a circle (Full Orbit) or in
a circular arc (Partial Orbit), whilst simultaneously following it’s trajectory
(if any). The camera gimbal slowly rotates so that the target is always
correctly framed. A Full Orbit Shot of a linearly moving target is illustrated
in Figure 6(e). The position of the target T(t), assuming a linear movement
along the x axis, is given by:

T(t) =

(
t

t0
d0, 0, 0

)
(21)

In the above equation parameter d0 represents the end position of the target
object along the x axis.

Assuming the drone is initially located at an angle of 0° relative to the
position of the target (in the direction of the x axis) and travelling in the −y
axis direction, the drone motion relative to the target D(t) can be defined
by:

D(t) =

(
r0 cos

(
2πt

t0

)
,−r0 sin

(
2πt

t0

)
, z0

)
(22)

In the above equation parameters r0 and z0 represent the radius of the orbit
and the height of the drone respectively. At time t0 the drone will have

28

completed one full orbit. To define a partial orbit (or multiple orbits) the
factor 2π is changed to the angle subtended by the orbit.

The gimbal motion G(t) relative to the drone can be defined by:

G(t) =

(
0◦, arctan

(
z0

r0

)
,−90◦

)
(23)

3.7 Summary

A rationalized library of camera shot types, with camera motions typically
defined relative to that of the target, incorporating a simple taxonomy and
terminology, will be of benefit for filming fast moving live action such as
sports. Such an optimized library can help to ease the task of the director
and simplify the control system of a semi-autonomous filming platform.

Integration of camera shots into an automatic shooting system requires
that default values and operating ranges for each parameter are defined.
The quality of the viewing experience for a shot will be subjective in nature
and in many cases will be highly dependent on the particular parameter
values used. The next section examines a subjective testing methodology
that can be used to determine parameter values for a shot that will give a
good experience for the majority of viewers.

29

4 The Determination of Optimum Shot Parame-
ters using Subjective Testing

Some of this work has previously been published in the following paper:

S. Boyle, F. Zhang, and D. R. Bull, “A Subjective Study of the Viewing
Experience for Drone Videos,” in 2019 IEEE International Conference on
Image Processing (ICIP), (Taipei, Taiwan, Sep. 22–25, 2019), IEEE, 2019,
pp. 1034–1038. doi: 10.1109/ICIP.2019.8803747

New types of camera shot developed for drone and multi-drone filming plat-
forms will need to be tested to ensure the quality of the viewing experience.
The range of values for each shot parameter that gives a pleasant or ex-
citing result and the ranges that give an unpleasant experience need to be
evaluated. To determine the optimum value and operating envelope for a
particular parameter of a camera shot it is necessary to subjectively test
a series of video sequences of the shot, each varying in the value of that
parameter, whilst keeping other aspects of the shot as similar as possible.
Creating test footage with a real drone is both time consuming and costly.
A great deal of preparatory work, such as gaining necessary permissions,
procuring resources and flight planning, needs to be carried out before the
actual filming. The resources (people, venues and vehicles etc.) needed to
recreate typical filming scenarios such as a cycling or car race are expensive.
The production of video sequences which are identical apart from a precise
parameter variation is also problematic due to the difficulty in accurately
setting and maintaining drone parameters throughout a shot and the vari-
able lighting conditions encountered if filming outdoors.

The use of computer simulated drone camera shots for the subjective
tests can potentially give a number of benefits. The drone camera and
subject objects can be precisely controlled and the model can be quickly
modified to change parameter values such as drone height. There are also
many realistic 3D models of environments and objects available for down-
load from websites which can be used to quickly build a scenario. The
assumption that the subjective testing of simulations can give comparable
results to that obtained with real footage will require that the models are
sufficiently realistic and the video renderings free from distracting artifacts.

A series of experiments were performed to determine if the optimization
of camera shot parameters (for use in automatic shooting systems such as
MultiDrone) could be achieved through the subjective testing of shot sim-
ulations. The shots used for the tests were selected from the shot library
defined for the filming of sports races given in Section 3.4 and Unreal En-
gine 4 game engine software produced by Epic Games was chosen as the
simulation environment.

30

https://doi.org/10.1109/ICIP.2019.8803747

4.1 Simulation of Shot Scenarios using Unreal Engine

The use of simulations rather than real footage for the subjective testing of
camera shots can lower time and resource costs. It enables precise control
over shot parameters and simulation models can be easily modified to pro-
duce different shot versions (e.g. with changes in a single parameter).

Unreal Engine 4 was found to fulfil all the requirements necessary for
shot simulation. It has a number of advantages over other systems, one of
the most important for subjective testing being the production of a very re-
alistic rendered output which is of much higher quality than that produced
from simulation packages such as the Gazebo robotics simulator. Unreal
Engine is available without subscription cost, payment only being needed
if the developed system is monetized and gross revenue exceeds a particu-
lar value. In addition to games development, Unreal has been used for the
production of special effects in the film industry, training simulations, archi-
tectural walk-throughs and in design validation. Some of the main features
provided by Unreal [27] include:

• Models can be built quickly using off the shelf components such as
environments, vehicles and riders.

• Cameras and targets can be animated in the Matinee and Sequence
editors, using keypoints to define motion.

• Character animation (e.g. for wheels turning, cyclists pedalling).

• Advanced lighting model using global illumination with effects such as
dynamic shadows, diffuse inter-reflection and ambient occlusion.

• NVIDIA PhysX physics engine enables objects to be given a realistic
physical behaviour (e.g. to model collisions, forces, dynamics and
gravitational effects).

• Advanced model behaviour can be programmed using the Blueprints
visual scripting or C++ languages.

• Materials are created using visual scripting with Material Expression
nodes to produce High Level Shading Language. A large number of
effects such as bump offsets, refraction, layered materials and detail
texturing can be implemented. The UV coordinates of a texture can
be animated to create moving materials (e.g. to model fire or water).

• Import of models from other systems such as 3ds Max using FBX
(Filmbox) and OBJ (Wavefront Advanced Visualiser) formats.

• Real-time high quality shaded animation enables rapid prototyping of
models.

31

• Very high quality rendering to video (e.g. 1920x1080 at 60 fps).

• Supported on a wide range platforms including Windows, Linux, An-
droid, iOS, Xbox and PlayStation.

Unreal Engine also provides the ‘Cine Camera Actor’ camera object which
has many configurable properties allowing it to simulate real-world cameras:

• Filmback Settings - e.g. 16:9 Film and IMAX 70mm.

• Lens Settings - e.g. Universal Zoom and 50mm Prime f/1.8.

• Focal Length.

• Focus Distance.

• Aperture.

• Horizontal FOV (Field of View).

• Rendering Features - e.g. Motion Blur.

There are are inherent problems from using videos of simulated camera shots
in subjective testing. Computer generated images will have artefacts such
as jagged edges due to limitations in the rendering and the computer screen
resolution. It can be difficult and time consuming to achieve a convincing
motion for moving objects in an animation. A very smooth object motion
is often unrealistic, but attempting to overcome this by adding extra key-
points to the animation track can result in abrupt transitions in the motion.
The effect of sound is difficult to replicate, for example extra excitement
can be added to a close-up shot of a racing car by adding the noise of an
engine revving. To be confident in the results obtained through subjective
testing it will be necessary for the simulation to have sufficient realism for
the viewers to be able to concentrate on the particular issue being tested
and not in the overall quality of the model.

4.1.1 Modelling Scenarios and Camera Shots using Unreal En-
gine

The simulations of shooting scenarios can be created using the Matinee
or Sequence editors of Unreal Engine. These multi-track editors use key-
framing to animate objects and can be used for the production of cinematic
quality video sequences. For the case of the Matinee editor, moving target
objects, such as cars and cycles, can be animated by selecting the object and
then using the Add New Empty Group option. A Movement Track, used to
define the object’s motion, is then be added to the group. Key-points are
added at particular times on the Movement Track and with a key-point se-
lected, the orientation and position of the object is modified to that required

32

at the time corresponding to the key-point. To animate the drone camera a
Camera Actor object can be added to the editor using the Add New Camera
Group option and it’s Movement Track defined using key-points. The value
for the FOV (Field of View) property of the camera object can be adjusted
to give appropriate framing. Rather than use a Camera Actor object, a
Cine Camera object can be added to the animation using a similar method
as that for adding target objects. The Cine Camera object has many more
configurable properties than a Camera Actor object and it can be used to
accurately model real-world cameras. To define camera cuts the Add New
Director Group option is used to add a Director track, to which key-points
are added for each cut. When using a single camera a single cut is made at
the start of the Director track. A useful feature of the Matinee editor is the
ability to preview the animation at particular speeds such as 50% or 100%.
Using this feature the camera and target motions can be quickly refined to
give the desired animation. Finally the Movie command can be used to
generate high quality video rendered at full HD (e.g. 1920×1080 resolution
at 60fps).

The simulation of vehicles such as cars or bicycles in a Game Mode of Un-
real Engine is usually achieved by means of components such as WheeledVe-
hicleMovementComponent4W, which define the vehicle setup and dynamic
behaviour, and vehicle control blueprint classes such as VehicleWheel and
WheeledVehicle, which use this setup to calculate vehicle dynamics (e.g.
speed, acceleration and turn rate) in response to user input. Vehicles are
typically modelled as a Skeletal Mesh object containing a hierarchy of bones
connected via sockets. The vehicle control blueprints can be used to set
appropriate rotations for bones (e.g. the wheel bone turn angle in re-
sponse to a steering input) and control animation blueprints (e.g. to an-
imate wheels spinning by modifying the wheel bone rotation). The vehicle
control blueprints cannot easily be used to provide precise control of moving
objects throughout a shot simulation and hence to accurately model camera
shots the objects will need to be moved by specifying key-point positions
(e.g. using a Movement Track in the Matinee editor). As a result, the fa-
cilities provided by the vehicle control blueprints for animating wheels will
not be available and it may be necessary to create custom animations for
wheel rotation, which can be added to an Animation Track applied to the
object in the Matinee editor.

4.2 Subjective Testing of Camera Shots for the MultiDrone
System

A number of the proposed shot types for filming sports races with the Mul-
tiDrone platform (see Section 3.4) were evaluated by subjectively testing
videos of the camera shots simulated using Unreal Engine. Representative
sporting event scenarios of bicycle and car races were used for the test con-

33

tent. A pilot study was used to determine the feasibility of the approach
and after this was confirmed three additional phases of testing were carried
out. In the first phase the optimum drone camera height for each shot under
test was evaluated. In the second phase of testing the optimum drone speed
for shots was evaluated (using the optimum drone heights found in the first
phase). This approach assumed optimum drone height and speed were inde-
pendent of each other. It was not feasible to test all combinations of height
and speed due to the excessive time required for modelling and the probabil-
ity of fatigue affecting the scores from the test participants. In a final phase
of testing, used to verify the results found previously, real footage of a cy-
cling race, using the camera shot types under investigation, was subjectively
tested and the results compared with those from the simulations

4.2.1 Methodology

The perceived video quality in subjective tests can influenced by many fac-
tors including:

• The display properties such as size, resolution, contrast, brightness
and dynamic range.

• The distance of the viewer from the screen.

• Environmental factors such as room lighting and noise.

These viewing conditions should be kept as consistent as possible through-
out all executions of a particular test so that the effect on the test results
is minimized. Test results obtained from each viewer will be dependent on
factors such as level of interest, fatigue, visual acuity, expectations and the
level of expertise in the subject being filmed and in video assessment. To
minimize the effects of these factors there should be at least 15 assessors
which have been screened to ensure they have normal colour vision. Test
sessions should be limited to 45 minutes to prevent fatigue. Sufficiently ac-
curate results can be obtained with test sequences lasting between 5 and 10
seconds [28].

Methodologies such as Double Stimulus Continuous Quality Scale
(DSCQS) and Double Stimulus Impairment Scale (DSIS) , in which the im-
age or video clip to be evaluated is compared against a benchmark, were
not suitable for the testing of MultiDrone shots because there were no video
sequences that could be used as a reference. For MultiDrone testing it
was necessary to use a Single Stimulus methodology such as Single Stimu-
lus Continuous Quality Scale (SSCQS) or Absolute Category Rating/Single
Stimulus Discrete Quality Scale (ACR/SSDQS). In an SSCQS test viewers
typically rate a video clip with a score from 0 to 100. In ACR viewers typ-
ically rate each clip using categories of bad, poor, fair, good and excellent
while in SSDQS clips are typically rated at 5 for excellent, 4 for good etc. A

34

Forced Choice methodology such as Two Alternative Forced Choice (2AFC)
in which the viewer chooses their preference between two sequences could
also be used.

For the subjective testing of MultiDrone shots a single stimulus SSDQS
methodology was chosen, in which clips were rated from 1 (bad) to 5 (excel-
lent). A Mean Opinion Score (MOS) and a confidence interval could then
be easily calculated from the results.

A total of 79 subjects (20 for the pilot study, 20 for the phase I height
tests, 19 for the phase II speed tests and 20 for the validation tests) partici-
pated in the experiments, all of whom had been screened to ensure they had
normal or corrected-to-normal vision. The experiments were undertaken in
a environment resembling a living room with subdued lighting using a SONY
KD-65ZD9 4K HDR television and a viewing distance of 254 cm (three times
the screen height). The test sequences were displayed in a random order un-
der the control of a Windows PC running Matlab Psychtoolbox. Each test
session started with the participant viewing a 3s mid-level grey screen before
three clips used for training and then the actual video clips under evaluation
(in a randomly selected sequence). After each individual clip the subject was
given an unlimited time to rate their viewing experience using an integer
score from 1 to 5 (1=Bad, 2=Poor, 3=Fair, 4=Good, 5=Excellent) and this
raw opinion score was recorded. After the session the participant was infor-
mally interviewed about their viewing experience, to ascertain the criteria
they had used to rate the videos and what factors had made any sequences
appear particularly good or bad. After all tests were completed the Mean
Opinion Score (MOS) and standard error (SE) were calculated for each clip
from the scores of all the participants. Outlier removal was not used be-
cause of the expected wide variation in the perceived quality of the viewing
experience for a shot, since it will be highly dependent on each individual’s
personal preferences.

4.2.2 Pilot Study

A pilot study was used to evaluate if the proposed method of subjectively
testing a simulated camera shot could be successful in determining any op-
timum parameters for the shot. Scenarios of sports cars racing in a city
and a motorcycle being ridden around an industrial area were used for the
tests. To build the simulations models of the environments, sports cars, mo-
torcycle and rider were obtained from the Unreal Marketplace using assets
DownTown, Industrial City, RaceCourse and MotorCycles. Table 2 sum-
marises the shot type and parameter values tested for each scenario under
investigation. In the ‘Getting ready’ phase of a scene the target objects are
stationary (i.e. getting ready for the race). Note, the Reveal shot at the
beginning of scenario 6 is similar to an Establishing shot, but the camera
transitions from a close-up shot of the stationary target to a very wide shot

35

in order to reveal the scene. Sample frames from each scenario are shown in
Figure 8 on page 37.

Figure 9 on page 39 shows the Mean Opinion Score (MOS) for each
test video (each using a different value for the parameter under test) in
the different scenarios of the subjective experiment. The 95% confidence
interval for the MOS is represented by the bar at each of the plot points.
A paired t-test was also conducted between the video having the highest
average MOS and the other four test videos in a scenario. This t-test (using
the MATLAB ttest function) tested the hypothesis that the mean for the
difference between the scores for the particular shot version and the scores
for the best version had a value of zero, the hypothesis being rejected at a
significance level below 5%. The red dots/bars in each sub-figure indicate
the test versions which have a significantly lower average MOS than the
winning video for the scenario. A blue dot/bar indicates that there is at
least a 5% probability that the MOS for the test video (when using a large
number of trials) could be equal to that of the best video.

Table 2: Scenarios for the Subjective Tests of the Pilot Study.

Scenario Target Object Environment Shot types Scene Duration Test Parameters

1 Sports Car Down Town Establishing Getting
ready

10s
Speed: 2, 4
6, 8, 10 mph

2 Sports Car Down Town Chase Racing 10s
Height: 1, 2
6, 10, 14 m

3 Sports Car Down Town Establishing
+ Elevator
+ Chase

Getting
ready +
Racing

30s Speed: 8, 13
19, 24, 30 mph

4 Motor Cycles Industrial City Establishing Getting
reading

10s
Speed: 5, 11
16, 22, 27 mph

5 Motor Cycles Industrial City Orbit Chasing 10s
Height: 25, 30
35, 40, 45 m

6 Motor Cycles Industrial City Reveal +
Chase +
Elevator

Getting
ready +
Chasing

30s Height: 5, 10
15, 20, 25 m

The results show that for all of the scenarios a range of drone parameters
which give a statistically significant viewing preference can be identified,
although the preferred parameter values are highly content dependent and
there is significant variability between the individuals tested. From the in-
formal interviews after the tests it was found that assessors adopted very
different criteria for rating the video clips and hence the results obtained
are highly subjective. It was also apparent that certain drone shots can give
a wow factor if used for a short time but when used for a longer duration

36

Figure 8: Sample Frames of Test Scenarios in the Pilot Study. Scenario
1 (Row1); Scenario 2 (Row 2); Scenario 3 (Row 3); Scenario 4 (Row 4);
Scenario 5 (Row 5); Scenario 6 (Row 6).

they could have upsetting or disorientating effects.
The values for the optimal drone parameters clearly varied across the

different test scenarios. This indicated that although an optimal parameter
range can be identified for a particular test scenario, further investigation
was required in order to confidently apply the results when capturing real
footage. It was also noted that the optimal parameters are related to the
motion (for the drone speed parameter) or the size (for the drone height pa-
rameter) of the target objects, and this dependence would also need further
investigation.

37

From this pilot study it was concluded that subjective testing of simulated
drone camera shots could provide an accurate and efficient method of as-
sessing the quality of the viewing experience for MultiDrone camera shots.
To try to reduce the sensitivity of the results on the particular context it
was decided that in future tests the optimum parameters should be related
to relative motion or size (e.g. speed of the drone relative to the target). It
was also decided to simplify the scenarios, since for a complex shot combina-
tion the optimum parameter values could vary for each of the different shot
stages. To reduce the effect of a ‘wow factor’ all videos used to test length
parameters (e.g. drone height) should have the same duration. For param-
eters such as speed, a variable shot duration may be necessary to ensure
each version has similar content (e.g. films identical target objects during a
‘Flyby’ shot).

38

2mph 4mph 6mph 8mph 10mph
2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

Drone Speed

M
O

S
 (

1−
5)

Scenario 1

1m 2m 6m 10m 14m
1.5

2

2.5

3

3.5

4

4.5

Drone Height

M
O

S
 (

1−
5)

Scenario 2

8mph 13mph 19mph 24mph 30mph
2

2.5

3

3.5

4

4.5

Drone Speed

M
O

S
 (

1−
5)

Scenario 3

5mph 11mph 16mph 22mph 27mph
2

2.5

3

3.5

4

Drone Speed

M
O

S
 (

1−
5)

Scenario 4

25m 30m 35m 40m 45m
1.5

2

2.5

3

3.5

Drone Height

M
O

S
 (

1−
5)

Scenario 5

5m 10m 15m 20m 25m
2

2.5

3

3.5

4

4.5

Drone Height

M
O

S
 (

1−
5)

Scenario 6

Figure 9: The Average MOS for the Test Versions of each Scenario in the
Pilot Study. The error bar represents the standard error, with a red bar
indicating that the MOS of the test parameter is significantly (through a
paired t-test) lower than that for the best case.

39

4.2.3 Subjective Testing of Camera Shots to Determine Opti-
mum Drone Height and Speed

After the verification of the subjective testing methodology in the pilot
study, further experiments were carried out in two phases to determine op-
timum drone camera height and optimum drone speed for a selection of the
shots proposed for filming races with MultiDrone (see Section 3.4). The
‘Chase’, ‘Follow’ and ‘FlyBy’ shots are typical of those used to film cycling
races (often from a camera on a motorbike). The ‘Orbit’ and ‘Establishing’
shots are commonly used in drone cinematography to show the wider con-
text of a scene [26]. The ‘Static-Still’ shot is often used when filming races
to give a view from the perspective of a spectator. It can give the viewer
a sense of anticipation as the racers approach and since the camera is fixed
it helps to give a perception of the speed of the racers and their relative
positions. The scenarios modelled for the subjective tests were a cycling
race in the country-side and cars racing along a city street at night, which
were representative of the types of sports events that could be filmed using
the proposed shot types. In the first phase, simulations for each of the shot
types in both scenarios, at various drone camera heights were subjectively
tested. In the next phase, simulations for each applicable shot at various
drone camera speeds were tested, with the drone height for a shot being set
at the optimum value found in the first phase. The same methodology was
used as for the pilot study.

The Country side and Walking Street assets from the Unreal Market-
place, which both contained long, straight sections of road suitable for mod-
elling race stages and were of sufficient detail to produce a realistic rendering,
were chosen to build the environments for the scenarios. The uniformity of
the environments also helped to ensure that shots involving the same tran-
sition relative to a target object, but using different drone speeds relative
to the target, would have a background of similar appearance at each stage.
This would ensure that shots with differing drone speeds could be produced
that were consistent in both the target and background aspects of their con-
tent.

Models of a bicycle with cyclist and sports cars, obtained from the Cy-
cling and RaceCourse assets in the Unreal Marketplace were used in the
simulations. These bicycle and car models were designed for game use and
contained blueprints (e.g. VehicleMovement) that controlled wheel move-
ments in response to player input. They did not include animations for wheel
movement that could be incorporated into the Matinee editor. To enable ro-
tation of wheels in the simulations, animations were created by editing each
of the bicycle and car Skeletal Mesh objects and using the Create Asset ->
Create Animation -> Current Pose command. The bone representing
the wheel was selected and key-points added at four equal intervals of time.
At each of these key-points the rotation of the wheel was modified by chang-

40

ing the value of the rotational pitch so that it varied from -180°to 180°, as
shown in Figure 10. In the Matinee editor the animation was applied to the
vehicle object by using an Animation Track. Key-points added to this track
could then be configured to start a particular animation at a certain time
and define settings such as play rate and play once or repeat. Animations
were also created for the bicycle with both handlebars and wheels turning
and with handlebars at a fixed rotation and wheels turning, (for use when
the bicycle was changing direction), although it was not necessary to use
these in the final simulations. In addition to the animation of the rotating
wheels the cycling scenarios used animations of the cyclist pedalling and the
pedals turning, which were available from the Cycling asset.

Figure 10: Animating the Bicycle Wheel.

Subjective Tests with Varying Drone Height

For the drone height tests the duration of the video clips was reduced from
10 seconds in the pilot study to 5 seconds. This duration was sufficient
for the drone camera to pass from a position behind the group of target
subjects to a position at the front of the group (as in the ‘Flyby’ shot) with
a moderate speed (approximately 4 m/s relative to the target for the case
of a ‘Flyby’ shot). This duration has also been shown to be sufficient for
subjective tests [28]. The scenarios and shot types tested (given in Table 3)
were modelled using the Matinee editor in a similar way as that for the pilot

41

test. In the ‘Chase’ shot the camera is moving closer to the target, while
in the ‘Follow’ shot the camera is staying at a constant distance behind the
target. Scenario 6 had been modelled in the pilot study (with a different but
similar environment) and it was not modelled in this phase since the results
would be similar. The modelling for the cycling scenarios was complicated
by the undulating country-side landscape which resulted in substantially
more key-points being needed on each bicycle Movement Track to ensure
that they followed the terrain.

Examples of a cycling simulation (‘Flyby’ scenario) and a simulation of
cars racing (‘Chase’ scenario) are shown in Figures 11 and 12.

Table 3: Scenarios and Parameters for the Phase I Drone Height Tests.

Scenario Shot Type Duration Height m

Cycling
CountrySide B1

ESTABLISHING 5s
1, 2, 3,
4 and 5

Cycling
CountrySide B2

ORBIT 5s
1, 2, 3,
4 and 5

Cycling
CountrySide B3

STATIC-STILL 5s
1, 2, 3,
4 and 5

Cycling
CountrySide B4

FLYBY 5s
1, 2, 3,
4 and 5

Cycling
CountrySide B5

CHASE 5s
1, 2, 3,
4 and 5

Cycling
CountrySide B6

FOLLOW 5s
1, 2, 3,
4 and 5

Cars
Night City C1

ESTABLISHING 5s
2, 4, 6,
8 and 10

Cars
Night City C2

ORBIT 5s
2, 4, 6,
8 and 10

Cars
Night City C3

STATIC-STILL 5s
2, 4, 6,
8 and 10

Cars
Night City C4

FLYBY 5s
2, 4, 6,
8 and 10

Cars
Night City C5

CHASE 5s
2, 4, 6,
8 and 10

Cars
Night City C6

FOLLOW 5s
2, 4, 6,
8 and 10

The results of the subjective testing for the cycling race and cars street-
racing scenarios are given in Figures 13 and 14 on pages 44 and 45. The

42

Figure 11: Flyby Scenario for Cycling Race.

Figure 12: Chase Scenario for Cars Racing.

results for scenario 6 (‘Follow’ shot) of the cars racing is not shown since
this should give similar results to that of scenario 2 shown in Figure 9 on
page 39.

For most of the scenarios there is a statistically significant range of drone
heights that give a preferential viewing experience. In some scenarios (e.g.
cycling scenario 1 and cars racing scenario 5) an optimum drone height can
be clearly identified. There is less variation in preference for each scenario
compared with the pilot study and this may be due to the tighter shot
specifications used. In the pilot study some of the video sequences were of
complex shot combinations and for these there may not be a single drone
height that is preferable throughout the entire sequence. The preferences by
gender for a selection of the scenarios are shown in Figure 15 on page 46. In
general males scored the shots slightly higher than females and for certain
shots (e.g. an ‘Establishing’ shot) males preferred a lower drone height.

43

1m/0.7H 2m/1.4H 3m/2.1H 4m/2.8H 5m/3.5H

Drone Height

2.5

3

3.5

4

4.5

M
O

S
 (

1-
5)

Cycling1

1m/0.7H 2m/1.4H 3m/2.1H 4m/2.8H 5m/3.5H

Drone Height

2.5

3

3.5

4

4.5

M
O

S
 (

1-
5)

Cycling2

1m/0.7H 2m/1.4H 3m/2.1H 4m/2.8H 5m/3.5H

Drone Height

2

2.5

3

3.5

4

4.5

M
O

S
 (

1-
5)

Cycling3

1m/0.7H 2m/1.4H 3m/2.1H 4m/2.8H 5m/3.5H

Drone Height

2

2.5

3

3.5

4

4.5

M
O

S
 (

1-
5)

Cycling4

1m/0.7H 2m/1.4H 3m/2.1H 4m/2.8H 5m/3.5H

Drone Height

2.5

3

3.5

4

4.5

M
O

S
 (

1-
5)

Cycling5

1m/0.7H 2m/1.4H 3m/2.1H 4m/2.8H 5m/3.5H

Drone Height

2.5

3

3.5

4

4.5

M
O

S
 (

1-
5)

Cycling6

Figure 13: Results for Cycling Scenarios with Varying Drone Height. The
error bar represents the standard error, with a red bar indicating that the
MOS of the test parameter is significantly lower (through a paired t-test)
than the best case.

44

2m/1.7H 4m/3.4H 6m/5.1H 8m/6.8H 10m/8.5H

Drone Height

2

2.5

3

3.5

4

4.5

M
O

S
 (

1-
5)

RacingCar1

2m/1.7H 4m/3.4H 6m/5.1H 8m/6.8H 10m/8.5H

Drone Height

2

2.5

3

3.5

4

M
O

S
 (

1-
5)

RacingCar2

2m/1.7H 4m/3.4H 6m/5.1H 8m/6.8H 10m/8.5H

Drone Height

2

2.5

3

3.5

4

M
O

S
 (

1-
5)

RacingCar3

2m/1.7H 4m/3.4H 6m/5.1H 8m/6.8H 10m/8.5H

Drone Height

2.5

3

3.5

4

4.5

M
O

S
 (

1-
5)

RacingCar4

2m/1.7H 4m/3.4H 6m/5.1H 8m/6.8H 10m/8.5H

Drone Height

2.5

3

3.5

4

4.5

M
O

S
 (

1-
5)

RacingCar5

Figure 14: Results for Car Racing Scenarios with Varying Drone Height.
The error bar represents the standard error, with a red bar indicating that
the MOS of the test parameter is significantly lower (through a paired t-test)
than the best case.

45

Figure 15: Gender Preferences for Drone Height with Selected Scenarios.

46

Subjective Tests with Varying Drone Speed

Those shot types used in the first phase of drone height tests that could be
executed at different drone speeds (i.e. ‘Establishing’, ‘Orbit’, ‘FlyBy’ and
‘Chase’) were used in the second phase of testing to determine optimum
speed. The shots were modelled at varying speeds for both cycling and
street car racing scenarios, using the optimum drone height found from the
corresponding scenario in the height tests. For each particular shot, the
versions at different speed all used the same start and end positions for the
camera relative to the target. This ensured that the content of each shot
remained similar at each stage throughout the shot, but as a result the shot
duration varied for each version. The shots types and parameters used for
each test are given in Table 4.

Table 4: Scenarios and Parameters for the Phase II Drone Speed Tests.

Scenario Shot Type
Target
Speed

Speed Rel.
Target m/s

Cycling
CountrySide B11

ESTABLISHING 0 m/s
4, 5, 6,
7 and 10

Cycling
CountrySide B12

ORBIT 8 m/s
-2, -3, -4,
-5 and -6

Cycling
CountrySide B13

FLYBY (Overtaking) 8 m/s
2, 2.5, 3,
4 and 6

Cycling
CountrySide B14

CHASE (Closing) 8 m/s
2, 2.5, 3,
4 and 5

RacingCar
Night City C11

ESTABLISHING 0 m/s
8, 9, 11,
15 and 20

RacingCar
Night City C12

ORBIT 13.5 m/s
-5, -6, -7,
-9 and -12

RacingCar
Night City C13

FLYBY (Overtaking) 13.5 m/s
4, 5, 6,
8 and 11

RacingCar
Night City C14

CHASE (Closing) 13.5 m/s
1.5, 1.8, 2.1,
2.7 and 3.8

The results from the subjective testing of the cycling race and cars street-
racing simulations at varying drone speeds are given in Figures 16 and 17
on pages 48 and 49. The preference variation in the speed tests is much
greater than that in the height tests and a statistically significant range for
an optimum speed can only be identified for the ‘Establishing’ and ‘Flyby’
(Overtaking) shots. The viewing experience may have been affected by
the variation in video duration with drone speed, but it would be difficult
to overcome this problem without having a variation in the content of each
sequence. The interviews conducted after each test also indicated significant

47

differences in preference according to gender, as shown in Figure 18 on page
49. Generally males were seen to prefer a higher drone speed than females.

4.1m/s 4.8m/s 5.8m/s 7.4m/s 10.2m/s

Drone Speed

2

2.5

3

3.5

4

4.5

M
O

S
 (

1-
5)

Cycling-establishing

-2.6m/s -3.0m/s -3.7m/s -4.7m/s -6.3m/s

Drone Speed

3.2

3.4

3.6

3.8

4

4.2

M
O

S
 (

1-
5)

Cycling-orbit

2.3m/s 2.6m/s 3.3m/s 4.2m/s 5.7m/s

Drone Speed

3

3.5

4

4.5

M
O

S
 (

1-
5)

Cycling-overtaking

2.1m/s 2.5m/s 3.0m/s 3.8m/s 5.3m/s

Drone Speed

2.8

3

3.2

3.4

3.6

3.8

M
O

S
 (

1-
5)

Cycling-closing

Figure 16: Results for Cycling Scenarios with Varying Drone Speed. The
error bar represents the standard error, with a red bar indicating that the
MOS of the test parameter is significantly lower (through a paired t-test)
than the best case.

48

8.0m/s 9.4m/s 11.4m/s 14.5m/s 20.0m/s

Drone Speed

2

2.5

3

3.5

4
M

O
S

 (
1-

5)

RacingCar-establishing

-4.9m/s -5.8m/s -7.0m/s -8.9m/s -12.2m/s

Drone Speed

2.8

3

3.2

3.4

3.6

3.8

4

M
O

S
 (

1-
5)

RacingCar-orbit

4.5m/s 5.3m/s 6.4m/s 8.2m/s 11.2m/s

Drone Speed

2.5

3

3.5

4

M
O

S
 (

1-
5)

RacingCar-overtaking

1.5m/s 1.8m/s 2.1m/s 2.7m/s 3.8m/s

Drone Speed

2.8

3

3.2

3.4

3.6

3.8

M
O

S
 (

1-
5)

RacingCar-closing

Figure 17: Results for Car Racing Scenarios with Varying Drone Speed. The
error bar represents the standard error, with a red bar indicating that the
MOS of the test parameter is significantly lower (through a paired t-test)
than the best case.

-2.6m/s -3.0m/s -3.7m/s -4.7m/s -6.3m/s

Drone Speed

1

2

3

4

5

M
O

S
 (

1-
5)

Cycling-orbit

Female
Male

2.3m/s 2.6m/s 3.3m/s 4.2m/s 5.7m/s

Drone Speed

1

2

3

4

5

M
O

S
 (

1-
5)

Cycling-overtaking

Female
Male

-4.9m/s -5.8m/s -7.0m/s -8.9m/s -12.2m/s

Drone Speed

1

2

3

4

5

M
O

S
 (

1-
5)

RacingCar-orbit

Female
Male

4.5m/s 5.3m/s 6.4m/s 8.2m/s 11.2m/s

Drone Speed

1

2

3

4

5

M
O

S
 (

1-
5)

RacingCar-overtaking

Female
Male

Figure 18: Gender Preferences for Drone Speed with Selected Scenarios.

49

4.2.4 Validation using Real Footage

To validate the results obtained from the subjective testing of simulated
footage, real video footage similar in content to that used in the cycling
scenarios was shot at Müncheberg near Berlin (see Figure 20). For each of
five scenarios, sequences were shot using five different drone heights, as given
in Table 5. Filming employed a DJI Inspire with a Zenmuse X5S camera
using a Micro 4/3 Sensor (having a crop factor of 2.0 over a 35mm full frame
sensor). A variable shutter angle was used and the Panasonic zoom lens was
fixed at 14mm. The effect of varying drone speed was not tested due to the
difficulty in maintaining an accurate speed.

An experiment involving twenty participants (ten male and ten female),
employing the same methodology as in the previous studies, was used to
evaluate the optimum drone height. The results from the subjective tests,
given in Figure 21, correlate well with those for the simulated videos (see
Figure 13). In most cases the highest MOS occurs near or at the same
height for both simulated and real videos. The differences with the ‘Orbit’
and ‘Flyby’ shots may be associated with the presence of an artefact in the
simulated video (a non-smooth camera movement). The results support the
proposal that simulated videos are suitable as a proxy for real footage in the
subjective preference evaluation of camera shots.

Table 5: Scenarios and Parameters used for Filming Validation Sequences.

No. Objects Shot Type Height

B1 Cyclist × 3 ESTABLISHING (Descent) 1, 2, 3, 4 and 5m
B2 Cyclist × 3 ORBIT 1, 2, 3, 4 and 5m
B3 Cyclist × 3 STATIC-STILL 1, 2, 3, 4 and 5m
B4 Cyclist × 3 CHASE (Follow) 1, 2, 3, 4 and 5m
B5 Cyclist × 3 FLYBY 1, 2, 3, 4 and 5m

Figure 19: A Comparison Between UE4 Animated Content and Real Footage
for the same Scenario (sample frame).

50

(a) B1 (b) B2 (c) B3

(d) B4 (e) B5

Figure 20: Sample Frames of Test Sequences Shot at Müncheberg.

1m/0.7H 2m/1.4H 3m/2.1H 4m/2.8H 5m/3.5H

Drone Height

1.5

2

2.5

3

3.5

4

4.5

M
O

S
 (

1-
5)

Cycling-DESCENT

1m/0.7H 2m/1.4H 3m/2.1H 4m/2.8H 5m/3.5H

Drone Height

2

2.5

3

3.5

4

M
O

S
 (

1-
5)

Cycling-ORBIT

1m/0.7H 2m/1.4H 3m/2.1H 4m/2.8H 5m/3.5H

Drone Height

1.5

2

2.5

3

3.5

4

4.5

M
O

S
 (

1-
5)

Cycling-SSMT

1m/0.7H 2m/1.4H 3m/2.1H 4m/2.8H 5m/3.5H

Drone Height

2.5

3

3.5

4

4.5

M
O

S
 (

1-
5)

Cycling-FOLLOW

1m/0.7H 2m/1.4H 3m/2.1H 4m/2.8H 5m/3.5H

Drone Height

1.5

2

2.5

3

3.5

4

4.5

M
O

S
 (

1-
5)

Cycling-FLYBY

Figure 21: Test Results on the Real Footage Shot at Müncheberg. The error
bar represents the standard error, with a red bar indicating that the MOS
of the test parameter is significantly lower (through a paired t-test) than
the best case.

51

4.3 Adapting Optimum Parameter Values for Specific Film-
ing Requirements

A camera shot needs to be fully parameterized before it can be integrated
into the control system of an autonomous filming platform. Many parame-
ters such as the number of target subjects when filming a group, along with
their velocities and spatial separation, will not be known in advance and
will have to be determined in real-time through the target tracking system.
Parameters such as the drone’s speed or heading need to be defined relative
to these target variables. For some shots there is relative amount of free-
dom in the value to use for some parameters (e.g. the distance to the side
of the target when overtaking). The shot designer can set a value for the
parameter in advance based on prior environmental knowledge (e.g. known
road width) or the system can assign a sensible default value. Other shot
parameters should be calculated by the system to fulfill the desired shot
requirements and optimize the shot quality, based on results obtained from
subjective testing.

Field

of

View

Working

Distance

Focal

Length

Sensor

Size

Lens

Figure 22: Relationship Between Field of View and Camera Parameters.

The optimal drone parameters obtained from the subjective tests are based
on the specific camera and lens settings used to produce the shot simulations
(focal length of 35mm and sensor size of 23.66mm x 13.3mm). In practice, in
order to obtain a similar field of view or framing as that in the simulations,
a reference working distance WDref from the experiments (e.g. the optimum
drone height) needs to be converted to a value suitable for the particular
camera that is to be used for filming. The relationship between field of view
(FOV), focal length (FL) and the camera sensor size (SS) is illustrated in
Figure 22 and is given by Equation 24:

FL× FOV = SS×WD (24)

The actual working distance WDact can thus be calculated by:

WDact =
SSref

SSact
× FLact

FLref
×WDref (25)

52

In the above equation SSref and FLref are the camera parameters used
for generating the simulation videos, while WDref is the reference (recom-
mended) working distance (e.g. the optimal drone height or drone speed
found from the simulations). SSact and FLact are the parameters for the
actual camera which is to be used in filming.

53

4.4 Summary

The subjective testing of camera shot simulations has been found effective
for evaluating the quality of the viewing experience and can be used to deter-
mine optimum values and suitable ranges for shot parameters. The amount
of variation between viewers in the perceived quality varies between differ-
ent shots and different shot parameters. The method was found generally
to be less successful in finding an optimum camera speed for a shot than for
finding an optimum height because of a wider variation in the preference for
speed than in the preference for height. A selection of the shots proposed
for the MultiDrone system have been evaluated using this method and a
summary of the recommended parameter values for these shots is given in
Table 10 of Appendix B. These parameter values are applicable for a camera
similar to that used in the studies, but can be easily converted to appropri-
ate values if using a camera with different properties.

The work of the subjective study was performed to evaluate the method-
ology and must only be seen as a starting point, since only a small number
of shots in one particular genre (sports races) were evaluated. Automatic
shooting systems will need to have shot libraries defined for each particular
filming genre and it will probably be the case that similar shots used for
different genres will vary in the optimum values for parameters. The sub-
jective testing methodology discussed could also be extended to determine
optimum parameters for shot transitions. For instance, when using a single
drone there may be an optimum distance from the target subject at which
a transition between shots (e.g. from a ‘Chase’ shot to an ‘Orbit’) should
occur. For a transition between the views from two drones there may also
be a minimum drone separation distance (or view angle separation) that is
necessary to prevent jarring and also maximum values which should not be
exceeded to prevent viewer disorientation (cf. 180 Degree Rule).

When using simulations to optimize shot parameters there may be some
variation with the type of the environment at the location (especially for
wide shots) and hence it is important that the models used incorporate a
realistic setting. Flight planning and training applications will also require
highly accurate environment models to facilitate their use in ensuring flight
safety (i.e. the avoidance of buildings and terrain) and for planning shots
and flights with regard to features defining the route and landmarks that
need to appear in-shot. The next section examines data sources and tech-
niques that can be used in building accurate real-world models suitable for
use in drone flight simulation systems.

54

5 Modelling Real-World Environments for Flight
Planning and Training

Some of this work has previously been published in the following papers:

S. Boyle, M. Newton, F. Zhang, et al., “Environment Capture and Simula-
tion for UAV Cinematograhy Planning and Training,” in European Signal
Processing Conference, Satellite Workshop: Signal Processing, Computer
Vision and Deep Learning for Autonomous Systems, 2019. [Online]. Avail-
able: https://research-information.bris.ac.uk/ws/portalfiles/

portal/199953761/Environment_Capture_and_Simulation_for_UAV_

Cinematography_Planning_and_Training.pdf

F. Zhang, D. Hall, T. Xu, et al., “A Simulation Environment for Drone
Cinematography,” IBC Technical Papers, 2020. [Online]. Available: https:
//www.ibc.org/technical-papers/a-simulation-environment-for-

drone-cinematography/6747.article

The models of the simulated drone camera shots, created for use in the
subjective testing experiments, incorporated realistic environments of a city
and a country-side setting. This was necessary to ensure the rating of shot
quality was not adversely influenced by poor backgrounds and viewers were
not distracted by unnatural looking content.

One of the requirements for MultiDrone was for a flight planning and
training package that could be used to simulate single or combinations of
MultiDrone shots with realistic target objects (e.g. cyclists, boats, cars etc).
The system should also be able to provide an environment accurately and
realistically modelled on any actual shooting location. The functionality of
flight planning and training software can be greatly enhanced if the flight
simulations integrate accurate real-world environments (i.e. showing details
of terrain, buildings and roads etc). The software can then be used to fulfil
many important requirements for flight planning including:

• Following features governing the route such as roads or rivers.

• Ensuring safety margin distances to buildings and the terrain are main-
tained.

• Determining flight times (e.g. to ensure adequate battery life).

• Identification of suitable emergency landing areas.

• Designing flights to ensure suitable coverage of landmarks which need
to appear in-shot.

55

https://research-information.bris.ac.uk/ws/portalfiles/portal/199953761/Environment_Capture_and_Simulation_for_UAV_Cinematography_Planning_and_Training.pdf
https://research-information.bris.ac.uk/ws/portalfiles/portal/199953761/Environment_Capture_and_Simulation_for_UAV_Cinematography_Planning_and_Training.pdf
https://research-information.bris.ac.uk/ws/portalfiles/portal/199953761/Environment_Capture_and_Simulation_for_UAV_Cinematography_Planning_and_Training.pdf
https://www.ibc.org/technical-papers/a-simulation-environment-for-drone-cinematography/6747.article
https://www.ibc.org/technical-papers/a-simulation-environment-for-drone-cinematography/6747.article
https://www.ibc.org/technical-papers/a-simulation-environment-for-drone-cinematography/6747.article

When using drones to film expensive ‘one-take’ action movie sequences it
will also be of great benefit to rehearse flights and evaluate different film-
ing strategies using simulation software incorporating accurate models of
the scene (including representations of elements of the action such as the
movement of vehicles and explosions).

5.1 Existing Drone Flight Planning and Training Software

A number of commercial and royalty-free software packages have been de-
veloped to simulate flying aircraft or drones within a realistic virtual envi-
ronment. Examples include DJI Flight Simulator [29], AirSim [30], Zephyr
Drone Flight Simulator, droneSimPro Drone Flight Simulator, RealFlight
RF9 Drone Flight Simulator and Microsoft Flight Simulator [31]. Mapping
animation tools such as Google Earth Studio [32] can also be used to design
and preview flights.

A number of systems were examined to determine their suitability for
drone flight-planning and the main features of each are summarised below:

• DJI Flight Simulator focuses on the training of drone pilots to
improve their flying skills. Accurate simulations of flight control sys-
tems and the modelling of wind and ground effects produces a realistic
drone behaviour. It offers a selection of realistic virtual environments
and various weather conditions, however it does not include real-world
models.

• AirSim (Aerial Informatics and Robotics Simulation) is an open-
source plug-in package, developed for Unreal Engine and Unity (ex-
perimental version), as a platform for AI research into deep learning,
computer vision and reinforcement learning algorithms for autonomous
vehicles. Physically realistic drone behaviour using various flight con-
trollers (e.g. PX4 and ArduPilot) is achieved through software-in-the-
loop simulation. Weather effects (e.g. wind and rain) can be modelled
and the lighting adjusted in real-time to match the time of day in the
simulation (using a BP SkySphere blueprint). Since AirSim is built
on Unreal Engine it can be used with a wide range of downloadable
environments that are available in the Unreal Marketplace. Custom
made landscapes and building models would need to be used to create
a realistic real-world environment. Other drawbacks include a complex
user interface with a steep learning curve and since the software is no
longer under maintenance there is the possibility that it may become
incompatible with new drone hardware.

• Microsoft Flight Simulator is a flight simulator for use on Win-
dows 10 PC’s and the Xbox One platform which can be used for pro-
fessional flight training. The software incorporates detailed models of

56

30 aircraft types (from light to wide-bodied) and 40 airports. Flights
can be simulated for day or night in various conditions using real-time
weather with effects modelling wind speed and direction, temperature,
humidity, rain, cloud-cover and lightning. The entire Earth surface is
simulated using textures and topographical data from Bing Maps, with
Microsoft Azure used to generate models for buildings, trees and wa-
ter. Only 341 cities worldwide (mostly in North America and Europe)
are modelled in full 3D using photogrammetry [33].

• Google Earth Studio is a web-browser based tool, with a simple
and intuitive user interface, which is used to animate Google Earth’s
satellite and 3D imagery data. Flight paths are created using a series of
key-points defining the longitude, latitude and altitude of the camera
at particular times. The camera orientation can be set using key-
points to define ‘Camera Target’ coordinates or by using pan and tilt
attributes. Properties such as the camera field of view and the position
of the Sun can also be animated. The final fly-through can be rendered
to video using specified values for the video resolution, texture quality
and map-style.

None of the systems examined had both built-in models of the real-world
and the functionality to be integrated with customized camera motions (with
configurable parameters) to simulate different types of camera shot. Because
of this it was decided that the MultiDrone flight planning and training sys-
tem would not use a turn-key system, but would be custom built using the
Unreal Engine platform. As Unreal Engine and the Unreal Engine Mar-
ketplace do not have any models of real environments, it was necessary to
establish procedures to import 3D real-world data into the system.

5.2 Data Sources for Environment Models

There are many publicly or commercially available websites and databases
from which data to build realistic 3D world models can be obtained. Some
of the most useful are given below:

Google and Apple both provide 3D maps for many urban areas. These
maps are constructed by combining 2D data from satellite and aerial pho-
tography (e.g. for modelling the ground texture) with rendered 3D data
for objects such as buildings, vehicles and trees. Some areas are filled with
automatically generated 3D data (e.g. generic models of trees) whilst 3D
building data is created from 2D imagery using photogrammetric methods.
The shape of the terrain is accurately modelled and is textured by map-
ping 2D aerial imagery onto the surface geometry. Most public mapping
platforms, such as Google Earth and Apple Maps use data from satellite
companies to supply imagery. Maxar can supply data at 40cm resolution
and Planet Labs at 50cm resolution, although government restrictions can

57

limit the resolution available for certain areas [34].
OpenStreetMap [35] is a free website providing maps displaying a wide

range of features (e.g. roads, paths, buildings, rivers and land-use). Data
is added to the map by volunteers and it has extensive coverage. Details of
particular features can be stored as meta-data and extracted using a query
function. The OSM Buildings website [36] uses data from OpenStreetMap
to produce maps with simple 3D representations of buildings, each of which
can be queried for information such as type, height and number of floors.
Rather than simply extruding the building outline data obtained from Open-
StreetMap, some landmark buildings have been modelled more accurately.
An add-on (blender-osm) for the Blender modelling system has been de-
veloped which will import OpenStreetMap models and real-world terrain
data with a global coverage [37]. Features such as buildings, roads, fences,
trees, rivers and the land surface are imported as separate Blender objects.
The terrain is imported using digital elevation model (DEM) data in SRTM
format prepared by Mapzen from a number of open data sets. The data
sample spacing for individual surface points is 1 arc-second (approximately
30 meters) for latitude and longitude. The premium version of the software
is able to texture the terrain by projecting satellite imagery onto the surface.

The Ordnance Survey [38] provides (at a cost) highly accurate maps of
the United Kingdom for leisure or business use. Extensive information can
be extracted from the topographical layers of data stored with the maps.

Free and publicly available resources for satellite data include the Open-
Topography.org website [39] and the USGS EarthExplorer website [40]. The
heightmap and raster image data is mostly supplied at a low resolution (e.g.
15m to 90m for ASTER Earth Data).

The data supplied by these resources is obtained using a variety of methods,
the most common being high altitude aerial imagery (from satellite or air-
craft), LIDAR scanning, 3D scanning techniques (e.g. 3D Laser Scanning)
and standard (medium range) photography.

5.2.1 Satellite and Aerial Imagery

Satellites and aircraft are used to provide imagery of the Earth’s surface
with a wide coverage. Much of the publicly available data with global cov-
erage is of low resolution, for example that from the Landsat program (a
joint venture between NASA and the USGS) which has provided a con-
tinuous record of the Earth’s land surface since 1972 [41]. At the present
time the Landsat 7 and 8 satellites, in combination, can map the entire
globe in 8 days (with each satellite completing an orbit in 99 minutes).
Landsat 8 has two instruments, the Thermal Infrared Sensor (TIRS) with
a spatial resolution of 100m and the Operational Land Imager (OLI) which
records radiation in the visible, NIR and SWIR bands with a resolution of

58

30m (15m for panchromatic). Access to the collected data is free and the
resource has been used by scientists studying changes in land use, urban
growth and deforestation. Data at higher resolutions is available commer-
cially. The aw3d.jp website [42] supplies data from the Advanced Land
Observing Satellite (ALOS) at a global resolution of 5m and on demand
at resolutions of 0.5m. Ortho-rectified imagery at resolutions up to 30cm
and building data (e.g. 3D polygon representation and height) can also be
supplied on demand.

Researchers such as Sirmacek et al. [43] have investigated the use of aerial
and satellite photographs to detect urban areas and buildings. In addition
to the outline of a building it is possible to determine a building’s height
from a single image by detecting shadows and using knowledge of the time
that the image was captured [44]. By analysing multiple aerial images it is
possible to extract 3D surface information for buildings [45].

In addition to providing imagery with a wide coverage over the Earth’s
surface, satellites and aircraft are used as platforms to collect height-map
data using techniques such as RADAR and LIDAR, as described below.

5.2.2 LIDAR

LIDAR (Light Detection and Ranging) is a technique used to measure the
distance to a surface by measuring the time for a pulse of laser light to
be reflected back to a detector from the surface. By mounting the LIDAR
apparatus on an aircraft with a GPS receiver it is possible to determine pre-
cise measurements for ground elevation. Rather than a single reflected pulse
there may be multiple reflections (e.g. from the top of a tree and then from
the ground). From the shape and intensity of the reflections it is possible
to deduce information about the surface type and land use (e.g. whether
the land is covered by buildings, fields or trees etc). Individual buildings
can be discriminated from the LIDAR data and reconstructed as 3D surface
models [46].

LIDAR has higher equipment and operating costs compared to 3D scan-
ning but it has the advantage of a greater range and large areas can be
scanned in a short time period. LIDAR data can yield more accurate sur-
face heights compared to those calculated using aerial and satellite imagery.
LIDAR is also generally more accurate than RADAR due to the smaller
wavelength of the electromagnetic radiation employed, although for long
range applications RADAR can give better results due it’s lower absorption
rate through the atmosphere and at reflecting ground level surfaces. A high
resolution camera will often be used alongside the LIDAR equipment to take
colour pictures of the ground along the flight-path.

59

5.2.3 3D Scanning

3D laser scanners use a laser light beam to determine the distance to the
nearest object in the path of the beam. By scanning the entire field of view
one point at a time a 3D picture of the surrounding environment is built
up. The two most common methods to determine distance are time of flight
(using a pulsed laser similar in operation to LIDAR) and phase-based using a
continuous laser. Phased-based scanners have a faster acquisition speed but
have a lower dynamic range. Scanners will often include additional hardware
to capture High Dynamic Range colour imagery, but this can reduce the
maximum possible scan rate. Many scanners have a built-in GPS receiver,
which enables point clouds scanned at different locations to be automatically
combined into a single data-set. A 3D model can be reconstructed from the
point cloud data using software such as Autodesk ReCap.

3D laser scanning has lower equipment and operating costs than aerial
LIDAR scanning. Laser scanning has a low range compared to LIDAR and
hence large areas will often require a number of individual scans or the
scanner to be operated continuously whilst mounted on a vehicle. 3D laser
scanning at ground-level has the advantage of being able to capture detail
that cannot be seen from above (e.g. the sides of buildings).

5.2.4 Close Range, High Resolution Imagery

High quality images of an environment can be used to provide data for 3D
reconstruction using photogrammetry. A good quality of reconstruction for
the environment model is dependent on both a good image quality (e.g. re-
garding the resolution, sharpness, contrast and level of shadowing) and the
image set providing a complete coverage of the scene from a wide variety
of angles. Images can be captured (using a still or video camera) from an
aircraft or drone flying over the location multiple times in a series of differ-
ent scans. However using actual flights to obtain data is expensive and time
consuming. To be confident of adequate coverage, if the flight time (and
hence the number of camera shots) needs to be minimized, a great deal of
planning is required to optimize the flight path and camera angles. For
many locations a quicker and more cost effective alternative is to capture
images from resources such as Google Earth. Due to distortions and inac-
curacies inherent in most of the 3D models available from these resources,
the technique cannot produce as good a quality model as that ultimately
possible from the use of images shot on location.

For the development of environment models to be used with the proposed
MultiDrone flight planning and training application it was decided to inves-
tigate the use of height-map data to create Unreal Landscape objects and
the use of photogrammetry to reconstruct 3D scenes from 2D images. The

60

3D models provided by Google Earth were deemed to be of sufficient quality
for flight planning and training and so it was chosen as the image source for
the preliminary work with photogrammetry. It was recognized that due to
the limited 3D coverage of Google Earth, in most cases it would in practice
be necessary to take photographs at the actual location to provide data for a
3D reconstruction. Sections 5.3 and 5.4 detail procedures that are typical of
those used to build environment models using current software and highlight
various problems regarding these methods.

5.3 Creating Landscapes in Unreal Engine

5.3.1 The Unreal Engine Landscape Object

Unreal Engine uses a Landscape actor object to define the terrain of a vir-
tual world. A Landscape object can be created in the Landscape Editor
and sculpted using tools such as ‘Smooth’, ‘Flatten’, ‘Erosion’ and ‘Noise’.
Landscapes can also be created by importing height-map data from a file.
The Landscape can be textured using a specialist Landscape Material which
can be used to define different environmental layers such as soil, grass and
snow. The material can be applied to the terrain by painting the surface
with a particular weighting for each layer or with the weighting defined by a
height-map file. For added realism the Foliage Editor allows objects repre-
senting foliage such as trees, shrubs, flowers and grasses to be painted onto
the Landscape surface (or erased from the surface).

On Landscape creation the size and number of vertices for the Landscape
is defined by setting the ‘Number of Components’, ‘Sections per Compo-
nent’, ‘Section Size’ and ‘Scale’ values. A Landscape object is composed of
a number of square Components which consist of 1 or 4 (2x2) subsections.
The number of vertices on each subsection edge is limited to certain val-
ues (i.e. 2n with n = 3 . . . 8), resulting in a maximum number of 255x255
square divisions (Quads) per subsection. The default scale of 100 will result
in a Landscape with 100 cm between vertices (i.e. a Quad size of 100cm x
100cm). Each Component has a CPU cost associated with rendering and
Epic Games recommends a maximum of 1024 Components in a landscape.
However small Components allow for quicker LOD transitions and hence for
large landscapes there is a trade-off to be made between using a few large
Components to reduce CPU cost and having more but smaller Components
to allow faster LOD transitions. To improve performance when very large
terrains are required World Composition can be enabled. In this mode Land-
scape objects are stored in separate levels which can be loaded and unloaded
as required, each at a particular tile location in the world space.

61

5.3.2 Importing Landscape Data from a Heightmap File

A real-world terrain model can be created in Unreal Engine by importing
surface elevation data from a height-map file into a Landscape object. The
technique was examined, as described below, using data from the Shuttle
Topography Radar Mission (STRM). However the method can be employed
with height-map data obtained from other sources such as LIDAR surveys.

Example Procedure for the Creation of an Unreal Landscape from
Height-map Data

Height-map data for an area around Bristol of approximately 62km2 (with a
range in latitude and longitude of 0.09°) was downloaded in GeoTiff format
from the OpenTopography.org [39] website, using the SRTM GL1 data-set at
30m resolution. The output 16 bit grey-scale TIFF file had a size of 324x324
pixels and the intensity of the pixels ranged from 0 to 120, representing the
height range in metres for the selected area. In addition to the height-map a
hill-shade image for the area, automatically generated from the DEM data,
was also downloaded.

The TIFF file was imported into Bundysoft L3DT software (Large 3D
Terrain Generator) as a heightmap. Using this software the heightmap was
resized to 2016x2016 pixels and exported as a 16 bit grey-scale PNG format
file. This process also modified the pixel intensity values so that pixels at
120m were at full intensity (white).

In the Landscape Editor of Unreal Engine the ‘Import from File’ option
was used to import data from the PNG heightmap (the original TIFF file
at 324x324 pixels was not an allowable size for an Unreal Landscape). The
‘Section Size’ was set to 63x63 Quads, ‘Sections Per Component’ set to 2x2
and ‘Number of Components’ set to 16x16. The X, Y and Z scale of the
Landscape object were modified to that required for the actual landscape,
with the X scale given by:

X = width of actual landscape in cm / Unreal width in vertices
≈ 800000/2016 ≈ 397

The Z scale was given by:

Z = Height corresponding to white level in cm / 512
= 12000/512 ≈ 23.4

The Landscape Material, shown in Figure 23, was created from the hill-
shade image generated by OpenTopography (which was shaded according
to the height and gradient of the surface). The Material was applied to the
Landscape object and the resultant landscape is shown in Figure 24. It is

62

possible to distinguish certain features from the Unreal landscape, such as
the Avon Gorge and Clifton Suspension Bridge, even though the data used
to produce the model is at a very low resolution (i.e. 30m between sam-
pling points). A high resolution heightmap produced from an aerial LIDAR
survey could produce a much more detailed model.

Figure 23: A Material to Apply an Image onto a Landscape.

Figure 24: Landscape of the Bristol Area Created from SRTM Data.

63

5.4 Environment Model Creation using Photogrammetry

The technique of photgrammetry can be used to produce a 3D model using
a number of 2D images captured from different viewpoints. It can be used to
create environment models for drone flight-planning and training software,
either from images captured on location or from images captured from 3D
mapping software such as Google Earth.

5.4.1 Theory of Photogrammetry

The term photogrammetry encompasses a wide range of techniques that are
concerned with the extraction of information from images. Photogrammet-
ric methods are often employed to construct 3D models (e.g. surface models
or point clouds) from a series of photographs and they have been extensively
used in applications as diverse as surveying, flight training, virtual reality,
simultaneous localization and mapping (SLAM), archaeology, heritage con-
servation and media production.

The first stage of most photogrammetry pipelines is a process known as
‘Structure from Motion’ which calculates the external parameters (e.g. the
position and orientation) and, if the problem is un-calibrated, the internal
parameters (e.g. the focal length and principal point) for the camera cor-
responding to each image. Camera parameters are estimated by matching
well defined key-points to multiple images and calculating the homographies
and fundamental matrices corresponding to pairs of matching images. The
coordinates of the key-points can then be calcualted and hence this stage
will often generate a ‘sparse’ point cloud representing the 3D positions of the
key-points. Many ‘Structure from Motion’ algorithms employ a procedure
known as ‘Bundle Adjustment’ in which bundles (rays of light from surface
features to cameras) are adjusted to optimize both feature and camera lo-
cation in parallel, so that the resultant image projection error is minimized.
Image coordinates are calculated using a camera model which implements
the required projection method. Typically, the camera model will use a per-
spective projection, although for distant cameras affine and orthographic
projections are also useful. The camera model can also include parameters
to model any internal aberrations such as radial distortion.

The second stage of a typical photogrammetry pipeline is a dense match-
ing process which recovers the fine 3D structure of objects by matching sur-
face details in multiple images and calculating their position using the cam-
era parameters recovered from the ‘Structure from Motion’ phase. Whilst
sparse matching typically only matches key-points having an obvious sim-
ilarity, dense matching will often need to use more than one strategy to
ensure enough matches for the required point density. A first stage will of-
ten use interest operators to extract feature points, with subsequent stages
extracting matches based on other techniques (e.g. using image similarity

64

algorithms) [47]. Typically this stage will also use ‘Bundle Adjustment’ algo-
rithms to refine initial estimates for surface point coordinates by minimizing
the projection error.

The final stages of the photogrammetry pipeline will generate a surface
mesh from the dense point cloud and then texture the mesh using data from
the image-set. A photo-consistency mesh optimization process is sometimes
used to adjust mesh triangles to maximize photo-consistency. This will en-
sure that for each mesh vertex there are similar colours at the locations
in each image corresponding to the vertex re-projection position using the
calculated camera parameters for the image.

Feature and Key-point Detection and Matching

In the first phase of the ‘Structure from Motion’ camera calibration process
feature key-points are identified in each image. These key-points will need
to be matched between images in which the features occur at differing size
and hence a Scale Invariant Feature Transform (SIFT) is needed to extract
those particular features which can be identified at different scale factors.

Lowe [48] describes a method to extract scale-invariant key-points from
an image using a Gaussian difference function. A stack of scale space images
L(x, y, kσ) is formed by incrementally convolving the image I(x, y) with a
Gaussian function G(x, y, kσ) using increasing values for the scale factor kσ.
The image stack is divided into octaves, each corresponding to a doubling
of kσ and containing a number of images at intermediate scales. The final
convolved image of an octave is down-sampled by a factor of two and this
is used to generate the set of images for the next octave. Images from
adjacent scales in each octave are subtracted to form a stack of difference
of Gaussian images D(x, y, σ). Candidate key-points are found by detecting
the local minima and maxima in the Gaussian difference images. These can
be found by comparing each sample point with it’s eight neighbours in the
image and nine neighbours in the scales above and below. The use of a stack
of Gaussian images at different scales (i.e. differing values for kσ) enables
a feature key-point identified in one image at a certain scale to be matched
to another image at a different scale by searching through all levels of the
stack (i.e. all scales) to find a correspondence.

Localization of each candidate key-point is performed by fitting a 3D
quadratic function D(x) to the Gaussian difference data D(x, y, σ) at the
key-point position using a Taylor expansion. Key-points with low contrast
can be found and rejected by evaluating the value of the quadratic function
D(x) at the position of it’s extremum (rejecting the point if it falls below
a threshold value). The difference in Gaussian function will have a strong
response for an edge but the position of a peak (i.e. a key-point) along the
edge can be poorly defined. In such cases the function will have a large
principal curvature across the edge and a small principal curvature in the

65

perpendicular direction. A measure of the ratio of the principal curvatures
can be determined from the derivatives of the Hessian matrix forD(x), which
can be estimated from the differences between neighbouring sampling points.
Any key-points with a ratio for the curvatures in excess of a threshold value
should be rejected (Lowe used a value of 10 for the threshold). In addition to
scale and location, another important attribute of a key-point is orientation,
which Lowe calculates from the Gaussian image L(x, y, kσ). The gradient
and orientation at each sampling point (x, y) in a circular region around the
key-point is calculated using pixel differences. This information is stored in
an orientation histogram, with weighted gradient values accumulated into
a number of bins, each representing a range of orientations (e.g. 36 bins
each with a 10° range). The weighting (typically Gaussian) is used to give
more importance to the values from samples close to the key-point. An
orientation for the key-point can then be calculated by finding the peak in
the histogram or, for greater accuracy, by fitting a parabola to the values
close to a peak and using interpolation.

For purposes of key-point matching it is necessary to create descriptors
for the local regions around each key-point that are invariant to changes
in 3D viewpoint and to changes in illumination. Lowe creates a descriptor
using orientation histograms (with 8 bins) for 4x4 regions around a key-
point, each region having a size of 4x4 pixels. To achieve invariance to
view rotation the coordinate system used to define the orientation of the
descriptor regions and the gradients is aligned to the key-point orientation.
The value of a gradient sample is distributed among adjacent histogram
bins according to a weighting factor which increases as the distance of the
orientation from the centre of the bin increases (an orientation at the centre
of a bin will not be distributed). This, along with sampling orientations
over sub-regions, gives invariance to small shifts in gradient positions and
boundary effects due to the orientation of a sample point being shifted from
one bin to another. A descriptor vector for the key-point is formed which
contains the values from all sixteen orientation histograms. To help achieve
invariance to illumination the vector is normalized so that a contrast change
which multiplies each pixel by a constant will not change the descriptor.

Key-point matching (between key-points in different views) is performed
by finding the nearest neighbours, defined by the Euclidean distance between
the descriptor vectors, in the database of key-points. In the implementation
of ‘Structure From Motion’ by Gherardi et al. [49], the number of key-
points in each image is culled to 300. A k-d tree is then used to search
the key-point descriptors for the eight nearest matches of each key-point (in
different views), with this process taking a time of order O(n log n) for n
images. A 2D histogram is used to store the number of key-point matches
between each pair of views. Rather than calculate fundamental matrices
and homographies for each pair of matching images (with potentially the
number of matches being of O(n2)), this histogram is used to match each

66

image with the eight images that have the most key-points in common with
it (with the number of matches being of O(n)).

Bundle Adjustment

For a scene having n individual 3D feature key-points given by Xp, p =
1 . . . n, shot in m images using cameras having internal and external param-
eters given by Pi, i = 1 . . .m and having k calibration parameters constant
across several images, given by Cc, c = 1 . . . k, Triggs et al. [50] define a pre-
dictive model that can be used to estimate the image position xip of feature
p in image i:

xip = x(Cc,Pi,Xp) (26)

Measured values xip for the image position of feature p in image i can be
used to determine the feature projection error when using parameters Xp,
Pi and Cc :

∆xip(Cc,Pi,Xp) = xip − x(Cc,Pi,Xp) (27)

Starting from initial parameter estimates, the bundle adjustment process
refines the parameter values so that a cost function measuring the total
feature projection error is minimized. Common methods to implement the
cost function include non-linear least squares, robustified least squares and
intensity based methods. For the non-linear least squares method, if mea-
surements zi are predicted by zi = zi(x) with model parameters in vector x,
the weighted Sum of Squared Error (SSE) cost function is given by:

f(x) =
1

2

∑
i

∆zi(x)TWi∆zi(x) , ∆zi(x) = zi − zi(x) (28)

In the above equation the Wi are chosen so that they approximate the inverse
covariance of zi (resulting in a symmetric, positive definite weight matrix).
The robustified least squares method uses a similar cost function but each
measurement can be down-weighted so that the overall cost is less sensitive
to outliers. Intensity based methods are used when comparing colours or
gray-scale intensities in one image patch against another image or template,
the error cost being measured in terms of intensity residuals.

Most of the common optimization procedures used in bundle adjustment
are based on the second order (quadratic) Taylor series approximation for
cost function f(x):

f(x + δx) ≈ f(x) + gTδx +
1

2
δxTHδx (29)

In the above equation x is the vector of parameters being optimized, g =
df(x)

dx (the gradient vector) and H = d2f(x)
dx2 (the Hessian matrix).

67

Newton’s method can be used to find a local minimum for f(x), converging
in a sequence of steps, x0,x1 . . .xn from given initial parameters x0. The
Newton step size is found by minimizing the quadratic approximation given
in equation 29 with respect to step size δx:

df(x + δx)

d(δx)
≈ g + Hδx = 0 (30)

δx = −H−1g (31)

In the damped Newton method the step size is dynamically altered, either
to limit it’s maximum size or to shorten it when a prediction is poor, using
a weight matrix Wλ and a weighting factor λ:

(H + λWλ)δx = −g (32)

For the weighted SSE cost function with error values in vector ∆z(x) =
z−z(x) and with weights in matrix W (see equation 28), a Jacobian J = dz

dx
can be calculated from the predictive model. The gradient and Hessian for
the cost function are then given by:

g =
df

dx
= ∆zTWJ (33)

H =
d2f

dx2
= JTWJ +

∑
i

(∆zTW)i
d2zi

dx2
(34)

For a complex cost function the evaluation of the Hessian H using equation
34 is difficult and instead it is sometimes calculated from the change in
g across iterations. If the prediction model is linear or ∆z(x) is small,
d2zi
dx2 ≈ 0 and using equation 31, the Gauss-Newton approximation for the
least squares problem is given by:

(JTWJ)δx = −JTW∆z (35)

With this approximation the step-size δx can be found by solving the fol-
lowing least squares problem:

min
δx

1

2
(Jδx−∆z)TW(Jδx−∆z) (36)

To aid convergence a line search algorithm can be employed to refine the
Newton step size by finding the value α which minimizes the cost function
along the line from x to x +α δx. For a problem of size n Newton’s method
takes a time of order O(n3). Hence for large problems it will often be neces-
sary to exploit the sparsity of matrix H or consider the use of simpler first
order methods.

The bundle adjustment process can be subject to constraints due to
various factors:

68

• Constraints on elements of the scene (e.g. on camera or keypoint
parameters).

• Implicit, rather than explicit, observation models of the form h(x, z) = 0
(e.g. modelling the observation of noisy points on a 3D curve).

• Local parameterizations required because of non-linear behaviour (e.g.
from singularities in affine point coordinates at infinity or unwanted
degrees of freedom).

The method of Lagrange multipliers can be used to perform a constrained
cost optimization. The minimum value of a cost function f(x) subject to
constraints c(x) = 0 , with Lagrange multipliers in vector λ, will occur at a
saddle point of the Lagrangian function f + cTλ. The Newton step size δx
is determined by the following equations:

0 =
d

dx
(f + cTλ)(x + δx) ≈ g + Hδx + CTλ (37)

0 = c(x + δx) ≈ c(x) + Cδx , C =
dc

dx
(38)

Determination of Camera Parameters using Homographies be-
tween Views

For the ‘Bundle Adjustment’ process to converge efficiently to the global
minimum of the cost function (rather than a local minimum) it is usually
necessary to have good estimates for the unknown parameters to use as ini-
tial values in the algorithm. In many cases it is not possible to accurately
estimate parameters and a more efficient solution is to use an homography
between a pair of views (or a trifocal tensor defining the relationship between
three views) to calculate camera parameters and key-point coordinates. The
values found can then be further refined using bundle adjustment. Further
homographies between computed views and other views can be used incre-
mentally to calculate camera parameters and key-point coordinates for new
views, again using bundle adjustment at each stage to refine the solution.

Figure 25 shows the epipolar geometry which gives the relationship between
the projected position of a point X for the two views corresponding to cam-
eras c and c′ [25]. The epipoles e and e′ occur at the intersection of the
baseline joining the camera centres with the image planes. The epipole for
one view occurs at the position in the image corresponding to the camera
centre of the other view. Given the known projected position x in one view,
the projected position in the other view x′ must lie on the epipolar line l′.
The relationship between the projected image points in the two views can
also be expressed using the 3x3 Fundamental Matrix F:

69

Figure 25: Epiploar Geometry showing Correspondence between Projected
Positions for a Key-point in Two Views [25]. Key-point X is projected to
positions x and x′ for cameras c and c′ respectively (left). Given a projection
position x in one view, the projected position of the key-point in the other
view must lie on the epipolar line l′ (right).

x′Fx = 0 (39)

Matrix F is of rank 2 and hence there is no unique solution of the above
equation to find x′ given x or vice-versa.

Hartley and Zisserman give an outline of a reconstruction method using
two views [25]. Firstly, the coordinates of point correspondences between
the two views, xi ←→ x′i, are substituted into Equation 39 to give a number
of linear equations. With eight correspondences these equations can easily
be solved to yield the fundamental matrix F (up to a scaling factor). If there
are more than eight correspondences a least squares method can be used to
find the F that minimizes the residual terms x′iFxi. The camera matrices
for the two views, P and P′ can then be calculated using the following
equations:

P =
[

I 0
]

(40)

P′ =
[

e′ × F e′
]

(41)

In the above equation e′ represents the epipole position for the second view
which is given by e′TF = 0.

After the determination of the camera matrices for the two views, key-
point positions can be calculated through triangulation. Two rays projected
from the camera centre of each of the views to the position of a key-point
on the corresponding image (i.e. from c to x and from c′ to x′ in Figure 25)
will lie in a plane (an epipolar plane containing the key-point and camera

70

centres) and intersect at the 3D location of the key-point.
After triangulation the final phase of the reconstruction process is to

rectify the camera matrices and key-points to the correct orientation and
scaling. If there are at least five control key-points with known positions
XEi which have been reconstructed to positions Xi, then the homography
H required for XEi = HXi can be calculated. The metric reconstruction is
then given by:

PM = PH−1 , P′M = P′H−1 , XMi = HXi (42)

If there are no known key-point positions, a suitable homography H can be
found from the image by calculating the plane at infinity or the image of
the absolute conic [25].

View Clustering

The efficiency of the ‘Structure from Motion’ pipeline can be greatly im-
proved by reducing the reconstruction problem into a series of sub-problems
that are better conditioned and more easily optimized, with a resultant low-
ering of the computational effort required for bundle adjustment.

Gherardi et al. [49] proposed a parallelizable method in which images
are organized into a hierarchical binary cluster tree (dendrogram), with the
technique reducing computation times by an order of magnitude (from O(n5)
to O(n4)) for well balanced trees. The grouping of views in the tree is de-
termined by an affinity matrix, with the entry ai,j giving an affinity for the
pair of images i and j. High affinity values will assigned to image pairs with
more key-points in common and for pairs with key-points evenly spread over
the images. The matrix element ai,j is given by:

ai,j =
1

2

∣∣Si ∩ Sj∣∣∣∣Si ∪ Sj∣∣ +
1

2

CH(Si) + CH(Sj)

Ai +Aj
(43)

In the above equation, for image i, Si is the set of matching key-points in
the image, CH(Si) is the area of the convex hull containing the set of points
Si and Ai is the total area of the image.

Nodes of the tree are repeatedly merged to form partial reconstructions
until there is a single node containing the complete reconstruction. A pair
of views (at the leaves of the tree) can be merged to form a view cluster
at a new node using a standard two views reconstruction method. Clusters
can be merged by using common key-points to calculate the homography
required to register one cluster with the other. These common points are
then recalculated using triangulation and further refinements are made using
bundle adjustment. A single view can also be added to a cluster using the
Direct Linear Transformation (DLT) algorithm [25] followed by refinement
using triangulation and bundle adjustment.

71

Computational complexity is reduced for balanced trees and to achieve this
balance the pair of views or clusters to merge at each stage was chosen by se-
lecting the two with the lowest total cardinality (i.e. number of encapsulated
views) from the ` pairs of clusters or views having the nearest neighbours in
descriptor space (i.e. having the closest feature match). The authors found
that setting ` = 5 gave the best results.

5.4.2 Evaluation of Photogrammetry Software

Images for 3D environment reconstruction using photogrammetry can be
captured through aerial filming (e.g. from a drone or helicopter). Such film-
ing usually entails detailed preparation to fulfil pre-flight requirements such
as obtaining licenses or permissions and planning to ensure flight safety. The
actual filming is also time consuming and expensive. For certain (typically
urban) locations a quicker and cheaper option is to generate the images
from sources such as Google Earth. Although these images will be of lower
quality than actual photographs (e.g. containing computer artefacts), they
can be used to generate models of sufficient accuracy for flight planning and
training applications.

There are many software packages available for the reconstruction of
3D models from 2D images and various systems (including Autodesk Re-
Cap and 3DF Zephyr) were evaluated for use in producing models for the
MultiDrone flight planning and training program. The main requirements
for MultiDrone were the ability to produce a good quality model using im-
ages captured from Google Earth and compatibility of the output 3D model
format with the simulation engine (Unreal Engine). Images for the recon-
structions were created by using a screen capture program (ScreenToGif) to
automatically generate screen shots at regular, short intervals (e.g. 0.25s)
during navigation around a location in Google Earth. Figure 26 shows ex-
amples of these manually scanned environment images which were captured
for the location of a roundabout in Bristol. The images were produced whilst
orbiting the target at a series of heights so that each area of the environment
was captured from a number of different angles. It was found that Autodesk
ReCap produced poor quality models from Google Earth generated images
and the software also required ‘cloud credits’ to perform analyses remotely
on Autodesk servers. The 3DF Zephyr Aerial Photogrammetry software [51]
was able to generate higher quality 3D models but for analyses using a large
number of 2D images the execution time was highly dependent on the avail-
able local GPU processing power. Figure 27 shows the 3D model of the
roundabout reconstructed from the Google Earth images using 3DF Zephyr
software.

As a result of the evaluation process the 3DF Zephyr Aerial photogram-
metry software was chosen for the initial research on the production of en-
vironment models for the MultiDrone flight-planning and training system.

72

Figure 26: Manually Scanned Environment Images of a Roundabout Cap-
tured from Google Earth.

Figure 27: A 3D Model of a Roundabout Reconstructed using 3DF Zephyr
Aerial Photogrammetry Software.

5.4.3 3DF Zephyr Workflow

The stages in a 3DF Zephyr workflow are as follows [51]:

1. Structure from Motion: Calculates camera position and orientation
for each image and generates an initial 3D sparse point cloud.

2. Multi-View Stereo: Calculates the coordinates of surface points
forming a Dense Point Cloud using the camera information obtained
in phase 1.

3. Surface reconstruction: Creates a surface mesh from the dense
point cloud generated in phase 2.

4. Textured Mesh generation: Applies texture to the surface mesh
geometry calculated in phase 3.

Parameters for each stage of the workflow can be set by selecting the Cate-
gory for the type of image capture used and a preset to select the required
quality. Types of Category include:

• General: Works in most cases.

• Close Range: Used for small objects or close-up details.

73

• Aerial: Used with images from a top down view.

• Urban: Used for images of an urban environment or images from dif-
ferent cameras or with different focal lengths.

• Human: Optimized for full or part of a human body.

Example preset configurations for dense point cloud creation are Fast, De-
fault or High Details. Parameters can also be set individually using the
Advanced option. Good results can usually be obtained by selecting the
appropriate category (e.g. General) and then using preset configurations
of Deep for the camera orientation stage and High Details for both the
dense point cloud creation and the surface reconstruction stages. However
the reconstruction quality and analysis time are highly dependent on the
particular parameters used and to optimize the reconstruction process it is
necessary to manually configure the parameters at each stage. For exam-
ple, camera orientation using the Deep preset could sometimes result in a
large number of incorrect camera positions (see Figure 28). It was found
that setting the Keypoint Density parameter to ‘High’, Matching Type to
‘Accurate’ and Matching Stage Depth to ‘High’ gave good results in most
cases, although the processing time was increased compared to that of an
analysis using the standard Deep preset. For optimum results in the dense
point cloud generation stage it was also found that, in the Stereo Settings
Page, the Output type should be set to ‘Refined’ and Speed up level set to
‘Low’.

Figure 28: Improving the Camera Alignment in 3DF Zephyr. Original sparse
point cloud with poor camera alignment (left), improved using ‘Accurate’
Matching Type (right).

Rather than use the automated Zephyr work-flow in which the camera ori-
entation, dense point cloud creation, surface reconstruction and texturing
phases are automatically run one after another, it can be beneficial to run
each stage manually. If a particular stage yields poor results it can be rerun
with new parameters without having to wait for subsequent stages to finish.

74

After the successful completion of each stage the resultant model (e.g. dense
point cloud or surface geometry) can be edited to remove areas with distor-
tion or areas which are not required. This technique can be used to ensure
only the area of interest is included in the final mesh, and not distant areas
on the edge of the reconstruction (which typically have large distortions).
Hence the final textured mesh is reduced in size, sometimes significantly,
and in many cases the model can be exported to a file with a single texture.
For large analyses the total processing time can also be significantly reduced
by eliminating unwanted geometry at each stage.

The final textured mesh model produced in 3DF Zephyr was exported
as an FBX file which could then be imported into Unreal Engine. It was
found that generally, for models with the same mesh density, smaller mod-
els having a single texture imported into Unreal Engine with better quality
than models extending over a greater area which required multiple textures.

Some of the main conclusions reached regarding the use of photogrammetry
generally and 3DF Zephyr specifically to produce environment models in
Unreal Engine are summarized below:

• Increasing the number of images improves the quality of the final 3D
model up to a certain point, after which an increase will have little
noticeable effect.

• The analysis time increases rapidly with the number of images. An
analysis of 330 images using a PC with an Intel i7-6700 CPU @
3.40Ghz, NVIDIA Quadro K620 GPU and 16GB RAM took approxi-
mately 2 hours to process whilst an analysis with 720 images took over
11 hours (using ‘Deep’ and ‘High Details’ presets).

• Careful choice of image viewpoints will give better results (e.g. if a
building has a courtyard orbits should be made inside the courtyard
in addition to around the main building).

• Using the ‘highest quality’ setting for some 3DF Zephyr parameters
may have little effect on reconstruction quality but can greatly increase
processing time. For example in the camera orientation phase, using
a Keypoint Density of ‘Very High’ and Matching Stage Depth of ‘Full’
(instead of using ‘High’ for both) can double the processing time for
little discernible improvement in quality.

• Models with fewer textures generally have better quality when im-
ported into Unreal Engine. The maximum texture size in Unreal is
8192×8192 and hence large models will need to be imported using
multiple textures.

75

• At the edges of a reconstructed 3D model there will often be large
distortions and missing areas due to incomplete view coverage for that
part of the scene and because areas distant from the camera will be
captured at oblique angles.

5.4.4 Recomendations for Photogrammetry Image Capture

In general when taking images for photogrammetry the area of interest
should be kept at the centre of the frame and pictures should be taken
from a wide range of viewing positions to ensure adequate coverage of the
scene. For reconstructions of buildings images taken from high camera an-
gles will provide information on roof details and images taken lower down at
low angles will provide more information on the appearance of the walls. A
high overlap between images (e.g. 70% - 80%) should be used and increas-
ing the number of images will generally improve the reconstructed model
quality.

In particular, when taking images using a camera the following guidelines
should be followed [51]:

• Ensure the lighting is sufficient to prevent dark shadows hiding surfaces
(e.g. when using direct lighting). Lighting conditions should remain
consistent throughout image capture.

• Avoid high ISO values to reduce noise.

• High aperture values (e.g. f/8 - f/16) should be used to give a deep
depth of field.

• Use the same camera and focal length for all images.

• Before photogrammetry unsuitable images should be removed (e.g.
blurred and under or over-exposed images).

5.4.5 Common Problems with Models Reconstructed using Pho-
togrammetry

There are a number of common problems that can occur in models recon-
structed from photogrammetry, especially when there is an insufficient num-
ber of images or the images are of poor quality:

• Thin or small objects such as poles may be incorrectly reconstructed
due to an insufficient number of close up images of the objects being
captured during an overhead scan. This often results in a reconstruc-
tion with isolated floating artefacts (see Figure 64 on page 145).

76

• Flat surfaces with a uniform texture such as roads, water or grass, may
be reconstructed with a bumpy or pitted appearance. This problem is
often due to the reconstruction software having difficulty in matching
surface points between images.

• Certain areas (especially near the edges of the area captured during a
scan) may be highly distorted and irregular. The reconstructed mesh
for distorted areas such as these will often contain very small faces or
thin faces having one or two very small internal angles.

• The apparent level of distortion in a poorly reconstructed object is
highly dependent on the texture applied to the object and viewer ex-
pectations. Man-made features or features with a regularly patterned
texture can appear more distorted than natural or uniformly textured
features having the same amount of distortion. For example, a highly
distorted road surface with a uniform texture may appear relatively
flat, whilst any distortion on a road surface having road markings will
be more obvious.

3D Modelling software can be used to improve the final quality of a model
before it is imported into a drone flight simulation environment. Appendix C
gives details of procedures in Blender that can be used to repair many com-
mon problems found in environment models that have been reconstructed
using photogrammetry.

5.4.6 Example Environment Models Created using Photogram-
metry from Google Earth Image Data

A number of environment models were created using images from Google
Earth and the 3DF Zephyr software. The models were imported into Unreal
Engine using the FBX interface. For individual buildings it was found that
the best results were obtained through capturing images during orbital scans
around the building at a series of height levels. Figure 29 shows a model of
the Wills Memorial Building created using this method from approximately
1200 images and requiring a reconstruction time of 3 days. The model has
been placed on an Unreal Landscape of the Bristol area generated using
SRTM height-map data (see Section 5.3.2). For models extending over a
large area, such as that for Filton shown in Figure 30, the best strategy
was to capture images from scans up and down the length of the model.
Additional scans in a perpendicular direction to the first scan and scans at
additional heights each gave improved quality models, with fewer holes due
to unreconstructed regions and less distortion in reconstructed areas.

Google Earth provides full 3D modelling of the environment (i.e. 3D
models of buildings and terrain) for only a small proportion of the total sur-
face area of the Earth. For the majority of the Earth’s surface the terrain

77

Figure 29: Wills Memorial Building Reconstructed from Google Earth Views
using 3DF Zephyr Photogrammetry Software and Imported into Unreal En-
gine.

Figure 30: Large-scale Model for Area of Filton, Bristol Reconstructed from
Google Earth Views using 3DF Zephyr Photogrammetry Software and Im-
ported into Unreal Engine.

78

height is modelled but the surface texture is mapped from a 2D aerial photo
leading to flat surface features (e.g. buildings appear to be 2D). For rela-
tively flat areas photogrammetry will be unable to discriminate the height
difference between different areas. For hilly or mountainous areas it should
be possible to create a 3D model of the terrain using photogrammetry. Fig-
ure 31 on page 79 shows the Google Earth model, which is not reconstructed
in full 3D, and the corresponding 3D model produced using 3DF Zephyr,
for an area near Lake Serru in Italy. Although the model would be useful
for high altitude flight planning (e.g. to avoid flying close to a mountain),
it would not be useful for planning low altitude flights (e.g. for building
avoidance etc).

Figure 31: Google Earth and Reconstructed Models for Lake Serru. An
area near Lake Serru, Italy in Google Earth (left) and reconstructed in 3DF
Zephyr (right).

The low resolution of the Google Earth images for this particular area results
in a model in Unreal which although of only slightly lower quality than the
Google Earth model, will still have limitations for the design of camera shots
(as illustrated in Figure 32).

Figure 32: Low Altitude Views of Lake Serru Models. Google Earth model
(left) and Unreal model with added cyclist (right).

79

5.5 Viability of 3D Environment Model Production

The previously discussed methods of producing 3D environment models are
complex and require a good level of expertise in the photogrammetry soft-
ware to optimize the model quality given limits on acceptable reconstruction
time. Although it would be possible to automate many of the processes in-
volved (i.e. create Blender ‘Add-ons’ to execute model repair procedures),
in general it cannot be expected that members of a drone crew will have the
skills and the time necessary to create 3D models of film locations. The work
would probably need to be carried out by computer modelling professionals
(with VFX experience for the case of modelling movie action sequences),
either in-house or through a consultancy. When filming an event such as a
cycling race it is probably the case that it would not be an efficient use of re-
sources to model a rural village which the cyclists pass through quickly. Even
for urban areas it may be sufficient to use online resources such as Google
Earth Studio for flight planning (especially if the drone operators have pre-
vious experience of filming at the location). The modelling of large areas is
time consuming because of the large number of reconstructions needed and
the problems associated with stitching individual areas together. For these
reasons, the integration of custom made 3D environment models into flight
planning software may, at present, be only practicable for certain filming
scenarios such as the planning of special stages in live shoots (e.g. opti-
mizing shots for good views of both subjects and important landmarks in
the background) or the planning of expensive movie action sequences that
require a single take.

80

5.6 A Simulation Environment for Drone Cinematography

A system has been developed using Unreal Engine which allows camera
shots, selected from the taxonomy designed for MultiDrone, to be simulated
in a realistic environment modelled on the real-world [10]. Predefined en-
vironments for Clifton and the Harbourside at Bristol, shown in Figures 33
and 34, were created using data from Google Earth. Environments for other
locations can be imported into the system from models created using tech-
niques such as photogrammetry. The simulation package has three modes
of operation: Editing, Simulation and Freeplay.

The customized interface of Editing mode allows users to drag and drop
models for moving objects (i.e. the predefined models for bicycles, cars,
boats and drones, shown in Figure 35 on page 83, or custom objects) into
the scene. Path objects (created from a series of way-points) are used to
define the trajectory of objects through the scene. General moving objects
can be assigned a particular path and a speed. Drone camera objects can
be assigned a target object to shoot, a shot-type and a speed as shown in
Figure 36 on page 83. The demonstration version of the software had shot
types of Establishing, Chase, Flyby, Elevator and Orbit, integrated with
default shot parameters determined by the results of the subjective tests
described in Section 4.2.3. These parameters were based on a camera with
a focal length of 35mm and a sensor size of 23.66mm × 13.3mm and were
automatically recalculated for a different camera using the procedure de-
scribed in Section 4.3. Menu options are also provided to set environmental
parameters defining the time of day for the simulation, the brightness of the
Sun, the cloud thickness and the cloud speed.

Figure 33: Pre-defined Environment Modelling Clifton, Bristol [10].

81

Figure 34: Pre-defined Environment Modelling the Harbour, Bristol [10].

The option interface of Simulation mode is shown in Figure 37 on page 84.
When the simulation is started each object will move along it’s associated
path at it’s assigned speed. The user has the option to view the simulation
from an external floating camera position or from the perspective of the
drone. A view from a second drone can also be displayed in a camera
window located at the top left of the screen.

Freeplay mode, shown in Figure 38 on page 84, is similar to Simulation
mode except that the user can control the drone camera manually using the
keyboard or a game controller, with an option to record the path of the
drone so that it can subsequently used in Editing mode (e.g. edited and
assigned to an object). When using Freeplay mode there are also options to
set parameters defining wind speed and direction.

82

(a) (b)

(c) (d)

Figure 35: Pre-defined Moving Objects [10]: (a) Drone (b) Car (c) Cyclist
(d) Boat.

Figure 36: The Option Interface for a Drone in Editing Mode [10].

83

Figure 37: The Option Interface for Simulation Mode [10].

Figure 38: The Option Interface for Freeplay Mode [10].

84

5.7 Summary

Photogrammetry has been found to be an extremely useful technique for
the generation of real world models to be used in applications such as drone
flight planning. The quality of reconstruction is dependent on the image set
capturing all areas of the scene from a variety of different angles. However
the reconstruction time increases rapidly as the number of images increases
and hence it is highly advantageous to optimize the image capture process to
give the required coverage using the minimum number of images. In addition
to a reduction in reconstruction time this can also help to minimize flight
times when using a drone for image capture, which will be of great benefit
when scanning large areas. The next section examines previous research into
the optimization of drone flights for image capture and the development of
a system built in Blender that is designed to optimize drone scans for view
coverage.

85

6 Optimization of Scanning Flight Paths for Pho-
togrammetry

Some of this work has previously been published in the following paper:

S. Boyle, M. Newton, F. Zhang, et al., “Environment Capture and Simula-
tion for UAV Cinematograhy Planning and Training,” in European Signal
Processing Conference, Satellite Workshop: Signal Processing, Computer
Vision and Deep Learning for Autonomous Systems, 2019. [Online]. Avail-
able: https://research-information.bris.ac.uk/ws/portalfiles/

portal/199953761/Environment_Capture_and_Simulation_for_UAV_

Cinematography_Planning_and_Training.pdf

The quality of a model generated using photogrammetry will be depen-
dent on a number of factors including the number of the images, the image
resolution and the range of different views for each surface patch. In general,
using more images from different viewpoints will give better results, but as
reconstruction time typically quadruples for a doubling in image number,
it is important (especially for reconstructions of large areas) that the views
captured are optimized to give the best possible reconstruction for a given
number of images.

6.1 Related Work on the Optimization of Drone Flights for
Photogrammetry

The use of drones to capture images for the photogrammetric reconstruction
of environments has become widespread and the optimization of the drone
trajectories used for scanning has become an increasingly important area for
research.

Path planning algorithms for covering a known environment have been
described by Galceran et al. [52]. Algorithms to optimize the exploration
of unknown areas using robots or aerial vehicles have been developed using
strategies such as the identification of the boundaries between known and
unknown areas [53], the maximization of newly visible areas [54] and the
maximization of information gain [55]. Wang et al. [56] give an optimization
procedure for scanning an area with a robot which minimizes a cost due to
the total travelling distance and the number of points visited. Although
these algorithms optimize for scene coverage they are not optimized for
photogrammetry (i.e. multi-view stereo), which requires coverage with a
wide range of viewing angles for every location in the scene.

Various researchers have examined the problem of selecting an optimum
set of images for photogrammetry from an image data-set. Mauro et al. [57]
minimized dense point cloud generation time by using the minimum number
of points from the sparse cloud (generated by the ‘Structure from Motion’

86

https://research-information.bris.ac.uk/ws/portalfiles/portal/199953761/Environment_Capture_and_Simulation_for_UAV_Cinematography_Planning_and_Training.pdf
https://research-information.bris.ac.uk/ws/portalfiles/portal/199953761/Environment_Capture_and_Simulation_for_UAV_Cinematography_Planning_and_Training.pdf
https://research-information.bris.ac.uk/ws/portalfiles/portal/199953761/Environment_Capture_and_Simulation_for_UAV_Cinematography_Planning_and_Training.pdf

phase) necessary to give a good 3D reconstruction. The importance value
of a sparse point and it’s associated image was calculated from the sum
(over all points contained in the image) of a point aggregate energy. The
aggreagate energy for each point was determined by the weighted sum of
individual energy components which depended on the feature density, the
uncertainty in the position of the point, the 2D saliency (i.e. how much
the point contributed to the image) and the 3D saliency (a measure of the
complexity around the point). Hornung et al. [58] proposed an algorithm
for image selection which improved 3D reconstruction (when compared with
uniformly distributed views). A small subset of the image data-set was used
to create an initial stereo-based surface proxy. Images were then added in
two phases to improve the proxy, firstly to ensure coverage of each point on
the proxy surface in at least two images and then to improve critical regions
such as cavities, which were detected using estimates of the local photo-
consistency. Schmid et al. [59] created an initial 2.5D Digital Surface Model
(DSM) from images captured at viewpoints positioned on a regularly spaced
grid, with the drone at a constant height and the camera pointing vertically
down. A spherical view hull was created at a minimum distance of d to the
DSM with all edges smoothed to a radius of d. A set of regularly spaced
candidate viewpoints were generated over the hull with view directions given
by the hull surface normal. An optimization algorithm was then used to
generate a subset of views from the candidate list that provided complete
coverage subject to the following constraints:

• Reconstructed points should be visible from at least two views.

• For every point there are two views containing that point that have
view directions differing by less than a maximum value βmax.

• Each view must have a degree of overlap with all neighbouring views.

The optimization of drone flight paths for multi-view stereo reconstruction
has become an important area for research. The most common strategy has
been to use a two stage process in which data from an initial exploration
flight is used to produce a coarse model of the scene, which is then used to
generate an optimized flight path for capturing images which are conducive
to good photogrammetric reconstruction.

Roberts et al. [60] proposed an automated method for drone trajectory
planning that uses this two stage approach, with images from a flight having
a default trajectory used to build an initial model. A bounding box span-
ning the model is then sampled to produce nodes representing possible view
(camera) locations. The optimization procedure has two stages, exploiting
the submodularity of the problem to reduce the computational overhead. In
the first stage an optimal viewing direction is found for every node by max-
imizing the quality for a reconstruction involving one viewpoint from every

87

node. In the second stage of optimization a path, formed from a subset of
nodes, is found which optimizes coverage (using the view direction at each
node determined in the first stage), subject to a constraint on the maximum
path length. The quality of reconstruction for each surface point sj on the
initial model is estimated by considering a hemisphere Hj of radius 1m cen-
tred at the point and orientated so that the pole is aligned with the surface
normal. For each camera viewpoint ci, a disk Dj

i is formed on the surface
of hemisphere Hj , centred at the projection of ci onto the hemisphere, as
shown in Figure 39.

Figure 39: View Coverage for a Vertex. Disks corresponding to three camera
viewpoints projected onto the surface of the hemisphere surrounding point
S [60].

The size of Dj
i is defined by the half angle θji of a cone with a apex at sj

and base Dj
i , given by:

θji = θmax2
−max(t

j
i
−t0,0)

thalf (44)

In the above equation tji is the distance from camera ci to the surface point
sj , θmax = π

8 rad and the values of the other variables are chosen to give

an appropriate falloff with distance tji . A weighting function wj(h) is also
defined by:

wj(h) = cos αh (45)

In the above equation h is the vector from the hemisphere origin to a location
on the hemisphere surface and αh is the angle from h to the hemisphere pole.

The integral of the weighting function over areas of the hemisphere Hj

covered by disks Dj
i gives a measure of how well the surface point sj is viewed

88

from a wide variety of angles, giving preference to close-up views (which will
produce disks with a large area, see equation 44) and non-oblique views (i.e.
with small values of αh). The total coverage for the scene (over J+1 surface
points j) is given by:

f(C) =
J∑
j=0

∫
Vj

wj(h) dh (46)

In the above equation, for each hemisphere j, the integral is over that part
of the surface Vj that is covered by a disk. The integral can be evaluated by
sampling K equally spaced points over the surface of each hemisphere and
using a coverage indicator function vj(hk) that returns a value of 1 if the
hemisphere location hk is covered and 0 if it is not covered:

F (C) =
2π

K

J∑
j=0

K∑
k=1

wj(hk) vj(hk) (47)

Equation 47 can be written in matrix form using a stacked vector of weights
w which contains entries for the weighting at every hemisphere location hk
for every point j, and a similarly formed stacked coverage indicator vector
v :

F (C) = wTv (48)

For the optimization process it was necessary to evaluate the coverage F (CP)
provided by a subset of cameras and this was determined using coverage in-
dicator vectors vi for each individual camera ci. An entry in the coverage
indicator vector vP for a subset of cameras will be a 1 if any of the corre-
sponding entries in the individual coverage indicator vectors vi , for cameras
in the subset, are 1, otherwise it will be a 0. The drone path P was then
optimized for maximum coverage subject to constraints of a maximum path
length B and a fixed start and end point proot , with optimal path P∗ given
by:

P∗ = arg max
P

F (CP) : l(P) ≤ B p0 = pq = proot (49)

Results from simulations using Unreal Engine with the ‘Grass Lands’ en-
vironment model showed the method gave an improved reward (evaluated
using a quantitative measure of model quality) for a given travel budget,
when compared to other path selection algorithms such as ‘Next-Best-View’
and ‘p-SPIEL Orienteering’.

An optimization method for urban scene reconstruction was described by
Smith et al. [61]. A reconstructability heuristic was used to ensure camera

89

positions and angles were suitable for accurate model reconstruction, based
on principles that apply generally to MVS (Multi-View-Stereo) algorithms:

• Triangulation error increases with distance and decreasing parallax.

• Triangulation matchability decreases with shallower observation an-
gles.

• For a surface to be reconstructed it needs to be seen in at least two
views.

The pairwise contribution of two views, V1 and V2 to a sample point s was
modelled as:

c(s, V1, V2) = w1(α)w2(d)w3(α) cosθ (50)

In the above equation θ is the shallower observation angle (between view
direction and surface normal) and d the maximum view distance, of the two
views. The parallax angle between the views is given by α.

The function w1(α) models the dependency on parallax triangulation
error:

w1(α) = (1 + exp(−k1(α− α1)))−1 (51)

The function w2(d) models the dependency on distance:

w2(d) = 1−min(d/dmax , 1) (52)

The function w3(α) models the dependency on surface matchability:

w3(α) = 1− (1 + exp(−k3(α− α3)))−1 (53)

The parameters k1, α1, k3 and α3 in the above equations were determined us-
ing experimental tests. The model gave a maximum for the reconstructabil-
ity of two views with a parallax angle of approximately 20° (corresponding
to a maximum for w1 · w2). A heuristic for the reconstruction quality of a
point s with a set of views V is given by:

h(s,V) =
∑

i=1...|V|
j=i...|V|

v(s, Vi) v(s, Vj) c(s, Vi, Vj) (54)

In the above equation v(s, V) is a visibility function which determines if
point s is visible in view V .

A geometric proxy for the scene was created using images of nadir view-
points captured from an initial flight at a high altitude of 100m. The proxy
was repaired to remove outliers and holes (e.g. on vertical surfaces such as
the walls of buildings) and a set of uniformly distributed sampling points S

90

created over this new surface. An initial camera network was then created,
uniformly distributed over the proxy. The reconstruction of points S was
optimized by minimizing an objective function O:

arg min
V

O = arg min
V

λ|U|+
∑
s∈S\U

(max(hmax − h(s,V), 0))2 (55)

In the above equation U ⊂ S is the set of points s that are not visible in any
view. The first term encourages a minimum number of unseen points whilst
the second term maximizes the reconstruction quality of points. The thresh-
old value hmax ensures that the estimated reconstruction quality for a point
does not become increasingly large as the number of views containing that
point is increased (and hence h(s,V) increases), since there are diminishing
returns with increasing number of views. A downhill simplex method was
used to optimize view positions and directions in parallel. After viewpoint
optimization, a travelling salesman algorithm was used to find a suitable
short path through the view positions, which was smoothed to generate a
B-spline curve representing the drone trajectory.

In addition to using actual flights with a drone to validate the results
qualitatively, flights simulated in Unreal Engine, with environments mod-
elled using buildings from GOTH-1 and CA-1 datasets, were used to gener-
ate images for reconstructions that could be analysed quantitatively. Results
from the simulations showed that when compared against the sub-modular
approach of Roberts et al. and Next-Best-View techniques, the method gave
improvements of up to 21% in model completeness and lower values for the
average depth error. Fewer images were required to achieve a given level of
reconstruction quality, although this was achieved through a greater flexibil-
ity in the choice of optimum camera position, which sometimes resulted in
longer flight paths in comparison to the other methods. It also gave a signif-
icant improvement in computational performance and scalability, which was
attributed to the parallel implementation and the approach of optimizing
the trajectory and orientation in one step. Field tests of the method showed
that when compared with a nadir flight it reduced the time necessary to cap-
ture complex details of buildings and improved the reconstruction of vertical
surfaces.

6.2 Variation of Model Reconstruction Quality with Image
Number

Newton et al. [9] conducted a series of experiments to determine a base-
line for the minimum number of images needed to give good photogramme-
try reconstructions. Three environments having an equal area of 10000m2

(100m×100m) but with varying complexity were used as shown in Figure
40. The section of the Le Mans racetrack had few features, the Statue of

91

Liberty had more complexity whilst the section of the Mall in London con-
tained many small features and lots of foliage. Images of each area were
captured from Google Earth and reconstructions created from 15, 30, 60,
120, 180 and 240 images using 3DF Zephyr software. Fly through videos
for each reconstruction were created along with benchmark videos for the
original models (created using Google Earth Studio).

In a subjective study, using a double stimulus continuous quality scale
(DSCQS) methodology, 12 subjects were asked to rate each reconstruction
video and its corresponding reference (each shown twice) on a continuous
scale from 1 to 5 (1=Bad, 2=Poor, 3=Fair, 4=Good and 5=Excellent). The
order in which the reconstruction and reference were shown was randomly
selected, as was the overall order of test sequences. For each reconstruction
video a Difference Mean Opinion Score (DMOS) was calculated by finding
the mean of the difference scores (the difference between the reference video
and reconstruction video scores) using data from all trials.

(a) Le Mans (b) London (c) New York

Figure 40: Subjective Testing to Determine the Effect of Image Number on
Reconstruction Quality. Screen shots of reconstructions from each of the
three test scenarios [9].
.

The results from the study, given in Figure 41, show that for a fixed number
of images used with a reconstruction, the subjective quality is highly depen-
dent on the scene complexity. The complex model of The Mall in London
has higher average DMOS scores (corresponding to a lower quality) for all
numbers of input images and there is a fall off in quality at low image num-
bers due to regions of the surface being visible in few or no images (e.g. being
obscured by foliage). For the Statue of Liberty scenario the DMOS score
increased rapidly as image numbers were reduced below 120. Even though
some areas still had acceptable reconstruction with these low image num-
bers, regions of interest with high detail (such as the crown and torch) were
poorly reconstructed and this had a large impact on the overall assessment
of quality. In the Le Mans model low DMOS values were obtained until the
image number was reduced to 60 or below, in which case the reconstructed
surface became bumpy, probably due to the reconstruction software being
unable to accurately determine depth values.

It was concluded that to achieve a good reconstruction quality in object

92

1530 60 120 180 240

Number of input images

0

1

2

3

4

D
M

O
S

 (
1-

5)

Le Mans

(a) Le Mans

1530 60 120 180 240

Number of input images

0

1

2

3

4

D
M

O
S

 (
1-

5)

London

(b) London

1530 60 120 180 240

Number of input images

0

1

2

3

4

D
M

O
S

 (
1-

5)

New York

(c) New York

Figure 41: Results of the Experiment to Determine the Effect of Image Num-
ber on Reconstruction Quality. The error bar represents the 95% confidence
interval [9].

based scenarios, such as the Statue of Liberty, an image number in excess
of 180 per 10000m2 is needed. For background based scenarios, such as Le
Mans, an image number in excess of 120 per 10000m2 was recommended.

6.3 Variation of Model Reconstruction Quality with Scan-
ning Overlap Parameters

A widely used method of obtaining environmental images for photogramme-
try is to capture them from a drone flying over the area in two orthogonal
directions, using a rectangular or grid-like scanning pattern, as shown in
Figure 42.

• Flight heights: The scanning should be repeated at three different height levels (above the

ground level), H, 2H, and 3H. The value of parameter H is defined as follows based on camera

sensor size (in terms of crop factor C) and focus length (F): H= C x (F/35) x 20.

E.g. For a Micro 4/3 DLSR (crop factor 2) with Focal Length of 35mm, H= 2x1x20=40m

• Gimbal rotation angles: The scanning at each height should use different gimbal rotation angle

so that surface points are covered at different viewing angles. We propose to use three different

angles (between the camera and the forward direction), 45 at the lower level, 67.5 at the middle

level and 90 degrees at the highest level. A full frame DSLR with a 35 mm FL will have a vertical

FOV of approximately 37 degrees and this will provide a view coverage for each height as follows:

o High Level: 71 -108.5 degrees

o Mid Level: 49 – 86 degrees

o Low Level: 26.5 – 63.5 degrees

This will ensure each surface point will be captured at various angles to help ensure good

photogrammetry reconstruction quality.

• Total number of scanning: based on the description above, the total number of scanning is:

2 (patterns) x 3 (heights) = 6

• Fight speed: in order to obtain video frames with less motion blur, we propose flight speed to be

constant and slow, as 15 miles/h. Based on the parameters above, the total flight time (without

stop) will be appx. 2hours.

• Lidar camera: if a lidar camera can be employed at the same time, its gimbal rotation angle

should be fixed as 90 degrees to the forward direction, which is vertical towards the ground.

• Camera configuration: to obtain sharp video frames without significant motion blurs, smallest

shutter angles and highest frame rate (when proper exposure is achieved for each frame) are

proposed to use. These also depend on the actual camera used for shooting and the local

weather conditions. The spatial resolution should be 1920x1080.

Figure 42: Orthogonal Rectangular Grid Scanning Patterns.

To ensure complete coverage of the area and provide an adequate number
of views of each surface point (to allow accurate depth map calculation) a

93

large overlap, ideally 70% to 80%, between successive images and scan lines
is needed [51]. Xu [62] used subjective testing to evaluate the effect of vary-
ing the in-track overlap (see Figure 43). Using a model of the countryside
in Unreal Engine (obtained from the Country Side package in the Unreal
Marketplace) images were generated for scan patterns with in-track overlaps
of between 30% and 90%. These images were used to create 3D reconstruc-
tions using the 3DF Zephyr software. In a study using a double stimulus
continuous quality scale methodology, similar to that described in Section
6.2, 15 participants were asked to rate fly-through videos of the reconstruc-
tions and the original model. For each video, scores from 1 to 5 were given
for both the quality of the overall shape of the landscape and the resolution
of local details (e.g. buildings or walls), from which DMOS values were cal-
culated. Results from the study are shown in Figure 44. It was observed
that to achieve a good reconstruction quality, with a DMOS value below 1,
the overlap ratio needs to be greater than 70% for the landscape and 80%
for detail resolution.

Figure 43: Definitions of In-track and Cross-track Overlap [62].

To achieve a particular in-track overlap for a scan it is necessary to ensure
that the video frame rate or image capture rate is sufficiently high, with
higher rates giving a greater overlap. In addition to the frame rate the
amount of overlap is also determined by scan parameters (i.e. the drone
height and speed) and the camera focal length and screen size.

To ensure sufficient cross-track overlap (i.e. the overlap between images
from successive scan lines) it will be necessary to ensure that the cross-track
separation distance (i.e. the distance between scan lines) is at or below a
certain value. The required overlap can be achieved by using appropriate
parameters for the scan pattern and/or the camera, e.g. using one or more
of the following:

• Adjust the distance between scan lines: Reducing the distance will
increase the image overlap.

94

Overlap
20 30 40 50 60 70 80 90 100D

iff
er

en
ce

 M
ea

n
O

pi
ni

on
 S

co
re

0

1

2

3

4

5
Landscape

Variation of Landscape Quality.

Overlap
20 30 40 50 60 70 80 90 100D

iff
er

en
ce

 M
ea

n
O

pi
ni

on
 S

co
re

0

1

2

3

4

5
Details

Variation of Detail Resolution.

Figure 44: Variation of Reconstruction Quality with In-Track Overlap. Vari-
ation of DMOS for landscape quality (left) and detail resolution (right) with
in-track overlap ratio. [62].

• Adjust the camera focal length: Reducing the focal length will increase
the field of view and hence increase image overlap.

• Adjust the drone height: Increasing the drone height will increase the
ground area within the field of view and hence increase image overlap.

For a fixed focal length lens having a fixed angular field of view (AFOV), the
distance on the ground DW visible over the width of an image for a drone
at height H with camera focal length FL and sensor width size SSW is given
by [63] :

DW =
SSW ×H

FL
(56)

If a cross-track image overlap OC (0 for no overlap, 1 for full overlap) is
required, the distance between successive scan lines DS will be given by:

DS = (1−OC)×DW =
(1−OC)× SSW ×H

FL
(57)

The Ground Sampling Distance (GSD) for a camera with a sensor having
an image width of IW pixels is given by:

GSD =
DW

IW
=

SSW ×H

FL× IW
(58)

To maintain image overlap a trade-off needs to made between the time to
scan an area and the image resolution (i.e. the GSD). For large areas, using
a low value for the distance between scan lines (DS) may result in a pro-
hibitively high scanning time. Using a higher value for DS whilst increasing
drone height (H) or reducing the focal length (FL) can maintain overlap,

95

but this will increase DW and hence the images will be of lower resolution
(i.e. have a larger GSD).

The drone forward travel distance DF between image captures for a drone
with speed v and camera frame rate f is given by:

DF =
v

f
(59)

The distance on the ground, in the direction of drone travel, visible in an
image is given by:

DH =
SSH ×H

FL× sin θ
(60)

In the above equation SSH is the camera sensor height and θ is the pitch
angle (90° corresponding to the camera looking vertically down). Hence the
in-track image overlap OI (0 for no overlap, 1 for full overlap) will be given
by:

OI =
DH −DF

DH
= 1− v × FL× sin θ

f × SSH ×H
(61)

The minimum frame rate fmin to achieve a required overlap is given by:

fmin =
v × FL× sin θ

(1−OI)× SSH ×H
(62)

Knowledge of the minimum frame rate necessary to achieve a specific level
of image overlap can be useful in minimizing the number of images that are
used for a reconstruction. To achieve 75% overlap with a drone travelling
at 10 m/s at a height of 20m above ground level, using a camera (looking
vertically down) having a focal length of 35mm and a sensor size of 23.66mm
x 13.3mm, the minimum frame rate is:

fmin =
10× 0.035

(1− 0.75)× 0.0133× 20
≈ 5.3 fps (63)

If the images were actually captured using a video camera with a frame rate
of 60 fps, a reasonably good reconstruction could be achieved using only one
in ten images from the scan. This could reduce reconstruction times by a
significant amount (i.e. by a factor of about 100), since it was found that
when using 3DF Zephyr the processing time was approximately proportional
to the square of the image number (see Section 5.4.3).

To ensure image overlap requirements are met it is also useful to have
knowledge of the maximum drone speed allowable given the camera frame
rate:

vmax =
f × (1−OI)× SSH ×H

FL× sin θ
(64)

96

6.4 Variation of Reconstruction Quality with Camera Angle

Good photogrammetric reconstruction of a surface patch requires a num-
ber of images of the patch from differing and not too oblique viewpoints,
with each image having an acceptable resolution (taken from close enough
to resolve the level of detail required given the GSD). An angle between
two view directions of approximately 20° is optimal for calculation of image
depth using paralax, with angles greater than 40° giving poor results [64].

It is common practice for scans capturing images for photogrammetry
to be performed using fixed scan heights and camera angles (see Foster
[65]). Although not optimal, this approach is much simpler than optimized
methods and scans can often be performed manually or using simple flight
planning tools. It is also quicker than optimal methods, since no initial scan
and reconstruction are needed to develop a proxy model. The quality of a
model reconstructed from such a scan will be dependent on the particular
parameters used. To achieve good results multiple scans, each using a dif-
ferent height and camera angle may be needed. For scanning a building,
Foster recommends a series on circular scans around the structure, with a
high level scan looking downwards and at least two more (one at high level
and others at lower levels) using oblique camera angles to capture side de-
tails.

Simulated scans of the Unreal Engine Country Side model were used to
gain an insight into the magnitude of the variation in model quality with dif-
fering values of camera angle pitch. Three reconstructions were performed,
each using two orthogonal scans at three different heights (30m, 50m and
70m). The particular angles used at each scan height varied between recon-
structions as given below:

• Reconstruction 1, higher angles of pitch: 90° (70m), 67.5° (50m) and
45° (30m).

• Reconstruction 2, intermediate angles of pitch: 85° (70m), 60° (50m)
and 35° (30m).

• Reconstruction 3, lower angles of pitch: 70° (70m), 47.5° (50m) and
25° (30m).

Figure 45 shows the two orthogonal scan-line patterns created in the Mati-
nee Editor of Unreal Engine which were used to generate 3960 images for
photogrammetry reconstructions in 3DF Zephyr. Screenshots of the three
reconstructed models are shown in Figures 46 and 47 on pages 99 and 99.

Using high angles of pitch resulted in a model with areas of significant
distortion (for the both the shape of the landscape and road) and there were
also large holes corresponding to areas which could not be reconstructed.
These problems may have been a result of the uniform grass texture over

97

much of the landscape, which could have made depth calculations inaccurate
or impossible for many surface points. 3DF Zephyr could only determine
1668 camera positions from the 3960 images and many of those were inac-
curate, as shown in Figure 48(a) on page 100. The reconstruction for areas
of high detail (e.g. for buildings) was very good, as shown in Figure 49(a)
on page 100.

Using the lower angles of pitch resulted in a good overall shape for the
landscape. There were localised areas of high distortion (e.g. on some parts
of the road) and some holes, which may have been due to those areas being
obscured by trees. 3DF Zephyr could determine 1904 camera positions, most
being accurate, as shown in Figure 48(b) on page 100. The reconstruction
of buildings was poor, as shown in Figure 49(b) on page 100, but the road
surface in general was good (due to the low distortion of the landscape).

The intermediate angles gave the best overall result, with a good recon-
struction of the landscape shape and no highly distorted areas. 3DF Zephyr
determined 1727 camera positions, most being accurate, as shown in Figure
48(c) on page 100. Detail on buildings had better reconstruction than that
obtained with the lower angles but was not as good as that with the higher
angles, as shown in Figure 49(c) on page 100. The intermediate angles gave
the best reconstruction of road detail.

Figure 45: Orthogonal Scans of the Unreal Engine ‘Country Side’ Model
Created in the Matinee Editor.

In conclusion, it is apparent that the choice of camera angle at each scanning
level can have a large impact on the overall reconstruction quality. The
optimum values for the heights and angles to use will be dependent on the
type of environment. For landscapes with a gently undulating shape (such
as in the Unreal Engine Country Side model) a scan with a low angle of
camera pitch (i.e. 25° - 35°) may be necessary to resolve the small differences

98

(a) High angles (b) Low angles (c) Intermediate angles

Figure 46: 3DF Zephyr Reconstructions from Multi-level Scans Differing in
Camera Pitch. 3DF Zephyr textured meshes reconstructed from multi-level
scans of the ‘Country Side’ model using different sets of camera pitch angles.

(a) High angles (b) Low angles (c) Intermediate angles

Figure 47: Reconstructions from Multi-level Scans Differing in Camera
Pitch Imported into Unreal Engine. Reconstructions of ‘Country Side’, from
multi-level scans using different sets of camera pitch angles, imported into
Unreal Engine.

in height between nearby points. The separation between two points in an
image due to a height difference will be greatest for low angles of pitch
whilst the separation in the image due to the distance between the points
horizontally will be greatest for high angles of pitch. The surprising result
that the set of higher angles gave the best results for the reconstruction
of detail on building walls may be due to the small size of the buildings
compared to the extent of the landscape and the large camera to building
distance during the greater part of a scan. The distance from the camera to
the location on a building wall corresponding to a pixel will be very large for
most images and a small percentage error in the depth calculation can lead
to a significant distortion of the wall (because of it’s relatively small size).
Using higher angles of pitch will on average reduce the camera to surface
distance corresponding to pixels and hence it can be expected that the set
of higher angles will give better results by reducing depth errors. Because
of the small size of buildings and the relatively high scan heights, images of
buildings in camera shots are typically small with most of the frame being
taken up with landscape. Increasing the camera pitch will also increase the
average size of a building in an image and make feature recognition easier.
From the results it appears that a pitch angle of 45° (used in the higher set
of angles) gives low depth errors and is also able to resolve detail on vertical
surfaces such as walls (i.e. views of such surfaces are not too oblique).

99

(a) High angles (b) Low angles (c) Intermediate angles

Figure 48: Computed Camera Positions for Multi-level Scans. Computed
camera positions in 3DF Zephyr for models reconstructed from multi-level
scans using different sets of camera pitch angles.

(a) High angles (b) Low angles (c) Intermediate angles

Figure 49: Building Details for Multi-level Scans. Building details in 3DF
Zephyr textured mesh models reconstructed from multi-level scans using
different sets of camera pitch angles.

Because of the relatively large size of landscape features compared to the
buildings and the ability of the grass texture on the landscape to mask small
distortions, the errors from depth calculations at low pitch angles (i.e. the
set with a lowest pitch of 25°) do not cause a noticeable distortion of the
landscape. To obtain a good reconstruction for both landscape and buildings
it is probably advisable to perform an additional orbital close-up scan (with
little or no background in the frame) at a low angle of camera pitch around
each building. It should be noted that for any set of scan height and angle
parameters, capturing more images during the scan (i.e. increasing the in-
track or cross-track overlap) will improve reconstruction quality.

It is clear from this analysis that an optimization process is needed to
determine which camera heights and angles to use for a scan of a particular
environment. If a single scan is to be used then a compromise may be
needed, with the reconstruction of one element, such as buildings or terrain
prioritised.

100

6.5 Modelling Constant Height, Fixed Camera Angle Scans
for Photogrammetry Image Capture

Previous research on the use of drones as a platform for capturing images, to
be used in photogrammetric environment reconstruction, has largely concen-
trated on flights in which the camera gimbal rotation and drone height are
allowed to vary continuously throughout the flight, with the aim of optimiz-
ing the overall reconstruction quality subject to constraints on the maximum
flight length (and hence the maximum flight time). In many cases an initial
scan of the area at a default height is used to generate a scene proxy for
use in the optimization process. Using such methods to scan wide areas is
impracticable in many cases because of time constraints. The path optimiza-
tion itself, given a proxy scene model, can be very made very efficient, with
computational times of approximately 5s and 1.5s using ‘Submodular Ori-
enteering’ and ‘Next-Best-View’ algorithms for travel budgets upto 1500m
[60]. However the time to perform an initial scan and then a reconstruction
to create a proxy model can be considerable, and it will increase rapidly as
the scan area becomes larger. Another problem with these strategies is that,
even though most drones now have an autopilot mode for following a pre-
programmed flight plan, the precision to which a drone can actually follow
the programmed path can be limited by many factors including the accu-
racy of the GPS receiver, the drone control system and the weather [66] [67].
There is usually a trade off to be made between flight accuracy and speed,
which is more pronounced in difficult conditions (e.g. high winds), making
highly accurate scans for large areas unfeasible. In many cases (especially
for urban environments) it will also not be possible to adhere strictly to
the optimum trajectory due to safety and privacy considerations. The flight
path will need to be checked and possibly modified to ensure adequate dis-
tances are maintained to buildings, the ground and other hazards. Filming
permissions may be needed in certain areas and obtaining these may take
a considerable time. Because of these limitations with drone trajectory op-
timization most scans for photogrammetry are currently carried out under
manual control using empirical methods [65].

As an alternative optimization approach, rather than using an initial
scan to generate a scene proxy which is then used to determine the cam-
era angles and trajectory of the final drone scan, in many cases it may be
sufficient to optimize a single scan, using a regular scanning pattern (e.g.
rectangular or orbital) at a fixed height and camera angle. Executing such
a single scan will be faster and drone control is simplified, with manual
operation possible in some situations. As noted in Section 6.4, the partic-
ular height and angle to use will need to be carefully chosen to optimize
the photogrammetry reconstruction, subject to a minimum height to main-
tain safety margins. For environments consisting of structures or features
which are mostly similar in shape and size, which have a relatively uniform

101

arrangement (e.g. buildings of similar height, ground profile and spacing),
and in which there are no specific features of particular importance, it can
reasonably be assumed that using such an optimized single scan will give
good results. This was confirmed using reconstructions from simulated scans
in Unreal Engine of the ‘Industrial City’ model (see Figure 56 (b) and (c)).
Test flights or simulations of flights over uniformly structured areas could
be used to gain insight of how the reconstruction quality varies with drone
height and camera angle parameters for different types of environment (e.g.
rural and urban) and with different scales and densities of features (e.g.
average building density and height). This information could then be used
to determine the optimum drone parameters to use in actual drone scans,
given prior knowledge of the general form of the environment, which in many
cases can be easily determined from sources such as Google Earth or a quick
on-site survey.

A scan at one height may not be sufficient to give the required level of
quality in the reconstructed model. This is more likely to be the case for en-
vironments which are very non-uniform in the shape, size and arrangement
of structures or features, or which are generally uniform but have some ar-
eas of significance which cannot be accurately resolved from the generally
optimal scan height. For these areas additional scans at one, two or three
other levels will in most cases give satisfactory results [65].

To study the effectiveness of employing a scan at a constant height with a
fixed camera pitch and develop an optimization procedure for such scans, a
system was created, using the Python programming environment provided
in the Blender 3D modelling software, to estimate the photogrammetric
reconstruction quality resulting from a simulated scan.

6.5.1 Benefits of Simulation and Selection of the Programming
Environment

Rather than carry out a time intensive study using actual drone flights to
investigate the effect of scan parameters on photogrammetry reconstruction,
it was decided to develop a tool to estimate the reconstruction quality from
a simulated scan over a 3D model of an environment. In many cases the
simulations can use a simple, quick to build environment model or an exist-
ing model. The effect of a single scan parameter (e.g. focal length) can then
be determined by running a series of simulations, each varying only in that
one parameter. In addition to savings in time when compared with the ap-
proach of performing many real scans and photogrammetry reconstructions,
another benefit of simulation is that the results are repeatable whilst those
using actual scans are dependent on the accuracy of the drone trajectory
(which will be affected by factors such as the weather conditions and the
precision of the positioning system) and also by the prevailing lighting con-

102

ditions. The aim of the study was to develop a simulation tool that could
be used to determine how the choice of parameters affects photogrammetric
reconstruction, to find the optimum scanning parameters for a particular
environment and to investigate how the form of the environment influences
the optimum parameter values. This novel approach of optimizing particu-
lar scan parameters contrasted with previous research which largely focused
on optimizing a scan trajectory for a given environment. The simulation
was created using the Python development environment provided within
the Blender 3D modelling program. This environment has a number of
useful features which made it suitable for the development of the system:

• Environments can be modelled in Blender or imported from other
packages through interfaces for various formats such as Filmbox (FBX),
Wavefront (OBJ) or Stereolithography (STL).

• The Blender Python bpy module can be used to access Blender model
data, classes and functions from a Python script.

• Python supports the Object Orientated programming paradigm.

• Python packages are available that fulfil many common requirements
for scientific programming. The NumPy library adds support for ef-
ficient programming with multi-dimensional arrays. The Matplotlib
library allows data to be visualized using a wide variety of 2D and
3D plot formats. The SciPy library provides many modules for use in
mathematics, science and engineering, such as optimize for minimizing
or maximizing objective functions.

• Python can be used to automate Blender command sequences and
create add-ons that extend functionality.

• The Blender software is free, open-source and can be run on a wide
range of platforms.

6.5.2 Program Structure

Program Classes

A number of class types were defined to implement objects storing geometry
and view coverage data and to model camera objects. Appendix D.1 gives
a list of these classes along with definitions for class methods.

A Model Object class object is used as a container to store information
about each Blender object of type ‘MESH’. Together, these objects form
the model of the environment. The object contains pointers to the Blender
data structures holding the vertices, edges, loops and polygons for the cor-
responding mesh. The object also contains lists holding pointers to front
(camera) facing polygons, vertex normals and Hemisphere objects, each of

103

which holds viewpoint direction data for a vertex.
The Camera class is used to model a camera and has properties defining

the focal length, screen width, screen height, pitch angle, yaw angle and
a vector defining position. It also has an array property containing three
vectors defining the directions of the x,y and z camera axes, and a matrix
property representing the transformation matrix required to convert global
coordinates to camera coordinates. Methods are defined for this class to
set camera properties, to move the camera by an incremental distance or to
an absolute position and to check if a given vertex is visible on the camera
screen.

A Hemisphere class object is used to store data representing the view
directions from which a vertex has been captured by a camera and direc-
tions giving views similar to these captured views (which would not provide
significant extra information for reconstruction). A Hemisphere object is
created for each vertex in every selected Blender ‘Mesh’ object. Rather
than use a continuous distribution for view direction data, directions are
discretized (using the method of Roberts et al. [60]) by defining a set di-
rected from the vertex to a uniform distribution of points over a hemisphere
of radius 1m, centred at the vertex and having the pole axis directed parallel
to the vertex normal. The locations of the hemisphere surface points are
stored as an array of vectors (hemi locs). An array hemi values is used to
store the view coverage information, with a value of 1 stored in an array
element indicating that the corresponding direction in array hemi locs has
been covered by a camera, and a value of 0 indicating it has not been cov-
ered. A method set hemi values is defined in the Hemisphere class to update
the view coverage stored in hemi values with view data corresponding to a
camera at a location given as a parameter. This will set the correspond-
ing coverage value in hemi values to 1 for all sampling points in hemi locs
that are within a disk, centred on the projection of the camera on to the
hemisphere and having a size defined by equation 44 (given on page 88). A
method calc hemi metric is defined to calculate the contribution of the ver-
tex j corresponding to the Hemisphere to the overall reconstruction quality
metric using equation 47 (given on page 89):

F (Cj) =
K∑
k=1

wj(hk) vj(hk) (65)

In the above equation the vj(hk) for each sampling point k on the hemisphere
are the values stored in coverage array hemi values and the weighting factors
wj(hk) are defined by equation 45 (given on page 88).

104

Global Data Structures and Functions Defined in the Main Pro-
gram

For each Blender object of type ‘MESH’ (assumed to be part of the en-
vironment model) the main program will create a corresponding object of
type Model Object, which is added to a list model objs. For certain types of
investigation it is not necessary to evaluate the view coverage of every ver-
tex in the environment model in order to determine the optimum scanning
parameters. It may be the case that only the reconstruction of particular
buildings or features is of interest, and for uniform environments it is only
necessary to consider a centrally positioned representative area. Although
the coverage of other areas does not need to be calculated, it is still neces-
sary to include any features surrounding those of interest (particularly tall
buildings or hills) in the environment model, since they may obstruct the
view from certain positions and thus have an influence on the optimum pa-
rameters. The program will assume that all objects (of type ‘MESH’) that
are selected in Blender need to be evaluated for reconstruction quality and
on initialization the corresponding Model Object class objects are added to
a list model sel objs.

The following functions (detailed in Appendix D.2) were defined in the main
program of the system:

• calc poly visibility : A back-face culling algorithm is used to update
the list of front facing polygons that is stored in Model Object class
objects.

• vertex visible: Determines if a vertex (given as a parameter) is visible
on the camera screen.

• update coverage: Updates the accumulated view coverage information
for all objects in model sel objs with new data using the current camera
position.

• calculate metric: Calculates the average reconstruction metric for all
vertices of objects in model sel objs. The metric used is a scaled version
of the coverage metric used by Roberts et al. [60], given in equation 47.
The scale is chosen so that the maximum metric value of 1.0 represents
every vertex having coverage from all possible directions.

• scan x dir : Perform a rectangular scan with scan lines directed al-
ternately in the +x and -x directions and with an increment in the
y coordinate of the camera position after each scan line. After each
movement of the camera the accumulated view coverage information
is updated.

105

• scan y dir : Perform a scan with scan lines directed alternately in the
+y and -y directions.

On initialization the main Python script performs the following tasks:

1. An object of type Camera, representing the drone camera, is created.

2. For every Blender object of type ‘Mesh’ a corresponding object of type
Model Object is created and added to list model objs.

3. Objects from list model objs are added to list model sel objs if the cor-
responding Blender object is selected (and hence needs to be evaluated
for reconstruction).

4. A scan is performed, for example a rectangular scan in the x direc-
tion followed by a rectangular scan in the y direction, using functions
scan x dir and scan y dir.

5. A metric value estimating the reconstruction quality is evaluated using
the function calculate metric.

Support for the Optimization of Multi-level Scans

Rather than using a single scan at a fixed height it may be required to
perform a series of scans, each at a different height and using a different
camera angle, to achieve good reconstruction. Global functions and meth-
ods for the Hemisphere class have been added to the system to support such
multi-level optimization. After optimizing a scan at a particular level, a
scan at the next level should start with the Hemisphere objects initialized
with coverage data (stored in array hemi values) corresponding to that at
the optimum for the previous scan. This will ensure that the new scan will
be optimized to add the maximum additional coverage information to that
provided from previous scans. To support this type of scan, data structures
hemi values best and hemi values saved have been added to the Hemisphere
class to store the best coverage data found so far during an optimization
and the optimum coverage data found after completing the optimization for
a level. Global functions added to the program include:

• set best hemi values: Save the coverage data (to each Hemisphere’s
hemi values best array) during a level optimization when the recon-
struction metric exceeds the previous highest value.

• save best hemi values: After the optimization of a level, save (to each
Hemisphere’s hemi values saved array) the best coverage data found.

106

Number of
model vertices

Number of
scan lines

Total number of
image capture points

Scan analysis
time (s)

805 5 25 90
805 10 100 310
805 20 400 1120
6387 10 100 16200

Table 6: Effect of Model Complexity and Scan Parameters on Metric Cal-
culation Time.

• set to saved hemi values: Used at the beginning of each trial scan dur-
ing level optimization to initialize the coverage data to that at the
optimum of the previous level (stored in each Hemisphere’s
hemi values saved array).

6.5.3 Program Testing and Response to Changes in Scan Param-
eters

Tests were carried out to evaluate the program performance for different
model complexities and to determine the typical variation of the calculated
reconstruction quality metric with changes in scan parameters such as the
camera height, camera angle, scan cross-track separation and the camera
focal length.

Program Performance

The model shown in Figure 50 (a) on page 109, with buildings at varying
height, was used for testing program performance. For the analysis, differ-
ent versions of the model were created using various sizes for the surface
mesh. The time to perform a rectangular scan in x and y directions, for
different values of mesh density, cross-track separation and image capture
point density, were recorded. Some of the results, for a PC with an Intel
Core i7-6700 processor running at 3.4 GHz, are shown in Table 6. It can be
seen that for a fixed model complexity, the analysis time is directly propor-
tional to the total number of image capture points, i.e. the number of scan
lines (determined by the cross-track separation) multiplied by the number
of capture points along each scan line. The analysis time was found to be
approximately proportional to the square of the model complexity, so that
doubling the number of surface points increased the time by a factor of four.
To achieve a practical level of performance with large environment models
it will be necessary to exploit the high degree of parallelism possible for the
calculations performed by the system. In particular, the computation of
the visibility of a vertex for a given camera position and the corresponding
update in coverage data for the vertex can be carried out independently

107

for each vertex. These calculations can also be carried out for each camera
position in parallel, although the shared access to Hemisphere objects may
need to be controlled to prevent data inconsistency. One method of achieving
parallel execution for Blender Python code is to configure the Blender system
to use a Python compiler such as Numba instead of it’s own compiler [68].
The Numba high performance JIT compiler can be used to translate Python
functions into PTX (Parallel Thread Execution) code which can be executed
on CUDA compatible GPU hardware [69].

Response of the System to Variation in Scanning Parameters

To achieve meaningful results in optimizing scan parameters with the sys-
tem, any objects in the environment for which an accurate reconstruction is
important will need to be accurately represented in the Blender model and
the facets of the object (e.g. rectangular surfaces modelling walls) need to
have a mesh size (i.e. the distance between vertices) that is small compared
to the size of the facet. If the model is to be used to determine distance
parameters such as the optimum camera height, any results will only be
accurate (at best) to this mesh size. Finer meshes may be needed to model
particular areas if it is important that the shape of the surface in those areas
is accurately reconstructed. For building sizes similar to that in the model
of Figure 50 (a), a mesh size of approximately 2m was deemed adequate
for testing system performance. For realistic behaviour, when testing the
response of the system to changes in scan parameters, models of an urban
environment should contain buildings that are fully or partially obscured
from certain vantage points due to other structures. For an environment of
a typical city centre containing large buildings a test area of at least 100m x
100m was thought necessary, and using a 2m mesh size over this entire area
could result in excess of 5000 vertices on the model surface.

The tests on program performance indicated that it would be very time
consuming to use a model containing 5000 vertices for the large number
of tests required to evaluate the effect of varying each parameter. Because
of this a different model, shown in Figure 50 (b), was developed for this
phase of testing. This model encompassed an area of 150m x 150m and
contained a uniform distribution of buildings of equal height (20m) within
a grid-like street pattern. Within each street block the buildings were ar-
ranged around a central courtyard having a single entrance. The road width,
distance between road junctions and building footprints were modelled on
that found typically in an area immediately surrounding a city centre core,
using measurements taken from Google Maps. Since the building shape and
distribution was uniform it was only necessary to evaluate the reconstruc-
tion metric for the central block, which was modelled using a higher mesh
density than the surrounding blocks. The total number of vertices in the
new model was reduced to approximately 1600, with 1200 vertices in the

108

central area used for the evaluation of the reconstruction metric.

(a) (b)

Figure 50: Blender Models of an Urban Environment used for Program
Testing: (a) Varying height. (b) Uniform city blocks.

Using this new environment model a series of scans were executed to test
the effect of varying scan parameters.

The plots in Figure 51 on page 110 show the variation in the reconstruction
quality metric with change in camera height, change in camera focal length
and change in camera pitch. A rectangular scan in two perpendicular direc-
tions, with a cross-track separation of 8m was used. For plots (a) and (b)
a fixed camera pitch of 80° (downwards), was used and for plot (c) a fixed
height of 30m was used.

From the results it can be seen that for all values of camera focal length
there is an optimum camera height of approximately 30m above ground level.
There is a fall-off in quality as the camera height is reduced below this level
due to an increasing number of surface points on the central block becoming
obscured or exterior to the camera image view. Reducing the camera focal
length improves the reconstruction metric as expected, since this will reduce
the magnification and increase the number of surface points visible on an
image, leading on average to an increase in the number of different view
directions captured for a surface point. From plot (c) it can be seen that
at a fixed height there is small variation in quality with camera pitch. For
focal lengths of between 25mm and 45mm the variation in optimum camera
pitch is small with a 60° pitch giving near optimum results for all values.
With low values of focal length the optimum pitch (downwards) is increased,
with an optimum of 75° at a focal length of 15mm. This could be a result
of the low focal length giving a wide field of view, and hence at lower pitch
values more images will capture areas outside the model. In reality when
scanning a large area nearly all images will contain only the area of interest
and hence the optimum pitch can probably be considered independent of
the focal length.

The plots in Figure 52 on page 111 show the effect of varying the number

109

(a)

(b) (c)

Figure 51: Effect of Scan Parameters on Quality Metric: (a) Variation with
height. (b) Variation with focal length. (c) Variation with camera pitch.

of scan lines used in the scan (i.e. varying the cross-track separation). For
plots (a), (b) and (d) a fixed focal length of 35mm was used and for plots
(b), (c) and (d) a fixed height of 30m was used. It is apparent from plots
(a) and (b) that the optimum height or optimum pitch does not appreciably
change when using a different number of scan lines, although as expected the
reconstruction quality increases as the number of scan lines increases. Plot
(d) shows that the rate of increase in the quality metric (i.e. the increase in
the metric for a given increase in the number of scan lines) falls as the number
of scan lines becomes larger. This plot also shows that increasing the number
of image capture points along a scan line will increase the quality metric,
and again the rate of increase in the metric appears to fall as the number
of capture points increases. It can be concluded that increasing the number
of scan lines (i.e. reducing the cross-track separation) and increasing the
number of images captured along each scan line (track) will have diminishing
returns for the improvement in reconstruction quality.

The results from these simulations suggest that reducing the cross-track
separation and focal length will improve photogrammetric reconstruction.

110

(a) (b)

(c) (d)

Figure 52: Effect of Number of Scan Lines (Tracks) on Quality Metric: (a)
Variation with height. (b) Variation with camera pitch. (c) Variation with
focal length. (d) Variation with number of scan lines for different image
capture (sampling point) densities.

However decreasing the cross-track separation will increase scanning time,
whilst decreasing the focal length (at a fixed height) will increase the ground
sampling distance (GSD) and make smaller features more difficult to resolve.
In addition, for a particular value of cross-track separation the focal length
needs to be small enough to ensure adequate overlap between successive
scan lines, as described in Section 6.3. Hence there is a trade-off between
scanning time and the level of detail that can be reconstructed. Increasing
the cross-track separation will reduce the scan time but for a fixed height
it will increase the minimum field of view required to achieve an adequate
overlap and so increase the minimum possible GSD. This will increase the
minimum size of an object that can be resolved in the scan.

It is clear that there are no optimum values for focal length and cross-
track separation, instead the values used will need to be calculated using
equations 56, 57 and 58 (see page 95), given constraints on scan time and
GSD. The reconstruction metric appears to have a maximum for particular

111

values of camera height and camera angle, and these optimum parameter
values do not appreciably change with other scan parameters such as the
focal length and cross-track separation.

Optimization of Scan Height and Camera Pitch

A study was carried out to investigate the use of the system for the optimiza-
tion of scan height and angle parameters. The minimize function contained
in the SciPy optimize library was used for the optimization procedure. This
function can be used to implement many common types of optimization
method including Nelder-Mead, Newton-CG and L-BFGS-B, but none were
found to successfully converge to the parameters corresponding to the global
maximum of the reconstruction quality metric. The convergence problems
may have been due to the use of discrete sampling locations, over the hemi-
spheres surrounding each vertex, to estimate view coverage. A small incre-
ment in camera height or angle will result in no additional view directions
being added to the coverage model and hence no change in the reconstruc-
tion quality metric. For this reason every point in the parameter space of
the quality metric function is effectively at a local minimum or maximum.
Instead of the minimize function the less efficient optimize.brute function
was used to evaluate the metric over a grid of parameter values and return
the maximum value, for example:

grid params = (slice(22.0, 42.0, 2.0), slice(-90.0, -37.5, 2.5))

res = optimize.brute(func opt, grid params, full output=True, finish=None)

In the above Python code the height and angle parameter ranges and in-
crements for the grid are given by a tuple grid params containing two slice
objects. Since brute finds the minimum value for a function, the function
to optimize, given by parameter func opt, returns the negated value of that
returned by function calculate metric. The results of the optimization are
returned in the data structure res, which contains the minimum function
value, the optimum parameter values and the function values at all grid
points.

The results from the optimization of the uniform model (see Figure 50
(b) on page 109) using a cross-track separation of 8m and a focal length of
35mm are shown in Figure 53. The reconstruction metric can be seen to fall
away rapidly from a central peak occurring at a height of 34m and a camera
pitch angle of 60°.

112

Figure 53: Variation of Reconstruction Quality Metric with Scan Height and
Camera Angle for Environment Model Shown in Figure 50 (b).

Response of the System to Changes in the Environment Model

A series of tests were carried out, using modified versions of the uniform
environment model (see Figure 54 on page 115), to examine how the calcu-
lated reconstruction metric varied with changes in building height and with
changes in the ground mesh. Table 7 summarizes the results of these tests.

For the model with no ground mesh, increasing the building height from
20m to 30m increased the optimum camera height by 10m. This is higher
than expected, since the average height for a surface patch on the building
will only increase by approximately 5m. A possible reason for this is that the

Building
Height

Ground
Mesh

Maximum
Reconstruction
Metric

Optimum
Camera Height

Optimum
Camera Pitch

20m No Mesh 0.0223 30m -42.5
20m 5m Mesh 0.0205 34m -60
20m 2.5m Mesh 0.0206 28m -62.5
30m No Mesh 0.0162 40m -42.5
30m 2.5m Mesh 0.0136 44m -60.0

Table 7: Effect of Changes to the Environment Model on the Reconstruction
Metric.

113

greater obscuration that occurs with the higher building height will promote
clearer views from higher positions. This may also explain why the addition
of the ground mesh (of size of 2.5m) to the 30m building model increases the
optimum height, whilst for the 20m building model (with less obscuration)
the optimum height is reduced. Adding a ground mesh will reduce the
average surface height and hence it will be advantageous to move closer to
the ground if views are not obscured by surrounding buildings. Changes in
mesh density can be used to give certain areas a higher or lower importance
with regard to reconstruction. For instance, if only buildings need to be
reconstructed then the surrounding ground area can be given a low mesh
density or left without a mesh. From the results it can be seen that when
there is no ground mesh the optimum pitch angle is 42.5° (down) for both
20m and 30m building heights. Increasing the mesh density on the ground,
so that it given more importance, increases the optimum downward pitch
angle.

Although there is a complex relationship between the form of the envi-
ronment (e.g. building height, building and ground mesh densities) and the
optimum camera parameters, in all models tested the results were similar in
form to that shown in Figure 53 and ranges for parameter values that gave
an optimum for the reconstruction metric could clearly be identified.

6.5.4 Comparison of Estimated Reconstruction Quality with Re-
sults from Actual Photogrammetry

To assess the effectiveness of the system for use in finding optimum scanning
parameters, a series of photogrammetric reconstructions were created using
images from simulated scans of the Industrial City model in Unreal Engine
(illustrated in Figure 55 (a) on page 116), with varying values for camera
height and pitch. The results of these reconstructions were compared against
the optimum parameter values predicted using the Blender system. The
scans extended over an area of 120m x 120m containing a central building
(of height 13m) along with seven surrounding buildings (with a maximum
height of 17m). For the Blender analysis a simplified model of the scanned
area was created, consisting of buildings modelled as blocks along with a
ground plane. The dimensions and layout of these buildings accurately
matched the Unreal model. This approximation was deemed appropriate
since the objective of the study was to optimize the reconstruction of large
scale features, such as the terrain and buildings, in an environment. The
buildings in the Unreal model were also very block like, having flat roofs and
few 3D features that significantly diverged from the wall surface planes. It is
usually unnecessary to accurately reconstruct in 3D small scale features on
buildings, such as window and door frames, drain-pipes and window ledges.
In most cases, when the viewing distance is not too close, they can be
convincingly represented by the texture applied to the reconstructed surface

114

(a) (b)

(c)

Figure 54: Modifications to the Test Environment Model: (a) Original model
with 20m building height and coarse (5m) ground mesh. (b) 20m building
height with fine (2.5m) ground mesh. (c) 30m building height with fine
(2.5m) ground mesh.

mesh in the texture mapping phase of reconstruction. Small or thin objects
and scene clutter such as electric power lines, road signs, traffic lights, traffic
cones, rubbish bins and wire fences were also removed from the Unreal scene.
These features would be difficult to accurately reconstruct using images from
a single overhead scan and would result in many unwanted artefacts in the
reconstructed model. For evaluation of the reconstruction quality only a
central area of 45m x 45m, consisting of a single building and its immediate
surroundings, was considered (see Figure 55 (b)). This area was modelled in
Blender with a higher mesh density than the surrounding area, using a 1.5m
face size, which resulted in approximately 1500 surface points being used for
evaluation of the reconstruction quality metric. The scanning pattern used
for image capture, consisting of two perpendicular rectangular scans with
a cross-track separation of 10m, is shown in Figure 55 (c). In the Unreal
simulation images were captured every 5m along a scan line, resulting in 24

115

images per scan line and 624 images per scan. A CineCameraActor with a
Filmback Setting of 16:9 DSLR (screen size of 36mm x 20.25mm) and a focal
length of 35mm was used in Unreal and an equivalent camera, implemented
with the Camera class, was used in the Blender system.

The results of the optimization using the Blender system are shown in
Figure 55 (d). The maximum reconstruction metric occurs at a height of
22m above ground level and at a camera pitch of 62.5° downwards, with a
rapid fall-off in quality as the height changes from this optimum value. It
can be seen that the optimum pitch increases as the height increases, with
the maximum in the reconstruction metric occurring at a pitch of 57.5° for
a height of 18m and at a pitch of 85.0° for a height of 26m.

(a) (b)

(c) (d)

Figure 55: ‘Industrial City’ Scan Simulation: (a) Unreal Engine model. (b)
Simplified model in Blender. (c) Rectangular scanning pattern. (d) Results
from scan optimization in Blender.

The image sets from the Unreal Engine scans were used to create 3D re-
constructions of the scene using the 3DF Zephyr photogrammetry software.
Reconstructions for camera heights ranging from 32m to 44m, all using a
camera pitch of 60° are shown in Figure 56 on page 118. Reconstructions
for scans using a camera height of 40m, with camera pitch ranging from 45°
to 90° are shown in Figure 57 on page 119. The Blender model predicted

116

that when using a camera pitch of 60° a scan height between 20m and 22m
will give the optimum reconstruction quality. However the reconstructions
of the Unreal model showed that camera heights of between 36m and 40m
gave good results, with scan heights below 32m and above 44m producing
models with significant distortions. A possible explanation for this disparity
is that the reconstruction metric only gives a measure of the average quality
and distribution of views for vertices. Close up views of particular vertices
can promote a high metric value even if those vertices are only viewed from
a single direction or there are some other vertices that are not present in
any views. The calculation does not take in to account the image overlap
requirements necessary for successful reconstruction, which can vary greatly
with image quality and the particular photogrammetry software used.

Using equation 56 (given on page 95), at a height of 22m (the optimum
found using the Blender system) an image, taken using a camera with a focal
length of 35mm and a screen width of 36mm, will cover a width of 22.63m
at ground level and a width of 9.26m at the height of the central building
roof (which is at 13m above ground level). With a cross-track separation of
10m, adjacent images of the ground from successive scan lines will have an
overlap of approximately 56%, whilst there will be no overlap for adjacent
images of the roof (with a strip 0.74m wide being off-screen between each
scan line). At a height of 32m (for which the reconstruction using the Unreal
simulated scan had some distortion) an image will cover 19.54m of roof (a
49% image overlap) and at a height of 36m (which gave a good reconstruc-
tion with the Unreal scan) an image will cover 23.66m of roof (a 58% image
overlap). It is apparent that an image overlap in excess of 50% is necessary
for a good reconstruction of the Industrial City model using the particu-
lar scan pattern and camera employed. In general, the minimum required
overlap may be influenced by the image quality and hence be dependent on
factors such as image resolution and lighting conditions. The image quality
will affect the ability of the photogrammetry software to match key-points
between images and the performance of different photogrammetry software
with a given overlap will vary due to differences in matching algorithms. An
overlap of 50% probably represents a minimum requirement in most cases,
since this will ensure that all surface features appear in at least two images.

A simple work-around to the mismatch between the Blender reconstruc-
tion metric and actual reconstruction quality due to image overlap consid-
erations could be to limit the optimization process to height ranges which
are known to be suitable, given the cross-track separation and camera focal
length. Modification of the parameter values used in the calculation of the
reconstruction metric may also improve the accuracy to which it models
real-world photogrammetry applications.

117

(a) (b)

(c) (d)

Figure 56: ‘Industrial City’ Reconstructions for Scans Differing in Height
with Camera Pitch at 60° : (a) Camera at 32m height. (b) Camera at 36m
height. (c) Camera at 40m height. (d) Camera at 44m height.

6.5.5 Analysis of the View Coverage Reconstruction Metric

To gain insight into the finding that the Blender system gave lower than
expected values for optimum scan heights, further investigations were carried
out to determine the response of the system to changes in scan height and the
effect of varying parameters governing the estimation of the view coverage.

Variation of the Reconstruction Metric with Scan Height

Figure 58 shows how the number of surface points that have a reconstruction
metric of zero varies with the scan camera height, for the Blender Industrial
City model. The scan used a fixed camera pitch of 60° and a cross-track
separation of 10m. For low camera heights the points with zero metric are
not visible in any image due to gaps in the coverage between scan lines,
with a height of between 22m and 24m being necessary to ensure visibility.
At camera heights above 34m an increasing number of points have a metric
of zero. This is due to the fall off with camera height in the size of the
disk projected onto a hemisphere (given by Equation 44 on page 88) and
possibly limitations due to an insufficient density of the sampling points
used to evaluate coverage data in the Hemisphere class. The optimization

118

(a) (b)

(c) (d)

Figure 57: ‘Industrial City’ Reconstructions for Scans Differing in Camera
Pitch with Camera Height at 40m: (a) Camera pitch of 45°. (b) Camera
pitch of 60°. (c) Camera pitch of 75°. (d) Camera pitch of 90°.

of this scan described in Section 6.5.4 had shown that for a camera pitch
of 60° the optimum height predicted by the Blender system was 20m. At
this height, from Figure 58, there will be 60 surface points (out of a to-
tal of approximately 1500) that are not visible in any image. The number
of points which cannot be reconstructed using actual photogrammetry will
probably be even larger, since it is necessary to have a point in at least two
images for reconstruction. At a height of 24m all points are captured, but
the greater average camera to surface point distance results in a lower value
for the calculated reconstruction metric than that for a height of 20m.

The relatively small size of the Industrial City model limited the range of
scan heights that could be tested with the system, since over a certain height
large proportions of an image may cover areas that have not been modelled.
To investigate the effect of scan height on the reconstruction metric over a
wider range of height, an environment model of much larger extent than the
Industrial City model was required. For this purpose an OpenStreetMap
model of an area near Lancaut, Gloucestershire was imported into Blender
using the blender-osm add-on, as shown in Figures 59(a) and 59(b). The
model was edited to remove unwanted details such as fences, paths and trees.
Although the terrain, building positions and building footprints were accu-

119

Figure 58: Effect of Camera Height on Coverage for ‘Industrial City’ Model.

rately represented, the buildings themselves were simply modelled as blocks.
Extra details such as building roofs were added to the model in Blender, us-
ing information from sources such as Google Earth and photographs of the
area, to create the model shown in Figure 59(c). Rectangular scans of the
model were performed in Blender for camera heights ranging from 80m to
250m above sea level (the model itself varied in height from approximately
51m to 80m above sea level). The scans used a cross-track separation of
20m and a camera having a focal length of 24mm, a screen size of 23.5mm
x 15.7mm and a pitch of 80°. Using equation 57 (given on page 95), a cam-
era height of approximately 40m above the highest point on the model (i.e.
at 120m above sea level) is required to achieve an image overlap of at at
least 50% between scan lines, and hence ensure good reconstruction. Figure
60 (a) on page 122 shows how the average reconstruction metric and the
maximum reconstruction metric for a surface point vary with scan height.
The average reconstruction metric (which does not take into account image
overlap) indicates that the optimum height is at 90m above sea level. The
maximum metric value for an individual surface point can also be seen to
fall steeply as the scan height increases. From Figure 60 (b) on page 122, it
can be seen that the number of points which have a reconstruction metric
value of zero falls to a minimum at a height of 100m above sea level. At
this height the width of terrain (at the maximum surface height of 80m)
captured in each image is nearly equal to the cross-track separation, and

120

hence most surface points will be captured on at least one image. As the
height increases the number of points having a value of zero for the metric
increases rapidly and with a scan height of 160m above sea level this is true
for 95% of points.

(a) (b)

(c)

Figure 59: Lancaut Models: (a) OpenStreetMap model. (b) Model of build-
ings and terrain imported into Blender using Blender-osm. (c) Final Blender
model.

An analysis was also performed to determine if an insufficient number of
view sampling directions for vertex Hemisphere objects could be responsible
for this rapid fall off with height. The coverage data for a sampling point
(corresponding to a view direction) on a hemisphere is set to a value of
1 only if the point falls within a disk on the surface of the hemisphere,
centred at the projection of a camera on the hemisphere surface, with a size
given by equation 44 on page 88. With only a small number of sampling
points, at large camera distances the size of the disk will be small and it
is possible that no sampling points fall within the disk. Hence, even with
a large number of images capturing a point, if the camera distances are
large the reconstruction metric for that point can have a value of zero.
The previous analyses used 256 sampling points over a Hemisphere object.

121

Figures 60 (c) and 60 (d) show the results of the Lancaut analysis when
using 1024 hemisphere sampling points. Increasing the number of sampling
points slightly increased the maximum reconstruction metric for a vertex
and reduced the minimum number of points that had a metric value of zero,
but had little effect on the average reconstruction metric. It was concluded
that 256 hemisphere sampling points was sufficient and the rapid fall off in
the reconstruction metric value with increasing height was largely due to
the parameters used in the estimation of view coverage.

(a) (b)

(c) (d)

Figure 60: Lancaut Reconstruction Metrics: (a) Average and maximum
reconstruction metric using 256 sampling points on Hemisphere. (b) Number
of points with a metric of zero using 256 sampling points on Hemisphere. (c)
Average and maximum reconstruction metric using 1024 sampling points on
Hemisphere. (d) Number of points with a metric of zero using 1024 sampling
points on Hemisphere.

122

Variation of the Reconstruction Metric with the Parameters of
the View Coverage Calculation

In the previous analyses the parameters used in the calculation of the recon-
struction metric (see equation 44 on page 88) had values that were equal to
those used in the implementation by Roberts et al. [60]: t0 = 4, thalf = 12
and θmax = π/8. It was clear that these values were not always appropriate
and to ensure the reconstruction metric accurately matched the actual re-
construction quality obtained through photogrammetry they would needed
adjusting to suit the particular scan employed.

Parameter t0 represents the distance which is considered close enough
for maximum reconstruction quality. In particular t0 specifies the distance
from a camera ci to a vertex sj for which the size of the disk (projected on

a hemisphere surrounding sj), defined by cone half angle θji , is a maximum.

At camera distances tji less than or equal to t0, θji = θmax. One possible
strategy for matching the reconstruction metric to actual photogrammetric
reconstruction quality is to adjust the value of t0 so that it equals the camera
height at which all images on a scan line overlap with images on adjacent
scan lines by an amount that has been found sufficient for the particular
photogrammetry software being used (probably 50% or more). For high
angles of camera pitch, if there is little obscuration of surface points, the
maximum reconstruction metric for a scan will usually occur at a height of
approximately t0 above the lowest point on the surface. For this scan height
most surface points will be within a distance t0 of the camera when it is
overhead and hence the coverage data for the camera will be maximized.
Even though points will be closer to the camera for lower scan heights the
overall view coverage will be reduced since less surface points will appear
in each image. As the camera height is increased above t0 more of the
lower lying surface points will become further away than t0 from the camera
when it passes overhead and hence the coverage data for these points due to
overhead camera positions is reduced. However there is a counter-balancing
effect due to more points becoming visible in each image which will tend
to increase coverage at greater heights. The optimum scan height will be
dependent on the relative strengths of the fall-off due to increased camera
to surface point distances and the effect of more points becoming visible
(which will be dependent on the height distribution of surface points), and
may be greater than the expected value of t0 above the lowest point. Using
equation 57 given on page 95, an estimation for the minimum value of t0
necessary to model image overlap requirements for surface points is given
by:

t0min =
DS × FL

(1−O)× SSW
(66)

In the above equation DS is the cross-track separation, FL is the focal length,
O is the required overlap and SSW is the camera sensor width. Using this

123

value for t0 will guarantee image overlap for those regions of the environ-
ment at or near the lowest altitude, but not necessarily for higher regions.

If there is a large amount of surface obscuration (e.g. due to tall build-
ings) the maximum reconstruction metric can occur at heights significantly
above t0.

Modifying parameter t0 to model image overlap requirements for recon-
struction is applicable in some situations, such as the case of a single scan
using a regular scanning pattern in which there is a fixed distance between
individual scan lines. In other situations, such as when using a series of
scans at multiple levels, it is not necessary to have such strict image overlap
requirements for each individual scan, rather there needs to be sufficient
overlap when considering the entire set of images. In these cases more com-
plex strategies for setting an appropriate value for t0 would be needed.

The rapid fall off in reconstruction metric with height, as shown with
the analysis of the Lancaut model, is due to the relatively low value of 12
used for parameter thalf . Increasing the distance tji from camera ci to vertex

sj by 12m will decrease the half cone angle θji , defining the size of the disk
projected onto the vertex Hemisphere, by a factor of 2. This will in turn
reduce the area of the disk and the number of enclosed sampling points by
a factor of approximately 4 (for small values of θji), and potentially reduce
the reconstruction metric by this factor.

Although this value for thalf will be suitable for close-up scans of build-
ings, in many situations such as high altitude scans over large areas it will
not be appropriate. The actual fall off in the usefulness of an image for
photogrammetry with height is dependent on many factors such as camera
resolution, camera settings (e.g. aperture, shutter speed and ISO), atmo-
spheric conditions, light level, uniformity of lighting and the stability of the
camera platform. For a good quality HD camera having a sensor width of
36mm with 1600 pixels and a focal length of 35mm, the GSD (using equation
58) at 10m height will be approximately 3mm/pixel. At a height of 20m the
GSD will be approximately 6mm/pixel. For photogrammetry camera cali-
bration, assuming clear weather conditions and good lighting, it should be
possible to match reasonably sized features using images from either height.
For example, if a feature size of at least 10x10 pixels is needed for matching
then features of size 3cm and above can be matched at 10m and features
of size 6cm and above can be matched at 20m. The GSD values at both
heights are also sufficient for the reconstruction and texture mapping of most
large scale environment models. From this simple analysis it can be deduced
that, for large scale environment reconstructions, the effective change in re-
construction quality when increasing the camera scan height by 12m (the
default value used for thalf) may be small. To accurately model the true
fall off in reconstruction quality with height the value of thalf will need to
be chosen with regard to the level of detail required in the reconstruction,

124

camera properties and environmental factors. For detailed scans of small
objects (low GSD) a low value for thalf is appropriate, whilst a higher value
will be needed for scans of large objects that require less detail. Increas-
ing the camera resolution will generally increase thalf whilst poor lighting
conditions will decrease thalf .

6.5.6 Configuration of View Coverage Parameters for a Scan

Figure 61 shows how changes in parameters t0 and thalf affect the calculated
reconstruction metric for scans of the Lancaut model at varying heights,
using a fixed camera pitch of 80°. From Figure 61 (a) it can be seen that
for t0 = 40, which corresponds to the height above the surface required to
give an overlap O of 50% as given by Equation 66 (given on page 123), the
optimum scan height is 110m above sea level, which corresponds to 40m
above the average altitude for the environment. For a value of t0 = 52
the optimum scan height is approximately 120m which corresponds to 40m
above the maximum altitude of the environment. Hence using a value of
t0 = 40 will ensure that at the optimum height (as determined from the
reconstruction metric) there is a 50% image overlap between scan lines for
areas of the model at, or below, the average height. A value of t0 = 52 will
ensure there is always a 50% image overlap between scan lines for all areas
of the model at the optimum scan height. It can be seen that Equation 66
will need to be modified to ensure the calculated value for t0 gives adequate
overlap for all regions of the environment.

For a camera looking vertically downwards, at a height t0 above the
lowest point of a surface (which is at a height Hmin), the distance to the
camera for all surface points will be less than or equal to t0 when the camera
is overhead and hence for these camera positions the contribution to the
reconstruction metric is maximized. For relatively flat surfaces or surfaces
with isolated peaks, as the height of the camera increases above t0, large
numbers of surface points will become further away from the camera than
distance t0 and this will tend to reduce the coverage metric, since this factor
will dominate over any increase due to more points becoming visible in each
image. Hence for relatively flat surfaces the reconstruction metric maximum
will occur at a height close to Hmin + t0. To ensure adequate image overlap
for all areas of a surface, including any peaks at height Hmax, the value
of t0 will need to be increased by (Hmax − Hmin) from the value given by
Equation 66 on page 123. This will move the height for the maximum
metric a distance of at least t0min (specified by Equation 66) above Hmax

in all situations. A suitable value for t0, for use with high values of camera
pitch and an environment which is generally flat with isolated peaks is given
by:

125

t0 =
DS × FL

(1−O)× SSW
+ (Hmax −Hmin) (67)

This value for t0 can also be used when only the maximum height difference
in the landscape is known. However, a smaller value for t0 can be used if a
good estimation for the mean surface heightH is known. Since the maximum
in the reconstruction metric will occur at a height of approximately H + t0,
a value of t0 given by equation 68 (given on page 126) will ensure that the
optimum height will occur near Hmax + t0min:

t0 =
DS × FL

(1−O)× SSW
+ (Hmax −H) (68)

From Figure 61 (b) it can be seen that increasing thalf does not affect the
optimum height although it slightly increases the maximum reconstruction
metric.

(a) (b)

Figure 61: Variation of the Reconstruction Metric with View Coverage Pa-
rameters for Lancaut Scans: (a) Variation with height for different values of
t0 (thalf fixed at 12). (b) Variation with height for different values of thalf
(t0 fixed at 40).

For scans with low or intermediate angles of pitch, the calculation of a
suitable value for t0 is more complex. Figure 62 (a) shows the effect of
parameter t0 on the reconstruction metric for scans of the Industrial City
model, using a fixed camera pitch of 60°.

For a camera with a pitch angle θ, the distance d from a point centred
on an image to the camera will be related to the height h of the camera
above that point by:

sin θ =
h

d
(69)

From the plots of Figure Figure 62 it can be determined that for large values

126

(a) (b)

Figure 62: Reconstruction Metric for ‘Industrial City’ Scans: (a) Variation
with height for different values of t0 (thalf fixed at 12). (b) Variation with
pitch angle for camera heights of 36m and 40m (t0 = 42, thalf = 12).

of t0 there appears to be a similar relationship between t0 and the camera
height above Hmin corresponding to the maximum reconstruction metric:

sin θ ≈ Hopt −Hmin

t0
(70)

In the above equation, Hopt is the optimum camera height found from the
analysis. A better approximation, analogous to equation 68, for cases where
the difference in heights for the landscape (Hmax − Hmin) are significant
compared to the scan height (Hopt −Hmin) is:

sin θ ≈ Hopt −H
t0

(71)

For good reconstruction Hopt should have a minimum value equal to the
camera height necessary to give the required overlap for images of the surface
at Hmax:

Hopt =
DS × FL

(1−O)× SSW
+Hmax (72)

Hence a suitable value of t0, for a camera with angle of pitch θ is given by:

t0 =

DS×FL
(1−O)×SSW

+ (Hmax −H)

sin θ
(73)

For the Industrial City scan at 60° camera pitch, Hmin = 0.0, Hmax =
13.0, DS = 10.0, FL = 0.035, SSW = 0.036 and θ = 60°. Assuming H ≈
Hmin, Table 8 gives the values of the estimated optimum height (calculated
using Hopt = t0 sinθ) and the image overlap O that the optimization should
guarantee (calculated using Equation 72), corresponding to various values

127

of t0. The optimum height found using the reconstruction metric returned
from the Blender simulation is also given, but it should be noted that this
has an accuracy limited by the height discretization used in the optimization
(2m).

For the larger image overlaps (corresponding to higher scans) it can be
seen that there is a good agreement between the estimated value for the
optimum height (Hopt = t0 sinθ) and the actual height obtained from the
optimization, and hence it can be deduced that for high scans (where H can
be assumed to be approximately equal to Hmin) Equation 73 can be used
to determine a suitable value of t0 for the optimization given the required
overlap. For lower scan heights (where Hmax −Hmin is comparable to the
scan height) the relationship between t0 and Hopt is more complex and this
approximate model is not appropriate to calculate a suitable value of t0 to
use for the optimization.

Actual reconstructions using simulated scans in Unreal Engine and 3DF
Zephyr photogrammetry software had determined that a scan height of 32m
produced a distorted model. Scans at heights of 36m and 40m both produced
good results, with the scan at 36m being slightly better. This suggested that
the minimum image overlap between scan lines for good reconstruction was
between 50% and 58%. From this it can be deduced that a value of t0 = 42,
corresponding to an overlap requirement of 58.4% is appropriate to model
the Industrial City reconstruction for a 60° scan, with the optimum in the
reconstruction metric occurring at approximately 36m. This is very similar
to the actual height of 36.37m required to achieve 58.4% overlap for surfaces
at the roof height of 13m.

A value of t0 below 26.24 corresponds to a value of Hopt = t0 sinθ below
22.72m, which is less than the camera height required to give any image
overlap for surfaces at Hmax. Low values of t0 corresponding to no overlap
should not be used in practice since they would result in poor reconstruc-
tions. While high values of t0 result in a maximum reconstruction metric
near to Hopt = t0 sinθ, these lower values of t0 were found to give a maxi-
mum in the reconstruction metric significantly above this value, being closer
to the height needed to achieve overlap. This is to be expected, since when
there is no image overlap there is an advantage in moving the camera higher,
with the increase in the reconstruction metric due to more surface points ap-
pearing in each image outweighing the reduction in the metric contribution
for some surface points due to the increased camera distance.

Figure 62 (b) on page 127 shows how the reconstruction metric varies
with camera pitch angle for the case of scans at 36m and 40m, using a value
of t0 = 42. The optimum angle at 40m was 55° , which is consistent with the
reconstructions from simulated scans (shown in Figure 57 on page 119), for
which, out of the limited number of test cases used, an angle of 60° gave the
best results. The optimum pitch angle for a scan height of 36m was 52.5° ,
which is also consistent with previous findings (i.e. higher scans generally

128

Parameter t0
Image
Overlap, O (%)

Optimum Height
Calculated using
Hopt = t0 sinθ

Optimum Height
from Reconstruction
Metric (m)

42 58.40 36.37 36
40 55.08 34.64 34
34 40.88 29.44 30
28 13.57 24.25 26
22 0.0 19.05 26

Table 8: Effect of Parameter t0 on the Optimum Height Determined from
the Reconstruction Metric.

have higher optimum pitch angles). The results of the optimization are in
much closer agreement with real photogrammetry when compared against
the first optimization of the Industrial City model, which used the same
value for t0 as Roberts et al. (t0 = 4) and for which the optimum pitch
angle at a height of 40m was 82.5° . It is clear that to accurately model re-
construction quality the Blender system will need to be carefully configured
with appropriate values for t0 and thalf .

Care needs to be taken when using Equation 73 (given on page 127) to cal-
culate t0 for the optimization of scan camera angles, since it implies that the
best value to use for t0 varies with the particular camera angle used. However
during an optimization this value needs to be kept constant to prevent the
reconstruction metric for low angles of pitch being artificially high when in
fact camera to surface point distances can be large. Although this equation
will guarantee that the optimum solution obtained from the Blender system,
using the calculated value for t0, will have the required overlap for all angles
of pitch greater than θ, it may discount better solutions with higher angles
of pitch, for which the average camera to surface distance is smaller than
t0, but have less surface points in each image. For optimizations involving
small ranges in pitch angle variation or for analyses involving a fixed pitch
angle and varying height then using a fixed value of t0 given by Equation 73
is appropriate. With these analyses it is not necessary to limit the height
range under test, as the value of t0 should guarantee overlap requirements.

Scans at a low angle of camera pitch and at heights significantly below
t0 can still have camera to surface point distances near to t0 and hence give
high values for the reconstruction metric. For the optimization of scan cam-
era angle (or both height and angle), a work-around to prevent the system
finding an optimum for low angles of pitch with heights below that necessary
for the required overlap, is to use a value of t0 corresponding to Equations
67 or 68 (given on page 126) and restrict the range of heights to those that
give adequate overlap (i.e. above t0).

129

Figure 63 shows the results from the analysis of the Industrial City model us-
ing this approach, with a value of t0 = 37.3 which corresponds to the height
needed for a 60% overlap for images of the roof of the central building. It
can be seen from Figure 63 (a) that the maximum in the reconstruction
metric for a camera pitch of 60° occurs at a height of 33m (since camera to
surface point distances at this pitch can have values close to t0 for heights
significantly below t0) and hence in the optimization it is necessary to re-
strict heights to those above t0. Figure 63 (b) shows that the optimum pitch
for a camera at a height of 40m is 60° (downwards), which agrees with the
actual reconstructions from the simulated scans in Unreal Engine. The full
optimization of both height and pitch shown in Figure 63 (c), with height
restricted to 38m (i.e. above t0) gives an optimum in the reconstruction
metric for a height of 38m and a pitch of 55°. Since there is little obscura-
tion of the central building the fall off in the reconstruction quality metric
as the height increases above 38m is to be expected. The optimum pitch
angle of 55° is also consistent with the value of 60° at 40m and the results
from photogrammetry.

It has been found in practice that using a low angle of pitch generally
results in a poor quality reconstruction due the presence of distant objects
(outside of the scan area) in many images. However, as shown in Section
6.4, it has been found that an pitch angle of 45° is sufficient to give a good
reconstruction for vertical surfaces such as walls and hence for most cases
the scan parameter optimization can be limited to pitch angles of between
45° and 90° . If a higher quality of reconstruction is needed for certain struc-
tures having vertical surfaces such as buildings, a separate scan around the
structure, using a vertical scan pattern with a low angle of camera pitch,
may need to be executed.

In conclusion, the hemisphere model used by Roberts et al. [60] can be used
to estimate the quality for photogrammetry reconstructions given informa-
tion on scanning parameters and a model of the environment. The accuracy
of this method will be highly dependent on the parameters of the coverage
model used to estimate reconstruction quality, which will need to be set
appropriately for the particular scan being employed.

6.5.7 Choice of Scan and Camera Parameters

Optimization using the Blender system will require scan parameters FL (fo-
cal length), DS (cross-track separation) and O (Overlap between successive
scan lines) to be known in advance so that coverage parameter t0 can be
calculated. From Equations 57 and 58 (given on page 95), the Ground
Sampling Distance (GSD) is given by:

GSD =
DW

IW
=

DS

(1−O)× IW
(74)

130

(a) (b)

(c)

Figure 63: Analysis of ‘Industrial City’ using Modified Coverage Model:
(a) Variation of Reconstruction Metric with Height (Camera Pitch Fixed at
60°). (b) Variation of Reconstruction Metric with Camera Pitch (Camera
Height Fixed at 40m). (c) Variation of Reconstruction Metric with Camera
Height and Pitch.

Hence the maximum value for parameter DS, for a given image overlap,
will be determined by the maximum allowable GSD. The minimum value
will be determined by the maximum time allowed for scanning the area,
since smaller values of DS will require more scan lines. The focal length FL
will normally be set to the smallest value possible, limited by the minimum
clearance distance HC to surface points. This minimum value for the focal
length can be found using Equation 57 (given on page 95):

FLmin =
(1−O)× SSW ×HC

DS
(75)

131

6.5.8 Improving the Reconstruction Metric

A reconstruction metric based on the vertex hemisphere model proposed by
Roberts et al. [60] exhibits some unrealistic behaviour and has a number of
limitations:

• Close up views of surface points can result in a high reconstruction
metric, even if each of those points are only captured in a single view.

• View coverage parameters (thalf , t0 and θmax) need to be matched to
the particular scanning situation (e.g. to model the minimum suitable
camera to surface distance and fall-off in view quality with height).

• The model does not take into account the use of parallax between
views to calculate depth.

• The model does not explicitly take into account reconstruction require-
ments such as image overlap, which will need modelling through the
use of appropriate coverage parameters.

Because of time limitations it has not been possible to evaluate alternative
formulations for the photogrammetry reconstruction metric. The method
proposed by Smith et al. [61] could have a number of advantages. It ex-
plicitly models the use of triangulation to calculate depth using information
from a pair of views, by incorporating factors representing the variation,
with parallax angle and distance, of the triangulation error and the ability
to match features between views. Image overlap is encouraged since at least
two views of a point are required for it to contribute to the overall reconstruc-
tion metric. One problem with the method is that the metric calculation
involves five parameters, k1, α1, dmax, k3 and α3, which may need to be
modified to suit the details of a particular scan (e.g. the scanning pattern
and camera properties) and possibly characteristics of the reconstruction
software used. Another factor that may lead to inconsistencies in the re-
construction quality estimation is that the heuristic defined by equation 54
(given on page 90) involves a sum of contributions due to each possible pair-
wise combination of views. In reality, increasing the numbers of views gives
diminishing returns for the resultant improvement in model quality. More
realistic behaviour could be achieved by only considering views which pro-
vide significant additional information or limiting the sum to the pairwise
view combinations that give the best contribution.

Combining the metric calculation (using pairwise view contributions) of
Smith et al. with a hemisphere model, similar to that used by Roberts et al.,
to store view information, could result in a reconstruction model which over-
comes some of the limitations of these methods. In this proposed method
each surface vertex will have a corresponding Hemisphere object to store
view distance information. For each image (i.e. for each camera position

132

corresponding to the capture of an image along a scan line), if a vertex is
visible the camera to vertex distance is stored at the location in hemi values
corresponding to the hemisphere sampling point which has a direction clos-
est to the actual vertex to camera direction (see Section 6.5.2). If there
is already a distance stored at the location (from a previously processed
image), it will only be overwritten if the new distance is shorter. Using
this technique, the number of different views stored for each surface point is
limited to the number of hemisphere sampling points, with only the closest
camera distance stored for the view direction corresponding to a sampling
point. Hence the reconstruction metric will not become artificially high
when there are a large number of images or many images are captured from
similar viewpoints. There will also be a reduction in the metric calculation
time (using equation 54 given on page 90) when the number of images be-
comes large.

In practice, when matching a particular key-point between images (e.g.
during the first phase of Structure from Motion), photogrammetry software
will not use every image containing that key-point. Some images may not
be of sufficient quality for a successful match and the numbers of matches
selected for further processing may be limited to improve efficiency. Hence,
rather than use every possible pairwise combination of the views stored in
a Hemisphere to calculate the sum representing the reconstruction quality
heuristic (using equation 54), a closer match to the actual reconstruction
quality may be obtained by using the sum or average of the n best pairwise
view terms, or in some cases using just the best term. If using a selection
of view pairs for the reconstruction metric calculation, each of the pairs
should provide significant additional information to that provided by other
selected pairs. Hence none of the selected view pairs should have both view
directions similar (i.e. within a certain threshold angle) to those in another
selected pair.

133

6.6 Summary

A good quality photogrammetric reconstruction requires an image set con-
taining a wide variety of views for each part of the scene. It has been
found that typically between 120 and 180 images per 10000m2 are neces-
sary for good reconstruction (dependent on the type of the environment).
Adding additional views to an image set will have diminishing returns on
the improvement in reconstruction quality, since the level of improvement
is dependent on the amount of extra surface information contained in those
views. Close-up views from new, non oblique directions give the optimum
extra information for surface points, with an angle of 20° between two views
of a surface point giving the optimum parallax for depth calculation. Since
the reconstruction time rises rapidly with the number of images, being of
O(n2) or greater for n images, it is important to optimize photogramme-
try scans to minimize the number of images required to obtain a particular
reconstruction quality. An important consideration when scanning an area
is to ensure that there is an adequate overlap between the images (e.g.
between adjacent images from successive scan lines). To ensure feature key-
points appear in at least two images an overlap of at least 50% is required.
To ensure a match for a sufficient number of key-points in an image with
key-points in another image (to enable the calculation of the homography
between the views) it is typically necessary to have an overlap in excess of
60% . Increasing the overlap still further (i.e. up to 80%) can significantly
improve quality but will result in longer scanning times. Reducing scan line
separation and reducing focal length will also increase the number of views
of surface points and improve the reconstruction. However the required level
of detail in the final model will determine the maximum GSD and hence the
minimum focal length that can be used.

A system built using the Python development environment within Blender
has been created to optimize image capture scans. Using this system, scan
parameters such as camera height and pitch can be optimized, given a sim-
ple model of the environment. It has been found that the optimum height
and camera angle for a scan are largely independent of the focal length and
cross-track separation. By configuring parameters governing the estimation
of view coverage to model image overlap requirements, it has been possible
to match the results of the optimization to actual photogrammetry recon-
structions.

134

7 Conclusions and Future Work

UAVs (or drones) provide a flexible and cost effective solution for many film-
ing requirements and their use in media production has become widespread.
Novel types of shot that would be impossible or impractical using traditional
techniques can be realised when using a drone. Whilst many of the standard
techniques of cinematography are still be applicable when filming using a
drone, there has been little research in how best to exploit their use.

Filming sports with a drone gives the director a greater flexibility in
the choice of shot, they can follow the action to provide close-up shots or
fly high to give an overview. The use of multiple drone systems provides
further benefits, especially when filming events taking place over a large
area. Strategically placed drones will enable the director to switch between
multiple shot angles, switch the view to different areas of the action and
to respond to incidents. The manual control of a multiple drone system is
complex and requires a large team including a director, drone pilots and
camera operators. Autonomous functionality such as target tracking, col-
lision avoidance and automatic shooting can greatly reduce operator load
and enable control using a small team. For effective filming using a drone
automatic shooting system, shot libraries will need to be defined for each
particular genre of filming and each shot optimized for viewing quality.

An important consideration in the development of drone filming plat-
forms (including systems with an automatic shooting capability) is the pro-
vision of software for flight planning and training. For certain types of film
shoot the planning and training can be enhanced if an accurate real-world
environment model is provided by the simulation software and hence tech-
niques to efficiently produce such models are required.

7.1 Research Summary

The typical shot types of standard cinematography are not well suited to
filming fast moving live action, especially when employing multiple cameras
to film multiple targets. To ease the workload on the director and drone op-
erators for the filming of events such as sports races, a custom shot library
has been proposed. Shot types are defined according to the motion of the
camera relative to the target and arranged using a hierarchical taxonomy
based on natural language. Such a rationalized shot library, optimized for
live shooting, can reduce the time for the director to decide and communi-
cate which shot to use for a particular situation and also supports the use
of a simplified drone control interface for semi-autonomous shooting. Thus
it will potentially help to make a multiple drone platform a viable solution
for the filming of live events such as sports. The proposed shots have been
parameterized to enable integration into the control system of an automatic
shooting platform.

135

Automatic shooting will require suitable default values and operating ranges
for each parameter of a shot to be determined to ensure the quality of the
viewing experience. A methodology using subjective testing for determining
suitable parameter values has been developed and experimental tests per-
formed for a representative selection of the shot types proposed for filming
races. For these tests, models were created representing the scenarios of a
cycling race and cars racing along a city street using Unreal Engine. Video
sequences of these models, simulating camera shots at various drone heights
(with a fixed speed) and at various speeds (with a fixed height) were created.
In the subjective tests each video sequence was rated for the quality of the
viewing experience by a number of participants (59 in total for all tests).

The optimum parameter values to use when filming will be dependent
on camera properties such as the focal length and a simple procedure for
converting the optimum parameters obtained from the subjective tests to
those required when using a different camera has been detailed.

For most filming locations there are no available accurate 3D models that
can be imported into drone flight planning software and techniques such as
photogrammetry or laser scanning may need to be used to produce a model.
A widely used photogrammetry system has been evaluated and procedures
to optimize reconstruction quality given limits on reconstruction time and
techniques to repair common problems have been established. For certain
locations it is possible to use images captured from mapping websites such
as Google Earth for photogrammetric reconstruction. However, because full
3D coverage is limited to certain regions (e.g. large urban areas), in most
cases images will need to be captured at the location (e.g. by scanning the
area with drone). The quality of the reconstruction obtained through pho-
togrammetry is dependent on the number and distribution of images. Using
more images generally gives better results, however there are diminishing re-
turns on the improvement in quality as the number of images increases and
the time for the reconstruction rapidly increases. Hence for efficient recon-
struction it is important to optimize the scanning process so that a limited
number of captured images can give good results. A Blender Python module
has been developed to help optimize image capture scans for photogramme-
try. Scans of simulated environments using the system have shown how the
predicted reconstruction quality varies qualitatively with changes in scan
parameters and in the type of environment. The system can be used for
the optimization of scanning parameters (e.g. camera height and pitch),
however it will need to be configured to ensure the estimation for the re-
construction quality given by the program is a good match to the actual
quality obtained from the particular photogrammetry software that is to be
used. This can be achieved by setting appropriate values for the parame-
ters used in the estimation of the view coverage. In particular, parameters
defining the maximum camera to surface distance for optimum surface in-

136

formation retrieval and the fall-off in surface information with height can
be set to model specific scan types and conditions, such as photogrammetry
requirements for the image overlap between scan lines. Using this technique
the variation in the reconstruction metric with height and camera angle has
been matched to actual reconstructions created using images captured in
simulated scans of an industrial area in Unreal Engine.

7.2 Research Conclusions

The main conclusions regarding the subjective testing of camera shots for
viewing quality can be summarized as follows:

• The methodology of subjectively testing simulated drone camera shots
was able to successfully discriminate variations in viewing quality with
changes in shot parameters and for most of the shot types tested there
was a height range that gave a significantly improved viewing experi-
ence compared to that for other heights.

• The optimum camera height relative to the target size generally in-
creased with target size, being approximately 1.4 times the target
height for the case of a cyclist and 3.4 times the target height for
the case of a car.

• For certain types of shot (e.g. an ‘Establishing’ shot) males preferred
a lower height than females.

• There was a wider variation in the preferences for camera speed com-
pared with the preferences for height, with a statistically significant
range for an optimum speed only identified for two of the four shot
types tested (‘Establishing’ and ‘Flyby’ shots).

• Males generally preferred shots with a higher drone camera speed.

It can be concluded that the technique of subjectively testing simulated
drone camera shots is an effective method for determining the ranges for
shot parameter values which give a good viewing experience and ranges
which should be avoided. It has many advantages over testing using real
footage, being much more efficient in terms of cost and time, and allowing
parameters to be precisely controlled.

The main conclusions that were ascertained from the work on photogram-
metry can be summarized as follows:

• For scanning areas for image capture one of the most important factors
has been found to be the overlap between images from successive scan
lines. An overlap of 50% has been found to be a minimum require-
ment, although typically an overlap of approximately 60% or more is
necessary for good reconstruction.

137

• Rectangular scans at a fixed height and camera angle can give good
results, however the reconstruction quality is highly dependent on the
particular height and angle used.

• The optimum scan height and camera angle do not appreciably change
with other parameters such as camera focal length and track separation
distance.

• Lowering the cross-track separation and focal length were both found
to improve the predicted reconstruction quality, although reducing the
focal length also increases the Ground Sampling Distance (GSD) and
hence there is a limit to which the focal length can be reduced before
the resolution becomes too low to resolve the required level of detail.

• An estimate of reconstruction quality based on the metric of Roberts
et al. [60] can give a good match to actual reconstruction if parameters
of the view coverage model are set appropriately (i.e. to model scan
overlap requirements).

The developed Blender system can provide a useful resource for the optimiza-
tion of scans capturing images for use in environment reconstructions. It can
be used to determine optimum scan heights and camera angles given a basic
model of the environment. Results obtained from simulated scans of generic
environment models can also be used to inform which range of heights and
camera angles will probably produce a good reconstruction given basic in-
formation on the form of the environment (e.g. average building height and
spacing).

7.3 Future Work

There are a number of further research areas in camera shot optimization
which could be productive:

• Effect of target height and width on the optimum parameters (the
present research focused on a limited range of target types).

• Effect of speed on perceived shot quality, in particular the nature of
the dependency on absolute or relative camera speed.

• Effect of shot framing on optimum parameters.

• Effect of shot framing on the importance of absolute versus relative
camera speed for influencing the perceived video quality. For example,
it may be the case that for close-up shots the speed of the camera
relative to the target has more relevance for determining shot quality,
whilst for long-shots the absolute camera speed might have greater
importance.

138

• Further work on the effect of gender and age on shot preferences.

• Optimization of the transitions between shots from different drones
(e.g. determining optimum drone separation to minimize jarring and
confusion).

• Optimization of synthetic views produced using the views from multi-
ple drones.

The purpose of the work carried out so far has been to evaluate the subjec-
tive testing methodology and it has focused on a small number of shots for
a particular filming scenario. The design of an automatic automatic shoot-
ing system using such methods will require the testing of particular shot
libraries for each type of filming genre required.

Additional work regarding the Blender Python system developed for the
optimization of photogrammetry image capture scans includes:

• Further testing to determine if the system can give optimization re-
sults comparable to actual photogrammetry reconstructions for dif-
ferent types of scan pattern and environment (e.g. with a natural
landscape or where the area of interest is obscured by surrounding
features).

• Testing of the system using multi-level scans. Determine the pre-
dicted improvement in reconstruction quality from using one or two
additional scanning levels and compare the results with those from
actual photogrammetry.

• Development of alternative formulations for the reconstruction metric
and evaluation to determine which gives the closest match with actual
photogrammetric reconstruction.

• Addition of support for parallel processing using GPU hardware.

• Development and analysis of a series of generic environment models
using varying parameters for feature size and placement (e.g. building
height and space between buildings). The results of these analyses
could be used as a resource to choose suitable parameters for a partic-
ular scan given basic information on the form of the environment.

139

Appendices

A Shooting Requirements for MultiDrone

Table 9: Shot Types and Framing for MultiDrone [6].

Shot Id Name Description

CMT1 Still shot
The camera shoots a scene from a fixed point in
space without focusing on a specific visual target.

CMT2 Still Shot of non-moving target
The camera shoots a scene from a fixed point in
space focusing on a specific non-moving visual tar-
get.

CMT3 Static Aerial Pan

The camera shoots a scene from a fixed point in
space without focusing on a specific visual target.
The camera gimbal rotates slowly (left-right) to
capture the scene context.

CMT4 Static Aerial Tilt

The camera shoots a scene from a fixed point in
space without focusing on a specific visual target.
The camera gimbal rotates slowly (up-down) to
capture the scene context.

CMT5 Static Shot of Moving Target

The camera shoots a scene from a fixed point in
space focusing on a specific visual target. The gim-
bal rotates so that the camera focuses on the mov-
ing visual target at all times.

CMT6 Moving Aerial Pan

The camera shoots a scene from a linearly moving
point in space without focusing on a specific visual
target. The camera gimbal rotates slowly (left-
right) to capture the scene context.

CMT7 Moving Aerial Pan with Moving Target

The camera shoots a scene from a linearly mov-
ing point in space focusing on a specific linearly
moving visual target. The gimbal rotates slowly
(left-right) so that the camera focuses on the mov-
ing visual target at all times. The projections of
the drone and target trajectories on the ground
are approximately perpendicular.

CMT8 Moving Aerial Tilt

The camera shoots a scene from a linearly mov-
ing point in space without focusing on a specific
visual target. The camera gimbal rotates slowly
(up-down) to capture the scene context.

CMT9 Moving Aerial Tilt with Moving Target

The camera shoots a scene from a linearly mov-
ing point in space focusing on a specific linearly
moving visual target. The gimbal rotates slowly
(up-down) so that the camera focuses on the mov-
ing visual target at all times. The projections of
the drone and target trajectories on the ground
are approximately parallel.

140

Shot Id Name Description

CMT10 Lateral Tracking Shot

The camera shoots a scene whilst focusing on a
specific visual target and moving sideways/parallel
to the visual target to match its speed if possible.
The gimbal is stable and the camera is always fo-
cused on the linearly moving visual target. The
camera axis is approximately perpendicular to the
visual target trajectory and approximately parallel
to the ground.

CMT11 Constrained Lateral Tracking Shot

The camera shoots a scene whilst focusing on a
specific visual target and moving along the projec-
tion of the visual target trajectory on a pre-defined
flight plane, matching its speed if possible. The
gimbal is stable and the camera is always focused
on the moving visual target.

CMT12 Vertical Tracking Shot

The camera shoots a scene whilst focusing on and
moving exactly (forwards/backwards) above a spe-
cific visual target, matching its speed if possible.
The gimbal is stable and the camera is always fo-
cused vertically down, on the visual target. The
camera axis is approximately perpendicular to the
visual target trajectory.

CMT13 Pedestal /Elevator Shot

The camera shoots a scene whilst slowly moving up
or down without any rotational movement. The
gimbal is stable with the camera always facing
ahead (not focusing on a specific visual target).

CMT14 Pedestal /Elevator Shot with Target

The camera shoots a scene whilst slowly moving up
or down without any rotational movement, focus-
ing on a specific visual target. The gimbal rotates
(up/down) so that the camera is always focused
on the linearly moving visual target.

CMT15 Fly-Over

The camera shoots a scene whilst approaching or
intercepting the visual target from behind or from
the front at a steady speed until positioning over
it. The gimbal slowly rotates (up-down) so that
the camera is always focused on the non-moving
or moving visual target.

CMT16 Reveal Shot

The camera shoots a scene with the gimbal stable
and the visual target initially out of frame. The
camera moves along a linear trajectory until the
target becomes fully visible.

CMT17 Orbit

The camera shoots a scene with the gimbal slowly
rotating so that the camera always focuses on
the non-moving or linearly moving visual target.
The camera moves in a (semi-)circular trajectory
around the visual target, relative to the latter’s
straight-line trajectory (if any).

CMT18 Fly-by

The camera shoots a scene whilst approaching or
intercepting the visual target from behind or from
the front, passing by it to the left or right side and
then moving away on a constant heading. The
gimbal slowly rotates up or down so that the cam-
era always focuses on the visual target.

141

Shot Id Name Description

CMT19 Chase/ Follow Shot

The camera shoots a scene following or leading
the visual target from behind or from the front,
matching its heading and speed if possible so that
it remains at a constant distance. The gimbal is
stable and the camera is always focused on the
visual target.

CMT20 Bird’s- Eye Shot
The camera shoots a scene whilst slowly flying up.
The gimbal is stable and the camera faces verti-
cally down (not focusing on a visual target).

CMT21 Moving Bird’s- Eye Shot

The camera shoots a scene whilst slowly moving
forward or backwards at steady altitude. The gim-
bal is stable and faces vertically down (not focus-
ing on a visual target).

CMT22 Fly- Through Shot

The camera shoots a scene whilst moving forward
and flying through an opening/gap/hole. The gim-
bal is stable and faces ahead, possibly focusing on
a visual target.

142

B Recommended Drone Parameters for Typical
Shot Types in a Cycling Scenario

Table 10: Recommended Drone Parameters for Typical Shot Types in a
Cycling Scenario.

Shot type Typical Target/Drone/Gimbal Movement Parameters (cycling scenarios)

S2.0: ESTABLISH

T(t) = (0, 0, 0) zs = 2.3H = 3.5m, ze = 1.3H = 2m

D(t) =

(
t

t0
(xe − xs) + xs, 0,

t

t0
(ze − zs) + zs

)
(xs = −70m,xe = −12m)

G(t) =

(
0◦, arctan

(
t(ze − zs) + t0zs
t(xe − xs) + t0xs

)
, 0◦
)

T(t) =

(
t

t0
d0, 0, 0

)
z0 = 2H = 3m

S2.1: CHASE D(t) =

(
t

t0
(xe − xs) + xs, 0, z0

)
(xs = −50m,xe = −10m)

S2.2: LEAD G(t) =

(
0◦, arctan

(
t0z0

t(xe − xs) + t0xs

)
, 0◦
)

S2.3: FLYBY

T(t) =

(
t

t0
d0, 0, 0

)
D(t) =

(
t

t0
(xe − xs) + xs, y0, z0

)
z0 = 2H = 3m

G(t) =

(
0◦, arctan

(
t0z0

t(xe − xs) + t0xs

)
, (xs = −15m,xe = 15m, y0 = 6m)

− arctan

(
t0y0

t(xe − xs) + t0xs

))

S3: ELEVATOR

T(t) = (0, 0, 0) zs = 1H = 1.5m, ze = 3H = 4.5m

D(t) =

(
x0, 0,

t

t0
(ze − zs) + zs

)
(x0 = 12m)

G(t) =

(
0◦, arctan

(
t(ze − zs) + t0zs

t0x0

)
, 0◦
)

S4: ORBIT

T(t) =

(
t

t0
d0, 0, 0

)
z0 = 2H = 3m

D(t) =

(
r0 cos

(
2πt

t0

)
,−r0 sin

(
2πt

t0

)
, z0

)
(r0 = 7.5m)

G(t) =

(
0◦, arctan

(
z0
r0

)
, 180◦ − 2πt

t0

)

Above parameters suitable for a camera with focal length of 35mm and sensor size of 23.66mm
x 13.3mm. The height of the cyclist (H) is around 1.5m. Reference videos available at https:

//multidrone.eu/multidrone-public-dataset/.

143

https://multidrone.eu/multidrone-public-dataset/
https://multidrone.eu/multidrone-public-dataset/

C Post Processing of Photogrammetry Models us-
ing Blender

3D Modelling software can be used to improve the final quality of an environ-
ment model before it is imported into Unreal Engine. Typical applications
include the removal of artifacts and reducing distortions such as bumps and
holes in flat surfaces (e.g. roads or water). Various modelling packages were
examined and Blender (developed by the Blender Foundation) was found to
have the required functionality for this purpose. Some of the main features
of Blender include:

• Import and export models using industry standard file formats such
as Filmbox (.fbx), Wavefront (.obj), STL (.stl) and Stanford (.ply).

• 3D modelling (e.g. creation of primitives such as planes, cubes and
cylinders).

• Edit mode enables modification of the faces, edges and vertices of an
object mesh.

• Sculpt mode provides easy to use tools to rapidly shape large areas to
the required form.

• Texture Paint mode provides tools to paint directly on a 3D surface,
automatically updating the associated Texture image.

• UV editing allows the modification of existing UV mappings and the
definition of mappings for newly created geometry.

• Path tracing rendering engine (Cycles) supporting GPU rendering and
the Open Shading Language.

• Open-source and free for commercial use.

• Wide platform support (e.g. Windows, Linux, macOS).

An environment model produced using 3DF Zephyr can be imported into
Blender using the FBX import option. Detailed below are a number of
techniques that can be used to fix particular problems with a model and
improve the overall quality:

C.1 Removing Isolated Mesh Components

Models produced using photogrammetry may contain isolated floating arte-
facts, e.g. remnants of objects such a poles which have a thin dimension and
for which there is not sufficient information to enable correct reconstruction
(see Figure 64). To remove such an artefact the following procedure can be
used:

144

1. Select a single vertex on the object.

2. Use the ‘Select Linked’ option in the Select menu to select the entire
object (see Figure 65).

3. Delete all selected vertices. This will remove the object including all
associated faces, edges and vertices.

It is also possible to select all ‘floating’ objects for removal by firstly selecting
a vertex on the main surface and then using the ‘Select Linked’ command to
select the entire surface. Finally the ‘Invert’ option can be used to deselect
the main surface and select all unattached surfaces. (see Figure 66).

Figure 64: ‘Floating’ Artefacts in a Reconstructed Model.

C.2 Smoothing Flat Surfaces

A common problem with photogrammetry is for flat surfaces such as roads
to be reconstructed with a bumpy or pitted appearance. This can be due
to the surface having a near uniform texture which makes it difficult for the
photogrammetry software to match surface points between images. Blender
has a Sculpt mode within the 3D editor which allows large areas to be rapidly
shaped to a required form. Of particular use is the ‘Smooth’ tool which will
smooth out a surface simply by painting over it with a brush. Whilst using
this tool it is preferable to set the display shading to ‘Solid’ so that its effect
on the shape of the surface can easily be judged (see Figure 67 on page 147).

145

Figure 65: Selecting all Vertices in a ‘Floating’ Artefact. Select a vertex on
the artefact (left) and then use the ‘Select Linked’ command (right).

Figure 66: Selecting all ‘Floating’ Artefacts in a Reconstructed Model.

Other useful tools in Sculpt mode include ‘Flatten’ which can be used to
bring vertices within the brush area towards the average vertex height and
the ‘Fill’ and ‘Deepen’ tools which will modify vertices below the average
height. ‘Fill’ will take vertices up towards the average and ‘Deepen’ will
move them further downwards from the average.

The smoothing tools provided in Edit mode are more precise than those
of Sculpt mode and can typically be used for small areas or for further sur-
face refinement after an initial smoothing using Sculpt mode. The ‘Smooth
Vertices’ command (in the Vertex menu) will smooth the surface defined by
previously selected vertices, with a Smoothing factor and a Repeat number
used to modify the degree of smoothing (see Figure 68).

146

Figure 67: Use of the ‘Smooth’ Tool in Blender. Model of roundabout before
use of the ‘Smooth’ tool (left) and after (right).

Figure 68: Use of the ‘Smooth Vertices’ command in Blender. Model before
‘Smooth Vertices’ operation (left) and after (right).

When using the ‘Smooth Vertices’ tool it is important to select all vertices
within the area to be smoothed, but if there are deep pits or holes in the
area this may be difficult using the area selection methods (e.g. circle or box
select) whilst looking down on the surface from above. It may be necessary
to change to a viewing position below the surface to select the vertices at
the bottom of these deep holes (as shown in Figure 69).

C.3 Directly Modifying the Object Mesh

An object mesh produced using photogrammetry may contain areas of high
distortion and irregularity. Such areas will often contain very small faces
or thin faces having one or two very small internal angles. Tools such as
‘Smooth Vertices’ may not work well in areas with these problems and it may
be necessary to delete and rebuild the area manually using the Edit mode of
the 3D Editor. Figure 70 on page 149 shows a water surface that has been
smoothed but still contains spikes where the mesh is highly distorted.

147

Figure 69: Deep Holes in a Reconstructed Model. Vertices in deep holes
visible when looking from beneath the surface.

Figure 71 shows that after one of the spikes is deleted a hole is left in the
water surface, which can be filled by merging vertices. Two ‘Merge Vertices’
operations (each with two selected vertices and merging at their centre) were
carried out to fill the hole as shown in Figure 72 on page 150.

It would also be possible to fill the hole by creating faces using the ‘Fill’
command (from the Face menu). This method has the disadvantage that
the UV mapping of this newly defined geometry will need to be created so
that it can be painted with the correct colour using Texture Paint mode.
For large areas merging may not be appropriate because the size of mesh
faces may become too big to adequately model surface shape. In this case
creating new geometry may give better results.

Other useful commands for modifying a selected portion of the mesh
include ‘Move’, ‘Rotate’, ‘Scale’ and ‘Push/Pull’ (from the Mesh, Transform
menu). ‘Push/Pull’ can be used to move selected mesh elements towards
(Push) or away (Pull) from the centre point of the elements. The ‘Knife’ tool
can be used to divide surfaces by splitting mesh faces along a line. There
are also various extrude tools such as ‘Extrude Region’ which will create
new geometry by offsetting a region and creating walls along the boundary
to join it with the original geometry.

148

Figure 70: Distortions in Surfaces after Smoothing. Water surface contain-
ing distortions after smoothing operation.

.

Figure 71: Deleting a Spike on a Surface. Selecting and deleting the vertices
of a spike (left) leaves a hole in the surface (right).

149

Figure 72: Merging Vertices to Fill a Surface Hole.

C.4 Modifying Surface Textures in Texture Paint Mode

Distortions in a model produced using photogrammetry are often most ap-
parent when observing the surface texture rather than the overall surface
shape. This is especially true for models of urban environments where dis-
tortions in road markings or in the texture applied to a building wall are
very obvious because of viewer expectations. In contrast, a good quality
texture projected onto moderately distorted geometry can help to mask the
apparent degree of distortion in the surface shape. Correcting geometry (e.g.
by surface smoothing) can increase the degree of apparent distortion in the
texture, since the final mesh produced by the photogrammetry software will
be textured to give results that closely match the 2D image data source with
the uncorrected geometry.

The Texture Paint mode of the 3D Editor provides tools such as ‘Draw’,
‘Soften’, ‘Smear’ and ‘Clone’ which can be used to improve the quality of
the texture applied on a object mesh. The ‘Smear’ tool can be used to give
surfaces a more uniform texture and remove flaws. Care must be taken to
ensure surfaces such as roads or grass do not become too uniform and hence
less realistic. The ‘Draw’ tool can be used to paint directly on the surface
with a user defined paint colour, which can be selected using a colour picker
to match the colour at a particular surface point. Figure 73 shows the re-
sult of using this tool on the roundabout model to paint over the original
distorted road markings and repaint new markings in their place. The shad-
ows in the original texture have also been painted over. The remnants of
the objects casting the shadows were deleted in Blender since they were not
reconstructed correctly by Google Earth. In general all shadows (not just
those from deleted objects) should be painted over since simulation environ-
ments such as Unreal Engine will usually (by default) generate shadows on
objects according to the lighting setup.

The paint process automatically updates an internal image used to store
the texture and this can be saved to a file using the Image Editor.

150

Figure 73: Painting on a Surface using the ‘Draw’ Tool. Original texture
(left) and modified texture (right) with road markings repainted and shad-
ows removed.

C.5 Editing the UV Map

In some circumstances (e.g. to use texture painting on newly created ge-
ometry) it may be necessary to edit the UV mapping for the object mesh.
Figure 74 shows a model of the Wills Memorial Building produced using
photogrammetry from Google Earth imagery. There are highly distorted
areas on the main road due to moving vehicles (e.g. the selected portion of
the mesh in the right-hand image). Figure 75 shows the mesh after one of
these distorted areas has been deleted (left) and after it has been recreated
using a ‘Fill’ operation in Edit mode (right).

Figure 74: Distorted Mesh Due to a Moving Vehicle. Model of the Wills
Memorial Building (left) and distorted mesh area due to a moving vehicle
(right).

The UV Editor can be used to display the UV mapping of selected mesh
areas. Figure 76 shows that the original geometry (i.e. the object mesh
excluding the newly created fill area) does not use an area in the upper left

151

Figure 75: Repairing Distorted Geometry. Selected mesh deleted (left) and
recreated using ‘Fill’ (right).

of the texture image for mappings, and hence this can be used for the UV
map of the new fill geometry. The ‘Unwrap’ command of the UV Editor
is used to create a UV mapping for the new geometry as shown in Figure
77, but by default this mapping will use nearly the entire texture, including
areas used by the original geometry.

Figure 76: UV Maps. UV map (left) for original geometry of Wills Memorial
Building (right).

152

By selecting the vertices defining the texture mapping in the UV Editor it
can be scaled and moved to a part of the texture image that is not used for
other mappings (see Figure 78). This will ensure that painting the new ge-
ometry will not affect other areas of the mesh. Figure 79 shows the textured
mesh using the new UV map (left image) and the result of texture painting
to fill in the missing areas of the road and pavement (right image).

Figure 77: Creating a UV Map for New Geometry using ‘Unwrap’. New
geometry unwrapped onto texture image to create a UV mapping.

Figure 78: Editing a UV Map. Scaling and moving the UV map for new
geometry to an unused part of the texture image.

153

Figure 79: Painting Newly Created Geometry. Textured mesh using edited
UV Map for new geometry, before texture painting (left) and after (right).

154

D Scan Optimization Class Methods and Program
Functions

D.1 Class Methods

D.1.1 Class Model Object

init (self, blend obj): This function is automatically called on
object creation. It initialises the object using data from the Blender
object given by parameter blend obj.

cull backface polygons(self, cam vec): The list of front-facing
polygons for the object, vis polygons, is updated, using a camera
direction specified by parameter cam vec.

D.1.2 Class Camera

init (self, x pos, y pos, z pos, pitch, yaw, fl, sx, sy): Initializes
camera properties. The function is automatically called on object
creation.

set params(self, fl, sx, sy): Parameters fl, sx and sy are used to
set the focal length and screen size for the camera.

move inc(self, x inc, y inc, z inc): The camera moves distances
in the x,y and z directions given by parameters x inc, y inc and
z inc. The transformation matrix property of the camera is updated.

move to(self, x pos, y pos, z pos): Moves the camera to the
global coordinate position given by parameters x pos, y pos and
z pos. The transformation matrix property of the camera is updated.

set rotation(self, pitch, yaw): Parameters pitch and yaw are used
to set the desired camera angle. The transformation matrix and
camera axes properties of the camera are updated.

visible on screen(self, obj, idx): The function returns a value of
True if the vertex with index idx, in object obj, is visible on the
camera screen, otherwise returning a value of False.

155

D.1.3 Class Hemisphere

init (self, vert co, norm): Initializes a Hemisphere object for
a vertex with coordinates and normals given by vector parameters
vert co and norm. An array of points, hemi locs, uniformly dis-
tributed over the hemisphere is created and all coverage data in
hemi values is initialized to a value of 0.

set hemi values(self, cam pos): Updates the Hemisphere cover-
age data for a view from a camera with a position given by vector
parameter cam pos. Sampling points in hemi locs, within the disk
centred on the projection of cam pos on to the hemisphere, with size
defined by equation 44 (given on page 88), have their corresponding
coverage value in array hemi values set to 1.

calc hemi metric(self): Returns a value estimating the quality
of reconstruction for the vertex corresponding to the Hemisphere
object. The function returns the (un-scaled) coverage for a vertex
j as given by equation 47 (given on page 89), with the vj(hk) for
each sampling point k on the hemisphere stored in coverage array
hemi values:

F (Cj) =
K∑
k=1

wj(hk) vj(hk)

reset hemi values(self): Resets the coverage data for sampling
points on the Hemisphere. All elements of array hemi values are set
to a value of 0. This is typically used before performing a new scan
to initialise the viewpoint coverage information.

D.2 Main Program Functions

Global parameter model objs is a list of objects of type Model Object, each
of which corresponds to a Blender object of type ‘MESH’ (used to model
the environment).

calc poly visibility(obj list, pos): Parameter pos is a vector defining the
camera position and obj list is a list of Model Object. A back-face culling
algorithm is used to update the list of front facing polygons (stored in
Model Object class property vis polygons) for each Model Object in obj list.

vertex visible(obj, idx, cam pos): Parameter obj is an object of class
Model Object, idx is the index of a vertex in obj and cam pos is a vector
defining a camera position. The function returns a value of ‘True’ if the

156

vertex is visible from a camera positioned at cam pos, otherwise returning
‘False’. For each environment object in list model objs, all front facing poly-
gons of the object (stored in list vis polygons) are checked to determine if
the plane of the polygon intersects between the vertex and the camera. If
there is such an intersection the polygon is checked to see if it overlaps the
vertex, in which case the function returns ‘False’. If no polygons overlap the
vertex the function returns ‘True’.

update coverage(obj list, cam):
Parameter obj list is a list of Model Object and cam specifies a Camera
object. The function updates the accumulated view coverage data for the
vertices of objects in list obj list, adding extra coverage due to cam. The
function will call the vertex visible function for each vertex of every ob-
ject in obj list. If a vertex is visible from the position of cam it will call the
visible on screen function of cam to determine if the image of the vertex
falls within the limits of the camera screen, and if so update the coverage
for the vertex by calling the set hemi values function of the corresponding
Hemisphere.

calculate metric(obj list): Parameter obj list is a list of Model Object.
The function calculates the average reconstruction metric for all vertices
of objects in obj list. The metric used is a scaled version of the coverage
metric used by Roberts et al. [60], given in equation 47 (see page 89). The
scale is chosen so that the maximum metric value of 1.0 represents every
vertex having coverage from all possible directions. To calculate the met-
ric the function will call the calc hemi metric function for all Hemisphere
objects belonging to the objects in list obj list.

scan x dir(cam, x start, x end, x steps, y start, y end, y steps, z): The
function performs a rectangular scan at a height z, with scan lines directed
alternately in the +x and -x directions. The scan starts from coordinate
(x start, y start) and ends at (x end, y end). The cross-track separation dis-
tance is given by (y end− y start)/y steps and the in-track distance (be-
tween successive camera shots) is given by (x end− x start)/x steps. After
each movement of the camera the functions calc poly visibility and up-
date coverage are called to update the list of front facing polygons and
recalculate the accumulated coverage.

set best hemi values(obj list):
Parameter obj list is a list of Model Object. This function is called during the
optimization of a level when the reconstruction metric resulting from a scan
exceeds the previous highest value. For all Hemisphere objects belonging to
objects in obj list, the data in hemi values is copied to hemi values best.

157

save best hemi values(obj list):
Parameter obj list is a list of Model Object. The function is called after the
optimization of a level to save the optimum coverage data. For all Hemi-
sphere objects belonging to objects in obj list, the data in hemi values best
is copied to hemi values saved.

set to saved hemi values(obj list):
Parameter obj list is a list of Model Object. The function is called at the be-
ginning of each trial scan during level optimization to initialize the coverage
data to that at the optimum of the previous level. For all Hemisphere ob-
jects belonging to objects in obj list, the data in hemi values saved is copied
to hemi values.

158

References

[1] A. Charlton, Sochi Drone Shooting Olympic TV, Not Terrorists, As-
sociated Press, Feb. 2014. [Online]. Available: http://wintergames.
ap . org / article / sochi - drone - shooting - olympic - tv - not -

terrorists.

[2] Live Production, Review Sochi 2014: Broadcasting the Magic of the
Games Across the World, Feb. 2014. [Online]. Available: http://

www.live- production.tv/news/sports/review- sochi- 2014-

broadcasting-magic-games-across-world.html.

[3] K. Gallagher, How Drones Powered Rio’s Olympic Coverage, The
Simulyze Blog, Aug. 2016. [Online]. Available: http://www.simulyze.
com/blog/how-drones-powered-rios-olympic-coverage.

[4] Max Goldbart, Attenborough: Drones are ’game-changers’, Feb. 2019.
[Online]. Available: https://www.broadcastnow.co.uk/bbc/attenborough-
drones-are-game-changers/5137078.article.

[5] NBC NEWS, New Drone Video Captures Scale of Haiti Hurricane
Damage, Oct. 2016. [Online]. Available: http://www.nbcnews.com/
video/new-drone-video-captures-scale-of-haiti-hurricane-

damage-784114243853.

[6] MultiDrone. (2020). MultiDrone - Using multiple drones for media
production, [Online]. Available: https://multidrone.eu/.

[7] Red Dot Drone PTE LTD. (2021). Red Dot Drone, [Online]. Available:
https://reddotdrone.com/.

[8] S. Boyle, F. Zhang, and D. R. Bull, “A Subjective Study of the View-
ing Experience for Drone Videos,” in 2019 IEEE International Confer-
ence on Image Processing (ICIP), (Taipei, Taiwan, Sep. 22–25, 2019),
IEEE, 2019, pp. 1034–1038. doi: 10.1109/ICIP.2019.8803747.

[9] S. Boyle, M. Newton, F. Zhang, and D. Bull, “Environment Cap-
ture and Simulation for UAV Cinematograhy Planning and Training,”
in European Signal Processing Conference, Satellite Workshop: Signal
Processing, Computer Vision and Deep Learning for Autonomous Sys-
tems, 2019. [Online]. Available: https://research-information.
bris.ac.uk/ws/portalfiles/portal/199953761/Environment_

Capture_and_Simulation_for_UAV_Cinematography_Planning_

and_Training.pdf.

[10] F. Zhang, D. Hall, T. Xu, S. Boyle, and D. Bull, “A Simulation En-
vironment for Drone Cinematography,” IBC Technical Papers, 2020.
[Online]. Available: https://www.ibc.org/technical- papers/

a-simulation-environment-for-drone-cinematography/6747.

article.

159

http://wintergames.ap.org/article/sochi-drone-shooting-olympic-tv-not-terrorists
http://wintergames.ap.org/article/sochi-drone-shooting-olympic-tv-not-terrorists
http://wintergames.ap.org/article/sochi-drone-shooting-olympic-tv-not-terrorists
http://www.live-production.tv/news/sports/review-sochi-2014-broadcasting-magic-games-across-world.html
http://www.live-production.tv/news/sports/review-sochi-2014-broadcasting-magic-games-across-world.html
http://www.live-production.tv/news/sports/review-sochi-2014-broadcasting-magic-games-across-world.html
http://www.simulyze.com/blog/how-drones-powered-rios-olympic-coverage
http://www.simulyze.com/blog/how-drones-powered-rios-olympic-coverage
https://www.broadcastnow.co.uk/bbc/attenborough-drones-are-game-changers/5137078.article
https://www.broadcastnow.co.uk/bbc/attenborough-drones-are-game-changers/5137078.article
http://www.nbcnews.com/video/new-drone-video-captures-scale-of-haiti-hurricane-damage-784114243853
http://www.nbcnews.com/video/new-drone-video-captures-scale-of-haiti-hurricane-damage-784114243853
http://www.nbcnews.com/video/new-drone-video-captures-scale-of-haiti-hurricane-damage-784114243853
https://multidrone.eu/
https://reddotdrone.com/
https://doi.org/10.1109/ICIP.2019.8803747
https://research-information.bris.ac.uk/ws/portalfiles/portal/199953761/Environment_Capture_and_Simulation_for_UAV_Cinematography_Planning_and_Training.pdf
https://research-information.bris.ac.uk/ws/portalfiles/portal/199953761/Environment_Capture_and_Simulation_for_UAV_Cinematography_Planning_and_Training.pdf
https://research-information.bris.ac.uk/ws/portalfiles/portal/199953761/Environment_Capture_and_Simulation_for_UAV_Cinematography_Planning_and_Training.pdf
https://research-information.bris.ac.uk/ws/portalfiles/portal/199953761/Environment_Capture_and_Simulation_for_UAV_Cinematography_Planning_and_Training.pdf
https://www.ibc.org/technical-papers/a-simulation-environment-for-drone-cinematography/6747.article
https://www.ibc.org/technical-papers/a-simulation-environment-for-drone-cinematography/6747.article
https://www.ibc.org/technical-papers/a-simulation-environment-for-drone-cinematography/6747.article

[11] J. V. Mascelli, The Five C’s of Cinematography. W. Hollywood, Cali-
fornia, USA: Silman-James Press, 1965.

[12] Film Riot. (2021). Basic Camera Shots to Improve Your Films, [On-
line]. Available: https://www.youtube.com/watch?v=-s57Na6Nx_c.

[13] ——, (2011). Camera Techniques for Better Filmmaking! [Online].
Available: https://www.youtube.com/watch?v=CYPrtXZ7HVE.

[14] D. Arijon, Grammar of the Film Language. London, UK: Focal Press,
1976.

[15] Film Riot. (2014). Quick Tips: Understanding the 180 Degree Rule!
[Online]. Available: https://www.youtube.com/watch?v=Bba7raSvvRo.

[16] Learn Online Video. (2017). The Rule of Thirds |What is it? [Online].
Available: https://www.youtube.com/watch?v=A7wnhDKyBuM.

[17] T.Nägeli, J. Alonso-Mora, A. Domahidi, D. Rus, and O. Hilliges,
“Real-time Motion Planning for Aerial Videography with Dynamic
Obstacle Avoidance and Viewpoint Optimization,” IEEE Robotics and
Automation Letters, vol. 2, no. 3, pp. 1696–1703, 2017.

[18] C. Gebhardt, B. Hepp, T.Nägeli, S.Stevsić, and O.Hilliges, “AirWays:
Optimization-Based Planning of Quadrotor Trajectories according to
High-Level User Goals,” in Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems, May 2016, pp. 2508–2519,
isbn: 9781450333627. doi: 10.1145/2858036.2858353.

[19] L. He, M. Cohen, and D. Salesin, “The Virtual Cinematographer:
A Paradigm for Automatic Real-Time Camera Control and Direct-
ing,” in SIGGRAPH ’96 Proceedings of the 23rd annual conference on
Computer Graphics and Interactive Techniques, New York, NY, USA:
ACM, 1996, pp. 217–224, isbn: 0-89791-746-4. doi: 10.1145/237170.
237259.

[20] COPTRZ. (2021). Drones in Filmmaking – The best drones for the job,
[Online]. Available: https://coptrz.com/drones-in-filmmaking-
the-best-drones-for-the-job/.

[21] Los Angeles Times. (2015). Drones are providing film and TV view-
ers a new perspective on the action, [Online]. Available: https://
www.latimes.com/entertainment/envelope/cotown/la-et-ct-

drones-hollywood-20151008-story.html.

[22] N. Joubert, M. Roberts, A.Truong, F. Berthouzoz, and P. Hanrahan,
“An Interactive Tool for Designing Quadrotor Camera Shots,” ACM
Transactions on Graphics, vol. 34, no. 6, pp. 1–11, 2015.

160

https://www.youtube.com/watch?v=-s57Na6Nx_c
https://www.youtube.com/watch?v=CYPrtXZ7HVE
https://www.youtube.com/watch?v=Bba7raSvvRo
https://www.youtube.com/watch?v=A7wnhDKyBuM
https://doi.org/10.1145/2858036.2858353
https://doi.org/10.1145/237170.237259
https://doi.org/10.1145/237170.237259
https://coptrz.com/drones-in-filmmaking-the-best-drones-for-the-job/
https://coptrz.com/drones-in-filmmaking-the-best-drones-for-the-job/
https://www.latimes.com/entertainment/envelope/cotown/la-et-ct-drones-hollywood-20151008-story.html
https://www.latimes.com/entertainment/envelope/cotown/la-et-ct-drones-hollywood-20151008-story.html
https://www.latimes.com/entertainment/envelope/cotown/la-et-ct-drones-hollywood-20151008-story.html

[23] N. Joubert, J. L. E, D. B. Goldman, F. Berthouzoz, M. Roberts, J. A.
Landay, and P. Hanrahan, “Towards a Drone Cinematographer: Guid-
ing Quadrotor Cameras using Visual Composition Principles,” ArXiv
e-prints, Oct. 2016. arXiv: 1610.01691 [cs.GR].

[24] M. Christie, P. Olivier, and J.-M. Normand, “Camera Control in Com-
puter Graphics,” Computer Graphics Forum, vol. 27, no. 8, pp. 2197–
2218, 2008. doi: 10.1111/j.1467-8659.2008.01181.x.

[25] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge, UK: Cambridge University Press, 2003, isbn: 978-
0-521-54051-3.

[26] SZ DJI Technology Co. (2019). Film Like a Pro: How to Create Cin-
ematic Orbit Shots, [Online]. Available: https://store.dji.com/
guides/film-like-a-pro-how-to-create-cinematic-orbit-

shots/.

[27] Unreal Engine 4 Documentation. Epic Games. [Online]. Available:
https://docs.unrealengine.com/latest/INT/.

[28] F. Moss, K. Wang, F. Zhang, R. Baddeley, and D. Bull, “On the Opti-
mal Presentation Duration for Subjective Video Quality Assessment,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 26, no. 11, pp. 1977–1987, 2016.

[29] DJI. (2020). DJI Flight Simulator, [Online]. Available: https://www.
dji.com/uk/simulator.

[30] Microsoft Research. (2018). Welcome to AirSim, [Online]. Available:
https://microsoft.github.io/AirSim/.

[31] Microsoft Corporation. (2020). Microsoft Flight Simulator, [Online].
Available: https : / / www . xbox . com / en - GB / games / microsoft -

flight-simulator.

[32] Google. (2020). Google Earth Studio, [Online]. Available: https://
www.google.com/intl/en_uk/earth/studio/.

[33] Dillon Skiffington. (2020). A Complete List of All Photorealistic Cities
in Microsoft Flight Simulator 2020, [Online]. Available: https://www.
fanbyte.com/guides/a-complete-list-of-all-photorealistic-

cities-in-microsoft-flight-simulator-2020/.

[34] BBC. (2021). Israel-Gaza: Why is the region blurry on Google Maps?
[Online]. Available: https://www.bbc.co.uk/news/57102499.

[35] OpenStreetMap Foundation. (2020). OpenStreetMap, [Online]. Avail-
able: https://www.openstreetmap.org/.

[36] OSM Buildings. (2020). OSM Buildings, [Online]. Available: https:
//osmbuildings.org/.

161

https://arxiv.org/abs/1610.01691
https://doi.org/10.1111/j.1467-8659.2008.01181.x
https://store.dji.com/guides/film-like-a-pro-how-to-create-cinematic-orbit-shots/
https://store.dji.com/guides/film-like-a-pro-how-to-create-cinematic-orbit-shots/
https://store.dji.com/guides/film-like-a-pro-how-to-create-cinematic-orbit-shots/
https://docs.unrealengine.com/latest/INT/
https://www.dji.com/uk/simulator
https://www.dji.com/uk/simulator
https://microsoft.github.io/AirSim/
https://www.xbox.com/en-GB/games/microsoft-flight-simulator
https://www.xbox.com/en-GB/games/microsoft-flight-simulator
https://www.google.com/intl/en_uk/earth/studio/
https://www.google.com/intl/en_uk/earth/studio/
https://www.fanbyte.com/guides/a-complete-list-of-all-photorealistic-cities-in-microsoft-flight-simulator-2020/
https://www.fanbyte.com/guides/a-complete-list-of-all-photorealistic-cities-in-microsoft-flight-simulator-2020/
https://www.fanbyte.com/guides/a-complete-list-of-all-photorealistic-cities-in-microsoft-flight-simulator-2020/
https://www.bbc.co.uk/news/57102499
https://www.openstreetmap.org/
https://osmbuildings.org/
https://osmbuildings.org/

[37] prochitecture. (2020). blender-osm: OpenStreetMap and Terrain for
Blender, [Online]. Available: https://gumroad.com/l/blosm.

[38] Ordnance Survey Limited. (2020). Ordnance Survey — See A Better
Place, [Online]. Available: https://www.ordnancesurvey.co.uk/.

[39] OpenTopography.org. (2018). OpenTopography Website, [Online]. Avail-
able: https://www.opentopography.org/.

[40] USGS. (2018). EarthExplorer Website, [Online]. Available: https:

//earthexplorer.usgs.gov/.

[41] NASA. (2020). Landsat Science, [Online]. Available: https://landsat.
gsfc.nasa.gov/.

[42] NTT Data Corporation. (2018). AW3D Website, [Online]. Available:
https://www.aw3d.jp/en/.

[43] B. Sirmacek and C. Unsalan, “Urban-Area and Building Detection
Using Sift Keypoints and Graph Theory,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 47, no. 4, pp. 1156–1167, 2009.

[44] C. Lin and R. Nevatia, “Building Detection and Description from a
Single Intensity Image,” Computer Vision and Image Understanding,
vol. 72, no. 2, pp. 101–121, 1998.

[45] M. Fradkin, H. Maıtre, and M.Roux, “Building Detection from Multi-
ple Aerial Images in Dense Urban Areas,” Computer Vision and Image
Understanding, vol. 82, no. 3, pp. 181–207, 2001.

[46] V. Verma, R. Kumar, and S. Hsu, “3D Building Detection and Mod-
eling from Aerial LIDAR Data,” in 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, vol. 2, New
York, NY, USA: IEEE Conference Publications, 2006, pp. 2213–2220,
isbn: 0-7695-2597-0. doi: 10.1109/CVPR.2006.12.

[47] J. Shan, Z. Hu, P. Tao, L. Wang, S. Zhang, and S. Ji, “Toward a unified
theoretical framework for photogrammetry,” Geo-spatial Information
Science, vol. 23, no. 1, pp. 75–86, 2020. doi: 10.1080/10095020.

2020.1730712. eprint: https://doi.org/10.1080/10095020.2020.
1730712. [Online]. Available: https://doi.org/10.1080/10095020.
2020.1730712.

[48] D. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004. doi: doi:10.1023/B:VISI.0000029664.99615.94.

162

https://gumroad.com/l/blosm
https://www.ordnancesurvey.co.uk/
https://www.opentopography.org/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://landsat.gsfc.nasa.gov/
https://landsat.gsfc.nasa.gov/
https://www.aw3d.jp/en/
https://doi.org/10.1109/CVPR.2006.12
https://doi.org/10.1080/10095020.2020.1730712
https://doi.org/10.1080/10095020.2020.1730712
https://doi.org/10.1080/10095020.2020.1730712
https://doi.org/10.1080/10095020.2020.1730712
https://doi.org/10.1080/10095020.2020.1730712
https://doi.org/10.1080/10095020.2020.1730712
https://doi.org/doi: 10.1023/B:VISI.0000029664.99615.94

[49] R. Gherardi, R. Toldo, V. Garro, and A. Fusiello, “Automatic camera
orientation and structure recovery with samantha,” ISPRS - Inter-
national Archives of the Photogrammetry, Remote Sensing and Spa-
tial Information Sciences, vol. XXXVIII-5/W16, pp. 261–268, 2011.
doi: 10.5194/isprsarchives-XXXVIII-5-W16-261-2011. [Online].
Available: https://www.int- arch- photogramm- remote- sens-

spatial-inf-sci.net/XXXVIII-5-W16/261/2011/.

[50] B. Triggs, P. Mclauchlan, R. Hartley, and A. Fitzgibbon, “Bundle
Adjustment - A Modern Synthesis,” in Vision Algorithms : Theory
and Practice : International Workshop on Vision Algorithms, Corfu,
Greece, September 21-22, 1999 : Proceedings, Springer, 1999, pp. 298–
372. doi: 10.1007/3-540-44480-7.

[51] 3Dflow. (2018). 3DF Zephyr Website, [Online]. Available: https://
www.3dflow.net/.

[52] E. Galceran and M. Carreras, “A Survey on Coverage Path Plan-
ning for Robotics,” Robotics and Autonomous Systems, vol. 61, no. 12,
pp. 1258–1276, 2013. doi: 10.1016/j.robot.2013.09.004.

[53] L. Heng, D. Honegger, G. Lee, L. Meier, P. Tanskanen, M. Pollefeys,
and F. Fraundorfer, “Autonomous Visual Mapping and Exploration
with a Micro Aerial Vehicle,” Journal of Field Robotics, vol. 31, no. 4,
pp. 654–675, 2014. doi: 10.1002/rob.21520.

[54] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart,
“Receding Horizon ”Next-Best-View” Planner for 3d Exploration,”
in 2016 IEEE International Conference on Robotics and Automation
(ICRA), 2016, pp. 1462–1468. doi: 10.1109/ICRA.2016.7487281.

[55] B. Charrow, G. Kahn, S. Patil, S. Liu, K. Goldberg, P. Abbeel, M.
N., and V. Kumar, “Information-Theoretic Planning with Trajectory
Optimization for Dense 3d Mapping,” in 2015 Robotics: Science and
Systems Conference, RSS 2015, 2015. doi: 10.15607/RSS.2015.XI.
003.

[56] P. Wang, R. Krishnamurti, and K. Gupta, “View planning problem
with combined view and traveling cost,” in Proceedings 2007 IEEE
International Conference on Robotics and Automation, 2007, pp. 711–
716. doi: 10.1109/ROBOT.2007.363070.

[57] M. Mauro, H. Riemenschneider, A. Signoroni, R. Leonardi, and L.
Van Gool, “A unified framework for content-aware view selection and
planning through view importance,” BMVC 2014, 2014.

[58] A. Hornung, B. Zeng, and L. Kobbelt, “Image Selection for Improved
Multi-View Stereo,” in 2008 IEEE Conference on Computer Vision
and Pattern Recognition, 2008. doi: 10.1109/CVPR.2008.4587688.

163

https://doi.org/10.5194/isprsarchives-XXXVIII-5-W16-261-2011
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-5-W16/261/2011/
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-5-W16/261/2011/
https://doi.org/10.1007/3-540-44480-7
https://www.3dflow.net/
https://www.3dflow.net/
https://doi.org/10.1016/j.robot.2013.09.004
https://doi.org/10.1002/rob.21520
https://doi.org/10.1109/ICRA.2016.7487281
https://doi.org/10.15607/RSS.2015.XI.003
https://doi.org/10.15607/RSS.2015.XI.003
https://doi.org/10.1109/ROBOT.2007.363070
https://doi.org/10.1109/CVPR.2008.4587688

[59] K. Schmid, H. Hirschmèuller, A. Dèomel, I. Grixa, M. Suppa, and G.
Hirzinger, “View Planning for Multi-View Stereo 3d Reconstruction
Using an Autonomous Multicopter,” Journal of Intelligent and Robotic
Systems, vol. 65, no. 1-4, pp. 309–323, 2012.

[60] M. Roberts, D. Dey, A. Truong, S. Sinha, S. Shah, A. Kapoor, P. Han-
rahan, and N. Joshi, “Submodular Trajectory Optimization for Aerial
3D Scanning,” arXiv e-prints, arXiv:1705.00703, arXiv:1705.00703,
May 2017. arXiv: 1705.00703 [cs.CV].

[61] N. Smith, N. Moehrle, M. Goesele, and W. Heidrich, “Aerial Path
Planning for Urban Scene Reconstruction: A Continuous Optimization
Method and Benchmark,” ACM Transactions on Graphics, vol. 37,
no. 6, pp. 1–15, 2019. doi: 10.1145/3272127.3275.

[62] T. Xu, “A simulation framework for drone cinematography,” Master’s
thesis, University of Bristol, Sep. 2019.

[63] Edmund Optics. (2021). Understanding Focal Length and Field of
View, [Online]. Available: https : / / www . edmundoptics . co . uk /

knowledge-center/application-notes/imaging/understanding-

focal-length-and-field-of-view/.

[64] N. Smith, N. Moehrle, M. Goesele, and W. Heidrich, “Aerial Path
Planning for Urban Scene Reconstruction: A Continuous Optimization
Method and Benchmark,” ACM Transactions on Graphics, vol. 37,
no. 6, pp. 1–15, 2018. doi: 10.1145/3272127.3275010.

[65] J. Foster. (2016). Four Steps for Making an Excellent 3D Model With a
Drone, [Online]. Available: https://medium.com/aerial-acuity/4-
steps- for- making- an- excellent- 3d- model- with- a- drone-

25dc35f1df62.

[66] SPH Engineering. (2018). Comparing Precision of Autopilots for Sur-
vey Missions, [Online]. Available: https://www.ugcs.com/news-

entry/comparing-precision-of-autopilots-for-survey-missions.

[67] diydrones. (2019). Comparing Precision of Autopilots for Survey Missions-
The Results, [Online]. Available: https://diydrones.com/profiles/
blogs/comparing-precision-of-autopilots-for-survey-missions-

the-results.

[68] Blender Foundation. (2020). Tips and Tricks - Blender Python API,
[Online]. Available: https://docs.blender.org/api/blender2.8/
info_tips_and_tricks.html#bundled-python-extensions.

[69] Continuum Analytics. (2014). Writing Cuda Python, [Online]. Avail-
able: https://numba.pydata.org/numba-doc/0.13/CUDAJit.html.

164

https://arxiv.org/abs/1705.00703
https://doi.org/10.1145/3272127.3275
https://www.edmundoptics.co.uk/knowledge-center/application-notes/imaging/understanding-focal-length-and-field-of-view/
https://www.edmundoptics.co.uk/knowledge-center/application-notes/imaging/understanding-focal-length-and-field-of-view/
https://www.edmundoptics.co.uk/knowledge-center/application-notes/imaging/understanding-focal-length-and-field-of-view/
https://doi.org/10.1145/3272127.3275010
https://medium.com/aerial-acuity/4-steps-for-making-an-excellent-3d-model-with-a-drone-25dc35f1df62
https://medium.com/aerial-acuity/4-steps-for-making-an-excellent-3d-model-with-a-drone-25dc35f1df62
https://medium.com/aerial-acuity/4-steps-for-making-an-excellent-3d-model-with-a-drone-25dc35f1df62
https://www.ugcs.com/news-entry/comparing-precision-of-autopilots-for-survey-missions
https://www.ugcs.com/news-entry/comparing-precision-of-autopilots-for-survey-missions
https://diydrones.com/profiles/blogs/comparing-precision-of-autopilots-for-survey-missions-the-results
https://diydrones.com/profiles/blogs/comparing-precision-of-autopilots-for-survey-missions-the-results
https://diydrones.com/profiles/blogs/comparing-precision-of-autopilots-for-survey-missions-the-results
https://docs.blender.org/api/blender2.8/info_tips_and_tricks.html#bundled-python-extensions
https://docs.blender.org/api/blender2.8/info_tips_and_tricks.html#bundled-python-extensions
https://numba.pydata.org/numba-doc/0.13/CUDAJit.html

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Context
	Filming using Autonomous and Multiple Drone Systems
	Research Motivations
	Aims and Contribution
	Structure of Thesis

	Drone Cinematography
	Standard Cinematography Techniques
	Standard shot types
	Camera Angles
	Rules and Heuristics of Cinematography

	Current Filming Practice for Drone Cinematography
	Previous Work on Drone Cinematography
	Other Related Work
	Summary

	Shot Specifications for Filming Sports using a Drone Platform
	Limitations of Current Practice
	Advantages and Potential of Drone Cinematography
	Limitations of Standard Shot Types for Filming with Drones
	Revised Shot Types and Grammar for Filming using a Single Drone
	Revised Grammar for Multiple Drone Shots
	Parametric Shot Definitions
	Establishing Shot
	Chase/Lead Shot
	Flyby Shot
	Elevator/Ascent and Descent Shot
	Orbit Shot

	Summary

	The Determination of Optimum Shot Parameters using Subjective Testing
	Simulation of Shot Scenarios using Unreal Engine
	Modelling Scenarios and Camera Shots using Unreal Engine

	Subjective Testing of Camera Shots for the MultiDrone System
	Methodology
	Pilot Study
	Subjective Testing of Camera Shots to Determine Optimum Drone Height and Speed
	Validation using Real Footage

	Adapting Optimum Parameter Values for Specific Filming Requirements
	Summary

	Modelling Real-World Environments for Flight Planning and Training
	Existing Drone Flight Planning and Training Software
	Data Sources for Environment Models
	Satellite and Aerial Imagery
	LIDAR
	3D Scanning
	Close Range, High Resolution Imagery

	Creating Landscapes in Unreal Engine
	The Unreal Engine Landscape Object
	Importing Landscape Data from a Heightmap File

	Environment Model Creation using Photogrammetry
	Theory of Photogrammetry
	Evaluation of Photogrammetry Software
	3DF Zephyr Workflow
	Recomendations for Photogrammetry Image Capture
	Common Problems with Models Reconstructed using Photogrammetry
	Example Environment Models Created using Photogrammetry from Google Earth Image Data

	Viability of 3D Environment Model Production
	A Simulation Environment for Drone Cinematography
	Summary

	Optimization of Scanning Flight Paths for Photogrammetry
	Related Work on the Optimization of Drone Flights for Photogrammetry
	Variation of Model Reconstruction Quality with Image Number
	Variation of Model Reconstruction Quality with Scanning Overlap Parameters
	Variation of Reconstruction Quality with Camera Angle
	Modelling Constant Height, Fixed Camera Angle Scans for Photogrammetry Image Capture
	Benefits of Simulation and Selection of the Programming Environment
	Program Structure
	Program Testing and Response to Changes in Scan Parameters
	Comparison of Estimated Reconstruction Quality with Results from Actual Photogrammetry
	Analysis of the View Coverage Reconstruction Metric
	Configuration of View Coverage Parameters for a Scan
	Choice of Scan and Camera Parameters
	Improving the Reconstruction Metric

	Summary

	Conclusions and Future Work
	Research Summary
	Research Conclusions
	Future Work

	Appendices
	Shooting Requirements for MultiDrone
	Recommended Drone Parameters for Typical Shot Types in a Cycling Scenario
	Post Processing of Photogrammetry Models using Blender
	Removing Isolated Mesh Components
	Smoothing Flat Surfaces
	Directly Modifying the Object Mesh
	Modifying Surface Textures in Texture Paint Mode
	Editing the UV Map

	Scan Optimization Class Methods and Program Functions
	Class Methods
	Class Model_Object
	Class Camera
	Class Hemisphere

	Main Program Functions

	References

