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Abstract

Excess adipose tissue, adiposity, is associated with many diseases and overall mortal-

ity. This thesis aimed to investigate whether metabolites play an intermediary role in these

associations using a variety of resources and methods to strengthen causal inference.

In a comprehensive systematic review and meta-analysis (Chapter 2), the causal effects of

adiposity were observed across a broad spectrum of diseases, including endometrial cancer,

which was selected for subsequent analysis. These results were supported by a narrative syn-

thesis of over 2,000 Mendelian randomization (MR) analyses, which also highlighted evidence

of an association between adiposity and many, predominantly lipid-based, metabolites.

Within the Avon Longitudinal Study of Parents and Children (ALSPAC), evidence for a

consistent association between body mass index (BMI), waist hip ratio (WHR), and body fat

percentage (BF) with up-to 230, predominantly lipid-based, metabolites and ratios was found

(Chapter 4). In these linear models, the effect of adiposity persisted after adjustment for

covariables and across the lifecourse.

In two independent datasets, MR, a method that mitigates limitations in observational

analyses, provided further evidence for an association between BMI and WHR with up-to 230,

predominantly lipid-based, metabolites and ratios (Chapter 5). These effects were consistent

in sensitivity analyses. The effect of BF on metabolites was frequently opposite to the effects

observed for BMI and WHR, and BF in observational analyses.

Evidence from observational and MR analyses identified 54 metabolites that were consis-

tently associated with adiposity. Two of these (triglycerides in small and very small very large



low density lipoprotein) were associated with endometrial cancer in MR analysis and, using

multivariable MR, there was evidence for a potential intermediary role of both metabolites on

the effect of WHR and BF, but not BMI, on non-endometrioid cancer, but not endometrioid

cancer (Chapter 6). Weak instruments may have biased these results however.

This work highlights the broad effect of adiposity on the metabolome, identifies two metabo-

lites that may be involved in the association between adiposity and endometrial cancer, and

provides a basis for future investigations of the intermediary role of metabolites.
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Outline

This thesis aimed to investigate whether metabolites play an intermediary role in the rela-

tionship between adiposity and disease. In Chapter 1, I present an introduction of the literature.

In Chapter 2, I detail a systematic review and meta-analyses of Mendelian randomization (MR)

analyses which used adiposity measures as an exposure. In Chapter 3, I present a visualisation

tool for summarising large association analyses. In Chapter 4, linear regression analyses of

the effect of adiposity measures on metabolites in the Avon Longitudinal Study of Parents

and Children (ALSPAC) are presented. In Chapter 5, MR analyses of the effect of adiposity

measures on metabolites using multiple independent datasets, and comparison with results

from ALSAPC are presented. In Chapter 6, univariable MR was used to validate the effect of

adiposity on an exemplar outcome and on metabolites identified in chapters 4 and 5, while

multivariable MR (MVMR) was used to investigate whether adiposity-associated metabolites

were intermediates in the relationship between adiposity and endometrial cancer. In Chapter 7,

I discuss the overarching themes, strengths, and limitations of the thesis.

Throughout the thesis, I reference my GitHub account where all data, scripts, results, tables,

and figures used throughout the thesis are available. This is particularly important for the

presentation of tables and figures, as many of these were too large to be presented in the thesis

itself given it is limited to A4-sized paper. Over 30,000 MR analyses were performed for work

in Chapters 5 and 6. The results of these analyses are summarised using multiple figures. A

summary of these figures alongside representative figures are presented in the main text and

the appendix. All figures are available on GitHub.



The GitHub repository for this thesis is github.com/mattlee821/000_thesis. A detailed

README accompanies the GitHub repository, but briefly, all data, scripts, results, tables, and

figures mentioned in the thesis are within the index/ directory. Within this directory, a PDF copy

of the thesis and each individual chapter is available in the _book/ directory. Within the data/

directory are the data, scripts, results, tables, and figures for each chapter in their respective

directories: Chapter 1 = introduction/, Chapter 2 = SR/, Chapter 3 = visualisation/,

Chapter 4 = observational/, Chapter 5 = MR/, Chapter 6 = mediation/. The only data not

available on GitHub are the individual level data from ALSPAC used in Chapter 4.

https://github.com/mattlee821/000_thesis
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Chapter 1

Introduction

Chapter summary

This Chapter provides the context of the thesis. It presents a summary of the literature relevant to

the thesis, where evidence is limited, and how this thesis will contribute. Firstly, I give background to the

study of adiposity, describe the biological role of adipose tissue, its genetic components and different

measurements of adiposity. I discuss associations between adiposity and diseases and outline potential

underlying mechanisms. I give focus to metabolites as potential intermediates linking adiposity with

diseases and discuss the use of Mendelian randomization to disentangle these associations.



1.1 Background

Excess and increased adipose tissue (adiposity) is a global health concern. Globally, the prevalence

of overweight (body mass index (BMI) of 25–29.9 kg/m2) and obesity (BMI > 30 kg/m2) is 39% and

13%, respectively2,3 (Figure 1.1). Obesity is estimated to be responsible for 8% of global deaths4

and this number is likely to rise as the prevalence of obesity increases5–7. Overweight and obesity

are categorisations of excess adipose tissue and are associated with numerous diseases8. These

associations are ultimately a result of the underlying functions adipose tissue exerts within the body,

including the distribution of adipose tissue within the body. Identifying whether and how these functions

link with disease may improve health outcomes.
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Figure 1.1: Proportion of individuals who suffer from overweight or obesity globally and in select
locations from 1975-2016. Data from Ritchie and Roser (2019)3 for individuals over 18 in the United
Kingdom (UK), United States (US), Americas, South-East Asia (Asia (SE)), and the world.
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1.2 Adipose tissue

Weight is made up of two components, fat free mass and fat mass. Fat free mass encompasses

muscle, bone and water mass. Fat mass is an all encompassing term for adipose tissue. Adipose tissue is

predominantly made up of adipocytes, with other tissues and cells such as preadipocytes and fibroblasts

making up smaller proportions9–11. The main function of adipose tissue is energy storage in the form of

lipids, with a secondary function to insulate the body and maintain thermoregulation. These two functions

can broadly be separated into two types of adipose tissue, white and brown respectively10. In addition to

energy storage and insulation, adipose tissue is considered an endocrine organ, responsive to afferent

signalling as well as being a prolific signaller itself12. Additionally, single nucleotide polymorphisms

(SNPs) and genes associated with increased adipose tissue have been identified13.

1.2.1 Energy storage

Energy storage is determined by energy intake and energy expenditure. An increase or decrease

in one leads to a change in energy balance and thus an increase or decrease in total energy storage

as Energy balance = energy in − energy out. Energy stores are comprised primarily of proteins,

carbohydrates, and fats. For protein, there is little change in total energy stores outside of a growth

stimulus (i.e., exercise is needed to increase protein stores)14. Carbohydrate stores fluctuate markedly

throughout the day as a result of limited storage capacity and the fact that they comprise the majority of

energy production14. Fats are the largest energy store. Daily fat intake is ~1% of the total available fat

store14. Given the tight controls over protein and limited availability of carbohydrate storage, fat storage is

the only expandable reservoir of excess energy intake9,14. As a result, and in regards to energy storage,

an energy imbalance will be reflected in the fat stores and not elsewhere9,14.

Excess energy is stored in adipocytes in the form of lipid droplets (triglycerides; TGs) via lipogenesis.

The release of these fat stores, in the form of fatty acids, occurs through lipolysis. As the main store

of excess energy, TGs provide an accurate reflection of energy imbalance, while adipocytes reflect the

deposition and mobilisation of TGs9. Deposition and mobilisation of TGs are the product of a complex

interplay of genetic and hormonal signals with leptin and insulin playing key roles15.

Insulin stimulates the conversion of acetyl-CoA to TGs by encouraging uptake of glucose by
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adipocytes and promoting production of sterol regulatory element-binding protein 1 (SREBP1), which

regulates fatty acid, TG, and cholesterol synthesis9,11. In addition, lipoprotein lipase plays a key role

in hydrolysing circulating TGs into fatty acids enabling their uptake by adipocytes9. Though they can

expand, individual adipocytes have limited storage capacity for TGs. Once “full”, adipocytes have the

ability to multiply9. The amount of expansion adipocytes can achieve is limited9,16 and thought to be

influential in the rate of adipogenesis, the rate of fat mobilisation around the body, and the development

of disease16.

1.2.2 Insulation

Energy storage of fats is managed predominantly by white adipose tissue. These fat deposits are

located mainly within subcutaneous tissue. During infancy, brown adipose tissue is abundant; however,

as humans age, these deposits whiten leaving few adult brown fat deposits. The remaining deposits of

brown adipose tissue in adults are located at sites of high blood flow, such as the neck, thoracic section

of the spine, aortic body, and adrenal glands11,17. Thermogenesis by these tissues is regulated by the

hypothalamus, and is achieved by uncoupling of the respiratory chain of oxidative phosphorylation via

uncoupling protein 1 (UCP1). When this process is active, lipids and glucose are used as fuel17.

Due to the abundant vascularization of areas where brown adipose tissue are located, the heat

generated from this process is quickly distributed via the circulatory system. White adipose tissue can

undergo a “beiging” process taking on thermogenic properties of brown adipose tissue. Beige adipose

tissue is a half way point between white and brown adipose tissue and is more widely dispersed than

brown adipose tissue, being located mainly within subcutaneous white adipose tissue. Beige adipose

tissue, much like brown adipose tissue, is cold activated and can be recruited through signalling that

mimics the stressed state induced by cold. The “beiging” process is not well characterized but is thought

to be a result of signalling changes during differentiation of preadipocytes11. The “beiging” process is

reversible and has been suggested as a therapeutic avenue for weight loss.17
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1.2.3 Signalling

It is important to consider adipose tissue as an organ in its own right. Not solely comprised of

adipocytes, adipose tissue includes a multitude of tissues and cells including connective and nerve

tissue as well as immune cells. All respond to, and secrete, signalling molecules locally and systemically.

It is thought this signalling is primarily to maintain appropriate energy stores and includes signals

influencing deposition and mobilisation of fats and differentiation of new adipocytes9,11,12. Functionally,

signalling molecules from adipose tissue have metabolic effects and/or are involved in steroid hormone

production12.

Adipogenesis, the process of adipocyte formation, has been well characterized and peroxisome

proliferator-activated receptor y (PPARy) is the master regulator9,11. Over-expression of PPARy leads to

differentiation, and under-expression of PPARy results in lipodystrophy. Other signalling molecules such

as Kruppel-like factors (KLFs) and CCAAT-enhancer-binding proteins (C/EBPs) influence adipogenesis

through PPARy11. Because of the master regulatory function of PPARy, exploring regulatory function

and expression has been considered as a potential therapeutic avenue for obesity11,18. Though not well

characterized, brown adipocytes are thought to be influenced heavily by PR/SET Domain 16 (PRDM16)

and peroxisome proliferator-activated receptor-gamma coactivator 1 a (PGC1a), with the latter required

for thermogenesis and not necessarily adipogenesis11.

The breakdown of stored TGs via lipolysis results in the release of fatty acids and glycerol molecules

for oxidation and gluconeogenesis, respectively. Fatty acids can also be broken down into ketone bodies

via ketogenesis. While insulin abundance activates lipogenesis, the relative absence of insulin promotes

lipolysis. The lipolytic pathway, which is also activated by cyclic adenosine monophosphate dependent

(cAMP) protein kinase A (PKA), relies on the function of adipocyte TG lipase (ATGL) and hormone

sensitive lipase (HSL) to catalyse the hydrolysis of TGs to di- and mono-glycerids, respectively. Inhibition

of ATGL can result in impaired lipolysis and obesity19.

The signalling molecules adipocytes produce, known as adipokines, are numerous and act on the

auto- and endo-crine systems20,21. This includes the reproductive system, where evidence has shown

that the production of sex hormones, such as luteninizing hormone (which triggers ovulation), can be

stimulated by adipokines22. There are adipose deposit-specific effects on expression and secretion of

adipokines and on the movement these adipokines can be expected to undertake. Adipokines produced
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in subcutaneous adipose tissue travel through the systemic system while adipokines produced in visceral

adipose tissue can travel via the portal system with direct access to the liver. Adipocyte receptors are

also expressed differentially based on deposit location12. The main adipokines produced by adipocytes

are leptin and adiponectin, which function to regulate metabolism and inflammation systemically. Other

cells within the adipose tissue, including immune and endothelial cells, produce many of the other

adipokines such as tumour necrosis factor a (TNFa) and interleukin 6 (IL6)11.

Abnormal levels of adipokines are harmful, as they lead to impaired adipose tissue function and

subsequent downstream effects such as insulin resistance11,21,23,24. As adipose tissue abundance in-

creases, so too does the likelihood of abnormal levels of adipokines21,23. However, there are outstanding

questions about how functionally abnormal levels of adipokines leads to the development of disease21.

Additionally, there is inconsistent and weak evidence for an effect of adipokines on adverse health

outcomes25,26.

1.3 Adiposity: genetics

The genetic architecture of adiposity, i.e., all genetic factors that influence genetic variation of a trait27,

or any complex trait for that matter, is highly complex. It includes the number of variants that influences

the trait, their effect sizes, their frequency in a population, and their interactions with one another and the

environment27. Generally speaking, this is described as either monogenic or polygenic. That is, a single

or many variants contribute to trait variation28. An additional theoretical model, omnigenic, suggests

all traits share a common genetic architecture that revolves around core (e.g., polygenic variants) and

peripheral (all other) genes29. This is similar to the infinitesimal model30, whereby all variants have a

non-zero effect on trait variation, and introduces the idea of universal pleiotropy27,31, in which variants

are capable of affecting nearly all traits32,33. Here, an overview of the genetics of adiposity is presented.

For detailed discussions see34–37.

Studies have identified numerous genes involved with adipose tissue form and function, including

those for lipogenesis, storage capacity, lipolysis, mobilisation of fat deposits, and energy expenditure13.

These also include genes for adipose specific proteins such as leptin (LEP38,39), adiponectin (Adiponectin,

C1Q And Collagen Domain Containing; ADIPOQ40), and PPARy39,41. Expression of these and other
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adipose-associated genes39,42 is tissue specific (subcutaneous/visceral and adipose/not-adipose)39.

Differential expression along with the presence of adipose-specific genes is associated with obesity

and related diseases39. For example, SLC19A3 is an adipose-specific gene39 encoding a thiamine

transporter; thiamine dependent enzymes have been associated with obesity43. Adipose expandability

is limited, and given that an excess of fatty acids results in increased adipogenesis9,16, it is possible

that expandability is fixed by adipose-specific genes and expression. This may have an impact on the

development of diseases. For example, there is evidence that the incidence of type-2 diabetes differs

between ancestral populations with the same BMI44. These populations are likely to deposit that excess

adiposite tissue differently, for example, individuals of European ancestry may begin depositing fat

viscerally at a BMI of 25 while individuals of Asian ancestry may deposit fat viscerally at a BMI of 22.

In addition, a wealth of genome-wide association studies (GWAS) have identified numerous genes

and SNPs associated with adiposity42,45–55. These studies have focussed on large population-based

studies, predominantly including individuals of European ancestries and using specific measures of

adiposity, such as BMI. These studies have also revealed the heritability of adiposity (amount of trait

variation attributable to genetic variation) to be relatively high across many measures including BMI

(twin-based = 60-75%56,57, family-based = 40-45%56, population-based = 20-40%48,52,58,59), waist hip

ratio (WHR; twin-based = 30-60%49,60, family-based = 20-50%49,61, population-based = 10%49,62) and

body fat percentage (BF; family-based = 64%63).

The first of these GWAS identified the FTO locus to be associated with BMI and obesity64,65.

Subsequent studies including larger sample sizes have identified over 900 SNPs associated with

BMI45,48,53,54. This same increase in the number of associated SNPs is true for other measures

of adiposity including WHR49,54, and WHR adjusted for BMI (WHRadjBMI)49,54. BF has also been

associated with an increasing numbers of SNPs51,55, however given BF measures are not as easily

obtained as BMI and WHR, sample sizes have been much smaller. Studies are also increasingly focusing

on non-European ancestries and identifying ancestry-specific genetic associations34,42,52,66. Though,

allele frequencies and effect sizes do differ.

Genetic variants associated with complex traits such as adiposity are spread throughout the genome

in coding and non-coding regions67. Ascribing causal links between variants and genes68 and between

variants and functions34 is challenging. However, functional analyses have revealed different pathways

associated with adiposity, as well as measurement-specific pathways. Variants associated with BMI have
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been linked with the central nervous system (hypothalamus, pituitary gland, hippocampus, and limbic

system)48,69 while WHRadjBMI variants show links with adipogenesis and angiogenesis49,69. These

differences can shed light on the underlying biology that the measurements capture, for example they

suggest that BMI is not a solely physical measurement, but that it also captures a behavioural component

of adiposity48.

1.4 Adiposity: measures

Adiposity is generally measured using BMI, which is a measure of weight given an adjustment of

height; weight (kg)
height(cm)2 . It gives an approximation of body composition. Given this simplicity, BMI is easily

and widely used as a measure of adiposity. BMI can be classified into sub-types according to the range

of values seen in the general population. While BMI classifications of underweight, normal weight,

overweight, and obese are ethnicity-, sex-, and age-specific, the international standards set by the World

Health Organisation (WHO)70,71 estimate a normal weight classification at a population level to be a BMI

of 18.5–24.9 kg/m2, with an underweight class below this. Underweight is a specific condition that may

be secondary to or symptomatic of an underlying disease and its consideration is not within the scope of

this thesis. The overweight category is given as a BMI of 25-29.9 kg/m2. Obesity is classed as a BMI ≥

to 30 kg/m2 – additional obesity classifications are sometimes used, e.g. the UK National Health Service

(NHS) classifies severe obesity as a BMI equal to or greater than 40 kg/m2. These categorisations of

BMI are set by the WHO as they allow for meaningful comparisons between and within populations, can

identify individuals and groups at risk of adiposity-associated health outcomes, can aid the prioritisation

of interventions, and provide a basis for the evaluation of interventions70,71.

Given the ease of its measurement, BMI is the most predominant marker of adiposity in large-

scale epidemiological studies. Thus, the relationships between BMI and many of the most abundant

diseases and causes of death worldwide are more comprehensively characterised compared to other

measures such as WHR and BF. This includes all cause mortality, hypertension, type 2 diabetes,

stroke, respiratory problems, many cancers, and more72,73. In a large review and assessment74 in

which adiposity measures were categorised as assessing total body adiposity (e.g., BMI), assessing

distribution of body fat (e.g., WHR), assessing body composition (e.g., BF), and assessing ectopic fat,

BMI was recommended as the primary tool for measuring adiposity in populations especially given its
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simplicity. They further recommended that, given the heterogeneity in individual body fatness observed

at a given BMI, the assessment of body composition alongside distribution using simple clinical tools

would be most beneficial in identifying individuals with excess visceral and liver fat.

Though BMI shows a similar relationship with disease as other anthropometric measures75, a main

limitation is its inability to differentiate lean and fat mass. One can have a high/low BMI and a low/high

total fat mass, respectively76. This is particularly evident in sex comparisons, where generally men have

a higher BMI than women, even though women generally have greater fat mass77. Differences are not

limited to sex, they are also apparent for age77, race78,79, and ethnicity80,81.

The reliability of BMI, the ability to obtain consistent and stable results repeatedly, is affected by

numerous factors. These include diurnal variation in height and weight fluctuations due to clothing and

food consumption. Though this can be managed relatively well using standard operating procedures,

the question of validity remains. Specificity is reported to be high, however sensitivity is much lower,

therefore misclassifying individuals as overweight or obese. Numerous studies have found that BMI

lacks the resolution to accurately measure body composition82–86. There are also questions around the

relationship between BMI and morbidity and mortality, with some evidence to suggest that overweight is

protective for some diseases and all-cause mortality87–89, though these questions are likely a result of

confounding and other biases90–92.

Evidence has pointed to a more important role of fat deposition in the relationship with mortality93,94.

WHR is commonly used to measure fat deposition, and is calculated as waist (cm)
hip (cm) . A WHR ≥ 0.85 in

women and ≥ 0.9 in men is considered equivalent to a BMI of ≥ 30 kg/m295. Hip measurements are

generally harder to take than waist measures, especially where there is excess adipose tissue, and it is

estimated that error can be as high as 1.56 cm95. Additionally, interpretation can be difficult given that

an increased WHR can be caused by both increased abdominal adiposity and a decrease in lean mass

at the hips8. WHR is a predictor for many diseases and correlates strongly with direct measures of body

fat8.

Direct measurement of body fat has been argued as key in understanding the development of dis-

eases associated with adiposity82. Broadly, the aim of these measures is to quantify BF which provides

a more accurate estimation of body composition96. Skinfold callipers can be used to measure subcuta-

neous fat at various locations around the body. Equations derived from gold standard measurements are
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used to convert the multiple skinfold measures to BF. In general, skinfold measurement is the cheapest

and easiest of direct BF assessments. That being said, measurements are prone to error, especially as

many skinfold measures are needed. Additionally, equations are derived in specific populations and do

not always perform well when applied to different populations8. Bioelectrical impedance devices, which

send a small electrical current through the body, can be used to estimate BF by measuring the time

taken for the current to pass through the body. Fat mass has a greater resistance than lean mass and

water. Similar to skinfold callipers, impedance devices are quite easy to use and are portable. However,

calibration can be difficult and derived equations may not translate well to all populations; age, height,

weight, sex and more can be used in proprietary equations, which are commercially sensitive and difficult

to appraise8. Evidence does however show strong correlations for some equations with more accurate

measures of BF97,98. It is important to note that although these techniques can be delivered easily, they

are not used as widely as BMI and WHR, and as such, sample sizes are much lower.

Whereas previously discussed measurement techniques indirectly measure BF, imaging techniques

allow for direct measurement. Dual energy X-ray absorptiometry (DXA) uses X-rays, which pass through

body tissues differentially, to image and then quantify fat mass, fat free mass, and bone mineral density.

As DXA directly measures lean and fat tissue, it is highly accurate. However, DXA uses X-rays which are

potentially harmful to certain individuals (e.g., pregnant women), it is expensive, and can not easily be

transported. Additionally, it is not possible to distinguish subcutaneous and visceral fat. That being said,

there is high inter-individual reproducibility of DXA measures99. Computerized tomography (CT) and

magnetic resonance imaging (MRI) are considered the gold standard for BF measurement. Both are

able to measure lean and fat tissue, however a hard call must still be made by software as to whether the

measured area is coded as fat-free or fat mass. Imaging techniques are expensive, static, and can not

be used with certain individuals much like DXA. As with other BF measures, sample sizes tend to be low

given the cost and complexity of using DXA, CT, and MRI devices at scale. For all BF measurements,

there is the potential for measurement error as a result of the fasted status of the individual and whether

they had recently performed exercise. Additionally, at the highest extreme where individuals may not

fit onto the DXA scanner, there will be some estimation of fat mass that assumes symmetry of fat

distribution across the body.

Given the individual limitations of BMI, WHR, and BF measurements, a complimentary assessment of

adiposity, using all three measures in turn and comparing estimates, may be beneficial when investigating
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associations with disease95,100. This is especially important as genetic analyses point to key differences

between the underlying biology of adiposity measures34 that may be relevant to the relationship between

adiposity and disease.

1.5 Adiposity: morbidities

Adiposity is associated with many morbidities as well as overall mortality. For example, BMI87–89,

WHR83,101–104 and BF101,104–106 are associated with an increased risk of mortality. In an effort to

summarise the literature pertaining to the association between adiposity and different diseases, the

literature mining tool Mining Enriched Literature Objects to Derive Intermediates (MELODI)107 was

used (described in Appendix A.1). Briefly, MELODI identifies intermediates between an exposure and

outcome, in this case between BMI and mortality, and looks for enriched terms within the literature that it

then classifies as an intermediate. Literature mining highlighted 9 broad categories of intermediates

that linked BMI and mortality: cancer, cardiovascular, immune, kidney, liver, neurological/behavioural,

other, pregnancy, respiratory – other includes diseases like diabetes and the metabolic syndrome.

Similar links were identified in the literature for WHR and cancer108, cardiovascular109,110, kidney111,

liver112, neurological/behavioural113,114, pregnancy115, respiratory116, and diabetes117 outcomes. Fewer

studies were reported for BF, however there were links with cancer105, cardiovascular105,118, kidney119,

respiratory105, and diabetes120 outcomes.

1.5.1 Categories of adiposity-associated morbidities

In the following section, a summary of the evidence for associations between adiposity and the 9

categories identified through literature mining are presented.

Cancer

In one of the largest studies of its kind, BMI was found to be associated with overall cancer risk as

well as site-specific cancers in up to 5.24 million UK adults121. For oral, lung, pre-menopausal breast,
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and prostate cancer, BMI was protective. However, after exclusion of ever smokers, associations with oral

and lung cancer attenuated to the null. There was no change in effect estimates with pre-menopausal

breast and prostate cancer after ever smoker exclusion. For oesophageal, stomach and pancreatic

cancers, there was evidence for a positive association with BMI, even after exclusion of ever smokers.

For the remaining site-specific cancers (colon, rectum, liver, gallbladder, post-menopausal breast, cervix,

uterus, ovarian, kidney, and leukaemia), exclusion of ever smokers did not change the increased risk

associated with BMI. There was weaker evidence of an increased risk for: melanoma, bladder cancer,

brain cancer, thyroid cancer, and non-Hodgkin lymphoma121.

The protective association observed between BMI and some cancers has been challenged more

recently, with evidence showing that, among Korean populations, BMI increases the risk of prostate

cancer and this may be linked with abdominal fat deposition122. Additionally, a systematic review and

meta-analysis highlighted that BMI was associated with an increased risk of advanced prostate cancer

but also with a reduced risk of localised prostate cancer123. This may be a result of multiple factors,

including selection bias, whereby individuals with a higher BMI are diagnosed at a later stage124. It may

also be the case that advanced prostate cancer is more likely in individuals with a higher BMI because

of an environment that promotes cancer development, e.g., increased production of hormones124.

There is an association between breast cancer and adiposity in men125 however this is more complex

in women due to hormonal status. Pre-menopausal women are at reduced risk of breast cancer while

post-menopausal women are at an increased risk with adiposity121. Breast cancer in men is also less

common than in women and so power in these analyses is likely to be lower. In women, the relationship

is also complicated by receptor status; with stronger evidence found for the positive association between

adiposity and oestrogen (ER) and progesterone receptor (PR) positive post-menopausal breast cancer

than for ER- and PR- post-menopausal breast cancer126. There is also an association with increased

post-menopausal breast cancer risk and WHR and waist circumference (WC)127.

Studies have shown evidence for associations between WC, hip circumference (HC), and WHR with

multiple cancers128,129. However, some of these relationships, e.g., with post-menopausal breast cancer,

may be a result of overall adiposity as opposed to deposition130,131. There is evidence for an association

with weight gain128 and BF132, however, limited data has led to some inconsistent results for weight

gain128 and few studies using BF. Additional considerations in the association of adiposity and cancer,

include age, sex, and ancestry128,133. Prostate cancer for example is more strongly associated with
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adiposity in individuals from African American ancestries than those from European ancestries133. In

regards to age, evidence has highlighted adiposity in childhood and adolescence to be associated with

later life cancers128. For sex, the association with adiposity and cancer may be multifactorial, involving

hormonal, deposition, and homeostatic differences134.

Cardiovascular

Adiposity is associated with many cardiovascular traits135,136 such as hypertension and coronary

heart disease (CHD). Generally, traits and diseases affecting the cardiovascular system are grouped

as cardiovascular disease (CVD) and there is strong evidence for an increasing effect of adiposity

on CVD137 and elements of CVD such as anaemia138, thrombosis139, myocardial infarction140, and

dyslipidemia141. Importantly, the cardiovascular system undergoes adiposity induced adaptations. This

includes increased cardiac output (primarily via stroke volume) to compensate for the increased blood

flow required by adipose tissue. Overtime, these adaptations can lead to cardiomyopathy and in some

cases adipose infiltration and replacement of cardiac cells142.

Evidence for a direct effect of adiposity on CVD is strong143,144. A number of large studies have

identified deposition (where adipose tissue is stored) as a stronger indicator of CVD risk compared to

overall adiposity145–148, strongly suggesting that additional measures of adiposity, including those that

can distinguish fat types (e.g., subcutaneous or visceral), can prove beneficial when investigating CVD

and CVD risk factors148. It has also been argued that other morbidities independently associated with

adiposity may be influential in CVD development142 – e.g., adiposity increases type 2 diabetes risk which

in turn increases hypertension risk.

Atherosclerosis is a major component of CHD and evidence shows atheroma build up is accelerated

due to adiposity135. Both overall and abdominal adiposity are associated with atherosclerosis and asso-

ciations persist after adjustment for smoking, hypertension, hyperlipidemia, and diabetes149. Overtime,

atherosclerosis can lead to CHD, whereby the supply of blood to the heart muscles is reduced. Adiposity

is independently associated with CHD and its accelerated progression150. Alongside CHD, adiposity

is associated with heart failure and, in particular, risk factors such as increased cardiac output and

ventricular hypertrophy135,142.
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Adiposity is associated with an increased risk of sudden cardiac death, including associated risk

factors arrhythmia and atrial fibrillation151–153. There even appears to be a dose-response relationship

in the association between adiposity and atrial fibrillation153. There is evidence to suggest that the

relationship with atrial fibrillation is as a result of structural changes, namely atrial hypertrophy152. Of

particular importance in the association with arrhythmia, is increased cardiac adipose tissue which

appears more predictive than overall and abdominal adipose tissue153,154.

Adiposity is associated with hypertension primarily through adiposity-induced adaptations. For

example, increased blood flow to adipose tissue results in increased cardiac output and subsequent

development of hypertension. The increase in overall adipose tissue increases the risk of hypertension

further due to adipose tissue increasing systemic and pulmonary vascular resistance142. Hypertension

itself is associated with down stream diseases such as stroke. Importantly, BMI and WHR are both

associated with increased risk of stroke (ischemic and haemorrhagic) independent of hypertension155,156.

There has been evidence to suggest that these independent effects are a result of inflammatory markers

such as C-reactive protein (CRP)157. CRP has also been suggested as playing a role in the wider

association between adiposity and CVD. However, (and discussed in detail in section 1.8), these

associations are believed not to be causal and instead reflective of limitations of observational studies158.

Inflammation and Immunity

Adiposity is associated with a state of overall chronic inflammation which is itself associated with

numerous diseases, including CVD and type 2 diabetes159. This chronic inflammation is indicated by

higher circulating levels of inflammatory markers as well as an increased production of markers such as

TNF-α, IL-6, and CRP at adipose tissue deposits160–162. There is a strong association between BMI and

total body fat mass with these inflammatory markers, however, evidence points to a stronger association

with central adiposity (WC and WHR)160,161,163,164. These associations are found in children as well

as adults.165,166 In addition, the function of the immune system is shown to be impaired as a result of

adiposity, including diminished vaccination response and reduced T and B cell counts, but increased

leukocyte counts167.

Adipokine abundance, naturally, increases in parallel with adiposity. Many adipokines have im-

munomodulatory functions, not least leptin which stimulates lymphocyte activation and subsequent
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cytokine production167,168. Adiponectin, unlike leptin, is anti-inflammatory and has a role in the inhibition

of TNF-α as well as in the production of anti-inflammatory cytokines such as interleukin-10168. Leptin

and adiponectin are the two main adipokines, there are many more with similar immunomodulatory

functions. Additionally, fatty acids, which increase with adiposity, influence inflammation. Notably, fatty

acids are associated with adiponectin levels169 and are thought to be involved in the production of TNF-α

and IL-6170, but it is unclear whether this is a causal association171.

As discussed previously, there is a strong link between adiposity and type 2 diabetes172. This

association is thought to be via insulin resistance, which is linked to immune response. In a large review

of the area, adipose tissue resident immune cells and infiltrating immune cells were shown to lead to the

development of insulin resistance173. Studies highlighted the change in immune cell recruitment and

differentiation as a result of adiposity, particularly the increase in cluster of differentiation 8 (CD8+) T-cell

recruitment and the differentiation of macrophages from fixed states into mixed pro- and anti-inflammatory

states. These changes occurred in parallel with reductions in anti-inflammatory immune cells. The

impact that these changes have on the development of insulin resistance is unclear173, however studies

highlighted the increases in TNF-α and IL-6 as a reuslt of adiposity. It is worth noting that these studies

were carried out in mice and are therefore not wholly translatable to humans.

Adiposity is strongly associated with CVD as discussed previously. This association may be a result

of inflammation and changes to immune cell recruitment and differentiation similar to that observed

for type 2 diabetes174. However it is unclear whether inflammation is a mediator of this relationship.

Chronic inflammation develops as a result of the parallel increase in adipose tissue, adipokine production,

immune cell recruitment, and cytokine production. There is evidence that this chronic inflammation

results in endothelial dysfunction which is a precursor to atherosclerosis. For example, leptin has been

shown to increase atheroma formation via cholesterol uptake by macrophages, while TNF-α, IL-6,

and interleukin-1 promote inflammation of blood vessels175. In addition, CRP, which causes cell death

through the complement cascade176, is an immune marker associated with adiposity177 and CVD178.

CRP has been directly associated with the development of atherosclerosis179 but evidence suggests this

is likely not a causal association180. Numerous other inflammatory markers also show links with CVD,

including adiponectin179, but work is still needed to establish whether these associations are causal.

Alongside chronic inflammation, type 2 diabetes, and CVD, a number of other immune related

conditions have been associated with adiposity. This includes the development of gallstones181 and
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pancreatitis182. Adiposity may influence gallstone development through diet183 or through physically

impeding detection of gallstones184. Gallstones are themselves associated with the development

of pancreatitis. Additionally, adiposity may result in pancreatitis through increased TGs and type 2

diabetes182, both of which are associated with adiposity.

Kidney

Adiposity is associated with numerous kidney related disorders185, including risk factors for the

development of chronic kidney disease (CKD) such as hypertension and type 2 diabetes. These

associations with BMI also include the development of proteinuria186, reduced estimated glomerular

filtration rate187–189, and end-stage renal failure190,191. Similar associations are found for WHR and WC

independent of BMI187,192,193. The association between adiposity and CKD remains after taking into

account potential mediators such as type 2 diabetes and hypertension185.

A possible reason for these associations is that hyperfiltration is needed to accommodate the

increased metabolic demand of adipose tissue, which over time places a permanent stress on the

kidneys185. However, as a majority of individuals with obesity do not develop CKD185, the effects of

adiposity on CKD development may be mediated by other factors such as adiponectin194 and leptin195.

The consequences of which include inflammation and insulin resistance as described previously, as well

as aberrant lipid metabolism which leads to a toxic renal environment196.

Liver

There are numerous types of liver disease; non-alcoholic fatty liver disease (NAFLD) categorises a

number of conditions related to liver disease that includes a build up of adipose cells within the liver but

does not involve alcohol. There is a strong association between adiposity and NAFLD which is becoming

more common as adiposity increases globally197,198 – ancestry influences this association199–201. NAFLD

is also associated with other adiposity-associated disorders such as type 2 diabetes, hypertension,

dyslipidemia, and insulin resistance202. The prevalence of NAFLD is estimated to be ~25% in adults and

its rise has been in parallel with that of obesity203.
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Steatosis, the abnormal retention of lipids within cells/organs, is the main feature of NAFLD. Hepatic

steatosis begins when fatty acid uptake and synthesis is greater than oxidation and export; clinically,

hepatic steatosis is defined as a fatty acid content > 5% of total liver weight198. This increase in fatty

acids has been linked with increased lipolysis as a result of adiposity as well as an increase in de novo

lipogenesis at the liver204. The increased fatty acid content in the liver is associated with changes in

glucose abundance, lipoprotein metabolism, and inflammation, however whether this is a consequence

of, a cause of, or concomitant with fatty acid accumulation is unclear197. The prevalence of steatosis is

estimated to be 20-25% in young adults203,205 and this is shown to increase with age and increases in

BMI203.

Neurological/behavioural

There are a number of neurological consequences of adiposity which can broadly be defined as

structural, psychological and behavioural, and physiological206. There is conflicting evidence for an

association between adiposity and mild cognitive impairment207,208. Mild cognitive impairment is a

precursor to Alzheimer’s disease which is associated with adiposity209,210. Adiposity is associated with

Alzheimer’s disease as well as markers of Alzheimer’s disease such as β-amyloid211. These associations

between adiposity and mild cognitive impairment and Alzheimer’s disease may be a result of structural

changes. Cerebral atrophy is associated with both mild cognitive impairment and Alzheimer’s disease212

and there is evidence of reduced hippocampal volume with adiposity213.

Structurally, evidence suggests that adiposity not only impacts brain volume negatively214,215 but

also increases the risk of abnormal neuronal activity216, though the latter may be a result of accelerated

ageing as a result of adiposity. There are also associations between adiposity-associated disorders

such as type 2 diabetes with structural changes in the brain217. These structural changes are present in

individuals without cognitive decline217 as well as children218,219.

Animal models have shown that high fat diet induced adiposity is associated with cognitive

decline220,221. This cognitive decline may result from inflammation within the hypothalamus, with

elevated levels of TNF-α present in high fat diet mice compared with controls222. There is evidence to

suggest that inflammation in the brain resulting from adiposity goes on to impair the control of satiety223,

with leptin resistance shown to build224 – leptin binds to receptors in the brain to make us feel full.
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In regards to other conditions, there is evidence for an association between adiposity and migraines225

which includes links with adipokines226. Additionally, there is a strong relationship between adiposity and

depressive symptoms and depression227, specifically there appears a U-shaped distribution with under-

weight and obese individuals exhibiting depression more often than their normal weight counterparts228.

However this may be a result of reverse causation as there is evidence that depression increases the

risk of developing obesity227. In addition, the relationship between adiposity and depression/depressive

symptoms is complicated due to the stigmatization of adiposity229 and the detrimental effect adiposity

has on an individual’s quality of life230.

Respiratory

Adiposity is associated with a number of respiratory disorders231. One of the first respiratory

consequences of adiposity is dyspnea and wheezing both at rest and during exercise232. This may

be a result of increased oxygen demand from adipose tissue and the resulting increased respiratory

workload233. These associations may be further impacted by the association between adiposity and

reduced respiratory muscle function, though this association may result from a reduction in fat free mass

in parallel to the increase in fat mass234. That being said, not all individuals who are overweight or obese

develop dyspnea or wheezing232, potential confounding factors such as smoking may impact on the

discussed relationships.

Alongside wheezing and dyspnea, asthma is also found to be more frequent among individuals with

overweight or obesity235 and there is evidence to suggest this may be causal236. Asthma severity, as

well as use of medication, and hospital admissions are also increased as a result of adiposity237. The

underlying mechanism of the relationship between adiposity and asthma is unclear but the relationship

is not thought to be related to over- or mis-diagnosis of asthma in overweight or obese individuals238.

There is some evidence to suggest that systemic inflammation as a result of adiposity is associated with

glucocorticoid insensitivity in asthma239.

Obstructive sleep apnoea is caused by a collapsing of the upper airway and results in oxygen

desaturation and poor sleep240. There is a strong association between adiposity and obstructive sleep

apnoea, with fat deposition around the neck a major factor due to the resulting increased pressure on

the airway240. This is reflected in neck circumference being strongly associated with obstructive sleep
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apnoea241.

Chronic obstructive pulmonary disorder (COPD) is primarily a smoking related disorder characterized

by obstructions to airflow. There is some evidence that adiposity is more prevalent in individuals with

early stage COPD. However, at later COPD stages, this relationship is reversed242. It is likely that

this association is confounded and the association between adiposity and COPD is instead related to

changes in lung function243.

The driving force behind the associations between adiposity and many respiratory disorders is the

effect of adiposity on lung volume. Studies have shown that adiposity results in reduced forced expiratory

volume, forced vital capacity, functional residual capacity, and expiratory reserve volume244–246. For

example, reduced lung volume results in the upper airway being under lower tension and making it more

susceptible to collapse247. These associations are predominantly found for abdominal adiposity231,244,248.

Reproductive

There are a number of reproductive outcomes associated with adiposity many of which are specific

to women249. This also includes the developmental origins of health and disease (DOHaD) which states

that exposures during formative periods of development and growth may have lasting consequences of

health250. It should also be noted that the prevalence of adiposity among mothers varies by ancestry249.

Reproductive research is primarily on women, however, recent work has highlighted paternal effects on

offspring health and proposes more should be done in studying paternal effects going forward251.

Adiposity is negatively associated with fertility, both overall and in women who gain weight in

adolescence252. There is also evidence to suggest that there is a dose-response relationship between

BMI and infertility253 as well as variations in fertility rates alongside variations in adiposity among

ancestries254. One of the leading causes of infertility is polycystic ovary syndrome (PCOS) for which there

is an increased risk with adiposity249,255. The severity of PCOS is exacerbated by the effects adiposity

has on other factors such as insulin resistance, which in turn worsen PCOS symptoms256. There is also

overlap between PCOS and metabolic syndrome; many women who have PCOS also have metabolic

syndrome257. This means women with PCOS are at greater risk of developing other adiposity related

conditions such as type 2 diabetes258 and CVD259. Adiposity in men is also associated with infertility,
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with associations found between overall and abdominal adiposity, and sperm abnormalities such as

motility, morphology, and count260. In men, the metabolic syndrome is associated with hypogonadism261

and erectile dysfunction262.

The effect of adiposity on maternal and foetal outcomes includes increased risk of hypertension,

pre-eclampsia, gestational diabetes, preterm birth, macrosomia, still birth, and miscarriage263–266.

One way women are at increased risk of hypertensive disorders of pregnancy is via pre-pregnancy

hypertension265. Hypertension is strongly linked with adiposity as discussed previously142 and increases

in the prevalence of maternal hypertension are associated with the rise in pre-pregnancy adiposity264.

There is also an association between hypertension and pre-eclampsia during pregnancy and insulin

resistance independent of current diabetes status. Additionally, hypertension and pre-eclampsia during

pregnancy are strongly associated with the development of maternal type 2 diabetes after pregnancy.

This association persists after accounting for gestational diabetes267.

Type 2 diabetes is strongly associated with adiposity as discussed previously172. Women entering

pregnancy with pre-existing type 2 diabetes are at risk of birth complications associated with gestational

diabetes such as large for gestational age249. There is also evidence for an increased risk of gestational

diabetes in women entering pregnancy overweight or with obesity without pre-existing type 2 diabetes264.

There is a dose-response relationship between adiposity and risk of gestational diabetes263. This has

long term health consequences, including subsequent development of type 2 diabetes267.

Foetal outcomes are directly impacted by maternal exposures. This includes preterm complications,

birth weight, congenital anomalies, and mortality249. Maternal adiposity is associated with an increased

risk of preterm birth263,266. Birth weight is also strongly associated with maternal adiposity in a dose

dependent manner263,268. Extreme birth weight, macrosomia, and large for gestational age are much

more prevalent for women with obesity263,266. Low birth weight and small for gestational age are also

associated with maternal adiposity269,270. In a large umbrella review, birth weight was shown to be

associated with later life adiposity in the children and there was suggestive evidence for an association

with a number of later life health outcomes including type 2 diabetes and CVD271. It is thought these

associations may be a result of changes in the intra-uterine environment which can “programme” obesity

in children in later life272, however recent work suggests this is unlikely to be the case273.

Maternal adiposity is associated with a number of congenital anomalies including spinabifida and cleft
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lip and palate274,275. Additionally, maternal adiposity is associated with neonatal and infant mortality, with

adiposity-associated with increasing risk of mortality263,276. A similar association is found for stillbirth276.

Other

Metabolic disorders involve the dysfunction of metabolism, including not enough or too much of a

particular substance. A well studied, yet complex example of this metabolic dysfunction is metabolic

syndrome, which is a term used to group a collection of phenotypes. A combination of three or

more of adiposity, reduced high-density lipoproteins (HDL), increased TGs, increased fasting glu-

cose (FG), and hypertension. Metabolic syndrome is associated with the development of CVD and

type 2 diabetes202. A large component of metabolic syndrome is adiposity and insulin resistance.

Dyslipidemia141, hyperglycaemia277, and hypertension142 are all independently associated with adipos-

ity. While insulin resistance is associated with the development of dyslipidemia278, evidence points to

hyperglycaemia279 and hypertension280 being associated with the development of insulin resistance.

There is also a strong association with adiposity and the development of insulin resistance202,281 and

this may be through the contributon of adiposity to the components of metabolic syndrome202.

Diabetes is a metabolic disorder in which blood glucose regulation is impaired as a result of insufficient

or an insensitivity to insulin. Type 1 diabetes is an autoimmune condition and makes up about ~10%

of cases. Type 2 diabetes is much more frequent (~90%) and is a result of either insufficient insulin

production and/or insulin resistance282. Generally, adiposity is not associated with type 1 diabetes172.

Though, there is some evidence to support an accelerator hypothesis, whereby adiposity at a young

age accelerates the development of type 1 diabetes via insulin resistance283,284. More data is needed

however to investigate the factors that impact this relationship283,284.

Adiposity is strongly associated with the development of type 2 diabetes172. This association is

thought to be partly through the association between adiposity and insulin resistance, however not all

individuals with adiposity and insulin resistance develop hyperglycaemia172. β-cell dysfunction is an

additional component; β-cells produce and secrete insulin, dysfunction of these cells is thought to result

in aberrant insulin availability. The function of β-cells is thought to be altered as a result of adipose tissue

requiring more glucose, but also that adipose tissue increases the abundance of circulating fatty acids

which, in turn, affects insulin resistance through inhibition of glucose uptake285. Adiposity is associated
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with increased circulating fatty acids. Over time, continual stimulation by fatty acids is thought to reduce

insulin production286.

Alongside dyslipidemia and hyperglycaemia, adiposity is associated with an increase in many

other circulating metabolites287 as well as an overall change in metabolome288, that is changes in the

abundance of many metabolites. Changes in the metabolome appear to track with adiposity changes

over time288. Global associations, like that with the metabolome, are also found for the gut-microbiome,

where adiposity is associated with changes in both the abundance of, and types of, species that make

up the microbiome289,290. The exact relationship between adiposity and the gut-microbiome is unclear,

it is likely there is a bi-directional association, but there are association between the microbiome and

several diseases, including CVD and type 2 diabetes291. Additionally, there is evidence for an association

between adiposity and the proteome292,293, with evidence that some proteins influence CVD risk294.

Much of the work investigating the metabolome, microbiome, and proteome has involved limited sample

sizes and requires further investigation.

1.5.2 Underlying aetiology

One of the key points from the literature is the broad array of outcomes with which adiposity is

associated. However, the underlying aetiology of these relationships is not always clear and this is partly

a consequence of the limitations of observational studies such as confounding and reverse causation. In

some instances, associations between adiposity and disease may be explained by other factors both

mechanistically and due to confounding. For example, associations with reduced quality of life is mostly

explained by the presence of co-morbidities which increases the likelihood of poor outcomes, including

stigmatisation295,296. Similarly, the relationship with many sleep complications is likely a result of chronic

pulmonary diseases295–297.

Type-2 diabetes development is likely to follow a process of impaired glucose clearance as a result

of adiposity, which leads to increased insulin resistance. There are likely wider metabolic changes that

influence this process which are also a consequence of adiposity100,295,296. Respiratory diseases are

likely a result of reductions in forced expiratory volume, forced vital capacity, lung and residual capacity,

and expiratory reserve. Each of these is a consequence of weakened muscles and reduced compliance

of the chest which can be caused by the physical burden of adiposity around the chest and lungs296,297.
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With respiratory disease there is also the prospect of confounding as a result of smoking status, which is

associated with adiposity298.

In the case of CVD, hypertension may be related to changes in sympathetic activity, blood flow and

viscosity, and dietary intake as a result of adiposity295,296,299. Some of these changes might similarly

be a result of metabolic, inflammatory, and/or hormonal changes. Both dyslipidemia and reductions in

high density lipoprotein cholesterol (HDL) result from adiposity and these changes may be important in

the development of heart disease. Adiposity induced adaptations, including structural, functional, and

hormonal changes may influence CVD development by altering homeostasis and inducing, for example,

inflammatory responses. Additionally, co-morbidities which are also associated with adiposity (e.g., type

2 diabetes) may have concomitant effects on CVD development142. There is also evidence of altered

myocardial metabolism as a result of adiposity, this includes increased fatty acid oxidation and decreased

glucose oxidation300.

Unlike diabetes and respiratory diseases, many other diseases have a less well understood process of

development as a result of adiposity. For cancer, hypotheses for development differs based on the type of

cancer. Metabolic, inflammatory, and hormonal changes as a result of adiposity are proposed as leading

to the development of a number of different cancers100,121,295,296. The protective effect of adiposity on

pre-menopausal breast cancer status is thought to be a result of oestrogen production. Oestrogen

is upregulated in individuals who are overweight or obese; in pre-menopausal women oestrogen is

primarily produced at the ovaries, while in post-menopausal women oestrogen is produced via androgen

conversion and aromatase. Aromatase can be produced by adipose tissue and is upregulated in breast

tissue of women with adiposity301–303. Additionally, the association between adiposity and breast cancer

is strongest for ER+ cases compared with ER- cases131,304. Evidence also shows that hormone therapy

reduces the risk of post-menopausal breast cancer305 and that adiposity-associated factors such as

leptin302 may also be involved in breast cancer development.

The location of fat deposits may also be important; deposition of adipose tissue around the heart

may result in inflammation of the myocardium, but this might also be subsequent to dyslipidemia and

reduction in HDL100,295,296,306. Similarly, distribution of fat mass around the neck has been associated

with sleep complications295–297. Osteoarthritis, though likely a result of the physical burden of adiposity,

may also be a product of changes to cartilage and bone metabolism295,296. Similar metabolic changes

may play a role in a number of other diseases. An increased risk of gallstones is associated with
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increased cholesterol295, and increased salt intake has been suggested as a potential link between

adiposity and stroke100,296.

1.6 Adiposity: summary

The body of work discussed here highlights the wide array of associations between adiposity and

disease. Many proposed mechanisms of disease development involve the physical burden of fat mass

and/or changes to different biological pathways, particularly the roles of adipokines and metabolic

changes. A key point that many studies surmised was that losing weight would be beneficial in reducing

the burden of adiposity. In addition, the contribution that mediators play in the relationship between

adiposity and disease is of particular importance. Studies have shown that intervening on these

mediators can mitigate some of the effects of adiposity, for example intervening to reduce high blood

pressure to reduce the risk of developing CHD as a result of adiposity307, but the risk still remains high.

There is evidence to show that weight loss interventions reduce the risk of mortality308,309 as well as

the risk of developing conditions such as CVD and cancer308–314. There are however many barriers to

behavioural weight loss interventions315 and their long term effectiveness is unclear given many studies

do not follow up for longer than two years. As such, bariatric surgery316 is thought to be an effective long

term intervention317,318. This type of surgery has a number of disadvantages317, not least the fact it is

invasive. Additionally, and true for all interventions, identifying individuals who will benefit most from a

specific intervention strategy is challenging.

Identifying mechanisms by which adiposity exerts its effect on the development of diseases may

help to prioritise interventions. It may also help to identify targets for interventions. Studies focusing on

targeting adiposity driven pathways have been successful. In humans, pharmacological interventions

have been effective in aiding weight loss319, for example, acting on the leptin pathway reduces adiposity

in individuals with obesity320 and reduces the effects of lipodystrophy320. In mice, Withaferin A, a

leptin sensitizing agent, has shown promise in aiding weight loss and improving glucose metabolism

independent of the leptin pathway321. Similarly, agents that target the adiponectin pathway in mice have

been effective in improving insulin resistance and thus diabetic outcomes322.
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1.7 Metabolites

Many of the diseases discussed have hypothesised development processes involving metabolic,

inflammatory and hormonal changes. As a complex signalling organ, with both local and systemic effects,

adipose tissue is likely to influence all three of these processes at both local and systemic levels. These

pathways and processes can be targeted in order to reduce the burden of adiposity323–325. It is not within

the scope of this thesis to investigate all three, but recent advances in measurement methodologies and

the availability of large, and deeply phenotyped population-based studies may now provide the data

necessary to investigate metabolic effects.

The metabolome, the total abundance of small-molecules in the body, is a reflection of genetic and

non-genetic factors326–329. The metabolome can be separated into endogenous (internally produced)

and exogenous (externally produced) metabolites, whereby, the majority of metabolites are the result

of cellular processes, with multiple functions including energy, signalling, transportation, and structural

components. Metabolic effects can be far reaching and also include post-translational modifications329,330.

While in homeostasis, metabolic effects are tightly controlled, however the many functions mean that

imbalances can be detrimental326,329,330.

Measurement of individual metabolites, at scale, is achieved predominantly through mass spectrom-

etry (MS) and nuclear magnetic resonance (NMR). Both MS and NMR have differing limitations with

full coverage of the metabolome not achieved by either. Complimentary usage of the two methods is

desirable331; however, as MS is destructive and both methods are costly this is not always possible.

Many population-based studies have metabolomics data from only one measurement method limiting

the number of metabolites available for analysis.

The number and type of metabolites identified by MS and NMR methods is dependent upon whether

a targeted, semi-targeted, or untargeted approach is taken. Metabolite identification is also dependent

upon whether it can be accurately measured in the sample. Targeted metabolomics analysis uses

an internal standard to characterize individual metabolites332,333 whereas untargeted metabolomics

analysis measures all metabolites within a specified range333,334. Semi-targeted approaches use internal

standards to quantify groups of metabolites with similar chemical structure333. Targeted studies are able

to identify a handful of metabolites where as semi-targeted and untargeted can identify hundreds to
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thousands. As targeted and semi-targeted methods use internal standards, absolute quantification of

metabolite abundance is possible. In untargeted methods, only relative quantification, the peak area of

each metabolite in comparison to other samples, is possible333.

The availability of well-powered population studies with metabolomics data from targeted, semi-

targeted, and untargeted methods as well as matched genome-wide data has enabled a growth in

metabolite studies, including GWAS328,331. These studies have revealed large variations in the heritability

of metabolites and numerous loci associated with their abundances335–339. The public availability of

these GWAS provides an opportunity to perform genetic epidemiology studies (such as Mendelian

randomization, see Section 1.8) which can compliment the existing literature from observational studies.

Of particular consideration when using metabolomic data from Nightingale Health (as used in this

thesis) is the way in which lipoprotein particles are identified and assigned to specific classes. Lipopro-

teins are grouped into five categories based on a density range: chylomicrons, VLDL, IDL, LDL, and

HDL340,341. These categories broadly conform to the functions of lipoprotein molecules, with chylomi-

crons transporting lipids from the intestine to the bloodstream, VLDL, IDL, and LDL transporting lipids

from the liver to other tissues, and HDL the primary component of reverse cholesterol transport341. The

density of lipoproteins correlates well with their size, which is associated with disease outcomes342–344.

However, there is some overlap in particle size across the density categories341. As such, two lipopro-

teins of the same density, and thus categorised within the same class, may be considerably different in

size. Conversely, two lipoproteins of the same size may have substantially different densities and be

assigned different classes. It may therefore be appropriate to consider the broad spectrum of lipoproteins

when investigating associations rather than individual lipoprotein associations when contextualising

results.

Metabolites reflect the current condition and activity of an organism and vary in abundance depending

on the state of the individual, this includes age and sex345. This is particularly evident in fasted and

non-fasted measurements346–348 but also in case control studies such as those focusing on diabetes349

and cancer330,350. Differences are also apparent when studying complex traits such as BMI288,351 as

well as many more352.

These studies provide an overall assessment of the change in metabolite abundance as a result of

different conditions but the relationship is not clear. Whether metabolites change as a result of a condition
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or lead to its development is an important question with potential clinical importance. Mutable, both

from a genetic and non-genetic perspective, the metabolome can, with caution, be used to investigate

the development of diseases327,328,331. In this regard, particular consideration should be given to the

metabolomics approach (targeted, semi-targeted, or untargeted) used and whether individuals were

fasted. Consideration should also be given to the fact that metabolomics analysis provides a snapshot

of an individual’s current state. Though few studies have investigated metabolomic stability in large

populations, variability in metabolite measures is apparent346,353,354.

A key aspect of future work investigating relationships between metabolites and diseases are the

interactions metabolites have with one another. The metabolome is a complex system involving feedback

and feed-forward loops, this complexity means many metabolites are intercorrelated355, have high

genetic correlation338, and share a common genetic architecture335–339. As such, a perturbation in a

single metabolite rarely occurs in isolation. Investigating metabolites as grouped entities that represent

the underlying complexity, rather than individual metabolites, may help to elucidate relationships with

disease.

1.8 Mendelian randomization

Studies investigating the associations between adiposity and metabolites and metabolites and dis-

ease are important and, when conducted in optimal conditions, can provide information on the potential

causes and consequences of altered metabolic states. The studies discussed in the previous sections

focussed primarily on observational methodologies using a range of sample sizes. Observational

analyses are subject to a number of limitations which must be considered when investigating mech-

anisms of disease development. This includes confounding, reverse causation, and various forms of

bias158,180,356–359, which, even with careful study design, cannot all wholly be addressed. Importantly,

observational studies struggle to confidently infer causality. Simply put, though a study may identify an

association between two traits, this does not mean that one causes the other; they may be correlated

because of shared causes for instance.

Epidemiological studies aim to assess the association between an exposure and an outcome.

Confounders (i.e., common causes of the exposure and outcome that can be measured or unmeasured)
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can bias results. In order to account for confounding effects, studies can include measured confounders

within their models or stratify analyses based on the confounder, for example sex. If confounders

are poorly measured, or not measured at all, this can introduce residual confounding. If a measured

factor is a mediator of the association between the exposure and outcome instead of a confounder,

this can introduce collider bias if analyses are only adjusted for the mediator and not the confounders

as well360,361. An additional limitation of observational studies is the difficulty in obtaining the causal

direction of effect. A central tenet of causality is temporality, the exposure must come before the outcome.

When the temporal sequence is unknown the outcome may come before the exposure. It can be difficult

to obtain this information in observational settings356.

Observational studies can be ranked based on their design and the evidence they provide for

causality. Ecological studies are ranked at the bottom given the data they utilise is aggregate and is

particularly subject to the ecological fallacy356. Cross-sectional studies are ranked above ecological

studies, with case control and cohort studies ranked above these. Randomised controlled trials (RCT)

sit at the top of the hierarchy as they experimentally control for, and test, the effects of an exposure on

an outcome, whereas the other designs only look for correlation between an exposure and outcome or

presence of an outcome with levels of the exposure. Many of the studies discussed in this section are

not RCTs and are therefore unable to provide direct causal evidence. Understanding what the causal

literature says about the effects of adiposity on diseases will be important for this thesis.

In observational epidemiology, ideally we want to compare individuals based on the exposure and so

attempt to control the study by accounting for confounders. In this regard, we attempt to model an RCT,

which is the gold standard for testing causality. However, the large costs and time required to develop,

implement, and analyse results limits their use. More importantly, randomizing individuals to conditions

known to be associated with harmful outcomes is ethically wrong. An alternative approach is to utilise

the large amounts of data that are publicly available or that can be accessed through institutions to

undertake other non-experimental causal inference methodologies.

Mendelian randomization (MR), described362–364 and reviewed365,366 elsewhere, and accompanied

by a dictionary of terms367, is a statistical methodology that uses genetic variants as instrumental

variables (IVs) to investigate the causal relationship between an exposure and outcome362,363. The

reassessment of many observational associations in this way has strengthened evidence for the relation-

ships between many risk factors and diseases, but has also highlighted the biases and limitations of
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observational research158,180,359. MR is increasingly used to identify novel relationships.

Briefly, individuals inherit alleles largely at random from their mother and father. Across a large

population, this leads to the even distribution of confounders between groups defined by genotypes

(alleles). As such, individuals defined by genotypic groups should only differ with respect to that genotype

rather than their environmental circumstances, which may be problematic with regards to confounding in

observational studies. This random allocation of genetic variants, which may ultimately be related to a

phenotype, is analogous to an RCT where genotype groups act as the intervention and non-intervention

arms of the trial. These genetic variants, sometimes called instruments, act as proxies for the exposure

in IV analyses.

There are two main approaches to MR: one-sample and two-sample. In a one-sample MR, data

on the exposure (e.g., adiposity) and data on the outcome (e.g., metabolites) are obtained from the

same population sample. One-sample MR requires individual level data, however genetic variants

and effect estimates of the association between the genetic variant and exposure, that can be used to

weight each variant, can be obtained externally. In a two-sample MR, summary level GWAS data is

used368. Summary statistics for the exposure-related genetic variants are obtained from one population

sample (usually a GWAS of the exposure) and from a second population sample (usually a GWAS of the

outcome). There are a number of considerations with one- and two-sample MR such as overfitting, weak

instrument bias, and the underlying population differing across the two samples in two-sample MR which

is discussed in more detail elsewhere365,366 and in this thesis where used (chapters 5, 6, and 7.

Inference derived from MR analyses relies up-on three assumptions (Figure 1.2): (i) the genetic

instrumental variable (Z) is robustly associated with the exposure (X), (ii; independence assumption)

there are no measured or unmeasured common causes (i.e., confounders; U ) of the instrumental

variable and the outcome (Y ), (iii; exclusion-restriction assumption) there is no independent association

of the instrumental variable with the outcome other than through the exposure.
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Figure 1.2: Directed acyclic graph of the Mendelian randomization principle. Z = instrumental
variable; X = exposure; Y = outcome; U = confounders of the exposure-outcome association.

Additional assumptions based on homogeneity, monotonicity, and effect modification are also present.

The homogeneity assumption assumes the association between the IV and exposure or the effect of

the exposure on the outcome is homogeneous. That is, the association or the effect is the same for all

individuals in the population. Monotonicity can be deterministic or stochastic. Deterministic monotonicity

assumes that the effect of the IV is consistent in all individuals of the population. That is, the effect of

the IV does not increase the exposure in one group and decrease it in another. Stochastic monotonicity

assumes deterministic monotonicity conditional on confounders.

Based up-on Mendel’s laws of inheritance, MR relies on the assumption that genetic variants are

unlikely to be associated with one another (outside of linkage disequilibrium (LD)) or with environmental

factors. Deviation from which would mean an uneven distribution of alleles across a population. Con-

sideration in MR analyses should therefore also be given to dynastic effects, population structure, and

assortative mating as these sources are the most likely ways in which the second MR assumption can

be violated. Within-family MR is one method that can be used to estimate the causal effect in these

situations369,370.

Dynastic effects, a form of confounding, are a consequence of traits transmitted across generations
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which then influence the causal effect estimate370,371. That is, the parental genotype directly effects the

offspring phenotype. For example, the effect of BMI on CVD may be biased by the IVs for BMI being

correlated across parent and offspring and the effect of maternal BMI on offspring development, which

has an effect on future CVD. Simply put, if the parent has a high BMI that could affect the environment

the child is brought up in which would then be associated with the childs risk of developing CVD. In

this instance, the second MR assumption would be violated. Within family studies are proposed, and

simulations have shown, to overcome some of the consequences of dynastic effects370,371.

Population structure is a result of subgroups within a population existing due to differences in

phenotypes, allele frequencies, and haplotype (linkage disequilibrium) structure. This would also violate

the second MR assumption as the association between the IV and risk factor could be confounded by

the subgroups. In MR analyses it is assumed that latent structure is accounted for in the GWAS in which

the IVs are discovered372. As the sample sizes of GWAS has increased, the potential for subtle effects

of population structure have been observed372,373. Though one can restrict analyses to homogeneous

groups, use principal components, and perform within family studies to examine and mitigate the effects

of population stratification, biases (e.g. sampling bias) may still remain370.

Assortative mating is the principle by which partners select one another based on a particular

phenotype. This is either cross-trait (one trait selecting for another trait) or single-trait (one trait selecting

for the same trait). MR results can be biased by both types of assortative mating, even when the

phenotypes of interest are not those which influenced the mating369. It is currently difficult to test and

account for the effects of assortative mating, but within-family studies have shown some promise in this

regard370.

Formal assessment of the exclusion restriction assumption is not possible, however a number of

methods have been developed to assess potential violation of this assumption. The most widely used of

these methods are MR-Egger, weighted mode, and weighted median. MR-Egger provides an estimate of

unbalanced/directional horizontal pleiotropy via the intercept of a linear regression of the SNP-exposure

and SNP-outcome association. In the presence of pleiotropy the intercept will bias away from the origin.

MR-Egger gives consistent estimates when 100% of genetic instruments are invalid374. The weighted

median is complimentary to MR-Egger but does not rely on the “instrument strength independent of

direct effect” (InSIDE) assumption. It calculates the median of an empirical distribution of the causal

effect estimates weighted for precision. It provides consistent estimates when at least 50% of the weight
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comes from valid genetic instruments and as long as no one genetic instrument contributes > 50% of the

weight375. The weighted mode assumes the true causal effect is the most common effect, it is robust

when the majority of effect estimates are derived from valid instruments376.

Canalization, whereby what would otherwise be developmentally deleterious genetic effects are

nullified by compensatory mechanisms, is broadly equivalent to non-adherence in an RCT. Any effects

of canalization would attenuate effect sizes363, however there are currently no methods to detect its

presence in an MR context. The effects of canalization are unlikely to be present in MR studies which

utilise maternal genotypes for environmental exposures of the offspring such as during gestation377. For

complex traits, it is possible that canalization occurs at the level of the system rather than at the gene

level378. As such, any outcome of a genetic mutation in regards to its role in the canal would likely be

unpredictable. Though being aware of the underlying biology can inform analyses, it is not currently

possible to account for for canalization in MR analyses.

In both one-sample and two-sample MR, IVs are often obtained from external GWAS. Increasingly,

these are large and well-powered GWAS able to identify ever increasing numbers of SNPs associated

with complex traits such as BMI45,48,49,53,54. As power has increased, the ability to detect SNPs with

smaller effects which explain ever smaller proportions of variance in BMI has increased53. This holds

potential considerations in regards to population structure and the effects of an omnigenic model29. As

discussed, population structure was thought to have been an issue in smaller studies and could be

accounted for by adjustment. However, well-powered studies have shown both latent structure372,373 and

an inability to perform adequate adjustment379. This has potential implications, not only for the effect

sizes of associated SNPs but also for the identification of SNPs associated with the trait379. For example,

a poorly or un-adjusted GWAS could identify SNPs associated with population differences rather than

the trait of interest.

When MR was first described, traits were instrumented mostly using a small number of well charac-

terised SNPs. These SNPs would explain a small amount of trait variance, but the underlying biology

was understood. More recently, GWAS are, and have been, able to identify large numbers of SNPs

which explain ever larger proportions of trait variance. With this added power however comes a more

complex instrument with many potential biological mechanisms linking SNPs to the trait. In an omnigenic

model, variance in a trait of interest is not solely a result of directly related genes (core-genes). Rather,

all genes expressed in relevant cell types have an effect, however small, on the trait of interest29. These
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peripheral genes, which have no obvious direct link to the trait of interest, are mostly in non-coding

regions with regulatory functions67. Given this, the fact that variants associated with complex traits

are dispersed widely across the genome67, and the difficulty in assigning a link between any particular

SNP and an individual gene68, variants associated with complex traits likely implicate many genes with

the trait. Because many of these will be peripheral genes (not core genes), they will ultimately affect

other traits, which in an MR context may include the outcome and thus violate the exclusion restriction

assumption (commonly termed the no horizontal pleiotropy assumption). For example, a GWAS of BMI

identifies SNPs associated with increased BMI. A number of the genes associated with these SNPs are

expressed exclusively in the brain and are associated with behavioural changes. These behavioural

changes are primarily to do with satiety, but some are associated with increased risk-taking behaviours

such as smoking. As such, an association may now be induced between BMI and lung cancer given

there is an association between some of the BMI SNPs and smoking which is a causal risk factor for lung

cancer – it is assumed that smoking is not caused by BMI. In this hypothetical scenario, the pleiotropic

SNPs are known, can be excluded from analyses, and the true causal effect can be estimated.

Additional considerations include random measurement error (random measurement in the exposure

will bias the causal estimate towards the null, and increase the standard error of the causal effect

estimate if in the outcome), Winner’s curse (whereby discovery studies identify larger effects than those

in replication studies), collider bias (conditioning on a variable by adjustment, restriction, or sampling

can induce an association between X and Y , biasing the estimate either away or towards the null),

overlapping samples (specific to two-sample MR, where the exposure and outcome data are obtained

from samples with shared individuals), and vertical pleiotropy (the IV influences multiple traits, including

the exposure, on the same pathway linking the exposure and outcome). Unlike the other considerations,

vertical pleiotropy does not necessarily bias MR results rather it highlights potential intermediates.

Both one- and two-sample MR can be extended to investigate intermediates that sit on the causal

pathway between an exposure and outcome. Mediation analysis in MR is discussed in detail elsewhere380

and can be achieved using two-step381/network MR365 and multivariable MR382 (MVMR). Briefly, media-

tion analysis is interested in identifying the total effect, the direct effect, and the indirect effect; where all

act in the same direction, the proportion of the total effect explained by the mediator (proportion mediated)

can be calculated383. The total effect is the effect of the exposure on the outcome through all mediated

pathways; the direct effect is the effect of the exposure on the outcome through all mediated pathways
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that are not the pathway of interest; the indirect effect is the effect of the exposure on the outcome

through the mediator of interest. These analyses are predicated on the following assumptions: (i) that

there is a causal effect of the exposure on the mediator and of the mediator on the outcome; (ii) that

there is no confounding between exposure, mediator, and outcome; (iii) that there are no intermediate

confounders; (iv) that there is no interaction between the exposure and mediator383.

In two-step MR (Figure 1.3), the indirect effect is calculated by multiplying the effect of the exposure

on the intermediate and the effect of the intermediate on the outcome. The three core MR assumptions

(and all previous considerations) must still be met and also extended: (i) the IV (Z1 & Z2) must be

robustly associated with the exposure or intermediate only (X and M ), (ii) the IV for the exposure (Z1)

and intermediate (Z2) must not be associated with measured or unmeasured confounders (U ), (ii) the IV

for the exposure (Z1) must not be associated with the intermediate (M ) or the outcome (Y ) other than

through the exposure (X), and the intermediate IV (Z2) must not be associated with the exposure, and

only with the outcome (Y ) through the intermediate. No interaction between exposure and intermediate

is also assumed. Two-step MR has been used384–386 and combined with MVMR387 to gain better insight

into disease aetiology, but is not strictly speaking mediation analysis.

M

U

XZ1

Z2

Y

Figure 1.3: Directed acyclic graph of the two-step Mendelian randomization principle. Z = instru-
mental variable; X = exposure; M = intermediate; U = confounders; Z2 = instrumental variable for M; Y =
outcome.
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MVMR is a form of mediation analysis which allows for the causal effects of multiple exposures on an

outcome to be estimated382 (Figure 1.4). The effect of each exposure is estimated conditional on the other

exposures and thus provides a direct estimate of the effect. Figure 1.4 shows a simplified MVMR model

with two exposures (X1 and X2). The indirect effect is estimated by subtraction of the direct effect from

the total effect. The total effect is calculated using univariable MR. As with two-step MR, no interaction

between exposure and intermediate is assumed. Though a new approach, and still subject to the same

assumptions as with two-step and univariable MR, MVMR has shown promise in elucidating underlying

aetiology of complex traits387–390. Though two-step MR was devised with epigenetic mechanisms in

mind381 and MVMR has shown promise investigating metabolic intermediates389, their application to

large omic data sets is yet to be shown.

U

X1

X2

Z1

Z2

Zn

Y

Figure 1.4: Directed acyclic graph of the multivariable Mendelian randomization principle using
two exposures. Z = instrumental variables associated with one or more of the exposures; X1 = exposure;
X2 = second exposure (mediator); Y = outcome; U = confounders.

An alternative approach is to look for overlapping signals (commonly known as a meet-in-the-middle

approach)391. Generally, this is considered in three steps: 1) association between exposure and outcome;

2) association between candidate intermediate of the exposure and outcome; 3) association between

outcome and candidate intermediate of the exposure. Evidence for an association is strengthened if

observed across all three steps392. In this regard, the effect of the exposure on the candidate intermediate

and the effect of the candidate intermediate on the outcome are ranked in terms of their effects and an
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intermediate is considered if it ranks highly in both analyses393.

1.9 Previous work

Metabolites have been a focus of research for some time, with many population-based studies

collecting data on traditional biomarkers (e.g., glucose and cholesterol). As technologies such as MS

and NMR have progressed, the number of metabolites able to be studied at scale has increased. There

is evidence for an association between adiposity and metabolites287,288,351,394–403. These studies show

associations between BMI and metabolites vary between sexes and over time287,398; associations are

stronger287,398 and appear earlier in men398. There is also evidence for associations with metabolites

and BF398, WC397,402; WHR399, and visceral adipose tissue401,404. These large scale metabolomics

studies have also highlighted numerous associations between metabolites and other outcomes, from

type 2 diabetes405 and CHD406, to depression407, hypertension408, and more1,409–416. Evidence also

suggests that metabolites can distinguish between cancers and adenomas185.

Few studies have investigated the explicit link between adiposity, metabolites, and disease

outcomes288,417–419. Evidence suggests that BMI is linked to changes in specific metabolites and

metabolite classes, and that several of these are subsequently associated with, or predictors of, later

health outcomes such as insulin resistance418. However, these studies288,417–419 have three main

limitations: (i) they involved a small number of individuals (N = 140-1,761), (ii) used a single measure of

adiposity (BMI), or (iii) used methods that are unable to establish causality.

Evidence from MR analyses suggests numerous associations between adiposity and

metabolites287,420–423. Although many studies have focussed on curated lists of metabolites, in

larger analyses, fewer associations are found than with observational analyses287,422,424. MR studies

have revealed this relationship to be a complex network of cause and effect, with metabolites being

causes of, or effects of, adiposity424. Work by Hsu et al. (2020)424 found that associations with adiposity

were mechanistically different based on whether a metabolite was identified as a cause or as an effect of

adiposity. The causal relationship between metabolites and outcomes is much less well studied, likely

due to challenges in instrumentation – few metabolites have been associated with robust and strong

instruments. A number of associations have been identified between metabolites and health outcomes,
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including type 2 diabetes422,425, fasting glucose422,425, colorectal cancer423, CHD426, and more427–430.

Few studies have looked causally at the pathways linking adiposity with metabolites and outcomes.

Xu et al. (2017)385 performed a two-step two-sample MR of BMI and HDL, low density lipoprotein

cholesterol (LDL), and triacylglycerides on CHD, but did not find evidence for a pathway effect. Recently,

Bull et al. (2020)423 used MR to investigate the effects of BMI and WHR with 123 metabolites on

colorectal cancer. Metabolites associated with BMI and/or WHR (N = 104) were used in univariable and

MVMR to establish associations with colorectal cancer. Intermediate density lipoproteins (IDL) and very

large density lipoproteins (VLDL) showed consistent directions, both were increased by BMI and WHR,

and both increased CRC (distal colon cancer) risk. In MVMR analysis, associations for BMI and WHR

were not attenuated after adjusting for either metabolites, suggesting these metabolites may not play an

intermediate role in the relationship between adiposity and colorectal cancer.

There is evidence of a causal effect of adiposity on metabolites, of metabolites on diseases, and of

adiposity on diseases. However, only the study by Bull et al423 has investigated the pathways linking

adiposity with metabolites and outcomes causally. Their analyses were likely subject to weak instrument

bias however. Future analyses require more detailed metabolomic measures, with large sample sizes

able to identify strong and robust instruments in order to fully address this question.

1.10 Aim and objectives

Adiposity is a global health concern. Many of the consequences of adiposity have been characterized

but the underlying aetiology is not well understood. Adipose tissue is a prolific signalling organ with

systemic effects, some of which are likely to affect the metabolome. Individual metabolites have been

associated with many diseases but the complexity of the network makes these analyses difficult. MR

studies provide an opportunity to investigate and disentangle the complex relationship between exposure,

intermediate, and outcome. These studies must be approached carefully given the interrelatedness

of metabolites. In light of these considerations’ this thesis aims to: Identify metabolites that sit on

the causal pathway between adiposity and disease. In order to achieve this aim, this thesis will

investigate the following objectives:
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1. Perform a systematic review and meta-analysis (Chapter 2) of all MR studies in which a measure

of adiposity was used as an exposure, identifying diseases that will guide later analyses (Chapter

6).

2. Produce a visualisation tool that enables global overview of metabolite results (Chapter 3).

3. Identify metabolites associated with adiposity using observational epidemiological analysis with

individual level data (Chapter 4).

4. Identify metabolites that may be causally impacted by adiposity using MR (Chapter 5).

5. Identify associations between adiposity-associated metabolites (Chapter 4 and 5) and adiposity-

associated outcomes (Chapter 2) using univariable and MVMR (Chapter 6)
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Chapter 2

Systematic review: What has the

application of Mendelian randomization

told us about the causal effect of

adiposity and health outcomes?

Chapter Summary

This Chapter details a systematic review and meta-analysis of 173 Mendelian randomization (MR)

articles investigating the effects of adiposity on over 300 different outcomes. In Chapter 1, focus was

given to the underlying literature around adiposity, what adipose tissue is, why in excess this can

be detrimental to health, what observational studies have taught us about adiposity, and potential

mechanisms for relationships between adiposity and disease. Here, the focus is on the causal effects

of adiposity and what Mendelian randomization studies have revealed about the relationships between

adiposity and disease. Results reveal the broad effect of adiposity on many health outcomes, with meta-

analyses highlighting a number of outcomes (e.g., endometrial cancer, colorectal cancer, cardiovascular

disease) for follow up analysis in Chapter 6. This work was pre-registered on PROSPERO105.

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42018096684


Work in this chapter was performed in collaboration with Charlie Hatcher, Luke A McGuinness,

Nancy McBride, Thomas Battram, Si Fang, Wenxin Wan, and Kaitlin H Wade who all contributed to data

extraction. I performed all other work.
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2.1 Introduction

Observational studies have indicated that adiposity is strongly associated with all-cause and cause

specific mortality83,87–89,101–106, and numerous risk factors and diseases105,108–142,149–153,155–157,160–170

,172,185–193,197–202,204,206–219,223,224,231–235,237–249,251–257,259–268,271,274–277,281,283,284,286–293. This includes

the most common diseases, such as cardiovascular disease (CVD)105,109,110,118,135–153,155–157 and many

cancers105,108,121–134, along with common risk factors such as high blood pressure142,287. See Chapter

1 Section 1.5 for more detail.

As discussed in Chapter 1 Section 1.8, observational studies hold a number of limitations that can

not easily be overcome, e.g., confounding and reverse causation. These limitations can lead to biased

results158,180,356–359 and, although an observational study may identify an association between two

traits, this does not mean that one trait causes the other; they may be correlated because of shared

causes, for instance. Furthermore, in observational studies, it is difficult to obtain the causal direction of

effect as the temporal sequence is generally unknown356. Ideally randomised controlled trials (RCTs)

would be conducted to aid our understanding and identify causal effects, however these are costly, time

consuming, and can be unethical given the assumption that adiposity is detrimental to health. Mendelian

randomization (MR) analyses provide a method of obtaining causal effects outside of RCTs362. By

using germline genetic variants, which are randomly assigned and fixed at conception, randomization

analogous to an RCT can be achieved (See Chapter 1 Section 1.8). There has been a rise in MR studies

published in the years since it was first widely reported on in 2003362.

Systematic reviews enable global overview of the literature and provide avenues for hypothesis

generation. In combination with meta-analyses, systematic reviews can be used as a method for

improved causal inference as pooled estimates can be more precise than estimates from individual

studies431. The MR literature has not been systematically appraised with respect to the causal effect of

the effect of adiposity on health outcomes. Here, a systematic review and meta-analysis are presented

and will be used to inform downstream analyses within this thesis, namely selecting outcomes for

which adiposity is most relevant and to test associations with adiposity-related metabolic intermediates

(Chapter 6).
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2.2 Methods

2.2.1 Data sources and search strategy

EMBASE and MEDLINE were searched from inception (EMBASE = 1974; MEDLINE = 1946) until

February 18th 2019 using detailed search strategies including free text and controlled vocabulary terms.

The full search strategy is available on GitHub. The pre-print service, bioRxiv, was also searched from

inception (November 2013) until February 18th 2019. However, due to the limited search functionality

and inability to include Boolean operators (‘AND’, ‘OR’, ‘NOT’) in bioRxiv searches, a restricted search

strategy using four free text terms in four independent searches was used: ‘Mendelian randomization’,

‘Mendelian randomisation’, ‘causal inference’, and ‘causal analysis’. ‘Adiposity’ and related search terms

were not used as this would have identified a much larger body of work, and given Boolean operators

could not be used, filtering this larger body for studies which performed MR would have been more time

consuming than filtering MR studies which used adiposity as an exposure.

The search strategy included synonyms for both adiposity and MR terms. For adiposity measures,

this was to ensure searches returned all possible instances in which a measure of adiposity was used.

For MR, synonyms were used as the term ‘Mendelian randomization’ has only been formalised recently

and many early studies would have either been unaware they were performing an instrumental variable

(IV) analysis or would have called the method something else.

2.2.2 Study selection

Articles returned through the searches of EMBASE and MEDLINE were downloaded as .ris files

and imported into EndNote (version X8.2; Clarivate Analytics). De-duplication of articles identified in the

EMBASE and MEDLINE searches was based on pagination identifiers described in detail elsewhere432.

Articles returned from bioRxiv were imported into Mendeley using the Mendeley Google Chrome

extension and de-duplication performed using the Mendeley de-duplication function. After de-duplication,

the titles and abstracts of all remaining articles from EMBASE, MEDLINE, and bioRxiv had their titles

and abstracts screened by two independent reviewers (myself and Luke A Mcguinness) using Rayyan433.

Each reviewer screened all articles and discrepancies at this stage were resolved through discussion
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between the two reviewers. Studies from EMBASE, MEDLINE, and bioRxiv meeting the pre-defined

inclusion criteria (see below) were combined and, in instances where the bioRxiv study had been

published and this was identified in either the EMBASE or MEDLINE search, the bioRxiv version of the

study was excluded. The full texts of all studies that met inclusion criteria were screened by the two

reviewers.

For title and abstract screeening and for full text screening, articles must have met the following

pre-defined inclusion criteria:

1. Be written in English.

2. Be available in full text (or in the case of conference abstracts, the authors must be contactable to

obtain the relevant data).

3. Be published in a peer-reviewed journal or bioRxiv.

4. Use MR methodology to investigate the causal effect of adiposity on any outcome.

a. Adiposity was considered to be any measure which aimed to assess the amount of adipose

tissue an individual possessed.

b. If a study focussed on adiposity alongside other exposures, the effect of each adiposity

measure was reported separately if available. If it was not available the joint effect was

reported.

c. Articles in which an MR approach was used but not explicitly called ‘Mendelian randomization’

was included. More specifically, any study in which genetic variants are used as instrumental

variables or the direct association between a genetic variant and outcome was employed was

eligible, provided it met the other inclusion criteria.

2.2.3 Data extraction

In the first instance, data extraction was performed by nine reviewers (See Contributions), with articles

split evenly between them, using a data extracton form (GitHub) and data extraction manual (GitHub)

which I created. Once all articles had been reviewed, two reviewers (See Contributions) extracted data

on all articles they did not review in the first instance. The same two reviewers then checked all extracted

data for discrepancies, which were resolved through a third review of individual articles and subsequent
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discussion.

In some cases, articles included in the data extraction contained more than one relevant MR analysis.

As such, the words “study” and “studies” refer to the MR analysis and analyses within an article. The

following data were extracted from each of the studies from all of the contributing articles: exposure(s),

outcome(s), study design and sample characteristics, genetic variant and IV selection, MR methodology,

sensitivity analysis, and causal estimates. Where relevant data was not reported by the article, “Not

discussed” was entered into the data extraction form.

Once data extraction was completed, three additional columns were added to summarise the type of

outcome being studied: column 1 (“outcome”) was used as a general categorisation of all outcomes

across articles (e.g., the outcome “ER- breast cancer” would have the value “breast cancer”); column 2

(“outcome info”) reported the outcome-specific information that distinguished outcomes within categories

defined in column 1 (e.g., column 2 would contain the value “oestrogen recepter negative (ER-) breast

cancer” for the same breast cancer example); and column 3 (“outcome group”) categorised outcomes

more generally than values defined in column 1 (e.g., the breast cancer example would be categorised

as “cancer”). Outcome categories were assigned based on prior biological knowledge and aimed to

collapse the large number of outcomes. This could be achieved differently for some outcomes, for

example smoking could go in a “respiratory” category or a “behavioural” category. Where there were few

outcomes to make a category, they were grouped into an “other” category. This will include outcomes

such as mortality, disease counts, epigenetic marker, etc.

2.2.4 Quality assessment

There is currently no risk of bias tool to assess the quality of MR articles. Because of this, some

reviews have not reported on the quality of MR studies434,435. However, more recent studies have begun

to investigate quality, either by using pre-existing risk of bias tools specific to other areas or by creating

their own assessment tool436–447. Some of these tools have been influenced by the recent publication of

MR reporting guidelines448 (STROBE-MR). The STROBE-MR guidelines allow readers to evaluate the

quality of the presented evidence.

For this systematic review, the tool used by Mamluk et al (2020)437 was adapted and used for quality
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assessment of studies included in the meta-analyses. Study quality was assessed on a 3-point scale

(low = 3, medium = 2, high = 1; Appendix Table A.2) across 12 questions. These 12 questions included

the five used by Mamluk et al., (2020)437. One of these five questions, relating to bias due to selection

of participants, was split into two questions for exposures and outcomes to accommodate two-sample

MR analyses. In addition, questions for IV association, sample overlap, whether the study performed

sensitivity analyses and whether these were biased, descriptive data, data availability (data missingness),

and statistical parameters were included. Given no formal risk of bias tool exists, quality assessment

here was not used as a prerequisite for inclusion/exclusion in the meta-analyses. Rather, it was used to

supplement the meta-analyses and aid interpretation.

2.2.5 Meta-analysis

To identify studies which could be meta-analysed, a set of rules were used (Figure 2.1). These rules

ensured that the exposure and outcome were consistent across studies, but also that there was no

population overlap between the different studies of an outcome or between the different studies that

provided the exposure and outcome data. Sample overlap can induce bias in MR studies449. Where

there was sample overlap between outcome data of one study and the outcome data of another study,

or where there was sample overlap between the exposure data of one study and the outcome data of

another study, the study with the larger sample size was retained. Excluding studies with overlapping

outcome data or overlapping exposure and outcome data would involve including non-independent

data and result in overly precise estimates449. Finally, studies were excluded based on whether the

MR method was comparable and then on whether the units where compatible with one another (e.g.,

where both studies reported a standard deviation (SD) increase in body mass index (BMI)). Studies

using the same population samples for the exposure data were included as the risk of bias is low449. For

completeness, studies were not excluded based on the quality assessment score, but are discussed

later in this Chapter when interpreting the meta-analysis findings.

In a fixed effects meta-analysis, the assumption is that all effect estimates estimate the same effect.

In MR analyses, we assume that studies using the same exposure and outcome will be estimating

the same effect, but that the exposure and outcome is subtly different among different populations

given instrumentation and measurement error and therefore consider these to be related effects. In a

random-effects model the assumption is that the studies estimate related effects450,451. Meta-analysis
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was performed using the meta452 package in R and the function metagen(), using an inverse-variance

weighted random-effects model. In an inverse variance weighted fixed-effects model, a weighted average

is calculated as:

weighted average =
∑
Yi(1/SE2

i )∑
(1/SE2

i )
(2.1)

Where, Yi is the causal effect estimates in the ith MR study, SEi is the standard error of that estimate,

and the summation (
∑

) is across all studies. In a random-effects model, SEi is adjusted to incorporate

heterogeneity among study effects (τ2). In this, a random-effects model will weight smaller studies

more than a fixed-effects model would, as they provide more information on the distribution of effects

as opposed to more information on the overall effect. This does not mean that random-effects models

account for heterogeneity; random- and fixed-effects models will give identical results when there is no

heterogeneity.

Following this and considerations in the Cochrane handbook, an inverse variance weighted random-

effects model using estimates and standard errors was used. Where standard errors and effect estimates

were not available for a study (e.g., confidence intervals (CIs) and odds ratios were available), these

were back calculated manually. For binary outcomes, the relevant summary method was used for odds

ratios, risk ratios, and hazard ratios, etc. For continuous outcomes, the mean difference was used for the

underlying summary method. For completeness, and given this is a hypothesis-generating process, a

multiple testing threshold was not used. For both binary and continuous outcomes, the Hartung and

Knapp method to adjust CIs to reflect uncertainty in the estimation of between-study heterogeneity453,454,

which is recommended for random-effects models455,456, was used where ≥ 5 studies were included

in the meta-analysis455. Between study variance was estimated for all meta-analyses using the Paule-

Mandel estimator457, for which simulation studies have shown good performance compared to other

estimators458. When presenting results, “increase” and “positive” refer to, for example, a higher BMI or

an increase in the risk of type-2 diabetes; “decrease” and “negative” refer to, for example, a lower BMI or

a decreased risk of type-2 diabetes.
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Is the exposure the
same*?

Is the outcome the
same*?

Is there overlap
between outcome

samples?

Is there overlap
between exposure

and outcome
samples?

Meta-analyse

Yes

Yes

No

No

Yes

Yes

No

No

Do not meta-analyse

Figure 2.1: Inclusion criteria for meta-analysis: flowchart. Mendelian randomization (MR) analyses
were included in meta-analyses if they met the conditions set out in the flowchart and in Section 2.2.5 in
regards to sample overlap. * = MR analyses had to use the same exposure and the same outcome to be
compatible, e.g. for the exposure, body mass index (BMI) could not be meta-analysed with any other
exposure that was not BMI. This also applies to outcomes, e.g., the outcome oestrogen negative (ER-)
breast cancer could not be meta-analysed with breast cancer, it could only be meta-analysed with ER-
breast cancer.



2.2.6 Narrative synthesis

In order to gain a global picture of reported causal effects, a narrative synthesis was performed. All

articles that were not included in the meta-analyses, and are therefore likely to be non-independent,

were included in the narrative synthesis. MR analyses that were included in the meta-analyses were

not included in the narrative synthesis. The outcome categories were used to guide the synthesis. The

narrative synthesis summarised the reported directions of effect estimates across outcome categories,

including a summary of the evidence for selected exposures and outcomes. Given that studies may not

report p-values, these were not the focus here. The synthesis is presented in alphabetical order of the

outcome categories.

Given the non-independence of studies included in the meta-analysis, and the focus on summarising

directions of effect estimates, the synthesis should be interpreted as an overview and not as definitive

evidence for a causal effect. For a complete picture, or to look at specific exposure-outcome pairs, data

are available on GitHub. When presenting results, “increase” and “positive” refer to, for example, a higher

BMI or an increase in the risk of type-2 diabetes; “decrease” and “negative” refer to, for example, a lower

BMI or a decreased risk of type-2 diabetes.

2.3 Results

2.3.1 Literature search

In total, 8,376 articles were returned from the combined search of EMBASE (N = 3,772), MEDLINE

(N = 3,638), and bioRxiv (N = 966). After combining the articles from EMBASE and MEDLINE, de-

duplication resulted in the removal of 1,500 articles (N = 5,910). De-duplication of bioRxiv search results

removed 293 articles (N = 673). Published bioRxiv articles were dealt with at the data extraction stage.

The 5,910 articles from EMBASE and MEDLINE were combined with the 673 articles from bioRxiv and

titles and abstracts were screened. A total of 277 articles were retained after title and abstract screening

(xml file that can be imported into a reference manager is available on GitHub).

Of the 277 articles included in the full text screening, a total of 104 articles were removed for the

48

https://github.com/mattlee821/000_thesis/blob/master/index/data/SR/analysis/data_extraction.xlsx
https://github.com/mattlee821/000_thesis/tree/master/index/data/SR/data/full_text_screening_277.xml


following reasons (with number of articles removed indicated in brackets): a conference abstract with

no response within 6 months from the author or there was no data available from the authors (25),

conference abstracts with the full paper included in the search (23), duplicates not excluded by the

de-duplication process (23), not using a measure of adiposity as the exposure (15), a commentary

(8), erratum (3, the corrected papers were identified in the search), not MR (i.e., regression of single

nucleotide polymorphism (SNP) on trait; 4), a conference proceeding (1), not available in English (1),

and preprint paper in which the published paper did not include an MR of an adiposity measure (1). After

full text screening, 173 articles were included in the analysis (PDFs available on GitHub).
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Figure 2.2: PRISMA flowchart. k gives the number of articles at each stage. MR = Mendelian
randomization



2.3.2 Data extraction

Articles from bioRxiv included in data extraction were replaced with their published version if available.

Of the 23 included bioRxiv articles, 18 were published once data extraction began and were included

instead of the bioRxiv article. One bioRxiv article was excluded as the published version did not include

the MR analysis. The remaining 4 bioRxiv articles were included. The majority of articles were published

in the past 5 years (Figure 2.3) and one-sample MR was the predominant analysis performed across the

173 studies (Figure 2.4).
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Figure 2.3: Distribution of publication year and average exposure and outcome sample sizes
across included studies up to February 2019. The number of articles included per year is given on
the left Y axis; the right Y axis gives the average sample size for exposure (grey) and outcome (red) for
each year. Outcome cases and controls were summed within analyses for binary outcomes.
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Figure 2.4: Distribution of study design across 173 included articles. The majority of the 173
included articles reported more than one Mendelian randomization (MR) analysis. Where a study
performed a bi-directional MR analysis and adiposity was the secondary analysis (i.e., to check for
reverse causation), this was recorded as a bi-directional MR analysis. One-sample and two-sample
MR meta-analysis indicates that the meta-analysis included MR analyses that were both one- and
two-sample designs. Generalized summary data-based MR allows for, and models, correlated SNPs
within the instrument. Factorial MR is analogous to a factorial randomized controlled trial, whereby
individuals are grouped using genetic scores (generally in a 2 x 2 approach). An MR-PheWAS is the
investigation of a single trait on many, potentially hundreds, of outcomes. Direct G-O refers to an MR
analysis which used instruments from a single locus, e.g., the FTO locus.

A total of 2,214 MR analyses were performed across the 173 studies (i.e., many studies conducted

multiple MR analyses). This included 31 exposures and 659 outcomes. The majority of the 2214 MR

analyses used BMI as the exposure (Table 2.1). After formatting the outcome data into three columns

of (column 1) general outcome (e.g., breast cancer), (column 2), analysis specific outcome (eg., ER-),

and outcome category (e.g., cancer), a total of 311 general outcomes were available and grouped into

16 outcome categories. Of the 311 outcomes, smoking was used in the most MR analyses followed by

asthma and DNA methylation (Table 2.2). The largest proportion of outcomes were grouped into the
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metabolic and cancer categories (Table 2.3). The “other” category included 118 methylation outcomes,

68 mortality outcomes, and a handful of the following outcomes: age related macular degeneration,

cataract, disease count, hernia, sleep, and physical activity. Categories, as discussed in the methods,

were assigned based on prior biological knowledge.

Table 2.1: Number and frequency of exposures used across all 2214 MR analyses

Exposure N %

BMI 1509 68.16

WHRadjBMI 156 7.05

WHR 112 5.06

birth weight 102 4.61

WC 50 2.26

BF 45 2.03

fat mass 37 1.67

BMI increasing and WHR decreasing 20 0.90

BMI increasing and WHR increasing 20 0.90

obesity 15 0.68

WCadjBMI 14 0.63

fat percentage 10 0.45

HC 10 0.45

hepatic fat 10 0.45

non-fat mass 10 0.45

sum of skinfolds 10 0.45

total body fat 10 0.45

fat mass index 9 0.41

fat-free mass 9 0.41

HCadjBMI 9 0.41

favourable adiposity 7 0.32

overweight 7 0.32

fat free mass 6 0.27

lean mass 6 0.27
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Table 2.1: Number and frequency of exposures used across all 2214 MR analyses (continued)

Exposure N %

body fat mass 5 0.23

central obesity 4 0.18

adiponectin 3 0.14

Obesity class 1 3 0.14

weight 3 0.14

body non-fat mass 2 0.09

body fat 1 0.05

BMI = body mass index; WHR = waist hip ratio;

WHRadjBMI = WHR adjusted for BMI; WC = waist cir-

cumference; WCadjBMI = WC adjusted for BMI; HC =

hip circumference; HCadjBMI = HC adjusted for BMI;

BF = body fat percentage.

Table 2.2: Number and frequency of the 10 most used outcomes across all 2214 MR analyses

Outcome N %

smoking 175 7.90

asthma 122 5.51

methylation (cpg) 118 5.33

coronary artery disease 87 3.93

breast cancer 80 3.61

mortality 68 3.07

depression 58 2.62

lung cancer 52 2.35

stroke 49 2.21

osteoarthritis 47 2.12
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Table 2.3: Number and frequency of outcomes within each outcome category across all 2214 MR
analyses

Group N %

metabolic 404 18.25

cancer 352 15.90

respiratory 318 14.36

cardiovascular 285 12.87

other 235 10.61

mental health 127 5.74

skeletal 95 4.29

anthropometric 85 3.84

brain 73 3.30

hepatic 71 3.21

social 71 3.21

renal 34 1.54

reproductive 19 0.86

gastrointestinal 17 0.77

skin 16 0.72

immune 12 0.54

Outcome groups were assigned based on prior biological knowledge and aimed to collapse the large

number of outcomes. This could be achieved differently for some outcomes, for example smoking could

go in a ‘respiratory’ group or a ‘behavioural’ group. Where there were few outcomes to make a group,

they were grouped into an ‘other’ group. This will include outcomes such as mortality, disease counts,

epigenetic markers, etc.

2.3.3 Quality assessment

Studies that contributed to the meta-analyses were assessed for quality using a modified version

of the assessment criteria devised by Mamluk et al. (2020)437. Studies were assessed on a 3-point
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scale across 12 questions, with values ranging from 12-36. Analyses with lower scores (12-19) were

considered to be of higher quality, with high scoring (28-36) studies considered lower quality. Scores

in-between were of medium quality. The average assessment score was 24 (Figure 2.5). Individual

studies were assessed as opposed to the article, as most articles conducted multiple studies. Only the

study of the effect of BMI on hemorrhagic stroke by Dale et al (2017)459 was ranked as high quality. The

majority of studies (24) were assigned a medium quality score. All of the six low scoring studies showed

consistent directions of effect with the other studies with which they were meta-analysed. Quality scores

are presented alongside the meta-analysis results (Figures 2.6 and 2.8).
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Figure 2.5: Quality assessment: distribution of quality assessment scores for studies included
in the meta-analyses. “High” indicates a study scored highly; “low” indicates a study scored poorly. QA
= quality assessment score.

2.3.4 Meta-analysis

In total, 31 meta-analyses were conducted using data from 34 articles, and 70 studies. A majority

of studies were excluded due to a lack of meta-analysable data (i.e., only one MR analysis looked at a
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given exposure-outcome pair). Additional reasons for exclusion were: population overlap, incompatible

units, and incompatible MR models. A majority of the 34 studies contributed to just one meta-analysis.

A number of studies undertook multiple MR analyses which were included in multiple meta-analyses:

four studies contributed to two meta-analyses, three studies to three meta-analyses, two studies to four

meta-analyses, two studies to seven meta-analyses, and one study to eight meta-analyses (Table 2.4).

Table 2.4: Number of times an article was used in meta-analyses

Article N

Gao et al. 2016460 8

Censin et al. 2019461 7

Fall et al. 2013420 7

Gharahkhani et al. 2019462 4

Holmes et al. 2014421 4

Jarvis et al. 2016463 3

Wang et al. 2018464 3

Xu et al. 2017385 3

Dale et al. 2017459 2

Kar et al. 2018465 2

Shu et al. 2018466 2

Wurtz et al. 2014287 2

Ostegaard et al, 2015467 1

Brower et al. 2018468 1

Day et al. 2018469 1

Kivimaki et al. 2008470 1

Klarin et al. 2017471 1

Larsson et al. 2017472 1

Larsson et al. 2018473 1

Lindstrom et al. 2017474 1

Lv et al. 2018475 1

Lyall et al. 2016476 1

Nordestgaard et al. 2017477 1

Painter et al. 2016478 1
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Article N

Palmer et al. 2011479 1

Richardson et al. 2019480 1

Shapland et al. 2019481 1

Skaaby et al. 2018482 1

Speed et al. 2019483 1

Tyrrell et al. 2019484 1

van den Broek et al. 2018485 1

Wade et al. 2018486 1

Wang et al. 2018487 1

Yarmolinsky et al. 2019488 1

For all binary outcomes, results are given per SD unit increase, such that an odds ratio (OR) is

the change in the outcome per SD unit increase in the exposure. Studies which used risk ratios and

hazard ratios were excluded from the meta-analysis following the rules set out in Figure 2.1, e.g., sample

overlap. For continuous outcomes, results are given as the mean difference (MD) and reflect an average

unit change in the outcome per SD unit increase in the exposure. The term “effect estimate” is used

throughout.

In the meta-analyses, there were 22 binary outcomes and 9 continuous outcomes. Overall, the

strongest and most consistent evidence across the meta-analysis suggested a causal effect of BMI on

endometrial, colorectal, ovarian, and lung cancers, as well as ischemic stroke, venous thromboembolism,

type 2 diabetes, SBP and fasting glucose; of WHR on colorectal cancer and CAD; and of WHRadjBMI on

CAD. For the 22 binary outcomes, 2 tests (birthweight on ER- breast cancer and coronary artery disease

(CAD)) had negative effect estimates. Both tests had CIs which spanned the null. The remaining 20 tests

had positive effect estimates, 13 of which had CIs that did not span the null (Figure 2.6). The majority

of MR analyses included in these meta-analyses had a medium quality assessment score. The MR

analysis by Dale et al., (2017)459 of BMI on haemorrhagic stroke was the only analysis to score highly.

The four studies which had a low quality assessment score did not have weights that were drastically

different compared to the other MR analyses in those meta-analyses; all but one had tight CIs which did

not cross the null.
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For the 9 continuous outcomes, 3 tests (BMI on high density lipoprotein (HDL; analysed with SD and

mmol/L units) and low density lipoprotein (LDL; mmol/L)), had negative effect estimates with CIs which

spanned the null. The remaining 6 tests had positive effect estimates, 2 (BMI on systolic blood pressure

(SBP; mmHg) and fasting glucose (mmol/L)) of which had CIs that did not span the null (Figure 2.8).

Two meta-analyses included MR studies which were ranked low for quality assessment; the study by

Shapland et al., (2018)481 had comparable weight to the other two studies investigating BMI on SBP. The

study by Wang et al., (2018)487 investigating Homoeostatic Model Assessment for Insulin Resistance

(HOMA IR) had a much larger weight than the study by Kivimaki et al., (2008)470, a result of a larger

population. The remaining studies had a medium quality assessment score, none of which showed

estimates that deviated strongly from the effects of the other MR analyses in those meta-analyses.
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Figure 2.6: Meta-analysis: effect estimates and 95% confidence intervals for binary outcomes.
Forest plot shows effect estimates and 95% confidence intervals (CIs) from a meta-analysis of 22
different exposure-outcome pairs. MR analyses included based on criteria in Figure 2.1. QA = quality
assessment score; OR = odds ratio; CI = confidence interval. Available on GitHub. Forest plots of
individual meta-analyses are also available on GitHub.
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Figure 2.7: Meta-analysis: effect estimates and 95% confidence intervals for binary outcomes
continued. Forest plot shows effect estimates and 95% confidence intervals (CIs) from a meta-analysis
of 22 different exposure-outcome pairs. MR analyses included based on criteria in Figure 2.1. QA =
quality assessment score; OR = odds ratio; CI = confidence interval. Available on GitHub. Forest plots of
individual meta-analyses are also available on GitHub.

https://github.com/mattlee821/000_thesis/blob/master/index/data/SR/figures/meta_analysis_results_figures/binary_outcomes2.pdf
https://github.com/mattlee821/000_thesis/tree/master/index/data/SR/figures/meta_analysis_results_figures
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Figure 2.8: Meta-analysis: effect estimates and 95% confidence intervals for continuous out-
comes. Forest plot shows effect estimates and 95% confidence intervals (CIs) from a meta-analysis of
9 different exposure-outcome pairs. MR analyses included based on criteria in Figure 2.1. QA = quality
assessment score; MD = mean difference; CI = confidence interval. Available on GitHub. Forest plots of
individual meta-analyses are also available on GitHub.
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Three outcomes were investigated using more than one exposure, CAD with waist hip ratio (WHR)

and WHR adjusted for BMI (WHRadjBMI), colorectal cancer with BMI and WHR, and type 2 diabetes

with BMI and WHRadjBMI. There was strong evidence for an effect of WHR (OR per SD unit increase =

1.63; 95% confidence interval (CI) = 1.4 – 1.91) and WHRadjBMI (OR per SD unit increase = 1.4; 95%

CI = 1.33 – 1.47) on CAD. When looking at colorectal cancer, WHR (OR per SD unit increase = 1.48;

95% CI = 1.08 – 2.03) and BMI (OR per SD unit increase = 1.18; 95% CI = 1.01 – 1.37) showed similar

effects with overlapping CIs. For type 2 diabetes, BMI (OR per SD unit increase = 2.06; 95% CI = 1.90

– 2.24) and WHRadjBMI (OR per SD unit increase = 2.06; 95% CI = 1.9 – 2.24) both showed strong

estimates with overlapping CIs.

All remaining tests were conducted with BMI (in SD units) as the exposure. Except for the negative

effect on breast cancer, BMI was found to be associated with an increase in all cancers tested (colorectal,

endometrial, lung, ovarian, and prostate), CIs crossed the null only for prostate cancer (OR = 1.08; 95%

CI = 0.91 – 1.28). The strongest evidence for an effect was found for venous thromboembolism (OR

= 1.58; 95% CI = 1.33 – 1.87) and type 2 diabetes (OR = 2.06; 95% CI = 1.90 – 2.24) - asthma also

showed strong evidence but with a smaller effect size (OR = 1.11; 95% CI = 0.99 – 1.25). There was

weak evidence for an effect of BMI on ischemic and haemorrhagic stroke, hypertension, arthritis, and

Alzheimer’s disease, with effect estimates close to the null and CIs spanning the null.

The weights for each study included in the individual meta-analyses were broadly even (e.g., in a

meta-analysis of three studies, each study had a weighting of roughly 33%). The exceptions, where one

study had a much larger or much smaller weight than the other(s) was for: BMI and asthma, BMI and

polycystic ovary syndrome (PCOS), BMI and haemorrhagic stroke, BMI and total cholesterol, BMI and

HOMA IR, and BMI and LDL. There was evidence of heterogeneity within the included studies, 8 of 22

binary outcomes and 5 of 9 continuous outcomes had heterogeneity statistics with p-values < 0.05, e.g.,

BMI on endometrial cancer I2 = 92% (p-value < 0.01; Table A.4). However, given no meta-analysis met

the requirements for heterogeneity statistics (≥ 5 studies; See Cochrane Handbook)489, these results

should be interpreted with caution. Heterogeneity statistics and weights are presented in Figures 2.6

and 2.8, as well as Appendix Table A.4.
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2.3.5 Narrative synthesis

A total of 2144 studies were not included in the meta-analyses. Though many of these could not be

included because they did not meet certain requirements for inclusion (e.g., overlapping populations),

they still provide information on the potential effects of adiposity. Using the 16 categories used to group

outcomes, these effects are summarised here, in alphabetical order with the “other” category at the end.

Where there are a large number of studies, a summary of the directions of effect are given. Given that

studies use a variety of transformations, units, and models, comparison of the magnitude of effect is

not appropriate. Instead, the focus here is on directions of effect estimates and whether evidence is

consistent across studies. Evidence for selected exposure-outcome pairs is also summarised. For a

complete picture, or to look at specific exposure-outcome pairs, data are available on GitHub.

Anthropometric

A total of 85 studies were reported across 9 articles for anthropometric outcomes. These studies were

generally investigating the effect of maternal adiposity on offspring anthropometric traits. This included

analyses of birthweight, BMI, hip circumference adjusted for BMI (HCadjBMI), waist circumference

adjusted for BMI (WCadjBMI), and WHRadjBMI on similar anthropometric traits such as adipose tissue

volume, birth length, body fat, head circumference, leg fat, and trunk fat. The majority of effect estimates

were positive (N = 60; negative = 24). A single MR analysis (BMI on offspring BMI) had an effect estimate

of 0. A number of other analyses focussed on offspring traits as the outcome with both positive and

negative effect estimates. The study by Winkler et al. (2018)36 used a unique instrumentation method,

using a composite measure of BMI, WHR, and WHRadjBMI, for example BMI increasing and WHR

increasing SNPs were used as a genetic instrument.

Generally, the effect of adiposity on anthropmetric traits was to increase them, but this is likely

a reciprocal relationship, i.e., increased BMI leads to increased WHR and increased WHR leads to

increased BMI.

64

https://github.com/mattlee821/000_thesis/blob/master/index/data/SR/analysis/data_extraction.xlsx


Cancer

A total of 332 studies were reported across 39 articles for cancer-related outcomes. This included

analyses of all cancers, cancer mortality, cancer types such as breast and prostate, and subtypes such

as ER- and ER+ breast cancer. A majority of effect estimates were positive (N = 189; negative = 137),

while six studies of breast, kidney, lung, and prostate cancer showed effect estimates approximately

equal to 1. A majority of analyses with positive effect estimates had CIs which spanned the null. The

same was true for negative effect estimates.

Of the 31 cancer outcomes, three showed negative effect estimates – cervical (with BMI and

WHRadjBMI), clear cell (with BMI), and gastric (with BMI) cancers – while 14 showed positive effect

estimates. This included overall cancer mortality (with BMI) and cancer risk (with BMI). The remaining

cancer types with positive effect estimates included Barrett’s esophagus (with BMI), colon (with BMI),

esophageal (with BMI), lymphoid (with BMI), meningioma (with BMI, WC, and BF), rectal (with BMI),

renal (with BMI, WHR, and BF), skin (including melanoma; with BMI), and stomach and esophageal (with

BMI). Low malignant potential tumors also showed a positive effect estimate with BMI. The remaining 13

cancer types had positive and negative effect estimates. This included any cancer, breast, colorectal,

endometrial, glioma, kidney, lung, multiple myeloma, ovarian, pancreatic, prostate, testicular, and upper

aerodigsetive cancers.

Results suggest adiposity increases overall cancer risk and risk of mortality. However, this risk is

modulated by cancer type and subtype. In the case of cancers with only negative effect estimates,

these cancers were only analysed once, where as cancers like breast and lung, which where measured

multiple times, showed both positive and negative effect estimates.

Cardiovascular

A total of 274 studies were reported across 50 articles for cardiovascular-related outcomes. This

included analyses of 11 continuous traits and 19 binary outcomes. Exposures included birth weight, BMI,

body fat mass measures, HC, WC, WCadjBMI, weight, WHR, and WHRadjBMI.

In total, 83 studies investigating the effect of adiposity with continuous traits were reported across
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22 articles. The majority of these studies reported positive effect estimates (N = 69; negative = 14). Of

the 11 traits, four had a single reported MR result (left ventricular mass, mean arterial pressure, pulse

pressure, and pulse wave velocity) – all had positive effect estimates except pulse wave velocity. Of the

seven remaining traits, five had both positive and negative effect estimates. Effects on heart rate were

negative with wide CIs, while effects on carotid-intima media thickness (IMT) were positive with some

studies reporting effect estimates with CIs that did not overlap the null for BMI and WHRadjBMI.

Of the five traits with positive and negative effect estimates, diastolic blood pressure (DBP) showed a

negative effect estimate solely in relation to the effect of birthweight, and SBP showed weak evidence for

a decreasing effect of BMI and birthweight. There was much stronger evidence for an increasing effect on

SBP and DBP across BMI, WHR, and WHRadjBMI. The positive and negative effect estimates associated

with heart beat were associated with CIs which spanned the null for both BMI and WHRadjBMI. For

carotid IMT, evidence appeared stronger, with narrower CIs which did not spanned the null, for an

increasing effect of BMI. Evidence for an effect of BMI and WHRadjBMi on left ventricular hypertrophy

was weak and dependent upon the method used to assess hypertrophy.

In total, 191 studies investigating the effect of adiposity with binary outcomes were reported across

35 articles. Nine of these studies were from a single article which only reported p-values for the effect

of BMI on CAD. Of the remaining 182 studies, the majority reported positive effect estimates (N = 139;

negative = 43). There was strong evidence across multiple studies for the effect of BMI on CAD and

CVD and results also supported an effect of WHRadjBMI, WCadjBMI, and WHR. Though there was

evidence for an effect of BMI on heart failure, there was weak evidence for a similar effect of WHRadjBMI

on the same outcome. There was strong evidence for an effect of fat mass and fat free mass on

increased risk of arrythmia, but only weak evidence for a similar effect from WHRadjBMI and birthweight.

There was conflicting evidence for an effect of increased BMI on myocardial infarction (MI). When using

BMI increasing and WHR decreasing instruments MI risk decreased while when using BMI and WHR

increasing instruments, MI risk increased. There was also weak evidence of increased birthweight

reducing MI risk. There was strong evidence across many different adiposity measures for an increased

risk of deep vein thrombosis (DVT).

Though there were some conflicting results, BMI and MI for example, and some analyses reported

both positive and negeative effect estimates for the same exposure-outcome pairs, BMI and SBP for

example, on balance reported results support an increasing effect of adiposity on cardiovascular traits.
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Evidence was strongest for the effect of adiposity on CAD, CVD, and DVT.

Gastrointestinal

A total of 17 studies were reported across 5 articles for gastrointestinal-related outcomes. This

included analyses of inflammatory bowel disorders, Helicobacter pylori infection measures, gallstone

disease, and peptic ulcers. All but one analysis of the effect of of BMI on irritable bowel syndrome had

a positive direction of effect. There was evidence for an effect of birthweight on inflammatory bowel

disease and some evidence for an effect of BMI on peptic ulcers, however weak evidence for an effect of

WHRadjBMI on peptic ulcers. All other analyses showed weak evidence of effect.

As no exposure-outcome pairs were analysed by more than one study, it is hard to draw conclusions

from the available evidence, however effect estimates were mostly positive across studies.

Hepatic

A total of 71 studies were reported across 6 articles for hepatic-related outcomes. In total, 11

outcomes were reported, of which the majority of analyses (N = 40) were for three liver markers: alanine

transaminase (ALT), aspartate transaminase (AST), and gamma-glutamyl Transferase (GGT). All but

two binary outcomes (the effect of low BMI and low alcohol consumption on liver disease) had positive

directions of effect. 14 of the 40 liver markers had negative directions of effect. AST was reported once

with strong evidence of a reducing effect of BMI. Analyses of ALT and GGT used multiple measures

across multiple studies, for example adjusting for alcohol consumption. Results support an increasing

effect of increased BMI on ALT and GGT, which persisted after adjustment for alcohol consumption. The

remaining 8 outcomes were only investigated by a single article. Evidence was found for BMI and WHR

on chronic liver disease and BMI, WHR, and WHRadjBMI on NAFLD.

Broadly, there was strong evidence for an increasing effect of adiposity on all hepatic traits identified.
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Inflammation and immunity

A total of 12 studies were reported across 5 articles for immune-related outcomes. In total, 8

outcomes were reported. Seven studies reported negative directions of effect; five studies reported

positive directions of effect.

Overall, there was weak evidence for an effect of adiposity on all outcomes, except for an increasing

effect of BMI on dermatophytosis (though weak evidence for an effect of WHRadjBMI) and BMI on

psoriasis.

Mental health

A total of 124 studies were reported across 22 articles for mental health-related outcomes. A total of

66 studies reported positive directions of effect; 38 studies reported negative directions of effect; 4 studies

reported effect estimates equal to 0; the remaining studies did not report an effect estimate. In total,

27 outcomes were reported, though 16 of these were reported only once - all showed weak evidence

of an effect (e.g., attention deficit hyperactivity disorder, anorexia nervosa, being a worrier/nervous

person, body dissatisfaction (evidence from weight and shape concern analyses showed a negative

effect of BMI), and happiness). Of the remaining 11 outcomes, the majority of analyses focussed on

depression. Across the 11 articles which looked at depression, there was strong evidence for an effect of

adiposity increasing depression. When excluding non-neuronal SNPs (which will influence adiposity at a

cellular as opposed to behavioural level), the effect of BMI was reduced and CIs crossed the null484. This

would suggest that the association with depression is not a result of behavioural changes associated

with adiposity. Rather, the association is likely due to the physicality of adiposity and probably the

stigmatization associated with that. There was weak evidence for an effect of BMI on anxiety. There

was weak evidence for an effect of increased BMI on increased loneliness. Similarly, there was weak

evidence for a decreasing effect of BMI, WHR, WC, and BF on subjective wellbeing. There was some

evidence for a decreasing effect of BMI and WHR on stress/nervous feelings, however weak evidence

was found for all other psychological distress traits. Binge eating and overeating increased as a result of

increased BMI.

On balance, there appears to be an association between adiposity and mental health traits, particu-
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larly body image-related traits. However, this association is likely not a direct result of adipose tissue, but

is perhaps a result of sociological factors.

Metabolic

A total of 380 studies were reported across 51 articles for metabolic-related outcomes. In total, 27

outcomes were reported. A total of 266 studies reported negative effect estimates; 89 studies reported

positive effect estimates; the remianing studies did not report effect estimates. A majority of studies were

of the effect of metabolites, many of which were reported once. Although the majority of metabolite effect

estimates were positive, CIs for many spanned the null. There was, for example, weak evidence for an

increasing effect of BMI on cholesterol, however strong evidence for an effect of WHRadjBMI. C-reactive

protein (CRP) was investigated with BMI across 9 studies with all but two reporting strong evidence

for an increasing effect of BMI on CRP levels. BMI was found to decrease levels of apolipoprotein

A-I and increase apolipoprotein B levels; there was weak evidence for an increasing effect of BMI

and WHRadjBMI on apolipoprotein A-IV. There was strong evidence for a decreasing effect of BMI,

WHRadjBMI, and birthweight on HDL levels; there was weaker evidence for an overall effect of adiposity

on LDL – WHRadjBMI was strongly associated with a increase in LDL, while birthweight showed a

decreasing effect on LDL. BMI showed weak evidence of both increasing and decreasing effects on LDL.

There was also strong evidence for an increasing effect of BMI, WHR, and WHRadjBMi on triglycerides

(TG).

There was strong evidence for an effect of increased BMI, WHR, WHRadjBMI on fasting glucose;

there was weaker evidence for an effect of childhood BMI and birthweight on fasting glucose. There was

weak evidence for an effect of BMI (adult and childhood) on two hour glucose test (there was evidence

for a decreasing effect of birth weight), and weak evidence for an increasing effect of BMI on non-fasting

glucose. There was strong evidence for an effect of BMI on hyperuricaemia as well as uric acid. Weaker

evidence was reported for an effect of BMI (adult and childhood) and WHRadjBMI on glomerular filtration

rate, creatine, and creatinine. There was strong evidence for an increasing effect of BMI, WHR, and

WHRadjBMI on fasting insulin. There was however weak evidence for an increasing effect of BMI on

insulin secretion. Binary outcomes reported broadly increasing effects of adiposity. For example, there

was strong evidence for an effect of increased BMI on increased diabetes (type-1, type-2, and all).

Similarly strong evidence was reported when using birthweight, childhood BMI, WHR, WHRadjBMI, and
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WC. Strong evidence for an effect of BMI and WHRadjBMI on increased dyslipidemia and metabolic

syndrome was reported, but there was weak evidence for an effect of BMI and WHRadjBMI on hyper-

and hypo-thyroidism and iron deficiency.

The effect of adiposity appears far reaching in regards to metabolic traits. This effect is generally to

increase levels of traits that are themselves associated with poor health outcomes.

Neurological/behavioural

A total of 67 studies were reported across 21 articles for brain-related outcomes. This included

analyses of Alzheimer’s disease, amyotrophic lateral sclerosis (ALS), dementia, multiple sclerosis (MS),

Parkinson’s disease, and stroke. Bipolar disorder, schizophrenia, cognitive ability, grey matter volume,

and migraine were also present. Exposures included birth weight, BMI, WHR, and WHRadjBMI - BMI

was used in the majority of analyses. The majority of effect estimates were positive (N = 45; negative

= 17). Two analyses (BMI on stroke (ischemic small vessel) and dementia) had an OR of 1. Effect

estimates appeared larger on the whole when in the positive direction, however in many cases across

both the positive and negative estimates, CIs spanned the null.

On balance, results suggest adiposity increases the risk of all types of stroke. However, for all other

outcomes, there appears conflicting or weak evidence for an effect.

Renal

A total of 34 studies were reported across 4 articles for renal-related outcomes. Only one study, the

effect of WHRadjBMI on renal failure, reported a negative direction of effect. All other studies reported a

positive direction of effect. A majority of analyses looked at renal failure (N = 20) which showed strong

evidence for an increasing effect of BMI, WHR, and WHRadjBMI. These analyses were however from a

single study461. A similar picture is present for BMI and renal disease which was investigated by a single

study490, as well as macroalbuminuria and BMI490. There was weak evidence for an increasing effect of

childhood BMI and birth weight on chronic kidney disease.

As few articles looked at renal-related outcomes, it is difficult to draw conclusions given a lack of

70



replication. However, the general trend is for an increasing effect of adiposity on the risk of renal-related

traits and renal diseases.

Reproductive

A total of 17 studies were reported across 5 articles primarily for menarche (age at and early onset).

All studies reported positive directions of effect except for the two studies on age at menarche. The two

studies reporting on age at menarche and BMI and childhood BMI found strong evidence that adiposity

decreased age at menarche,491,492 which is associated with poor health outcomes in later life. The

remaining 15 analyses on early menarche were reported by one study493 and showed evidence that BMI,

total body fat, fat free mass, sum of skinfolds, HC, and WHR all lead to an earlier menarche. One study

reported evidence of an increasing effect of BMI on PCOS469, while another reported weak evidence for

an increasing effect of WHRadjBMI on uterine fibroids494.

Overall, there is therefore compelling evidence that adiposity is detrimental in regards to all reproduc-

tive traits.

Respiratory

A total of 316 studies were reported across 13 articles for respiratory-related outcomes. A majority

of these analyses were for smoking outcomes (N = 175) such as age at initiation, status, number

of cigarettes per day, as well as comparisons between smoking status (e.g., ever vs never). Of the

non-smoking respiratory studies, 11 studies reported negative directions of effect, the remaining 123

reported positive directions of effect. Of the smoking respiratory studies, 81 reported negative directions

of effect and 90 reported positive directions of effect. There was strong evidence for an effect of BMI,

WHR, and WHRadjBMI on current smoking status. There was also evidence for a positive effect of BMI

on lifetime smoking. There was weak evidence for an effect of BMI on former vs current and experimental

vs never smoking. There was some evidence for an effect of BMI on ever vs never smoking, increasing

the odds of being an ever smoker. There was similarly an increasing effect on ever being a smoker for

BMI, WC, and BF – this effect modulated when including/excluding neuronal/deprivation related SNPs.

The majority of the remaining studies were for asthma and asthma subtypes. There was broadly weak
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evidence for an increasing effect of BMI on asthma. There was some evidence for an increasing effect of

BMI on chronic obstructive pulmonary disorder as well as for an increasing effect of BMI on wheezing,

and decreased lung volume measures (forced vital capacity and forced expiratory volume).

Overall adiposity appears to increase the likelihood of being a smoker as well as having respiratory

conditions such as asthma.

Skeletal

A total of 93 studies were reported across 13 articles for skeletal-related outcomes. A total of 20

studies reported negative directions of effect; 70 reported positive directions of effect; 3 did not report an

effect estimate. A majority of studies were for arthritic outcomes (arthritis and osteoarthritis), though

evidence was conflicting. There was some evidence for an increasing effect of BMI on rheumatoid

arthritis and gout, however weak evidence for an effect of WHRadjBMI. Strong evidence was reported

for an increasing effect of BMI, WC, and HC on osteoarthritis (self report, hospital diagnosed: hip, knee),

however weak evidence for an effect of WHR and birth weight. One study reported an effect of BMI

on osteoporosis, where there was evidence of an increasing effect. There was strong evidence for an

increasing effect of BMI and fat mass on bone mineral density (including site-specific bone mineral

density), and some evidence for an increasing effect of trunk fat mass on bone mineral content.

On balance, the effect of adiposity is detrimental to skeletal traits. This is especially true for arthritic

traits, where body composition as opposed to deposition appears to be more important.

Skin

A total of 16 studies were reported in 1 article495. Budu-Aggrey et al., (2019) investigated the effect

of BMI on psoriasis using one- and two-sample MR analyses. To strengthen evidence for a causal effect,

they meta-analysed one- and two-sample MR results and performed the reverse MR investigating the

effect of psoriasis on BMI. All studies reported a positive direction of effect. There was strong evidence

for an increasing effect of BMI on psoriasis and weak evidence for an effect of psoriasis on BMI.
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Social

A total of 71 studies were reported across 12 articles for social-related traits such as income,

education, and employment. A total of 14 studies investigated the effect of adiposity on income, 9 of

these reported a negative direction of effect and 5 reported a positive direction of effect. Of the remaining

57 non-income related studies, 41 reported a negative direction of effect, 12 reported a positive direction

of effect, and 4 reported an effect estimate of 0. Overall, there was evidence across 12 studies for a

decrease in income as a result of increased BMI. There was weak evidence for an effect of BMI on

cohabitation and for an increasing effect on socioeconomic status. Evidence was conflicting for an effect

of BMI on education traits such as years in education and degree status. There was weak evidence for a

decreasing effect of BMI on employment traits such as years employed, employment status, and job

class. Data on physical activity was not well reported. There was weak evidence for a decreasing effect

of BMI on risk taking behavior, satisfaction with family, friends, finances and work. However, there was

evidence for a decreasing effect on health satisfaction.

On balance, the effect of adiposity seems detrimental for social-related traits. Similar to the evidence

for mental health traits, these results are unlikely to be a consequence of adipose tissue and are instead

likely consequences of sociological factors such as stigmatization.

Other

Where outcomes could not easily be grouped into one of the previous categories, there were grouped

into the “other” category. A total of 235 studies were reported across 82 articles for outcomes that could

not easily be grouped into one of the previous categories. A total of 65 studies reported a negative

direction of effect, 86 reported a positive direction of effect, the remaining studies were for methylation

sites and did not report an effect estimate. A majority (N = 118) of studies were a hypothesis-free

investigation of the effect of BMI on DNA methylation. Few of these analyses reported an effect estimate

(N = 34). Of those reporting an effect estimate, a positive direction was reported for 13 studies and

a negative direction for 21 studies. There was weak evidence for an effect of BMI. Of the remaining

117 studies, 68 looked at the effect of BMI on mortality and cause specific mortality. There was weak

evidence for an effect of BMI on cause specific mortality across the board, including for all cancer, all
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cardiovascular, cancer specific, respiratory, and stroke. There was also weak evidence for an effect on

all cause mortality.

Of the remaining 49 studies, there was weak evidence for an effect of increased BMI on multiple

sleep traits (over-/under-sleeper, hours slept, chronotype etc.). There was however evidence for an

increasing effect of BMI on daytime sleepiness. There was some evidence for a decreasing effect of

BMI on physical activity, including moderate to vigorous physical activity. Fat mass index showed similar

effects, however childhood BMI did not appear to show a similar effect on physical activity. There was

weak evidence for an effect of BMI on cataract and macular degeneration.

2.4 Discussion

2.4.1 Summary of the evidence

Observational studies have highlighted numerous risk factors and diseases associated with adiposity.

However, observational studies are limited, for example by confounding and reverse causation, and can

lead to biased results158,180,356–359. Many MR analyses have been conducted which add to the body

of evidence in a way that is analogous to RCTs. Here, 173 articles and over 2,000 MR analyses were

reviewed. Meta-analyses and narrative synthesis of the MR analyses provided an overview of the causal

landscape of adiposity, revealing strong evidence for an increasing effect of adiposity on the risk of many

cancers as well as cardiovascular traits, type-2 diabetes, and depression. Weaker evidence was found

for an inreasing effect of adiposity on asthma, liver disease, kidney disease, and reproductive traits such

as PCOS. Results are broadly consistent with the observational literature (See Chapter 1).

The 31 meta-analyses included data from 70 studies from 34 articles investigating the effect of

adiposity. A majority of the 34 articles contributed to just one meta-analysis of a particular outcome.

Where articles contributed to more than one meta-analysis, these were related meta-analyses i.e.,

an article contributing to a meta-analysis of colorectal cancer also contributes to a meta-analysis of

endometrial cancer. There was strong evidence that adiposity increased many cancer types (e.g.,

colorectal, endometrial, lung, and ovarian cancers), CVD (e.g., ischemic stroke, CAD, and hypertension),

metabolic factors (e.g., type 2 diabetes) and neurological disorders (e.g., depression). There was weaker
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evidence for an effect of adiposity on breast and prostate cancer, haemorrhagic stroke, arthritis, asthma,

HDL, and LDL.

Given over 300 outcomes were identified in the systematic review, it was not possible to summarise

the effect of adiposity on each of outcome. Instead, the narrative synthesis aimed to compliment the meta-

analyses and provide an overview of the directions of effect estimates across outcome categories. There

was general consistency between results from the meta-analyses and the narrative synthesis. However,

given there were many more studies included in the narrative synthesis there was variability within

outcomes. For example, there was strong evidence for an increasing effect of adiposity on endometrial

and colorectal cancer in the meta-analysis, but within the narrative synthesis there were studies which

reported evidence of an increasing, protective, and null effect of adiposity on both cancers. For colon

cancer, there was weak evidence for an effect of adiposity, while the narrative synthesis suggested there

was evidence for an increasing effect of adiposity. In the narrative synthesis, effect estimates crossed the

null in many analyses of the effect of adiposity on cancers, whereas in the meta-analyses this occurred

less frequently. Broadly, the narrative synthesis highlighted that associations varied depending on the

type and subtype of the cancer. This is reflected in the observational literature, for example increased

BMI is associated with a reduced risk of prostate cancer121, but also with an increased risk of advanced

prostate cancer123.

Differences in the effect of adiposity on cancers across meta-analyses and the narrative synthesis

are observed for many other traits. For example, the narrative synthesis suggested evidence for an

increasing effect of adiposity on haemorrhagic and ischemic stroke, while meta-analyses suggest

this association is present for ischemic stroke only. For the majority of cardiovascular traits however

there was broad consistency across the meta-analyses and narrative synthesis for a broad effect of

adiposity, including effects on SBP, CAD, and atherosclerosis. These findings are consistent with

those from observational studies, with evidence suggesting adiposity increases risk of CVD135,136,

as well as thrombosis139, atherosclerosis149, hypertension142, and ischemic stroke155,156. There are

some inconsistencies with the observational literature however, notably for the effect of adiposity on

haemorrhagic stroke, where evidence for an effect of adiposity was weak in meta-analysis but is strong

in observational analyses155,156. This may be due to limitations of observational analyses such as

confounding and reverse causation, but may also be a limitation of the meta-analysis as only two studies

were included.
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Broadly speaking, there was greater similarity between results from the meta-analyses and evidence

from the narrative synthesis with the observational literature than there were differences. For instance,

there is a large body of evidence for an increasing effect of adiposity on type 2 diabetes and fasting

glucose172 in the observational literature which was evident from the narrative synthesis and meta-

analyses. There was also evidence in the narrative synthesis for an effect of adiposity on a broad number

of metabolites which is also found in the observational literature287,288. However, evidence for an effect

of BMI on HDL (decrease) and LDL (increase), which is repeatedly found in observational studies287,288,

was weak in the meta-analysis. These inconsistencies may reflect (i) the unbiased estimates that MR

analyses are able to obtain in comparison to observational studies or (ii) the complexity of instrumenting

complex traits such as BMI (which is discussed in later chapters).

Of particular note are the effects of adiposity on depression. In the meta-analysis, there was

evidence for an increasing effect of BMI on depression. In the narrative synthesis, there was also strong

evidence for an increasing effect of BMI. In observational studies, there was also strong evidence for an

increasing effect of BMI on depression227. However, when excluding SNPs that are associated with the

physicality of BMI (i.e., SNPs associated with adipose tissue and not behavioural change), the effect

of BMI on depression was attenuated, and CIs spanned the null484. This would suggest the effect of

BMI on depression is not a result of behavioural characteristics associated with BMI, and is instead a

consequence of physical changes and thus sociological factors. This example highlights the strength,

and importance, of using multiple methods to obtain evidence for an effect. Of particular importance with

these analyses is the prior knowledge of the genetics of BMI and the understanding that SNPs identified

in genome-wide association studies (GWAS) do not associate with the phenotype through the same

pathways, rather, these associations can be both biological and sociological.

2.4.2 Quality

The majority of studies included in the meta-analyses did not rank highly; one analysis was ranked

as high quality and the majority were ranked as medium. The study by Dale et al., (2017)459 of the effect

of BMI on haemorrhagic stroke only just received a high score, scoring 19 (12-19 = high quality); seven

studies scored 20. Although not included in the meta-analyses due to sample overlap, the study by

Tyrrell et al., (2019)484 would likely have received a high quality score due to the detailed investigation

of the three MR assumptions and potential biases associated with their analysis of the effect of BMI
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on depression. The areas in which studies could have improved in their scoring was in relation to the

selection of exposure and outcome samples, data availability, and statistical parameters. Specifically,

few studies provided full and accurate information on the data they used, this included not providing

a list of exposure instruments. There were also studies which did not fully or accurately report on the

statistical methods and parameters used, for example, studies employing two-sample MR rarely reported

whether they allowed for the use of proxy SNPs. In addition, some studies did not report how they had

identified SNPs as being independent of one another. These examples are unlikely to affect the results

of an analysis, but they do call into question the reliability of results and whether they can be replicated.

The analyses that ranked low did not appear to have undue influence on the resulting meta-analyses.

Quality assessment focussed solely on the MR analyses and the information reported by the studies. As

such, missing or incomplete information resulted in analyses scoring poorly. Complete data extraction

was not possible for any MR analysis. Given that data extraction was based upon the STROBE-MR

guidelines, this suggests important information was missing from all analyses. Most commonly data

was not extracted because the authors did not report it. As the STROBE-MR guidelines have now been

published448, it is expected that the reporting quality of studies will improve, especially if journals and

reviewers require a STROBE-MR checklist be reported.

Many of the MR analyses included in the meta-analyses used summary statistics from publicly

available GWAS. Those that did not, performed their own GWAS. The quality assessment did not

however include evaluation of these GWAS. Given, MR analyses rely upon GWAS to identify instruments

the quality of the identifying GWAS is of importance. It is clear from the reporting of the MR studies

included here, especially those performing two-sample MR, that there is some confusion around GWAS

papers; GWAS papers are not necessarily written with epidemiologists in mind. A number of the MR

analyses incorrectly reported information. This was primarily found in the reporting of instruments. For

example, stating the use of summary statistics describing the association between genetic variation

and BMI in individuals from European ancestries from Locke et al., (2015)48 but reporting data from

individuals of all ancestries from Locke et al., (2015). As no study provided the code, and not all studies

provided detailed information on instruments (i.e., a table of SNPs), it was not possible to check whether

studies incorrectly reporting instrument details also reported different instruments to those they used in

their analyses. For example, some studies stated the use of instruments from Locke et al., (2015) but

included information from other BMI GWAS which identified different numbers of SNPs.
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2.4.3 Limitations

This systematic review and meta-analysis is the first to investigate the causal effect of adiposity

across all outcomes. In total, 173 articles performed 2,214 MR analyses, of which 70 studies form 34

articles were included in meta-analyses of 31 outcomes. Although a majority of the 31 meta-analyses

included just two studies, this work is the largest assessment of the effect of adiposity to date.

Meta-analysis was only possible for 31 exposure-outcome pairs, the majority of which included

just two MR analyses. This was primarily a result of overlapping outcome samples across studies

which would ultimately bias results towards the confounded observational estimate. This is reflective of

replication but also the use of meta-GWAS which incorporate prior GWAS and meta-analysis results

into ever larger GWAS, for example the GWAS of BMI by Yengo et al., (2018)53 is a combination of

the previous BMI GWAS by Locke et al., (2015)48 and data from UK Biobank. The limited number of

analyses included in each meta-analysis prevents meaningful interpretation of heterogeneity statistics,

where ≥ 5 studies are recommended to achieve reliable estimates. As such, when < 5 studies are

included in a meta-analys, the power to detect effects that are greater than the effects of the individual

studies included in the meta-analysis is not sufficient489,496.

On balance, across the meta-analyses and narrative synthesis, adiposity appeared to have an

increasing effect on the majority of outcomes. There were a number of studies which showed conflicting

evidence, however as few studies were available for meta-analyses it was not possible to assess

publication bias through funnel plots. Additionally, a majority of studies did not perform power calculations

prior to or after their analyses. As such, it is difficult to say whether studies were underpowered. In

general, two-sample MR studies are well powered given the use of large publicly available summary

statistics, however there are instances, for example cancer subtypes, where outcome samples (where

the power in an MR analysis is derived) are low.

There were some inconsistencies between evidence from the meta-analyses and narrative synthesis.

This is expected to some degree due to the fact that in meta-analyses the sample size is taken into

account and studies are weighted by this. Whereas, in the narrative synthesis only the direction of

effect was used to summarise the effect of adiposity. Additionally, studies included in the meta-analyses

were non-overlapping, whereas the narrative synthesis will have included numerous studies of the same

exposure-outcome pair with overlapping samples. As a result, effects from the same population are
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likely repeated in the narrative synthesis and so, if a negative effect of adiposity was found for the same

sample over two studies, this will have biased the summation of the overall effect of adiposity.

The systematic search used a broad array of adiposity-related terms in order to capture all possible

adiposity exposures. As there was no restriction on the type of adiposity exposure used, a large body of

work was identified. Although 31 adiposity exposures were identified, the majority (68%) of MR analyses

used BMI as the exposure. Although BMI shows similar relationships to other anthropometric measures

with many diseases75, it does not accurately reflect body composition, and observational studies have

highlighted the potential role for fat deposition, as well as overall fat mass, in the development of many

diseases. Obtaining evidence from multiple measures of adiposity, which capture variation in body

composition and fat deposition in different ways, can prove informative in assessing the underlying

mechanisms of associations. For instance, in the meta-analyses of type 2 diabetes, colorectal cancer,

and CAD, BMI showed similar results to WHR and WHRadjBMI. Where evidence was consistent

across adiposity measures, in particular consistency of body composition measures and fat depositions

measures as in this example, this is likely to suggest that fat deposition is not as important as overall body

composition in the association with disease. If however the effect of WHR was found to be stronger than

BMI in the association with colorectal cancer this would suggest that fat deposition plays a potentially

more important role in disease development. In the case of type 2 diabetes, colorectal cancer, and

CAD there was little difference in the size of effect estimates, though the effect of BMI resulted in tighter

CIs. Though this is perhaps expected given the greater number of instruments used in BMI analyses

compared with WHR analyses.

Although MR studies are robust to confounding and other biases (See 1.8), they are subject to a

number of limitations pertinent to this systematic review. Results of MR studies may represent different

underlying processes to that of observational studies, as exposures in MR studies reflect a lifetime

exposure. In observational studies, the exposures are determined by genetic and non-genetic factors at

that point in time. Additionally, genetic instruments used in MR analyses must be robust and appropriate.

Given the incomplete, and often poor reporting of MR analyses, results must be interpreted cautiously.

This is especially true in regards to instruments with many hundreds of SNPs, which although are likely to

be robust and appropriate, will undoubtedly contain many pleiotropic SNPs. This is because, few studies

actively investigated pleiotropy outside of sensitivity models such as MR-Egger. Studies were excluded

from meta-analysis if there was overlap between the outcome data between studies or between the
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exposure data and outcome data between studies. However, it is likely this was not completely accurate

given not all studies reported the cohorts used in their analyses. Additional limitations of MR analyses,

discussed in Chapter 1 (Section 1.8), including homogeneity and monotonicity may be especially

important in these analyses given effects among different populations may not be homogeneous (i.e.,

the effect of the IV or exposure is not the same for all populations) or monotonic (i.e., the effect of the IV

on the exposure is differential among populations). The main challenge in appraising MR assumptions

is the quality (including written quality) of the studies, but with the implementation of the STROBE-MR

guidelines it is hoped this will improve.

2.4.4 Conclusion

In this systematic review and meta-analyses, adiposity was shown to exert its effect on numerous

outcomes including many cancers, cardiovascular outcomes, and many metabolic traits. Meta-analyses

of 31 exposure-outcome pairs highlighted predominantly increasing effects of BMI. Results are broadly

consistent with the observational literature and provide corroborative evidence for association with

a number of traits including endometrial cancer. Evidence, from meta-analyses and the narrative

synthesis, which was corroborated by observational studies, was particularly strong for the effect of BMI

on endometrial and colorectal cancer, as well as CAD. There was also evidence that these diseases are

associated with metabolic changes (Chapter 1 Section 1.9). The recent availability of a large GWAS for

endometrial cancer497 will enable the investigation of the potential intermediary effects of metabolites in

the association between adiposity and endometrial cancer in Chapter 6.

Even though there were conflicting results in the narrative synthesis for a number of outcomes,

these results should be taken with caution as these summations focussed primarily on the direction of

effect, unlike the meta-analyses which included weights based on sample size. The lack of high quality

studies, and an abundance of missing and incorrect data reported by studies, limits the inferences that

can be made from results. In particular, the limited number of studies included in the meta-analyses

prohibits meaningful interpretation of heterogeneity statistics. Inclusion of non-independent samples

in the narrative synthesis means results must be interpreted cautiously. Taken together, meta-analysis

results are useful but only if the studies have been conducted appropriately as to mitigate any bias. As

the majority of studies were not of high quality, focus should be given to whether evidence from the

meta-analyses and narrative synthesis fits with the wider literature, including observational analyses.
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Given many MR analyses are replications which use the same data-sets, future meta-analyses will

become increasingly difficult without the ability to separate out cohort specific estimates. There is thus

a need for future studies to (i) replicate their work in independent sources (ii) or use datasets that are

independent of previously published results.

The key takeaways from this Chapter are three fold. This review looked at the effect of all measures

of adiposity on all outcomes and found adiposity to have an effect on a broad array of risk factors

and diseases. It found consistent evidence for an effect of adiposity on a number of outcomes across

meta-analyses and a narrative synthesis is corroborated by evidence from the observational literature.

This review highlights the need for more work in understanding the mechanisms of disease development,

with few studies examining intermediate pathways. This thesis will explore whether metabolites, which in

the narrative synthesis were impacted by adiposity, are involved in the relationship between adiposity

and endometrial cancer.
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Chapter 3

EpiViz: a tool to visualise large

association analyses

Chapter summary

The exploration, interpretation, display, and communication of analyses which use a large number

of traits is challenging. Previous studies have used Circos plots, whereby data are presented in a

circular layout, to visualise and provide overview of large association analyses. However, the process of

producing Circos plots is cumbersome and, through personal experience498, has been time consuming

and inefficient. This Chapter details EpiViz, a web application and R package that efficiently produces

Circos plots to summarise and aid interpretation of association analyses. EpiViz is used in following

chapters to gain a global overview and identify patterns of association in observational and Mendelian

randomization (MR) analyses. EpiViz considerably improves the speed and efficiency of producing

Circos plots and has been used in multiple studies1,498,499 since its development. EpiViz is available on

GitHub.

Work in this chapter was performed in collaboration with Osama Mahmoud who helped with initial

code development and Luke McGuinness who helped with aspects of the Shiny application. I performed

all other work.

https://github.com/mattlee821/EpiViz/


3.1 Introduction

Large epidemiological analyses, involving potentially hundreds of associations between exposures

and outcomes, pose a challenge for the digestion and interpretation of results. Data visualisation is key

to improving the exploration, interpretation, communication, and display of data500. This is particularly

relevant for metabolite measures, where looking at a single metabolite may not provide a complete

picture given they are highly inter-correlated. That is, a change in one metabolite is unlikely to occur in

isolation. In addition, a key aim of this thesis is the use of complimentary measurements of adiposity

(discussed in Chapter 1). The ability therefore to provide overview of metabolic profiles and to compare

these across adiposity measures is key to interpreting the effects of adiposity.

Traditionally, forest plots have been used to effectively communicate association analyses and,

have been used successfully for analyses involving metabolites26,413,498,501–503. These studies have

however been limited to a relatively small number of associations between exposures and outcomes,

and have therefore been unable to present a global picture (profile) of metabolic effects. When dealing

with hundreds of variables, forest plots can become cumbersome, requiring many separate plots to be

created in order to present all of the analyses. This makes comparison and the ability to gain global

overview of large analyses difficult.

An alternative approach is to compress information into a circular rather than vertical or horizontal

form. Circos plots504, as implemented in many genetics studies to condense large genomic information

into informative visuals505, provide an efficient visualisation tool for incorporating hundreds to thousands

of data points. Circos plots have been used effectively to communicate results from large metabolomic

analyses1,335,336,498,499,506. However, the Circos software is designed for genomic data and written in

programming languages unfamiliar to many epidemiologists. The R package Circlize507 provides

most of the functionality of the Circos software and is publicly available. However, it is not designed for

association analyses as performed in this thesis. As such, it can be time consuming and inefficient to

produce Circos plots.

In order to efficiently and reproducibly create Circos plots that enable the exploration, interpretation,

communication, and display of large, and complex, epidemiological analyses as conducted in this thesis,

EpiViz was developed. EpiViz is a web application and R package, that builds on the Circlize507
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and ComplexHeatmap508 R packages. It enables data to be presented in a compact form that allows for

the efficient identification of profile changes in metabolomic data specifically for this thesis, as well as

global patterns of associations in high-dimensional epidemiological data.

3.2 Methods

3.2.1 Circos plots for association analyses

EpiViz composes Circos plots using six elements: a template, plotting space, data, an optional

legend, tracks, and sections (Figure 3.1). The template element is a square of defined proportions within

which information is plotted. Each additional element is layered onto the template one after the other.

The plotting space element is an empty circle which is layered and centred on top of the template. Data

is plotted on to the plotting space. An optional extra of the Circos plot, the legend element, takes the

dimensions of the template and creates a separate plotting space that can be layered on to the bottom

of the template element.

The plotting space is separated into tracks and sections. Tracks are laid down as rings within the

plotting space. Each track represents a single element of information such as an exposure or method.

Tracks are numbered from the outside to the centre of the circle and can be coloured separately. Sections

divide the plotting space into distinct areas, much like a pie chart. Sections are defined by a grouping

variable such as a metabolite class or pathways (e.g., class or sub class). A section track is placed at the

outside of the tracks to give a header for each section. The header is referenced in the legend element.

Once the template, plotting space, tracks and sections are laid down, coordinates for each section

and track location can be called to plot the data element. Each track and section coordinate, e.g., track 2

section 3, is treated as an individual plotting space. As such, data can be plotted based on the following

coordinates: track, section, X , Y . The X axis of each track is defined by the number of rows in the data

frame, i.e., a data frame with 100 rows will have an X axis of length 100, with each row given an X axis

coordinate from 1–100. The Y axis is defined by the minimum and maximum of the data for that track,

e.g., effect estimate or p-value. As such, each track and section coordinate, e.g., track 2 section 3, can

be considered an individual plot with a Y axis that is shared by all of the sections in that track. For each
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position on the X axis, the label element of each row is plotted outside of the section header.
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Figure 3.1: Circos plot highlighting the six elements used to plot data. The Circos plot shows three
tracks and 28 sections of data simulated to give an example of the effect of three exposures on over 100
outcomes. Available on GitHub.

3.2.2 Implementation

EpiViz is a Shiny web application and R package. R509 version 3.6.2 and Shiny510 version 1.4.0

were used to develop the web application; R version 3.6.2 was used to develop the R package. Shiny

is an R package that enables the development and deployment of web applications written in the R

programming language. Development of EpiViz was progressive and feedback from colleagues was

vital in this process.
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3.2.3 Operation

The web application is publicly accessible and held under an MIT license. The web application has

been tested on computers running macOS (version 10.14) and Windows (version 10) using: Internet

Explorer (version 11; Windows), Google Chrome (version 79; macOS and Windows), and Safari (version

13; macOS).

The R package is publicly accessible through GitHub and held under an MIT license. The R package

is accessible on all computers with R version 3.3.0 or higher and has been tested on macOS (version

10.14) and Windows (version 10) running R version 3.3.0 or higher.

A legend function is available for both the web application and R package and is implemented using

functions from the ComplexHeatmap508 R package. By default, the colours used for the Circos plot in

both the web application and R package are accessible colours identified using i want hue. Example

data, that I produced, has been provided for users of both the web application and R package. This

example data was sourced from Kettunen et al., (2016)336, which detailed the effect of body mass index

(BMI) on metabolites using Mendelian randomization (MR) using genetic variants associated with BMI in

male, female and sex-combined samples. This data is provided on the Home tab on the web application

and can be accessed with the R package using the EpiViz::EpiViz_data*() function, where * is

1-3, specifying data using male (1), female (2), or sex-combined (3) instruments. Example data can be

produced for use with the web-application and R package using code on GitHub.

Web application

In order to use the web application, a web-browser and an internet connection of at least 1Mbps

is required. No other system requirements are needed. Upon opening the web application, users are

shown example Circos plots created using simulated and the example data described above, and are

directed towards the Home tab. The Home tab provides users with a short summary of the application, a

link to the R package, and example data for use with the app.

The How to tab provides instructions for using the application. Step 1 deals with the preparation of

data, Step 2 deals with how to use the application, and Step 3 provides information on potential next
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steps. Users are instructed to upload one data frame per track of the Circos plot. Each data frame should

be a tab delimited text file and R code is provided for users to achieve this. The user is guided through

an example utilizing the example data of the effect of BMI on metabolites from Kettunen et al., (2016).

Once users have uploaded their data, descriptive information, including a volcano plot (where the

effect estimate from the data is shown on the x-axis and p-value on the y-axis), will be produced

automatically. Users then select the Plot tab, in which they specify the names of the columns in the data

for the: label, section, estimate, p-value, lower confidence interval, and upper confidence interval. The

estimate, p-value and confidence interval detail the association results provided in the data, the label

column details what the user would like to label each association result (e.g., the name of the outcome)

and the section column details how the data should be grouped into sections, for example by metabolite

class. A p-value adjustment (X) can be provided to indicate a p-value threshold in the format
0.05
X

. On

the Circos plot, a solid point is indicated as reaching the p-value threshold. An optional legend function

is provided and users can choose the labels for the legend points. The legend is auto-populated using

the levels in the section column of the uploaded data frame. Finally, an option to use colours accessible

to individuals with colour impaired sight is provided.

R package

Documentation for using the package is available as a README on GitHub. The README includes use

cases and troubleshooting. The R package can be installed and loaded into the current R session directly

from GitHub with the following code:

# Install devtools

install.packages("devtools")

library(devtools)

# Install directly from GitHub

devtools::install_github("mattlee821/EpiViz/R_package")

library(EpiViz)
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Once installed, users can use the example data provided with the package to produce Figure 3.2,

which illustrates the three different types of track available (point, line, bar), using the following R code:

circos_plot(track_number = 3,

track1_data = EpiViz::EpiViz_data1,

track2_data = EpiViz::EpiViz_data2,

track3_data = EpiViz::EpiViz_data3,

track1_type = "points",

track2_type = "lines",

track3_type = "bar",

label_column = 1,

section_column = 9,

estimate_column = 2,

pvalue_column = 3,

pvalue_adjustment = 1,

lower_ci = 4,

upper_ci = 5,

lines_column = 2,

lines_type = "o",

bar_column = 2,

legend = TRUE,

track1_label = "Track 1",

track2_label = "Track 2",

track3_label = "Track 3",

pvalue_label = "<= 0.05")

89



Figure 3.2: Example Circos plot using EpiViz R package and example data. Data presented are
results from Mendelian randomization analyses of the association between body mass index and
metabolites using data from Kettunen et al., (2016)336 using male (blue), female (yellow), and sex-
combined (brown) instruments from Locke et al., (201548. Available on GitHub.

In producing plots using the R package, users are advised to save as PDF using the below code.

This is because the Circos plot is designed to be larger than normal plots, as such viewers like the R

Studio Viewer pane display the plot in a compressed form, squashing the plot. Viewers like this should

be used only as a guide when making the plot. PDF files can be converted to other image formats without
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compression. Users are advised to iterate the sizing of the plot, adjusting the width and height arguments

to get the desired plot size and then adjust the point size argument to increase and decrease the size

of the information in the plot (labels, points, lines, etc.). The values provided in the below code work

with most plots and were used for all examples in this Chapter. In addition, users can adjust the size of

the Circos plot directly using the argument circle_size. The default for circle_size is 25, smaller

numbers increase the size of the circle and larger numbers decrease the size of the circle:

pdf("my_circos_plot.pdf",

width = 30, height = 30, pointsize = 35)

circos_plot(...

circle_size = 25)

dev.off()

Finally, users can adjust the height of tracks individually using track*_height where * refers to the

track number. The default for each track is 20 percent of the total size of the circle, the section track is

fixed at 5 percent of the total size of the circle. The remaining space is at the centre of the circle. Tracks

can be increased in size to occupy more, or less, of the circles size using the following arguments:

circos_plot(...

track1_height = 0.2,

track2_height = 0.2,

track3_height = 0.2)

In order to minimise the time required to maintain the R package, further customisation is achieved

by the users themselves. The function is written to aid this customisation with Default parameters and

Customisable parameters located at the top of the circos_plot() function. Guidance and code is

provided on GitHub to aid user customisation.

3.3 Discussion

Circos plots have been used to visualise and provide overview of large metabolomic association

analyses1,335,336,498,506. When creating Circos plots for Taylor et al. (2019)498, the process was cum-
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bersome and inefficient with each revision requiring me to write bespoke code. EpiViz simplifies and

streamlines the process of making Circos plots. In Bos et al. (2021)1, EpiViz was used to summarise

and visually compare observational and Mendelian randomization analyses of multiple sleep traits on

over 100 metabolites. EpiViz made producing and refining Circos plots for this analysis faster and more

efficient.

The web application is intended for researchers with limited to no experience of R and is in a stable

release. Additions to the web applications functionality are therefore not envisioned. The R package,

also in a stable release, will be the focus of further development as maintenance costs are lower as

there is no requirement for the additional coding of the user interface as with the web application. The

focus of future changes should be on converting the current code style to the tidy style to improve

readability and consistency. This will also improve the ease with which contributions can be implemented.

Additional features should be directed by the needs of the users, this is likely to include additional

plotting mechanics such as the chord diagram, which shows relatedness between nodes. In the case

of metabolites, a chord diagram would provide greater understanding about the relationship between

different sections and individual metabolites. In addition, the ability to filter and choose specific sections

to display would simplify the presentation of key results – currently this is achieved with supplementary

forest plots.

In order to achieve the desired goal of providing global overview of large association analyses, Circos

plots are larger than traditional plots. This poses a challenge for their use in print as there are size

restrictions. Circos plots are therefore ideally suited to online use, however, if large enough, and with

proper sizing of text, they can be used as overview figures in printed media. When used online there is

the potential for creating interactive Circos plots, allowing users to expand and filter the Circos plot as

desired. Interactive plots can be used in online publications such as F1000 which encourage use of the

plotly R package for interactive figures. This can enhance the reader experience, allowing readers to

gain a better understanding of the presented research.

For this thesis, the effect of adiposity on metabolites as a whole and as subclasses, i.e., profiles,

is key to interpreting the effects of adiposity. This is because metabolites are highly inter-correlated

and perturbations rarely happen in isolation. The ability to visualise these profiles can therefore aid the

interpretation of the global effects of adiposity as well as provide context for the effect of adiposity on an

individual metabolite. Forest plots can provide this overview, however the need for many, or very long,
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plots makes summarising results challenging and visually unappealing. Circos plots, while remaining

visually appealing, are able to visualise a far greater number of results and maintain their ability to

provide global overview.

EpiViz is simple and efficient to use. The web app provides a platform for quick and simple plots

to be generated while the R applicaton provides customisation. EpiViz has been successfully used to

interrogate large metabolomic association analyses1,498,499 and will be used throughout this thesis to

achieve the same goals.
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Chapter 4

Associations between multiple measures

of adiposity and metabolites:

observational analysis

Chapter Summary

In Chapters 1 and 2, the link between adiposity and disease from existing literature was presented in

observational and causal analysis frameworks. This work highlighted that adiposity is associated, likely

causally, with many outcomes. A key takeaway from Chapter 1 was that the underlying mechanisms of

disease development are not well understood, but that some relationships between adiposity and disease

may be explained by changes in metabolic pathways. In this Chapter, observational epidemiological

methods are used to explore associations between adiposity and metabolites. The aim of this Chapter is

to provide an observational grounding for subsequent causal analysis work in Chapters 5 and 6, and is

the first of two analyses that will assess the same question with different study designs (i.e., triangulation)

with the next study design presented in Chapter 5.

I performed all of the work in this chapter.



4.1 Introduction

Adiposity is associated with an increased risk of numerous diseases, as well as mortality83,87–89,101–106

(see Chapters 1 and 2). There is a need to understand the mechanisms underlying these associations

so that intervention strategies, which are challenging to implement effectively, can be targeted and more

efficacious.

Adiposity has been linked with many downstream measures that could serve as intermediates

of disease and thus be useful targets for reducing the burden of adiposity. Notably, as adiposity

has been associated with many metabolites287,288,351,394–397,399–403, previous work has highlighted

metabolites100,295,296 as a possible link between adiposity and diseases such as cancer121, coronary

heart disease (CHD)135,136, and type 2 diabetes172. In the largest study to date by Wurtz et al., (2014)287,

adiposity was found to influences whole classes of metabolites including amino acids, fatty acids,

hormones, inflammatory markers, and lipids. Metabolites are intermediate or end products of cellular

processes with multiple functions including those with energy, signalling, transportation, and structural

components. Metabolic effects can be far reaching329,330 and during homeostasis are tightly controlled.

The many functions metabolites have mean that imbalances can be detrimental326,329,330.

Measurement of metabolites has become increasingly common among cohort studies with mass

spectrometry (MS) and nuclear magnetic resonance (NMR) platforms able to perform targeted, semi-

targeted, and untargeted assays. Although there is evidence to show the relationship between adiposity

and metabolites varies between sexes and over time287, the focus of many analyses has been on body

mass index (BMI) as a measure for overall adiposity, has included small sample sizes, and has looked at

a single time-point. While BMI correlates well with, and is a predictor of, many health outcomes72,73, it

is a crude measure of adiposity with several issues, not least the inability to differentiate lean and fat

mass76. Evidence highlights the importance and utility of combining complimentary measurements of

adiposity95,100. As many studies have focussed on the effect of adiposity on metabolites in adulthood

and given the effects of adiposity are shown to present early in life511–515, there is a need to understand

how and importantly when, adiposity-related metabolites may be of most use in reducing the burden

of adverse health outcomes. Investigation of the effects of adiposity over time may therefore provide

additional information on the relationship between adiposity and metabolites.
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The Avon Longitudinal Study of Parents and Children (ALSPAC), a longitudinal birth cohort study,

with repeated metabolomic and anthropometric measures, provides an opportunity to expand on the

current literature. In this Chapter, observational analysis assessing the association between multiple

measures of adiposity and NMR derived metabolites provide a basis from which to investigate causality

with a triangulation approach.

4.2 Methods

4.2.1 Overview

This chapter details hypothesis-free, linear regression analyses that, cross-sectionally, aimed to

identify signals of association between measures of adiposity and NMR-derived metabolites at multiple

time-points in ALSPAC. Data were available from ALSPAC for exposures (measures of adiposity),

outcomes (metabolites), and covariables. Exposures included BMI, waist hip ratio (WHR) and body

fat percentage (BF). Metabolomic data were available for up to 234 NMR derived metabolites. These,

predominantly lipid-based, metabolites include directly measured metabolites such as the amino acids

tyrosine and phenylalanine, as well as derived (not-directly measured) metabolite measures such as the

ratio of saturated fatty acids to total fatty acid. Throughout, “metabolites” is used to refer to both directly

measured and derived (not-directly measured) measures, otherwise they are referred to as “directly

measured metabolites” and “derived” or “not-directly measured metabolites” respectively.

Covariables included age, sex, mother’s or own education, smoking history, alcohol history, diet, and

physical activity. Covariables were chosen as evidence has shown an association between them and

adiposity and metabolites. All data were pre-exisiting, that is I did not collect this data. All analyses and

data manipulation were performed using R (version 3.6.2)509. Specific R packages are described, where

appropriate. All code for this work is available on GitHub.
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4.2.2 Data overview

ALSPAC516–518 is a prospective cohort study that invited women resident in Avon, UK with expected

dates of delivery between 1st April 1991 and 31st December 1992 to participate. The initial number of

pregnancies enrolled was 14,541 (for these at least one questionnaire was returned or a “Children in

Focus” clinic has been attended by 19/07/99). Of these initial pregnancies, a total of 14,676 foetuses,

resulted in 14,062 live births and 13,988 children alive at one year of age. The mothers and fathers

associated with each pregnancy are referred to as generation 0 (G0) while the children of each eligible

pregnancy (including individuals from subsequent recruitment drives) are referred to as generation 1

(G1).

When the oldest G1 individuals were approximately seven years of age, an attempt was made to

bolster the initial sample with eligible cases who had failed to join the study originally. As a result, when

considering variables collected from the age of seven onwards (and potentially abstracted from obstetric

notes), there are data available for more than the 14,541 pregnancies mentioned above. The number of

new pregnancies not in the initial sample (known as Phase I enrolment) that are currently represented

on the built files and reflecting enrolment status at the age of 24 is 913 (456, 262, and 195 recruited

during Phases II, III, and IV respectively), resulting in an additional 913 G1 individuals being enrolled.

The phases of enrolment are described in more detail in the cohort profile paper and its update516–518.

The total sample size for analyses using any data collected after the age of seven is therefore 15,454

pregnancies, resulting in 15,589 foetuses, of which 14,901 were alive at one year of age.

The study website contains details of all the data that is available through a fully searchable data

dictionary and variable search tool. Ethical approval for the study was obtained from the ALSPAC Ethics

and Law Committee and the Local Research Ethics Committees. Informed consent for the use of data

collected via questionnaire and clinics was obtained from participants following recommendations of the

ALSPAC Ethics and Law Committee at the time. Full details of the ALSPAC consent procedures are

available on the study website.

Data in ALSPAC are split by clinic visits. For this work, metabolomic data were available for G1

individuals from the following clinics: Focus at 7 (~8 years old), Focus at 8 (~9 years old), Before

Breakfast Study (~8 years old), Teen Focus 3 (~18 years old), Teen Focus 4 (~17 years old), and Focus

at 24 (~24 years old). Metabolomic data for G0 individuals were available from: Focus on Mothers 1
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(~48 years old), Focus on Mothers 2 (~51 years old), and Focus on Fathers 1 (~53 years old). In order to

maximize the sample size at each metabolomic clinic, data were combined where clinics were within a

similar age range. Data were combined in the following groups for G1 individuals: Focus at 7 and Before

Breakfast Study (children), and Teen Focus 3 and Teen Focus 4 (adolescents). The Focus at 24 clinic

is referred to as young adults. For G0 individuals data from Focus on Mothers 1, Focus on Mothers 2,

and Focus on Fathers 1 were combined into an adults group. For these combined data sets, duplicate

individuals (i.e., those attending both clinics) were identified, and the measurement from the most recent

clinic was dropped.

All data on exposures and covariables were obtained from the same clinic from which metabolomic

data were collected. Where data on exposures and covariables were not available at the metabolomic

clinic visit, they were obtained from the most recent clinic with available data. The Before Breakfast Study,

unlike the other clinics, only collected metabolomic data, as such data on exposures and covariables

were extracted for these individuals from the Focus at 8 clinic. Metabolomic data for each time point

were extracted first and subsequent data on exposures and covariables were extracted for individuals

with metabolomic data. The metabolomic data were provided with standard exclusions for identifiable

individuals and those with withdrawn consent already excluded.

The aim of this analysis was to look cross-sectionally across multiple time points at the associa-

tion between adiposity measures and metabolites. It is important to note that, although G0 and G1

individuals were independent, there is familial overlap between them. Additionally, G1 individuals were

not independent, that is, the same individuals will have attended multiple clinics. As such, any effects

specific to an individual may be propagated through all G1 clinics that individual attends.

4.2.3 Exposures: adiposity

Measures of adiposity (BMI, WHR, and BF) were obtained for all individuals with available

metabolomic data. Data on WHR was not available for the Teen Focus 3 and 4 clinics. BMI was

calculated as
weight(kg)
height(m2) and WHR as

waist circumference (cm)
hip circumference (cm) . Height was measured once to

the last complete mm using the Harpenden Stadiometer. Individuals were positioned with their feet

flat and heels together, standing straight so that their heels, calves, buttocks and shoulders came into

contact with the vertical backboard of the stadiometer. The headboard was lowered until it touched
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the individual’s head and a 1kg weight was placed on the headboard to ensure head contact and to

minimise hair thickness. Weight was measured once using the Tanita Body Fat Analyser (Models TBF

305 and 401A) or electronic bathroom scales, if the individual had a pacemaker. Individuals were

encouraged to pass urine and undress to their underclothes. Individuals stepped onto the measuring

platform which had been wiped with disinfecting alcohol and positioned so that both feet were located in

parallel with the toe and heel in contact with their respective electrodes. Measurement was completed

when the weight and fat ratio readings were fixed and the buzzer beeped. Weight was measured to

the nearest 50g for G1 individuals and to the nearest 0.1kg for G0 individuals. For all G1 individuals,

‘Female Standard’ was entered into the Tanita Body Fat Analyser as the sex variable. Circumferences

were measured using the Seca 200 or 201 body tension tape and were repeated twice for accuracy.

BF was measured using dual-energy x-ray absorptiometry (DXA) in all individuals except for indi-

viduals from Focus at 7. Briefly, measurement required individuals to be prone and stationary while a

Lunar prodigy narrow fan beam densitometer performed a whole body DXA scan. Data were processed

using Lunar Prodigy software. Individuals did not have measurements taken if they: were pregnant, had

a radiological investigation using contrast media within the week before the DXA scan, had a recent

nuclear medicine investigation with persistent radioactivity or weighed greater than 159kg. BF was

calculated as
fat mass

fat mass+ fat free mass
∗ 100.

For Focus at 7, BF was not measured, instead bioeletrical impedance data, which were converted

to estimates of BF, were available. Briefly, individuals were encouraged to pass urine and undress to

their underclothes. A Tanita Body Fat Analyser (Model TBF 305) was used to measure weight and

impedance. Height was entered to the nearest cm and ‘Female Standard’ was used as the sex variable

for all individuals. The Tanita Body Fat Analyser TBF 305 is a single frequency (50kHz) leg-to-leg

device. In single frequency devices, impedance is a representation of resistance which is related to

the volume of water (which one assumes makes up the majority of fat free mass (FFM)), as such, the

higher the resistance (impedance) the greater the amount of FFM. Calculation of BF from the impedance

measure is only possible at the time of measurement, however these derived BF measures were not

stored and the equation to calculate them was not available from the manufacturer. Previous work98 has

shown that comparison of BF derived from the manufacturer’s equation and an alternative97 showed little

difference in resulting BF estimates. The alternative equation was derived in a study involving 205 (101

women) healthy adults with a mean age of 43.8 (SD = 16) for men and 40.4 (SD = 13.6) for women. The
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alternative equation, where Z is the impedance measure from the device in ohms, height is in metres,

weight is in kilograms, age is in years, and female-specific components are given as 19.6 + ln(height),

is given as:

BF = −156.1 − 89.1 ln(height)

+ 45.6 ln(weight)

+ 0.120 age

+ 0.0494 Z

+ (19.6 ln(height))

(4.1)

Given that the equation was derived from adult data, its application to child data in ALSPAC was explored

in this Chapter. A raw impedance measure, from a similar model (Tanita Body Fat Analyser (Model TBF

401A)), was obtained for individuals from Teen Focus 3 and 4 (i.e., where both DXA and impedance

measures were available) and the equation was used to compare BF derived from the impedance device

and BF measured with DXA in adolescents. Exploration involved visual inspection of distribution and

Spearman’s correlation with BMI, height, weight and other BF measures from Teen Focus 3 and 4. The

same observations were carried out for raw impedance. The calculated BF estimates were positively

correlated with height and weight, however there were negative values of calculated BF. As the estimates

derived in linear models are in reference to the per unit increase in an exposure (rather than the range),

the absolute value of the exposure does not need to positive. Thus, the negative estimates of BF will

not impact the inference of a linear regression between BF and any metabolite. As such, BF calculated

using equation (4.1) was used in subsequent analyses as a measure of BF in children.

4.2.4 Outcomes: metabolites

Metabolomic data were measured using the same NMR platform for all individuals. Briefly,

high-throughput proton (1H) NMR assays were performed on ethylenediaminetetraacetic acid (EDTA)

plasma/serum samples. Samples were fasted. Measurements were taken at three molecular windows

(lipoprotein lipids, low molecular-weight metabolites, and lipid extracts) enabling broad quantification of

metabolomic measures. These measures also included derived measures, lipoprotein particle sizes,
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and fatty acid ratios, inclusion of which has shown to increase overall power in statistical analyses519–521.

Metabolite values for each individual were provided by the NMR platform in the originally measured

units (e.g., mmol/l). Derived metabolite values are as a %. Full details on the NMR methodology has

previously been described506,522–524 and is available from the ALSPAC data dictionary (data dictionary

identifiers: children = D5704, mothers = D5705, fathers = D5700). The Before Breakfast study does not

have a documentation file and is described elsewhere525; fasted metabolomic data, not the post glucose

challenge metabolomic data, were taken from The Before Breakfast Study. Descriptions of metabolites

are available on GitHub.

The spectral NMR data were processed by Nightingale Health and provided by the ALSPAC team as

a processed file with identifiable individuals (triplets/quadruplets) and individuals who had withdrawn

consent removed. Some mothers and fathers were duplicated in this data due to the way in which

mothers were originally enrolled into the study and assigned IDs. If a mother enrolled with two different

pregnancies (both having an expected delivery date within the recruitment period (April 1991-December

1992)), she will have two separate IDs. A father associated with both of these pregnancies will also

be duplicated. Duplicate measurements for mothers and fathers were removed. No metabolites were

excluded at this stage, however the number of metabolites available for each clinic visit differed as

metabolites were added and removed over time by Nightingale as validations change.

Pre-analysis processing of metabolomic data is important as there can be quality issues with sample

and metabolite data526. However, there is no standardised method for performing pre-analysis processing

and for deciding what thresholds to use to exclude metabolites and individuals from downstream analyses.

The R package metaboprep526 can be used to process data before analyses using a transparent and

reproducible workflow. Here, after combining clinic visit data, where appropriate, metaboprep (version

0.0.1) was used to identify and exclude individuals and metabolites that did not meet certain requirements.

This process was performed twice, firstly including and secondly excluding the derived metabolomic

measures from missingness and clustering analyses to see if these derived measures were unduly

influencing exclusions. Briefly, individuals and then metabolites, with high missingness (≥ 80%) were

removed. Missingness was then re-calculated for individuals and metabolites, with removal based on

20% missingness. Individuals were then removed based on total sum abundance, considering outliers as

≥ 5 standard deviations (SD) away from the mean. Using this metabolite dataset, a dendrogram using

complete-linkage and a Spearman’s rho distance matrix was produced, and a set of clusters identified
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based on a Spearman’s rho of 0.5. For each cluster, the metabolite with the least missingness was

tagged as the representative feature. Finally, principal component (PC) analysis was conducted using

the representative features to evaluate structure among individuals. Outliers were identified as being ≥ 5

SDs away from the mean of PC 1 and 2, and were excluded. Additionally, in order to gain an overview of

the variability of metabolite concentrations, the mean, SD of the mean, median, and range of metabolite

concentrations were visually compared across age groups.

4.2.5 Covariables

Evidence has shown that age527,528, sex528, education529, smoking530, alcohol530, diet531, and

physical activity532 all influence the metabolomic profile and adiposity. Data for each of these covariables

were obtained for all individuals with metabolomic data. Age was taken from the metabolomic clinic

visit as months since birth. Sex was taken from the initial assessment questionnaire for G1 individuals

completed by their parents. For G0, an individual’s sex was as self-reported at the metabolomic clinic

visit.

Maternal education was used as an adjustment for children, adolescents and young adults. Own

education was used for mothers and mother-reported partner education was used for fathers. Specifically,

mothers were asked, during their pregnancy, ‘What educational qualifications do you, your partner, your

mother, and your father have?’ with possible answers: CSE or GCSE (D, E, F or G); O-level or GCSE

(A, B, or C); A-level; qualifications in shorthand/ typing/or other skills e.g. hairdressing;, apprenticeship;

state enrolled nurse; state registered nurse; City and Guilds intermediate technical; City & Guilds

final technical; City & Guilds full technical; teaching qualification; university degree; no qualification;

qualifications not known; not applicable; or other (please describe). This data was available as a recoded

variable of 5 categories of lowest (1) to highest (5) level of education.

The variable capturing smoking was binary; adolescents (at the metabolomic clinic), young adults

(at the metabolomic clinic), and adults (mothers were asked during pregnancy; fathers were asked at a

clinic prior to the metabolomic clinic) were asked whether they had ever smoked a cigarette before.

Alcohol was assessed differently for Teen Focus 3 and Teen Focus 4, Focus at 24, and G0 individuals.

Individuals from Teen Focus 3 were asked what their alcohol drinking pattern was with possible answers:
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only ever tried drinking once/twice, used to drink sometimes [but] never drink now, sometimes drink but

less than once a week, usually drink on 1 or 2 days a week, usually drink on >2 days a week but not

every day, and usually drink every day. Individuals from Teen Focus 4, Focus at 24, and G0 individuals

(mothers were asked at a prior clinic visit to the metabolomic clinic and fathers at the metabolomic clinic)

were asked the frequency they had drinks containing alcohol with possible answers: never, monthly or

less, two to four times a month, two to three times a week, four or more times a week.

Diet data derived by Anderson et al., (2013)533 were available for G1 individuals aged 7 and 13. Data

from age 7 was matched with metabolomic data for Focus at 7 while data from age 13 was matched with

metabolomic data for Teen Focus 3 and 4. Diet data were not available for young adults or adults. Data

is given as predicted kilo-calories consumed per day.

Data on physical activity were collected differently for different clinic visits. For G1 individuals

from Teen Focus 3 and Focus at 24, accelerometry data were collected at the same clinic at which

metabolomic data were collected. Briefly, individuals wore an accelerometry device for the 7 days

following their clinic visit whilst keeping a diary of the times they wore and took off the device. Individuals

were advised to wear the accelerometer device if the following days were part of a ‘normal week’ with

regards to their activity. For Focus at 24 individuals, physical activity data were the average number

of minutes per day spent doing moderate to vigorous physical activity. For Teen Focus 3 individuals,

physical activity data were the mean counts per minute spent doing moderate to vigorous physical activity

for the whole week. For G0, individuals were asked ‘Do you take part in physical activity (e.g., running,

swimming, dancing, golf, tennis, squash, jogging, and bowls)?’ with possible answers: no, occasionally

(less than monthly), and frequently (once a month or more). Data for mothers were available in a clinic

prior to the metabolomic clinic, fathers data were available at the metabolomic clinic. Physical activity

data were not available for Focus at 7.

4.2.6 Statistical analysis

Metabolomic data were available for: Focus at 7 (n = 5518; metabolites = 230), Before Breakfast

Study (n = 640; metabolites = 228), Teen Focus 3 (n = 3371; metabolites = 230), Teen Focus 4 (n =

3175; metabolites = 230), Focus at 24 (n = 3269; metabolites = 224), Focus on Mothers 1 (n = 4362;

metabolites = 230), Focus on Mothers 2 (n = 2708; metabolites = 230), Focus on Fathers (n = 1833;
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metabolites = 230).

After combining the G1 clinics Focus at 7 and Before Breakfast Study (children), and Teen Focus 3

and Teen Focus 4 (adolescents), metabolomic data were available for 5656 children (mean age (SD) =

7.56 (0.36); metabolites = 234), 4489 adolescents (mean age (SD) = 16.06 (1.11); metabolites = 230),

and 3269 young adults from the Focus at 24 clinic (mean age (SD) = 24.03 (0.85); metabolites = 224;

Table 4.1). After combining the G0 clinics Focus on Mothers 1, Focus on Mothers 2, and Focus on

Fathers 1, metabolomic data were available for 6406 adults (mean age (SD) = 49.53 (5.32); metabolites

= 232).

To estimate the association between measures of adiposity and metabolites, all exposures were

Z-scored and linear regression was performed. Metabolites were not transformed as the majority did not

appear to have skewed distributions after pre-analysis processing using metaboprep. Variables known

to influence the metabolomic profile and adiposity (age, sex, education, smoking, alcohol, diet, and

physical activity), were included as covariables. Three linear models were used to investigate potential

effects of these covariables. Model 1 included age and sex. Model 2 included variables in model 1

and mother’s/own level of education, whether respondent had ever smoked, frequency respondent

had a drink containing alcohol, and predicted kilo-calories consumed per day. Model 3 comprised all

variables included in model 2 and physical activity. To maximise sample size for analyses, model 1

and 2 comprised individuals with data on all covariables except physical activity. Model 3 comprised all

individuals with data on all covariables. Model 2, as the most adjusted and given the reduced sample

size in model 3, is presented as the main analysis for this work.

For all analyses, units represent the unit change in each metabolite per standard deviation change in

the exposure. Metabolite abbreviations are used in figures and tables for space. For complete labels,

class, subclass, and units for each metabolite, a table is available in the Appendix (Table A.5) and on

GitHub. 95% confidence intervals (CIs) were calculated and a multiple testing threshold specific for

each age group was applied. Multiple testing thresholds were calculated as the number of independent

metabolites within the raw metabolomic data given a Spearman’s rho of approximately 0.75 among

the metabolites with data for at least 20% of samples – this was calculated during metabolite pre-

analysis processing using metaboprep. The number of independent metabolites in each age group

were calculated as: children = 42, adolescents = 42, young adults = 40, adults = 44.
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Metabolites were grouped into subclasses (grouping data provided by the metabolomic platform)

based on biological pathway. Consistency in the direction of effect estimates was investigated (i) across

the three linear models for each exposure within each age group and (ii) across exposures within age

groups for model 2. A consistent positive or negative direction is reported when all estimates being

compared give the same direction of effect. For example, when comparing directions of effect across

the three linear models for the effect of BMI on a metabolite in children, a consistent direction of effect

is reported if all three models effect estimates are positive or negative. If one of the models reported

a direction of effect that was positive and the other two models reported a direction of effect that was

negative, then an “inconsistent direction” would be reported for the effect of BMI on that metabolite in

children. In addition, the number of tests reaching the multiple testing thresholds were reported.

A Spearmans rho correlation analysis was used to investigate the correlation between effect estimates

across exposures and age groups. Circos plots (via the EpiViz R package; see Chapter 3) were used

to visualize and compare global metabolic profiles within age groups across exposures. Forest plots,

created using the ggforestplot R package, were used to examine specific subclasses. Results for

derived measures and lipoprotein particle size and fatty acid ratios are presented in the Appendix.

Directions of effect estimates were compared to that of previous work by Wurtz et al. (2014)287 where

appropriate, i.e., where metabolites were present both in the ALSPAC analyses and the Wurtz paper.

4.3 Results

4.3.1 Data overview

Prior to statistical analysis, the predominantly lipid-based metabolites underwent pre-analysis pro-

cessing using the metaboprep R package. In pre-analysis processing of metabolomic data, derived

metabolite measures (e.g.,) increased the number of representative metabolites in the dataset, sug-

gesting these derived measures contain novel information. As such, metabolomic data that underwent

pre-analysis processing with the inclusion of derived features were used throughout. The total number of

individuals with metabolomic data, as well as the number of metabolites available prior to pre-processing

is given in Table 4.1.
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Table 4.1: Metabolomic data available prior to pre-analysis processing

Age group N Metabolites Clinic N
Unique

N
M

Unique

M

Focus at 7 5518 5016 230 5
Children 5656 234

Focus at 8 640 138 228 7

Teen focus 3 3371 1314 230 -
Adolescents 4489 230

Teen focus 4 3175 1118 230 -

Young adults 3269 224 Focus at 24 3269 3269 224 -

Focus on mothers 1 4362 1865 230 2

Focus on mothers 2 2708 211 230 2Adults 6406 232

Focus on fathers 1833 1833 230 2

Data were available from multiple time points. Generation 1 individuals were measured at

5 time points and combined into three groups (Children, Adolescents, and Young adults).

Generation 0 individuals were measured at three time points and combined (Adults). N =

number of individuals in each combined age group; Metabolites = the number of metabolites

measured for each combined age group; Clinic = clinic identifier; Unique N = the number of

individuals from that clinic who do not appear in the other clinic for that combined age group;

M and Unique M = Number of metabolites measured at each clinic and how many of these

were unique to that clinic within the combined age group.

Pre-analysis processing of metabolomic data resulted in the following exclusions: 6 individuals and

4 metabolites were removed from the children’s data (4 samples excluded for ≥ 80% missingness, 1

sample excluded for total sum abundance ≥ 5 SD from the mean, 1 sample excluded as a result of being

≥ 5 SD from the mean of PC1 and 2, and 4 metabolites removed for ≥ 20% missingness); 5 individuals

and 0 metabolites were removed from the adolescents data (1 sample excluded for total sum abundance

≥ 5 SD from the mean and 4 samples excluded as a result of being ≥ 5 SD from the mean of PC1 and

2); 4 individuals and 0 metabolites were removed from the young adults data (1 sample excluded for

total sum abundance ≥ 5 SD from the mean and 3 samples excluded as a result of being ≥ 5 SD from

the mean of PC1 and 2); 7 individuals and 4 metabolites were removed from the adults data (1 sample
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excluded for total sum abundance ≥ 5 SD from the mean, 6 samples excluded as a result of being ≥

5 SD from the mean of PC1 and 2, and 4 metabolites removed for ≥ 20% missingness). Processed

metabolomic data available for statistical analysis is given in Table 4.2.

Table 4.2: Metabolomic data available after pre-analysis processing

Group N Metabolites

Children 5650 230

Adolescents 4484 230

Young adults 3265 224

Adults 6399 228

Number of individuals (N) and

metabolites available after pre-

analysis processing of metabolomic

data was performed using the

metaboprep R package and includ-

ing derived measures.

Of individuals with metabolomic data, a majority also had data on measures of adiposity (Table

4.3), except for adolescents where data on WHR was not available. Adiposity data were normally

distributed (Appendix Figure A.5). Data on covariables were also available in the majority of individuals,

the exception being physical activity where fewer individuals had available data and no data was available

for children (Table 4.3).
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Table 4.3: Measures of adiposity available for individuals with metabolomic data

BMI (kg/m^2) WHR BF (%)

Age group N N mean SD N mean SD N mean SD

Children 5650 5622 16.20 2.00 5589 0.86 0.04 5381 - -

Adolescents 4484 4404 21.71 3.68 - - - 4210 25.65 11.7

Young adults 3265 3230 24.73 4.88 3223 0.8 0.07 3153 31.75 9.22

Adults 6399 6352 26.83 4.98 6360 0.85 0.09 6138 34 9.08

Measures were obtained for all individuals with processed metabolomic data. Waist hip

ratio (WHR) was not available for adolescents. Body fat percentage (BF) was not available

for children but a raw impedance measure was available (see methods). Age group = the

age group into which clinic visits were combined; BMI = body mass index; N = the number

of individuals with available data; mean = the mean of the anthropometric measure; SD =

standard deviation of the mean; - = data not available.

109



Table 4.4: Covariables available for individuals with metabolomic data

Children Adolescents Young adults Adults

Metabolomics N 5650 4484 3265 6399

N 5634 4474 3264 6381

Mean 7.56 16.06 24.03 49.53Age (years)

SD 0.36 1.11 0.85 5.32

N 5634 4474 3265 6390

Female N 2727 2340 1966 4557Sex

Male N 2907 2134 1299 1833

1 (low) 483 344 201 412

2 434 308 202 392

3 1798 1370 978 1785

4 1369 1168 856 1717
Education

5 (high) 866 745 612 1366

N - 2499 3219 5854

Yes - 1538 2053 2416Smoking

No - 961 1166 3438

1 (low) - 394 88 364

2 - 336 668 587

3 - 2037 1223 1042

4 - 759 998 1731
Alcohol frequency

5 (high) - 153 172 1209

N 5577 4338 - -

Mean 1672.32 2252.32 - -Diet (kcal/day)

SD 134.94 190.62 - -



N - 1768 672 -

Mean - 483.67 50.23 -

SD - 179.39 30.24 -

1 (none) - - - 1563

2 (occasionally) - - - 659

Physical activity

3 (frequently) - - - 2330

Education is highest level of education (1-5); for children, adolescents, and young adults

education is maternal education; for adults, education is own education. Smoking is bi-

nary. Alcohol is frequency respondent consumes an alcoholic drink, with 1 being low and

5 high. Diet is predicted kilo-calories consumed per day. Physical activity in adolescents

is mean counts per minute of activity across 7 days. For young adults physical activity is

the average number of valid minutes per day spent doing moderate to vigorous activity.

For adults, physical activity is: no physical activity (1), occasionally (2), frequently (3). N

= the number of individuals with available data; mean = the mean of the measure; SD =

standard deviation of the mean; - = data not available.

When looking at the variability of metabolites across age groups, the mean and SD of the metabolite

value, as well as the median and range between the minimum and maximum values for each metabolite

were generally similar across all age groups. Variability in metabolite values tended to increase (larger

SD of mean metabolite value and range of metabolite value for each metabolite) with age however,

with the largest variability predominantly seen in adults. Variability appeared much larger when looking

exclusively at derived metabolite measures as opposed to directly measured metabolites. All metabolite

distribution plots are available on GitHub.

4.3.2 Statistical analysis

In total, metabolomic data were available for 5,650 children, 4,484 adolescents, 3,265 young adults,

and 6,399 adults. After obtaining data on adiposity measured and covariables data were available for

between 575–4450 individuals (Table 4.5). Model 1 and model 2 were restricted to all individuals with
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complete data for adiposity and covarialbe data for model 2. Model 3 was restricted to individuals with

complete data for all adiposity measures and all covariables.

Table 4.5: Total number of individulas with metabolomic data and total number of individuals included in
each linear model

Age group N Model 1 & 2 Model 3

Children 5650 4450 –

Adolescents 4484 1762 588

Young adults 3265 2589 575

Adults 6399 3505 2981

The total number of individuals with available

metabolomic data (N) and the sample size for

each linear model (Model 1 & 2 and Model 3).

Across all models and exposures, between 33.91–86.4 % (median = 61.3 %) of metabolites reached

a p-value multiple testing threshold (multiple testing threshold for children = 0.0012, adolescents = 0.0012,

young adults = 0.0013, adults = 0.0011). Multiple testing thresholds, calculated during pre-analysis

processing using metaboprep, were calculated as the number of independent metabolites within the

raw metabolomic data given a Spearman’s rho of approximately 0.75. In summary, between 83-193,

139-193, and 75-197 metabolites reached a multiple testing threshold across all age groups for BMI,

WHR, and BF respectively (Table 4.6).
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Table 4.6: Number of tests reaching a multiple testing threshold

BMI WHR BF

N 1 2 3 1 2 3 1 2 3

Children 230 141 137 – 148 148 – 141 132 –

Adolescents 230 138 156 83 – – – 150 159 75

Young adults 224 173 172 139 173 172 139 183 180 135

Adults 228 193 191 183 193 191 183 197 191 186

Number of metabolites (out of total N) reaching a multiple testing threshold for each model (1-3) within

each age group for each exposure. Multiple testing thresholds: children = 0.0012, adolescents =

0.0012, young adults = 0.0013, adults = 0.0011. BMI = body mass index; WHR = waist hip ratio; BF

= body fat percentage; 1 = model 1, adjustment for age and sex; 2 = model 2, adjustment for model 1

plus maternal/own education, smoking status, alcohol frequency, diet (where available); 3 = model 3,

adjustment for model 2 plus physical activity (where available).

Directional consistency between effect estimates across three linear models within exposures

and age groups

Across models, within each exposure and age group, the majority of tests resulted in directionally

consistent effect estimates (Figure 4.1). Of these directionally consistent effect estimates, the majority

of effect estimates were positive. That is, adiposity was associated with an increase in a majority of

metabolites. For children, effect sizes and CIs were broadly consistent across models 1 and 2. For

adolescents, young adults, and adults, effect sizes and CIs were broadly consistent across across all

three models, though there was some attenuation of effect size and wider CIs for model 3 (See forest

plots on GitHub for children, adolescents, young adults, and adults). Across the majority of metabolites,

CIs overlapped for all exposures within age groups (Appendix A.3.2). Of the 220 metabolites measured

in all age groups, directional consistency was supported by strong evidence of correlation across models

within exposures and age groups (Appendix A.3.2).
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Figure 4.1: Directional consistency between effect estimates across three linear models within
exposures and age groups. A positive effect reflects all model betas being in the positive direction; a
negative effect reflects all model betas being in a negative direction; opposite effect reflects different
directions for the model betas. For example, if the association between body mass index (BMI) and
metabolite A is positive for model 1, 2, and 3 a positive association will be reported. If all three models
show a negative direction of effect between BMI and metabolite A, a negative direction of effect will be
reported. If one model shows a direction of effect that is positive and the other models give negative
directions of effect, an opposite direction of effect will be reported. WHR = waist hip ratio; BF = body fat
percentage.

Directional consistency between effect estimates for linear model 2 across exposures within

age groups

Given the broad agreement between models, including the high correlation observed for effects

between model 2 and model 3 (Spearmans rho = 0.81–0.995; Appendix A.3.2), and the fact that model

3 was not run for children as data on physical activity were not available, results here on are presented

for model 2 (all data are available on GitHub).

Across the three exposures (BMI, WHR, and BF) within each age group, effects showed mostly

consistent directions of effect, the majority of which were positive (i.e., adiposity was associated with an
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increase in metabolites; Figure 4.2). Where there were the most inconsistent directions across exposures

was for children, with 21% of metabolites showed inconsistent directions of effect. For adolescents,

young adults, and adults 5%, 9%, and 5% of metabolites showed inconsistent directions of effect across

measures of adiposity, respectively. A large proportion of metabolites with evidence for a consistent

direction of effect across all three exposures also reached the multiple testing threshold for all three

adiposity measures for model 2: children = 110 out of 230 metabolites, adolescents = 148 out of 230

metabolites, young adults = 164 out of 224 metabolites, and adults = 180 out of 228 metabolites.

Of the 220 metabolites measured across all age groups, directional consistency was supported by

strong evidence of correlation across exposures within age groups (Spearmans rho = 0.61–0.97) and,

within exposures across age groups (Spearmans rho = 0.48–0.82; Appendix A.3.2).
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Figure 4.2: Directional consistency for linear model 2 across exposures within age groups. A
positive effect reflects all model effect estimates being in the positive direction; a negative effect reflects
all model effect estimates being in a negative direction; opposite effect reflects different directions for
the model effect estimates. For example, if the association between body mass index (BMI), waist hip
ratio, and body fat percentage and metabolite A is positive a positive association will be reported. If all
three exposures show a negative direction of effect with metabolite A, a negative direction of effect will
be reported. If one exposure shows a direction of effect that is positive and the other exposures give
negative directions of effect, an opposite direction of effect will be reported.
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Global metabolic profile

To aid visual comparison between metabolite subclasses, derived measures were visualised sep-

arately to non-derived measures, and are presented in the Appendix (A.3.2). Derived measures are

metabolites that are not directly measured by the metabolomic array and are instead derived during the

processing of the raw NMR spectra. Derived measures include ratios such as cholesterol esters in very

large very low density lipoprotein (VLDL) to total lipids in very large VLDL ratio.

Overall, the global pattern of association was very similar for all measures of adiposity for children

(Figure 4.3), adolescents (Figure 4.4), young adults (Figure 4.5), and adults (Figure 4.6) across all

directly measured metabolites (larger figures are available on GitHub, for children, adolescents, young

adults, and adults). Across all age groups, the largest effect sizes for directly measured metabolites were

found for the fatty acids subclass; the total fatty acids metabolite showed the largest effect size across all

exposures for each age group. Metabolites in small VLDL, medium VLDL, large VLDL, and very large

VLDL subclasses were the only metabolites to reach the specified multiple testing thresholds across all

exposures and age groups. On the whole, effect sizes were lowest in children and increased with age.

The largest effect sizes in adults, total fatty acids (change in metabolite (mmol/l) per SD change in the

exposure = 0.51), was twice that observed in children (change in metabolite (mmol/l) per SD change in

the exposure = 0.21).

For derived measures, the global pattern of association was very similar within age groups across

exposures and across age groups within exposures (Appendix A.3.2). There was considerable variation

within subclasses for derived measures. For adults (Figure A.11), unlike the other age groups, extreme

effect sizes were found for a number of metabolites (summary of effect size across all exposures and

derived metabolites: minimum = -1.18 x 10-15; median = -0.11; mean = -2.09 x 10-13; maximum = 1.95 x

1011). The majority of effect sizes observed for adults were around the median value.
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Figure 4.3: Effect estimates from linear regression of adiposity measures on metabolites in
children. The Circos plot shows each track as one of the measures of adiposity; the outer track is
body mass index (BMI), the middle track is waist hip ratio (WHR), the inner track is body fat percentage
(BF). Effect estimates are given as a change in the raw metabolite unit per standard deviation change
in the exposure; 95% confidence intervals are shown and may be hidden by the point estimate if very
tight. Solid points indicate a multiple testing threshold has been reached (0.05/42). Available on GitHub.
Circos plot of derived measures also available on GitHub.
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Figure 4.4: Effect estimates from linear regression of adiposity measures on metabolites in
adolescents. The Circos plot shows each track as one of the measures of adiposity; the outer track
is body mass index (BMI), the inner track is body fat percentage (BF). Effect estimates are given as
a change in the raw metabolite unit per standard deviation change in the exposure; 95% confidence
intervals are shown and may be hidden by the point estimate if very tight. Solid points indicate a multiple
testing threshold has been reached (0.05/42). Available on GitHub. Circos plot of derived measures also
available on GitHub.
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8. Small LDL
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12. Medium HDL
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17. Glycolysis related metabolites

18. Glycerides and phospholipids
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Figure 4.5: Effect estimates from linear regression of adiposity measures on metabolites in
young adults. The Circos plot shows each track as one of the measures of adiposity; the outer track is
body mass index (BMI), the middle track is waist hip ratio (WHR), the inner track is body fat percentage
(BF). Effect estimates are given as a change in the raw metabolite unit per standard deviation change
in the exposure; 95% confidence intervals are shown and may be hidden by the point estimate if very
tight. Solid points indicate a multiple testing threshold has been reached (0.05/40). Available on GitHub.
Circos plot of derived measures also available on GitHub.
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Figure 4.6: Effect estimates from linear regression of adiposity measures on metabolites in
adults. The Circos plot shows each track as one of the measures of adiposity; the outer track is body
mass index (BMI), the middle track is waist hip ratio (WHR), the inner track is body fat percentage (BF).
Effect estimates are given as a change in the raw metabolite unit per standard deviation change in
the exposure; 95% confidence intervals are shown and may be hidden by the point estimate if very
tight. Solid points indicate a multiple testing threshold has been reached (0.05/44). Available on GitHub.
Circos plot of derived measures also available on GitHub.
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Subclass results

When looking at directly measured metabolite subclasses, there were associations between mea-

sures of adiposity and all subclasses except for large low density lipoprotein (LDL) in children, where CIs

for all large LDL metabolites crossed the null. For the derived measure subclasses, associations were

observed across measures of adiposity for all subclasses except extremely large VLDL ratios in young

adults and adults.

Across all age groups and exposures, associations with every metabolite in a particular subclass

was observed for small VLDL, medium VLDL, large VLDL, very large VLDL, and extremely large VLDL.

As age increased, the number of associations within subclasses tended to increase across all measures

of adiposity. For example, across small LDL, medium LDL, and large LDL, few associations were

observed across measures of adiposity in children, however, in adolescents and young adults, a majority

of metabolites showed evidence of association; while in adults, all metabolites showed evidence of

association. Effect sizes tended to increase with age as well, for example, the largest effects seen for

small, medium, and large LDL metabolites were in adults and young adults (Figure 4.7).
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Figure 4.7: Effect estimates from linear regression using model 2 of adiposity measures on
metabolites in all age groups for small, medium, and large LDL subclasses. Effect estimates
are given as a change in the raw metabolite unit per standard deviation change in the exposure. 95%
confidence intervals are shown. BMI = body mass index; WHR = waist hip ratio; BF = body fat percentage.
Available on GitHub.

To summarise the results for directly measured metabolites from model 2 across exposures and

across age groups, the largest mean positive effect estimate was observed for metabolites in the

lipoprotein particle size, fatty acids, and inflammation subclasses. The largest mean negative effect

estimate was observed for metabolites in the medium, large, and very large HDL, and ketone bodies

subclasses. The largest median effect estimates however were observed for the fatty acids, inflammation,

and cholesterol subclasses, while the largest negative median effect estimates were observed for

medium, large, and very large HDL, and ketone bodies and lipoprotein particle size subclasses. A
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summary (minimum, maximum, mean, and median values) for each age group across subclasses for

model 2 are available on GitHub.

The above summary does not take account of the variation within subclasses. That is, metabolites

within a subclass do not all have the same direction of effect. Focussing on results for adults given the

directional consistency observed across age groups, all metabolites in the very small, small, medium,

large, very large, and extremely large VLDL, and IDL, small, medium, and large LDL, and small HDL, fatty

acids, inflammation, and branched-chain and aromatic amino acids subclasses had positive directions of

effect (Figure on GitHub). A majority of metabolites within the cholesterol, apolipoproteins, glycolysis

related metabolites, and glycerides and phospholipids subclasses had positive directions of effect. All

metabolites within the ketone bodies, and large and very large HDL subclasses had negative directions

of effect. A majority of metabolites within the medium HDL, lipoprotein particle size, and amino acids

subclasses had negative directions of effect.

Directions of effect were broadly consistent across exposures. The exceptions were for the negative

effect of BMI on phosphatidylcholine and other cholines (change in metabolite (mmol/l) per SD increase

in BMI = -0.0024; 95% CI = -0.014 – 0.0089; p-value = 0.0057) compared to the positive effects of

WHR and BF (neither of which reached the multiple testing threshold), and the positive effect of BF on

concentration of medium HDL particles (change in metabolite (mmol/l) per SD increase in BF = 9.81 x

10-9; 95% CI = 1.73 x 10-10 – 1.95 x 108; p-value = 0.046), phospholipids in medium HDL (change in

metabolite (mmol/l) per SD increase in BF = 0.0015; 95% CI = -0.0007 – 0.00379; p-value = 0.19), and

total lipids in medium HDL (change in metabolite (mmol/l) per SD increase in BF = 0.0023; 95% CI =

-0.0025 – 0.0073; p-value = 0.35) compared to the negative effects of BMI and WHR (neither of which

reached the multiple testing threshold).

The apolipoproteins apolipoprotein A-1 and apolipoprotein B are markers of LDL and HDL particles

respectively. There was a negative association between all three adiposity measures and apolipoprotein

A-1, all of which reached the multiple testing threshold (e.g., change in metabolite (g/l) per SD increase

in BMI = -0.034; 95% CI = -0.04 – -0.03; p-value = 3.64 x 10-34). There was a positive association

between all three adiposity measures and apolipoprotein B, all of which reached the multiple testing

threshold (e.g., change in metabolite (g/l) per SD increase in BMI = 0.046; 95% CI = 0.039 – 0.052;

p-value = 2.93 x 10-44). In addition, there was a positive association across all adiposity measures with

the ratio of apolipoprotein B to apolipoprotein A-1, all of which reached the multiple testing threshold

123

https://github.com/mattlee821/000_thesis/tree/master/index/data/observational/tables/effect_size_summary
https://github.com/mattlee821/000_thesis/blob/master/index/data/observational/figures/adults_model2_effect_summary.pdf


(e.g., change in ratio of apolipoprotein B to apolipoprotein A-1 per SD increase in BMI = 0.037; 95% CI =

0.035 – 0.043; p-value = 2.43 x 10-78).

4.3.3 Comparison with previous work

A total of 82 metabolites were measured using the same platform by Wurtz et al. (2014)287. Of these,

42 were also measured across children, adolescents, young adults, and adults in this analysis using

ALSPAC. As Wurtz et al., transformed metabolite values into SD units, which was not the case here,

directional consistency was investigated with results for model 2. Across all analyses conducted here

for model 2, a majority of metabolites showed a consistent direction of effect with the study by Wurtz

et al.287 (Figure 4.8). However, there were some metabolites where the effects from Wurtz et al., were

opposite to the effects found here, such as fatty acid chain length and albumin.

The majority of effect estimates were in the positive direction, i.e. an increase in adiposity was

associated with an increase in metabolites. Broadly, adiposity had an increasing effect on 30 metabolites

and a decreasing effect on 12 metabolites, i.e. more than half of effect estimates across all exposures

and age groups for a single metabolite were positive or negative. A total of 18 metabolites were

positively associated with adiposity in analyses by Wurtz et al., and those conducted in all age groups

and exposures here, this included phenylalanine, tyrosine, and apolipoprotein B. Seven metabolites

were negatively associated with adiposity across analyses by Wurtz et al., and those conducted in

all age groups and exposures here, including citrate and apolipoprotein A-1. Looking at the overall

effects for each subclass, there were primarily positive effects of adiposity for subclasses aromatic and

branched chain amino acids, cholesterol, fatty acids, glycerides and phospholipids, and glycolysis related

metabolites. Primarily negative effects were found for lipoprotein particle size and fatty acids ratios. The

remaining subclasses were evenly split between positive and negative associations between adiposity

measures and metabolites across analyses (amino acids and fluid balance) or were composed of one

metabolite (intermediate density lipoprotein (IDL), inflammation, and ketone bodies). In the latter case,

total cholesterol in IDL (IDL) and glycoprotein acetlys (inflammation) were primarily positively associated

with adiposity, while acetate (ketone bodies) was primarily negatively associated with adiposity.
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Figure 4.8: Comparison of the directions of effect estimates from linear regression of adiposity
measures on metabolites across all age groups and analysis by Wurtz et al. (2014)287. The tile
plot shows the direction of effect estimate for 42 metabolites as positive (blue) or negative (orange). If
all analyses show the same direction of effect, then that row will be the same colour, e.g., all analyses
showing a negative association between adiposity measures and apolipoprotein A-1 and a positive
association between adiposity and apolipoprotein B BMI = body mass index; WHR = waist hip ratio; BF
= body fat percentage; IDL = intermediate density lipoproteins. White space indicates no analysis was
undertaken due to missing data. Available on GitHub.
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4.4 Discussion

The association between adiposity and NMR derived metabolites is global, with effects seen across

all subclasses of metabolites. These effects are broadly consistent between metabolites within each

subclass. In this Chapter, the influence of adiposity on the metabolic profile is demonstrated in an

observational framework. These effects persist, not only when measured at different ages, but also when

adjusting for covariables such as smoking, physical activity, and diet. Effects are similar across multiple

measures of adiposity and to those previously reported287.

There were similar associations seen in individuals when looking at each exposure across age groups

(e.g., the association between BMI on metabolites in children, adolescents, young adults and adults). As

age increased, the number of associations within subclasses tended to increase across all measures of

adiposity. Fewer associations were observed in children than in adolescents and young adults. A similar

metabolic profile was apparent in adults, though effect sizes appeared slightly larger. These results may

reflect (i) an effect of prolonged adiposity exposure, (ii) increased variation in metabolites with age, or (iii)

be a result of the different SDs of the adiposity measures at different ages. Given that longitudinal work

has shown that BMI tracks over time534,535, there may be a dose-response relationship here whereby

adiposity has a compounding effect on metabolites over time. Alternatively, metabolite concentrations

have been shown to increase in older populations over time354 and there was evidence that metabolite

variation tended to increase as age increased. However, it is likely that the larger effect sizes observed

as age increased are a result of the similar increase in SD of the adiposity measures with age.

Within each age group, there was directional consistency across the three exposures. Effect

sizes across exposures were similar within age groups, with overlapping CIs. Effect estimates for the

association of BMI on metabolites was generally larger, across age groups, than effect sizes for WHR

or BF. Effects for BF appeared to be closer to, and crossed the null more often than those for BMI and

WHR. This may suggest that overall body composition in addition to detrimental deposition, may be

driving these effects. That is, the compounding effect of increased overall body mass (primarily through

increased fat mass; as estimated by BMI) and the predilection to store this additional mass viscerally (as

estimated by WHR), may be more powerful than either of these effects alone on the effect of metabolites.

Results were consistent across models, with effect estimates showing the same direction of associa-
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tion for the majority of tests. Effect sizes were broadly similar in the case of models 1 and 2. Effect sizes

in model 3 were smaller compared with models 1 and 2. However, CIs overlapped across the majority of

tests even if they crossed the null in some instances for model 3 - model 3 had a smaller sample size

than model 1 and 2. Broadly speaking, effect estimates attenuated slightly for model 3 compared with

model 1 and 2. There was also high consistency in the directions of effect estimates across models

within exposures and age groups. These results suggest there could be some confounding but that

this was appropriately accounted for given the included covariables. Whether these results represent a

true causal effect or are subject to reverse causation or residual confounding however requires further

investigation.

Previous work by Wurtz et al. (2014)287 identified numerous associations between BMI and metabo-

lites in a large population. Results here show a broadly similar pattern of association with those by

Wurtz et al., with the majority of the 42 comparable metabolites showing consistent directions of ef-

fect. This includes phenylalanine and tyrosine, both of which are known to be increased by adiposity

and age417,418,536–541, as well as consistent negative associations with seven metabolites, including

apolipoprotein A-1 which is the major component of HDL particles and enables uptake of lipids by HDL

particles and the subsequent recycle and excretion of lipids542,543. Differences in effect estimate direction

was minimal and split relatively evenly across age groups. Only one metabolite from the Wurtz et al.,

study, fatty acid chain length, had a direction of effect (negative) that was inconsistent across all age

groups here. However, in follow-up Mendelian randomization analysis by Wurtz et al., BMI was positively

associated with fatty acid chain length as was found in results in this Chapter. This difference may be a

result of residual confounding in the observational analysis conducted by Wurtz et al., as they did not

adjust for all of the covariables used in analyses in this Chapter.

Of particular note with the analyses performed here, is the variation observed for metabolite values

within age groups. Variation was much larger for derived compared to directly measured metabolites.

Pre-analysis processing of the metabolomic data, applied here using metaboprep, involved the exclusion

of samples (individuals) and metabolites based on a set of QC criteria. However, no filtering was applied

to individual data points. Instead, outlying values are flagged for information. However, differentiating

between extreme (but real) biological values, and values that are a result of measurement or technical

error, is challenging, especially where you have a large number of metabolites with differing distributions.

In addition, care is needed when performing filtering or treatment of outlying data points as this can
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introduce bias. In analyses here, all raw metabolite values were retained for analysis in the first instance.

In adults, effect estimates for a number of derived metabolites (across exposures) were considerably

larger than effect estimates for other derived metabolites and effect estimates for derived metabolites in

the other age groups. An examination of the original data distributions for these metabolites, showed

a number of individuals had metabolite values that appeared to be outliers. In post-hoc sensitivity

analysis (data not shown), which aimed to investigate whether these individual values were influencing

results presented in this Chapter for those derived metabolites, the raw metabolite values in the top

and bottom 1% of metabolite values were changed to the next closest metabolite value below that

1% threshold. This Winsorization process was performed for all metabolites across age groups. All

analyses were repeated and results were highly consistent for the main analysis and this sensitivity

analysis for children, adolescents, and young adults. For adults, results were highly consistent for

directly measured metabolites and a majority of derived metabolites. However, results for the metabolites

that appeared to be outliers in the main analysis were different in sensitivity analysis, with effect sizes

much closer to the null and much tighter CIs. This would suggest that results in the main analysis

for those derived metabolites were strongly influenced by the outlying metabolite values for a small

number of individuals. Given the difficulty in systematically identifying non-biological values, future work

should perform sensitivity analyses such as that described here, to investigate whether outlying data has

impacted results. This recommendation, as well as methods to control for outlying data, are being added

to metaboprep to aid future work.

4.4.1 Strengths and limitations

The key strengths of this work are the use of (i) rich and large-scale data resource that is ALSPAC, (ii)

BMI, WHR and BF as complimentary adiposity measures to comprehensively examine the association

between adiposity and metabolites and (iii) the longitudinal nature of the ALSPAC data allowing for

this association to be assessed across the lifecourse. ALSPAC is a prospective cohort study with a

general population base and here, analyses were performed on up to 4,450 individuals. The breadth of

data measured across multiple generations enabled linear models to be adjusted for covariables that

have been known to affect adiposity and metabolite concentrations527,528,528–532. These analyses were

performed across two generations of individuals, G0 (the original mothers recruited to the study) and

G1 (the children from those pregnancies). Data on G1 individuals were available from multiple time
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points and, in combination with data from G0 individuals, enabled the investigation of the association

between adiposity and metabolites across the lifecourse from childhood to adulthood. The use of multiple

measures of adiposity, as has been recommended previously95,100 but which has not been explored in

relation to metabolic effects, may indicate that overall body composition and deposition is more important

in metabolic changes than either component alone.

Analyses here used individuals from two generations, G0 (mothers and fathers) and G1 (offspring)

individuals. Although G0 and G1 individuals are independent in the sense that the represent two

unique sets of individuals, there is familial overlap between them. There is also overlap for the children,

adolescents, and young adults age groups, whereby the same individual may be present in all three age

groups. As such, any effects specific to a G1 individual may be propagated through all G1 clinics that

individual attends. In addition, there may be familial overlap within the G1 age groups given siblings

may be included in the metabolomic data collection. The number of siblings in each age group is likely

small. However, given the shared genetics and environment these individuals (siblings, parents, and

offspring pairs) will have, effects observed in one individual may be seen in their relative, and so results

may not be truly independent within the G1 age groups and across the G1 and G0 age groups. Familial

overlap is likely to overestimate the effect size as inclusion of non-independent individuals may introduce

confounding (e.g., via genetic similarity or other family-level confounding), which is not being satisfactorily

adjusted for in analyses. This would tend to bias results away from the null. Future work could remove

related individuals prior to analysis. However, where data is limited and exclusions may reduce power, a

linear mixed model accounting for non-independence of observations or the inclusion of genetic principal

components to account for relatedness among individuals within the linear model could be used.

Observational analyses are limited due to issues of confounding and reverse causation. Prospective

studies, such as ALSPAC, are able to provide some temporal separation between the measurement

of an exposure and outcome, and thus mitigate the potential effects of reverse causation. However,

as data on adiposity measures and metabolites were collected at the same time, reverse causation

remains a limitation. It was however possible to account for the potential effects of confounding by

adjusting linear models for measured confounders. Although many measured confounders were included

across the models, it is likely these analyses will not have fully accounted for confounding, either due

to measurement error or unmeasured confounding. For example, adults were asked ‘do you take part

in physical activity (e.g. running, swimming, dancing, golf, tennis, squash, jogging, and bowls)?’, with
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possible answers of ‘no’, ‘occasionally (less than monthly)’ and ‘frequently (once a month or more)’.

Broad categories such as these are unlikely to capture the full impact of physical activity on adiposity

and metabolites given that ‘frequently’ will encompass individuals who exercise once a month as well

as every day. In addition, although it was possible to investigate the association between adiposity and

metabolites across the life course, it is likely that the measurements used during adolescence and young

adulthood may reflect a time where the G1 individuals were going through puberty. Puberty is likely to

have an effect on adiposity and covariables such as physical activity, as well as the metabolome, and

future work should therefore include pubertal timing as a covariable.

There are two key limitations in regards to metabolomic data. The first is that these data are

limited in their breadth. Although a relatively large number of metabolites were investigated, they were

predominantly lipid-based. This leaves a broad array of metabolites that have not been investigated. As

such, the metabolites investigated here are broadly reflective of the lipidome and not a global metabolic

profile. The Nightingale NMR platform does however provides many derived measures, such as ratios

and number of bonds. However, there was considerable variation in the concentration of these derived

measures compared to directly measured metabolites. Given the relationship between adiposity and

lipids, it is unsurprising there were a large number of associations identified. There is thus a clear need

to expand beyond lipid-based platforms in investigating the effects of adiposity, as the associations

presented here are likely not reflective of a global metabolic profile. Mass spectrometry (MS) platforms,

such as those used by Metabolon, are a potential next step. Though there have been a number of

studies investigating the association between adiposity and MS-derived metabolites288,544,545, these

have not used a complimentary assessment of body composition to assess adiposity and have not been

able to investigate this relationship across the life-course.

There is no standardised approach, nor a gold standard, for performing metabolomic quality con-

trol. Here, pre-analysis processing of metabolomic data, including outlier detection and removal, was

performed using the metaboprep R package. The default settings for exclusions based on metabolite

missingness (≥ 20%), sample missingness (≥ 20%), total sum abundance (≥ 5 SD), and principal

components (≥ 5 SD; PCs) were used. Most samples were removed for having missingness > 20%

compared to total peak area. These thresholds were arbitrarily defined, or taken from other studies, such

as 20% sample missingness which was previously used, and arbitrarily defined, in Lotta et al., (2021)339.

More stringent thresholds (e.g. ≥ 5%) may have resulted in additional sample exclusions. Metadata,
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such as batch and runday, was not available and could not be included in pre-analysis processing,

though this is likely more an issue with MS data. metaboprep calculated the number of independent

metabolites using a clustering dendrogram and a tree cut height based on a Spearman’s Rho of 0.5.

This is one of many clustering approaches that could be used. For example, adjusting the tree cut height

to any other value would have resulted in a different number of independent metabolites being identified,

which subsequently would have impacted on multiple testing thresholds used. In addition, there is no

rule as to what clustering method (i.e., linkage) should be used, and all methods would have produced

different results. The complete-linkage method used here is potentially more appropriate for metabolite

data compared to single-linkage, where it is possible for clusters to be combined due to a single element

of each cluster being linked, even though all other elements of the clusters are not546. Although most

metabolites were shared across age groups, differences in the number of independent metabolites were

found. There were also differences in the number of clusters and truly independent metabolites. Similarly,

inclusion of derived metabolites resulted in differing numbers of independent metabolites. Metabolites

did not undergo transformation to standardise their concentrations in order to preserve clinical utility and

improve interpretation of results.

Metabolomic data used here were from EDTA stored plasma and serum samples. There is evidence

that the manner in which samples are obtained and stored (e.g., using EDTA) can impact the readings

from NMR platforms547,548. Specifically, evidence shows there is a measurable difference between

metabolites from samples that have not-undergone storage and samples that have. For example, the

study by Sotelo-Orozco et al., (2021)548 using an NMR platform identified evidence for a difference

between EDTA stored plasma and serum samples that had not been stored for 5 metabolites (out of

50), including lower levels of arginine and taurine, and higher levels of pyruvate, acetate, and formate

in EDTA compared to non-EDTA samples; only pyruvate and acetate were measured in analyses in

this Chapter. Although more than the number of differences observed for heparin stored plasma (3

metabolites out of 50), this was fewer than the number of differences observed for fluoride stored plasma

(11 out of 50 metabolites), citrate stored plasma (24 out of 50 metabolites), and acid citrate dextrose

(ACD) stored plasma (29 out of 50 metabolites). Sotelo-Orozco et al., however only assessed 50

metabolites and did not assess lipids, which are a large component of the metabolomic data available in

ALSPAC. Paglia et al., (2018)547, using a MS platform, found similar changes for amino acids. They also

found some evidence that lipid metabolite values are different in EDTA stored plasma samples compared

to non-EDTA stored serum samples. They suggested that citrate stored plasma may be more appropriate
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for lipidomics as values were closer to those of the serum samples compared to the EDTA stored plasma

samples. Both studies however found that a majority of metabolites did not differ considerably between

EDTA and serum samples. Although results for some metabolites such as pyruvate need to be taken

with consideration to the use of EDTA to store samples in ALSPAC, it is likely the majority of metabolite

values will not be considerably different to samples which were not stored using EDTA.

Metabolomic data were measured using the same NMR platform for all individuals. Briefly,

high-throughput proton (1H) NMR assays were performed on ethylenediaminetetraacetic acid (EDTA)

plasma/serum samples. Samples were fasted. Measurements were taken at three molecular windows

(lipoprotein lipids, low molecular-weight metabolites, and lipid extracts) enabling broad quantification of

metabolomic measures. These measures also included derived measures, lipoprotein particle sizes,

and fatty acid ratios, inclusion of which has shown to increase overall power in statistical analyses519–521.

Metabolite values for each individual were provided by the NMR platform in the originally measured

units (e.g., mmol/l). Derived metabolite values are as a %. Full details on the NMR methodology has

previously been described506,522–524 and is available from the ALSPAC data dictionary (data dictionary

identifiers: children = D5704, mothers = D5705, fathers = D5700). The Before Breakfast study does not

have a documentation file and is described elsewhere525; fasted metabolomic data, not the post glucose

challenge metabolomic data, were taken from The Before Breakfast Study. Descriptions of metabolites

are available on GitHub.

Metabolomic measures were taken at specific time points in ALSPAC children and at ~50 years of

age in adults. Though measures of adiposity were available at the same time points, data on confounders

were not. Smoking status for example was available for adult males at the metabolomic clinic but the

closest available measure for adult females was a number of years earlier, in which time they may have

changed smoking status. In addition, the smoking variable used was ‘ever smoked a cigarette’, this will

have meant a lot of non-smokers were categorised as smokers. Although data were obtained where

available from the closest time point, the mismatch in timings may have led to suboptimal adjustment of

confounding factors, increasing the number of false positives.

In all age groups, the availability of data was limited. Absence of physical activity and diet data

meant model 3 was not performed for children and models 2 and 3 for young adults and adults were

not adjusted for diet. However, adjusting for diet, where available (children and adolescents), had little

impact on results (Table 4.6) and is therefore not likely to have changed findings in young adults and
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adults. That being said, given children and adolescents will primarily eat what their parents want them to

eat, the effect of diet on the association between adiposity and metabolites may get stronger with age.

In children, BF was not available. A raw impedance measure was available and derivation of BF

using Equation (4.1) showed a positive correlation with BMI and weight in children and BF measures in

adolescents. However, this derived measure included numerous negative values of BF. The equation

performed well in adolescents, correlating highly with DXA-derived BF (Figure A.4). The negative values

of BF are likely a result of Equation (4.1) being derived in an adult population. Brief investigation showed

negative values of BF remained when using adolescent age with child height and weight (data not

shown). Given that in single frequency devices, impedance is based on the volume of an individual,

it is probable that the values used in the equation do not accurately reflect the proportions of children

pre-puberty. Child-specific equations were not available and the manufacturer was unwilling to share

the equation used by their impedance devices. However, as the estimates derived in linear models are

in reference to the per unit increase in an exposure (rather than the range), the absolute value of the

exposure does not need to be positive. Thus, the negative values of BF will not impact the inference of a

linear regression between BF and any metabolite.

The distribution of BMI at each age group was very similar across sexes. However, the distribution of

WHR and BF differed among sexes in adolescents, young adults and adults; males had on average a

higher WHR, while females had a higher BF. Though Z-scores were used and sex was included as a

covarialbe, the differences in WHR and BF distributions may highlight an underlying difference which, if

associated with metabolites, may have confounded the relationship between adiposity and metabolites.

For example, hormonal contraceptive use has shown to influence the metabolome549 and may be used

less often by individuals with a high BMI550. Future work should therefore look at sex-combined and

sex-specific analyses.

There was little difference in results from the three models in regards to direction of effect estimates.

However, effect estimates for model 3 compared with models 1 and 2 attenuated slightly and had wider

confidence intervals. In addition, the number of associations reaching a multiple testing threshold for

model 3 was lower than for models 1 and 2. This is likely a result of the reduced sample size used in

model 3 compared with models 1 and 2. However, given the consistency in the direction of effects across

models and the highly similar effects across model 1 and 2, there is likely little effect of confounding.

That being said, the possibility of unmeasured confounding can not be ruled.
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4.4.2 Conclusion

The large number of associations identified using multiple exposures adds weight to the evidence,

shown previously for BMI, of the global association between adiposity and metabolites. Work in this

Chapter used a deeply phenotyped, general population based cohort with longitudinal data that enabled

examination of the effect of adiposity on metabolites across multiple ages. As with previous work, there

were associations between adiposity and many metabolites, including amino acids such as phenylalanine

and tyrosine, and lipids, such as total fatty acids and HDL components. This work suggests the broad and

consistent effects of adiposity on a wide array of lipid metabolites likely persist over time. Of particular

note is the increasing effect size and number of associations as a result of adiposity across the metabolic

profile with age. Though this may be a result of the different SDs for adiposity measures at different

ages, given that many adiposity-associated diseases occur later in life, exposure to an altered metabolic

profile over time may be important in disease development. This is especially true as weight loss in

overweight and obese individuals is associated with a normalizing of metabolite changes403. There was

weak evidence of confounding, however the possibility of unmeasured or residual confounding remains.

Follow-up analysis in Chapter 5, will utilise Mendelian randomization to overcome these limitations.
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Chapter 5

Associations between multiple measures

of adiposity and metabolites: Mendelian

randomization analysis

Chapter summary

Recognising the need to characterise the associations between adiposity and metabolites across

the lifercourse, Chapter 4 explored the association between multiple measures of adiposity (body mass

index (BMI), waist hip ratio (WHR), body fat percentage (BF)) and up to 230 nuclear magnetic resonance

(NMR) derived metabolites across four time points from childhood to adulthood in the Avon Longitudinal

Study of Parents and Children (ALSPAC) using an observational epidemiological approach. However,

measurement error, residual confounding, reverse causation, and missing data are all limitations of

observational analyses which could bias these estimates. Triangulation of evidence across multiple

study designs with different sources of bias can strengthen confidence in results551. Introduced in

chapters 1 and 2, Mendelian randomization (MR) is an instrumental variable framework using germline

genetic variation in a way analogous to a randomized controlled trial, which holds a different set of

assumptions and limitations to the study design used in Chapter 4. Thus, in this Chapter, MR is employed

to investigate the association between the same complimentary measures of adiposity (BMI, WHR, and



BF) and metabolites. Consistent results between observational and MR analyses strengthen evidence

of an association between adiposity and metabolites and may help to better characterize the changing

metabolic profile as a result of adiposity.

I performed all of the work in this chapter.
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5.1 Introduction

Evidence from observational analyses, including those presented in Chapter 4, highlights the broad

association between adiposity and metabolites287,288,351,394–403. These associations are consistent

across overall body composition and site-specific adiposity, and persist over time and after adjustment

for covariables. However, as observational analyses are subject to a number of limitations including

measurement error, reverse causation, and confounding, results cannot be used in isolation to infer

causality. Triangulation of evidence across multiple study designs with different sources of bias can

strengthen confidence in results and improve causal inference551.

MR, as discussed in Section 1.8, is an instrumental variable framework using germline genetic

variation in a way analogous to a randomized controlled trial to estimate the causal effect of an exposure

(e.g., adiposity) on an outcome (e.g., metabolites). MR is able to reduce the issues traditionally observed

in observational analyses (namely confounding and reverse causation) and, importantly, holds a different

set of assumptions and limitations362.

Whilst MR has previously been used to investigate the causal effect of adiposity on

metabolites287,423,552, these studies have predominantly used body mass index (BMI)287 as a

marker of adiposity alongside waist hip ratio (WHR)423,552 with 82287, 123423, and 249552 metabolic

measures in up to 12,664287, 24,925423, and 109,532552 individuals. They show similar evidence of

association to observational analyses with systemic changes across the metabolome. However, these

studies either used single measures of adiposity or did not include a measure that accurately captured

the total body fat content, such as BF. These studies are therefore unable to comment on the similarities

or differences between adiposity measures.

Here, a parallel MR analysis using multiple complimentary measures of adiposity (BMI, WHR, and

BF) with 123 metabolites from Kettunen et al., (2016)336 (N = 24,925) and 230 metabolites from the

Efficiency and safety of varying the frequency of whole blood donation trial (INTERVAL; N = 40,849)553

was performed. For all metabolites that were shared between these two studies, a meta-analysis was

conducted in up to 65,774 individuals of European ancestries across the Kettunen et al., and INTERVAL

datasets. Triangulation of these results with observational analyses conducted in adults in Chapter 4,

were used to identify persistent effects across studies, highlighting the strongest and most consistent
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evidence of the effect of adiposity on metabolite profile. The relationships between adiposity and

metabolite measures for which there was consistent evidence in both observational and MR analyses

were then taken forward into analyses presented later in this thesis, examining the potential intermediary

role of metabolites in the relationship between adiposity and an exemplar disease.

5.2 Methods

5.2.1 Overview

This Chapter details hypothesis-free, two-sample summary-level MR analyses and subsequent

meta-analyses (Figure 5.1). Genetic variants, single nucleotide polymorphisms (SNPs), associated with

variation in three measures of adiposity (BMI53, WHR54, and BF51) measured in individuals of European

ancestries were used as genetic instrumental variables for the three adiposity exposures. Each of the

exposures (BMI, WHR, and BF) capture different components of adiposity, and the associated genetic

variants explain different amounts of variation in the respective trait (see Sections 5.2.2 and 5.2.3).

Parallel MR analyses were performed on the following outcomes: (1) 123 NMR derived metabolites

measured in 24,925 individuals of European ancestries from the Kettunen et al., (2016) genome-wide

association study (GWAS)336; (2) 230 NMR derived metabolites from 40,849 individuals of European

ancestries from the INTERVAL GWAS (unpublished). The main MR analysis consisted of an inverse vari-

ance weighted multiplicative random effects (IVW-MRE) model and sensitivity analyses using additional

models (i.e., MR-Egger, weighted median, and weighted mode). Meta-analyses of all metabolites shared

between the Kettunen and INTERVAL studies was also performed. Meta-analyses included up to 65,774

individuals of European ancestries and 110 metabolites. Data included within these studies, including

the adiposity measures detailed later on, were inverse rank normally transformed prior to genome-wide

analysis. Traditionally, and throughout this Chapter, units from these GWAS are given as standard

deviations (SD). However, due to this transformation, the data are unitless554, as such betas cannot be

back-transformed by dividing by the SD as one could if a Z-score approach was used. The benefit of this

transformation is that estimates from these GWAS can be easily compared between GWAS using the

same transformation.
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All data manipulation and analyses were performed using R509 (version 3.5.3). MR analysis was

performed using the TwoSampleMR555 (version 0.4.22) R package. Data for exposures were obtained

from published summary statistics discussed in detail in Section 5.2.3. Summary statistics for the

metabolite data from the Kettunen et al., (2016) metabolites were obtained from MR Base555 (accessed

26/07/2019), while those from INTERVAL were unpublished and obtained from collaborators (Adam

Butterworth, University of Cambridge). A list of all metabolites is available in the Appendix (Table A.6)

and on GitHub. A list of all genetic variants used as instrumental variables are available on GitHub.

Meta-analyses were conducted using the meta (version 4.18-0) R package. Results were visualised

using the EpiViz (version 0.0.0.9; detailed in Chapter 3) and ggforestlot (version 0.1.0) R packages.
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Body mass index (Yengo et al. 2018) 
N = 795,624 

Waist hip ratio (Pulit et al. 2019) 
N = 687,702 

Body fat percentage (Lu et al. 2015) 
N = 89,300

SNP-adiposity

SNP-metabolites

123 NMR derived metabolites (Kettunen et al. 2016) 
N = 24,925

SNP-metabolites

230 NMR derived metabolites (INTERVAL) 
N = 40,849

IVW-MRE + sensitivity Shared metabolites 
N = 65,774Meta-analysis

Figure 5.1: Analysis overview. The main analysis consisted of two parallel two-sample Mendelian
randomization (MR) analyses using three exposures (body mass index (BMI), waist hip ratio (WHR), and
body fat percentage (BF)). Two outcome metabolomic datasets were used: (1) 123 nuclear magnetic
resonance (NMR) derived metabolites measured in 24,925 individuals of European ancestries from the
Kettunen et al., (2016) genome-wide association study (GWAS)336; (2) 230 NMR derived metabolites
from 40,849 individuals of European ancestries from the INTERVAL GWAS. Four models were used:
inverse variance weighted, multiplicative random effects (IVW-MRE) model was the main analysis;
MR-Egger, weighted median, and weighted mode were used as sensitivity analyses. The number of
SNPs used for each exposure along with the sample size (N) for the exposure and outcome datasets
are given. A meta-analysis of the IVW-MRE results of 110 metabolites that were shared across the two
studies was conducted.

5.2.2 Instrumentation

Instrumentation of exposures is primarily achieved using either single genetic variants or multiple

genetic variants as instrumental variables. A limitation of using a single genetic variant to instrument
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an exposure is that the proportion of variance explained in the exposure by that variant will likely be

low (although some cases exist where variants near or in the protein coding region of the gene, known

as cis-variants, that lead to changes in protein levels such as c-reactive protein). This can result in a

weak instrument which can lead to biased estimates towards the confounded observational effect in a

one-sample setting and towards the null in a two-sample setting364. Using multiple genetic instruments

which, collectively, explain a greater proportion of the trait variance than any one individual variant can

mitigate weak instrument bias.

In Chapter 2, 173 studies which used a measure of adiposity as an exposure in 2,214 MR analyses

were reviewed. The majority of these 2,214 MR analyses used BMI (N = 1,509) as the exposure; 112

analyses used WHR and 45 used BF, the remaining analyses used differing measures of fat mass

and depositions such as hepatic fat. The majority of analyses used multiple instruments. In many

instances, it was not possible to identify the exact instruments used due to an absence of information

or missreporting. On the whole however, the main instrumentation strategy was to obtain instruments

from the most recent GWAS with the largest sample size. This resulted in most analyses using a

genome-wide significance threshold of p-value < 5 x 10-8. Few studies discussed the independence of

their genetic variants, and those that did mostly reported that the original GWAS declared the SNPs to

be independent from one another - very few analyses performed clumping of their obtained instruments,

i.e., used a linkage disequilibrium (LD) r2 and a distance threshold to identify independent SNPs. In

order to allow comparison between results here and those previously reported, the instrumentation

approach used most commonly in previous analyses was used in these analyses. For the main analysis

here, instruments were obtained directly from the most recently published GWAS with the largest sample

size. In additional analyses performed here, instruments were obtained from GWAS which did not use

UK Biobank, due to potential concerns over population structure372,556–558, and performed clumping of

identified instruments to ensure consistency in the independence of instruments across exposures.

5.2.3 Data

The following section details a number of GWAS and meta-analyses of previously published studies,

which were used in this Chapter to perform MR analyses and are required as per STROBE-MR

guidelines448. I was not not directly involved in these GWAS. The total sample size (N) and sex-specific

sample size does not always tally, this is due to variation in the sample size for each SNP. Where
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this is the case, ‘sample size up-to’ is used. Due to the way in which studies report GWAS differently,

information present in one study (such as sex-specific sample sizes) are not always present in another.

As such, some information is missing from the GWAS described here in. Additional details, such as the

methods used for individual GWAS which make up the meta-analyses presented here, are provided in

the Appendix (A.4.1).

Exposures: measures of adiposity

Body mass index Genetic variants robustly associated with BMI were extracted from Yengo et al.,

(2018)53, who analysed data from 515,509–795,624 individuals of European ancestries from two

sources, the Genetic Investigation of Anthropometric Traits (GIANT) consortium48 and UK Biobank. In

both sources, BMI was calculated as
weight (kg)
height (m2) . Yengo et al., (2018)53 performed a fixed effects

inverse variance weighted meta-analysis of BMI using GWAS results generated from UK Biobank (N =

456,426) and results from the GIANT consortium, Locke et al., (2015)48 (N = 322,154) using METAL559.

In UK Biobank, BMI was adjusted for age, sex, recruitment centre, genotyping batch, and the first 10

principal components (PCs) calculated from 132,102 (out of 147,604) genotyped SNPs pre-selected

by the UK Biobank quality control team560. In GIANT, BMI was adjusted for age, age-squared, and

study-specific covariables (e.g. genotype-derived PCs). The residuals from both UK Biobank and GIANT

were inverse rank normally transformed and represent SD units. In total, 681,275 individuals of European

ancestries and ~2.4 million HapMap Phase II imputed SNPs were included in the meta-analysis. The

intercept for linkage disequilibrium score regression (ILDSC = 1.03; SE = 0.02) suggested population

stratification. However, LDSC can rise above 1 as sample sizes and heterogeneity increase561; therefore,

this was unlikely to impact interpretation of GWAS results. Briefly, LDSC can estimate the contribution of

confounding factors, such as population structure, on summary statistics based on a regression of the

SNP effect estimates and linkage disequilibrium scores (LD r2) of all other SNPs.

In the meta-analysis, a total of 656 primary associations reaching a genome-wide significance

threshold of p-value < 5 x 10-8 were identified. Approximate conditional and joint multiple-SNP (COJO)

analysis, whereby secondary signals which are conditional on the presence of a primary signal are

identified, identified a further 285 independent SNPs reaching an adjusted genome-wide significance

threshold of p-value < 1 x 10-8. Together, these 941 associations explain 6% (SE = 0.8%) and 22.4%
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(SE = 3.7%) of the variance and heritability of BMI respectively.

All 941 SNPs identified in the COJO-GWAS were used in the main MR analysis of this chapter.

Primary SNPs (N = 656) were identified as those with the smallest p-value within a 1 mega-base (Mb)

window, secondary SNPs (COJO-specific SNPs = 256) were identified as conditional on the presence of

a primary SNP given a p-value threshold of 1 x 10-8 and a 1Mb window.

Waist hip ratio Genetic variants robustly associated with WHR were extracted from Pulit et al.,

(2019)54, who analysed data from 485,486—697,702 individuals of European ancestries from two

sources, UK Biobank and the GIANT consortium49. In both sources, WHR was calculated as
waist circumference (cm)
hip circumference (cm) . Pulit et al., (2019)54 performed a fixed effects inverse variance weighted

meta-analysis of WHR using GWAS results generated from UK Biobank (N up to 485,486 (men up to

263,148; women up to 222,338)) and results from the GIANT consortium (N up to 212,248 (men up to

94,434; women up to 118,004))49 using METAL.

In UK Biobank, WHR was adjusted for sex, age, age-squared and assessment centre. In GIANT,

WHR was adjusted for age, age-squared and study-specific covariables. The residuals from both UK

Biobank and GIANT were inverse rank normally transformed and represent SD units. In GIANT, residuals

were calculated for men and women separately. Prior to meta-analysis, SNPs with a minor allele

frequency difference > 15% between the two sources were removed. In the meta-analysis, a total of 316

associations reaching a genome-wide significance threshold of p-value < 5 x 10-9 were identified, where

the p-value was adjusted to account for denser imputation data562. Independence was determined using

an LD r2 threshold > 0.05 and a 10Mb window; the genomic span of each LD-based clump was identified

and a 1kb buffer was added up- and down-stream. Where windows overlapped, they were merged

into a single locus resulting in the 316 lead SNPs. These associations explained 3% of the phenotypic

variance as calculated in an independent dataset (N = 7,721). SNP-based heritability across all SNPs

was estimated to be 22.7%. These genetic variants were used as genetic instrumental variables in the

main MR analysis in this chapter.

Body fat percentage Genetic variants robustly associated with BF were extracted from Lu et al.,

(2016)51, who analysed data from up-to 89,297 (men up to 44,429; women up to 45,525) individuals
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of European ancestries. BF was measured with with dual-energy X-ray absorptiometry (DXA) or

bioelectircal impedance as described previously46. The number of individuals with BF measured by DXA

and impedance was not reported. Lu et al., (2016)51 performed a fixed effects inverse variance weighted

meta-analysis of BF using two meta-analyses generated from a meta-analysis of genome-wide array

GWAS (N = 65,831) and a meta-analysis of Metabochip array GWAS (N = 23,468) using METAL559.

For each of the individual genome-wide array and Metabochip array studies, BF was adjusted

for age, age-squared, and study-specific covariables (e.g. genotype-based principle components and

study centre) if necessary. For studies of unrelated individuals, residuals were calculated separately in

men and women, and separately in cases and controls. For studies of family-based design,residuals

were calculated in men and women together, and sex was additionally included in the model. The

residuals were inverse rank normally transformed and represent SD units. For studies of family-based

design, the family relatedness was additionally included in each GWAS. Each study performed study

specific quality control. Imputation was performed in each study using the European ancestries HapMap

Phase II (Release 22) reference panel. Analysis was then performed in three-stages. First, GWAS for

each genome-wide array and Metabochip array study was performed using linear regression assuming

an additive genetic model. Second, parallel meta-analysis of the genome-wide array GWAS and the

Metabochip array GWAS were performed using a fixed effects inverse variance weighted model. Third,

meta-analysis of these two meta-analyses was performed using a fixed effects inverse variance weighted

model.

In total 7 SNPs reached a genome-wide significance threshold (p-value < 5 x 10-8) and were

considered independent (± 500kb of the most significant SNP). Estimation of variance explained was not

available in the European ancestries meta-analysis. In a meta-analysis of individuals of all ancestries,

which included up to 11,419 additional individuals of non-European ancestries, these 7 SNPs explained

0.416% of the variance in BF. The additional 5 SNPs identified in this all ancestries meta-analysis

explained 0.58% of the variance in BF. The 7 genetic variants, identified in the European ancestries

meta-analysis, were used as genetic instrumental variables in main MR analysis in this chapter.
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Outcomes: metabolites

Kettunen et al., (2016)336 Genome-wide summary level data for 123 NMR-derived metabolites, which

includes derived metabolite measures (Appendix Table A.6), were available from Kettunen et al.,

(2016)336. In total, metabolomic data were available for up-to 24,925 individuals of European an-

cestries. Metabolomic data were from the comprehensive quantitative serum/plasma platform described

by Soininen et al., (2009)522, the same platform used in Chapter 4. Kettunen et al., performed a fixed

effects meta-analysis of 123 serum and Ethylenediaminetetraacetic acid (EDTA) plasma NMR quantified

metabolites from 14 GWAS.

For each of the 14 cohorts contributing to the 14 GWAS, 123 shared metabolites were quantified

from human blood. Four cohorts used EDTA-plasma, the other 10 used serum. The majority of blood

samples were fasted. Where a study did not have over-night fasted samples, correction for fasting time

effect was performed using the gam R package and fitting a smoothed spline to adjust for fasting. All

metabolites were adjusted for age, sex, time from last meal if applicable, and the first ten PCs. The

residuals for each adjusted metabolite were inverse rank normally transformed and represent SD units.

Each of the 14 cohorts performed a univariate GWAS assuming an additive genetic model. SNPs were

imputed up to 39 million markers using the 1000 Genomes Project, March 2012 version.

For the meta-analysis, SNPs with accurate imputation (info > 0.4) and minor allele count > 0.3

were combined using double genomic control correction, that is, both individual cohort results and

meta-analysis results were corrected for the genomic inflation factor as implemented in GWAMA. Up to

12,133,295 SNPs were included in the meta-analysis. Variants present in more than seven studies after

filtering and meta-analysis were considered for the final results. All traits gave genomic inflation factors in

the meta-analysis < 1.034 showing little evidence of systematic bias in the test statistic. A genome-wide

significance threshold (p-value < 2.27 x 10-9) after correcting for 22 independent tests (22 being the

number of principal components explaining over 95% of variation in the metabolite data) was used.

These filtered summary statistics were used in MR analyses in this Chapter to extract adiposity-related

genetic variants.

INTERVAL Genome-wide summary level data for 230 NMR-derived metabolites, which includes derived

metabolite measures (Appendix Table A.6), were available from the INTERVAL study. INTERVAL is a
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randomised trial of ~50,000 individuals recruited from June 2012–June 2014 in the United Kingdom to

investigate the safety of different blood donation intervals553. In total, metabolomic data were available

for up up to 40,849 individuals of European ancestries. Metabolomic data were from the comprehensive

quantitative serum/plasma platform described by Soininen et al., (2009)522, the same platform used for

the Kettunen dataset and metabolomic data in Chapter 4. A linear mixed model (LMM) GWAS of 230

serum NMR quantified metabolites was performed using BOLT-LMM. The INTERVAL GWAS data were

unpublished and provided by collaborators (Adam Butterworth, University of Cambridge).

Samples or analytes with potentially unreliable data were flagged. Flagged metabolites included

acetate, pyruvate, glucose, and lactate. Individuals with flagged values for any of these metabolites had

those values set to missing. Individuals were excluded if they had > 30% analyte missingness, and one

NMR PC outlier. All metabolites were then log transformed and metabolites with values of 0 or values >

10 SD from the mean after log transformation were set to missing. Log transformed metabolite values

were then adjusted for age, sex, recruitment centre, time between blood draw and sample processing,

and the first 10 PCs of genetic ancestry. Residuals were then inverse rank normally transformed and

represent log SD units.

For the GWAS, SNPs were imputed using a combined 1000 Genomes + UK10K panel, which

captured 87,696,910 variants. A LMM was fit using BOLT-LMM. Variants that were poorly imputed (info

score < 0.3 or R2 < 0.3), variants with unrealistic results (e.g. standard error < 0, standard error > 10,

beta = infinity), and variants with minor allele count < 5 were excluded. A genome-wide significance

threshold was not set. A total of 28 PC explained over 95% of variation in the metabolite data. These

filtered summary statistics were used in MR analyses in this Chapter to extract adiposity-related genetic

variants.

5.2.4 Two-sample Mendelian randomization: association between complimentary

measures of adiposity and metabolites

For all exposures, the following summary-level data were obtained from the original GWAS publica-

tions for each exposure-related genetic variant: rsID, effect allele, other/non-effect allele, effect allele

frequency, effect estimate, standard error of the effect estimate, p-value, sample size, and units. The

same data for these adiposity-related genetic variants were obtained for each metabolite separately from
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both Kettunen et al., and INTERVAL sources. Clumping of SNPs was not performed as the studies from

which they were obtained stated they were independent or near-independent and had already been

clumped. To assess the possibility of weak instrument bias, F-statistics were calculated for each SNP

and an average F-statsistic was calculated for each exposure.

Genetic variants were extracted from each metabolite GWAS and, where these were not present,

proxy SNPs were included if LD was ≥ 0.8. For proxy SNPs, the inclusion of SNPs where the reference

strand was ambiguous (strand flips) was allowed and the reference strand was inferred using a minor

allele frequency (MAF) threshold. That is, the reference strand was inferred using a MAF, so long as that

MAF was not ≥ 0.3, in which case it was excluded. Exposure and outcome summary statistics for each

of the adiposity-related SNPs were harmonised in reference to the exposure effect allele being on the

increasing scale. For included alleles where the reference strand was ambiguous, the positive strand

was inferred using effect allele frequency. That is, if the effect allele frequency of a SNP was not ≥ 0.3 or

≤ 0.7, the reference strand was inferred using the effect allele frequency to harmonise exposure and

outcome data; otherwise, it was removed.

An inverse variance weighted (IVW), multiplicative random effects (IVW-MRE) model was used to

investigate the effect of each exposure on each metabolite. The model assumes that the strength of the

association between the genetic instruments and the exposure is not correlated with the magnitude of

pleiotropic effects and, that pleiotropic effects have an average value of zero563. Pleiotropy, discussed

in Chapter 1 Section 1.8, describes the phenomena in which a SNP has an effect on multiple traits.

Specifically in regards to MR analyses, it describes the phenomena in which SNPs associated with the

exposure (e.g., adiposity) are also associated with the outcome (e.g., metabolites) through pathways

(e.g., cardiovascular disease) that are not via the exposure.

Multiple testing thresholds correcting for the number of independent tests between adiposity and

metabolites being undertaken with MR analyses were applied when using the Kettunen and INTERVAL

data. For the Kettunen data, a multiple testing threshold of p-value < 0.0023 was applied; this is based

on the number of principal components (22) in the Kettunen et al., meta-analysis that explained 95% of

the variation in metabolite data. For the INTERVAL data, a multiple testing threshold of p-value < 0.0018

was applied; this is based on the number of principal components (28) in the INTERVAL GWAS that

explained 95% of the variation in metabolite data.
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For MR analyses using the Kettunen et al., (2016) data, effect estimates are given in SD units per

SD higher BMI, WHR, or BF. For MR analyses using the INTERVAL data, effect estimates are given in

log SD units per SD higher BMI, WHR, or BF. The metabolic profile of adiposity was visualised using

Circos plots made with the EpiViz R package (detailes in Chapter 3). Directions of effect were compared

across exposures for analysis using Kettunen data and analysis using INTERVAL data. Tests which

reached a multiple testing threshold within each analysis are presented and the effect of adiposity on

subclasses was explored in regard to the multiple testing threshold.

Sensitivity analyses

Where possible, the assumptions of no pleiotropy among genetic instruments and outcomes were

explored using: MR-Egger374, weighted median375, and weighted mode376 based estimators. Sensitivity

analysis was performed for all exposure-outcome pairs, but focus was given to those pairs which met a

multiple testing threshold in the main analysis. For these sensitivity models, no threshold requirements

were set, instead, consistency in the direction of effect estimates and the presence of overlapping

confidence intervals (CIs) between the IVW-MRE model and these methods was investigated.

MR-Egger provides an estimate of unbalanced/directional horizontal pleiotropy via the intercept of

a linear regression of the SNP-exposure and SNP-outcome association. In the presence of pleiotropy

the intercept will be biased away from the origin. MR-Egger gives consistent estimates when 100% of

genetic instruments are invalid374. The weighted median is complimentary to MR-Egger but does not

rely on the “instrument strength independent of direct effect” (InSIDE) assumption. It calculates the

median of an empirical distribution of the causal effect estimates weighted for precision. It provides

consistent estimates when at least 50% of the weight comes from valid genetic instruments and as long

as no one genetic instrument contributes > 50% of the weight375. The weighted mode assumes the true

causal effect is the most common effect, it is robust when the majority of effect estimates are derived

from valid instruments376. The effects of heterogeneity in the exposure instruments was investigated

using Cochran’s Q statistic for IVW-MRE and MR-Egger models.

In these analyses, it is assumed that the instruments influence the exposure first and their effect on

the outcome through the exposure is secondary. Given the large number of genetic instruments used, as

well as the feed-back and feed-forward loops present in the metabolome, the directionality of association
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may be difficult to evaluate. For example, a SNP which is strongly associated with adiposity may also

have an effect on the metabolite under investigation via an association between that SNP and another

metabolite which is up- or down-stream of that metabolite. The Steiger test564, applied here using the

TwoSampleMR package, can be used to estimate whether the test under investigation is the “true” causal

direction. The Steiger test calculates the variance explained in the exposure and the variance explained

in the outcome by the exposure-related instruments. If the variance explained in the outcome is less than

that explained in the exposure, then the direction of effect can be considered to be from the exposure

to the outcome. However, if the variance explained in the outcome is more than that explained in the

exposure, this may indicate an invalidation of the core MR assumptions but does not indicate that the

direction of association is from the outcome to the exposure. In order to estimate the variance explained

the N is required. For the Kettunen dataset, the sample size for each individual SNP was available. For

the INTERVAL dataset, the overall sample size (N = 40,849) was used as the individual SNP sample

sizes were not available.

The Wald ratio estimator was used to generate causal effect estimates of each adiposity exposure

on each metabolite for each SNP independently in a single-SNP MR. In addition, a “leave-one-out”

sensitivity analysis, whereby an MR analysis where each SNP is sequentially left out and the causal

effect estimated absent of that SNP, was performed using the IVW model. If the estimated effect is

substantially altered after the removal of a single-SNP, this may imply that SNP is driving the association

between the exposure and outcome, which may be indicative of a pleiotropic effect of that SNP. Finally,

each of these sensitivity analyses were visualised using funnel plots and forest plots of the single-SNP

and leave-one-out MR analyses to identify potential pleiotropic effects.

Additional analyses

Whilst the main analyses employed the most common approach of identifying and using genetic

variants as instruments in MR studies (i.e., taking exposure-related variants from the largest and most

recent GWAS), there are a number of potential limitations to this approach within the context of this

chapter. Firstly, genetic instrumental variables for BMI and WHR were obtained from studies using UK

Biobank, which has shown evidence of latent population structure372,373. With regards to BF, instruments

were obtained from a study which used different measures of BF, potentially leading to measurement

heterogeneity. To further test the validity of the genetic variants used in the main analyses as instruments,
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a complementary set of genetic instrumental variables for each adiposity measure were obtained from

alternative published summary statistics (Table of instruments available on GitHub). Additionally, two

SNPs identified in the BF GWAS have also been associated with ‘favourable adiposity’47,565. Specifically,

Yaghootkar et al., (201447 and 2016565) identified favourable adiposity SNPs as those SNPs identified

in a GWAS of insulin resistance which were also associated with increased BMI and triglycerides,

decreased HDL, decreased risk of type 2 diabetes and coronary artery disease, and a more favourable

blood pressure. The BF instrument may therefore not solely be a reflection of increased total body fat

and may instead be capturing elements of the favourable adiposity phenotype. It was expected that

removal of these SNPs would result in an instrument that was less heterogeneous.

Briefly, SNPs for BMI were obtained from the initial non-COJO analysis by Yengo et al., (2018)53 (N

SNPs = 656), and a separate set of SNPs were obtained from Locke et al., (2015)48 (N = 77) - which

did not use UK Biobank; for WHR, SNPs were obtained from Shungin et al., (2015)49 (N SNPs = 26) -

which did not use UK Biobank; for BF, the two SNPs associated with ‘favourable adiposity’ were removed

(N SNPs = 5) and an additional SNP set was identified in a GWAS using a single measure of BF from

Hubel et al., (2019)55 (N SNPs = 76). Outcome data extraction and harmonisation was performed as

for the main analysis. F-statistics (Appendix Section A.4.2) and detailed information on each additional

exposure is available in the Appendix, Section A.4.1. The main analysis (IVW-MRE) and sensitivity

analyses were re-run using these additional SNP lists.

In addition, studies used a variety of methods and definitions of independence for SNPs. In order to

ensure SNPs were independent to the same degree across all studies, genetic instrumental variables for

all exposures (those used in the main analysis and in additional analyses described here) were clumped

and the main analysis (IVW-MRE) and sensitivity analyses were re-run using these clumped instruments.

Clumping was performed using the R package TwoSampleMR555 setting an LD r2 threshold of 0.001 for

SNPs within a 10,000 base window of each other. Spearman’s correlation between MR results from the

non-clumped and clumped SNP lists was performed.

5.2.5 Meta-analysis of two-sample Mendelian randomization results

Metabolomics data from Kettunen et al., (2016)336 were inverse rank normally transformed prior

to GWAS. For INTERVAL, metabolomics data were log transformed and then inverse rank normally
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transformed prior to GWAS. As these transformations use different scales, meta-analysis using MR effect

estimates was not appropriate. Instead, a meta-analysis of each exposure-outcome pair was performed

with p-values using the metap (version 1.4) R package using Fisher’s method for combining p-values.

Meta-analysis of the IVW-MRE results from the main analysis was performed.

Fisher’s method (5.1) combines p-values from each test into one test statistic (X2), where pi is the

p-value for the ith test, k is the number of tests, and 2k is the degrees of freedom. When all the null

hypotheses are true, and the pi are independent, X2 has a chi-squared distribution with 2k degrees of

freedom.

X2
2k ∼ −2

k∑
i=1

ln(pi), (5.1)

A large chi-squared statistic compared to the degrees of freedom (with a corresponding low p-value)

provides evidence of an effect in at least one study. The null hypothesis for each MR analysis is that

there is no effect of adiposity on metabolites. The meta-analysis null hypothesis is that each tests null

hypothesis is true. That is, the null hypothesis when using the Kettunen dataset (one test) and the null

hypothesis when using the INTERVAL dataset (one test) are both true. The alternative hypothesis is that

at least one of these tests null hypotheses is true. As such, acceptance of the null hypothesis (that there

is weak evidence for an association between adiposity and metabolites in the meta-analysis) should not

be interpreted as evidence of no effect in all studies. Given only two studies are included in any one

exposure-outcome pair in the current work, the potential effects of heterogeneity are difficult to interpret

and are therefore not focussed on here. Meta-analysis results are presented as directions of effect

and p-values. A Bonferroni corrected p-value threshold accounting for the total number of independent

metabolites able to be meta-analysed (p < 0.00045; 0.05/110) was used to identify evidence of an

association.

5.2.6 Comparison of two-sample Mendelian randomization and observational results

from Chapter 4

Metabolites included in the meta-analysis, which showed consistent directions of effect when using

the Kettunen and INTERVAL data and which reached a Bonferroni corrected meta-analysis p-value

151



threshold, were compared with observational results from Chapter 4. Direction of effect in the meta-

analysis was compared with direction of effect in the observational analysis to triangulate evidence,

where consistency across methods improved confidence in causal effects.

5.3 Results

The effects of BMI, WHR, and BF on a total of 123 metabolites using data from Kettunen et al.,

(2016)336 and 230 metabolites using data from INTERVAL were estimated using an IVW-MRE model.

F-statistics for all SNPs used as genetic instruments for each exposure were above 10 (mean F-statistics:

BMI = 73, WHR = 66, BF = 44; Table of SNPs available on GitHub).

For MR analyses using the Kettunen et al., (2016) metabolites, effect estimates are given in SD units

per SD higher BMI, WHR, or BF. For MR analyses using the INTERVAL metabolites, effect estimates are

given in log SD units per SD higher BMI, WHR, or BF. Metabolites are grouped into subclasses to aid

interpretation of results. The Kettunen dataset included two subclasses (metabolites ratio and protein)

which were not present in the INTERVAL data. In the INTERVAL data, 16 subclasses, which were all

derived metabolic measures (i.e. ratios of one measured metabolite to another), were not available in

the Kettunen data.

5.3.1 Two-sample Mendelian randomization: association between complimentary

measures of adiposity and metabolites

Metabolic profile

Effect estimates from the IVW-MRE model showed evidence for a broad effect of adiposity on the

metabolic profile (Figure 5.2 and 5.3). The pattern of association was visually similar when using the

Kettunen data for BMI and WHR, and when using the INTERVAL data for BMI and WHR. When using

the Kettunen data, the effect of BF on metabolites was visually distinct to the effect of BMI and WHR,

with many effect estimates appearing to be inverse to those for BMI and WHR. However, when using the

INTERVAL data, the effect of BF looked more similar in regards to the direction of effect to that of BMI
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and WHR. However, these effects appeared to cross the null much more often. Effects for WHR were

generally larger with wider CIs, whereas those for BMI were smaller with tighter CIs. Effects for BF were

much larger across both metabolite datasets, with wide CIs which spanned the null. A table of results for

analyses using Kettunen and INTERVAL data are available on GitHub.
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Figure 5.2: Mendelian randomization analysis: association between adiposity measures and
metabolites using Kettunen data. Circos plot shows each track as one measures of adiposity; the
outer track is body mass index (BMI), the middle track is waist hip ratio (WHR), the inner track is body fat
percentage (BF). Solid points indicate a multiple testing threshold (0.0023) has been reached. Effect
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GitHub.
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Figure 5.3: Mendelian randomization analysis: association between adiposity measures and
metabolites using INTERVAL data. Circos plot shows each track as one measures of adiposity; the
outer track is body mass index (BMI), the middle track is waist hip ratio (WHR), the inner track is body fat
percentage (BF). Solid points indicate a multiple testing threshold (0.0018) has been reached. Effect
estimates are given in log SD units per SD higher BMI, WHR, or BF. 95% confidence intervals shown.
Metabolites are grouped by subclass and arranged alphabetically within each subclass. Available on
GitHub.
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Directional consistency between exposures

Given adiposity measures used here are highly correlated, and evidence from Chapter 2 highlighted

broad consistency in the direction of effect estimates across adiposity measures for many diseases,

consistency of effect direction across exposures within datasets was expected and investigated. Direc-

tional concordance or discordance may enhance our understanding of the underlying mechanisms of

the relationship between adiposity and metabolites, for example, if a metabolite is decreased by BMI but

increased by WHR, consideration of the effect of deposition over composition may be more important in

downstream analyses. Here, a positive effect is identified if there is a positive effect for all exposures

being assessed, i.e. if BMI, WHR, and BF all had a positive effect on metabolite A, this would be recorded

as a positive effect. If however, the effect of BF on metabolite A was negative, this would be recorded as

an ‘opposite effect’.

Across all exposures, directional consistency of effect estimates from the IVW-MRE model was low

for both metabolite sources from the Kettunen (N opposite effect = 105) and INTERVAL (N opposite

effect = 178) data (Figure 5.4). This was the same for BF and WHR and for BMI and BF. Directional

consistency was much higher for BMI and WHR for both analyses using the Kettunen (N opposite effect

= 5) and INTERVAL ( N opposite effect = 34) data.
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Figure 5.4: Directional consistency of two-sample Mendelian randomization effect estimates. A
positive effect reflects the effect estimates being either all positive or both positive, depending on whether
the comparison is with all three exposure (All) or between just two exposures; a negative effect reflects
effect estimates being in a negative direction; opposite effect reflects different directions for the effect
estimates across the comparisons. A: Two-sample MR inverse variance weighted (IVW) multiplicative
random effects (IVW-MRE) for 123 metabolites from Kettunen et al., (2016)336; B: Two-sample MR
IVW-MRE for 230 metabolites from INTERVAL. BMI = body mass index; WHR = waist hip ratio; BF =
body fat percentage.

Multiple testing threshold

Multiple testing thresholds of 0.0023 and 0.0018 were used for the analyses using the Kettunen

and INTERVAL data, respectively. Of the 123 metabolites in the Kettunen data, a total of 63, 63, and

0 tests reached a multiple testing threshold for BMI, WHR, and BF, respectively. Of these tests, 58

reached a multiple testing threshold across both BMI and WHR. A total of 5 and 5 tests reached a

multiple testing threshold for BMI only and WHR only, respectively. Of the 230 INTERVAL metabolites, a
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larger proportion of metabolites reached the multiple testing threshold. A total of 88, 138, and 4 tests

reached a multiple testing threshold for BMI, WHR, and BF, respectively. Of these tests, 76 reached

a multiple testing threshold across both BMI and WHR. A total of 12 and 62 tests reached a multiple

testing threshold for BMI only and WHR only, respectively. None of the 4 tests for BF overlapped with

BMI or WHR tests.

For the 58 tests reaching a multiple testing threshold for BMI and WHR in analysis using the

Kettunen data, the strongest positive and negative effects for BMI were for total lipids in chylomicrons

and extremely large very large low density lipoprotein (VLDL) (SD change per SD higher BMI (beta) =

0.12) and cholesterol esters in large high density lipoprotein (HDL) (beta = -0.12), respectively. For WHR

the strongest positive and negative effects were found for triglycerides in small VLDL (beta = 0.31) and

free cholesterol in large HDL (beta = -0.38), respectively. For the 76 tests reaching a multiple testing

threshold for BMI and WHR in analysis using the INTERVAL data, the strongest positive and negative

effects for BMI were found for phenylalanine (beta = 0.10) and mean diameter for HDL particles (beta

= -0.10), respectively. For WHR the strongest positive and negative effects were found for the ratio of

triglycerides to phosphoglycerides ratio (beta = 0.40) and free cholesterol in large HDL to total lipids in

large HDL ratio (beta = -0.41), respectively. For BF, all 4 tests reaching the multiple testing threshold

were in the very small VLDL subclass. Three of these (total cholesterol in very small VLDL, cholesterol

esters in very small VLDL, and the ratio of these two) had the same effect sizes and p-value (beta =

0.22; p-value = 5.27 x 10-7). The fourth metabolite, total cholesterol in very small VLDL to total lipids in

very small VLDL ratio had a similar effect size (beta = 0.27).

Subclass results

When using the Kettunen data, tests reaching the multiple testing threshold (p-value < 0.0023)

were observed for at least one exposure in 23 of 28 subclasses across the three exposures. No tests

reached the multiple testing threshold for subclasses: small low density lipoprotein (LDL), medium LDL,

large LDL, protein, and fluid balance. However, a number of metabolites in these subclasses had CIs

which did not span the null. For subclasses intermediate density lipoprotein (IDL), metabolites ratio,

ketone bodies, glycolysis related metabolites, glycerides and phospholipids, cholesterol, and amino

acids subclasses, only a small number of metabolites within each subclass reached the multiple testing

threshold. Whereas, for the small VLDL, medium VLDL, large VLDL, very large VLDL, extremely large
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VLDL, large HDL, very large HDL, lipoprotein particle size, branched-chain amino acids, and aromatic

amino acids subclasses a majority of metabolites reached the multiple testing threshold.

In INTERVAL, metabolites were grouped into 42 subclasses. The additional subclasses to that in

the Kettunen data were comprised of ratios (e.g., small HDL ratios). A protein subclass, available in the

Kettunen data, was not available in the INTERVAL data. Of the 42 subclasses, tests reached a multiple

testing threshold (p-value < 0.0018) in 39 subclasses. No tests reached the multiple testing threshold for

the fluid balance, glycolysis related metabolites, and ketone bodies subclasses. A majority of tests did

not reach the multiple testing threshold in a majority of subclasses. Only 12 subclasses (amino acids,

apolipoproteins, aromatic amino acids, branched chain amino acids, glycerides and phospholipids ratios,

inflammation, large HDL, large HDL ratios, medium HDL, medium HDL ratios, very large HDL, and very

large HDL ratios) had a majority of tests reaching the multiple testing threshold.

Sensitivity analyses

The effects of heterogeneity in each exposures instruments were investigated using Cochran’s Q

statistic for IVW-MRE and MR-Egger models. Heterogeneity between the genetic instruments for each

exposure was greater than the degrees of freedom for a majority of metabolites for all three exposures

across both the Kettunen and INTERVAL datasets (Table 5.1). That is, if BMI has 941 SNPs, then the

degrees of freedom is 940, and if Cochrans Q for the effect of BMI on metabolite 1 is 1000, then there is

evidence of heterogeneity in the genetic instruments in relation to that test. When using the Kettunen

data, for BMI and WHR, all IVW and MR-Egger tests with Q greater than the degrees of freedom

overlapped. That is, for each exposure-metabolite pair, Q was greater than the degrees of freedom for

the same exposure-metabolite pair in the IVW and MR-Egger tests. For BF, all but 5 exposure-outcome

pairs across the IVW and MR-Egger tests exhibited Q greater than the degrees of freedom. When using

the INTERVAL data, all IVW and MR-Egger tests with Q greater than the degrees of freedom overlapped

for the effect of WHR on metabolites, while 1 and 7 tests did not overlap for BMI and BF respectively.
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Table 5.1: Tests of the heterogeneity of genetic instruments using Cochran’s Q

Exposure Dataset IVW MR-Egger

BMI 120 120

WHR 121 121

BF

Kettunen

111 112

BMI 229 230

WHR 229 229

BF

INTERVAL

213 220

Table gives the number of tests for each exposure in which heterogeneity, measured by Cochran’s Q,

was greater than the degrees of freedom (number of SNPs - 1) for each exposure. Total number of tests

using Kettunen and INTERVAL data was 123 and 230, respectively. IVW = Inverse variance weighted

method; BMI = body mass idnex; WHR = waist hip ratio; BF = body fat percentage.

Assumptions of no pleiotropy were explored using MR-Egger374, weighted median375 and weighted

mode376 based estimators. Globally, results from sensitivity analyses were similar to that of the main

analysis for each exposure, though with wider CIs (Appendix A.4.2). CIs for sensitivity analyses tended

to cross the null and were widest for MR-Egger, which is in keeping with the lower power afforded with

this model. Results from sensitivity analyses for WHR appeared to show most consistency with the main

analysis using both Kettunen and INTERVAL data and CIs for weighted median and mode models did

not cross the null in a majority of results for subclasses. When looking at concordance in effect direction

across all models (sensitivity and main analysis), consistency in the direction of effect was highest for

WHR across both datasets (Figure 5.5). For both datasets, effects for BF were the least consistent.
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Figure 5.5: Directional consistency of two-sample Mendelian randomization effect estimates
from different models. Plot shows the directional consistency across all 4 models (IVW-MRE, MR-
Egger, weighted Mode, and weighted median) within each exposure. A positive effect reflects the effect
estimate from all four models being in the positive direction; a negative effect reflects the effect estimate
from all four models being in a negative direction; an opposite effect reflects different directions for the
effect estimates. A: two-sample MR IVW-MRE for 123 metabolites using data from Kettunen et al.,
(2016)336; B: two-sample MR IVW-MRE for 230 metabolites using data from INTERVAL. BMI = body
mass index; WHR = waist hip ratio; BF = body fat percentage.

A total of 29 tests were directionally consistent across methods for all three exposures when using

the Kettunen data (Figure 5.6). The direction of effect for BF was on the whole opposite to BMI and

WHR for all methods. Of these 29 tests, only valine reached the multiple testing threshold (p-value <

0023) for both BMI and WHR in the main analysis. Sensitivity analysis showed a consistent positive

direction of effect with the main analysis for the effect of BMI, WHR, and BF on valine. The effect of

WHR appeared to show the strongest evidence for an association with valine, with CIs for all models

away from the null. When using the INTERVAL data, of the directionally consistent results, a total of

9 tests were directionally consistent across methods for all three exposures (Figure 5.7). Of these 9
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tests, valine and tyrosine were also found to reach the multiple testing threshold (p-value < 0.0018) for

both BMI and WHR in the main analysis where models were consistent. Sensitivity analysis showed a

consistent positive direction of effect with the main analysis for the effect of BMI, WHR, and BF on valine

and tyrosine. The effect of WHR appeared to show the strongest evidence for an association with valine,

with CIs for all models away from the null.
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Figure 5.6: Directionally consistent effects across all two-sample Mendelian randomization mod-
els using Kettunen data. Effect estimates and 95% confidence intervals for metabolites which showed
directionally consistent results across the main (IVW-MRE = inverse variance weighted multiplicative
random effects) and sensitivity analyses (MR-Egger, weighted median, and weighted mode) within each
exposure. Solid points indicate a multiple testing threshold (p-value < 0.0023) has been reached. BMI =
body mass index; WHR = waist hip ratio; BF = body fat percentage. To aid interpretation, the X axis has
been curtailed; confidence intervals for a number of BF estimates exceed the upper and lower X axis
limits. Available on GitHub.
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Figure 5.7: Directionally consistent effects across all two-sample Mendelian randomization mod-
els using INTERVAL data. Effect estimates and 95% confidence intervals for metabolites which showed
directionally consistent results across the main (IVW-MRE = inverse variance weighted multiplicative
random effects) and sensitivity analysis (MR-Egger, weighted median, and weighted mode) within each
exposure. Solid points indicate a multiple testing threshold (p-value < 0.0018) has been reached. BMI =
body mass index; WHR = waist hip ratio; BF = body fat percentage. To aid interpretation, the X axis has
been curtailed; confidence intervals for a number of BF estimates exceed the upper and lower X axis
limits. Available on GitHub.

The causal direction between the exposure and outcomes were assessed using the Steiger test.

In the Kettunen data, a total of 123 tests were performed for each exposure, the causal direction of

effect from the exposure to the outcome was “true” (i.e., reflecting that a change in the outcome is a

consequence of the exposure) for 0 tests for BMI and 5 tests for WHR. In contrast, the causal direction of

effect from the exposure to the outcome was “true” for 141 tests for BF. When using INTERVAL data, a
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majority of test directions were found to be “true.” A total of 230 tests were performed for each exposure,

the causal direction of effect from the exposure to the outcome was “true” for 200 tests for BMI, 110 tests

for WHR, and 141 tests for BF.

Analysis using Kettunen data: In single-SNP MR using Kettunen data, visual inspection of forest

plots showed S shaped distributions of effect estimates for all tests (Schematic illustration 5.8). Effect

estimates for some SNPs in the single-SNP MR analysis appeared to be outliers. For example, for the

analysis of the association between BMI and glycoproteins, rs4673553 showed a disproportionately

larger effect estimate of 22 SD units increase per SD higher BMI (standard error = 0.85; p-value = 5.66 x

10-148) when compared to other SNPs.
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Figure 5.8: Schematic illustration: single-SNP Mendelian randomization analysis of the associa-
tion between adiposity and a metabolite. In single-SNP Mendelian randomization (MR) analysis, the
effect of each SNP on the outcome is investigated. In these analyses, SNP effects are organised from
largest to smallest. Here, the figure shows an S shaped distribution of effects which is representative of
the single-SNP MR analyses performed using Kettunen and INTERVAL data.
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To further investigate SNPs with potentially outlying effect estimates, the median effect size across

all metabolites for each SNP was investigated. A number of SNPs showed larger median effect sizes

across a majority of metabolites. Funnel plots did not however highlight outlying SNPs across all

metabolites. Instead, funnel plots were reflective of some SNPs having larger effect estimates more

broadly (Representative Figure 5.9). The low number of SNPs used for BF did not result in meaningfully

interpretable funnel plots (Representative Figure 5.10).
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Figure 5.9: Representative figure: funnel plot of effect estimates of the association between
body mass index and glycoproteins using Kettunen data. Funnel plot shows the effect estimate and
standard error from for individual single nucleotide polymorphisms (SNPs). Asymmetry in the funnel
may indicate the presence of pleiotropy. The representative figure illustrates a SNP (bottom right) with a
larger effect estimate. Effect estimates represent SD unit change in the metabolite per SD unit increase
in the exposure.
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Figure 5.10: Representative figure: funnel plot of effect estimates of the association between
body fat percentage and histidine using Kettunen data. Funnel plot shows the effect estimate and
standard error from for individual single nucleotide polymorphisms (SNPs). Asymmetry in the funnel
may indicate the presence of pleiotropy. The representative figure illustrates a SNP (bottom right) with a
larger effect estimate. Effect estimates represent SD unit change in the metabolite per SD unit increase
in the exposure.

Although a number of SNPs showed disproportionately larger effect sizes, in leave-one-out analysis,

visual inspection of forest plots showed that no single-SNP altered the direction of effect for any

metabolite across exposures. For BF, CIs for one or more SNPs crossed the null for every metabolite
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tested (Representative Figure 5.11). This was not the case for BMI and WHR, where for many metabolites

CIs did not cross the null for any SNPs (Representative Figure A.25).
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Figure 5.11: Representative figure: leave-one-out MR analysis of the association between
body fat percentage and acetoacetate using Kettunen data. A leave-one-out analysis performs
a Mendelian randomization analysis of the exposure and outcome for all single nucleotide polymor-
phisms (SNPs) excluding a different SNP each time. Forest plot shows the effect estimate and 95%
confidence interval for each SNP exclusion with acetoacetate. Effect estimates represent SD unit change
in the metabolite per SD unit increase in the exposure.
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Analysis using INTERVAL data: Broadly speaking, sensitivity analyses using INTERVAL data were

similar to that of the sensitivity analyses using the Kettunen data. In single-SNP MR, visual inspection

of forest plots showed S shaped distributions of effect estimates for all tests similar to analyses using

the Kettunen data (Representative Figure A.26, figure also shows outlier SNP with effect estimate close

to -6). As with the Kettunen data, effect estimates for some SNPs in the single-SNP MR analysis were

much greater than others.

As with the Kettunen analysis, to investigate whether there were many SNPs with potentially outlying

effect estimates, the median effect size across all metabolites for each SNP was investigated. A number

of SNPs showed larger median effect sizes across a majority of metabolites. Many of these SNPs had

similarly large effect sizes across both the Kettunen and INTERVAL datasets. As an example, for BF,

more often than not, rs6857 showed a greater effect estimate than the other 6 SNPs and CIs that did not

overlap the null or the 6 other SNPs used as instruments. rs6857 was found in both the Kettunen and

INTERVAL data to have a disproportionately larger effect estimate than other SNPs. For BMI and WHR,

SNPs with disproportionally larger effect sizes tended to have CIs which overlapped other SNPs. The

degree of overlap was minimal however and mostly at the tail-end of the CI.

Funnel plots did not highlight outlying SNPs, but did reflect some SNPs having larger effect estimates

across the board (Representative Figure A.27). The low number of SNPs used for BF did not result in

meaningfully interpretable funnel plots (Representative Figure A.28). In leave-one-out analysis, visual

inspection of forest plots showed that no single-SNP altered the direction of effect for any metabolite

across exposures. For BF, CIs for one or more SNPs crossed the null for a majority of metabolites tested

(Representative Figure A.29). This was not the case for BMI and WHR, where CIs for many metabolite

estimates did not cross the null for any SNPs (Representative Figure A.30).

Additional analyses

Additional instruments A number of additional SNP lists were used to instrument BMI, WHR, and BF

to explore the validity of the instruments used in the main analyses; additional SNP list were obtained for

BMI from Yengo et al., (2018)53 using the non-COJO GWAS results (N SNP = 656) and from Locke et al.,

(2015)48 (N SNP = 77), for WHR SNPs were obtained from Shungin et al., (2015)49 (N SNP = 26), for

BF the instrument used in the main analysis was used after removing 2 SNPs previously associated with
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“favourable adiposity” and an additional instrument from Hubel et al., (2019)55 (N SNP = 76). Additional

SNP lists for BMI and WHR were selected on the basis that they did not contain UK Biobank individuals,

which were included in SNP lists for the main analysis. For BF, an additional SNP list which did contain

UK Biobank individuals was chosen. For BMI and WHR, additional SNP lists contained fewer SNPs (656

and 77 for BMI and 26 for WHR) than the SNP list used in the main analysis (941 for BMI and 316 for

WHR). For BF, the additional SNP list (N SNP = 76) contained more SNPs than the main analysis (N

SNP = 7). Each SNP of these additional SNP lists explained a smaller proportion of variance in the

exposure compared to the SNP lists used in the main analysis. All details on the additional SNP lists are

presented in the Appendix (A.4.1).

All analyses, including sensitivity analyses, were repeated for these additional SNP lists. Focus

here is on the Kettunen data as results were similar for the INTERVAL data, the exception is for the

presentation of results from the Steiger directionality test where there were differences. A table of all

SNP lists can be found on GitHub.

Results from additional instruments for BMI showed broadly larger effect estimates but consistent

directions of effect across metabolites (Appendix Figure A.31) compared to the main analysis. For the

BMI SNPs obtained from a non-UK Biobank GWAS, effect estimates had much wider CIs. Spearman’s

Rho correlation of MR results was highest between the two SNP lists (N SNP = 941 and 656) from

Yengo et al., (2018) (Spearmans Rho = 0.98). Correlation between the Locke et al., (2014) SNP list

(N SNP = 77) and the COJO SNP list from Yengo et al., (N SNP = 941; Spearmans Rho = 0.9) and

the non-COJO SNP list from Yengo et al., (N SNP = 656; Spearmans Rho = 0.93) were also high. For

WHR, the pattern of association was similar between both the main analysis (N SNP = 316) and analysis

using the additional SNP list from Shungin et al., (2014; N SNP = 26) (Figure A.33) with high correlation

between MR results (Spearmans Rho = 0.9). Effect estimates were larger, however CIs were wider and

crossed the null more often when using the additional SNP list from Shungin et al., compared to the

main analysis.

For BF, there was considerable similarity between the main analysis and the additional analysis

when using SNPs from Lu et al., (2016) which did not include two SNPs previously identified as being

associated with ‘favourable adiposity’ (Figure A.35 and A.36). More tests reached the multiple testing

threshold when using the 5 SNPs from Lu et al., as opposed to the full 7 SNPs, this included associations

with apolipoprotein-1, phenylalanine, tyrosine, glucose, and cholesterol esters in very large HDL. Given
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estimates were highly similar and CIs appeared tighter using the 5 SNP instrument, this may suggest

that the 7 SNP instrument is less specific to the BF phenotype than the 5 SNP instrument. For the

additional analysis, which used 76 SNPs from Hubel et al., (2016), MR results were considerably smaller

and appeared to show conflicting directions of effect with that of the Lu et al., (2016) SNPs (both using

7 and 5 SNPs). CIs were much tighter and two metabolites (phenylalanine and glycoprotein acetyls)

reached the multiple testing threshold. Correlation between the two Lu et al., (2016) SNP lists was high

(Spearmans Rho = 0.93), however both the 5 (Spearmans Rho = -0.64) and 7 (Spearmans Rho = -0.52)

SNP lists from Lu et al., (2016) showed weaker inverse correlations with the SNP list from Hubel et al.,

(2016).

Steiger directionality tests were variable across analyses (Kettunen vs. INTERVAL) and instrument

lists. Variability between instrument lists is in keeping with the fact that the Steiger test relies on the

amount of variance in the exposure that is explained by the genetic instruments to estimate whether

a “true” causal direction from the exposure to the outcome is identified. When using large instrument

lists, as the number of SNPs increases the proportion of variance explained by each individual SNP will

decrease. A result of this will be that many SNPs will explain a very low amount of the variance in the

exposure.

In the main analysis using BMI with 941 SNPs and the Kettunen data, 0 tests were shown to reflect

the “true” causal direction of exposure to outcome. However, when using the non-COJO SNPs (N SNP =

656) from the same study, 4 tests were found to reflect the “true” causal direction. This increased to 76

tests when using 77 SNPs from Locke et al., (2014)48 to instrument BMI. For WHR, a total of 4 tests

were shown to reflect a “true” causal direction when using the SNP list from Pulit et al., (N SNP = 316).

This increased to 102 tests when using the 26 SNP instrument from Shungin et al., (2015)49. For BF, the

7 SNP instrument resulted in 80 “true” tests while the 5 SNP instrument resulted in 76 “true” tests. The

BF GWAS from Hubel et al., (2019)55 did not have an N available for the summary statistics, instead the

total N for the GWAS (155,961) was used. All 123 tests were found to reflect the “true” causal direction

when using this 76 SNP instrument. When using the INTERVAL data, a different picture was found, with

a majority of tests shown to reflect the “true” causal direction across all instrument lists. The exception

was when instrumenting WHR with 316 SNPs from Pulit et al., (2019)54, where only 91 tests reflected a

“true” causal direction for the exposure to the outcome. There was little difference in the number tests that

reflected the “true” causal direction when instrumenting BMI using 77 SNPs from Locke et al., compared
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to the 941 SNPs used in the main analysis. As with the Kettunen data, all tests reflected a “true” causal

direction when instrumenting BF using the 76 SNPs from Hubel et al.,

Clumped exposures All of the GWAS used in this Chapter used different thresholds for the identifi-

cation of independent SNPs. In addition, the main analysis for BMI used COJO identified SNPs in the

instrument for BMI. To again test the validity of instruments and ensure associations were not a result of

different independence thresholds, all analyses were repeated using instruments that were identified

using the same independence thresholds (LD r2 ≥ and a 10,000 base window). This clumping process

resulted in the removal of the following number of SNPs due to LD (r2 ≥ 0.001) with other variants or

absence from the LD reference panel: BMI Locke et al., (2014) = 14, BMI Yengo et al., (2018) using

COJO SNPs = 583, BMI Yengo et al., (2018) using non-COJO SNPs = 336, WHR Pulit et al., (2018)

= 234, WHR Shungin et al., (2014) = 17, BF Hubel et al., (2018) = 4. No SNPs were removed due to

clumping for BF from Lu et al., (2016). All SNPs, including whether they were removed due to clumping,

are available on GitHub.

When using the Kettunen data, correlation for BMI results between the Yengo COJO (Spearmans

Rho = 0.97), non-COJO (Spearmans Rho = 0.97), and Locke (Spearmans Rho = 0.98) non-clumped and

clumped MR results was high. Similarly, for WHR MR results from non-clumped and clumped analyses

correlation was high for the main exposure (Pulit et al., (2018); Spearmans Rho = 0.97) and for the

additional exposure (Spearmans Rho = 0.98). For BF, clumping was not possible for the main exposure,

however correlation between the non-clumped and clumped SNP list from Hubel et al., (2018) was high

(Spearmans Rho = 0.98).

When using the INTERVAL data, correlation for BMI results between the Yengo COJO (Spearmans

Rho = 0.96), non-COJO (Spearmans Rho = 0.91), and Locke (Spearmans Rho = 0.93) non-clumped and

clumped MR results was high. Similarly, for WHR MR results from non-clumped and clumped analyses

correlation was high for the main exposure (Pulit et al., (2018); Spearmans Rho = 0.99) and for the

additional exposure (Spearmans Rho = 0.99). For BF, clumping was not possible for the main exposure,

however correlation between the non-clumped and clumped SNP list from Hubel et al., (2018) was high

(Spearmans Rho = 0.996).

In regards to the Steiger directionality tests when using Kettunen data, clumping generally resulted
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in a larger number of tests reflecting a “true” causal direction from th exposure to the outcome. This

increase was largest when using the additional instrument lists as opposed to when using instrument lists

used in the main analysis. For example, there was no difference between the BMI 941 SNP instrument

and the clumped version (N SNP = 358), but when instrumenting BMI using the 77 SNPs from Locke et

al., after clumping (N SNP = 63) the number of “true” tests increased from 76 to 79. This was similar

for WHR instrumented using the 26 SNPs from Shungin et al., (2015)49, where 102 and 112 tests

were found to reflect the “true” causal direction for the non-clumped and clumped (N = 18) SNP lists,

respectively. A similar picture was found when using the INTERVAL data, where, although a majority

of tests where shown to reflect a “true” causal direction, clumping instruments resulted in this number

increasing. The exception was when instrumenting WHR with SNPs from Pulit et al., (2019)54. After

clumping (N SNP = 214), the number of tests that reflected the “true” causal direction for WHR reduced

from 91 to 75.

Post-hoc analysis

To further investigate the difference in directions of effect observed for BMI and WHR, and BF,

post-hoc interrogation of results from a single, well characterised, adiposity SNP (rs1558902) was

undertaken. Measures of adiposity have been associated with numerous mutations in the FTO locus,

with studies highlighting major roles in neural signalling of appetite suppression, alongside roles in

adipocyte browning34. single-SNP MR analysis using the FTO locus (rs1558902; BF beta = 0.051; BMI

beta = 0.082) and Kettunen metabolites showed highly consistent results for BF instrumented using the

Lu et al., (2016) estimate and BMI instrumented using the Locke et al., (2015) estimate. These results

were directionally consistent and differed only in their effect size and standard error which was in line

with the difference in the SNP beta for the traits - BMI effect estimates were 62% larger than BF effect

estimates.

5.3.2 Meta-analysis of two-sample Mendelian randomization results

In total, 110 metabolites were shared across the Kettunen and INTERVAL metabolite data; a table of

results is available on GitHub.. Meta-analysis of p-value was performed using Fisher’s method (Equation

(5.1)). Across all 3 exposures (330 tests), a total of 120 tests had a positive direction of effect when
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meta-analysing the Kettunen and INTERVAL data, 91 tests had a negative direction of effect. For BMI a

total of 68 tests had a consistent direction of effect across both Kettunen and INTERVAL datatsets, 48

tests had positive directions of effect and 20 tests had negative directions of effect. Similar results were

found for WHR (positive = 50; negative = 18). For BF, a larger number of tests had consistent negative

directions of effect (N = 53) than positive (N = 22).

Across the 330 tests, a total of 141 tests reached a Bonferroni (0.05/110) multiple testing threshold.

Of these, 63 tests had positive directions of effect and 31 tests had negative directions of effect when

meta-analysing the Kettunen and INTERVAL data. The remaining 47 tests did not have consistent

directions of effect across the Kettunen and INTERVAL MR analyses, e.g., the direction of effect when

using the Kettunen data was positive but was negative when using the INTERVAL data. For BMI, 46

tests reached the multiple testing threshold, of which, 30 tests had consistent positive directions of effect

and, 16 tests had consistent negative directions of effect. Similar results were found for WHR, where a

total of 48 tests reached the multiple testing threshold, with 33 of these having a positive direction of

effect across the Kettunen and INTERVAL datasets, and 15 a negative direction of effect. For BF, no

metabolites reached the multiple testing threshold.

Across both BMI and WHR, a total of 49 tests reached the multiple testing threshold; 33 tests had a

consistent positive direction of effect and 16 tests had a consistent negative direction of effect. As such,

a total of 49 metabolites were associated with BMI or WHR in the meta-analysis. Table 5.2 gives a list of

all 49 metabolites associated with BMI and WHR along with their directions of effect, metabolites are

given with their subclass and originally measured units.

Table 5.2: Metabolites with a consistent direction of effect between body mass index and waist hip ratio
which reached a multiple testing threshold (p-value < 0.00045) in Mendelian randomization meta-analysis

Metabolite (units) Subclass Direction

Glutamine (mmol/l) Amino acids -

Phenylalanine (mmol/l) Aromatic amino acids +

Tyrosine (mmol/l) Aromatic amino acids +

Isoleucine (mmol/l) Branched-chain amino acids +

Leucine (mmol/l) Branched-chain amino acids +

Valine (mmol/l) Branched-chain amino acids +

Apolipoprotein A-I (g/l) Apolipoproteins -

Apolipoprotein B (g/l) Apolipoproteins +

Total cholesterol in HDL (mmol/l) Cholesterol -
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Table 5.2: Metabolites with a consistent direction of effect between body mass index and waist hip ratio
which reached a multiple testing threshold (p-value < 0.00045) in Mendelian randomization meta-analysis
(continued)

Metabolite (units) Subclass Direction

Monounsaturated fatty acids; 16:1, 18:1 (mmol/l) Fatty acids +

Total fatty acids (mmol/l) Fatty acids +

Serum total triglycerides (mmol/l) Glycerides and phospholipids +

Lactate (mmol/l) Glycolysis related metabolites +

Mean diameter for HDL particles (nm) Lipoprotein particle size -

Mean diameter for VLDL particles (nm) Lipoprotein particle size +

Concentration of chylomicrons and extremely large VLDL particles (mol/l) Extremely large VLDL +

Phospholipids in chylomicrons and extremely large VLDL (mmol/l) Extremely large VLDL +

Total lipids in chylomicrons and extremely large VLDL (mmol/l) Extremely large VLDL +

Triglycerides in IDL (mmol/l) IDL +

Cholesterol esters in large HDL (mmol/l) Large HDL -

Free cholesterol in large HDL (mmol/l) Large HDL -

Total cholesterol in large HDL (mmol/l) Large HDL -

Total lipids in large HDL (mmol/l) Large HDL -

Concentration of large VLDL particles (mol/l) Large VLDL +

Free cholesterol in large VLDL (mmol/l) Large VLDL +

Phospholipids in large VLDL (mmol/l) Large VLDL +

Total lipids in large VLDL (mmol/l) Large VLDL +

Triglycerides in large VLDL (mmol/l) Large VLDL +

Cholesterol esters in medium HDL (mmol/l) Medium HDL -

Free cholesterol in medium HDL (mmol/l) Medium HDL -

Total cholesterol in medium HDL (mmol/l) Medium HDL -

Total lipids in medium HDL (mmol/l) Medium HDL -

Free cholesterol in medium VLDL (mmol/l) Medium VLDL +

Total lipids in medium VLDL (mmol/l) Medium VLDL +

Triglycerides in medium VLDL (mmol/l) Medium VLDL +

Total lipids in small HDL (mmol/l) Small HDL +

Triglycerides in small HDL (mmol/l) Small HDL +

Total lipids in small VLDL (mmol/l) Small VLDL +

Triglycerides in small VLDL (mmol/l) Small VLDL +

Concentration of very large HDL particles (mol/l) Very large HDL -

Free cholesterol in very large HDL (mmol/l) Very large HDL -

Phospholipids in very large HDL (mmol/l) Very large HDL -

Total lipids in very large HDL (mmol/l) Very large HDL -

Concentration of very large VLDL particles (mol/l) Very large VLDL +

Phospholipids in very large VLDL (mmol/l) Very large VLDL +
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Table 5.2: Metabolites with a consistent direction of effect between body mass index and waist hip ratio
which reached a multiple testing threshold (p-value < 0.00045) in Mendelian randomization meta-analysis
(continued)

Metabolite (units) Subclass Direction

Total lipids in very large VLDL (mmol/l) Very large VLDL +

Triglycerides in very large VLDL (mmol/l) Very large VLDL +

Total lipids in very small VLDL (mmol/l) Very Small VLDL +

Triglycerides in very small VLDL (mmol/l) Very Small VLDL +

Metabolite label and units are given alongside the subclass the metabolites was grouped into and the consistent direc-

tion of effect across analyses using Kettunen and INTERVAL data.

5.3.3 Comparison of two-sample Mendelian randomization and observational results

from Chapter 4

As all MR analyses performed in this Chapter used summary statistics from GWAS which predomi-

nanlty included adults, here, comparison with results from the observational analyses in Chapter 4 focus

on results for adults (i.e., the mothers and fathers). All 49 metabolites identified in the meta-analysis as

associated with BMI and WHR were analysed in the observational analysis in Chapter 4 for adults. In

the observational analysis, a multiple testing threshold of 0.05/53 (p-value < 9 × 10−4) was used. For

the 46 metabolites associated with BMI in the meta-analysis, all showed consistent directions of effect in

the observational analysis. Only one metabolite (total lipids in medium HDL, p-value = 0.1) did not reach

the multiple testing threshold in the observational analysis for BMI. As such, a total of 45 metabolites

were associated with BMI across observational and MR analyses. All 48 metabolites associated with

WHR in the meta-analysis had consistent directions of effect in the observational analysis and met the

multiple testing threshold in the observational analyses (Figure 5.12).

As no associations reached the multiple testing threshold for BF in the meta-analysis, all metabolites

with consistent directions of effect in the meta-analysis for BF (N = 75) were compared for consistent

directions of effect with the observational analysis. A total of 74 metabolites directionally consistent in

the MR analyses for BF were available in the observational analysis - acetoacetate was not measured in

ALSPAC adults. Of these, 4 had consistent negative directions across MR and observational analyses

and 7 had consistent positive directions. All 4 metabolites with a consistent negative and consistent
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positive direction of effect reached the observational multiple testing threshold (p-value < 9 × 10−4).

The remaining 63 metabolites had inconsistent directions of effect across the observational and MR

meta-analysis.

Across the 45, 48 and 9 metabolites associated with BMI, WHR, and BF, respectively, which were

consistent in both MR and observational analyses, 54 of these metabolites were also associated with

at least one measure of adiposity. Figure 5.12 shows all 54 adiposity-associated metabolites and the

directions of effect in each analysis. Associations were identified as: having consistent directions of

effect within exposures across MR and observational analyses and which reached a multiple testing

threshold in either the meta-analysis (p-value ≤ 5 × 10−4; BMI and WHR) and observational analysis

(p-value ≤ 9 × 10−4; BMI and WHR) or just in the observational analysis (BF).
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Figure 5.12: Metabolites associated with measures of adiposity in observational and Mendelian
randomization meta-analysis.



Tile plot shows all metabolites with consistent directions of effect within exposures across observational

and Mendelian randomization (MR) meta-analysis and which reached a multiple testing threshold (body

mass index (BMI) and waist hip ratio (WHR)) in either the MR meta-analysis and observational analysis

(BMI and WHR) or just in the observational analysis (body fat percentage (BF)). Orange tiles indicate a

negative direction of effect; blue tiles indicate a positive direction of effect. Multiple testing thresholds:

observational = 9 × 10−4; MR meta-analysis = 5 × 10−4. Available on GitHub.

5.4 Discussion

In this chapter, the influence of adiposity on the metabolic profile is demonstrated in an MR framework.

The use of MR allowed the interrogation of causality of various measures of adiposity on the metabolic

profile, while accounting for limitations in observational analyses (discussed in Chapter 1 and 4). Data

on adiposity measures were available for: BMI from up to 795,624 individuals of European ancestries

from GIANT53, WHR from up to 697,702 individuals of European ancestries from GIANT54, BF from up

to 89,297 individuals European ancestries from Lu et al., (2016)51. Two parallel MR analyses of 123

NMR derived metabolites measured in up-to 24,925 individuals of European ancestries from Kettunen

et al., (2016)336 and 230 NMR derived metabolites measured in up-to 40,905 individuals of European

ancestries from INTERVAL (unpublished) were conducted. Meta-analysis of 110 metabolites measured

in both the Kettunen and INTERVAL datasets and comparison with observational analyses from Chapter

4 identified 54 associations between adiposity and metabolite measures that were consistent in direction

of effect across MR and observational analyses and passed multiple testing thresholds for one (BF) or

both (BMI and WHR) analyses.

Consistency in estimates across exposures and observational and MR analyses for the 54 associated

metabolites highlights the importance of overall body composition and deposition of adipose tissue in the

relationship between adiposity and the metabolome. Positive associations were found for metabolites

in VLDL (small, very small, medium, large, and very large), as well as aromatic and branched chain

amino acid subclasses. While negative associations were found for HDL (medium, large and very large)

subclasses. It is important to note that many metabolites are not independent, that is they share the

same class and subclass. As such, consistency in the direction of effect across metabolites within a

subclass may be expected given these metabolites are highly interrelated. That being said, there is
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evidence for a difference in direction of effect across the HDL subclasses with small HDL metabolites

positively associated with BMI, WHR, and BF in comparison to the negative association observed for

medium, large, and very large HDL. This could suggest that small HDL metabolites are distinct from

other HDL subclass metabolites, or that the effect of adiposity is differential depending on particle size.

It is important when interpreting the results presented here to acknowledge the potential effects of

pleiotropy in these analyses. As discussed in Chapter 1, the effects of pleiotropy in an MR context can

either be vertical (on the causal pathway from exposure to outcome) or horizontal (on an alternative

causal pathway to the outcome). Importantly, a change in any one metabolite does not occur in isolation;

metabolic pathways mean that many metabolites will be up- or down-stream of a metabolite under

investigation. An additional consideration regarding lipids is the way in which lipids are identified using

a density gradient. This means that highly similar lipids (e.g., in terms of size) can be assigned to

different classes, while dissimilar lipids (e.g., different sizes) can be assigned to the same class. This

consequently impacts on the observed genetic architecture of the lipids which feeds into subsequent MR

analyses. Taken together, it may be difficult to ascribe a direction to any observed pleiotropy. Sensitivity

analyses used here, such as MR-Egger, can provide an estimate as to whether horizontal pleiotropy is

present in a test and results should be considered in regard to evidence of the presence of horizontal

pleiotropy for a majority of MR tests.

In MR analyses, there was evidence for a broad effect of BMI and WHR on the metabolic profile.

Both adiposity measures showed positive and negative effects on whole subclasses of metabolites, such

as small and very small VLDL, branched chain amino acids (positive), and large and very large HDL

(negative). However, there were many effect estimates across the Kettunen and INTERVAL datasets

that did not show consistent directions of effect. For example, when using the Kettunen data, positive

directions of effect were found for BMI and WHR with very large VLDL. But when using the INTERVAL

data, a mix of positive, negative, and null effects were found for BMI and WHR with very large VLDL.

On the whole, MR results revealed WHR to have a broadly larger effect size across metabolites

compared to BMI and BF. However, CIs for WHR and BMI mostly overlapped with one another. Evidence

for an association between BF and the metabolic profile was weaker. Generally, directions of effect for

BF conflicted with those of BMI and WHR. Analyses using BF resulted in larger effect estimates and

wider CIs which spanned the null for the majority of metabolites. For example, when using the Kettunen

data, BF was negatively associated with metabolites in the medium VLDL subclass, while BMI and WHR
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were positively associated. When using INTERVAL data, BF was negatively associated with creatinine

while BMI and WHR were positively associated. The wide CIs observed for BF and the tighter CIs for

BMI are perhaps expected given the variance explained by instruments for each measure of adiposity

varied from 0.4% for BF, 3% for WHR, and 6% for BMI.

Consistent directions of effect across all adiposity measures were found for the amino acids tyrosine,

phenylalanine, and valine only, which were all positively associated with all measures of adiposity. There

were no other metabolites across all three measures of adiposity with a consistent direction of effect.

The only other amino acids associated with adiposity were negatively associated with BMI and WHR

(glutamine) and by BF (histidine). Results for tyrosine, phenylalanine, and valine are consistent with

previous findings, including those by Wurtz et al., (2014)287. Although CIs were much wider than results

here, Wurtz et al., (2014) found BMI was associated with an increase in glutamine in MR analysis but a

decrease in observational analysis. Weak evidence for an increase in histidine was found by Wurtz et al.,

(2016). Of these associated amino acids, all but glutamine and tyrosine are essential. Increased tyrosine,

phenylalanine, and valine have been associated with increased risk of numerous diseases such as

colorectal cancer566–569, pancreatic cancer566, preeclampsia570,571, irritable bowel syndrome572,573, and

crohns and ulcerative colitis574. Reductions in glutamine and histidine meanwhile have been associated

with colorectal567,568,575 and pancreatic cancer575,576. There is some conflicting evidence however,

with higher histidine levels also found to be associated with colorectal cancer577. A recent prospective

analysis found associations between 12 metabolites and increased risk of endometrial cancer, including,

tyrosine, phenylalanine, leucine, and isoleucine. However, after adjusting for BMI only the association

between glycine and serine with endometrial cancer remained578. Given many of these metabolites

were associated with adiposity, it is possible they may be intermediates in the adiposity relationship with

endometrial cancer, among other outcomes.

For BMI and WHR, directions of effect were the same across all associated metabolites. BMI and

WHR were both associated with reductions of metabolites in medium HDL, large HDL, and very large

HDL subclasses, as well as reductions in apolipoprotein A-1, mean diameter for HDL particles, and total

cholesterol in HDL. In addition, BMI and WHR were both associated with increases in numerous LDL

subclasses (e.g., IDL and very small VLDL) as well as apolipoprotein B. These results are supported by

the underlying relationship between HDL and LDL metabolites as well as similar results in numerous

MR287,423,552 and observational287,288,351,394–403 analyses. Apolipoprotein A1 is the major component of
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HDL particles and enables uptake of lipids by HDL from cells. HDL particles primarily transport lipids

away from the cells, in what is known as reverse cholesterol transport. These lipids end up at the liver

where they are recycled and excreted542,543. Apolipoprotein B on the other hand is the major component

of VLDL, IDL, and LDL particles, enabling lipid uptake, and thus increased transport of lipids around the

body542,579.

Observational studies have highlighted increased HDL to be associated with a protective effect on

cardiovascular disease (CVD)580 while increased LDL is shown to increase CVD risk581. MR studies

support observational results for LDL581, but are conflicting for HDLs protective effect582. Randomised

controlled trials have also not found strong evidence for an effect of HDL lowering drugs on CVD risk583.

Some focus has been given to a measure of HDLs contribution to reverse cholesterol transport, HDL

cholesterol efflux capacity (HDL-CEC), which has been shown to be protective for CVD584,585. Estimation

of HDL-CEC however was not available in the current analyses. There are also associations between

reduced HDL and many cancers, however there is some evidence to suggest this may be bi-directional586.

Recent work has suggested that increased HDL does not confer a protective benefit on mortality587, and

instead there is evidence that apolipoprotein B may underlie the association between many lipids and

diseases such as coronary heart disease (CHD)588. Apolipoprotein B and its associated lipids, such as

VLDLs, may therefore be potential intermediates in disease associations.

There was considerable heterogeneity in the effect estimates derived from the different genetic

instruments used in the main analysis. In addition, directional consistency across the main (IVW-MRE)

and sensitivity analyses (MR-Egger, weighted median, and weighted mode) was inconsistent for a

majority of exposure-outcome pairs for BMI and BF analyses using both the Kettunen and INTERVAL

datasets. That is, for a consistent direction to be recorded for one exposure-outcome pair (e.g., the

association of BMI and phenylalanine) the direction of effect for all 4 models must be in the same

direction. For WHR, a majority (~70%-80%) of exposure-outcome pairs across the main and sensitivity

analyses had consistent directions of effect. Broadly, inconsistency in the directions of effect was driven

by effect estimates from MR-Egger tests. In single-SNP MR analysis, a number of SNPs showed

disproportionately larger effect estimates across many metabolites. However, “leave-one-out” analysis

did not highlight any individual SNP driving the effect for any one metabolite. The inconsistent directions

of effect across models for BMI and BF may therefore be a result of reduced power in MR-Egger tests

compared to the other models, heterogeneity of the instruments, and the presence of pleiotropy.
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Steiger directionality tests can provide an estimate as to whether the “true” causal direction of an

MR analysis has been tested. That is, if we perform the analysis of exposure A on outcome B and our

hypothesis is that A causes B, the Steiger test will estimate whether this direction (A to B) is “true”. The

test relies on using effect size to estimate variance explained in the exposure and outcome. Results

from the Steiger test varied across analyses using Kettunen and INTERVAL data. For analyses using

the Kettunen data, a majority of tests did not reflect the “true” causal direction, which were primarily

driven by analyses with BMI and WHR. When using the INTERVAL data, a majority of tests reflected the

“true” causal direction. As the majority of analyses using additional instrument lists for BMI and WHR, for

which all instruments were included in the larger main analysis instruments, reflected a “true” causal

direction, these results should be interpreted with caution. Assuming that the causal direction is from

adiposity to metabolites, if the variance explained by SNPs in BMI is small it should be smaller in the

outcomes except in the presence of pleiotropy or if the power in the outcome GWAS is greater than in

the exposure GWAS. Given the large sample size for the exposure GWASs (> 400,000) compared to the

outcome GWASs (maximum ~40,000) it is likely pleiotropy is a greater issue here than power. For BF,

results of the Steiger test are likely more complex, given that many tests found to be “true” when using

the Kettunen data were also found to be “true” when using the INTERVAL data even though directions of

effect were different. It is unclear why there is a difference here, but it may be due to the instrumentation

of BF, which, unlike BMI and WHR, has been linked with ‘favourable adiposity’. It may also be reflective

of differences in the underlying populations used in the outcome GWAS. Though both are of European

ancestries, the Kettunen at al., GWAS consisted mostly of individuals from Scandinavia (predominantly

Finland), while the INTERVAL GWAS consisted mostly of individuals from the United Kingdom. There is

evidence of population structure across Europe589 and genetic differences between Finnish and British

populations590.

5.4.1 Strengths and limitations

The key strengths of this work are the (i) complimentary analyses with Chapter 4, (ii) complimentary

measures of adiposity to comprehensively examine the association between adiposity and metabolites,

(iii) the use of many different GWAS to investigate instrumentation, (iv) and the replication of adiposity-

associated metabolites across independent datasets. Metabolomic data from Kettunen et al., and

INTERVAL used the same metabolomic platform used for ALSPAC in Chapter 4. Though the platform is
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predominantly lipid based, data were available across all three datasets for many non-lipid metabolites

such as amino acids, inflammation markers, and glycolysis related metabolites. Use of complimentary

measures of adiposity here highlighted broadly larger effects for WHR and inconsistent results between

BMI and WHR, and BF unlike in observational analyses. However, consistent directions of effect

across all three exposures were found for a small number of metabolites, such as phenylalanine

and tyrosine. Follow-up analysis, including the use of alternative instrument lists for each adiposity

exposure, suggested instrumentation of BF is perhaps more complex than instrumenting BMI and

WHR. Additionally, replication and meta-analysis using two independent datasets (Kettunen et al., and

INTERVAL) strengthens evidence for an association. Importantly, triangulation of evidence across

observational and MR analyses, which have different sources of bias, further strengthens evidence for

an association between adiposity and 54 metabolites.

MR analyses are subject to a number of assumptions, the main three being: (i) the instrumental

variable (Z) is robustly associated with the exposure (X), (ii) there are no common causes of the

instrument and outcome (Y ); and (iii) there is no independent association between the instrumental

variable and the outcome other than through the exposure. In this work, instruments were obtained from

large well-powered GWAS, and the F-statistics for each instrument was above a nominal threshold of

10 meaning the first assumption was likely met. In regards the other two assumptions, formal testing

is not possible. However, sensitivity analyses can provide an indication of pleiotropy and, though not

exhaustive, sensitivity analyses conducted here were concordant with the main analysis, suggesting that

there is no large impact of pleiotropy on these results. However, as discussed, there may be additional

cautions to be taken with the BF analysis, where instrumentation is currently likely to be inadequate.

An additional consideration with regards to instrumentation is the possibility that SNPs associated

with adiposity traits may also be associated directly with metabolites or metabolic pathways. The Steiger

directionality test can be used to test whether the “true” causal direction is the one under investigation,

i.e. the effect of adiposity measures on metabolites. There are a number of limitations associated with

the Steiger test564, one of which is that it assumes that there are no pleiotropic effects. The Steiger

test uses effect size to estimate the variance explained by each SNP in the exposure and outcome

respectively. In a well powered study, as more SNPs are included in an instrument there is a greater

chance of including SNPs with small effect sizes for the exposure. Although the additional analyses for

BMI and WHR, which used smaller SNP lists compared to the main analysis, were found to reflect the
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“true” causal direction more often than the main analysis, the high correlation between the two analyses

both in terms of effect size and direction of effect would suggest that any associations between the SNPs

used in the main analysis with the outcomes did not drastically affect results. This does not fully address

the potential for direct associations between exposure-related SNPs and the outcome however, and

future work should look at exploring the genetic correlation between the traits.

MR relies upon the use of an instrument to model the effect of an exposure on an outcome.

This relationship is dependent upon the genetic architecture of the instruments and the traits under

investigation, as well as power (predominantly sample size of the data from which the estimates of the

association between the instrument and outcome are derived), both of which influence the utility of

the various MR methods. The first MR assumption, that the instrument is robustly associated with the

exposure, is generally measured via an F-statistic, for which an arbitrary threshold of > 10 denotes a

strong instrument. All of the instruments used here exceeded this threshold. In addition, the variance

explained in an exposure by genetic variants can indicate the power afforded in the MR analysis; the

variance explained in exposures used in the main analysis varied from 6% for BMI, to 3% for WHR, and

~0.4% for BF. The considerably lower variance explained for BF may have impacted on results as there

would be less power in the MR analyses which may result in wider CIs; when using additional instrument

lists for BMI and WHR, which explained a lesser percentage of variance, CIs became wider. Winners

curse is unlikely given summary statistics used here are well powered and underwent replication by the

authors of the original GWAS publications.

The consistent directions of effect observed across BMI and WHR measures adds weight to their

associations with metabolites. For BF, conflicting directions of effect were observed when comparing to

BMI and WHR. However, CIs were wider and, although they spanned the null, included the estimates

and CIs for BMI and WHR in a majority of cases. There was considerable difference in the sample

sizes used in the GWAS for BMI, WHR, and BF. In addition, whereas BMI and WHR were measured

in only one way for their respective GWAS, the BF GWAS included measures of BF from DXA and

impedance devices. Though, as shown in Chapter 4, DXA and impedance measures of BF are highly

correlated, the additional analysis for BF which used only impedance measures in the GWAS showed

much greater directional consistency with BMI and WHR and also included a number of metabolites

which reached the multiple testing threshold. Given the highly correlated nature of the exposures, and

the consistency in observational estimates with metabolites, results for BF here appear counter-intuitive.
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Additional analyses failed to appropriately account for the differences in results and further investigation

of instrumentation is warranted.

The instrumentation approach used in the main analysis followed that used by the majority of

analyses reviewed in Chapter 2. That is, instruments were obtained directly from the most recently

published GWAS with the largest sample size. As GWAS sample sizes increase, so does the likelihood

of sample overlap, which can bias estimates towards the confounded observational effect in the presence

of weak instruments. Additionally, there is the concern of population structure within all GWAS, both

large372,556–558 and small379, which, if not accounted for appropriately, can lead to violation of the

independence assumption and bias estimates towards the confounded observational estimate. Additional

analyses, which used a number of different instrumentation practices, including using GWAS which did

not include UK Biobank participants and using a standardised clumping strategy, aimed to reduce the

impact of population structure that has been demonstrated in UK Biobank and the criteria of defining

independence of SNPs was the same within and between exposure instrument lists. Additional BMI and

WHR exposures, which did not include UK Biobank participants, showed consistent results with the main

analysis. For BF, there was little difference between the main analysis and the additional analysis which

used 5 SNPs from Lu et al., (2015)189 having removed two SNPs that likely have different biological

function. However, there was considerable difference in directions of effect when using the additional

SNP list from Hubel et al., (2019)55.

There is clearly complexity in the choice of instrument, especially with complex traits such as

adiposity. This complexity is perhaps well demonstrated through the BF analysis. For BF, there was

considerable difference in effect estimates compared to the BMI and WHR results, with a large proportion

of estimates in the opposite direction to those of BMI and WHR. This is counter-intuitive given the strong

correlation between BMI, WHR, and BF, and the consistent results obtained in observational analyses in

Chapter 4 between BMI, WHR, and BF. Removal of two SNPs previously associated with ‘favourable

adiposity’47,565 resulted in a global tightening of CIs and a number of effect estimates changing direction

to be more consistent with observational BF results and results for BMI and WHR here. A number of

these effects subsequently reached the multiple testing threshold. However, the majority of MR results

remained opposite to that of BMI and WHR. Though there was little difference in the F-statistics for either

instrument, global tightening of CIs may suggest an instrument that is more specific to BF biology (less

heterogeneous) after removal of the two ‘favourable adiposity’ SNPs. In post-hoc analysis investigating
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the directional inconsistency between BMI and WHR and BF, effect estimates from a single-SNP MR

using rs1558902 to instrument BMI and BF resulted in highly consistent directions of effect across all

Kettunen metabolites (data not shown). Results differed only in their effect size and standard error. This

difference was in line with the difference in the SNP beta from the BMI (0.082) and BF (0.051) GWAS.

Leave-one-out analysis for BF instrumented using the 7 genetic variants identified in Lu et al., (2016)

did not indicate a single-SNP that could be driving a pleiotropic association. However, median effect

estimates for rs6857 (rs6857 is associated with NECTIN2 and has previously been associated with a

number of diseases including Alzheimer’s disease591) were much larger than those for other SNPs, both

with and without exclusion of the two ‘favourable adiposity’ SNPs. In many cases, rs6857 did not span

the null. It is possible that tests for pleiotropy were underpowered however. The unexpected results for

BF instrumented using the Lu et al., (2016) genetic variants may be due to a variety of reasons, not least

measurement error, sample size differences between BF (up-to 89,297), BMI (up-to 795,624), and WHR

(up-to 697,702), and the variance explained by the respective instruments: BF = 0.416%, WHR = 3%,

BMI = 6%. The complexity of instrumentation is discussed further in the discussion Chapter 7 as this is

also relevant to Chapter 6.

As discussed in the limitations section of Chapter 4, there is no standardised approach, nor a gold

standard, for performing metabolomics quality control. In Chapter 4, quality control, including outlier

detection and removal, was performed using the metaboprep R package. Metabolite data here however

were from summary statistics, the data that went into these GWAS will have undergone different quality

control procedures for the metabolomics data. Transformations and inclusion of covariables were not

consistent across the Kettunen et al., and INTERVAL metabolomic data. Kettunen et al., did not transform

metabolites prior to inverse rank normally transforming residuals, whereas data from INTERVAL were log

transformed prior to inverse rank normal transformation. It was therefore not appropriate to meta-analyse

effect estimates. Future work should look to use a standardised method for pre-analysis quality control

of metabolomics data, such as metaboprep, while ensuring study-specific adjustments are made where

appropriate. On the latter point, a centralised approach to analysis of metabolomics data, such as that

being employed by the Consortium of Metabolomics Studies592, will allow for more efficient comparisons

and meta-analyses of studies.
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5.4.2 Conclusion

Adiposity exerts a systemic impact on the metabolome, which is consistent across multiple measures

of adiposity (namely, BMI and WHR). Results here highlight a number of metabolites associated with

adiposity which have consistent directions of effect and effect sizes with previous MR analyses287,423.

Many results found for BMI and WHR were consistent across two independent datasets and, whilst there

is a systemic impact of adiposity on the metabolome, there were 54 analyses that were strongest across

multiple study designs, reaching a multiple testing threshold in both observational and MR analyses.

Of these 54 unique metabolites, 45 metabolites were associated with BMI, 48 were associated with

WHR, and 9 were associated with BF. Some of these metabolites have previously been shown to be

associated with adiposity-related diseases such as colorectal423 and endometrial cancer593, meaning

that they could play an intermediary role in these relationships. However, this possible intermediary role

of adiposity-associated metabolites on various health outcomes are yet to be explored systematically,

especially in an MR context. Although adiposity instrumentation has been well established, and shown

here to give consistent results across many different instrument lists and exposures, results for the main

BF analysis presented here remain inconsistent with BMI and WHR. Therefore, proper consideration

of the appropriate use of genetic variants when compiling instruments for use in MR analyses is

required, especially when instrumenting complex traits such as those presented here. By extension,

instrumentation is of particular importance when investigating associations between adiposity-associated

metabolites identified here and diseases identified in Chapter 2. In Chapter 6, investigation of the

intermediary role of these adiposity-related metabolites and an exemplar outcome perturbed by adiposity

as identified in meta-analysis in Chapter 2, endometrial cancer, will be explored.

189





Chapter 6

Associations between

adiposity-associated metabolites and

endometrial cancer: Mendelian

randomization analysis

Chapter summary

This Chapter pulls together information from previous chapters to investigate the effects of adiposity-

associated metabolites on endometrial cancer. In Chapter 2, a systematic review and meta-analysis

showed that adiposity was likely causally implicated in 13 diseases as well as other traits including

systolic blood pressure and fasting glucose. Of these, endometrial cancer, with which body mass index

(BMI) was strongly related (OR = 1.57; 95% CI = 1.11 – 2.22; p-value = 0.01), was selected for further

investigation in this Chapter. Here, two-sample Mendelian randomization (MR) was used to estimate

the association between adiposity (BMI, waist-hip ratio (WHR), and body fat percentage (BF)) and

endometrial cancer, extending analyses presented in Chapter 2 by including a more comprehensive

set of adiposity measures and increasing the sample sizes of data sources. Two-sample univariable

MR was performed to estimate the effect of adiposity-associated metabolites, characterised in analyses



undertaken in chapters 4 and 5, and endometrial cancer. To understand whether metabolites, for

which there was evidence for an association with endometrial cancer, may play an intermediary role

in the relationship between adiposity and endometrial cancer, the largest causal analysis (including

multivariable MR; MVMR) to date was performed.

I performed all of the work in this chapter.
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6.1 Introduction

In chapters 1 and 2, I showed that the number of adiposity-associated diseases is high, consistent with

adiposity being a global health concern2,3,5–7. Many observational studies have highlighted associations

with common diseases, such as cardiovascular disease105,109,110,118,135–153,155–157, cancers105,108,121–134,

and common risk factors such as blood pressure142,287. Many of these associations have been supported

in MR studies as discussed in Chapter 2.

Previous work287,288,351,394–403,423,552, and work conducted in chapters 4 and 5, has highlighted the

numerous metabolites associated, in observational and MR analyses, with measures of adiposity. Many

of these adiposity-associated metabolites have been linked with adiposity-associated diseases and

risk factors including type 2 diabetes422,425, fasting glucose422,425, colorectal cancer423, and coronary

heart disease426, suggesting a potential intermediate role for metabolites. There is also evidence that

metabolites can be used to distinguish cancers185.

To date, few studies have investigated the causal relationship between adiposity-associated metabo-

lites and adiposity-associated diseases. As an exemplar outcome to test the potential intermediary role

of adiposity-associated metabolites, identified in chapters 4 and 5, and adiposity-associated disease,

identified in Chapter 2, endometrial cancer was chosen. This was because endometrial cancer met

four key requirements: there was strong evidence in Chapter 2 for an effect of one or more adiposity

measures; there is consistent evidence across observational594 and MR462,478,488 analyses that adipos-

ity is associated with an increased risk of endometrial cancer; there is a large and publicly available

genome-wide association study (GWAS) on endometrial cancer, and the extent to which circulating

metabolites may play a role in the relationship between adiposity and endometrial cancer has not been

assessed in the literature previously.

The World Cancer Report (2020) has identified endometrial cancer as one cancer that would benefit

greatly from reductions in adiposity, as approximately 30-40% of cases are a result of obesity594. The

endometrium is the inner lining of the uterus, consisting of an epithelial cell layer and mucous membrane.

The epithelial cell layer consists of two parts, a basal layer and a functional layer which thickens and

sheds during menstruation in response to oestrogen and progesterone595. Broadly, endometrial cancer

is separated into two types: endometrioid (type 1) and non-endometrioid (type 2); the latter being the
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more aggressive form of the disease.

Endometrioid cancer is the more common type of endometrial cancer and is considered hormone

dependent. That is, most endometrioid cancers develop from endometrial hyperplasia which is asso-

ciated with prolonged and unopposed oestrogen exposure596. Non-endometrioid cancer is much less

common (~10%) and has typically been considered hormone independent596. However, this distinction

is not clear cut and, as many of the risk factors are shared, non-endometrioid cancer may not be

oestrogen independent as once thought, though it is likely to be less dependent upon oestrogen than

endometrioid cancer594,597. Molecular differences are apparent between the two types, with PTEN

mutations (associated with oestrogen exposure) found in many endometrioid cancers and TP53 and

HER2 (TP53 is a tumour suppressor gene and HER2 is a proto-oncogene that promotes cell growth)

mutations found in non-endometrioid cancers596.

A leading risk factor of endometrioid cancer in pre- and post-menopausal women is adiposity594:

in pre-menopausal women, adiposity leads to insulin resistance, increased androgen, anovulation,

and decreased progesterone; in post-menopausal women, adiposity leads to increased oestrogen via

excess androgen conversion596. In both instances, these changes result in an increase in oestrogen

and subsequent endometrial hyperplasia596. Additionally, there is evidence of oestrogen-independent

activation of the oestrogen-receptor, primarily through insulin-like growth factor 1598, which is also

up-regulated as a result of adiposity.

In Chapter 2, meta-analysis of three MR studies462,478,488 found the offs of endometrial cancer is

1.57 (95% CI = 1.11 – 2.22) higher per SD unit increase in BMI. Previous work has shown different

metabolite profiles between overall endometrial cancer cases and controls independent of obesity and

other risk factors such as diabetes593,599. More recently, adiposity-associated metabolites, such as

those identified in chapters 4 and 5, have been linked with endometrial cancer risk in a prospective

cohort578. Whether there is a causal effect of metabolites on endometrial cancer development however is

unclear. Here, I combine work undertaken in the previous chapters, which identified metabolites causally

related to adiposity, and utilise two-sample univariable MR and two-sample multivariable MR (MVMR)

to understand the possible intermediary role played by adiposity-related metabolites on endometrial,

endometrioid, and non-endometrioid cancers using data from the largest publicly available metabolomics

and endometrial cancer GWAS to date.
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6.2 Methods

6.2.1 Overview

This Chapter details hypothesis-driven MR analyses investigating associations between adiposity-

related metabolites (here in referred to as metabolites) and endometrial cancer (Figure 6.1). Firstly,

a two-sample univariable MR analysis of the effect of multiple measures of adiposity on endometrial

cancer was performed to independently validate findings from the meta-analysis performed in Chapter

2. Secondly, a two-sample univariable MR analysis of the effect of multiple measures of adiposity on

metabolites was performed to further validate the work conducted in Chapter 5 and to obtain the best

possible estimates of the effect of adiposity on metabolites for MR analyses with endometrial cancer.

This analysis was performed using recently available data which included the largest currently available

GWAS of circulating metabolites conducted in UK Biobank. Thirdly, metabolites with consistent directions

of effect across results performed in Chapter 5 and this Chapter, were used in a two-sample univariable

MR analysis to investigate their effect on endometrial cancer. Finally, metabolites for which there was

evidence of an effect on endometrial cancer were taken forward and used in a MVMR analysis with

adiposity measures to estimate their possible intermediate effects on endometrial cancer.

All data manipulation and analyses were performed using R509 (version 3.5.3) and bash. All code used

is available on GitHub. Two-sample univariable MR analyses were performed using the TwoSampleMR555

(version 0.4.22) R package. MVMR analyses were performed using the MVMR (version 0.3) R package.

Summary statistics for adiposity measures and metabolites were obtained from the original GWAS

sources (described in the next sextion). Summary statistics for metabolites were from UK Biobank

and were obtained from collaborators prior to publication of the GWAS (unpublished; Carolina Borges,

University of Bristol). Summary statistics for endometrial cancer were available from MR-Base555

(accessed 17/07/2021). A list of metabolites used in this Chapter is available in the Appendix (Table A.7)

and on GitHub. Results were visualised using the ggforestplot (version 0.1.0) R package.
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Figure 6.1: Analysis overview. In Chapter 5, 54 metabolites were identified as being associated with
adiposity in a meta-analysis using data from Kettunen et a., (2016)336 and INTERVAL (unpublished
and provided by Adam Butterworth, University of Cambridge). For body mass index (BMI) and waist
hip ratio (WHR) these metabolites were identified through directional consistency and multiple testing
thresholds across Mendelian randomization (MR) and observational analyses. For body fat percentage
(BF) metabolites were identified through directional consistency and a multiple testing threshold in
the observational analysis only. These 54 metabolites were taken forward and used in two-sample
univariable MR and multivariable MR analyses to investigate intermediate effects on endometrial cancer.
NMR = nuclear magnetic resonance.



6.2.2 Instrumentation

As discussed in Chapter 5 Section 5.2.2, instrumentation of exposures is primarily achieved using

either single genetic variants or multiple genetic variants as instrumental variables. Using multiple

genetic variants in an instrument which, collectively, explain a greater proportion of the trait variance

than any one individual variant can mitigate weak instrument bias. Generally, instruments are obtained

from the largest and most recent GWAS using a genome-wide significance threshold of p-value < 5

x 10-8. This was the most common approach used for instrumenting adiposity measures identified in

the systematic review (Chapter 2) and was implemented in Chapter 5. Few of these studies reported

on the independence of SNPs (e.g., a linkage disequilibrium (LD) r2 and distance threshold). Similar

approaches have been used for studies investigating the association between metabolites and outcomes

using an MR framework423,427,429,430,600–603. Many of these metabolite MR studies did report on the

independence of SNPs, however approaches were varied (e.g., LD r2 thresholds of 0.1, 0.05, and 0.001)

and thresholds appeared arbitrarily set.

Potential overlap in was considered when selecting instruments for adiposity measures and metabo-

lites. In two-sample univariable MR analyses, overlap between datasets providing summary statistics

for the exposure and outcome may bias estimates in the presence of weak instruments. This bias may

be exacerbated with greater overlap in the two samples. However, given a strong enough instrument,

bias as a result of overlap will be close to the un-biased estimate449. For continuous outcomes (e.g., the

association between adiposity measures and metabolites), bias away from the null is a linear function of

the sample overlap (e.g., sample overlap of 50% leads to a bias of 5%). For binary outcomes (e.g., the

association between adiposity measures and metabolites with endometrial cancer), when the association

between the SNP and outcome is estimated in all participants, bias is similar to that for a continuous

outcome. Where the association between the SNP and outcome is estimated in controls only, unbiased

estimates can be obtained449.

UK Biobank is large and deeply phenotyped prospective sudy which recruited 502,639 participants

aged 37–70 years in 22 assessment centres across the United Kingdom604. In 2021, NMR data552,605

and corresponding GWAS data became available for 118,466 UK Biobank individuals, and represents

the largest single study of its kind. Sex-specific GWAS data were also made available. Given the

large sample size, ability to use sex-specific estimates of the association between genetic variation
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and metabolites and, desire to obtain the best possible SNP-metabolite estimates for MR analyses, UK

Biobank metabolomic data were used here. However, as almost all individuals from UK Biobank were

included in the GWAS for BMI (Yengo et al., (2018)53) and WHR (Pulit et al., (2019)54) used in the main

analysis of Chapter 5, overlap with the UK Biobank data were highly likely. As such, summary statistics

for BMI and WHR were obtained from GWAS which did not include UK Biobank. Data from these GWAS

(discussed in detail in th next section) were used in additional analyses in Chapter 5 and showed highly

consistent associations with metabolites when compared to the BMI and WHR instruments obtained

from Yengo et al., (2018) and Pulit et al., (2019), respectively. As such, there is no overlap between

adiposity data and metabolite data used in analyses here. However, as the largest available endometrial

cancer GWAS, with information on subtypes, included individuals from UK Biobank, there is potential

overlap between metabolite data and overall endometrial cancer data. In analyses here, the potential

overlap between metabolite GWAS data and endometrial cancer GWAS data is a maximum of 5%, which

is expected to equate to ~0.5% increased false positive rate. These data sources are described in full in

the next section.

In this chapter, genetic variants were identified from summary statistics of GWAS for adiposity

measures using a genome-wide significance threshold of p-value < 5 x 10-8 and no LD r2 and distance

threshold. An LD r2 and distance threshold was not set as results from additional analyses in Chapter

5 of the association between adiposity measures and metabolites using clumped and non-clumped

instruments, did not identify a difference in effect estimates as a result of clumping. For metabolites, as

no investigation of different instrumentation approaches has been conducted and, given studies appear

to arbitrarily set LD r2 and distance thresholds and there is likely a common genetic architecture across

metabolites, genetic variants were identified using a genome-wide significance threshold of p-value < 5 x

10-8 and a conservative LD r2 (0.001) and distance threshold (10,000 bases).

6.2.3 Data

The following section details a number of GWAS and meta-analyses of previously published studies,

which were used in this Chapter to perform MR analyses and are required as per STROBE-MR

guidelines448. I was not not directly involved in these GWAS. The total sample size (N) and sex-specific

sample size does not always tally, this is due to variation in the sample size for each SNP. Where

this is the case, ‘sample size up-to’ is used. Due to the way in which studies report GWAS differently,
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information present in one study (such as sex-specific sample sizes) are not always present in another.

Exposures: Adiposity

Body mass index Detailed information is presented in Chapter 5 Section 5.2.3. Briefly, summary

statistics for the association between genetic variation and BMI were obtained from Locke et al. (2015)48,

in which 322,154 individuals of European ancestries were included in a fixed effects inverse variance

weighted meta-analysis. A total of 82 GWAS and 43 studies using the Metabochip array were included in

the meta-analysis. Individual GWAS were adjusted for age, age squared, and study specific covariates

with residuals inverse rank normally transformed. Imputation was performed using HapMap phase II

Utah residents of Northern and Western European ancestries (CEU) reference panel. Each study used

a linear regression model assuming an additive genetic model with quality control following procedures

outlined previously606. A fixed effects inverse variance weighted meta-analysis was performed using

METAL for the 82 GWAS and 43 studies using the Metabochip array separately. The final meta-analysis

combined the single nucleotide polymorphisms (SNPs) found in both the meta-analyses of GWAS and

Metabochip studies that underwent genomic control. A total of 77 loci reaching genome-wide significance

(p-value ≤ 5x10-8) and separated by at least 500 kilobases were identified. These SNPs explained ~2%

of the variance in BMI. All 77 SNPs identified by Locke et al., (2015) were also identified in the Yengo et

al., (2018) BMI GWAS used in Chapter 5.

Waist hip ratio Detailed information is presented in Chapter 5 Section 5.2.3. Briefly, summary statistics

for the association between genetic variation and WHR were obtained from Shungin et al. (2016)49,

in which 210,088 individuals of European ancestries were included in a fixed effects inverse variance

weighted meta-analysis. A total of 57 GWAS and 44 studies using the Metabochip array were included

in the meta-analysis. WHR was adjusted for age, age squared, study-specific covariates if necessary

with residuals inverse rank normally transformed. Imputation was performed using HapMap phase II

CEU reference panel. Each study used a linear regression model assuming an additive genetic model.

The final meta-analysis combined the SNPs found in both the meta-analyses of GWAS and Metabochip

studies that underwent genomic control. A total of 26 loci reaching genome-wide significance (p-value ≤

5x10-8) and separated by at least 500 kilobases were identified. The variance explained for these SNPs

was not reported, however it will be lower than the 3% variance explained by the 316 SNPs identified by
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Pulit et al., (2019)54. All 26 SNPs identified by Shungin et al., (2016) were also identified in the Pulit et

al., (2019) WHR GWAS used in Chapter 5.

Body fat percentage Detailed information is presented in Chapter 5 Section 5.2.3. Briefly, summary

statistics for the association between genetic variation and BF were obtained from Lu et al., (2016)51,

in which 89,300 individuals of European ancestries were included in a fixed effects inverse variance

weighted meta-analysis. A total of 43 GWAS and 13 studies using the Metabochip array were included in

the meta-analysis. Individual GWAS were adjusted for age, age squared, and study specific covariates

with residuals inverse rank normally transformed. Imputation was performed using HapMap phase II

European reference panel. Each study used a linear regression model assuming an additive genetic

model. A fixed effects inverse variance weighted meta-analysis was performed using METAL for the

43 GWAS and 13 studies using the Metabochip array separately. The final meta-analysis combined

the SNPs found in both the meta-analyses of GWAS and Metabochip studies that underwent genomic

control. A total of 7 loci reaching genome-wide significance (p-value ≤ 5x10-8) and separated by at least

1 mega base were identified. Estimation of the variance explained was not available in the European

ancestries meta-analysis. In a meta-analysis of individuals of all ancestries, which included up to 11,419

additional individuals of non-European ancestries, these 7 SNPs explained 0.416% of the variance in BF.

The additional 5 SNPs identified in this all ancestries meta-analysis explained 0.58% of the variance

in BF. Two of the identified SNPs (rs6738627 and rs2943650) have previously been associated with

favourable adiposity47,565, which has been associated with increased BF, BMI, fat mass, and reduced fat

free mass while simultaneously being associated with reduced risk of type-2 diabetes, hypertension,

and heart disease, as well as more favourable blood pressure565. In additional analyses conducted in

Chapter 5, comparison of the effect of BF on metabolites, instrumenting BF with the 7 SNPs identified

by Lu et al. and a 5-SNP instrument that did not include the two favourable adiposity SNPs, resulted in

tighter confidence intervals (CIs) for the 5-SNP instrument. Additionally, a number of effect estimates

reversed in direction when instrumenting BF using the 5 SNPs. As these favourable adiposity SNPs are

likely adding noise to the instrumentation of BF, the 5-SNP instrument was used herein. The variance

explained by these 5 SNPs will be lower than the variance explained by the 7 SNPs in the all ancestries

meta-analysis.
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Intermediates: Metabolites

A total of 54 metabolites were identified as being associated with adiposity in Chapter 5; two

metabolites, associated with BMI and WHR (serum total triglycerides) and BF (estimated description

of fatty acid chain length not actual carbon number) were not available in the UK Biobank GWAS.

Female-specific summary statistics for each metabolite was obtained from UK Biobank (Borges 2021,

unpublished), in which, 118,466 women of European ancestries were included in a linear mixed model

GWAS. UK Biobank is a prospective cohort study of ~500,000 individuals from the United Kingdom

aged 37–70 with a host of genetic and phenotypic data560,604. Un-fasted individuals were selected

at random to undergo high-throughput nuclear magnetic resonance (NMR) metabolomic analysis605

using the Nightingale Health Ltd biomarker quantification522,607 (version 2020); the same platform for

which metabolomic data were avaialble from the Avon Longitudinal Study of Parents and Children

(ALSPAC) used in Chapter 4 and datasets used in Chapter 5. All metabolites were inverse rank normally

transformed prior to genome-wide analysis. Genome-wide association analysis was performed using the

Medical Research Council, Integrative Epidemiology Unit (MRC IEU) UK Biobank GWAS pipeline608. A

linear mixed model using BOLT-LMM, adjusting for genotype array and fasting time was fit for 118,466

individuals. Population structure was controlled for using 143,006 directly genotyped SNPs (minor allele

frequency > 0.01; genotyping rate > 0.015; Hardy-Weinberg equilibrium p-value < 0.0001 and linkage

disequilibrium (LD) pruning to an R2 threshold of 0.1 using PLINKv2.00). Borges et al., had not identified

lead SNPs at the time of writing. Lead SNPs were thus identified as those reaching a genome-wide

significance threshold (p-value ≤ 5x10-8) and which were retained after clumping using a LD r2 threshold

of 0.001 for SNPs within a 10,000 base window of each other and using the 1000 Genomes version 3

reference panel.

Outcomes: Endometrial cancer

Female-specific summary statistics for endometrial cancer were available from O’Mara et al. (2018)497.

This data included summary statistics on overall endometrial cancer as well as endometrioid and non-

endometrioid cancer. Briefly, 17 studies on endometrial cancer including 12,906 cases and 108,979

country-matched controls of European ancestries were included in a fixed effects inverse variance

weighted meta-analysis. Genotypes were imputed using the 1000 Genomes Project v3 reference panel
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or a combined 1000 Genomes (V3) UK10K reference panel. In each study, univariate GWAS were

conducted adjusting for principal components (PCs). The analysis was repeated for endometrioid only

(cases = 8,758; controls = 108,979) and non-endometrioid only (case = 1,230; controls = 108,979)

cancers. Overall endometrial cancer included the cases from the endometrioid and non-endometrioid

cancers alongside a number of other unclassified cases. Of the 12,906 cases and 108,979 controls

for overall endometrial cancer, 636 cases (5%) and 62,853 controls (58%) were from UK Biobank. For

endometrioid and non-endometrioid cancer, no cases and 62,853 controls (58%) were from UK Biobank.

6.2.4 Two-sample univariable Mendelian randomization

Summary statistics for the association between genetic variation and BMI48, WHR49, and BF51 were

obtained from published GWAS, as described above, all genetic instruments are available on GitHub.

As summary statistics of the association between genetic variation on metabolites in UK Biobank were

unpublished, all genetic instruments are available on GitHub, alongside a list of metabolites GitHub

which is also available in the Appendix (Table A.7).

For all exposures, the following summary-level data were obtained from the original GWAS publica-

tions for each exposure-related genetic variant: rsID, effect allele, other/non-effect allele, effect allele

frequency, effect estimate, standard error of the effect estimate, p-value, sample size, and units. All

exposure-related genetic variants were obtained for each outcome separately. Genetic variants were

extracted from each outcome GWAS and, where these were not present, proxy SNPs were included if LD

was ≥ 0.8. For proxy SNPs, the inclusion of SNPs where the reference strand was ambiguous (strand

flips) was allowed and the reference strand was inferred using a MAF threshold. That is, the reference

strand was inferred using a MAF, so long as that MAF was not ≥ 0.3, in which case it was excluded.

Exposure and outcome summary statistics for each of the exposure-related SNPs were harmonised in

reference to the exposure effect allele being on the increasing scale. For included alleles where the

reference strand was ambiguous, the positive strand was inferred using effect allele frequency. That is, if

the effect allele frequency of a SNP was not ≥ 0.3 or ≤ 0.7, the reference strand was inferred using the

effect allele frequency to harmonise exposure and outcome data; otherwise, it was removed.

Instruments for adiposity measures were not clumped as the studies from which they were obtained

stated they were independent or near-independent and analysis in Chapter 5 indicated clumping did
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not considerably alter associations with metabolites. Instruments for metabolites were identified using

a genome-wide significance threshold of p-value ≤ 5x10-8 and an LD r2 threshold of 0.001 for SNPs

within a 10,000 base window of each other and using the 1000 Genomes reference panel using the

TwoSampleMR555 R. To assess the possibility of weak instrument bias, F-statistics were calculated for

each exposure-related SNP and an average F-statsistic was calculated for each exposure.

An inverse variance weighted (IVW), multiplicative random effects (IVW-MRE) model was used to

estimate the effect of each exposure on the outcome. The model assumes that the strength of the

association of the genetic instruments with the exposure is not correlated with the magnitude of the

pleiotropic effects and that the pleiotropic effects have an average value of zero563. Where the number of

instruments was not sufficient for an IVW-MRE model, the Wald ratio was used. As analysis presented

in this chapter, which aimed to assess the potentially intermediary role of metabolites in the relationship

between adiposity and endometrial cancer, aimed to validate results presented in Chapters 2, 4, and

5, no multiple testing threshold was set. Both the adiposity measures and metabolites were inverse

rank normally transformed prior to genome-wide analysis and represent standard deviation (SD) units.

For MR analyses using these measures, effect estimates are given in SD units. Results testing for the

causal effect of both adiposity and metabolites on endometrial cancer are given as odds ratios (OR) and

represent the odds of developing endometrial cancer per SD unit increase in the exposure.

Sensitivity analysis

Where possible (i.e., where there were three or more instruments), the assumptions of no pleiotropy

among genetic instruments and outcomes were explored using: MR-Egger374, weighted median375, and

weighted mode376 based estimators. These methods are sensitive to the effects of potential pleiotropy.

No p-value threshold requirements were set for these methods, instead consistency between the IVW-

MRE model and these methods was investigated. Briefly, MR-Egger provides an estimate of unbalanced

or directional horizontal pleiotropy via the intercept of a linear regression of the SNP-exposure and

SNP-outcome association. In the presence of pleiotropy, the intercept will be biased away from the origin.

MR-Egger gives consistent estimates when 100% of genetic instruments are invalid374. The weighted

median is complimentary to MR-Egger but does not rely on the “instrument strength independent of

direct effect” (InSIDE) assumption. It calculates the median of an empirical distribution of the causal

effect estimates weighted for precision. It provides consistent estimates when at least 50% of the weight
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comes from valid genetic instruments and as long as no one genetic instrument contributes > 50% of the

weight375. The weighted mode assumes the true causal effect is the most common effect and it is robust

when the majority of effect estimates are derived from valid instruments376.

6.2.5 Two-sample multivariable Mendelian randomization

All adiposity measures were included in the MVMR analysis. Of the metabolites included in the

two-sample univariable MR analysis estimating the causal effect of adiposity on metabolites and of

metabolites on endometrial cancer, only those which showed a consistent direction of effect with both

adiposity and endometrial cancer were included in the MVMR analyses. That is, if an adiposity measure

increased a metabolite, that metabolite increased endometrial cancer, and taht adiposity measure

increased endometrial cancer, then the metabolite was considered as a potential intermediate. Or,

if an adiposity measure decreased a metabolite, that metabolite decreased endometrial cancer, and

that adiposity measure increased endometrial cancer, then the metabolite was considered a potential

intermediate. Otherwise, the metabolite was excluded from MVMR analyses.

In MVMR, SNPs associated with the exposure (adiposity) and proposed intermediate (metabolites)

were combined to create a combined instrument of the exposure and intermediate. This combined SNP

list was used to extract instruments from both GWASs of the exposure and the intermediate metabolite.

The resulting instrument was then clumped to remove duplicate SNPs and, SNPs in LD with one another

to avoid overestimation of effects using the same clumping thresholds as with the univariable analysis

described above (LD r2 > 0.001 and 10,000 base window).

The resulting instrument contains SNPs associated with both the exposure and intermediate; ex-

tracting data from the GWAS of the exposure gives an instrument for the exposure adjusted for the

intermediate, and extracting data from the GWAS of the intermediate gives an instrument for the in-

termediate adjusted for the exposure (Figure 6.2). As such, instruments for BMI and instruments for

metabolites will use the same SNPs but different estimates. For example, a BMI instrument adjusted for

metabolite 1 will include the SNPs associated with BMI and the SNPs associated with metabolite 1, with

all data extracted from the GWAS of BMI. An instrument for metabolite 1 adjusted for BMI will include the

SNPs associated with BMI and the SNPs associated with metabolite 1, with all data extracted from the

GWAS of metabolite 1. The following process was followed for obtaining instruments:
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1. SNPs associated with each adiposity measure and each metabolite were identified in the same

way as for the two-sample univariable MR analysis described previously (6.2.4).

2. Identified SNPs for each adiposity and metabolite pair were combined to create a SNP list for each

adiposity and metabolite pair.

3. These SNP lists were used to extract summary level data for instruments (rsID, effect allele,

other/non-effect allele, effect allele frequency, effect estimate, standard error of the effect estimate,

p-value, N, and units) from the GWASs of each adiposity measure and each metabolite individually.

4. Each instrument was clumped using the TwoSampleMR555 R package setting an LD R2 threshold of

0.001 for SNPs within a 10,000 base window of each other and using the 1000 Genomes reference

panel.

5. Data for each adiposity and metabolite pair were harmonised in reference to the adiposity-

increasing effect allele in the adiposity instrument .

6. Instruments for each adiposity and metabolite pair were extracted from the endometrial cancer

GWAS using MR-Base. Where SNPs were not present in the outcome GWAS, proxy SNPs were

included if LD was ≥ 0.8. For proxy SNPs, the inclusion of SNPs where the reference strand was

ambiguous (strand flips) was allowed and the reference strand was inferred using a MAF threshold

of 0.3.

7. Exposure-related SNPs from summary level data of the outcome were harmonised in reference to

the adiposity-increasing effect allele in the adiposity instrument instrument.
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Figure 6.2: Directed acyclic graph of the multivariable Mendelian randomization principle using
two exposures. The directed acyclic graph illustrates the principle of multivariable Mendelian random-
ization (MR) using an exposure (X1) and a mediator (X2) on a single outcome. Genetic instruments (G)
associated with X1 and X2 are combined into an instrument. In this example, the instrument includes
G1, G2, and any number of other SNPs (Gn). The instrument is extracted from summary statistics for
each of X1 and X2. G = single nucleotide polymorphism; X1 = exposure, X2 = mediator; Y = outcome; U
= unmeasured confounding

For MVMR analysis, the SNP, effect estimate, and standard error for each exposure (adiposity and

metabolite) and outcome are required. Instrument strength for each exposure was estimated using a

generalized version of Cochran’s Q609,610, using the strength_mvmr() function in the MVMR R package

assuming a pairwise covariance of 0. The assumption being that the SNP-exposure association and

the SNP-intermediate association are estimated in independent samples (e.g., two different GWAS of

independent populations). Horizontal pleiotropy was evaluated using a modified form of Cochran’s Q

using the pleiotropy_mvmr() function in the MVMR R package and assuming a pairwise covariance of

0.

An IVW MVMR model was used to obtain the direct causal effect of each adiposity measure adjusted

for each metabolite and each metabolite adjusted for each adiposity measure on endometrial cancer risk.

The aim of this analysis was to inform whether the effect of adiposity on endometrial cancer is partly

explained by the effect of adiposity on metabolites and the effect of those metabolites on endometrial
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cancer or whether any effects of adiposity and metabolites on endometrial cancer are independent.

Results are presented as OR and represent the odds of developing endometrial cancer per SD unit

increase in the exposure.

6.3 Results

For this section, results are presented first for the two-sample univariable MR analyses of the effect

of adiposity on endometrial cancer, the effect of adiposity on metabolites in UK Biobank, and the effect

of those metabolites for which there was evidence for a causal effect of adiposity (consistent across

analyses conducted in Chapter 5 and UK Biobank here) and endometrial cancer. Finally, results from

the two-sample MVMR analyses unpicking the potential intermediary role of these metabolites in the

relationship between adiposity and endometrial cancer are presented.

6.3.1 Two-sample univariable Mendelian randomization: association between adipos-

ity measures and endometrial cancer

Here, using the largest endometrial cancer GWAS to date, the MR analyses performed as part of

this thesis provided strong evidence of a causal effect of BMI on endometrial cancer (OR per SD unit

increase in BMI = 1.91; 95% CI = 1.62–2.25; p-value = 1.74 x 10-15; (Table 6.1). A similar effect (OR =

2.02; 95% CI = 1.68–2.43; p-value = 1.59 x 10-13) was found for endometrioid cancer, while a smaller

effect was observed for non-endometrioid cancer (OR = 1.63; 95% CI = 1.11–2.39; p-value = 0.01).

The effect of WHR on overall endometrial cancer and endometrioid cancer were directionally

consistent but lesser in magnitude than results for BMI (OR = 1.2; 95% CI = 0.98 - 1.53 and 1.25; 95%

CI = 0.93 - 1.58, respectively). The effect of BF on endometrial cancer (OR = 2.54; 95% CI = 2.04–3.16;

p-value = 1.02 x 10-16), endometrioid (OR = 2.73; 95% CI = 1.83–4.09; p-value = 9.93 x 10-7), and

non-endometrioid (OR = 2.01; 95% CI = 0.52–7.7; p-value = 0.31) were consistently greater than those

observed for BMI, though with wider CIs.

Sensitivity analyses, which included weighted median, weighted mode, and MR-Egger models, were

consistent with the IVW-MRE model for each exposure (Appendix Figure A.37). All figures associated
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with sensitivity analyses (e.g. leave-one-out analyses) are available on GitHub with representative figures

presented in the appendix (Appendix A.5). All results are available on GitHub.

Table 6.1: Two-sample univariable Mendelian randomization results of the association between adiposity
measures and endometrial cancer

OR Lower CI Upper CI p-value

BMI Endometrial cancer 1.91 1.62 2.25 7.47e-15

BMI Endometrioid 2.02 1.68 2.43 1.6e-13

BMI Non-endometrioid 1.63 1.11 2.39 0.0122

BF Endometrial cancer 2.54 2.04 3.16 1.02e-16

BF Endometrioid 2.73 1.83 4.09 9.94e-07

BF Non-endometrioid 2.01 0.52 7.70 0.31

WHR Endometrial cancer 1.26 0.95 1.66 0.103

WHR Endometrioid 1.25 0.91 1.74 0.174

WHR Non-endometrioid 2.31 1.23 4.35 0.00952

Results for inverse variance weighted multiplicative random effects

model are presented. Odds ratios (OR) and associated 95% confi-

dence intervals (CI) per standard deviation unit increase in body mass

index (BMI), waist hip ratio (WHR), or body fat percentage (BF)

6.3.2 Two-sample univariable Mendelian randomization: association between adipos-

ity measures and metabolites

A total of 54 metabolites were identified as being associated with BMI (N = 45), WHR (N = 48),

and BF (N = 9) in Chapter 5. Two of these metabolites, associated with BMI and WHR (serum total

triglycerides) and BF (estimated description of fatty acid chain length not actual carbon number) were not

available in the UK Biobank GWAS. As such, a total of 44, 47, and 8 metabolites, which were associated

with BMI, WHR, and BF in Chapter 5, respectively, were available for analysis in UK Biobank.

For BMI, of the 44 metabolites, four had directions of effect that were not consistent with the

previous MR analysis (Chapter 5), meta-analysis (Chapter 5), and observational (Chapter 4) analyses:
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apolipoprotein B, free cholesterol in medium very large low density lipoprotein (VLDL), total lipids in

medium VLDL, total lipids in very small VLDL. For WHR, of the 47 metabolites, two had directions of

effect that were not consistent with the previous MR analysis (Chapter 5), meta-analysis (Chapter 5), and

observational (Chapter 4) analyses: phenylalanine and tyrosine. For BF, all 8 of the analysed metabolites

had consistent directions of effect with the previous MR analysis (Chapter 5), meta-analysis (Chapter 5),

and observational (Chapter 4) analyses. Sensitivity analyses did not highlight metabolite analyses which

violated the MR assumptions. As such, a total of 40, 45, and 8 metabolites (53 unique metabolites)

were taken forward for MR analysis to estimate the effect of these metabolites on endometrial cancer

outcomes. Seven of these metabolites were only found to be associated with WHR and 5 of these

metabolites were uniquely associated with BF. Two metabolites were associated with both BMI and BF

and 38 metabolites were associated with both BMI and WHR. Only 1 metabolite, valine, was associated

with all three measures.

All results for the investigation of the effect of adiposity measures on metabolites measured in UK

Biobank are presented in Figure 6.3 and are available on GitHub. All sensitivity plots are available on

GitHub and representative figures are presented in the appendix (Appendix A.5).
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Figure 6.3: Two-sample univariable Mendelian randomization analysis: association between adi-
posity measures and metabolites using UK Biobank data. Effect estimates and associated 95%
confidence intervals shown for an standard deviation (SD) change in metabolite per SD unit higher body
mass index (BMI), waist hip ratio (WHR), or body fat percentage (BF). Solid points indicate a nominal
p-value threshold of 0.05 has been reached. Available on GitHub.

https://github.com/mattlee821/000_thesis/blob/master/index/data/mediation/figures/002_adiposity_metabolite/forestplot.pdf


6.3.3 Two-sample univariable Mendelian randomization: association between

adiposity-associated metabolites and endometrial cancer

Two-sample univariable MR analysis was used to investigate the causal effect of 53 metabolites

(i.e., 40, 45, and 8 metabolites driven by BMI, WHR, and BF, respectively) on endometrial cancer.

Instruments for metabolites were obtained from an unpublished GWAS of 249 circulating metabolites

performed in UK Biobank (Borges 2021, unpublished). Using a genome-wide p-value threshold of

5x10-8 and an LD r2 clumping threshold (0.001) for SNPs within a 10,000 base window, to ensure

independance of SNPs, 2595 total associations with 53 metabolites were identified (unique number of

SNPs = 934; minimum number of SNPs associated with a metabolite = 6, maximum number of SNPs

associated with a metabolite = 84; Figure 6.4). The greater the number of SNPs associated with a trait,

the larger the variance explained by those SNPs and thus the power afforded by that instrument in an

MR analysis. Of the 934 unique SNPs identified, 54% of SNPs were associated with just 1 metabolite

(Figure 6.5). The remaining 46% of SNPs were associated with two or more metabolites, with 1 SNP

(rs12154627) associated with 33 metabolites. Metabolites were inverse rank normally transformed prior

to genome-wide analysis and represent SD units.
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Figure 6.4: Distribution of the number of SNPs with which metabolites were associated. A total of
934 unique single nucleotide polymorphisms (SNPs) were identified across 53 metabolites. The number
of SNPs associated with each metabolite varied between 6 and 84 with a mean of 49. Bin size = 10.
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Figure 6.5: Distribution of the number of metabolites with which individual SNPs were associated.
The majority of the 934 identified single nucleotide polymorphisms (SNPs) were associated with one
metabolite. One SNP was associated with 33 out of a total 53 metabolites. Bin size = 1.



A total of 5 metabolites showed evidence of association for at least one outcome (Figure 6.6). Valine

was the only metabolite found to be negatively associated with the risk of endometrial cancer (OR of

endometrial cancer per SD unit increase in valine = 0.82; 95% CI = 0.69–0.98; p-value = 0.03), which was

directionally consistent with both endometrioid and non-endometrioid cancers. The largest effect was

found for triglycerides in small VLDL, which increased the odds of non-endometrioid cancer by 1.79 (95%

CI = 1.25–2.56; p-value = 0.001), which was directionally consistent with results for overall endometrial

cancer and endometrioid cancer. The largest effect on endometrioid cancer was for phospholipids in very

large high density lipoprotein (HDL; OR = 1.16; 95% CI = 1.01–1.35; p-value = 0.04), results of which

were consistent for overall endometrial cancer but opposite to those found in non-endometrioid cancer

(though, CIs overlapped all analysis results and the null). The largest effect on overall endometrial cancer

was for triglycerides in very large HDL (OR = 1.11; 95% CI = 1–1.24;2; p-value = 0.06), which was

directionally consistent with both endometrioid and non-endometrioid cancers. For triglycerides in very

small VLDL, effects were largest for non-endometrioid cancer (OR = 1.56; 95% CI = 1.12–2.17;; p-value

= 0.008), which was directionally consistent with results for overall endometrial cancer and endometrioid

cancer.

Of the 5 metabolites with evidence of an association with endometrial cancer, endometrioid cancer,

and/or non-endometrioid cancer, only triglycerides in very large HDL was associated with BF in the

previous analysis conducted in this chapter and in observational (Chapter 4) and MR (Chapter 5)

analyses. The remaining four metabolites were not associated with BF in any analysis, but were all

associated with BMI and WHR in the previous analysis here and in observational (Chapter 4) and MR

(Chapter 5) analyses. As all 5 metabolites showed evidence of association with a measure of adiposity

and endometrial cancer, all were considered for MVMR analysis. All results are available on GitHub and

presented in Appendix Figure A.44 which is also available on GitHub. Figures for sensitivity analyses

are also on GitHub.
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Figure 6.6: Two-sample univariable Mendelian randomization analysis: association between
metabolites and endometrial cancer using UK Biobank data. Forest plot shows odds ratio (OR)
and 95% confidence interval for metabolites associated with body mass index, waist hip ratio, and/or
body fat percentage with endometrial cancer, endometrioid cancer, and non-endometrioid cancer. Data
are presented for endometrial-associated metabolites. The main analysis (inverse variance weighted
multiplicative random effects (IVW-MRE)) is presented alongside sensitivity analyses (weighted median,
weighted mode, MR-Egger). Available on GitHub.
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6.3.4 Two-sample multivariable Mendelian randomization: intermediate effects of

adiposity-associated metabolites in the association between adiposity mea-

sures and endometrial cancer

Of the 5 metabolites for which there was causal evidence of an effect of at least one measure of

adiposity and an effect on endometrial cancer, two had directions of effect that were consistent with

a potential intermediate role: triglycerides in small VLDL and triglycerides in very small VLDL. Of the

remaining three metabolites, all three adiposity measures were found to decrease phospholipids in very

large HDL and triglycerides in very large HDL, while an increase in these metabolites was associated

with an increase in all three endometrial cancer outcomes. The remaining metabolite, valine, was

found to be increased by all three adiposity measures, however increased valine was associated with

a decreased risk of all three endometrial cancer outcomes. As such, triglycerides in small VLDL and

triglycerides in very small VLDL were taken forward for MVMR analysis. Using individual level data from

ALSPAC adults used in Chapter 4 (N = 3,305; data not shown), the Spearman’s Rho correlation between

the two metabolites was 0.9.

Results from the two-sample univariable MR analysis of the association between adiposity measures

and triglycerides in small and very small VLDL (Section 6.3.2) are presented in Table 6.2. In these

analyses, the strongest effect between adiposity measures and triglycerides in small VLDL was found for

WHR (SD unit increase in metabolite per SD increase in adiposity measure = 0.56; 95% CI = 0.26–0.86;

p-value = 2.5 × 10−4). The strongest effect between adiposity measures and triglycerides in very small

VLDL was also found for WHR (beta = 0.45; 95% CI = 0.2–0.7; p-value = 4.5 × 10−4). The effects of BMI

(effect on small VLDL = 0.07; effect on very small VLDL = 0.06) and BF (effect on small VLDL = 0.11;

effect on very small VLDL = 0.05) on both metabolites were smaller with CIs that overlapped the null.
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Table 6.2: Two-sample univariable Mendelian randomization: association between adiposity measures
and triglycerides in small and very small VLDL

Exposure Metabolite (units) Effect Lower CI Upper CI p-value

BMI Triglycerides in small VLDL (mmol/l) 0.07 -0.002 0.14 0.06

WHR Triglycerides in small VLDL (mmol/l) 0.56 0.26 0.86 0.0002

BF Triglycerides in small VLDL (mmol/l) 0.11 -0.01 0.23 0.08

BMI Triglycerides in very small VLDL (mmol/l) 0.06 -0.002 0.13 0.06

WHR Triglycerides in very small VLDL (mmol/l) 0.45 0.19 0.7 0.0004

BF Triglycerides in very small VLDL (mmol/l) 0.05 -0.12 0.23 0.55

Results are given for the inverse variance weighted multiplicative random effects model. Effect

estimates are given as SD unit increase in metabolite per SD unit increase in adiposity measure.

Metabolite labels are presented with their originally measured units. BMI = body mass index;

WHR = waist hip ratio; BF = body fat percentage; VLDL = very large low density lipoprotein.

Results from the two-sample univariable MR analysis of the association between triglycerides in

small and very small VLDL with endometrial cancer (Section 6.3.3) are presented in Table 6.3. In these

analyses, the strongest effect for both triglycerides in small (OR per SD unit increase in metabolite =

1.8; 95% CI = 1.3–2.6; p-value = 0.00141) and very small VLDL (OR = 1.6; 95% CI = 1.1–2.2; p-value

= 0.00786) was for non-endometrioid cancer. Both metabolites had positive effects on endometrioid

and overall endometrial cancer with highly similar effect sizes. However, effects were smaller than for

non-endometrioid cancer and CIs overlapped the null. These results are presented alongside the MVMR

results in Figure 6.7.
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Table 6.3: Two-sample univariable Mendelian randomization: association between triglycerides in small
and very small VLDL and endometrial cancer

Exposure Outcome OR Lower CI Upper CI p-value

Triglycerides in small VLDL (mmol/l) Endometrial cancer 1.11 0.98 1.25 0.1

Triglycerides in small VLDL (mmol/l) Endometroid 1.11 0.96 1.28 0.16

Triglycerides in small VLDL (mmol/l) Non-endometroid 1.79 1.25 2.56 0.001

Triglycerides in very small VLDL (mmol/l) Endometrial cancer 1.11 0.98 1.24 0.09

Triglycerides in very small VLDL (mmol/l) Endometroid 1.11 0.96 1.27 0.15

Triglycerides in very small VLDL (mmol/l) Non-endometroid 1.56 1.12 2.17 0.01

Results are given for the inverse variance weighted multiplicative random effects model. Effect estimates

are given as the odds (OR) of endometrial cancer per SD unit increase in metabolite. Metabolite labels are

presented with their originally measured units

All results relevant to the MVMR analysis (this includes univariable two-sample MR results) are

presented in Figure 6.7 and Appendix Tables A.8, A.9, and A.10 for BMI, WHR, and BF, respectively. A

summary of the MVMR analysis is given herein.

In MVMR analysis, the effect of BMI on overall endometrial cancer was similar after adjustment for

either metabolite: OR per SD unit increase in BMI adjusted for triglycerides in small VLDL = 1.9; 95% CI

= 1.57–2.29; p-value = 5.18 x 10-9; OR per SD unit increase in BMI adjusted for triglycerides very small

VLDL = 1.87; 95% CI = 1.53–2.28; p-value = 7.26 x 10-8. These results were similar to the unadjusted

(i.e., two-sample univariable MR) effect of BMI on endometrial cancer (OR per SD unit increase in

BMI = 1.91; 95% CI = 1.62–2.25; p-value = 7.47 x 10-15). A similar pattern of association was found

across endometrioid and non-endometrioid cancer, with similar effect sizes and CIs after adjustment

for each metabolite and when comparing effect size and CIs with the unadjusted effects. The effect for

non-endometrioid cancer appeared to attenuate more, but CIs overlapped the two-sample univariable MR

results. When looking at the effect of metabolites on all endometrial cancer outcomes after adjustment

for BMI, there was little difference with effect size in comparison to the unadjusted effect, however CIs

were generally wider in the adjusted estimates. For non-endometrioid cancer, the adjusted effect size

was larger than the unadjusted effect size for both metabolites (though, CIs overlapped). Given the

similarity between unadjusted and adjusted effects, there was little evidence for an intermediate role of

either metabolite on the association between BMI and all endometrial cancer outcomes.
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Figure 6.7: Multivariable Mendelian randomization: intermediate effects of adiposity-associated
metabolites in the association between adiposity measures and endometrial cancer. Forest plot
shows odds ratio and 95% confidence interval for: the two-sample univariable Mendelian randomization
(MR) analyses presented in this chapter (Section 6.3.1 and 6.3.3) and the two-sample multivariable MR
results of the intermediary effect of adiposity-associated metabolites and endometrial endometrial (left),
endometrioid (middle) and non-endometrioid cancer (right). Points and confidence intervals are coloured
for the variable they represent in the two-sample univariable MR and for the adjusted variable in the
two-sample multivariable MR, e.g. body mass index (BMI) is coloured orange and any metabolite effect
adjusted for BMI is coloured orange also. An inverse variance weighted model was used. BF = body fat
percentage; WHR = waist hip ratio; SVLDLTG = triglycerides in small VLDL; XSVLDLTG = triglycerides
in very small VLDL. Available on GitHub.

https://github.com/mattlee821/000_thesis/blob/master/index/data/mediation/figures/004_mvmr/forestplot.pdf


For the effect of BF and WHR on endometrial and endometrioid cancer, a similar pattern of association

to that of BMI was seen, with effect sizes and CIs highly similar after adjustment with either metabolite.

For example, the effect of WHR on endometrial cancer adjusted for triglycerides in small VLDL was 1.17

(95% CI = 0.7–1.96; p-value = 0.55) whereas after adjustment for triglycerides in very small VLDL the

OR was 1.17 (95% CI = 0.71–1.93; p-value = 0.55). For both BF and WHR, the adjusted effects had

much wider CIs than the unadjusted effects; for BF, adjustment for either metabolite resulted in CIs which

crossed the null. For WHR, CIs crossed the null in unadjusted and adjusted analyses. When looking

at the metabolites effects on endometrial and endometrioid cancer after adjustment for BF or WHR,

there is a similar pattern of association to when adjusting for BMI, with similar sized effect sizes and

CIs which overlapped the null. The exception was for the effect of triglycerides in small VLDL on overall

endometrial cancer, where, when adjusted for BF (OR = 1.39; 95% CI = 1.04–1.87; p-value = 0.02) the

CIs did not cross the null unlike in the unadjusted analysis (OR = 1.11; 95% CI = 0.98–1.25; p-value =

0.1), but CIs overlapped between both analyses.

For non-endometrioid cancer, the pattern of association for BF and WHR was different to that of

BMI. For BF, adjustment for triglycerides in small VLDL resulted in directions of effect that were opposite

to the unadjusted (univariable) MR estimate (BF-adjusted OR = 0.98; 95% CI = 0.41–2.35; p-value =

0.96; BF-unadjusted OR = 2.01; 95% CI = 0.52–7.7; p-value = 0.31). The same was true for WHR

(WHR-adjusted OR = 0.77; 95% CI = 0.3–1.97; p-value = 0.58; WHR-unadjusted OR = 2.31; 95% CI =

1.23–4.35; p-value = 0.01). In regards to triglycerides in very small VLDL, a similar picture was found for

BF, where, the effect of BF adjusted for triglycerides in very small VLDL resulted in an effect estimate that

was opposite to the unadjusted effect estimate (BF-adjusted OR = 0.92; 95% CI = 0.36–2.35; p-value =

0.87). For WHR, adjustment for triglycerides in very small VLDL resulted in an attenuated effect estimate

that was close to the null (WHR-adjusted OR = 1.32; 95% CI = 0.51–3.41; p-value = 0.57). For all BF

and WHR analyses, CIs overlapped for the adjusted and unadjusted effect estimates. When looking at

the effect of triglycerides in small and very small VLDL on non-endometrioid cancer, adjustment for BF

and WHR led to a greater increased risk of non-endometrioid cancer than was found in the unadjusted

analysis. CIs for triglycerides in small and very small VLDL were wider in adjusted analyses compared

to unadjusted analyses and overlapped.

Overall, the estimates of the effect of BMI, WHR, and BF adjusted for either metabolite led to an

increased risk of overall endometrial and endometrioid cancer. While BMI adjusted for either metabolite
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increased the risk of non-endometrioid cancer, BF and WHR reduced the risk of non-endometrioid

cancer when adjusted for triglycerides in small VLDL. The effect of WHR on non-endometrioid cancer

after adjusting for triglycerides in very small VLDL, although positive, was attenuated compared to the

unadjusted effect. CIs for all adjusted analyses overlapped with CIs for respective unadjusted analyses.

For triglycerides in small VLDL, effect sizes were broadly consistent across adjusted and unadjusted

analyses with overlapping CIs; the exception being for the effect on non-endometroid cancer, where effect

sizes increased compared to the unadjusted effect size. A similar picture is apparent for triglycerides in

very small VLDL.

Sensitivity analysis

Instrument strength, estimated using the F-statistic, can give an estimate of weak instrument bias

in MR analyses. In general, an F-statistic of ≥ 10 is considered sufficiently strong that there is not

substantial weak instrument bias611,612. In a single sample setting, the bias is towards the observational

estimate, whereas in a two-sample setting, the bias is towards the null. Weak instrument bias was

estimated using a generalized version of Cochran’s Q609. F-statistics were ≥ 10 for all but triglycerides

in small VLDL adjusted for BMI (F = 9) and WHR (F = 7) (Table 6.4). F-statistics in MVMR analysis

were lower than those associated with the instruments used in the two-sample univariable MR analysis,

for example BMI in two-sample univariable MR had an F-statistic of 66 while after adjustment for both

metabolites this dropped to 54.
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Table 6.4: F-statistics for instruments used in univariable and multivariable Mendelian randomization
analyses

Exposures

Adjusted variable BMI (66) WHR (49) BF (47) SVLDLTG (43) XSVLDLTG (53)

SVLDLTG 54 17 12

XSVLDLTG 54 21 17

BMI 9 14

WHR 7 35

BF 14 23

F-statistics are presented for each exposure (column) and the adjusted (row) variable,

e.g., body mass index (BMI) adjusted for triglycerieds in small very low density lipoprotein

(SVLDLTG) (column 1 row 1) = 54. F-statistics for each exposure used in the univari-

able two-sample Mendelian rnadomization analyses are given in (). WHR = waist hip

ratio; BF = body fat percentage; SVLDLTG = Triglycerides in small VLDL; XSVLDLTG =

Triglycerides in very small VLDL.

Horizontal pleiotropy, whereby the effect of the instrument on the outcome is not exclusively through

the exposure, was estimated using a modified form of Cochran’s Q609. In total, 18 instruments (combined

adiposity-associated SNP and metabolite-associated SNP) were used in MVMR analyses. Of these, 11

showed evidence of horizontal pleiotropy (p-value < 0.05). That is, for a majority of tests, the association

between the instrument and the outcome was not solely via the association between the instrument

and the exposure and mediator. All 6 analyses investigating associations with non-endometrioid cancer,

and one analysis with endometrial cancer showed weak evidence of pleiotropy (p-value > 0.05). On the

whole, evidence of pleiotropy was strongest when instrumenting triglycerides in very small VLDL (Table

6.5). These results highlight the potential violation of the exclusion restriction assumption for analyses

investigating adjusted effects on overall endometrial and endometrioid cancer.
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Table 6.5: Multivariable Mendelian rnadomization Q statistics

Instrument Outcome Q P-value

BF & SVLDLTG Endometrial cancer 21 0.0732

BF & XSVLDLTG Endometrial cancer 23 0.0165

BMI & SVLDLTG Endometrial cancer 97 0.0104

BMI & XSVLDLTG Endometrial cancer 104 0.0010

WHR & SVLDLTG Endometrial cancer 42 0.0086

WHR & XSVLDLTG Endometrial cancer 49 0.0008

BF & SVLDLTG Endometroid 29 0.0069

BF & XSVLDLTG Endometroid 31 0.0012

BMI & SVLDLTG Endometroid 102 0.0037

BMI & XSVLDLTG Endometroid 105 0.0007

WHR & SVLDLTG Endometroid 49 0.0014

WHR & XSVLDLTG Endometroid 56 0.0001

BF & SVLDLTG Non-endometroid 6 0.9337

BF & XSVLDLTG Non-endometroid 7 0.7628

BMI & SVLDLTG Non-endometroid 47 0.9714

BMI & XSVLDLTG Non-endometroid 50 0.8799

WHR & SVLDLTG Non-endometroid 17 0.8080

WHR & XSVLDLTG Non-endometroid 21 0.5092

Table is ordered by outcome and then by instrument.

BMI = body mass index; WHR = waist hip ratio; BF =

body fat percentage; SVLDLTG = Triglycerides in small

VLDL; XSVLDLTG = Triglycerides in very small VLDL; Q =

Cochran’s Q.
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6.4 Discussion

In this chapter, the role of adiposity on endometrial cancer and the potential intermediary role of

adiposity-related metabolites in this association was investigated. Firstly, results add to the growing

evidence for a causal effect of BMI on endometrial cancer (OR per normalized SD unit increase in BMI

= 1.91; 95% CI = 1.62–2.25; p-value = 1.74 x 10-15); Table 6.1. This was consistent with previous MR

results462,478,488 presented as part of Chapter 2 (OR = 1.57; 95% CI = 1.11 – 2.22; p-value = 0.01) and

observational results reported in the literature by Bhaskaran et al., (2014; OR = 1.62; 95% CI = 1.56 –

1.69; p-value = 1 x 10-4)121. In addition, this work highlighted the causal role for BMI on sub-types of

endometrial cancer (specifically, endometrioid and non-endometrioid cancer) and for both WHR and BF

on these endometrial cancer outcomes. Two metabolites, triglycerides in small and in very small VLDL,

for which there was evidence for a causal relationship with adiposity measures and endometrial cancer,

were included in MVMR analyses. There was some evidence for an intermediate effect of triglycerides in

small VLDL and triglycerides in very small VLDL on the effect of WHR on non-endometrioid cancer and

BF on non-endometrioid cancer. However, whether the effect of WHR (and BF) on non-endometrioid

cancer was mediated by triglycerides in small and very small VLDL was unclear; sensitivity analysis did

not indicate that effects were due to horizontal pleiotropy, however weak instruments may have biased

the results for these effects on non-endometrioid cancer towards the null. There was weak evidence

for an intermediate effect of either metabolite on endometrioid and overall endometrial cancer across

adiposity measures. There appeared some differentiation in the association between adiposity measures

and endometrial cancer subtype. There was also stronger evidence for an association between both

metabolites and non-endometrioid cancer than for overall endometrial and endometrioid cancer. These

differences could be the result of heterogeneity and differences in the underlying biological mechanisms.

different biases effecting the different subtypes, or that the GWAS (from which summary statistics were

obtained) could have been influenced by issues such as differential loss to follow up, menopause status,

and medication status. In regards to the latter, while it is difficult to predict their impact on MR analyses,

it is possible they could act differently across cancer sub-types.

It is important when interpreting the results presented here to acknowledge the potential effects

of pleiotropy in these analyses. As discussed in Chapter 1 and 5, the effects of pleiotropy in an MR

context can either be vertical (on the causal pathway from exposure to outcome) or horizontal (on

an alternative causal pathway to the outcome). In the context of metabolites, ascribing a direction
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to any observed pleiotropy can be difficult given the highly intercorrelated nature of metabolites and,

specifically for lipids, the way in which they are identified and assigned. As a result, the common shared

genetic architecture of many metabolites has implications for their use in MR analyses as an exposure,

mediator, or outcome. For an instrument to be specific, the SNPs should only be associated with that

one phenotype under investigation. However, in the case of metabolites, many SNPs associated with

any one metabolite are also found to be associated with many related metabolites335,336,339. Additionally,

the proportion of phenotypic variance explained by an instrument for one metabolite can be greater

for another metabolite393. As such, instruments for any one metabolite will not only capture variance

in that metabolite but related metabolites that may both be on the causal pathway and on alternative

pathways. Here, it is assumed that the causal pathway is from adiposity to metabolites to endometrial

cancer. Results should thus be interpreted with this and evidence from methods sensitive to pleiotropy

which indicated presence of pleiotropy in mind. In particular, in MVMR analyses there was evidence of

horizontal pleiotropy for analyses involving overall endometrial cancer and endometrioid cancer.

Previous observational work has found increased triglycerides to be associated with an increased risk

of endometrial cancer613. The effect increased in a dose response manner and persisted after adjusting

for BMI and other potential confounders. Similar results have been found elsewhere614,615, including

associations between increasing triglycerides and advancing tumour stage616. Results elsewhere

have also shown weak evidence for an association between triglycerides and endometrial cancer after

adjusting for BMI617. There is some evidence to suggest individual triglyceride metabolites, such as

myristic acid (a component of the triglyceride trimyristin618), are associated with endometrial cancer

development613. However, there are few studies focussing solely on the effects of specific triglycerides on

endometrial cancer, as those discussed focussed primarily on triglycerides as a class rather than specific

lipoprotein compositions. Though there is benefit to looking at metabolite classes (i.e., overall picture

of metabolite effects), this does not allow for differentiation in metabolite effects619, e.g., VLDL may be

associated with a decreased risk of endometrial cancer, but triglycerides in small VLDL is associated

with an increase in endometrial cancer risk. Additionally, it is reasonable to expect that the properties of

specific metabolites are exhibited differently in different tissues and cells around the body620–623. It is

therefore hard to compare results here with those from previous analyses. Results here suggest there

is an increasing effect of triglycerides on endometrial cancer risk, but that this is likely to be specific to

non-endometrioid cancer, and specific to the alignment of triglycerides in small and very small VLDL,

which has not been reported in the literature. Instead, associations have focussed on overall endometrial
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cancer risk.

Alongside triglycerides in small and very small VLDL, three other metabolites showed evidence of

association with endometrial cancer. Increased phospholipids in very large HDL and triglycerides in very

large HDL were associated with an increased risk of endometrial, endometrioid, and non-endometrioid

cancer. There is some evidence for an increasing effect of phospholipids and triglycerides on endometrial

cancer risk624 but whether this is specific to very large HDL composition is unclear as studies have not

focussed on individual metabolites. Valine was negatively associated with endometrial, endometrioid,

and non-endometrioid cancer risk. Previous studies have reported increased valine to be positively

associated with endometrial cancer risk624. In two-sample univariable MR analysis here, BMI and WHR

were associated with an increase in valine, which has been proposed as a potential intermediate in

the association between adiposity and endometrial cancer593. However, in two-sample univariable

MR analysis here, valine was associated with a decreased risk of endometrial, endometrioid, and

non-endometrioid cancer. This protective effect could be due to metabolic reprogramming of cancer cells

which can utilise branched-chain amino acids, such as valine, as alternative fuel sources625,626.

When comparing two-sample univariable MR (unadjusted) and two-sample MVMR (adjusted) effect

estimates for the association of adiposity measures, there was little change in effect size and CIs

overlapped for effects on overall and endometrioid cancer risk. For non-endometrioid cancer risk, the

effect of all three adiposity measures, for which CIs did not cross the null in the unadjusted analysis

(except for BF), crossed the null in adjusted analyses. This may be reflective of reduced power given

the smaller number of cases for non-endometrioid cancer (N = 1,230) as opposed to endometrioid (N =

8,758) and overall endometrial cancer (N = 12,906). For metabolites, when comparing the unadjusted

and adjusted effect estimates, effect sizes and CIs were generally larger in the adjusted analysis for all

endometrial cancer outcomes. Although in some instances, MVMR can increase power612, MVMR is

generally considered to be less powered than two-sample univariable MR. The observed decreased

precision and larger effect sizes in adjusted analyses may be a result of weak instrument bias, especially

for triglycerides in small VLDL adjusted for BMI and WHR. But it may also reflect a true causal association

or a highly pleiotropic environment, especially for analyses of the effect on endometrioid and endometrial

cancer, where evidence of horizontal pleiotropy was likely high.

Previous observational and MR work has found similar effects to those found here. In one study,

observational and MR results indicated an association between BMI and endometrial cancer but not
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WHR and endometrial cancer478. Additional studies using MR have found consistent effects462,488.

There is further observational evidence for associations between BMI and endometrial cancer, as well

as WHR, waist circumference, and waist to height ratio108. Observational investigations have highlighted

links between BMI and both endometrioid and non-endometrioid597,627–632, but there has been a lack of

genetic data on both subtypes in large, well-powered studies to enable MR investigations. Additionally,

studies have predominantly focussed on BMI with some focus on measures of deposition such as WC

and WHR, but as yet very little work using a more comprehensive measure of adiposity such as BF.

Here, investigation of both subtypes and multiple measures of adiposity was possible. MR results were

consistent with those found in the aforementioned observational studies. This consistency was similar

in the strength of effects, with a stronger effect observed for endometrioid cancer compared to non-

endometrioid (though CIs overlapped). Of note is the association found for WHR and non-endometrioid

cancer, which has not previously been reported.

6.4.1 Instrumentation

Instrumentation, described briefly for measures of adiposity in Chapter 5, is primarily achieved by

using either single genetic variants or multiple genetic variants as instrumental variables. The choice of

instruments for measures of adiposity is generally to use the largest available GWAS and a genome-wide

p-value threshold of p-value ≤ 5 x 10-8. This approach was utilised in Chapter 5, however instruments for

BMI and WHR were obtained from GWAS which included UK Biobank. UK Biobank is a unique resource

with wide application, one of which is as a component of the most recent and largest metabolomics

GWAS (unpublished) and endometrial cancer GWAS497, both used here. Overlap between the exposure

and outcome in a two-sample MR can bias estimates towards the observational estimate in a manner

proportional to the size of the overlap when there is weak instrument bias449 (see limitations section

below). As such, instruments for adiposity measures were obtained from GWAS which did not include

UK Biobank. In Chapter 5, BMI48,53 and WHR49,54 were instrumented using the largest available GWAS

(which included UK Biobank) and the second largest GWAS which was used in analyses in this chapter,

where results were highly correlated. As endometrial cancer is a sex-specific condition, this work is

limited by the use of sex-combined instruments for adiposity, though this does have utility in identifying

the general effects of adiposity, especially for metabolites. Instrumentation practices for metabolites are

less well established, but have largely followed a similar principle to that described above. Here, a simple
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instrumentation approach was used for metabolites (p-value ≤ 5 x 10-8 and LD R2 ≤ 0.0001 thresholds).

This approach could have been strengthened by collapsing metabolites into broader categories423 or by

using composite instruments633.

6.4.2 Strengths and limitations

A prominent strength of this work was the breadth of metabolomics data used here and in previous

chapters. Metabolites used in MVMR analyses here, were selected based on evidence from prior

observational (Chapter 4) and MR analyses (Chapter 5) for causal relationships with measures of

adiposity. In Chapter 4, the metabolic profile of BMI, WHR, and BF was investigated using the Avon

Longitudinal Study of Parents and Children (ALSPAC). The association between adiposity measures

and numerous metabolites was robust after accounting for a number of potential confounders such as

smoking status, diet, and physical activity level. In Chapter 5, the metabolic profile of BMI, WHR, and

BF was investigated in a causal framework. Effects identified in the previous observational analysis,

as well as in previously published studies, was replicated in two independent studies. Finally, in this

chapter, replication of the causal effects of adiposity on the metabolic profile was performed using the

largest independent data set available, UK Biobank. Additionally, replication of the causal effect of BMI

on endometrial cancer, as obtained from a meta-analysis in Chapter 2, was performed.

An additional complication here is the bias introduced through sample overlap. As discussed in the

instrumentation section above, sample overlap can bias estimates towards the observational confounded

estimate in a manner proportional to the overlap in the presence of weak instruments. In order to

minimise overlap, and knowing that summary statistics for both the metabolites and the outcomes

included individuals from UK Biobank, exposure-related instruments were sought from GWAS which did

not include UK Biobank. Overlap was therefore limited to the metabolite data endometrial cancer data,

specifically the overall endometrial cancer data. For binary outcomes, bias due to overlap is specific to

the overlap in individuals in the exposure GWAS and those who are cases in the outcome GWAS. In this

regard, the number of UK Biobank participants included in the case arm is at most 5% of the total cases.

As such, the relative bias in analyses using metabolite and overall endometrial cancer data is at most

0.5%.

In MR, the three main assumptions (i.e., that SNPs are associated with the exposure, SNPs share no
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common cause with the outcome, and SNPs do not affect the outcome except via the exposure) need to

be satisfied in order to obtain robust causal estimates. Adiposity instruments used here have been used

widely and are robustly associated with their respective phenotypic measures48,49,51. For metabolites,

previous work has used a standard approach of identifying SNPs reaching a genome-wide p-value

threshold (p-value ≤ 5 x 10-8), which was employed here alongside a stringent LD clumping threshold

(R2 = 0.001 and 10,000 base window). However, the strength of these instruments in two-sample

MVMR was considerably weaker than in two-sample univariable MR and, for triglycerides in small VLDL,

this was below the nominal threshold of 10. It is likely then that weak instrument bias611 is a present

feature of the MVMR results and is likely to in part explain the decreased precision in CIs. This reduced

precision may for example explain why triglycerides in very small VLDL adjusted for WHR was no longer

associated with non-endometroid cancer in MVMR versus two-sample univariable MR. In addition to

this, instruments reflect a life-time change in the exposure and do not take into account change due to

lifestyle for instance.

It is possible that SNPs associated with metabolites do not conform to the third IV assumption.

That is, SNPs associated with the exposure have an effect on the outcome which is not directly via

their association with the exposure. This is of particular concern with metabolites given they are highly

inter-correlated and have a shared genetic architecture. In this sense, the effect of a metabolite on an

outcome could be through a highly correlated second metabolite. Of the 56 and 50 SNPs associated

with triglycerides in small and very small VLDL, respectively (90 unique SNPs), 16 were shared between

them (18%). It is likely both metabolites share SNPs with many other metabolites given that just over

half of the 934 identified SNPs for 53 metabolites were associated with just one metabolite and the

average number of SNPs associated with a metabolite was 49. There is evidence to show that, not only

are there many shared SNPs across many metabolites, but also that the variance explained for any

metabolite instrument is more often than not higher for an alternative metabolite393. Non-specificity of

metabolite instruments will either lead to horizontal pleiotropy or vertical pleiotropy. Distinguishing one

from the other without understanding the functions those SNPs have is challenging634. However, recently

developed tools that use colocalisation methods635 may help to improve the specificity of instruments

going forward as they are able to identify shared genetic signals across related traits. These shared

genetic signals could then be removed from an instrument, or be used as an instrument for the collection

of traits.
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In two-sample univariable MR, sensitivity methods (MR-Egger, weighted median, and weighted

mode) showed almost entirely consistent directions of effect for both metabolites with the IVW-MRE

method, though the majority of CIs crossed the null. The exception to the consistent direction was

triglycerides in small VLDL on endometrioid cancer in MR-Egger analysis which, although the CIs

crossed the null, was opposite to the directions of effect of other methods. In MVMR, sensitivity methods

such as these have not been developed. Instead, unbalanced horizontal pleiotropy was evaluated using

a modified form of Cochran’s Q371, which found evidence (p-value < 0.05) of unbalanced horizontal

pleiotropy for a majority of tests and may therefore bias estimates. That is, there was evidence that the

effect of the instrument on the outcome was not solely via the association between the instrument and

the exposure. This could be a result of the inter-correlated nature of metabolites and their shared genetic

architecture. For example, it is possible that an association between triglycerides in small VLDL and

endometrial cancer is biased by the fact that triglycerides in small VLDL share a genetic architecture

with triglycerides in very small VLDL, which could be the true causal pathway. The sensitivity analyses

performed here only highlight the potential presence of pleiotropy, further work, for example alternative

instrumentation, is required to understand the potential pleiotropic pathways.

A key limitation of this work is the use of non-sex-specific instruments for measures of adiposity. A

major driver of endometrial cancer, specifically endometrioid cancer, is oestrogen594, which, as a sex

hormone, is important in endometrial cell growth. Oestrogen is also involved in the distribution and

accumulation of adipose tissue77. Importantly, adipose tissue is a key source of oestrogen synthesis,

particularly during post-menopause636. There is sexual dimorphism in the accumulation and distribution

of adipose tissue that has been highlighted in genetic studies, which found sex-specific SNPs associated

with adiposity48,49,53–55. There is also evidence of sex differences in associations between adiposity and

metabolites398. The use of non-sex-specific adiposity instruments may therefore have biased estimates.

This is because, in a two-sample MR, the assumption is that the underlying population of the two samples

is the same. Violation of this assumption and therefore of the second IV assumption (that instruments do

not share a common cause with the outcome) can lead to biased estimates for example from genetic

confounding and population structure.

In this chapter, NMR-derived metabolites were used, as with work in chapters 4 and 5. Although a

relatively large number of metabolites were investigated, they are predominantly lipid-based. This leaves

a broad array of metabolites that have not been investigated. Mass spectrometry (MS) platforms, such
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as those used by Metabolon, which measure many hundreds of metabolites637, are a potential next step.

Though there have been a number of studies investigating the association between adiposity and MS-

derived metabolites288,544,545, these have not used a complimentary assessment of body composition

to assess adiposity and have not been able to investigate this relationship across the life-course. For

example, a study by Ho et al. (2016)417 focussed solely on the metabolic profile of adiposity in 2,383

adults and found 69 out of 217 metabolites, including triglycerides and a number of other metabolites

(e.g., amino acids) identified here, to be associated with an increased BMI. A number of studies have

investigated associations between MS-derived metabolites and endometrial cancer. However, these

studies have included fewer than 100 cases and have focussed on women who are post-menopausal638

or have obesity639 only. In the latter case, phospholipids were identified as a biomarker of significance. A

study by Audet-Delage et al. (2018)638, which focussed on women who are post-menopausal, identified

lipid pathways to be most affected by case status. Although numerous SNPs have been associated with

MS-derived metabolites335,339,640, there have been no studies that have employed MR to investigate

metabolic associations with adiposity measures or endometrial cancer.

6.4.3 Conclusion

There were few metabolites that showed evidence of a causal relationship with adiposity measures

and increased the risk of endometrial cancer. Of the few metabolites with evidence for a causal

relationship with adiposity and endometrial cancer, there was evidence that triglycerides in small and

very small VLDL may play an intermediary role in the effect of both WHR and BF on non-endometrioid

cancer. There was some suggestive evidence for a similar intermediary role between BMI and BF and

non-endometrioid cancer. Non-endometrioid cancer is the more aggressive of the two common subtypes

of endometrial cancer, and is typically considered oestrogen independent but recent work has shown

this is not necessarily the case. There was weak evidence of horizontal pleiotropy in MVMR analyses

investigating effects on non-endometrioid cancer compared to endometrioid and overall endometrial

cancer. However, this does not rule out the possibility of pleiotropic effects, especially as metabolites are

highly intercorrelated and have a shared genetic architecture. Future work to elucidate the intermediary

relationship of triglycerides in small and very small VLDL should have three focusses: (i) specific

metabolites within the VLDL triglyceride subclass, (ii) comprehensive consideration of instrumentation,

and (iii) wet lab studies, which, when informed by MR analyses, have been fruitful in identifying molecular
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mechanisms641.
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Chapter 7

Discussion

Chapter summary

This thesis has focussed on the role of adiposity in disease development, with a specific focus on

the potential intermediary role metabolites play in this relationship. At the end of each of chapters 2,

3. 4, 5, and 6, the main results, strengths, and limitations of each chapter are described. In this final

chapter, a discussion and summary of the strengths, limitations, key findings, and implications of this

thesis as a whole, are presented alongside suggestions for future directions that may aid in untangling

the mechanisms leading from adiposity to disease.



7.1 Overview

Both observational and Mendelian randomization (MR) analyses have provided evidence for an asso-

ciation between adiposity and many health outcomes and diseases. However, with the many limitations

of singular adiposity measures (e.g., body mass index (BMI), which is unable to differentiate lean and

fat mass76), complimentary assessments of body composition are recommended95,100. This requires a

more detailed interrogation of potential effects as each measure provides a different assessment: BMI

provides an overall assessment of body composition, body fat percentage (BF) provides an estimate of

the specific makeup in terms of fat mass, and waist hip ratio (WHR) provides an estimate of where fat

mass is stored. Understanding how adiposity is associated with different outcomes can therefore help to

establish a more accurate estimate of the impact of adiposity on health outcomes.

The underlying mechanisms for many of the relationships between adiposity and diseases are

not well understood. There is some evidence that the physical burden of fat mass is directly re-

lated to the development of some diseases. For some diseases, evidence points to changes in the

metabolome, proteome, and other omes (e.g., epigenome) as the potential underlying mechanism of dis-

ease development159,169,170,288,290,292–294. Many studies have highlighted associations between adiposity

and changes to the metabolome287,288,351,394–404, as well as associations between the metabolome and

diseases such as type 2 diabetes405, coronary heart disease406, depression407, hypertension408, and

more1,185,409–416. However, whether metabolites explain the mechanisms of disease development has

not been explored in depth.

The aim of this thesis was to identify metabolites that sit on the causal pathway between adiposity and

disease. A key focus in achieving this was the systematic approach used to investigate adiposity-related

effects. I utilised complementary assessment of adiposity, multiple independent sources of data, and

complementary methodologies (i.e., observational and MR analyses) to strengthen causal inference.

7.1.1 Chapter 2: adiposity causally impacts numerous risk factors and diseases

The adverse effects of adiposity have been reviewed extensively in the observational

literature72,227,642–648. However, observational studies have a number of limitations, not least

the difficulty in obtaining a causal estimate158,180,356–359. These limitations, including confounding and
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reverse causation, can lead to biased results158,180,358,359. MR, a form of instrumental variable analysis,

is able to mitigate the effects of many of these limitations due to the fact that genetic variants, used as

instrumental variables, are inherited randomly at conception and are temporally prior to any subsequent

outcome363. Although MR has its own set of assumptions and limitations, it has shown promise in

untangling causal effects158,180. Recently, Riaz et al., (2018)438 attempted to gain an overview of the

causal effects of adiposity on cardiovascular outcomes. They found consistent results with observational

estimates, but did not perform quality assessment of the included studies and inappropriately assessed

the independence and exclusion restriction assumptions (see Chapter 1 Section 1.8) as a combined

assumption649. There has not been a comprehensive investigation of the causal effect of adiposity.

To gain a comprehensive overview of the causal effect of adiposity, i undertook a systematic review

and meta-analysis was performed and presented in Chapter 2. A total of 173 articles met pre-published

criteria for inclusion (see PROSPERO), with 34 studies included in meta-analyses of 31 adiposity-

outcome pairs. Results from the meta-analyses, which were consistent with published observational

studies, identified positive causal effects of adiposity on many cancers, cardiovascular traits, type 2

diabetes, and depression. A narrative synthesis of the studies not included in the meta-analyses revealed

a literature that is broadly consistent with observational findings, showing that the causal effects of

adiposity are wide reaching. There were however some inconsistencies between the meta-analysis

results and the narrative synthesis. For example, endometrial cancer; in meta-analysis, higher BMI was

associated with an increased risk of endometrial cancer (OR = 1.57; 95% CI = 1.11 – 2.22), while in

the narrative synthesis, there was inconsistent evidence, with some studies pointing to a decreasing

effect and others showing little evidence of an effect in either direction. A similar picture was observed

for colorectal cancer. This may be reflective of the differential association with subtypes.

Although there was some conflicting evidence in the narrative synthesis for the different exposures,

there was much evidence supporting the causal impact of adiposity on many diseases. There is a

requirement to understand the mechanisms by which adiposity impacts these outcomes. Given the

hypothesis of metabolic perturbations of adiposity, the thesis then focussed on the causal role of

adiposity on circulating metabolites, which was then expanded to understand the role of adiposity-related

metabolites in endometrial cancer as an exemplar outcome.
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7.1.2 Chapter 3: visualisation of large epidemiological analyses can help to gain global

overview and summarise results

Large epidemiological analyses pose a challenge in regards to the exploration, interpretation, display,

and communication of results. This is an important consideration in regards to analyses which use

correlated data such as metabolites, as looking at a single result may not provide a complete picture.

Gaining an overview of results can therefore aid the interpretation of results, and data visualization is

a key part of this process500. This thesis aimed to investigate the association between adiposity and

metabolites using complimentary measures of adiposity. It was therefore important to consider the

relationship between metabolites and the relationship between adiposity measures when interpreting

results. Previous studies26,413,498,501–503 have used forest plots to interpret and communicate analyses

which require comparisons or involve metabolites. However, these studies have been limited to a small

number of associations between exposures and outcomes. When dealing with hundreds of variables,

forest plots can become cumbersome, requiring many separate plots to be created in order to present all

of the analyses. This makes comparison and the ability to gain global overview of large analyses difficult.

Circos plots, whereby data are presented in a circular layout, have been used effectively in a

number of epidemiological studies using metabolites and performing many hundreds of association

analyses1,335,336,399,498. However, the process of producing Circos plots is cumbersome and, through

personal experience498, has been time consuming and inefficient. To improve the efficiency and

reproducibility of creating Circos plots that enable the exploration, interpretation, and display of large, and

complex, epidemiological analyses as conducted in this thesis, EpiViz was developed. An R package

and web application, EpiViz builds on the Circlize507 and ComplexHeatmap508 R packages to produce

Circos plots and was used in Bos et al., (2021) to summarise and visually compare observational and

Mendelian randomization analyses of multiple sleep traits with over 100 metabolites.

The web application is a simplified version of the R package and is intended for researches with no

experience in R. No coding is required; users simply upload up to three text files, select the parameters

for the Circos plot, and then click a button to create the Circos plot. The R package provides additional

features and is designed for beginner R users. More experienced R users can easily customise the

underlying code to create bespoke Circos plots with, for example, multiple points plotted on a single

track (see Figure 2 in Taylor et al., (2019)498). The R package will be the focus of further development as
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there is potential for greater utility through the introduction of new features.

EpiViz considerably improves the speed and efficiency of producing Circos plots and has been

used in multiple studies1,498,499 since its development. It is important to note that Circos plots, as used in

this thesis and other studies1,498,499, are not intended to replace other presentation methods. They are

best used as a tool to provide an overview of results and should be supplemented with other figures,

such as forest plots, to gain a complete picture of association analyses.

7.1.3 Chapter 4: adiposity is associated with individual and whole subclasses of

metabolites across time points

There is considerable evidence that adiposity is observationally associated with a wide range of

metabolites287,288,351,394–397,399–403. However, the focus of many studies has been on BMI as a marker for

overall adiposity. Additionally, few studies have looked at whether associations persist over time. To gain a

greater understanding of the association between different measures of adiposity and metabolites, linear

regression analyses using data from the Avon Longitudinal Study of Parents and Children (ALSPAC)

were conducted and presented in Chapter 4.

Data on adiposity measures and up to 230, predominantly lipid-based, nuclear magnetic resonance

(NMR) derived metabolites and ratios were available for children (N = 5,656; mean age = 7.56; standard

deviation (SD) = 0.36), adolescents (N = 4,489; mean age = 16.06; SD = 1.11), young adults (N = 3,269;

mean age = 24.03; SD = 0.85), and adults (N = 6,406; mean age = 49.53; SD = 5.32). Three models

were used to estimate the effect of each adiposity measure on each metabolite: model 1 adjusted for age

and sex; model 2 = model 1 + mother’s/own education, smoking status, alcohol consumption, and diet;

model 3 = model 2 + physical activity. Model 1 and 2 were run on individuals with data on all confounders

except for physical activity, as there was substantially fewer individuals with physical activity data.

The association between all adiposity measures and metabolites was far reaching, with effects

seen across all subclasses of metabolites, and results similar to those previously reported287. All three

measures of adiposity were associated with a majority of the metabolites across all time points and all

models. The exception was for model 3 when investigating the effect of BMI and BF on metabolites

in adolescents, which may have been due to reduced power given the smaller sample size available
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for that model given the number of individuals with missing data on physical activity. There was broad

consistency in the directions of effect across models at each time point and adiposity measures at each

time point. Generally the effect of adiposity was to increase metabolite concentrations, the exception

being high density lipoprotein (HDL) metabolite measures, which decreased with adiposity. Effect sizes

tended to be larger increase across all measures of adiposity as age increased (though, this may have

been due to an increase in the SD of the exposures with age) .

Work in this chapter highlighted the wide reaching effect adiposity has on metabolites and showed

that effects likely persist over time. Of particular note was the larger effect sizes and increasing number

of associations seen as age increases. Given that many adiposity-associated diseases occur later in life,

exposure to an altered metabolic profile over time may be important in disease development. This is

especially true as weight loss in overweight and obese individuals is associated with a normalizing of

metabolite changes403. This is noteworthy in regards to comparisons with MR analyses, as exposures

instrumented by genetic variants are often thought to approximate a lifetime change in an exposure, and

evidence here suggests that adiposity exerts a greater effect as time progresses. Observational analyses,

such as those presented in Chapter 4, have particular strengths and limitations; thus, the comparison

with other study designs with different strengths and limitations provides an opportunity to strengthen

causal evidence. Thus, in Chapter 5, I performed MR analyses, which have different assumptions and

biases than observational analyses, to triangulate and strengthen the evidence questioning the causal

impact of adiposity on metabolite levels.

7.1.4 Chapter 5: the effect of adiposity on metabolites is consistent across observa-

tional and Mendelian randomization analyses

Parallel two-sample MR analyses in two datasets and subsequent meta-analysis were performed and

reported in Chapter 5. Data on adiposity measures were available for: BMI in up to 795,624 individuals

of European ancestries from GIANT53, WHR in up to 697,702 individuals of European ancestries from

GIANT54, and BF in up to 89,297 individuals European ancestries from Lu et al.,51. Metabolite data

were available from two independent studies: 123 NMR-derived metabolites and ratios measured in

up to 24,925 individuals of European ancestries from Kettunen et al. (2016)336, and 230-NMR derived

metabolites and ratios measured in up to 40,905 individuals of European ancestries from INTERVAL

(unpublished). Both metabolite datasets used the same NMR platform as that used in Chapter 4 and
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were therefore predominantly lipid metabolites. Meta-analysis of 110 metabolites measured in both

datasets and, comparison with observational analyses in adults from Chapter 4, identified 54 associations

between adiposity measures and metabolites that were consistent in their direction of effect across both

analyses and which passed various multiple testing thresholds.

Results again highlighted the broad effect of adiposity across the metabolome, with evidence for an

increasing effect on whole subclasses of metabolites such as very large low density lipoprotein (VLDL;

small, very small, medium, large, and very large), as well as for specific metabolites within the aromatic

and branched chain amino acids subclasses. Negative effects were, similar to observational analyses,

observed for HDL metabolite subclasses (medium, large and very large). The effects of BMI and WHR

on metabolites in MR analyses were highly consistent with observational analyses. However, where

effects for BF were similar to those of BMI and WHR in observational analyses, effects of BF in MR

analyses were generally opposite to BMI and WHR. Evidence for an association between BF and the

metabolic profile was weak; effect sizes and confidence intervals (CIs) were much larger than those for

BMI and WHR, with the majority of CIs crossing the null. This may have been due to lower statistical

power in the BF analyses compared to those with BMI and WHR given the amount of trait variance

explained by the genetic variants associated with BF (~0.4%) being much lower than for BMI (6%) and

WHR (3%).

Given the highly correlated nature of the exposures, and the consistency in observational estimates

with metabolites, results for BF appear counter-intuitive. These differences may be due to a true causal

negative effect of BF on metabolites, low statistical power, or a result of the difficulty in instrumenting

complex traits such as adiposity. BMI and WHR were instrumented using many more single nucleotide

polymorphisms (SNPs) than BF (i.e., 941, 316, and 7 SNPs for BMI, WHR, and BF, respectively, in the

main analysis), likely decreasing the power in the latter analysis due to the lower variance explained in

BF by the genetic variants. This complexity is reflected in the fact that 2 of the 7 SNPs used to instrument

BF had previously been associated with ‘favourable adiposity’47,565, that is, they are associated with

increased fat mass and a favourable metabolic profile. Removal of these SNPs and re-estimation of

the effect of BF on metabolites resulted in a global tightening of CIs and a number of effect estimates

changing direction to be more consistent with BMI and WHR. A number of these effects subsequently

reached the multiple testing threshold.

Work in this chapter, in combination with results from Chapter 4, highlighted the effects of adiposity
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on whole subclasses of metabolites. The use of both MR and observational analyses, which hold

different biases, strengthens evidence for an effect of adiposity on 54 metabolites, including amino

acids such as tyrosine and phenylalanine, and lipids such as triglycerides in very small, small, medium,

large, very large, and extremely large VLDL. Predominantly, the effect of adiposity was to increase

these metabolites, with a negative effect of adiposity-associated on HDL metabolites. A number of

these associations were consistent with previous observational and MR analyses287,423, where these

adiposity-associated metabolites have been shown to be associated with adiposity-related diseases

such as colorectal423 and endometrial cancer593, meaning that they could play an intermediary role in

these relationships.

7.1.5 Chapter 6: intermediary metabolites may partly contribute to the association

between adiposity and diseases identified in Chapter 2

In Chapter 6, to build on the literature and evidence provided in this thesis, two-sample univariable

MR was used to firstly replicate the evidence of the effect of adiposity and adiposity-related metabolites

on endometrial cancer, as an exemplar disease, and multivariable MR (MVMR) was then used to assess

the potential intermediary role of these metabolites in the relationship between adiposity and endometrial

cancer. Endometrial cancer was chosen as an exemplar for this analysis as it met four key requirements:

there was strong evidence in Chapter 2 for an effect of one or more adiposity measures on endometrial

cancer, there was consistent evidence across observational594 and MR462,478,488 analyses that adiposity

is associated with an increased risk of endometrial cancer, there is a large and publicly available genome-

wide association study (GWAS) on endometrial cancer, and the extent to which circulating metabolites

may play a role in the relationship between adiposity and endometrial cancer had not been published

before and thus adds novelty to the literature.

Data were available for three endometrial cancer outcomes: endometrioid cancer (cases = 8,758;

controls = 108,979), non-endometrioid cancer (cases = 1,230; controls = 108,979), and overall en-

dometrial cancer (cases = 12,906; controls = 108,979), which included cases from endometrioid and

non-endometrioid cancer, as well as un-classified endometrial cancer cases. An independent metabolite

dataset to those used in Chapters 4 and 5 was used to replicate the effect of adiposity on metabolites

observed in Chapters 4 and 5 (i.e., providing the best estimate of the effect of adiposity on metabolites),

and to estimate the causal effect of metabolites on endometrial cancer risk. There was strong evidence
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for an effect of BMI, WHR, and BF on an increased risk of overall endometrial, endometrioid, and

non-endometrioid cancer. These results were consistent with the effect of BMI on endometrial cancer

observed in meta-analysis in Chapter 2, as well as with previous observational results reported in the

literature by Bhaskaran et al., (2014)121.

A total of 52 metabolites identified in Chapters 4 and 5 associated with BMI (N = 44), WHR (N =

47), and BF (N = 8) were available for MR analysis using data from UK Biobank. Of these, a consistent

direction of effect with results from Chapters 5 and 4 was found 40 metabolites for BMI, 45 metabolites

for WHR, and all 8 metabolites for BF. Seven of these metabolites were only found to be associated with

WHR and 5 of these metabolites were uniquely associated with BF. Two metabolites were associated

with both BMI and BF and 38 metabolites were associated with both BMI and WHR. Only one metabolite,

valine, was associated with all three measures. Of these adiposity-associated metabolites, five were

found to be associated with endometrial, endometrioid, or non-endometrioid cancer. Of these five

metabolites, valine was the only metabolite found to be negatively associated with the risk of all three

outcomes. Phospolipids in very large HDL were positively associated with the risk of endometrial and

endometrioid cancer, and negatively associated with risk of non-endometrioid cancer. The remaining

three metabolites, triglycerides in small and very small VLDL, and triglycerides in very large HDL were

all positively associated with all three outcomes.

Only triglycerides in small and very small VLDL had directions of effect with adiposity measures and

endometrial cancer which was consistent with a potential intermediary role and were included in MVMR

analyses. There was evidence for an intermediate effect of both metabolites on the effect of WHR and

BF on non-endometrioid cancer. Although sensitivity analysis did not indicate these effects were due

to horizontal pleiotropy, they did suggest that genetic instruments for metabolite were weak (F-statistic

< 10); as a result, it is unclear if these metabolites truly mediate the effect of adiposity on endometrial

cancer or if this is due to various biases of these analyses.

It is difficult to compare these results with previous work given few studies have looked at the

intermediate role of metabolites in the relationship between adiposity and endometrial cancer, and those

that have, have focussed solely on BMI and have used a clinical measure of triglycerides. These studies

have found both an increasing613 and decreasing617 effect of triglycerides on endometrial cancer risk

after adjustment for BMI. Though there is benefit to looking at metabolite classes (i.e., overall picture

of metabolite effects), this does not allow for differentiation in metabolite effects619, e.g., VLDL may be
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associated with a decreased risk of endometrial cancer, but triglycerides in small VLDL is associated

with an increase in endometrial cancer risk. It is also reasonable to expect that the properties of specific

metabolites are exhibited differently in different tissues and cells around the body620–623. As such, these

results suggest that triglycerides are potential intermediates in the relationship between adiposity and

endometrial cancer, but this is likely to be specific to non-endometrioid cancer, and specific to the

alignment of triglycerides with small and very small VLDL.

7.2 Strengths and limitations

Within each chapter, the strengths and limitations of the techniques applied and data used are

discussed. However, there are a number of strengths and limitations that are overarching and relevant to

the interpretation of results. These overarching themes are discussed herein.

7.2.1 Replication, meta-analysis, and triangulation of evidence

The major strength of this work is the replication of the effect of adiposity on metabolites in observa-

tional (Chapter 4) and MR analyses (Chapter 5 and 6) across four independent datasets. In observational

analyses (Chapter 4), a majority of metabolites tested were found to be associated with adiposity. In MR

analyses (Chapter 5), a majority of the associations identified in observational analyses were replicated

across two independent metabolite datasets. Subsequent meta-analysis of MR results, and comparison

with observational results, highlighted 54 metabolites to be associated with adiposity. These associations

were subsequently replicated in MR analyses using a much larger independent dataset (Chapter 6).

It was also possible to replicate previous MR analyses investigating the effect of BMI on endometrial

cancer.

Replication of results using different datasets and techniques is a major goal of epidemiological

analyses, as different assumptions and biases are tested, and where evidence aligns, triangulation

strengthens the evidence for a true effect of an exposure on an outcome551. Analyses here used multiple

independent datasets; this included individual level data across four times points from ALSPAC, each

analysis of which adjusted for a multitude of covariables, as well as summary level data from three
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independent metabolite GWAS and up to four GWAS each for BMI, WHR, and BF. These datasets were

analysed using linear regression and two-sample MR methods, which included the use of sensitivity

analyses to specifically test MR assumptions. As observational and MR analyses have different assump-

tions, which were tested extensively, there is strong evidence for a causal relationship between adiposity

and 54 metabolites. This is further strengthened by the fact that consistent results were obtained across

multiple independent metabolite datasets: ALSPAC, Kettunen et al., INTERVAL, and UK Biobank.

Replication and triangulation of evidence was focussed primarily on the relationship between adi-

posity and metabolites. The effect of metabolites on endometrial cancer was not replicated, nor were

MVMR analyses which investigated the intermediate effect of metabolites on endometrial cancer risk.

The primary reason for a lack of replication was data availability and independence. Although three

independent endometrial cancer GWAS were included in the meta-analysis of the effect of BMI on

endometrial cancer in Chapter 2, two of these were included in the GWAS used in MR analyses in

Chapter 6. As the endometrial cancer GWAS used in Chapter 6 is an updated meta-analysis of these

studies, these datasets are not independent. An additional consideration is the fact that there are few

publicly available cancer GWAS. That being said, there is opportunity for replication using data from the

European Prospective Investigation into Cancer and Nutrition (EPIC); however, data are not immediately

available for this analysis.

7.2.2 Data, availability, and presentation

Data, its availability, and the independence between datasets were a key component of this thesis.

All data used throughout the thesis had previously been collected, this included individual level data from

ALSPAC, which was used in Chapter 4, and summary level data for adiposity measures, metabolites,

and endometrial cancer used in Chapter 5 and 6. The majority of the summary level data was publicly

available; metabolite data from INTERVAL was provided by collaborators at the University of Cambridge

(Adam Butterworth), and metabolite data from UK Biobank was provided by collaborators at the University

of Bristol (Carolina Borges). These collaborations enabled the replication and meta-analysis of the

effect of adiposity on metabolites. Although multiple testing thresholds were employed, without these

additional datasets to perform replication, the chance of false positives is likely to have risen. Data on

endometrial cancer was not as readily available. The lack of GWAS data availability is not restricted

to endometrial cancer650, but it is a common occurrence that, in comparison to other traits, there are
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few publicly available cancer GWAS, and even fewer GWAS of cancer subtypes. Platforms such as

the OpenGWAS555,651 and the GWAS Catalog652 make it easy for researchers to make their data

available to the wider research community, and requirements by funders and publishers (including Plan

S coalition-s.org/) to make data available should improve the availability of data going forward.

In Chapter 2, BMI was found to be the most commonly used measure of adiposity when investigating

the causal effect of adiposity on outcomes. A main reason for its commonality is that data on BMI is

readily collected as a staple of prospective and cohort studies, and there is a history of making summary

statistics publicly available45,48,53,54, which aids further analysis650,653. BMI however has a number of

limitations, not least its inability to differentiate fat and lean mass76. Complimentary assessment of

adiposity using a combination of body composition measures, is likely beneficial when investigating

associations with disease as each has different limitations95,100 (Chapter 1 Section 1.4). Measures of

adiposity used in this thesis were chosen in order to encompass the key aspects of adiposity, body

composition and fat deposition. BMI was chosen as it is the most commonly used measure and provides

an overall estimate of body composition. BF was chosen as, unlike BMI, it is able to capture the fat

composition of the body. WHR was chosen as evidence has pointed to an important role of fat deposition

in the development of many diseases. Importantly, all three measures have been shown to have different

underlying biological pathways34, meaning that when looked at together, a deeper understanding of

a relationship with an outcome can be achieved. An additional consideration for choosing WHR and

BF, as opposed to other measures that may be more detailed (e.g., visceral adipose tissue), was the

availability of data. Much like BMI, there is a history of publicly available data for WHR49,54,654 and an

increasing number of publicly available BF datasets51,55. There are comparatively fewer well powered

and publicly available GWAS for more detailed body composition measures such as visceral adipose

tissue655, making within-exposure replication difficult.

An additional challenge with the use of pre-collected and publicly available data is the lack of control

over the data available and the methods of collection, which are likely to vary across studies. For

instance, in ALSPAC, data on all three measures of adiposity was not available at all time points (for

example, data on WHR was not available for adolescents). In addition, data on BF was collected

via bioelectrical impedance and dual-energy x-ray absorptiometry (DXA) in the different age groups.

Although there was high correlation found between the measures of BF using impedance and DXA

data in Chapter 4, subtle differences between the measures may lead to differential associations with
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metabolites and other traits. In order to ensure comparison of adiposity effects were appropriate in

Chapter 4, adiposity measures were normalised and Z-scores were used in regression models. When

using publicly available summary level data however, summary statistics can be interpreted differently

depending on the adjustments and transformations applied prior to genome-wide analysis. Summary

level data for all adiposity measures had undergone the same inverse rank normal transformation prior to

genome-wide analysis, but study-specific adjustments were not the same across the datasets. As such,

although estimates reflect a SD unit, that unit will have been adjusted for different covariables. It’s worth

noting that, whilst comparison between observational and MR results were made, specifically in regards

to their directions of effect, the units may not represent the exact same unit in both analyses. It also

meant that obtaining clinically informative units was not possible as it is not appropriate to back-calculate

and estimate an SD unit change without the underlying distributions of the data, which was not available.

The format of publicly available data used in two-sample MR is a common limitation and it is a strength

of one-sample MR that the researcher can control the processing prior to analysis.

Pre-analysis processing of data is particularly important for metabolomics data526, where researchers

characterize and prepare data prior to analyses. This may include identifying poor quality samples

and metabolites and/or a broad array of additional, and researcher specific, processes, such as trans-

formations. In Chapter 4, the metaboprep R package - the development of which I was involved in -

was used in an effort to perform transparent and informed processing of ALSPAC metabolite data. In

using metaboprep, there are a number of threshold settings that can be altered, though in thisinstance

default settings were used. The default settings however are arbitrarily assigned or have been set

based on previous published work, for example, sample missingness is set to 20% by default based

on work by Lotta et al. (2021)339. A more stringent threshold (e.g., 5%) may have impacted on the

number of samples excluded. Of particular note from this pre-analysis processing step performed in

Chapter 4 is the fact that, although almost all metabolites were shared across age groups, the number of

independent metabolites identified by metaboprep differed across age groups. As metabolite data used

in MR analyses were publicly available or provided by collaborators, it was not possible to use the same

pre-analysis processing strategy. Comparison of effect sizes was not possible across observational and

MR analyses (only comparison of the direction of effect) as different transformations and adjustments had

been made to the GWAS data used in MR analyses. This also meant it was not possible to meta-analyse

the MR analyses performed in Chapter 5 using effect estimates (i.e., Fisher’s method meta-analysis

p-values was instead used). Future work should look to use a standardised method for pre-analysis
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processing, such as metaboprep, while a centralised approach to analysis of metabolomics data across

cohorts, such as that being employed by the Consortium of Metabolomics Studies592, will allow for more

efficient comparisons and meta-analyses of studies.

A strength of the metabolomics data used in these analyses was however the fact that all of the

metabolomics data came from the same NMR platform, which has been described previously506,522–524

and in Chapter 4. As the same platform was used it was possible to compare directions of effect across

methods and datasets for almost all metabolites. Of important note however is the fact that this NMR

platform is predominantly lipid based. Although many lipids are larger than the traditionally defined size

of a metabolite656 they are detected reliably by the platform522. The platform also provides many derived

measures, such as ratios and number of bonds. Although this NMR platform measures a broad array of

metabolites, including amino acids and glycoproteins, it is limited and is therefore not reflective of the

metabolome as a whole. Rather, it reflects the lipidome and a small number of non-lipid metabolites.

Given the high-dimensionality of measures used in this thesis and the need to compare across

multiple exposures and analyses, a particular challenge was how to effectively summarise and interpret

the large number of association analyses performed. Throughout this thesis, forest plots and Circos

plots were used to summarise, interpret, and present results from the over 2,000 analyses conducted.

A key aspect of this was EpiViz, presented in Chapter 3, which was developed in order to improve

the efficiency and reproducibility of producing Circos plots and to make them more accessible to a

wider audience. EpiViz has been successfully used in published work1,498,499 and as the availability

and interest in molecular data grows, it is likely that more researchers will look to similar visualisation

tools to interpret and communicate results. As it stands, EpiViz successfully creates Circos plots for

summarising and communicating large association analyses. Future development should focus first

on converting the current code style to the tidy style to improve readability and consistency. This will

also improve the use of the package in the future enabling more contributors. Outside of this, future

development will be through requests from the community to meet their needs.

7.2.3 Methodology, instrumentation, and assumptions

A key aspect of the work in this thesis was the use of a systematic review and meta-analyses (Chapter

2), observational (Chapter 4), and two-sample MR (Chapter 5) analyses to inform the investigation of
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the effect of adiposity-related metabolites on adiposity-related diseases. As stated above, this strategy

of triangulation strengthens evidence for observed effects as each method has its own limitations

and sources of bias. For example, observational epidemiology is limited by confounding and reverse

causation. Prospective studies, such as ALSPAC used in Chapter 4, are able to provide some temporal

separation between the measurement of an exposure and outcome, and thus mitigate the potential

effects of reverse causation. However, as data on adiposity measures and metabolites were collected

at the same time, reverse causation remains a limitation. It was however possible to account for the

potential effects of confounding in Chapter 4 by adjusting linear models for covariables such as: age, sex,

mother’s or own education, smoking status, alcohol consumption, diet, and physical activity. Although

many covariables were included across the models, it is likely these analyses will not have fully accounted

for confounding, either due to measurement error or unmeasured confounding. For example, adults

were asked ‘do you take part in physical activity (e.g. running, swimming, dancing, golf, tennis, squash,

jogging, bowls)?’, with possible answers of ‘no’, ‘occasionally (less than monthly)’ and ‘frequently (once

a month or more)’. Broad categories such as these are unlikely to capture the full impact of physical

activity given that ‘frequently’ will encompass individuals who exercise once a month as well as every

day.

MR analysis, which is more resilient to limitations of observational analyses such as confounding

and reverse causation362, has its own set of assumptions and limitations, such as genetic confounding

and horizontal pleiotropy (Chapter 1 Section 1.8). MR has three main assumptions and a number of

additional assumptions, all discussed in detail in Chapter 1 Section 1.8, that must be satisfied in order

to obtain reliable results. The first of these assumptions, that instruments are robustly associated with

the exposure, can be satisfied by using instruments obtained from well-powered GWAS, which are

independent of one another, and which meet a robust genome-wide significance threshold (e.g., p-value

< 5 x 10-8). All instruments used in MR analyses in this thesis were obtained from well powered GWAS

which used strict linkage disequilibrium (LD) r2 thresholds and a genome-wide significance threshold of

p-value < 5 x 10-8. In additional analyses performed in Chapter 5, a more conservative LD r2 threshold

was used where the effect of these instruments on metabolites was consistent with the less conservative

LD r2 threshold used in the main analyses.

This instrument selection strategy, of selecting the largest most recent GWAS with a strong inde-

pendence and genome-wide significance threshold, was the most commonly used approach in studies
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included in the systematic review in Chapter 2. However, it is not clear whether this strategy is the

most appropriate for all traits. In this regard, consideration needs to be given to the potential that SNPs

associated with the measures of adiposity may also be associated directly with metabolites or metabolic

pathways. The exclusion restriction assumption states that the instrument must act on the outcome

only via the exposure, where violation of this assumption can bias results. Horizontal pleiotropy such as

this is difficult to test for directly. Sensitivity analyses, using models sensitive to the effects of horizontal

pleiotropy (MR-Egger, weighted median, and weight mode), were consistent with the main analysis in

Chapter 5 and 6 suggesting weak evidence of horizontal pleiotropy. The Steiger directionality test can

also be used to test whether the “true” causal direction is the one under investigation, i.e., the effect of

adiposity measures on metabolites. Results from Steiger directionality tests in Chapter 5 suggested that

the effects of horizontal pleiotropy were most likely apparent when using instruments with large SNP lists

such as the 941-SNP instrument for BMI. However, given that the directions of effect for these large SNP

lists were highly consistent with the smaller SNP lists instrumenting the same exposures (which showed

a majority of “true” causal directions), the interpretation of the directions of effect are likely the same

across the SNP lists. This does not fully address the potential for direct associations between SNPs

associated with the exposure and the outcome however, and future work should look at exploring the

genetic correlation between adiposity measures and metabolites.

A particular consideration with analyses in this thesis was the use of multiple instrument lists obtained

from different GWAS. Ostensibly this was to test for the potential effects of population structure in BMI and

WHR instruments obtained from GWAS, which either did or did not include individuals from UK Biobank,

and of measurement heterogeneity in the BF GWAS, where BF was measured using two different

methods. In addition, two SNPs within the BF instrument had recently been associated with ‘favourable

adiposity’47,565. Specifically, these SNPs had been associated with both increased BF and reduced risk

of type 2 diabetes, hypertension, and heart disease, as well as more favourable blood pressure565. As

such, the BF instrument may not just be estimating an increase in total body fat mass but may also be

capturing a paradoxical favourable metabolic profile with increased adiposity, which may thus produce a

less specific estimate of increased body fat. In order to test whether these ‘favourable adiposity’ SNPs

resulted in a less specific instrument for BF, they were excluded in additional analyses in Chapter 5.

Results were highly consistent across the two instruments, however CIs appeared tighter across all

metabolites when using the instrument which did not include the ‘favourable adiposity’ associated SNPs.

Given there was little difference in F-statistics for the two instruments the global tightening of CIs may
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have been a result of a more specific instrument. Although MR results from this 5 SNP instrument were

more consistent with observational results, further work to characterize and establish the relationship

between the 7 BF SNPs and BF is needed. Additionally, assigning these SNPs as ‘favourable adiposity’

SNPs is likely a simplification of their biological function. An alternative approach could be to obtain

instruments from a GWAS of localised body fat (e.g., trunk fat, arm fat, visceral adipose tissue). In this

approach, SNPs associated with a specific compartment (i.e., visceral adipose tissue) would be used to

instrument a more homogeneous body fat measure.

For analyses in Chapter 6 investigating the effect of metabolites on endometrial cancer, instruments

were identified using the same strategy described above and applying the stringent LD r2 threshold used

in additional analyses in Chapter 5. However, given the strong inter-correlated nature of metabolites

and the fact many metabolites are products of one another, this instrumentation strategy may not be

appropriate. This is further compounded by the way in which lipoproteins are identified and assigned to

specific classes based on a density gradient. As a result, two lipoproteins of the same density, and thus

categorised within the same class, may be considerably different in size. Conversely, two lipoproteins of

the same size may have substantially different densities and be assigned different classes. This has

implications for the identification of associated SNPs and studies have shown there is a considerable

number of SNPs associated with more than one lipoprotein335–339. It is therefore possible that SNPs

associated with any one lipoprotein may not conform to the third instrumental variable (IV) assumption -

that the SNPs do not affect the outcome except through the exposure.

In Chapter 6, two metabolites (both lipoproteins) with evidence of an intermediary role on the effect

of adiposity on endometrial cancer were identified. A total of 56 and 50 SNPs were associated at a

genome-wide significance threshold of p-value < 5 x 10-8 and an LD r2 threshold of 0.001. Of these

SNPs, 16 were shared across the two metabolites. It is likely both metabolites also share SNPs with

many other metabolites, given that just over half of the 934 identified SNPs for the 53 metabolites

investigated in Chapter 6 were associated with just one metabolite and the average number of SNPs

associated with a metabolite was 49. This issue of SNP specificity in regards to metabolites has been

looked at previously393. Findings suggested that SNP specificity was low (i.e., many shared SNPs) and,

more often than not, the variance explained for any metabolite instrument was higher for an alternative

metabolite. The non-specificity of instruments has two potential consequences - horizontal and vertical

pleiotropy. However, distinguishing one from the other, with specific regard to metabolite instruments, is
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challenging634. In analyses here, a single instrumentation approach was used for metabolites and, given

the likely shared genetic architecture across the tested metabolites, the presence of both horizontal

and vertical pleiotropy cannot be ruled out. Alternative instrumentation approaches could have used a

combined instrument or removed shared SNPs. In regards to the latter approach, future work should

focus particularly on the use of colocalisation methods635 to identify shared genetic signals across

related traits.

When investigating the effect of adiposity measures on metabolites in Chapter 5, the exposure

and outcome GWAS were sex-combined. In addition, adiposity instruments used in Chapter 6 were

obtained from sex-combined GWAS. A key limitation of this work is therefore the use of non-sex-specific

instruments for measures of adiposity. A major driver of endometrial cancer, specifically endometrioid

cancer, is oestrogen594, which, as a sex hormone, is important in endometrial cell growth. Oestrogen

is also involved in the distribution and accumulation of adipose tissue77. Importantly, adipose tissue

is a key source of oestrogen synthesis, particularly post-menopause636. There is sexual dimorphism

in the accumulation and distribution of adipose tissue highlighted in genetic studies, which have found

sex-specific SNPs associated with adiposity48,49,53–55. There is also evidence of sex differences in the

associations between adiposity and metabolites398. There is however utility in the use of sex-combined

instruments as they provide an overarching view of the effect of adiposity that is independent of the

sexual dimorphism associated with adiposity. There is some evidence to suggest that there is little

difference in the use of sex-combined compared to sex-specific summary statistics in sex-specific

analyses484,657, though this is possibly dependent upon the question under investigation (i.e., effects

may differ depending upon the exposure or outcome)658. That being said, replication using sex-specific

instruments will only add to the evidence found in this thesis.

A key assumption of two-sample MR is the independence of the two samples. Overlap between

the exposure and outcome datasets in a two-sample MR can bias estimates towards the confounded

observational estimate in a manner proportional to the size of the overlap in the presence of weak

instruments449. Given that many publicly available summary statistics are meta-analyses which include

many different cohorts, there is always the possibility of overlap when using GWAS with hundreds of

thousands of participants. However, for analyses performed in Chapter 5, there was no overlap between

the cohorts included in the adiposity GWAS with cohorts used in the metabolite GWAS. GWAS of BMI

and WHR used in the main analyses of Chapter 5 included individuals from UK Biobank and additional
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analyses used GWAS which did not include UK Biobank. Results from both analyses were highly

consistent. In Chapter 6, metabolite and endometrial cancer data were available from GWAS which

included individuals from UK Biobank. In order to minimise the amount of overlap given that metabolite

and endometrial cancer data used included individuals from UK Biobank, BMI and WHR instruments

were obtained from GWAS used in the additional analyses in Chapter 5 which did not include individuals

from UK Biobank.

For binary outcomes, the bias due to overlap is specific to the overlap between individuals in the

exposure GWAS and those who are cases in the outcome GWAS. As 5% of the endometrial cancer cases

were UK Biobank participants, the relative bias for the effect of metabolites on endometrial cancer was at

most 0.5%. Specifically, this bias is applicable to the effect of metabolites on endometrial cancer, and the

effect of metabolites adjusted for adiposity measures on endometrial cancer. The bias is not applicable

to the effect of adiposity measures adjusted for metabolites on endometrial cancer, as the instruments

for these analyses were obtained from the adiposity GWAS which did not include individuals from UK

Biobank. Recent work has shown that the use of strong instruments can mitigate the bias induced

by sample overlap659 and, although there was evidence for weak instruments for some metabolites,

including when used in MVMR analysis, the majority of those instruments used in univariable MR were

strong (F-statistic > 10).

Issues of sample overlap were not limited to the MR analyses performed in Chapter 5 and 6, it was

also an issue in Chapter 2. Of the over 2,000 MR analyses identified in the systematic review, a total of

71 MR analyses were included in 31 meta-analyses. The majority of these 31 meta-analyses included

only two MR analyses. This meant that interpretation of heterogeneity statistics489,496 and the use of

funnel plots to assess publication bias, was difficult. One of the main reasons for these small numbers

was the fact that studies were excluded from the meta-analyses if there was: (i) sample overlap between

outcome data across MR analyses, (ii) and/or if there was sample overlap between exposure and

outcome data across MR analyses. As many of the largest and most recent MR analyses used samples

from GWAS that were used in prior MR analyses, these larger analyses were preferred for inclusion as

they encompassed estimates from previous analyses. However, given that many MR analyses use data

from large GWAS consortia, and given that reporting quality was not high for a majority of studies, it is

possible that there is overlap in the meta-analysed MR analyses that was not identified during screening.

It is possible to estimate the overlap between samples using LD score regression (LDSR)660, but this
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can only be achieved with summary data which was not readily available when extracting data for studies

included in the systematic review. With the drive for GWAS to use ever larger sample sizes and for

consortia to join forces to perform meta-analyses of meta-analyses, it may become more challenging to

identify truly independent samples in MR analyses. This will be a particular concern in regards to MR

meta-analyses where there is more opportunity for sample overlap given the need to have independence

between outcome data across studies and exposure and outcome data across studies.

7.2.4 General assumptions of Mendelian randomization analyses

Generally, MR analyses use unrelated individuals and assume that genotypes share no common

causes with the outcome. Where this assumption is not satisfied, estimates of the association between

the SNP and exposure can be biased. This can be a result of population structure, selection bias,

assortative mating, dynastic effects, and canalisation362,661. Canalisation, whereby what would otherwise

be developmentally deleterious genetic effects are nullified by compensatory mechanisms, results in

effect estimates attenuating to the null363. Though being aware of the underlying biology can inform

analyses, accounting for canalisation is difficult as it is currently difficult to test for its presence662.

Confounding by population structure on the other hand would bias estimates towards the observational

confounded estimate. Generally this is accounted for in GWAS using principle components or linear

mixed models663,664. However, there is evidence of residual effects of population structure in large

and small GWAS of apparently homogeneous samples using both methods372,379,556–558. In Chapter 5,

additional analyses aimed to obtain consistent effects using multiple instrumentation practices and GWAS

to obtain instruments for BMI, WHR, and BF. Consistent effects using GWAS of different populations

suggests any effect of population structure is limited and did not drastically alter results. That being said,

there was considerable difference in directions of effect when using the two BF GWAS. It is possible that

these conflicting results are due to the difficulty in instrumenting BF as opposed to population structure,

given that removing two ‘favourable adiposity’ SNPs from one SNP list resulted in a number of effect

estimates changing direction.

Selection bias, whereby study participation is non-random, can induce an association between

genotypes associated with study participation and other traits correlated with study participation. For

example, if a study aims to recruit individuals with endometrial cancer, but individuals with a high BMI

are more willing to participate in the study than those with a lower BMI, an association between high
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BMI and endometrial cancer would have been induced as a result of study participation. As many of

the cohorts contributing to the GWAS used in this thesis were prospective, individuals would not have

been selected based on disease status. However, there is some evidence that individuals with certain

cancers, e.g., prostate cancer, are diagnosed at a later stage as a result of a higher BMI124. This could

mean that individuals with adiposity during early cancer stages are less likely to be diagnosed, or that

adiposity is associated with a faster progression to advanced prostate cancer.

An additional consideration is that individuals do not mate at random. Assortative mating is a form of

sexual selection in which individuals are more alike (i.e., similar phenotype or genotype) than one would

expect at random. There is evidence to suggest that individuals with similar heights and weights are more

likely to mate than at random665. This can be because of a direct relationship, that is, partners select

because of a phenotype, or an indirect relationship, where partners select because of background (e.g.,

ancestry or culture) that is also associated with the phenotype of interest. Additionally, there is potential

for partner phenotypes to converge. These effects can be either single (e.g., adiposity) or multi-trait (e.g.,

adiposity and level of education). Bias in MR results is only induced by multi-trait assortative mating, as

it induces associations between the two exposures through their associated instruments, that is, SNPs

associated with adiposity will become associated with level of education and vice versa. It is not possible

to evaluate or test for the effects of assortative mating using summary level data661.

Dynastic effects are a form of confounding as a result of generational traits which influence offspring

phenotypes370,371. Inherited parental alleles can influence the offspring phenotype through a direct

path. In addition, the inherited and non-inherited parental alleles influence the parental phenotype

which in turn influences offspring phenotype through an environmental path. In this regard, the second

MR assumption would be violated as there would be an association between offspring phenotype and

parental genotype that was not directly through the transmission of alleles but, rather, there would

be a common cause of the offspring genotype and outcome. For example, the effect of adiposity on

endometrial cancer might be biased by a dynastic effect in which a confounding path links genetic

instruments for adiposity to endometrial cancer via the correlation between offspring and parental

adiposity genotype and the possibility that parental adiposity, specifically maternal adiposity, influences

foetal growth and development in utero, which influences future offspring endometrial cancer risk. As

with all of these limitations, dynastic effects are not easily tested when using summary level data. Nor is

it possible to evaluate their effects outside of family based studies370,371.
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The issues of dynastic effects, assortative mating, and population structure (familial biases) can

be mitigated through the use of family based studies370,661. This is because alleles, inherited from

parents, will be independent of the familial biases if conditioned on the parents’ genotypes. Importantly,

an association between non-inherited alleles and traits in the offspring can only be through parental

phenotypes or via the aforementioned familial biases. However, conditioning on the parents’ genotypes

does not account for the effect of the parental phenotype. It is possible to estimate the effect of the

parental phenotype using MVMR, but it is not possible to assign a specific bias to any estimated effect.

Although family, specifically trio (i.e., two parents and an offspring) based studies can account for familial

biases, the scarcity of genetic and phenotypic data on parents and offspring makes these analyses

difficult370,661. ALSPAC is one such study with trio data, however this data is limited in size and, as

offspring are comparatively young, investigations of disease such as cancer are not possible. Prospective

studies such as the Norwegian Mother, Father and Child Cohort Study (MoBa) and The Nord-Trøndelag

Health Study (HUNT) include a larger number of trios, but are also limited in their use to investigate

disease outcomes given that data is needed on trios and outcomes. Twin-based and sibship studies,

which are larger in number, can also be used, though not to the same level, to test for familial biases661.

Though analyses may include small sample sizes, if evidence is consistent across analyses when used in

conjunction with traditional MR analyses using unrelated individuals then this will strengthen evidence551

and suggest the effects of familial bias are limited.

7.2.5 Additional considerations

This thesis hypothesised that the direction of effect was true for the effect of adiposity on metabolites

and endometrial cancer, and for metabolites on endometrial cancer. It did not however investigate the

reverse of this, that the direction of effect was from metabolites to adiposity, and from endometrial cancer

to metabolites and adiposity. Although there was evidence for the former, this does not rule out an effect

of the latter. This is especially true given: (i) adipose tissue is a complex signalling organ, (ii) cancerous

cells are complex signallers that re-wire metabolic processes, (iii) and metabolites are multi-functional

with roles in energy, signalling, transportation, and structural components. In observational and MR

analyses, there is considerable evidence that the relationship between adiposity and endometrial cancer

is in the tested direction. As such, the reverse was not investigated here. In regards to the effect of

metabolites on adiposity, the Steiger directionality tests performed in Chapter 5, as discussed in Section
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7.2.3, suggested the majority of tests of the effect of adiposity on metabolites were ‘true’ causal directions.

Further investigation of the effects of those analyses which did not reflect a ‘true’ causal direction is

warranted, as there may be evidence that those metabolites are either highly pleiotropic with adiposity

or influence adiposity. For the effect of metabolites on endometrial cancer and its reverse, the picture

is complex. There is evidence that concentrations of metabolites are altered as a result of cancer623.

However, it is not clear how these changes manifest. For example, it is difficult to disentangle whethere

they are a result of cancer cells responding to a nutrient poor environment (nutrients may be available

but they may not benefit the cancer cell) and their subsequent metabolic reprogramming, they are a

result of metabolic reprogramming of cancer cells and the subsequent survival of those cancerous cells

that are able to utilise the available nutrients, or if they are a result of both selective pressures at once.

These questions cannot be asked in an epidemiological context. Instead, results here can inform wet lab

studies by providing potential candidates that can be used to investigate these questions.

Finally, a major component of this work was the comparison of observational and MR estimates to

obtain evidence for an effect of adiposity measures on metabolites. A key limitation of this comparison

is the fact that MR studies may represent different underlying processes to that of observational

studies. Exposures instrumented by genetic variants reflect a lifetime change in an exposure, while for

observational studies, the exposures are determined by genetic and non-genetic factors at that point in

time. The fact that consistent results were observed across observational (Chapter 4) and MR anayses

(Chapter 5) using independent datasets, and that these results were replicated in a further MR analysis

using an additional independent dataset (Chapter 6) provides robust evidence for an effect of adiposity

on metabolites even if the underlying processes are different.

7.3 Future work

Work in this thesis identified two metabolites that may play intermediary roles in the development of

endometrial cancer as a consequence of adiposity. The primary focus of this work was the use of com-

plementary assessment of adiposity, NMR-based metabolites, and use of complementary methodologies

(observational and MR analyses). The aim and objectives of this thesis (Chapter 1 Section 1.10) were

designed to better understand the underlying mechanisms of adiposity-associated disease development.

Although this aim has largely been achieved, there remain some unanswered questions and some new
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questions stemming from the presented results.

A key question that remains is the replication of the effect of metabolites on endometrial cancer.

The limited availability of independent endometrial cancer datasets meant this was not immediately

possible. However, there is an opportunity in the future within the EPIC collaboration to investigate

these associations. Data will be available on individuals who have undergone bariatric surgery, including

endometrial tissue, that could enable the tracking of metabolite changes through the surgery process.

This could include investigating the effect of weight reduction, which would act as a complementary

analysis to analyses performed in this thesis, investigating whether weight reduction leads to a reduction

in metabolites identified in this thesis as up-regulated by adiposity and associated with endometrial

cancer. Changes in these metabolites, within endometrial tissue, as a result of weight loss would

strengthen evidence found in this thesis.

Endometrial cancer was used as an exemplar and a natural follow on would be to investigate

the intermediary role of metabolites with other outcomes identified in Chapter 2 that were associated

with adiposity. Of particular interest would be investigations of breast and prostate cancer, both of

which exhibit hormone dependence and independence, as the intermediary role of metabolites here

appeared to be specific to hormone independent (non-endometrioid cancer) cancer. Follow up analyses,

especially of those relating to cancer, could be to examine the effect of increased triglycerides in

small and very small VLDL on cell lines. There is evidence that dosing endometrial cancer cells

with specific metabolites increases proliferation rates666. A candidate metabolite could be that of

myristic acid (a component of the triglyceride trimyristin618), which is associated with endometrial cancer

development613. Follow up experiments such as these, which use epidemiological and causal methods to

identify candidates for molecular investigation, have shown promise in identifying molecular mechanisms

of disease development641.

Follow up wet lab studies would benefit greatly from a more comprehensive assessment of the

metabolome. As discussed earlier, metabolites here were limited to an NMR platform that was predom-

inantly composed of lipids. Many of these metabolites are large transporters of smaller metabolites.

Expanding the metabolites available for analysis to include these smaller metabolites such as those

identified in un-targeted mass spectrometry analyses, where there is available genetic data335, will

enable a broader assessment of the effects of adiposity.
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In addition, investigations will benefit from alternative study designs, which are able to address more

specific challenges such as weight change and whether the effects of adiposity are reversible. With

regards to weight change, a recent review attempted to highlight the effect of weight gain and weight loss

on the metabolome667. The vast majority of studies included in the review looked at the effects of weight

gain and found there to be a generally increasing effect across many metabolite subclasses including

lipids (e.g., VLDL, LDL, and large HDL) and amino acids. The few studies included which looked at

weight loss were focused on the effect of specific diets and the insulin related changes of these diets.

Recently, data has become available from a weight gain and weight loss study (Glasgow Visceral &

Ectopic Fat With Weight Gain in South Asians), which aims to investigate whether there are differences

in fat storage and metabolic risk factors throughout the weight gain and loss phases. Studies that look at

metabolite changes due to weight gain and loss will be important in understanding whether the effects of

adiposity, that is weight gain, are reversible over the long term. Identifying if and what effects of adiposity

persist after sustained weight loss may help to target interventions and prolong that weight loss. For

example, there is some evidence that diet-induced weight loss is unsuccessful in the long term due to

an increase in ghrelin over time668. It may be possible to look at the effects of sustained weight loss on

the metabolome in ALSPAC and UK Biobank as, in both studies, repeat measures were obtained for

metabolomic analysis. However, there may be insufficient samples to investigate disease outcomes.

Instead, a meet-in-the-middle approach could be used. In the first instance the effects of weight loss are

investigated in a large study like UK Biobank. This can then be followed up with analyses using data

from clinical studies, for example of people in remission from type 2 diabetes. Metabolites identified

in both studies are then ranked and may be considered as candidate intermediates in the relationship

between sustained weight loss and disease outcome.

The key take away from this thesis in regards to the effect of adiposity-related metabolites on

endometrial cancer is that there is some evidence for an intermediate effect, that is not driven by

horizontal pleiotropy but may be a result of weak instrument bias. As such, future work should look to

improve on the instrumentation strategy used here. Closely related metabolites within the same subclass

as those tested here could be combined and collapsed to create a new instrument that represents

the broad effect of these metabolites423. Alternatively, as both metabolites tested here share similar

attributes and have similar genetic associations, a composite measure could be used to instrument their

combined effect633.
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Conclusion

Within this thesis, I have demonstrated that: (i) there is a wide literature providing strong evidence

for a causal effect of adiposity on many outcomes, (ii) adiposity has a likely causal effect on a large

number of predominantly lipid metabolites, (iii) and a number of these metabolites may partly explain the

relationship between adiposity and endometrial cancer risk. I have highlighted the complex issues that

surround these findings, notably the difficulty instrumenting adiposity and metabolites, and have used a

broad array of techniques to strengthen the evidence for an effect of adiposity on metabolites and of

adiposity-related metabolites on endometrial cancer risk. In this discussion chapter, I have summarised

the findings of this thesis and the overarching strengths and limitations. I have made suggestions

for future work that could extend and strengthen results here, and have provided a basis from which

hypotheses involving large molecular datasets can be investigated in the future.
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Appendix A

This appendix provides additional information relevant to the main text, including methods, data

descriptions, and results, including tables and figures. All data are available on GitHub within each

chapter’s respective folder: github.com/mattlee821/000_thesis/tree/master/index/data
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A.1 Chapter 1: Introduction

In Chapter 1, a literature search was conducted to provide a summary of the relationships between

adiposity and health outcomes. However, manual literature searching is prone to bias. Literature mining

tools, though susceptible to publication and other biases, provide an alternative approach enabling a

large number of articles to be assessed in a semi-systematic way. Mining Enriched Literature Objects to

Derive Intermediates (MELODI)107, a literature mining tool, was used to identify intermediate diseases

between body mass index (BMI) and mortality.

Briefly, MELODI creates individual article sets based on the search terms ‘body mass index’ and

‘mortality’, and looks for enriched overlapping terms (i.e., terms found in both article sets). MELODI uses

PubMed and SemMedDB to identify enriched terms. PubMed is a database of health and biomedical

research literature, and SemMedDB is a semantic predications repository built from PubMed citations.

Identifying enriched overlapping terms is a two-step process. First, overlapping terms are identified.

Second, the degree of overlap given the observed and expected frequency of terms across all articles

(not just those included in the article sets) is quantified. These overlapping terms are considered potential

intermediates and may highlight novel pathways for future experimentation. In this situation, MELODI

was used to identify what intermediates may link body mass index (BMI) and mortality in an effort to

summarise the literature.

All articles published from 01/01/2000–09/12/2019 (maximum number of articles per article set is

1,000,000) using the terms ‘body mass index’ as the source and ‘mortality’ as the outcome were included.

Raw results are available on GitHub. A total of 187,951 and 787,451 articles were retrieved and included

in the source and outcome article sets, respectively. Using the SemMedDB results, a total of 10,828

enriched overlapping terms were identified. This included similar terms to ‘body mass index’ as the

source, which were removed (n = 424). A Bonferroni corrected p-value < 1.2 × 10−4 (i.e., 0.05/424)

removed 0 terms. Terms were filtered for uniqueness (n = 156) and presence in the following categories:

“age group” (n = 152), “bacterium” (n = 4), “finding” (not an official MELODI category; n = 1), “general”

(not an official MELODI category; n = 1), “fungus” (n = 2), “health care activity” (n = 5), “human” (n =

14), “injury or poisoning” (n = 1), “mammal” (animal studies; n = 1), “patient or disabled group” (n = 8),

“population group” (n = 14), “sign or symptom” (n = 1), “virus” (n = 3).
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The following terms were removed and merged into “immunocompromised host” category: infections,

hospital and opportunistic infections. The following terms were removed because of duplication under

different names: cardiac death, sudden death, and sudden cardiac death (merged into “cessation of life”);

coronary arteriosclerosis (“atherosclerosis”); cardiovascular morbidity, cardiac event, heart diseases,

vascular diseases (“cardiovascular diseases”); depressed mood (depressive disorder); diabetes mellitus

and insulin-dependent (“diabetic”); metabolic diseases (“metabolic syndrome”). The following terms

were removed because they were top-level categories that could either include a wide variety of terms

already included or were duplicated by other terms: “chronic disease”, “critical illness”, “disability”,

“pregnancy complications and perinatal morbidity” (included in “pregnancy” category), “pathogenesis.” As

a result of filtering, a total of 77 terms remained. These terms were combined into 9 categories: cancer,

cardiovascular, immune, kidney, liver, neurological/behavioural, pregnancy, respiratory, other. The ‘other’

category included traits that did not fit into one of any of the other categories and which did not have

aligned traits to form a separate category. The majority of intermediates were cardiovascular related.

Table A.1 gives the intermediates and categories they were grouped into.

It should be noted that the search did not include articles prior to the year 2000 and focussed only on

those archived by PubMed. Enrichment aims to reduce the noise introduced when searching hundreds

of thousands of articles, however manual curation, which will hold its own biases, is needed in order to

obtain an informative list of enriched terms.

Table A.1: Mining enriched literature objects to derive intermediates for "body mass index" and "mortality"

Intermediate Category

Primary carcinoma of the liver cells Cancer

Malignant neoplasm of stomach Cancer

Malignant neoplasm of prostate Cancer

Malignant neoplasm of lung Cancer

Common Neoplasm Cancer

Liver neoplasms Cancer

Malignant disease Cancer

Carcinoma of the Large Intestine Cancer

Pancreatic carcinoma Cancer

Heart failure Cardiovascular
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Table A.1: Mining enriched literature objects to derive intermediates for "body mass index" and "mortality"
(continued)

Intermediate Category

Anemia Cardiovascular

Dyslipidemias Cardiovascular

Cerebrovascular accident Cardiovascular

Cardiovascular Diseases Cardiovascular

Atherosclerosis Cardiovascular

Myocardial Infarction Cardiovascular

Ischemic stroke Cardiovascular

Acute coronary syndrome Cardiovascular

Atrial Fibrillation Cardiovascular

Coronary heart disease Cardiovascular

Systemic arterial pressure Cardiovascular

Thrombosis Cardiovascular

Cerebrovascular Disorders Cardiovascular

Acute myocardial infarction Cardiovascular

Sinus rhythm Cardiovascular

Cardiomyopathies Cardiovascular

Myocardial Ischemia Cardiovascular

Peripheral Vascular Diseases Cardiovascular

Vascular calcification Cardiovascular

Heart Arrest Cardiovascular

Myocardial rupture Cardiovascular

Shock, Cardiogenic Cardiovascular

Hemorrhage Cardiovascular

Ischemia Cardiovascular

Congestive heart failure Cardiovascular

Ventricular Dysfunction, Left Cardiovascular

Mitral Valve Insufficiency Cardiovascular
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Table A.1: Mining enriched literature objects to derive intermediates for "body mass index" and "mortality"
(continued)

Intermediate Category

Hyperglycaemia Cardiovascular

Pancreatitis immune

Inflammatory disorder immune

Immunocompromised Host immune

Bacteremia immune

Septicemia immune

Lupus Erythematosus, Systemic immune

Sepsis Syndrome immune

End stage renal failure Kidney

Kidney Failure, Chronic Kidney

Glomerular Filtration Rate Kidney

Kidney Diseases Kidney

Kidney Failure Kidney

Renal function Kidney

Liver diseases Liver

Non-alcoholic fatty liver Liver

Liver and Intrahepatic Biliary Tract

Carcinoma

Liver

Chronic liver disease Liver

Depressive disorder Neurological/behavioural

Dementia Neurological/behavioural

Metabolic syndrome Other

Cessation of life Other

Malnutrition Other

Diabetic Other

Multiple Organ Failure Other

Fibrosis Other
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Table A.1: Mining enriched literature objects to derive intermediates for "body mass index" and "mortality"
(continued)

Intermediate Category

Deglutition Disorders Other

Vitamin D Deficiency Other

Pre-Eclampsia Pregnancy

Pregnancy Pregnancy

Hypertension induced by pregnancy Pregnancy

Tuberculosis Respiratory

Sleep Apnea, Obstructive Respiratory

Pneumonia Respiratory

Chronic Obstructive Airway Disease Respiratory

Respiration Disorders Respiratory

Respiratory Distress Syndrome, Adult Respiratory

Respiratory Tract Infections Respiratory

Respiratory Failure Respiratory

Acute respiratory failure Respiratory

Table gives intermediate terms enriched in the article sets returned

for the search terms ’body mass index’ and ’mortality’ and the cate-

gory they were grouped into.
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A.2 Chapter 2: Systematic review: What has the application of

Mendelian randomization told us about the causal relevance of

adiposity and health outcomes?

In Chapter 2, quality assessment of individual studies was performed using a modified version of the

quality assessment tool used by Mamluk et al., (2020)437. This tool is presented in Table A.2 on the next

page, and the results of this analysis are presented in Table A.3 on the following pages. Results form

the meta-analyses are given in Table A.4. These tables are avaialble on GitHub: quality assessment

tool, quality assessment results, meta-analysis results. In addition, the search strategy, data extraction

results, and PDFs of all included articles are also available on GitHub.

https://github.com/mattlee821/000_thesis/blob/master/index/data/SR/data/QA_tool.csv
https://github.com/mattlee821/000_thesis/blob/master/index/data/SR/data/QA_tool.csv
https://github.com/mattlee821/000_thesis/blob/master/index/data/SR/data/quality_assessment_results.csv
https://github.com/mattlee821/000_thesis/blob/master/index/data/SR/analysis/meta_analysis/meta_analysis_results.csv
https://github.com/mattlee821/000_thesis/blob/master/index/data/SR/data/search_strategy.pdf
https://github.com/mattlee821/000_thesis/blob/master/index/data/SR/data/data_extraction.xlsx
https://github.com/mattlee821/000_thesis/blob/master/index/data/SR/data/data_extraction.xlsx
https://github.com/mattlee821/000_thesis/tree/master/index/data/SR/search/003_included_articles


Intentionally blank.
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Table A.2: Quality assessment tool

Weak

instrument bias

Genetic

confounding

bias

Other

Confounding

bias

Additional

direct effects

between IV and

outcome

(exclusion

restriction

assumption)

Bias due to

selection of

participants

(exposure)

Bias due to

selection of

participants

(outcome)

IV association Sample overlap Senisitivity

analyses

Descriptive

data

Data availability Statistical

parameters

Question Strength of

association

between

instrument and

exposure

Reported test

on association

between

confounders

and IV

Included

confounders in

the IV analysis

Presence of

pleiotropy for IV

tested

Homogenous

population or

similar

ancestry?

Homogenous

population or

similar

ancestry?

Provide

information on

the similarity of

IV in expo-

sure/outcome.

Two-sample

MR: same

allele

frequency,

same ancestry

etc.

Provide

information on

sample overlap

Have they

performed

sensitivity

analyses.

Is information

on the

methodology

miss-

ing/incorrect.

Is the

methodology

reproducible?

Are the

statistical

parameters for

the analysis

given

High F less than 10 Yes AND there

is an obvious

association

Yes (lifestyle

factors)

No

test/investigation

performed or

not discussed

non-

homogenous

population

non-

homogenous

population

Different

ancestry

Not re-

ported/assumed

overlap

Not reported /

not performed

Majority

missing or

incorrect - key

info such as

MR estimator

and/or N SNPs

missing

No code

provided and

no soft-

ware/packages

referenced

No

Moderate F missing Not presented

or presented

and there is

some degree of

association

Not discussed

(one-

sample/meta-

analysis)

Post-hoc

sensitivitiy

analysis

population

described as

homogenous

BUT no

ancestry

covariate

included

population

described as

homogenous

BUT no

ancestry

covariate

included

Not re-

ported/Assumed

same

underlying

ancestry

Not re-

ported/assumed

no overlap

Reported Some

information

missing such

as N for expo-

sure/outcome

Software/packages

referenced

Some
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Table A.2: Quality assessment tool (continued)

Weak

instrument bias

Genetic

confounding

bias

Other

Confounding

bias

Additional

direct effects

between IV and

outcome

(exclusion

restriction

assumption)

Bias due to

selection of

participants

(exposure)

Bias due to

selection of

participants

(outcome)

IV association Sample overlap Senisitivity

analyses

Descriptive

data

Data availability Statistical

parameters

Low F greater than

10

Presented and

no obvious

association

No Excluded/re-

ran after

exlcusion of

pleiotropic

SNPs /

sensitivity

analysis

consistent with

main analysis

population

described as

homogenous

AND ancestry

covariate

included

population

described as

homogenous

AND ancestry

covariate

included

Tested and

same ancestry

Reported/no

overlap

Reported in the

context of main

analysis / can’t

do it (e.g. one

SNP used)

Majority of

information

presented and

correct

Code is

provided and

all soft-

ware/packages

are referenced

Yes/NA

because 1

SNP/directly

genotyped
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Table A.3: Quality assessment results for studies included in meta-analyses

Meta-analysis Author Year doi 1 2 3 4 5 6 7 8 9 10 11 12 Total

BMI (SD) on HOMA IR (SD) Kivimaki 2008 10.1093/eurheartj/ehn252 1 2 2 3 3 3 2 1 3 1 3 1 25

BMI (SD) on asthma Palmer 2011 10.1093/aje/kwr026 2 1 2 1 3 3 2 1 1 1 3 1 21

BMI (SD) on hemorrhagic stroke Fall 2013 10.1371/journal.pmed.1001474 2 2 3 3 3 3 2 2 3 1 3 1 28

BMI (SD) on hypertension Fall 2013 10.1371/journal.pmed.1001474 2 2 3 3 3 3 2 2 3 1 3 1 28

BMI (SD) on cholesterol (mmol/L) Fall 2013 10.1371/journal.pmed.1001474 2 2 3 3 3 3 2 2 3 1 3 1 28

BMI (SD) on fasting glucose (mmol/L) Fall 2013 10.1371/journal.pmed.1001474 2 2 3 3 3 3 2 2 3 1 3 1 28

BMI (SD) on HbA1c (%) Fall 2013 10.1371/journal.pmed.1001474 2 2 3 3 3 3 2 2 3 1 3 1 28

BMI (SD) on HDL (mmol/L) Fall 2013 10.1371/journal.pmed.1001474 2 2 3 3 3 3 2 2 3 1 3 1 28

BMI (SD) on LDL (mmol/L) Fall 2013 10.1371/journal.pmed.1001474 2 2 3 3 3 3 2 2 3 1 3 1 28

BMI (SD) on SBP (mm/Hg) Holmes 2014 10.1016/j.ajhg.2013.12.014 1 1 2 2 3 3 2 1 2 1 2 3 23

BMI (SD) on fasting glucose (mmol/L) Holmes 2014 10.1016/j.ajhg.2013.12.014 1 1 2 2 3 3 2 1 2 1 2 3 23

BMI (SD) on HDL (mmol/L) Holmes 2014 10.1016/j.ajhg.2013.12.014 1 1 2 2 3 3 2 1 2 1 2 3 23

BMI (SD) on LDL (mmol/L) Holmes 2014 10.1016/j.ajhg.2013.12.014 1 1 2 2 3 3 2 1 2 1 2 3 23

BMI (SD) on HDL (SD) Wurtz 2014 10.1371/journal.pmed.1001765 1 2 2 2 3 3 2 1 2 1 3 2 24

BMI (SD) on LDL (SD) Wurtz 2014 10.1371/journal.pmed.1001765 1 2 2 2 3 3 2 1 2 1 3 2 24

BMI (SD) on Alzheimers Østergaard 2015 10.1371/journal.pmed.1001841 2 2 1 1 3 3 2 2 1 1 3 2 23

Birthweight (SD) on ER- breast cancer Gao 2016 10.1093/ije/dyw129 2 2 1 1 3 3 2 1 1 1 3 2 22

Birthweight (SD) on breast cancer Gao 2016 10.1093/ije/dyw129 2 2 1 1 3 3 2 1 1 1 3 2 22

Birthweight (SD) on colon cancer Gao 2016 10.1093/ije/dyw129 2 2 1 1 3 3 2 1 1 1 3 2 22

BMI (SD) on colorectal cancer Gao 2016 10.1093/ije/dyw129 2 2 1 1 3 3 2 1 1 2 3 2 23

WHR (SD) on colorectal cancer Gao 2016 10.1093/ije/dyw129 2 2 1 1 3 3 2 1 1 1 3 2 22

BMI (SD) on lung cancer Gao 2016 10.1093/ije/dyw129 2 2 1 1 3 3 2 1 1 2 3 2 23

BMI (SD) on ovarian cancer Gao 2016 10.1093/ije/dyw129 2 2 1 1 3 3 2 1 1 2 3 2 23

BMI (SD) on prostate cancer Gao 2016 10.1093/ije/dyw129 2 2 1 1 3 3 2 1 1 2 3 2 23

Birthweight (SD) on colon cancer Jarvis 2016 10.1038/bjc.2016.188 2 2 1 2 3 3 2 1 2 1 3 3 25

BMI (SD) on colorectal cancer Jarvis 2016 10.1038/bjc.2016.188 2 2 1 2 3 3 2 1 2 1 3 3 25
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Table A.3: Quality assessment results for studies included in meta-analyses (continued)

Meta-analysis Author Year doi 1 2 3 4 5 6 7 8 9 10 11 12 Total

WHR (SD) on colorectal cancer Jarvis 2016 10.1038/bjc.2016.188 2 2 1 2 3 3 2 1 2 1 3 3 25

BMI (SD) on hypertension Lyall 2016 10.1001/jamacardio.2016.5804 2 2 3 1 3 2 2 1 1 1 2 3 23

BMI (SD) on endometrial cancer Painter 2016 10.1158/1055-9965.EPI-16-0147 2 2 2 1 3 3 2 1 1 1 3 3 24

BMI (SD) on cholesterol (mmol/L) Wang 2016 10.1210/jc.2017-02789 1 1 3 1 3 3 2 1 1 1 3 3 23

BMI (SD) on HDL (mmol/L) Wang 2016 10.1210/jc.2017-02789 1 1 3 1 3 3 2 1 1 1 3 3 23

BMI (SD) on LDL (mmol/L) Wang 2016 10.1210/jc.2017-02789 1 1 3 1 3 3 2 1 1 1 3 3 23

BMI (SD) on hemorrhagic stroke Dale 2017 10.1161/CIRCULATIONAHA.116.026560 1 1 1 1 2 3 2 2 1 1 2 2 19

WHRadjBMI (SD) on CAD Dale 2017 10.1161/CIRCULATIONAHA.116.026560 1 1 2 1 2 3 2 2 1 2 2 2 21

BMI (SD) on venous thromboembolism Klarin 2017 10.1161/CIRCGENETICS.116.001643 2 2 3 3 3 3 2 1 3 2 3 3 30

BMI (SD) on ischemic stroke Larsson 2017 10.1212/WNL.0000000000004173 2 2 1 1 3 3 2 2 1 2 3 3 25

BMI (SD) on venous thromboembolism Lindstrom 2017 10.1007/s00439-017-1811-x 2 2 1 2 3 3 2 2 2 1 3 2 25

BMI (SD) on Alzheimers Nordestgaard 2017 10.1210/jc.2017-00195 2 2 3 3 3 3 2 2 3 1 3 3 30

BMI (SD) on fasting glucose (mmol/L) Xu 2017 10.1007/s00125-017-4396-y 1 2 1 1 3 3 2 2 1 1 3 2 22

BMI (SD) on HbA1c (%) Xu 2017 10.1007/s00125-017-4396-y 1 2 1 1 3 3 2 2 1 1 3 2 22

BMI (SD) on HDL (SD) Xu 2017 10.1007/s00125-017-4396-y 1 2 1 1 3 3 2 2 1 1 3 2 22

BMI (SD) on LDL (SD) Xu 2017 10.1007/s00125-017-4396-y 1 2 1 3 3 3 2 2 3 1 3 2 26

BMI (SD) on PCOS Brower 2018 10.1093/humrep/dey343 1 2 1 3 3 3 2 1 3 1 2 2 24

BMI (SD) on PCOS Day 2018 10.1371/journal.pgen.1007813 2 2 2 1 3 3 2 1 1 2 3 1 23

Birthweight (SD) on ER- breast cancer Kar 2018 10.1007/s10654-019-00485-7 1 2 1 1 3 3 3 1 1 1 2 2 21

Birthweight (SD) on breast cancer Kar 2018 10.1007/s10654-019-00485-7 1 2 1 1 3 3 3 1 1 1 2 2 21

BMI (SD) on arthritis Larsson 2018 10.1093/rheumatology/key229 2 2 1 1 3 3 2 2 1 1 3 3 24

WHR (SD) on CAD Lv 2018 10.1038/s41431-018-0180-9 2 2 1 1 3 3 2 3 1 2 3 3 26

BMI (SD) on SBP (mm/Hg) Shapland 2018 10.1002/sim.8029 3 2 2 3 3 3 2 1 3 1 3 3 29

BMI (SD) on type 2 diabetes Shu 2018 10.1093/ije/dyy201 2 2 1 3 3 3 3 2 3 1 3 3 29

WHRadjBMI (SD) on type 2 diabetes Shu 2018 10.1093/ije/dyy201 2 2 1 3 3 3 3 2 3 1 3 3 29

BMI (SD) on asthma Skaaby 2018 10.1111/all.13242 1 2 1 2 3 3 2 1 2 1 2 3 23
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Table A.3: Quality assessment results for studies included in meta-analyses (continued)

Meta-analysis Author Year doi 1 2 3 4 5 6 7 8 9 10 11 12 Total

BMI (SD) on depression Tyrrell 2018 10.1093/ije/dyy223 2 2 1 1 2 2 1 1 1 1 3 3 20

BMI (SD) on depression van den Broek 2018 10.1136/jech-2017-210000 2 2 1 1 3 3 3 2 1 1 2 2 23

BMI (SD) on SBP (mm/Hg) Wade 2018 10.1161/CIRCULATIONAHA.117.033278 2 2 1 1 2 2 1 1 1 1 3 3 20

BMI (SD) on HOMA IR (SD) Wang 2018 10.1002/oby.22167 2 2 3 3 3 3 2 2 3 1 3 3 30

BMI (SD) on ischemic stroke Censin 2019 10.1371/journal.pgen.1008405 1 2 3 1 3 3 2 1 1 2 2 3 24

BMI (SD) on lung cancer Censin 2019 10.1371/journal.pgen.1008405 1 2 3 1 3 3 2 1 1 2 2 3 24

WHR (SD) on CAD Censin 2019 10.1371/journal.pgen.1008405 1 2 3 1 3 3 2 1 1 1 2 3 23

WHRadjBMI (SD) on CAD Censin 2019 10.1371/journal.pgen.1008405 1 2 3 1 3 3 2 1 1 1 2 3 23

BMI (SD) on type 2 diabetes Censin 2019 10.1371/journal.pgen.1008405 1 2 3 1 3 3 2 1 1 2 2 3 24

WHRadjBMI (SD) on type 2 diabetes Censin 2019 10.1371/journal.pgen.1008405 1 2 3 1 3 3 2 1 1 2 2 3 24

BMI (SD) on fasting glucose (mmol/L) Censin 2019 10.1371/journal.pgen.1008405 1 2 3 1 3 3 2 2 1 2 2 3 25

BMI (SD) on colorectal cancer Gharahkhani 2019 10.1038/s41416-019-0386-9 1 1 3 1 2 2 1 1 1 1 3 3 20

BMI (SD) on endometrial cancer Gharahkhani 2019 10.1038/s41416-019-0386-9 1 1 3 1 2 2 1 1 1 1 3 3 20

BMI (SD) on ovarian cancer Gharahkhani 2019 10.1038/s41416-019-0386-9 1 1 3 1 2 2 1 1 1 1 3 3 20

BMI (SD) on prostate cancer Gharahkhani 2019 10.1038/s41416-019-0386-9 1 1 3 1 2 2 1 1 1 1 3 3 20

BMI (SD) on arthritis Richardson 2019 10.7554/eLife.43657 2 2 1 3 3 3 2 2 3 1 3 3 28

BMI (SD) on depression Speed 2019 10.1101/539601 1 2 1 1 2 3 2 2 1 1 2 2 20

BMI (SD) on endometrial cancer Yarmolinsky 2019 10.1101/472696 1 2 1 1 3 3 2 1 1 1 3 2 21

Meta-analysis indicates the meta-analysis the study contributed to. Columns 2, 3, and 4 give the first authors last name, year of publication and digital object identifier (DOI) of the

article. The remaining columns give the quality assessment tool question number and the total score for that study. BMI = body mass index; WHR = waist hip ratio; WHRadjBMI =

WHR adjusted for BMI; SD = standard deviation; HOMA IR = Homoeostatic Model Assessment for Insulin Resistance; HbA1c = Hemoglobin A1C; HDL = high density lipoprotein;

LDL = low density liporpotein; SBP = systolic blood pressure; ER- = oestrogen receptor negative; CAD = coronary artery disease; PCOS = polycystic ovary syndrome



Intentionally blank.
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Table A.4: Meta-analyses results from Mendelian randomization analyses using adiposity as an exposure

Meta-analysis Study reference B/OR Lower CI Upper CI p-value q q_df q_p tau2 se tau h i2

BMI (SD) on Alzheimers Ostergaard et al., (2015), Nordestgaard et al.

(2017)

1.01 0.88 1.15 0.92 0.05 1 0.82 1.06e-05 3e-04 0.003 1 0

BMI (SD) on hemorrhagic stroke Dale et al., (2017), Fall et al., (2013) 1.08 0.73 1.59 0.71 1.19 1 0.28 0.03 0.07 0.2 1.09 0.16

BMI (SD) on ischemic stroke Censin et al., (2019), Larsson et al., (2017) 1.24 0.99 1.53 0.05 4.98 1 0.03 0.02 0.02 0.13 2.23 0.8

Birthweight (SD) on ER- breast

cancer

Gao et al., (2016), Kar et al., (2019) 0.94 0.77 1.14 0.51 0.15 1 0.7 3e-04 0.002 0.02 1 0

Birthweight (SD) on breast cancer Gao et al., (2016), Kar et al., (2019) 1.01 0.72 1.42 0.97 4.7 1 0.03 0.04 0.06 0.21 2.17 0.79

Birthweight (SD) on colon cancer Gao et al., (2016), Jarvis et al., (2016) 0.94 0.54 1.64 0.83 4.04 1 0.04 0.1 0.14 0.33 2.01 0.75

BMI (SD) on colorectal cancer Gharahkhani et al., (2019), Gao et al.,

(2016), Jarvis et al., (2016)

1.18 1.01 1.37 0.03 4.14 2 0.13 0.01 0.01 0.1 1.44 0.52

WHR (SD) on colorectal cancer Gao et al., (2016), Jarvis et al., (2016) 1.48 1.08 2.03 0.01 0.38 1 0.54 0.003 0.01 0.06 1 0

BMI (SD) on endometrial cancer Gharahkhani et al., (2019), Painter et al.,

(2016), Palmer et al., (2011)

1.57 1.11 2.22 0.01 25.52 2 2.88e-06 0.08 0.07 0.28 3.57 0.92

BMI (SD) on lung cancer Censin et al., (2019), Gao et al., (2016), 1.3 1.17 1.45 2.65e-06 0.17 1 0.68 8e-05 7e-04 0.01 1 0

BMI (SD) on ovarian cancer Gao et al., (2016), Gharahkhani et al.,

(2019),

1.39 1.2 1.61 9.24e-06 0.08 1 0.78 3e-05 6e-04 0.01 1 0

BMI (SD) on prostate cancer Gao et al., (2016), Gharahkhani et al.,

(2019),

1.08 0.91 1.28 0.37 1.29 1 0.26 0.006 0.01 0.08 1.13 0.22

WHR (SD) on CAD Censin et al., (2019), Lv et al., (2018) 1.63 1.4 1.91 5.29e-10 3.09 1 0.08 0.008 0.01 0.09 1.76 0.68

WHRadjBMI (SD) on CAD Censin et al., (2019), Dale et al., (2017) 1.4 1.33 1.47 1.05e-38 0.63 1 0.43 5e-04 0.001 0.02 1 0

BMI (SD) on hypertension Fall et al., (2013), Lyall et al., (2017) 1.36 0.94 1.98 0.11 41.65 1 1.09e-10 0.07 0.09 0.26 6.45 0.98

BMI (SD) on venous

thromboembolism

Klarin et al., (2017), Lindstrom et al., (2017) 1.58 1.33 1.87 2.26e-07 0.27 2 0.87 5e-04 0.004 0.02 1 0

BMI (SD) on depression Tyrrell et al., (2019), Speed et a., (2019),

VandenBroek et al., (2018)

1.11 1.04 1.19 0.001 0.001 1 0.97 1e-08 1e-05 1e-04 1 0

BMI (SD) on type 2 diabetes Censin et al., (2019), Shu et al., (2019) 2.48 1.52 4.07 3e-04 11.23 2 0.003 0.002 0.003 0.05 2.37 0.82

WHRadjBMI (SD) on type 2

diabetes

Censin et al., (2019), Shu et al., (2019) 2.06 1.9 2.24 1.26e-65 0.04 1 0.65 1e-04 0.003 0.01 1 0

BMI (SD) on PCOS Brower et al., (2019), Day et a., (2018) 2.55 1.22 5.34 0.01 29.71 3 1.59e-06 0.004 0.003 0.06 3.15 0.9

BMI (SD) on asthma Palmer et al., (2011), Skaaby et al., (2018) 1.06 1.03 1.1 4e-04 4.37 1 0.04 6e-04 8e-04 0.03 2.09 0.77

BMI (SD) on arthritis Larsson et al., (2018), Richardson et al.,

(2019a)

1.48 0.68 3.25 0.33 7.09 2 0.03 0.04 0.04 0.19 1.88 0.72
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Table A.4: Meta-analyses results from Mendelian randomization analyses using adiposity as an exposure
(continued)

Meta-analysis Study reference B/OR Lower CI Upper CI p-value q q_df q_p tau2 se tau h i2

BMI (SD) on SBP (mm/Hg) Holmes et al., (2014), Shapland et al.,

(2019), Wade et a., (2018)

0.79 0.54 1.05 1.02e-09 22.35 1 2.27e-06 0.02 0.03 0.14 4.73 0.96

BMI (SD) on cholesterol (mmol/L) Fall et al., (2013), Wang et al., (2018) 0.01 -0.02 0.03 0.63 1.72 1 0.19 0.17 0.25 0.41 1.31 0.42

BMI (SD) on fasting glucose

(mmol/L)

Fall et al., (2013), Censin et al., (2019),

Holmes et al., (2014), Xu et al., (2017)

0.08 0.02 0.15 0.02 7.9 2 0.02 0.01 0.02 0.11 1.99 0.75

BMI (SD) on HbA1c (%) Fall et al., (2013), Xu et al., (2017) 0.03 -0.02 0.07 0.22 1.3 1 0.25 0.001 0.002 0.04 1.14 0.23

BMI (SD) on HDL (mmol/L) Fall et al., (2013), Holmes et al., (2014),

Wang et al., (2018)

-0.11 -0.34 0.12 0.34 33.29 1 7.93e-09 0.12 0.16 0.35 5.77 0.97

BMI (SD) on HDL (SD) Wurtz et al., (2014), Xu et al., (2017) -0.12 -0.33 0.09 0.25 1.13 1 0.29 0.002 0.004 0.05 1.06 0.12

BMI (SD) on HOMA IR (SD) Kivimaki et al., (2008), Wang et al., (2018a) 0.26 -0.42 0.95 0.45 1.96 1 0.16 0.19 0.26 0.43 1.4 0.49

BMI (SD) on LDL (mmol/L) Fall et al., (2013), Holmes et al., (2014),

Wang et al., (2018)

-0.01 -0.06 0.04 0.65 0.64 1 0.42 0.01 0.03 0.11 1 0

BMI (SD) on LDL (SD) Wurtz et al., (2014), Xu et al., (2017) 0.02 -0.03 0.07 0.43 32.48 1 1.21e-08 0.3 0.42 0.55 5.7 0.97

Column 1 gives the exposure and outcome with units. Column 2 gives the studies used in the meta-analysis. B/OR = beta is the change in outcome per unit increase in exposure, OR is the odds ratio of the outcome per unit change in the exposure; CI

= 95% confidence interval; q = heterogeneity statistic; q_df = degrees of freedom of Q; tau_2 = between study variance; se = standard error of tau_2; h = heterogeneity statistic within subgroups; i1 = heterogeneity statistic within subgroups; BMI = body

mass index; WHR = waist hip ratio; WHRadjBMI = WHR adjusted for BMI; SD = standard deviation; HOMA IR = Homoeostatic Model Assessment for Insulin Resistance; HbA1c = Hemoglobin A1C; HDL = high density lipoprotein; LDL = low density

liporpotein; SBP = systolic blood pressure; ER- = oestrogen receptor negative; CAD = coronary artery disease; PCOS = polycystic ovary syndrome
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A.3 Chapter 4: Associations between multiple measures of adiposity

and metabolites: observational analysis

In Chapter 4, data from the Avon Longitudinal Study of Parents and Children (ALSPAC) was used

to investigate the association between adiposity measures and nuclear magnetic resonance (NMR)

derived metabolites and ratios. The following sections provide detail on ALSPAC, validation of Equation

(4.1) with raw bioeletrical impedance values, a list of metabolites available in ALSPAC, and correlation

coefficients (Spearmans Rho) of the comparison of effect estimates from different models.

A.3.1 Methods

Data overview

ALSPAC516–518 is a prospective cohort study that invited women resident in Avon, UK with expected

dates of delivery between 1st April 1991 and 31st December 1992 to participate. The initial number of

pregnancies enrolled was 14,541 (for these at least one questionnaire was returned or a “Children in

Focus” clinic has been attended by 19/07/99). Of these initial pregnancies, a total of 14,676 foetuses,

resulted in 14,062 live births and 13,988 children alive at one year of age. The mothers and fathers

associated with each pregnancy are referred to as generation 0 (G0) while the children of each eligible

pregnancy (including individuals from subsequent recruitment drives) are referred to as generation 1

(G1).

Data in ALSPAC are split by clinic visits. For work in Chapter 4, metabolomic data were available for

G1 individuals from the following clinics: Focus at 7 (~8 years old), Focus at 8 (~9 years old), Before

Breakfast Study (~8 years old), Teen Focus 3 (~18 years old), Teen Focus 4 (~17 years old), and Focus

at 24 (~24 years old). Metabolomic data for G0 individuals were available from: Focus on Mothers 1

(~48 years old), Focus on Mothers 2 (~51 years old), and Focus on Fathers 1 (~53 years old). In order to

maximize the sample size at each metabolomic clinic, data were combined where clinics were within a

similar age range. Data were combined in the following groups for G1 individuals: Focus at 7 and Before

Breakfast Study (children), and Teen Focus 3 and Teen Focus 4 (adolescents). The Focus at 24 clinic

is referred to as young adults. For G0 individuals data from Focus on Mothers 1, Focus on Mothers 2,
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and Focus on Fathers 1 were combined into an adults group. For these combined data sets, duplicate

individuals (i.e., those attending both clinics) were identified, and the measurement from the most recent

clinic was dropped.

Validation of raw impedance as a measure of body fat percentage

In children, a measure for BF was not available. Instead, impedance values were used to estimates

BF using equation (4.1). The calculated BF resulted in negative BF values for some children (Figure

A.1). However, the calculated BF was positively correlated with weight, height and BMI in children.

In adolescents, the calculated BF did not produce negative values and was positively correlated with

impedance and dual energy X-ray absorptiometry (DXA) derived BF values (Figure A.4), as well as with

weight, height, and BMI (Figure A.2). Child calculated BF positively correlated with adolescent measures

of BF (Figure A.3).

BF = −156.1 − 89.1 ln(height)

+ 45.6 ln(weight)

+ 0.120 age

+ 0.0494 Z

+ (19.6 ln(height))

(A.1)

Given that the equation was derived from adult data (i.e., there is a volumetric difference adults and

children669), differences in the range of values is unsurprising. There is however strong correlation

between calculated-BF and impedance-derived and DXA-derived values of BF in adolescents. As the

estimates derived in linear models are in reference to the per unit increase in an exposure (rather than

the range), the absolute value of the exposure does not need to positive. Thus, the negative values of

BF will not impact the inference of a linear regression between BF and any metabolite. As such, BF

calculated using equation (4.1) was used in subsequent analyses as a measure of BF in children.
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Figure A.1: Distribution of raw impedance and calculated body fat percentage in children and
adolescents. Plots give the distribution of the raw impedance value measured in ohms and body
fat percentage (BF) derived using equation (4.1) for children and adolescents. Data is presented for
complete cases across: raw metabolomics, body mass index, waist hip ratio (children only), impedance,
height, weight, age, sex, and BF derived by impedance and dual energy x-ray absorptiometry in
adolescents. Red is female data, grey is male data.

275



R2 = 0.025 , p = 5e−09

R2 = 0.032 , p = 1.3e−11

400

500

600

700

800

900

10 20 30 40 50
BF_calculated_adolescents

im
pe

da
nc

e_
ch

ild
re

n
Children impedance

R2 = 0.0053 , p = 0.0073

R2 = 0.03 , p = 9.3e−11

400

500

600

700

800

900

0 20 40 60
BF_impedance_adolescents

im
pe

da
nc

e_
ch

ild
re

n

R2 = 0.0082 , p = 0.00085

R2 = 0.056 , p < 2.2e−16

400

500

600

700

800

900

20 40 60
BF_DXA_adolescents

im
pe

da
nc

e_
ch

ild
re

n
R2 = 0.38 , p < 2.2e−16

R2 = 0.44 , p < 2.2e−16

0

10

20

30

10 20 30 40 50
BF_calculated_adolescents

B
F

_c
al

cu
la

te
d_

ch
ild

re
n

Children calculated BF

R2 = 0.24 , p < 2.2e−16

R2 = 0.36 , p < 2.2e−16

0

10

20

30

0 20 40 60
BF_impedance_adolescents

B
F

_c
al

cu
la

te
d_

ch
ild

re
n

R2 = 0.31 , p < 2.2e−16

R2 = 0.37 , p < 2.2e−16

0

10

20

30

20 40 60
BF_DXA_adolescents

B
F

_c
al

cu
la

te
d_

ch
ild

re
n

R2 = 0.00011 , p = 0.64

R2 = 0.019 , p = 1.1e−10

0

300

600

900

0 20 40 60
BF_calculated_adolescents

im
ed

pa
nc

e_
ad

ol
es

ce
nt

s

Adolescents impedance

R2 = 0.00011 , p = 0.64

R2 = 0.019 , p = 1.1e−10

0

300

600

900

0 20 40 60
BF_impedance_adolescents

im
ed

pa
nc

e_
ad

ol
es

ce
nt

s
R2 = 0.026 , p = 2.2e−13

R2 = 0.082 , p < 2.2e−16

0

300

600

900

20 40 60
BF_DXA_adolescents

im
ed

pa
nc

e_
ad

ol
es

ce
nt

s

Adolescents calculated BF

R2 = 0.67 , p < 2.2e−16

R2 = 0.86 , p < 2.2e−16

0

20

40

0 20 40 60
BF_impedance_adolescents

B
F

_c
al

cu
la

te
d_

ad
ol

es
ce

nt
s

R2 = 0.6 , p < 2.2e−16

R2 = 0.75 , p < 2.2e−16

0

20

40

20 40 60
BF_DXA_adolescents

B
F

_c
al

cu
la

te
d_

ad
ol

es
ce

nt
s

R2 = 0.6 , p < 2.2e−16

R2 = 0.68 , p < 2.2e−16

0

20

40

60

20 40 60
BF_DXA_adolescents

B
F

_i
m

pe
da

nc
e_

ad
ol

es
ce

nt
s

Figure A.2: Correlation between different body fat percentage measures in children and adoles-
cents. Scatter plots are presented alongside Pearson’s correlation coefficients for each sex; data for
males are in grey and females in red. Plots are arranged in 4 columns and 4 rows. Column 1 gives raw
impedance value in children (y axis) with body fat percentage (BF)-calculated in children and adolescents
using equation (4.1), and BF derived from dual energy x-ray absorptiometry (DXA) in adolescents.
Column 2 gives child-calculated BF using equation (4.1) (y axis) with adolescent-calculated BF using
equation (4.1) and DXA-derived BF. Column 3 gives adolescent raw impedance (y axis) with adolescent
BF-calculated using equation (4.1) and DXA-derived BF. Column 4 gives adolescent calculated BF using
equation (4.1) with adolescent raw impedance, DXA-derived BF, and adolescent raw impedance with
DXA-derived BF. Data is presented for complete cases across: raw metabolomics, body mass index,
waist hip ratio (children only), impedance, height, weight, age, sex, and BF derived by impedance and
DXA in adolescents. Available on GitHub.
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Figure A.3: Correlation between body fat percentage and anthropometric measures in children.
Scatter plots are presented alongside Pearson’s correlation coefficients for each sex; data for males are
in grey and females in red. Column 1 = impedance; column 2 = body fat percentage (BF). Impedance is
given as ohms. Data is presented for complete cases across: QC’d metabolomics, body mass index,
waist hip ratio (children only), impedance, height, weight, age, sex, and BF derived by impedance and
DXA in adolescents. Available on GitHub.

277

https://github.com/mattlee821/000_thesis/blob/master/index/data/observational/figures/bf_validation_correlation_children.pdf


R2 = 0.2 , p < 2.2e−16

R2 = 0.31 , p < 2.2e−16

0

300

600

900

20 30 40
BMI

Im
pe

da
nc

e

R2 = 0.16 , p < 2.2e−16

R2 = 0.25 , p < 2.2e−16

0

300

600

900

30 60 90 120
Weight

Im
pe

da
nc

e

R2 = 0.0041 , p = 0.0041

R2 = 0.00058 , p = 0.26

0

300

600

900

1.4 1.6 1.8 2.0
Height

Im
pe

da
nc

e

R2 = 0.78 , p < 2.2e−16

R2 = 0.76 , p < 2.2e−16

0

20

40

20 30 40
BMI

B
F

_c
al

cu
la

te
d

R2 = 0.74 , p < 2.2e−16

R2 = 0.73 , p < 2.2e−16

0

20

40

30 60 90 120
Weight

B
F

_c
al

cu
la

te
d

R2 = 0.069 , p < 2.2e−16

R2 = 0.017 , p = 1.7e−09

0

20

40

1.4 1.6 1.8 2.0
Height

B
F

_c
al

cu
la

te
d

R2 = 0.64 , p < 2.2e−16

R2 = 0.72 , p < 2.2e−16

0

20

40

60

20 30 40
BMI

B
F

_i
m

pe
da

nc
e

R2 = 0.3 , p < 2.2e−16

R2 = 0.53 , p < 2.2e−16

0

20

40

60

30 60 90 120
Weight

B
F

_i
m

pe
da

nc
e

R2 = 0.079 , p < 2.2e−16

R2 = 0.023 , p = 1.5e−12

0

20

40

60

1.4 1.6 1.8 2.0
Height

B
F

_i
m

pe
da

nc
e

R2 = 0.63 , p < 2.2e−16

R2 = 0.7 , p < 2.2e−16

20

40

60

20 30 40
BMI

B
F

_D
X

A

R2 = 0.44 , p < 2.2e−16

R2 = 0.62 , p < 2.2e−16

20

40

60

30 60 90 120
Weight

B
F

_D
X

A

R2 = 7.7e−05 , p = 0.69

R2 = 0.0022 , p = 0.029

20

40

60

1.4 1.6 1.8 2.0
Height

B
F

_D
X

A

Figure A.4: Correlation between body fat percentage and anthropometric measures in adoles-
cents. Scatter plots are presented alongside Pearson’s correlation coefficients for each sex; data for
males are in grey and females in red. Column 1 = impedance; column 2 = BF calculated using equation
(4.1); column 3 = BF derived from impedance device; column 4 = BF derived from dual energy x-ray
absorptiometry (DXA). Impedance is given as ohms. Data is presented for complete cases across: QC’d
metabolomics, body mass index, waist hip ratio (children only), impedance, height, weight, age, sex, and
BF derived by impedance and DXA in adolescents. Available on GitHub.
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Metabolites

Table A.5: List of metabolites available in the Avon Longitudinal Study of Parents and Children

Metabolite Label Class Subclass Derived

ala Alanine (mmol/l) Amino acids Amino acids no

gln Glutamine (mmol/l) Amino acids Amino acids no

his Histidine (mmol/l) Amino acids Amino acids no

apoa1 Apolipoprotein A-I (g/l) Apolipoproteins Apolipoproteins no

apob Apolipoprotein B (g/l) Apolipoproteins Apolipoproteins no

apobapoa1 Ratio of apolipoprotein B to apolipoprotein

A-I

Apolipoproteins Apolipoproteins no

phe Phenylalanine (mmol/l) Amino acids Aromatic amino acids no

tyr Tyrosine (mmol/l) Amino acids Aromatic amino acids no

ile Isoleucine (mmol/l) Amino acids Branched-chain amino

acids

no

leu Leucine (mmol/l) Amino acids Branched-chain amino

acids

no

val Valine (mmol/l) Amino acids Branched-chain amino

acids

no

estc Esterified cholesterol (mmol/l) Cholesterol Cholesterol no

freec Free cholesterol (mmol/l) Cholesterol Cholesterol no

remnantc Remnant cholesterol (non-HDL, non-LDL

-cholesterol) (mmol/l)

Cholesterol Cholesterol no

serumc Serum total cholesterol (mmol/l) Cholesterol Cholesterol no

hdlc Total cholesterol in HDL (mmol/l) Cholesterol Cholesterol no

hdl2c Total cholesterol in HDL2 (mmol/l) Cholesterol Cholesterol no

hdl3c Total cholesterol in HDL3 (mmol/l) Cholesterol Cholesterol no

ldlc Total cholesterol in LDL (mmol/l) Cholesterol Cholesterol no

vldlc Total cholesterol in VLDL (mmol/l) Cholesterol Cholesterol no

xxlvldlce Cholesterol esters in chylomicrons and

extremely large VLDL (mmol/l)

Lipoprotein

subclasses

Extremely large VLDL no

xxlvldlp Concentration of chylomicrons and extremely

large VLDL particles (mol/l)

Lipoprotein

subclasses

Extremely large VLDL no

xxlvldlfc Free cholesterol in chylomicrons and

extremely large VLDL (mmol/l)

Lipoprotein

subclasses

Extremely large VLDL no

xxlvldlpl Phospholipids in chylomicrons and extremely

large VLDL (mmol/l)

Lipoprotein

subclasses

Extremely large VLDL no

xxlvldlc Total cholesterol in chylomicrons and

extremely large VLDL (mmol/l)

Lipoprotein

subclasses

Extremely large VLDL no

xxlvldll Total lipids in chylomicrons and extremely

large VLDL (mmol/l)

Lipoprotein

subclasses

Extremely large VLDL no

xxlvldltg Triglycerides in chylomicrons and extremely

large VLDL (mmol/l)

Lipoprotein

subclasses

Extremely large VLDL no
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Table A.5: List of metabolites available in the Avon Longitudinal Study of Parents and Children (continued)

Metabolite Label Class Subclass Derived

xxlvldlcepct Cholesterol esters in chylomicrons and

extremely large VLDL to total lipids in

chylomicrons and extremely large VLDL ratio

(%)

Lipoprotein

subclasses ratios

Extremely large VLDL

ratios

yes

xxlvldlfcpct Free cholesterol in chylomicrons and

extremely large VLDL to total lipids in

chylomicrons and extremely large VLDL ratio

(%)

Lipoprotein

subclasses ratios

Extremely large VLDL

ratios

yes

xxlvldlplpct Phospholipids in chylomicrons and extremely

large VLDL to total lipids in chylomicrons and

extremely large VLDL ratio (%)

Lipoprotein

subclasses ratios

Extremely large VLDL

ratios

yes

xxlvldlcpct Total cholesterol in chylomicrons and

extremely large VLDL to total lipids in

chylomicrons and extremely large VLDL ratio

(%)

Lipoprotein

subclasses ratios

Extremely large VLDL

ratios

yes

xxlvldltgpct Triglycerides in chylomicrons and extremely

large VLDL to total lipids in chylomicrons and

extremely large VLDL ratio (%)

Lipoprotein

subclasses ratios

Extremely large VLDL

ratios

yes

la 18:2, linoleic acid (mmol/l) Fatty acids Fatty acids no

dha 22:6, docosahexaenoic acid (mmol/l) Fatty acids Fatty acids no

cla Conjugated linoleic acid (mmol/l) Fatty acids Fatty acids no

unsat Estimated degree of unsaturation Fatty acids Fatty acids no

unsatdeg Estimated degree of unsaturation Fatty acids Fatty acids yes

falen Estimated description of fatty acid chain

length, not actual carbon number

Fatty acids Fatty acids no

mufa Monounsaturated fatty acids; 16:1, 18:1

(mmol/l)

Fatty acids Fatty acids no

faw3 Omega-3 fatty acids (mmol/l) Fatty acids Fatty acids no

faw6 Omega-6 fatty acids (mmol/l) Fatty acids Fatty acids no

pufa Polyunsaturated fatty acids (mmol/l) Fatty acids Fatty acids no

sfa Saturated fatty acids (mmol/l) Fatty acids Fatty acids no

totfa Total fatty acids (mmol/l) Fatty acids Fatty acids no

lafa Ratio of 18:2 linoleic acid to total fatty acids

(%)

Fatty acids ratios Fatty acids ratios yes

dhafa Ratio of 22:6 docosahexaenoic acid to total

fatty acids (%)

Fatty acids ratios Fatty acids ratios yes

clafa Ratio of conjugated linoleic acid to total fatty

acids (%)

Fatty acids ratios Fatty acids ratios yes

mufafa Ratio of monounsaturated fatty acids to total

fatty acids (%)

Fatty acids ratios Fatty acids ratios yes
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Table A.5: List of metabolites available in the Avon Longitudinal Study of Parents and Children (continued)

Metabolite Label Class Subclass Derived

faw3fa Ratio of omega-3 fatty acids to total fatty

acids (%)

Fatty acids ratios Fatty acids ratios yes

faw6fa Ratio of omega-6 fatty acids to total fatty

acids (%)

Fatty acids ratios Fatty acids ratios yes

pufafa Ratio of polyunsaturated fatty acids to total

fatty acids (%)

Fatty acids ratios Fatty acids ratios yes

sfafa Ratio of saturated fatty acids to total fatty

acids (%)

Fatty acids ratios Fatty acids ratios yes

alb Albumin (signal area) Fluid balance Fluid balance no

crea Creatinine (mmol/l) Fluid balance Fluid balance no

dag Diacylglycerol (mmol/l) Glycerides and

phospholipids

Glycerides and

phospholipids

no

pc Phosphatidylcholine and other cholines

(mmol/l)

Glycerides and

phospholipids

Glycerides and

phospholipids

no

serumtg Serum total triglycerides (mmol/l) Glycerides and

phospholipids

Glycerides and

phospholipids

no

sm Sphingomyelins (mmol/l) Glycerides and

phospholipids

Glycerides and

phospholipids

no

totcho Total cholines (mmol/l) Glycerides and

phospholipids

Glycerides and

phospholipids

no

totpg Total phosphoglycerides (mmol/l) Glycerides and

phospholipids

Glycerides and

phospholipids

no

hdltg Triglycerides in HDL (mmol/l) Glycerides and

phospholipids

Glycerides and

phospholipids

no

ldltg Triglycerides in LDL (mmol/l) Glycerides and

phospholipids

Glycerides and

phospholipids

no

vldltg Triglycerides in VLDL (mmol/l) Glycerides and

phospholipids

Glycerides and

phospholipids

no

dagtg Ratio of diacylglycerol to triglycerides (%) Glycerides and

phospholipids ratios

Glycerides and

phospholipids ratios

yes

tgpg Ratio of triglycerides to phosphoglycerides

ratio (%)

Glycerides and

phospholipids ratios

Glycerides and

phospholipids ratios

yes

cit Citrate (mmol/l) Glycolysis related

metabolites

Glycolysis related

metabolites

no

glc Glucose (mmol/l) Glycolysis related

metabolites

Glycolysis related

metabolites

no

lac Lactate (mmol/l) Glycolysis related

metabolites

Glycolysis related

metabolites

no

pyr Pyruvate (mmol/l) Glycolysis related

metabolites

Glycolysis related

metabolites

no

idlce Cholesterol esters in IDL (mmol/l) Lipoprotein

subclasses

IDL no
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Table A.5: List of metabolites available in the Avon Longitudinal Study of Parents and Children (continued)

Metabolite Label Class Subclass Derived

idlp Concentration of IDL particles (mol/l) Lipoprotein

subclasses

IDL no

idlfc Free cholesterol in IDL (mmol/l) Lipoprotein

subclasses

IDL no

idlpl Phospholipids in IDL (mmol/l) Lipoprotein

subclasses

IDL no

idlc Total cholesterol in IDL (mmol/l) Lipoprotein

subclasses

IDL no

idll Total lipids in IDL (mmol/l) Lipoprotein

subclasses

IDL no

idltg Triglycerides in IDL (mmol/l) Lipoprotein

subclasses

IDL no

idlcepct Cholesterol esters in IDL to total lipids in IDL

ratio (%)

Lipoprotein

subclasses ratios

IDL ratios yes

idlfcpct Free cholesterol in IDL to total lipids in IDL

ratio (%)

Lipoprotein

subclasses ratios

IDL ratios yes

idlplpct Phospholipids in IDL to total lipids in IDL ratio

(%)

Lipoprotein

subclasses ratios

IDL ratios yes

idlcpct Total cholesterol in IDL to total lipids in IDL

ratio (%)

Lipoprotein

subclasses ratios

IDL ratios yes

idltgpct Triglycerides in IDL to total lipids in IDL ratio

(%)

Lipoprotein

subclasses ratios

IDL ratios yes

gp Glycoprotein acetyls, mainly a1-acid

glycoprotein (mmol/l)

Inflammation Inflammation no

bohbut 3-hydroxybutyrate (mmol/l) Ketone bodies Ketone bodies no

ace Acetate (mmol/l) Ketone bodies Ketone bodies no

acace Acetoacetate (mmol/l) Ketone bodies Ketone bodies no

lhdlce Cholesterol esters in large HDL (mmol/l) Lipoprotein

subclasses

Large HDL no

lhdlp Concentration of large HDL particles (mol/l) Lipoprotein

subclasses

Large HDL no

lhdlfc Free cholesterol in large HDL (mmol/l) Lipoprotein

subclasses

Large HDL no

lhdlpl Phospholipids in large HDL (mmol/l) Lipoprotein

subclasses

Large HDL no

lhdlc Total cholesterol in large HDL (mmol/l) Lipoprotein

subclasses

Large HDL no

lhdll Total lipids in large HDL (mmol/l) Lipoprotein

subclasses

Large HDL no

lhdltg Triglycerides in large HDL (mmol/l) Lipoprotein

subclasses

Large HDL no

lhdlcepct Cholesterol esters in large HDL to total lipids

in large HDL ratio (%)

Lipoprotein

subclasses ratios

Large HDL ratios yes
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Table A.5: List of metabolites available in the Avon Longitudinal Study of Parents and Children (continued)

Metabolite Label Class Subclass Derived

lhdlfcpct Free cholesterol in large HDL to total lipids in

large HDL ratio (%)

Lipoprotein

subclasses ratios

Large HDL ratios yes

lhdlplpct Phospholipids in large HDL to total lipids in

large HDL ratio (%)

Lipoprotein

subclasses ratios

Large HDL ratios yes

lhdlcpct Total cholesterol in large HDL to total lipids in

large HDL ratio (%)

Lipoprotein

subclasses ratios

Large HDL ratios yes

lhdltgpct Triglycerides in large HDL to total lipids in

large HDL ratio (%)

Lipoprotein

subclasses ratios

Large HDL ratios yes

lldlce Cholesterol esters in large LDL (mmol/l) Lipoprotein

subclasses

Large LDL no

lldlp Concentration of large LDL particles (mol/l) Lipoprotein

subclasses

Large LDL no

lldlfc Free cholesterol in large LDL (mmol/l) Lipoprotein

subclasses

Large LDL no

lldlpl Phospholipids in large LDL (mmol/l) Lipoprotein

subclasses

Large LDL no

lldlc Total cholesterol in large LDL (mmol/l) Lipoprotein

subclasses

Large LDL no

lldll Total lipids in large LDL (mmol/l) Lipoprotein

subclasses

Large LDL no

lldltg Triglycerides in large LDL (mmol/l) Lipoprotein

subclasses

Large LDL no

lldlcepct Cholesterol esters in large LDL to total lipids

in large LDL ratio (%)

Lipoprotein

subclasses ratios

Large LDL ratios yes

lldlcpct Total cholesterol in large LDL to total lipids in

large LDL ratio (%)

Lipoprotein

subclasses ratios

Large LDL ratios yes

lldlfcpct Free cholesterol in large LDL to total lipids in

large LDL ratio (%)

Lipoprotein

subclasses ratios

Large LDL ratios yes

lldlplpct Phospholipids in large LDL to total lipids in

large LDL ratio (%)

Lipoprotein

subclasses ratios

Large LDL ratios yes

lldltgpct Triglycerides in large LDL to total lipids in

large LDL ratio (%)

Lipoprotein

subclasses ratios

Large LDL ratios yes

lvldlce Cholesterol esters in large VLDL (mmol/l) Lipoprotein

subclasses

Large VLDL no

lvldlp Concentration of large VLDL particles (mol/l) Lipoprotein

subclasses

Large VLDL no

lvldlfc Free cholesterol in large VLDL (mmol/l) Lipoprotein

subclasses

Large VLDL no

lvldlpl Phospholipids in large VLDL (mmol/l) Lipoprotein

subclasses

Large VLDL no

lvldlc Total cholesterol in large VLDL (mmol/l) Lipoprotein

subclasses

Large VLDL no

lvldll Total lipids in large VLDL (mmol/l) Lipoprotein

subclasses

Large VLDL no
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Table A.5: List of metabolites available in the Avon Longitudinal Study of Parents and Children (continued)

Metabolite Label Class Subclass Derived

lvldltg Triglycerides in large VLDL (mmol/l) Lipoprotein

subclasses

Large VLDL no

lvldlcepct Cholesterol esters in large VLDL to total

lipids in large VLDL ratio (%)

Lipoprotein

subclasses ratios

Large VLDL ratios yes

lvldlfcpct Free cholesterol in large VLDL to total lipids

in large VLDL ratio (%)

Lipoprotein

subclasses ratios

Large VLDL ratios yes

lvldlplpct Phospholipids in large VLDL to total lipids in

large VLDL ratio (%)

Lipoprotein

subclasses ratios

Large VLDL ratios yes

lvldlcpct Total cholesterol in large VLDL to total lipids

in large VLDL ratio (%)

Lipoprotein

subclasses ratios

Large VLDL ratios yes

lvldltgpct Triglycerides in large VLDL to total lipids in

large VLDL ratio (%)

Lipoprotein

subclasses ratios

Large VLDL ratios yes

hdld Mean diameter for HDL particles (nm) Lipoprotein particle

size

Lipoprotein particle

size

no

ldld Mean diameter for LDL particles (nm) Lipoprotein particle

size

Lipoprotein particle

size

no

vldld Mean diameter for VLDL particles (nm) Lipoprotein particle

size

Lipoprotein particle

size

no

mhdlce Cholesterol esters in medium HDL (mmol/l) Lipoprotein

subclasses

Medium HDL no

mhdlp Concentration of medium HDL particles

(mol/l)

Lipoprotein

subclasses

Medium HDL no

mhdlfc Free cholesterol in medium HDL (mmol/l) Lipoprotein

subclasses

Medium HDL no

mhdlpl Phospholipids in medium HDL (mmol/l) Lipoprotein

subclasses

Medium HDL no

mhdlc Total cholesterol in medium HDL (mmol/l) Lipoprotein

subclasses

Medium HDL no

mhdll Total lipids in medium HDL (mmol/l) Lipoprotein

subclasses

Medium HDL no

mhdltg Triglycerides in medium HDL (mmol/l) Lipoprotein

subclasses

Medium HDL no

mhdlcepct Cholesterol esters in medium HDL to total

lipids in medium HDL ratio (%)

Lipoprotein

subclasses ratios

Medium HDL ratios yes

mhdlfcpct Free cholesterol in medium HDL to total

lipids in medium HDL ratio (%)

Lipoprotein

subclasses ratios

Medium HDL ratios yes

mhdlplpct Phospholipids in medium HDL to total lipids

in medium HDL ratio (%)

Lipoprotein

subclasses ratios

Medium HDL ratios yes

mhdlcpct Total cholesterol in medium HDL to total

lipids in medium HDL ratio (%)

Lipoprotein

subclasses ratios

Medium HDL ratios yes

mhdltgpct Triglycerides in medium HDL to total lipids in

medium HDL ratio (%)

Lipoprotein

subclasses ratios

Medium HDL ratios yes
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Table A.5: List of metabolites available in the Avon Longitudinal Study of Parents and Children (continued)

Metabolite Label Class Subclass Derived

mldlce Cholesterol esters in medium LDL (mmol/l) Lipoprotein

subclasses

Medium LDL no

mldlp Concentration of medium LDL particles

(mol/l)

Lipoprotein

subclasses

Medium LDL no

mldlfc Free cholesterol in medium LDL (mmol/l) Lipoprotein

subclasses

Medium LDL no

mldlpl Phospholipids in medium LDL (mmol/l) Lipoprotein

subclasses

Medium LDL no

mldlc Total cholesterol in medium LDL (mmol/l) Lipoprotein

subclasses

Medium LDL no

mldll Total lipids in medium LDL (mmol/l) Lipoprotein

subclasses

Medium LDL no

mldltg Triglycerides in medium LDL (mmol/l) Lipoprotein

subclasses

Medium LDL no

mldlcepct Cholesterol esters in medium LDL to total

lipids in medium LDL ratio (%)

Lipoprotein

subclasses ratios

Medium LDL ratios yes

mldlfcpct Free cholesterol in medium LDL to total lipids

in medium LDL ratio (%)

Lipoprotein

subclasses ratios

Medium LDL ratios yes

mldlplpct Phospholipids in medium LDL to total lipids

in medium LDL ratio (%)

Lipoprotein

subclasses ratios

Medium LDL ratios yes

mldlcpct Total cholesterol in medium LDL to total lipids

in medium LDL ratio (%)

Lipoprotein

subclasses ratios

Medium LDL ratios yes

mldltgpct Triglycerides in medium LDL to total lipids in

medium LDL ratio (%)

Lipoprotein

subclasses ratios

Medium LDL ratios yes

mvldlce Cholesterol esters in medium VLDL (mmol/l) Lipoprotein

subclasses

Medium VLDL no

mvldlp Concentration of medium VLDL particles

(mol/l)

Lipoprotein

subclasses

Medium VLDL no

mvldlfc Free cholesterol in medium VLDL (mmol/l) Lipoprotein

subclasses

Medium VLDL no

mvldlpl Phospholipids in medium VLDL (mmol/l) Lipoprotein

subclasses

Medium VLDL no

mvldlc Total cholesterol in medium VLDL (mmol/l) Lipoprotein

subclasses

Medium VLDL no

mvldll Total lipids in medium VLDL (mmol/l) Lipoprotein

subclasses

Medium VLDL no

mvldltg Triglycerides in medium VLDL (mmol/l) Lipoprotein

subclasses

Medium VLDL no

mvldlcepct Cholesterol esters in medium VLDL to total

lipids in medium VLDL ratio (%)

Lipoprotein

subclasses ratios

Medium VLDL ratios yes

mvldlfcpct Free cholesterol in medium VLDL to total

lipids in medium VLDL ratio (%)

Lipoprotein

subclasses ratios

Medium VLDL ratios yes

mvldlplpct Phospholipids in medium VLDL to total lipids

in medium VLDL ratio (%)

Lipoprotein

subclasses ratios

Medium VLDL ratios yes
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Table A.5: List of metabolites available in the Avon Longitudinal Study of Parents and Children (continued)

Metabolite Label Class Subclass Derived

mvldlcpct Total cholesterol in medium VLDL to total

lipids in medium VLDL ratio (%)

Lipoprotein

subclasses ratios

Medium VLDL ratios yes

mvldltgpct Triglycerides in medium VLDL to total lipids

in medium VLDL ratio (%)

Lipoprotein

subclasses ratios

Medium VLDL ratios yes

shdlce Cholesterol esters in small HDL (mmol/l) Lipoprotein

subclasses

Small HDL no

shdlp Concentration of small HDL particles (mol/l) Lipoprotein

subclasses

Small HDL no

shdlfc Free cholesterol in small HDL (mmol/l) Lipoprotein

subclasses

Small HDL no

shdlpl Phospholipids in small HDL (mmol/l) Lipoprotein

subclasses

Small HDL no

shdlc Total cholesterol in small HDL (mmol/l) Lipoprotein

subclasses

Small HDL no

shdll Total lipids in small HDL (mmol/l) Lipoprotein

subclasses

Small HDL no

shdltg Triglycerides in small HDL (mmol/l) Lipoprotein

subclasses

Small HDL no

shdlcepct Cholesterol esters in small HDL to total lipids

in small HDL ratio (%)

Lipoprotein

subclasses ratios

Small HDL ratios yes

shdlfcpct Free cholesterol in small HDL to total lipids in

small HDL ratio (%)

Lipoprotein

subclasses ratios

Small HDL ratios yes

shdlplpct Phospholipids in small HDL to total lipids in

small HDL ratio (%)

Lipoprotein

subclasses ratios

Small HDL ratios yes

shdlcpct Total cholesterol in small HDL to total lipids in

small HDL ratio (%)

Lipoprotein

subclasses ratios

Small HDL ratios yes

shdltgpct Triglycerides in small HDL to total lipids in

small HDL ratio (%)

Lipoprotein

subclasses ratios

Small HDL ratios yes

sldlce Cholesterol esters in small LDL (mmol/l) Lipoprotein

subclasses

Small LDL no

sldlp Concentration of small LDL particles (mol/l) Lipoprotein

subclasses

Small LDL no

sldlfc Free cholesterol in small LDL (mmol/l) Lipoprotein

subclasses

Small LDL no

sldlpl Phospholipids in small LDL (mmol/l) Lipoprotein

subclasses

Small LDL no

sldlc Total cholesterol in small LDL (mmol/l) Lipoprotein

subclasses

Small LDL no

sldll Total lipids in small LDL (mmol/l) Lipoprotein

subclasses

Small LDL no

sldltg Triglycerides in small LDL (mmol/l) Lipoprotein

subclasses

Small LDL no

sldlcepct Cholesterol esters in small LDL to total lipids

in small LDL ratio (%)

Lipoprotein

subclasses ratios

Small LDL ratios yes
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Table A.5: List of metabolites available in the Avon Longitudinal Study of Parents and Children (continued)

Metabolite Label Class Subclass Derived

sldlfcpct Free cholesterol in small LDL to total lipids in

small LDL ratio (%)

Lipoprotein

subclasses ratios

Small LDL ratios yes

sldlplpct Phospholipids in small LDL to total lipids in

small LDL ratio (%)

Lipoprotein

subclasses ratios

Small LDL ratios yes

sldlcpct Total cholesterol in small LDL to total lipids in

small LDL ratio (%)

Lipoprotein

subclasses ratios

Small LDL ratios yes

sldltgpct Triglycerides in small LDL to total lipids in

small LDL ratio (%)

Lipoprotein

subclasses ratios

Small LDL ratios yes

svldlce Cholesterol esters in small VLDL (mmol/l) Lipoprotein

subclasses

Small VLDL no

svldlp Concentration of small VLDL particles (mol/l) Lipoprotein

subclasses

Small VLDL no

svldlfc Free cholesterol in small VLDL (mmol/l) Lipoprotein

subclasses

Small VLDL no

svldlpl Phospholipids in small VLDL (mmol/l) Lipoprotein

subclasses

Small VLDL no

svldlc Total cholesterol in small VLDL (mmol/l) Lipoprotein

subclasses

Small VLDL no

svldll Total lipids in small VLDL (mmol/l) Lipoprotein

subclasses

Small VLDL no

svldltg Triglycerides in small VLDL (mmol/l) Lipoprotein

subclasses

Small VLDL no

svldlcepct Cholesterol esters in small VLDL to total

lipids in small VLDL ratio (%)

Lipoprotein

subclasses ratios

Small VLDL ratios yes

svldlfcpct Free cholesterol in small VLDL to total lipids

in small VLDL ratio (%)

Lipoprotein

subclasses ratios

Small VLDL ratios yes

svldlplpct Phospholipids in small VLDL to total lipids in

small VLDL ratio (%)

Lipoprotein

subclasses ratios

Small VLDL ratios yes

svldlcpct Total cholesterol in small VLDL to total lipids

in small VLDL ratio (%)

Lipoprotein

subclasses ratios

Small VLDL ratios yes

svldltgpct Triglycerides in small VLDL to total lipids in

small VLDL ratio (%)

Lipoprotein

subclasses ratios

Small VLDL ratios yes

xlhdlce Cholesterol esters in very large HDL (mmol/l) Lipoprotein

subclasses

Very large HDL no

xlhdlp Concentration of very large HDL particles

(mol/l)

Lipoprotein

subclasses

Very large HDL no

xlhdlfc Free cholesterol in very large HDL (mmol/l) Lipoprotein

subclasses

Very large HDL no

xlhdlpl Phospholipids in very large HDL (mmol/l) Lipoprotein

subclasses

Very large HDL no

xlhdlc Total cholesterol in very large HDL (mmol/l) Lipoprotein

subclasses

Very large HDL no

xlhdll Total lipids in very large HDL (mmol/l) Lipoprotein

subclasses

Very large HDL no
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Table A.5: List of metabolites available in the Avon Longitudinal Study of Parents and Children (continued)

Metabolite Label Class Subclass Derived

xlhdltg Triglycerides in very large HDL (mmol/l) Lipoprotein

subclasses

Very large HDL no

xlhdlcepct Cholesterol esters in very large HDL to total

lipids in very large HDL ratio (%)

Lipoprotein

subclasses ratios

Very large HDL ratios yes

xlhdlfcpct Free cholesterol in very large HDL to total

lipids in very large HDL ratio (%)

Lipoprotein

subclasses ratios

Very large HDL ratios yes

xlhdlplpct Phospholipids in very large HDL to total lipids

in very large HDL ratio (%)

Lipoprotein

subclasses ratios

Very large HDL ratios yes

xlhdlcpct Total cholesterol in very large HDL to total

lipids in very large HDL ratio (%)

Lipoprotein

subclasses ratios

Very large HDL ratios yes

xlhdltgpct Triglycerides in very large HDL to total lipids

in very large HDL ratio (%)

Lipoprotein

subclasses ratios

Very large HDL ratios yes

xlvldlce Cholesterol esters in very large VLDL

(mmol/l)

Lipoprotein

subclasses

Very large VLDL no

xlvldlp Concentration of very large VLDL particles

(mol/l)

Lipoprotein

subclasses

Very large VLDL no

xlvldlfc Free cholesterol in very large VLDL (mmol/l) Lipoprotein

subclasses

Very large VLDL no

xlvldlpl Phospholipids in very large VLDL (mmol/l) Lipoprotein

subclasses

Very large VLDL no

xlvldlc Total cholesterol in very large VLDL (mmol/l) Lipoprotein

subclasses

Very large VLDL no

xlvldll Total lipids in very large VLDL (mmol/l) Lipoprotein

subclasses

Very large VLDL no

xlvldltg Triglycerides in very large VLDL (mmol/l) Lipoprotein

subclasses

Very large VLDL no

xlvldlcepct Cholesterol esters in very large VLDL to total

lipids in very large VLDL ratio (%)

Lipoprotein

subclasses ratios

Very large VLDL ratios yes

xlvldlfcpct Free cholesterol in very large VLDL to total

lipids in very large VLDL ratio (%)

Lipoprotein

subclasses ratios

Very large VLDL ratios yes

xlvldlplpct Phospholipids in very large VLDL to total

lipids in very large VLDL ratio (%)

Lipoprotein

subclasses ratios

Very large VLDL ratios yes

xlvldlcpct Total cholesterol in very large VLDL to total

lipids in very large VLDL ratio (%)

Lipoprotein

subclasses ratios

Very large VLDL ratios yes

xlvldltgpct Triglycerides in very large VLDL to total lipids

in very large VLDL ratio (%)

Lipoprotein

subclasses ratios

Very large VLDL ratios yes

xsvldlce Cholesterol esters in very small VLDL

(mmol/l)

Lipoprotein

subclasses

Very Small VLDL no

xsvldlp Concentration of very small VLDL particles

(mol/l)

Lipoprotein

subclasses

Very Small VLDL no

xsvldlfc Free cholesterol in very small VLDL (mmol/l) Lipoprotein

subclasses

Very Small VLDL no

xsvldlpl Phospholipids in very small VLDL (mmol/l) Lipoprotein

subclasses

Very Small VLDL no
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Table A.5: List of metabolites available in the Avon Longitudinal Study of Parents and Children (continued)

Metabolite Label Class Subclass Derived

xsvldlc Total cholesterol in very small VLDL (mmol/l) Lipoprotein

subclasses

Very Small VLDL no

xsvldll Total lipids in very small VLDL (mmol/l) Lipoprotein

subclasses

Very Small VLDL no

xsvldltg Triglycerides in very small VLDL (mmol/l) Lipoprotein

subclasses

Very Small VLDL no

xsvldlcepct Cholesterol esters in very small VLDL to total

lipids in very small VLDL ratio (%)

Lipoprotein

subclasses ratios

Very Small VLDL

ratios

yes

xsvldlfcpct Free cholesterol in very small VLDL to total

lipids in very small VLDL ratio (%)

Lipoprotein

subclasses ratios

Very Small VLDL

ratios

yes

xsvldlplpct Phospholipids in very small VLDL to total

lipids in very small VLDL ratio (%)

Lipoprotein

subclasses ratios

Very Small VLDL

ratios

yes

xsvldlcpct Total cholesterol in very small VLDL to total

lipids in very small VLDL ratio (%)

Lipoprotein

subclasses ratios

Very Small VLDL

ratios

yes

xsvldltgpct Triglycerides in very small VLDL to total lipids

in very small VLDL ratio (%)

Lipoprotein

subclasses ratios

Very Small VLDL

ratios

yes

Metabolites are given with the originally measured units along with the Class and Subclass provided by the metabolomics

platform and whether the metabolite is directly measured (no) or a derived metabolite measure.
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A.3.2 Results

Correlations

Due to the large number of tests performed, concordance between and within models, exposures,

and age groups was investigated using Spearman’s correlations. Results are separated into three

sections (i) for correlations across models within exposures and age groups (e.g., correlation between

model 1 and 2 for the effect of BMI on metabolites in children), (ii) for correlations across exposures

within age groups for model 2 (e.g., correlation between the effect of BMI on metabolites and WHR on

metabolites in children), and (iii) for correlations across exposures within age groups (e.g., correlation

between the effect of BMI on metabolites in children and the effect of BMI on metabolites in adolescents).

Correlation results across models within exposures (BMI, WHR, and BF) and within age groups

(children, adolescents, young adults, and adults):

[1] "Children BMI"

model1 model2

model1 1.0000000 0.9552825

model2 0.9552825 1.0000000

[1] "Children WHR"

model1 model2

model1 1.000000 0.999278

model2 0.999278 1.000000

[1] "Children BF"

model1 model2

model1 1.0000000 0.9407415
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model2 0.9407415 1.0000000

[1] "Adolescents BMI"

model1 model2 model3

model1 1.0000000 0.9795601 0.9521372

model2 0.9795601 1.0000000 0.9741246

model3 0.9521372 0.9741246 1.0000000

[1] "Adolescents BF"

model1 model2 model3

model1 1.0000000 0.9571041 0.9459728

model2 0.9571041 1.0000000 0.9418077

model3 0.9459728 0.9418077 1.0000000

[1] "Young adults BMI"

model1 model2 model3

model1 1.0000000 0.9918482 0.8245953

model2 0.9918482 1.0000000 0.8143402

model3 0.8245953 0.8143402 1.0000000

[1] "Young adults WHR"

model1 model2 model3

model1 1.0000000 0.9992526 0.9606961

model2 0.9992526 1.0000000 0.9594533

model3 0.9606961 0.9594533 1.0000000

[1] "Young adults BF"
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model1 model2 model3

model1 1.0000000 0.9923692 0.8796946

model2 0.9923692 1.0000000 0.8642943

model3 0.8796946 0.8642943 1.0000000

[1] "Adults BMI"

model1 model2 model3

model1 1.0000000 0.9760175 0.9650574

model2 0.9760175 1.0000000 0.9947999

model3 0.9650574 0.9947999 1.0000000

[1] "Adults WHR"

model1 model2 model3

model1 1.0000000 0.9982737 0.9517970

model2 0.9982737 1.0000000 0.9554885

model3 0.9517970 0.9554885 1.0000000

[1] "Adults BF"

model1 model2 model3

model1 1.0000000 0.9945195 0.9771555

model2 0.9945195 1.0000000 0.9850295

model3 0.9771555 0.9850295 1.0000000
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Correlation results across exposures (BMI, WHR, and BF) within age groups (children, adoles-

cents, young adults, and adults) for model 2:

[1] "Children"

bf bmi whr

bf 1.0000000 0.8914358 0.6066604

bmi 0.8914358 1.0000000 0.7711406

whr 0.6066604 0.7711406 1.0000000

[1] "Adolescents"

bf bmi

bf 1.0000000 0.9377422

bmi 0.9377422 1.0000000

[1] "Young adults"

bf bmi whr

bf 1.0000000 0.9659641 0.8012407

bmi 0.9659641 1.0000000 0.8123532

whr 0.8012407 0.8123532 1.0000000

[1] "Adults"

bf bmi whr

bf 1.0000000 0.9179145 0.9542118

bmi 0.9179145 1.0000000 0.9366665

whr 0.9542118 0.9366665 1.0000000
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Correlation results within exposures (BMI, WHR, and BF) across age age groups (children, ado-

lescents, young adults, and adults) for model 2:

[1] "BMI"

adolescents adults children young_adults

adolescents 1.0000000 0.4808187 0.7695565 0.7356921

adults 0.4808187 1.0000000 0.5592282 0.6902187

children 0.7695565 0.5592282 1.0000000 0.7299576

young_adults 0.7356921 0.6902187 0.7299576 1.0000000

[1] "WHR"

adults children young_adults

adults 1.0000000 0.5473523 0.7357566

children 0.5473523 1.0000000 0.5023414

young_adults 0.7357566 0.5023414 1.0000000

[1] "BF"

adolescents adults children young_adults

adolescents 1.0000000 0.5328382 0.8151367 0.6930515

adults 0.5328382 1.0000000 0.5135602 0.7160939

children 0.8151367 0.5135602 1.0000000 0.7088497

young_adults 0.6930515 0.7160939 0.7088497 1.0000000
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Distribution of adiposity measures
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Figure A.5: Distribution of adiposity measures across all age groups. Plots give the distribution of
all adiposity measures across age groups by sex. Body fat percentage (BF) in children is derived from
equation (4.1). BMI = body mass index; WHR = waist hip ratio. Data is presented for all individuals given
in Table 4.3. The interquartile range and median are also shown. Raincloud plots produced using the
RainCloudPlots R package670.
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Linear regression results

The following two forest plots show the results from linear regression analysis for all exposures and

age groups for model 2 (age, sex, maternal or own education, smoking status, alcohol consumption,

diet (calories consumed per day)). The first plot shows all directly measured metabolites; the second

plot shows derived metabolite measures such as ratios. Four Circos plots are presented after this; each

Circos plot shows the results from linear regression analysis for all exposures within an age group for

model 2.

296



● ●●

●● ●

●●●

●● ●

●● ●

●● ●

●● ●

● ●●

●●●

●●●

●● ●

●●●

●● ●

●● ●

●● ●

●●●

●●●

●● ●

●●●

●● ●

●● ●

● ●●

● ●●

●●●

● ●●

●●●

●●●

● ●●

● ●●

● ●●

●●●

● ●●

●●●

●●●

● ●●

● ●●

● ●●

●●●

● ●●

● ●●

●●●

● ●●

● ●●

●● ●

●●●

●● ●

●● ●

●● ●

●● ●

IDL

Extremely large VLDL

Very large VLDL

Large VLDL

Medium VLDL

Small VLDL

Very Small VLDL

0.00 0.02 0.04 0.06

0.000 0.002 0.004 0.006

0.000 0.005 0.010 0.015 0.020

0.00 0.02 0.04 0.06

0.00 0.03 0.06 0.09

0.00 0.02 0.04 0.06 0.08

0.00 0.01 0.02 0.03

xsvldltg
xsvldlpl
xsvldlp
xsvldll

xsvldlfc
xsvldlce

xsvldlc

svldltg
svldlpl
svldlp
svldll

svldlfc
svldlce

svldlc

mvldltg
mvldlpl
mvldlp
mvldll

mvldlfc
mvldlce

mvldlc

lvldltg
lvldlpl
lvldlp
lvldll

lvldlfc
lvldlce

lvldlc

xlvldltg
xlvldlpl
xlvldlp
xlvldll

xlvldlfc
xlvldlce

xlvldlc

xxlvldltg
xxlvldlpl
xxlvldlp
xxlvldll

xxlvldlfc
xxlvldlce

xxlvldlc

idltg
idlpl
idlp
idll

idlfc
idlce

idlc

● ●●

●● ●

●●●

●● ●

●● ●

●● ●

●● ●

● ●●

●● ●

●●●

●● ●

●● ●

●● ●

●● ●

● ●●

●● ●

●●●

●● ●

●● ●

●● ●

●● ●

● ●●

●● ●

●●●

●● ●

●●●

●● ●

●● ●

●●●

●● ●

●●●

●● ●

●●●

●● ●

●● ●

●●●

● ●●

●●●

● ●●

● ●●

● ●●

● ●●

●●●

● ●●

●●●

● ●●

● ●●

● ●●

● ●●

●●●

● ●●

●●●

Ketone bodies

Very large HDL

Large HDL

Medium HDL

Small HDL

Large LDL

Medium LDL

Small LDL

−0.010 −0.005 0.000 0.005

−0.08 −0.06 −0.04 −0.02 0.00

−0.10 −0.05 0.00

−0.03 −0.02 −0.01 0.00

0.00 0.01 0.02 0.03

0.00 0.02 0.04 0.06

0.00 0.01 0.02 0.03 0.04

0.00 0.01 0.02 0.03

sldltg
sldlpl
sldlp
sldll

sldlfc
sldlce

sldlc

mldltg
mldlpl
mldlp
mldll

mldlfc
mldlce

mldlc

lldltg
lldlpl
lldlp
lldll

lldlfc
lldlce

lldlc

shdltg
shdlpl
shdlp
shdll

shdlfc
shdlce

shdlc

mhdltg
mhdlpl
mhdlp
mhdll

mhdlfc
mhdlce

mhdlc

lhdltg
lhdlpl
lhdlp
lhdll

lhdlfc
lhdlce

lhdlc

xlhdltg
xlhdlpl
xlhdlp
xlhdll

xlhdlfc
xlhdlce

xlhdlc

bohbut
ace

acace

●● ●

●●●

●● ●

● ● ●

●●●

● ●●

● ●●

● ●●

● ●●

● ●●

● ●●

●●●

●●●

●● ●

●●●

● ●●

● ●●

● ●●

● ●●

● ●●

● ●●

●●●

● ●●

●●●

●●●

●● ●

●● ●

●● ●

●● ●

● ●●

● ●●

● ●●

●● ●

●● ●

●● ●

●● ●

● ●●

●● ●

● ● ●

● ● ●

● ● ●

● ●●

● ●●

● ●●

● ●●

Amino acids

Aromatic amino acids

Branched−chain amino acids

Apolipoproteins

Cholesterol

Fatty acids

Fluid balance

Glycerides and phospholipids

Glycolysis related metabolites

Inflammation

−0.01 0.00 0.01

0.000 0.001 0.002 0.003

0.000 0.003 0.006 0.009 0.012

−0.050 −0.025 0.000 0.025 0.050

−0.1 0.0 0.1

0.0 0.2 0.4

−0.001 0.000 0.001

−0.05 0.00 0.05 0.10 0.15 0.20

−0.05 0.00 0.05 0.10 0.15 0.20

0.00 0.02 0.04 0.06 0.08

gp

pyr
lac
glc
cit

vldltg
totpg

totcho
sm

serumtg
pc

ldltg
hdltg
dag

crea
alb

unsat
totfa

sfa
pufa
mufa

la
faw6
faw3
falen
dha
cla

vldlc
serumc

remnantc
ldlc

hdlc
hdl3c
hdl2c
freec
estc

apobapoa1
apob

apoa1

val
leu
ile

tyr
phe

his
gln
ala

exposure
●

●

●

BF

WHR

BMI

group

●

Adults

Young adults

Adolescents

Children

Figure A.6: Linear regression analysis: association between adiposity measures and directly
measured metabolites. Forest plot shows effect estimates and 95% confidence intervals from model 2
(age, sex, maternal or own education, smoking status, alcohol consumption, diet (calories consumed per
day)) for all exposures and age groups. Units represent the unit change in each metabolite per standard
deviation change in the exposure. Available on GitHub. An alternative forest plot in long form is also
available on GitHub.
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Figure A.7: Linear regression analysis: association between adiposity measures and derived
metabolites. Forest plot shows effect estimates and 95% confidence intervals from model 2 (age, sex,
maternal or own education, smoking status, alcohol consumption, diet (calories consumed per day)) for
all exposures and age groups. Units represent the unit change in each metabolite per standard deviation
change in the exposure. Available on GitHub. An alternative forest plot in long form is also available on
GitHub.
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Figure A.8: Linear regression analysis: association between adiposity measures and derived
metabolites in children. Circos plot shows effect estimates and 95% confidence intervals from model
2 for all exposures in children. Effect estimates are absolute change in metabolite per standard deviation
increase in exposure. The outer track is body mass index (BMI), the middle track is waist hip ratio
(WHR), the inner track is body fat percentage (BF). Solid points indicate a multiple testing threshold has
been met; multiple testing threshold (0.05/54) set as the number of independent metabolite features as
calculated by metaboprep. Available on GitHub.
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Figure A.9: Linear regression analysis: association between adiposity measures and derived
metabolites in adolescents. Circos plot shows effect estimates and 95% confidence intervals from
model 2 for all exposures in adolescents. Effect estimates are absolute change in metabolite per
standard deviation increase in exposure. The outer track is body mass index (BMI), the inner track is
body fat percentage (BF). Solid points indicate a multiple testing threshold has been met; multiple testing
threshold (0.05/48) set as the number of independent metabolite features as calculated by metaboprep.
Available on GitHub.
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Figure A.10: Linear regression analysis: association between adiposity measures and derived
metabolites in young adults. Circos plot shows effect estimates and 95% confidence intervals from
model 2 for all exposures in young adults. Effect estimates are absolute change in metabolite per
standard deviation increase in exposure. The outer track is body mass index (BMI), the middle track
is waist hip ratio (WHR), the inner track is body fat percentage (BF). Solid points indicate a multiple
testing threshold has been met; multiple testing threshold (0.05/46) set as the number of independent
metabolite features as calculated by metaboprep. Available on GitHub.
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Figure A.11: Linear regression analysis: association between adiposity measures and derived
metabolites in adults. Circos plot shows effect estimates and 95% confidence intervals from model 2
for all exposures in adults. Effect estimates are absolute change in metabolite per standard deviation
increase in exposure. The outer track is body mass index (BMI), the middle track is waist hip ratio
(WHR), the inner track is body fat percentage (BF). Solid points indicate a multiple testing threshold has
been met; multiple testing threshold (0.05/53) set as the number of independent metabolite features as
calculated by metaboprep. Available on GitHub.

302

https://github.com/mattlee821/000_thesis/blob/master/index/data/observational/figures/circosplot_derived_metabolites_adults.pdf


A.4 Chapter 5: Associations between multiple measures of adiposity

and metabolites: Mendelian randomization analysis

In Chapter 5, the association between adiposity measures and NMR derived metabolites and ratios

was investigated using MR. Summary statistics from multiple genome-wide association studies (GWAS)

were used to obtain genetic variants (single nucleotide polymorphisms; SNPs). The following sections

on exposures detail the GWAS used in additional analyses in Chapter 5 which aimed to test the validity

of instruments used in the main analysis. The outcomes section gives a table of metabolites used in

these analyses. The results sections present figures for the sensitivity and additional analyses described

and summarised in the main text of Chapter 5.

A.4.1 Methods

Exposure instruments

In the main analysis, BMI, WHR, and BF were instrumented using SNPs from Yengo et al. (2018)53,

Pulit et al. (2019)54, and Lu et al. (206)51, respectively. Additional instrument lists were obtained for each

of the adiposity measures. A list of all instruments used is available on GitHub. The following details the

GWAS from which summary statistics for these additional SNP lists were obtained.

Body mass index Two additional instrument lists were used for BMI. The first came from the same

study as used in the main analysis (Yengo et al. (2019)) but did not use the conditional and joint analysis

(COJO) GWAS summary statistics. COJO analyses attempt to identify secondary signals (SNPs) at

each genome-wide association study (GWAS) identified loci after controlling for linkage disequilibrium

(LD). That is, the presence of a secondary signal is conditional on the presence of the first671. As such,

COJO analyses may increase the number of available genetic instruments for MR analysis without

introducing additional biases as a result of LD, such as falsely narrow confidence intervals (CIs). Few

studies have investigated the use of COJO-GWAS summary statistics in MR analyses. The study by

Yew et al., (2020)672, which used the Yengo et al. (2019) COJO-GWAS for BMI, found little evidence

for a difference in resulting effect estimates of the association between BMI and atopic dermatitis when
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using the 941-SNP genetic instrument compared to instruments with different LD (thresholds included r2

0.001, 0.001, 0.1, 0.2, and 0.5) pruning thresholds. They did not however compare results to the Yengo

et al., (2019) non-COJO-GWAS for BMI. The GWAS for the non-COJO and COJO genetic instruments

were the same, and are presented in the main text. Briefly, data were available from 515,509–795,624

individuals of European ancestries from two sources, the Genetic Investigation of Anthropometric Traits

(GIANT) consortium48 and UK Biobank. In both sources, BMI was calculated as
weight (kg)
height (m2) . Yengo

et al., (2018)53 performed a fixed effects inverse variance weighted meta-analysis of BMI using GWAS

results generated from UK Biobank (N = 456,426) and results from the GIANT consortium, Locke et al.,

(2015)48 (N = 322,154) using METAL559. A total of 656 primary associations (i.e., non-COJO SNPs)

reaching a genome-wide significance threshold of p-value < 5 x 10-8 were identified and used for the

additional analysis here.

The second instrument list came from Locke et al. (2015), in which 322,154 individuals of European

ancestries were included in a fixed effects inverse variance weighted meta-analysis. This GWAS was

the GIANT component of the Yengo et al., meta-analysis, and is described in detail in the main text

of Chapter 5. Briefly, a total of 82 GWAS and 43 studies using the Metabochip array were included

in the meta-analysis by Locke et al. Individual GWAS were adjusted for age, age-squared, and study

specific covariates with residuals inverse rank normally transformed. Imputation was performed using the

HapMap phase II Utah residents of Northern and Western European ancestries (CEU) reference panel.

Each study used a linear regression model assuming an additive genetic model with quality control

following procedures outlined previously606. A fixed effect inverse variance weighted meta-analysis was

performed using METAL for the 82 GWAS and 43 studies using the Metabochip array separately. The

final meta-analysis combined the GWAS meta-analysis and Metabochip meta-analysis results using

a fixed effects inverse variance weighted model. A total of 77 loci reaching genome-wide significance

(p-value < 5 x 10-8) and separated by at least 500 kilobases were identified and used for the addional

analysis here.

Waist hip ratio In the main MR analysis, summary statistics for waist hip ratio (WHR) from Pulit et

al. (2019) were used. Pulit et al., performed a fixed effects inverse variance weighted meta-analysis from

two sources, UK Biobank and the GIANT consortium. For the UK Biobank GWAS, the second release

(June 2017) of UK Biobank data, which did not have corrected imputation at non-human reference

consortium (HRC) sites, was used. Briefly, data were available from 485,486—697,702 individuals of
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European ancestries from two sources, UK Biobank and the GIANT consortium49. In both sources, WHR

was calculated as
waist circumference (cm)
hip circumference (cm) . Pulit et al., (2019)54 performed a fixed effects inverse

variance weighted meta-analysis of WHR using GWAS results generated from UK Biobank (N up to

485,486 (men up to 263,148; women up to 222,338)) and results from the GIANT consortium (N up

to 212,248 (men up to 94,434; women up to 118,004))49 using METAL. The GIANT component of this

meta-analysis was used in the additional analysis here.

In GIANT, Shungin et al., (2015)49 performed a fixed effects inverse variance weighted meta-analysis

of up to 212,248 individuals of European ancestries. Individual studies recruited participants and

undertook sample and SNP quality control. These studies used genome-wide or Metabochip arrays for

sequencing. In studies using genome-wide arrays, imputation was performed with CEU haplotypes from

HapMap. Metabochip arrays target specific genetic variants and imputation was not performed. For

both study types, an additive genetic model was assumed, with each study running a linear regression

GWAS. Sex-specific summary statistics were corrected for population structure using the genomic control

inflation factor. Prior to meta-analysis of the genome-wide array GWAS and Metabochip array GWAS,

SNPs were removed if they had a minor allele count ≤ 3, were not in Hardy-Weinberg equilibrium

(p-value < 10-6), had a call rate < 95% or an imputation quality score < 0.3 for MACH, < 0.4 for IMPUTE,

and < 0.8 for PLINK. In step 1, a meta-analysis of each array was performed using a fixed effects inverse

variance weighted model and corrected for genomic control to account for structure between cohorts. In

step 2, summary statistics from the meta-analysis of genome-wide array and Metabochip array GWAS

were meta-analysed using a fixed effects inverse variance weighted model using METAL. In this second

step genomic correction was not performed. In total, 210,088 individuals of European ancestries were

included. A total of 26 loci reaching genome-wide significance (p-value < 5 x 10-8) and separated by at

least 500 kilobases were identified and used in additional analysis here.

Body fat percentage For BF, two additional instruments were used. The first used summary statistics

from the study by Lu et al. (2016)51, used in the main analysis, after removal of two SNPs which had

been previously associated with ‘favourable adiposity’47,565. The second came from summary statistics

from Hubel et al. (2019)55 who analysed data from up to 155,961 (female = 70,700; male = 85,261)

individuals of European ancestries from UK Biobank. Body composition was assessed using bioelectrical

impedance (Tanita BC-418 MA; Tanita Corporation, Arlington Heights, IL); fat mass and fat free mass

was calculated from raw impedance data adjusting for age, sex, height and athleticism (variable not
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described). BF was calculated as
fat mass (kg)
weight (kg) ∗ 100. Hubel et al., performed a fixed effects inverse

variance weighted meta-analysis of two sex-specific GWAS using METAL. The sex-specific GWAS were

performed using a linear regression model assuming an additive genetic model using BGENIE (V1.2).

BF residuals were adjusted for age, socioeconomic status (measured by Townsend deprivation index),

assessment centre, genotyping batch, smoking status, alcohol consumption, menopause and the first

6 PCs. Genotypes were imputed to the Human Reference Consortium. A total of 76 loci reaching a

genome-wide significance threshold of p-value < 5 x 10-8 and separated by at least 3,000 kilobases were

identified and used in additional analysis here.
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Metabolites

Table A.6: Metabolites used in Mendelian randomization analyses

Metabolite Label Class Subclass Derived Study

ala Alanine (mmol/l) Amino acids Amino acids no Both

gln Glutamine (mmol/l) Amino acids Amino acids no Both

gly Glycine (mmol/l) Amino acids Amino acids no INTERVAL

his Histidine (mmol/l) Amino acids Amino acids no Both

Urea Amino acids Amino acids Kettunen

phe Phenylalanine (mmol/l) Amino acids Aromatic amino acids no Both

tyr Tyrosine (mmol/l) Amino acids Aromatic amino acids no Both

ile Isoleucine (mmol/l) Amino acids Branched-chain amino

acids

no Both

leu Leucine (mmol/l) Amino acids Branched-chain amino

acids

no Both

val Valine (mmol/l) Amino acids Branched-chain amino

acids

no Both

apoa1 Apolipoprotein A-I (g/l) Apolipoproteins Apolipoproteins no Both

apob Apolipoprotein B (g/l) Apolipoproteins Apolipoproteins no Both

apobapoa1 Ratio of apolipoprotein B to apolipoprotein

A-I

Apolipoproteins Apolipoproteins no INTERVAL

estc Esterified cholesterol (mmol/l) Cholesterol Cholesterol no Both

freec Free cholesterol (mmol/l) Cholesterol Cholesterol no Both

remnantc Remnant cholesterol (non-HDL, non-LDL

-cholesterol) (mmol/l)

Cholesterol Cholesterol no INTERVAL

serumc Serum total cholesterol (mmol/l) Cholesterol Cholesterol no Both

hdlc Total cholesterol in HDL (mmol/l) Cholesterol Cholesterol no Both

hdl2c Total cholesterol in HDL2 (mmol/l) Cholesterol Cholesterol no INTERVAL

hdl3c Total cholesterol in HDL3 (mmol/l) Cholesterol Cholesterol no INTERVAL

ldlc Total cholesterol in LDL (mmol/l) Cholesterol Cholesterol no Both

vldlc Total cholesterol in VLDL (mmol/l) Cholesterol Cholesterol no INTERVAL

la 18:2, linoleic acid (mmol/l) Fatty acids Fatty acids no Both

dha 22:6, docosahexaenoic acid (mmol/l) Fatty acids Fatty acids no Both

Average number of double bonds in a fatty

acid chain

Fatty acids Fatty acids Kettunen

Average number of methylene groups in a

fatty acid chain

Fatty acids Fatty acids Kettunen

cla Conjugated linoleic acid (mmol/l) Fatty acids Fatty acids no INTERVAL

unsat Estimated degree of unsaturation Fatty acids Fatty acids no INTERVAL

falen Estimated description of fatty acid chain

length, not actual carbon number

Fatty acids Fatty acids no Both

mufa Monounsaturated fatty acids; 16:1, 18:1

(mmol/l)

Fatty acids Fatty acids no Both
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Table A.6: Metabolites used in Mendelian randomization analyses (continued)

Metabolite Label Class Subclass Derived Study

faw3 Omega-3 fatty acids (mmol/l) Fatty acids Fatty acids no Both

faw6 Omega-6 fatty acids (mmol/l) Fatty acids Fatty acids no Both

Omega-7, omega-9 and saturated fatty acids Fatty acids Fatty acids Kettunen

Other polyunsaturated fatty acids than 18:2 Fatty acids Fatty acids Kettunen

pufa Polyunsaturated fatty acids (mmol/l) Fatty acids Fatty acids no INTERVAL

Ratio of bisallylic groups to total fatty acids Fatty acids Fatty acids Kettunen

sfa Saturated fatty acids (mmol/l) Fatty acids Fatty acids no INTERVAL

totfa Total fatty acids (mmol/l) Fatty acids Fatty acids no Both

lafa Ratio of 18:2 linoleic acid to total fatty acids

(%)

Fatty acids ratios Fatty acids ratios yes INTERVAL

dhafa Ratio of 22:6 docosahexaenoic acid to total

fatty acids (%)

Fatty acids ratios Fatty acids ratios yes INTERVAL

clafa Ratio of conjugated linoleic acid to total fatty

acids (%)

Fatty acids ratios Fatty acids ratios yes INTERVAL

mufafa Ratio of monounsaturated fatty acids to total

fatty acids (%)

Fatty acids ratios Fatty acids ratios yes INTERVAL

faw3fa Ratio of omega-3 fatty acids to total fatty

acids (%)

Fatty acids ratios Fatty acids ratios yes INTERVAL

faw6fa Ratio of omega-6 fatty acids to total fatty

acids (%)

Fatty acids ratios Fatty acids ratios yes INTERVAL

pufafa Ratio of polyunsaturated fatty acids to total

fatty acids (%)

Fatty acids ratios Fatty acids ratios yes INTERVAL

sfafa Ratio of saturated fatty acids to total fatty

acids (%)

Fatty acids ratios Fatty acids ratios yes INTERVAL

alb Albumin (signal area) Fluid balance Fluid balance no Both

crea Creatinine (mmol/l) Fluid balance Fluid balance no Both

dag Diacylglycerol (mmol/l) Glycerides and

phospholipids

Glycerides and

phospholipids

no INTERVAL

pc Phosphatidylcholine and other cholines

(mmol/l)

Glycerides and

phospholipids

Glycerides and

phospholipids

no Both

serumtg Serum total triglycerides (mmol/l) Glycerides and

phospholipids

Glycerides and

phospholipids

no Both

sm Sphingomyelins (mmol/l) Glycerides and

phospholipids

Glycerides and

phospholipids

no Both

totcho Total cholines (mmol/l) Glycerides and

phospholipids

Glycerides and

phospholipids

no INTERVAL

totpg Total phosphoglycerides (mmol/l) Glycerides and

phospholipids

Glycerides and

phospholipids

no Both

hdltg Triglycerides in HDL (mmol/l) Glycerides and

phospholipids

Glycerides and

phospholipids

no INTERVAL
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Table A.6: Metabolites used in Mendelian randomization analyses (continued)

Metabolite Label Class Subclass Derived Study

ldltg Triglycerides in LDL (mmol/l) Glycerides and

phospholipids

Glycerides and

phospholipids

no INTERVAL

vldltg Triglycerides in VLDL (mmol/l) Glycerides and

phospholipids

Glycerides and

phospholipids

no INTERVAL

dagtg Ratio of diacylglycerol to triglycerides (%) Glycerides and

phospholipids ratios

Glycerides and

phospholipids ratios

yes INTERVAL

tgpg Ratio of triglycerides to phosphoglycerides

ratio (%)

Glycerides and

phospholipids ratios

Glycerides and

phospholipids ratios

yes INTERVAL

cit Citrate (mmol/l) Glycolysis related

metabolites

Glycolysis related

metabolites

no Both

glc Glucose (mmol/l) Glycolysis related

metabolites

Glycolysis related

metabolites

no Both

glol Glycerol (mmol/l) Glycolysis related

metabolites

Glycolysis related

metabolites

no Both

lac Lactate (mmol/l) Glycolysis related

metabolites

Glycolysis related

metabolites

no Both

pyr Pyruvate (mmol/l) Glycolysis related

metabolites

Glycolysis related

metabolites

no Both

gp Glycoprotein acetyls, mainly a1-acid

glycoprotein (mmol/l)

Inflammation Inflammation no Both

bohbut 3-hydroxybutyrate (mmol/l) Ketone bodies Ketone bodies no Both

ace Acetate (mmol/l) Ketone bodies Ketone bodies no Both

acace Acetoacetate (mmol/l) Ketone bodies Ketone bodies no Both

hdld Mean diameter for HDL particles (nm) Lipoprotein particle

size

Lipoprotein particle

size

no Both

ldld Mean diameter for LDL particles (nm) Lipoprotein particle

size

Lipoprotein particle

size

no Both

vldld Mean diameter for VLDL particles (nm) Lipoprotein particle

size

Lipoprotein particle

size

no Both

xxlvldlce Cholesterol esters in chylomicrons and

extremely large VLDL (mmol/l)

Lipoprotein

subclasses

Extremely large VLDL no INTERVAL

xxlvldlp Concentration of chylomicrons and extremely

large VLDL particles (mol/l)

Lipoprotein

subclasses

Extremely large VLDL no Both

xxlvldlfc Free cholesterol in chylomicrons and

extremely large VLDL (mmol/l)

Lipoprotein

subclasses

Extremely large VLDL no INTERVAL

xxlvldlpl Phospholipids in chylomicrons and extremely

large VLDL (mmol/l)

Lipoprotein

subclasses

Extremely large VLDL no Both

xxlvldlc Total cholesterol in chylomicrons and

extremely large VLDL (mmol/l)

Lipoprotein

subclasses

Extremely large VLDL no INTERVAL

xxlvldll Total lipids in chylomicrons and extremely

large VLDL (mmol/l)

Lipoprotein

subclasses

Extremely large VLDL no Both

xxlvldltg Triglycerides in chylomicrons and extremely

large VLDL (mmol/l)

Lipoprotein

subclasses

Extremely large VLDL no Both
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Table A.6: Metabolites used in Mendelian randomization analyses (continued)

Metabolite Label Class Subclass Derived Study

idlce Cholesterol esters in IDL (mmol/l) Lipoprotein

subclasses

IDL no INTERVAL

idlp Concentration of IDL particles (mol/l) Lipoprotein

subclasses

IDL no Both

idlfc Free cholesterol in IDL (mmol/l) Lipoprotein

subclasses

IDL no Both

idlpl Phospholipids in IDL (mmol/l) Lipoprotein

subclasses

IDL no Both

idlc Total cholesterol in IDL (mmol/l) Lipoprotein

subclasses

IDL no Both

idll Total lipids in IDL (mmol/l) Lipoprotein

subclasses

IDL no Both

idltg Triglycerides in IDL (mmol/l) Lipoprotein

subclasses

IDL no Both

lhdlce Cholesterol esters in large HDL (mmol/l) Lipoprotein

subclasses

Large HDL no Both

lhdlp Concentration of large HDL particles (mol/l) Lipoprotein

subclasses

Large HDL no Both

lhdlfc Free cholesterol in large HDL (mmol/l) Lipoprotein

subclasses

Large HDL no Both

lhdlpl Phospholipids in large HDL (mmol/l) Lipoprotein

subclasses

Large HDL no Both

lhdlc Total cholesterol in large HDL (mmol/l) Lipoprotein

subclasses

Large HDL no Both

lhdll Total lipids in large HDL (mmol/l) Lipoprotein

subclasses

Large HDL no Both

lhdltg Triglycerides in large HDL (mmol/l) Lipoprotein

subclasses

Large HDL no INTERVAL

lldlce Cholesterol esters in large LDL (mmol/l) Lipoprotein

subclasses

Large LDL no Both

lldlp Concentration of large LDL particles (mol/l) Lipoprotein

subclasses

Large LDL no Both

lldlfc Free cholesterol in large LDL (mmol/l) Lipoprotein

subclasses

Large LDL no Both

lldlpl Phospholipids in large LDL (mmol/l) Lipoprotein

subclasses

Large LDL no Both

lldlc Total cholesterol in large LDL (mmol/l) Lipoprotein

subclasses

Large LDL no Both

lldll Total lipids in large LDL (mmol/l) Lipoprotein

subclasses

Large LDL no Both

lldltg Triglycerides in large LDL (mmol/l) Lipoprotein

subclasses

Large LDL no INTERVAL

lvldlce Cholesterol esters in large VLDL (mmol/l) Lipoprotein

subclasses

Large VLDL no Both
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Table A.6: Metabolites used in Mendelian randomization analyses (continued)

Metabolite Label Class Subclass Derived Study

lvldlp Concentration of large VLDL particles (mol/l) Lipoprotein

subclasses

Large VLDL no Both

lvldlfc Free cholesterol in large VLDL (mmol/l) Lipoprotein

subclasses

Large VLDL no Both

lvldlpl Phospholipids in large VLDL (mmol/l) Lipoprotein

subclasses

Large VLDL no Both

lvldlc Total cholesterol in large VLDL (mmol/l) Lipoprotein

subclasses

Large VLDL no Both

lvldll Total lipids in large VLDL (mmol/l) Lipoprotein

subclasses

Large VLDL no Both

lvldltg Triglycerides in large VLDL (mmol/l) Lipoprotein

subclasses

Large VLDL no Both

mhdlce Cholesterol esters in medium HDL (mmol/l) Lipoprotein

subclasses

Medium HDL no Both

mhdlp Concentration of medium HDL particles

(mol/l)

Lipoprotein

subclasses

Medium HDL no Both

mhdlfc Free cholesterol in medium HDL (mmol/l) Lipoprotein

subclasses

Medium HDL no Both

mhdlpl Phospholipids in medium HDL (mmol/l) Lipoprotein

subclasses

Medium HDL no Both

mhdlc Total cholesterol in medium HDL (mmol/l) Lipoprotein

subclasses

Medium HDL no Both

mhdll Total lipids in medium HDL (mmol/l) Lipoprotein

subclasses

Medium HDL no Both

mhdltg Triglycerides in medium HDL (mmol/l) Lipoprotein

subclasses

Medium HDL no INTERVAL

mldlce Cholesterol esters in medium LDL (mmol/l) Lipoprotein

subclasses

Medium LDL no Both

mldlp Concentration of medium LDL particles

(mol/l)

Lipoprotein

subclasses

Medium LDL no Both

mldlfc Free cholesterol in medium LDL (mmol/l) Lipoprotein

subclasses

Medium LDL no INTERVAL

mldlpl Phospholipids in medium LDL (mmol/l) Lipoprotein

subclasses

Medium LDL no Both

mldlc Total cholesterol in medium LDL (mmol/l) Lipoprotein

subclasses

Medium LDL no Both

mldll Total lipids in medium LDL (mmol/l) Lipoprotein

subclasses

Medium LDL no Both

mldltg Triglycerides in medium LDL (mmol/l) Lipoprotein

subclasses

Medium LDL no INTERVAL

mvldlce Cholesterol esters in medium VLDL (mmol/l) Lipoprotein

subclasses

Medium VLDL no Both

mvldlp Concentration of medium VLDL particles

(mol/l)

Lipoprotein

subclasses

Medium VLDL no Both
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Table A.6: Metabolites used in Mendelian randomization analyses (continued)

Metabolite Label Class Subclass Derived Study

mvldlfc Free cholesterol in medium VLDL (mmol/l) Lipoprotein

subclasses

Medium VLDL no Both

mvldlpl Phospholipids in medium VLDL (mmol/l) Lipoprotein

subclasses

Medium VLDL no Both

mvldlc Total cholesterol in medium VLDL (mmol/l) Lipoprotein

subclasses

Medium VLDL no Both

mvldll Total lipids in medium VLDL (mmol/l) Lipoprotein

subclasses

Medium VLDL no Both

mvldltg Triglycerides in medium VLDL (mmol/l) Lipoprotein

subclasses

Medium VLDL no Both

shdlce Cholesterol esters in small HDL (mmol/l) Lipoprotein

subclasses

Small HDL no INTERVAL

shdlp Concentration of small HDL particles (mol/l) Lipoprotein

subclasses

Small HDL no Both

shdlfc Free cholesterol in small HDL (mmol/l) Lipoprotein

subclasses

Small HDL no INTERVAL

shdlpl Phospholipids in small HDL (mmol/l) Lipoprotein

subclasses

Small HDL no INTERVAL

shdlc Total cholesterol in small HDL (mmol/l) Lipoprotein

subclasses

Small HDL no INTERVAL

shdll Total lipids in small HDL (mmol/l) Lipoprotein

subclasses

Small HDL no Both

shdltg Triglycerides in small HDL (mmol/l) Lipoprotein

subclasses

Small HDL no Both

sldlce Cholesterol esters in small LDL (mmol/l) Lipoprotein

subclasses

Small LDL no INTERVAL

sldlp Concentration of small LDL particles (mol/l) Lipoprotein

subclasses

Small LDL no Both

sldlfc Free cholesterol in small LDL (mmol/l) Lipoprotein

subclasses

Small LDL no INTERVAL

sldlpl Phospholipids in small LDL (mmol/l) Lipoprotein

subclasses

Small LDL no INTERVAL

sldlc Total cholesterol in small LDL (mmol/l) Lipoprotein

subclasses

Small LDL no Both

sldll Total lipids in small LDL (mmol/l) Lipoprotein

subclasses

Small LDL no Both

sldltg Triglycerides in small LDL (mmol/l) Lipoprotein

subclasses

Small LDL no INTERVAL

svldlce Cholesterol esters in small VLDL (mmol/l) Lipoprotein

subclasses

Small VLDL no INTERVAL

svldlp Concentration of small VLDL particles (mol/l) Lipoprotein

subclasses

Small VLDL no Both

svldlfc Free cholesterol in small VLDL (mmol/l) Lipoprotein

subclasses

Small VLDL no Both

312



Table A.6: Metabolites used in Mendelian randomization analyses (continued)

Metabolite Label Class Subclass Derived Study

svldlpl Phospholipids in small VLDL (mmol/l) Lipoprotein

subclasses

Small VLDL no Both

svldlc Total cholesterol in small VLDL (mmol/l) Lipoprotein

subclasses

Small VLDL no Both

svldll Total lipids in small VLDL (mmol/l) Lipoprotein

subclasses

Small VLDL no Both

svldltg Triglycerides in small VLDL (mmol/l) Lipoprotein

subclasses

Small VLDL no Both

xlhdlce Cholesterol esters in very large HDL (mmol/l) Lipoprotein

subclasses

Very large HDL no Both

xlhdlp Concentration of very large HDL particles

(mol/l)

Lipoprotein

subclasses

Very large HDL no Both

xlhdlfc Free cholesterol in very large HDL (mmol/l) Lipoprotein

subclasses

Very large HDL no Both

xlhdlpl Phospholipids in very large HDL (mmol/l) Lipoprotein

subclasses

Very large HDL no Both

xlhdlc Total cholesterol in very large HDL (mmol/l) Lipoprotein

subclasses

Very large HDL no Both

xlhdll Total lipids in very large HDL (mmol/l) Lipoprotein

subclasses

Very large HDL no Both

xlhdltg Triglycerides in very large HDL (mmol/l) Lipoprotein

subclasses

Very large HDL no Both

xlvldlce Cholesterol esters in very large VLDL

(mmol/l)

Lipoprotein

subclasses

Very large VLDL no INTERVAL

xlvldlp Concentration of very large VLDL particles

(mol/l)

Lipoprotein

subclasses

Very large VLDL no Both

xlvldlfc Free cholesterol in very large VLDL (mmol/l) Lipoprotein

subclasses

Very large VLDL no INTERVAL

xlvldlpl Phospholipids in very large VLDL (mmol/l) Lipoprotein

subclasses

Very large VLDL no Both

xlvldlc Total cholesterol in very large VLDL (mmol/l) Lipoprotein

subclasses

Very large VLDL no INTERVAL

xlvldll Total lipids in very large VLDL (mmol/l) Lipoprotein

subclasses

Very large VLDL no Both

xlvldltg Triglycerides in very large VLDL (mmol/l) Lipoprotein

subclasses

Very large VLDL no Both

xsvldlce Cholesterol esters in very small VLDL

(mmol/l)

Lipoprotein

subclasses

Very Small VLDL no INTERVAL

xsvldlp Concentration of very small VLDL particles

(mol/l)

Lipoprotein

subclasses

Very Small VLDL no Both

xsvldlfc Free cholesterol in very small VLDL (mmol/l) Lipoprotein

subclasses

Very Small VLDL no INTERVAL

xsvldlpl Phospholipids in very small VLDL (mmol/l) Lipoprotein

subclasses

Very Small VLDL no Both
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Table A.6: Metabolites used in Mendelian randomization analyses (continued)

Metabolite Label Class Subclass Derived Study

xsvldlc Total cholesterol in very small VLDL (mmol/l) Lipoprotein

subclasses

Very Small VLDL no INTERVAL

xsvldll Total lipids in very small VLDL (mmol/l) Lipoprotein

subclasses

Very Small VLDL no Both

xsvldltg Triglycerides in very small VLDL (mmol/l) Lipoprotein

subclasses

Very Small VLDL no Both

xxlvldlcepct Cholesterol esters in chylomicrons and

extremely large VLDL to total lipids in

chylomicrons and extremely large VLDL ratio

(%)

Lipoprotein

subclasses ratios

Extremely large VLDL

ratios

yes INTERVAL

xxlvldlfcpct Free cholesterol in chylomicrons and

extremely large VLDL to total lipids in

chylomicrons and extremely large VLDL ratio

(%)

Lipoprotein

subclasses ratios

Extremely large VLDL

ratios

yes INTERVAL

xxlvldlplpct Phospholipids in chylomicrons and extremely

large VLDL to total lipids in chylomicrons and

extremely large VLDL ratio (%)

Lipoprotein

subclasses ratios

Extremely large VLDL

ratios

yes INTERVAL

xxlvldlcpct Total cholesterol in chylomicrons and

extremely large VLDL to total lipids in

chylomicrons and extremely large VLDL ratio

(%)

Lipoprotein

subclasses ratios

Extremely large VLDL

ratios

yes INTERVAL

xxlvldltgpct Triglycerides in chylomicrons and extremely

large VLDL to total lipids in chylomicrons and

extremely large VLDL ratio (%)

Lipoprotein

subclasses ratios

Extremely large VLDL

ratios

yes INTERVAL

idlcepct Cholesterol esters in IDL to total lipids in IDL

ratio (%)

Lipoprotein

subclasses ratios

IDL ratios yes INTERVAL

idlfcpct Free cholesterol in IDL to total lipids in IDL

ratio (%)

Lipoprotein

subclasses ratios

IDL ratios yes INTERVAL

idlplpct Phospholipids in IDL to total lipids in IDL ratio

(%)

Lipoprotein

subclasses ratios

IDL ratios yes INTERVAL

idlcpct Total cholesterol in IDL to total lipids in IDL

ratio (%)

Lipoprotein

subclasses ratios

IDL ratios yes INTERVAL

idltgpct Triglycerides in IDL to total lipids in IDL ratio

(%)

Lipoprotein

subclasses ratios

IDL ratios yes INTERVAL

lhdlcepct Cholesterol esters in large HDL to total lipids

in large HDL ratio (%)

Lipoprotein

subclasses ratios

Large HDL ratios yes INTERVAL

lhdlfcpct Free cholesterol in large HDL to total lipids in

large HDL ratio (%)

Lipoprotein

subclasses ratios

Large HDL ratios yes INTERVAL

lhdlplpct Phospholipids in large HDL to total lipids in

large HDL ratio (%)

Lipoprotein

subclasses ratios

Large HDL ratios yes INTERVAL

lhdlcpct Total cholesterol in large HDL to total lipids in

large HDL ratio (%)

Lipoprotein

subclasses ratios

Large HDL ratios yes INTERVAL

314



Table A.6: Metabolites used in Mendelian randomization analyses (continued)

Metabolite Label Class Subclass Derived Study

lhdltgpct Triglycerides in large HDL to total lipids in

large HDL ratio (%)

Lipoprotein

subclasses ratios

Large HDL ratios yes INTERVAL

lldlcepct Cholesterol esters in large LDL to total lipids

in large LDL ratio (%)

Lipoprotein

subclasses ratios

Large LDL ratios yes INTERVAL

lldlfcpct Free cholesterol in large LDL to total lipids in

large LDL ratio (%)

Lipoprotein

subclasses ratios

Large LDL ratios yes INTERVAL

lldlplpct Phospholipids in large LDL to total lipids in

large LDL ratio (%)

Lipoprotein

subclasses ratios

Large LDL ratios yes INTERVAL

lldlcpct Total cholesterol in large LDL to total lipids in

large LDL ratio (%)

Lipoprotein

subclasses ratios

Large LDL ratios yes INTERVAL

lldltgpct Triglycerides in large LDL to total lipids in

large LDL ratio (%)

Lipoprotein

subclasses ratios

Large LDL ratios yes INTERVAL

lvldlcepct Cholesterol esters in large VLDL to total

lipids in large VLDL ratio (%)

Lipoprotein

subclasses ratios

Large VLDL ratios yes INTERVAL

lvldlfcpct Free cholesterol in large VLDL to total lipids

in large VLDL ratio (%)

Lipoprotein

subclasses ratios

Large VLDL ratios yes INTERVAL

lvldlplpct Phospholipids in large VLDL to total lipids in

large VLDL ratio (%)

Lipoprotein

subclasses ratios

Large VLDL ratios yes INTERVAL

lvldlcpct Total cholesterol in large VLDL to total lipids

in large VLDL ratio (%)

Lipoprotein

subclasses ratios

Large VLDL ratios yes INTERVAL

lvldltgpct Triglycerides in large VLDL to total lipids in

large VLDL ratio (%)

Lipoprotein

subclasses ratios

Large VLDL ratios yes INTERVAL

mhdlcepct Cholesterol esters in medium HDL to total

lipids in medium HDL ratio (%)

Lipoprotein

subclasses ratios

Medium HDL ratios yes INTERVAL

mhdlfcpct Free cholesterol in medium HDL to total

lipids in medium HDL ratio (%)

Lipoprotein

subclasses ratios

Medium HDL ratios yes INTERVAL

mhdlplpct Phospholipids in medium HDL to total lipids

in medium HDL ratio (%)

Lipoprotein

subclasses ratios

Medium HDL ratios yes INTERVAL

mhdlcpct Total cholesterol in medium HDL to total

lipids in medium HDL ratio (%)

Lipoprotein

subclasses ratios

Medium HDL ratios yes INTERVAL

mhdltgpct Triglycerides in medium HDL to total lipids in

medium HDL ratio (%)

Lipoprotein

subclasses ratios

Medium HDL ratios yes INTERVAL

mldlcepct Cholesterol esters in medium LDL to total

lipids in medium LDL ratio (%)

Lipoprotein

subclasses ratios

Medium LDL ratios yes INTERVAL

mldlfcpct Free cholesterol in medium LDL to total lipids

in medium LDL ratio (%)

Lipoprotein

subclasses ratios

Medium LDL ratios yes INTERVAL

mldlplpct Phospholipids in medium LDL to total lipids

in medium LDL ratio (%)

Lipoprotein

subclasses ratios

Medium LDL ratios yes INTERVAL

mldlcpct Total cholesterol in medium LDL to total lipids

in medium LDL ratio (%)

Lipoprotein

subclasses ratios

Medium LDL ratios yes INTERVAL

mldltgpct Triglycerides in medium LDL to total lipids in

medium LDL ratio (%)

Lipoprotein

subclasses ratios

Medium LDL ratios yes INTERVAL
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Table A.6: Metabolites used in Mendelian randomization analyses (continued)

Metabolite Label Class Subclass Derived Study

mvldlcepct Cholesterol esters in medium VLDL to total

lipids in medium VLDL ratio (%)

Lipoprotein

subclasses ratios

Medium VLDL ratios yes INTERVAL

mvldlfcpct Free cholesterol in medium VLDL to total

lipids in medium VLDL ratio (%)

Lipoprotein

subclasses ratios

Medium VLDL ratios yes INTERVAL

mvldlplpct Phospholipids in medium VLDL to total lipids

in medium VLDL ratio (%)

Lipoprotein

subclasses ratios

Medium VLDL ratios yes INTERVAL

mvldlcpct Total cholesterol in medium VLDL to total

lipids in medium VLDL ratio (%)

Lipoprotein

subclasses ratios

Medium VLDL ratios yes INTERVAL

mvldltgpct Triglycerides in medium VLDL to total lipids

in medium VLDL ratio (%)

Lipoprotein

subclasses ratios

Medium VLDL ratios yes INTERVAL

shdlcepct Cholesterol esters in small HDL to total lipids

in small HDL ratio (%)

Lipoprotein

subclasses ratios

Small HDL ratios yes INTERVAL

shdlfcpct Free cholesterol in small HDL to total lipids in

small HDL ratio (%)

Lipoprotein

subclasses ratios

Small HDL ratios yes INTERVAL

shdlplpct Phospholipids in small HDL to total lipids in

small HDL ratio (%)

Lipoprotein

subclasses ratios

Small HDL ratios yes INTERVAL

shdlcpct Total cholesterol in small HDL to total lipids in

small HDL ratio (%)

Lipoprotein

subclasses ratios

Small HDL ratios yes INTERVAL

shdltgpct Triglycerides in small HDL to total lipids in

small HDL ratio (%)

Lipoprotein

subclasses ratios

Small HDL ratios yes INTERVAL

sldlcepct Cholesterol esters in small LDL to total lipids

in small LDL ratio (%)

Lipoprotein

subclasses ratios

Small LDL ratios yes INTERVAL

sldlfcpct Free cholesterol in small LDL to total lipids in

small LDL ratio (%)

Lipoprotein

subclasses ratios

Small LDL ratios yes INTERVAL

sldlplpct Phospholipids in small LDL to total lipids in

small LDL ratio (%)

Lipoprotein

subclasses ratios

Small LDL ratios yes INTERVAL

sldlcpct Total cholesterol in small LDL to total lipids in

small LDL ratio (%)

Lipoprotein

subclasses ratios

Small LDL ratios yes INTERVAL

sldltgpct Triglycerides in small LDL to total lipids in

small LDL ratio (%)

Lipoprotein

subclasses ratios

Small LDL ratios yes INTERVAL

svldlcepct Cholesterol esters in small VLDL to total

lipids in small VLDL ratio (%)

Lipoprotein

subclasses ratios

Small VLDL ratios yes INTERVAL

svldlfcpct Free cholesterol in small VLDL to total lipids

in small VLDL ratio (%)

Lipoprotein

subclasses ratios

Small VLDL ratios yes INTERVAL

svldlplpct Phospholipids in small VLDL to total lipids in

small VLDL ratio (%)

Lipoprotein

subclasses ratios

Small VLDL ratios yes INTERVAL

svldlcpct Total cholesterol in small VLDL to total lipids

in small VLDL ratio (%)

Lipoprotein

subclasses ratios

Small VLDL ratios yes INTERVAL

svldltgpct Triglycerides in small VLDL to total lipids in

small VLDL ratio (%)

Lipoprotein

subclasses ratios

Small VLDL ratios yes INTERVAL

xlhdlcepct Cholesterol esters in very large HDL to total

lipids in very large HDL ratio (%)

Lipoprotein

subclasses ratios

Very large HDL ratios yes INTERVAL
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Table A.6: Metabolites used in Mendelian randomization analyses (continued)

Metabolite Label Class Subclass Derived Study

xlhdlfcpct Free cholesterol in very large HDL to total

lipids in very large HDL ratio (%)

Lipoprotein

subclasses ratios

Very large HDL ratios yes INTERVAL

xlhdlplpct Phospholipids in very large HDL to total lipids

in very large HDL ratio (%)

Lipoprotein

subclasses ratios

Very large HDL ratios yes INTERVAL

xlhdlcpct Total cholesterol in very large HDL to total

lipids in very large HDL ratio (%)

Lipoprotein

subclasses ratios

Very large HDL ratios yes INTERVAL

xlhdltgpct Triglycerides in very large HDL to total lipids

in very large HDL ratio (%)

Lipoprotein

subclasses ratios

Very large HDL ratios yes INTERVAL

xlvldlcepct Cholesterol esters in very large VLDL to total

lipids in very large VLDL ratio (%)

Lipoprotein

subclasses ratios

Very large VLDL ratios yes INTERVAL

xlvldlfcpct Free cholesterol in very large VLDL to total

lipids in very large VLDL ratio (%)

Lipoprotein

subclasses ratios

Very large VLDL ratios yes INTERVAL

xlvldlplpct Phospholipids in very large VLDL to total

lipids in very large VLDL ratio (%)

Lipoprotein

subclasses ratios

Very large VLDL ratios yes INTERVAL

xlvldlcpct Total cholesterol in very large VLDL to total

lipids in very large VLDL ratio (%)

Lipoprotein

subclasses ratios

Very large VLDL ratios yes INTERVAL

xlvldltgpct Triglycerides in very large VLDL to total lipids

in very large VLDL ratio (%)

Lipoprotein

subclasses ratios

Very large VLDL ratios yes INTERVAL

xsvldlcepct Cholesterol esters in very small VLDL to total

lipids in very small VLDL ratio (%)

Lipoprotein

subclasses ratios

Very Small VLDL

ratios

yes INTERVAL

xsvldlfcpct Free cholesterol in very small VLDL to total

lipids in very small VLDL ratio (%)

Lipoprotein

subclasses ratios

Very Small VLDL

ratios

yes INTERVAL

xsvldlplpct Phospholipids in very small VLDL to total

lipids in very small VLDL ratio (%)

Lipoprotein

subclasses ratios

Very Small VLDL

ratios

yes INTERVAL

xsvldlcpct Total cholesterol in very small VLDL to total

lipids in very small VLDL ratio (%)

Lipoprotein

subclasses ratios

Very Small VLDL

ratios

yes INTERVAL

xsvldltgpct Triglycerides in very small VLDL to total lipids

in very small VLDL ratio (%)

Lipoprotein

subclasses ratios

Very Small VLDL

ratios

yes INTERVAL

Average number of methylene groups per

double bond

Metabolites ratio Metabolites ratio Kettunen

Ratio of bisallylic groups to double bonds Metabolites ratio Metabolites ratio Kettunen

Glycoproteins Protein Protein Kettunen

Table gives the metabolite abbreviation, label with originally measured units, class and subclass the metabolites were grouped in,

whether the metabolite is a derived measure such as a ratio, and the study in which they were available. HDL = high density lipopro-

tein; LDL = low density lipoprotein; IDL = intermediate density lipoprotein; VLDL = very large low density lipoprotein.
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A.4.2 Results

F-statistics
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Figure A.12: F-statistics for individual genetic instrumental variables and mean F-statistic for
each body mass index instrument used in Mendelian randomization analyses. Mean F-statistic
for each exposure indicated by the pink diamond. The blue line indicates a nominal threshold of 10.
Exposures used in the main analysis are highlighted with coloured points. The name after each exposure
trait represents the first authors last name from the original GWAS publication for which each exposure
was obtained. The number following the first authors last name represents the number of SNPs obtained
from the original GWAS; clumped refers to this original number of SNPs having been pruned based on
an LD R2 of 0.001. BMI = body mass index. Available on GitHub.
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Figure A.13: F-statistics for individual genetic instrumental variables and mean F-statistic for
each waist hip ratio instrument used in Mendelian randomization analyses. Mean F-statistic for
each exposure indicated by the pink diamond. The blue line indicates a nominal threshold of 10.
Exposures used in the main analysis are highlighted with coloured points. The name after each exposure
trait represents the first authors last name from the original GWAS publication for which each exposure
was obtained. The number following the first authors last name represents the number of SNPs obtained
from the original GWAS; clumped refers to this original number of SNPs having been pruned based on
an LD R2 of 0.001. WHR = waist hip ratio. Available on GitHub.
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Figure A.14: F-statistics for individual genetic instrumental variables and mean F-statistic for
each body fat percentage instrument used in Mendelian randomization analyses. Mean F-statistic
for each exposure indicated by the pink diamond. The blue line indicates a nominal threshold of 10.
Exposures used in the main analysis are highlighted with coloured points. The name after each exposure
trait represents the first authors last name from the original GWAS publication for which each exposure
was obtained. The number following the first authors last name represents the number of SNPs obtained
from the original GWAS; clumped refers to this original number of SNPs having been pruned based on
an LD R2 of 0.001. BF = body fat percentage. Available on GitHub.
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Sensitivity analyses

Assumptions of no pleiotropy were explored using MR-Egger374, weighted median375 and weighted

mode376 based estimators. Globally, sensitivity analysis was visually reflective of the main analysis for

each exposure, though with wider CIs. CIs for sensitivity analyses tended to cross the null and were

widest for MR Egger, which is in keeping with the lower power afforded with this model. Sensitivity

results for WHR appeared to show most consistency with the main analysis for both the Kettunen and

INTERVAL data; CIs for weighted median and mode models did not cross the null in a majority of results

for subclasses.
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Figure A.15: Mendelian randomization sensitivity analysis: association between body mass in-
dex and metabolites using Kettunen data. Circos plot shows each track as one MR model; the outer
track is inverse variance weighted multiplicative random effects (IVW-MRE), the second track is MR
Egger, the third track is weighted median, the inner track is weighted mode. Solid points indicate a
multiple testing threshold (p-value < 0.0023) has been reached. Effect estimates represent a standard
deviation (SD) change in the outcome per SD unit increase in the exposure; 95% confidence intervals
are shown and may be hidden by the point estimate if very tight. Metabolites are grouped by subclass
and arranged alphabetically within each subclass. Available on GitHub
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Figure A.16: Mendelian randomization sensitivity analysis: association between body mass in-
dex and metabolites using INTERVAL data. Circos plot shows each track as one MR model; the
outer track is inverse variance weighted multiplicative random effects (IVW-MRE), the second track is
MR Egger, the third track is weighted median, the inner track is weighted mode Solid points indicate a
multiple testing threshold (p-value < 0.0018) has been reached. Effect estimates represent a standard
deviation (SD) change in the outcome per SD unit increase in the exposure; 95% confidence intervals
are shown and may be hidden by the point estimate if very tight. Metabolites are grouped by subclass
and arranged alphabetically within each subclass. Available on GitHub.
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Figure A.17: Mendelian randomization sensitivity analysis: association between waist hip ratio
and metabolites using Kettunen data. Circos plot shows each track as one MR model; the outer track
is inverse variance weighted multiplicative random effects (IVW-MRE), the second track is MR Egger, the
third track is weighted median, the inner track is weighted mode. Solid points indicate a multiple testing
threshold (p-value < 0.0023) has been reached. Effect estimates represent a standard deviation (SD)
change in the outcome per SD unit increase in the exposure; 95% confidence intervals are shown and
may be hidden by the point estimate if very tight. Metabolites are grouped by subclass and arranged
alphabetically within each subclass. Available on GitHub.
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Figure A.18: Mendelian randomization sensitivity analysis: association between waist hip ratio
and metabolites using INTERVAL data. Circos plot shows each track as one MR model; the outer
track is inverse variance weighted multiplicative random effects (IVW-MRE), the second track is MR
Egger, the third track is weighted median, the inner track is weighted mode Solid points indicate a
multiple testing threshold (p-value < 0.0018) has been reached. Effect estimates represent a standard
deviation (SD) change in the outcome per SD unit increase in the exposure; 95% confidence intervals
are shown and may be hidden by the point estimate if very tight. Metabolites are grouped by subclass
and arranged alphabetically within each subclass. Available on GitHub.
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Figure A.19: Mendelian randomization sensitivity analysis: association between body fat per-
centage and metabolites using Kettunen data. Circos plot shows each track as one MR model; the
outer track is inverse variance weighted multiplicative random effects (IVW-MRE), the second track is
MR Egger, the third track is weighted median, the inner track is weighted mode. Solid points indicate a
multiple testing threshold (p-value < 0.0023) has been reached. Effect estimates represent a standard
deviation (SD) change in the outcome per SD unit increase in the exposure; 95% confidence intervals
are shown and may be hidden by the point estimate if very tight. Metabolites are grouped by subclass
and arranged alphabetically within each subclass. Available on GitHub.
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Figure A.20: Mendelian randomization sensitivity analysis: association between body fat per-
centage and metabolites using INTERVAL data. Circos plot shows each track as one MR model; the
outer track is inverse variance weighted multiplicative random effects (IVW-MRE), the second track is
MR Egger, the third track is weighted median, the inner track is weighted mode Solid points indicate a
multiple testing threshold (p-value < 0.0018) has been reached. Effect estimates represent a standard
deviation (SD) change in the outcome per SD unit increase in the exposure; 95% confidence intervals
are shown and may be hidden by the point estimate if very tight. Metabolites are grouped by subclass
and arranged alphabetically within each subclass. Available on GitHub.
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Analysis using Kettunen data In single-SNP MR using Kettunen data, visual inspection of forest

plots showed S shaped distributions of effect estimates for all tests (Schematic illustration 5.8). Effect

estimates for some SNPs in the single-SNP MR analysis appeared to be outliers. For example, for the

analysis of the association between BMI and glycoproteins, rs4673553 showed a disproportionately

larger effect estimate of 22 SD units increase per SD higher BMI (standard error = 0.85; p-value = 5.66 x

10-148) when compared to other SNPs.

To further investigate SNPs with potentially outlying effect estimates, the median effect size across

all metabolites for each SNP was investigated. A number of SNPs showed larger median effect sizes

across a majority of metabolites. Funnel plots did not however highlight outlying SNPs across all

metabolites. Instead, funnel plots were reflective of some SNPs having larger effect estimates more

broadly (Representative Figure 5.9). The low number of SNPs used for BF did not result in meaningfully

interpretable funnel plots (Representative Figure 5.10).

Although a number of SNPs showed disproportionately larger effect sizes, in leave-one-out analysis,

visual inspection of forest plots showed that no single-SNP altered the direction of effect for any

metabolite across exposures. For BF, CIs for one or more SNPs crossed the null for every metabolite

tested (Representative Figure A.24). This was not the case for BMI and WHR, where, for many

metabolites, CIs did not cross the null for any SNPs (Representative Figure A.25).
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Figure A.21: Representative figure: single-SNP Mendelian randomization analysis of the asso-
ciation between body mass index and glycerol using Kettunen data. Forest plot shows the effect
estimate and 95% confidence interval for each individual SNPs effect on glycerol. Effect estimates
represent a standard deviation (SD) change in the outcome per SD unit increase in the exposure. On
the X axis is each SNP used in the analysis; the X-axis labels are squashed in order to fit the plot on the
page.
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Figure A.22: Representative figure: funnel plot of effect estimates of the association between
body mass index and glycoproteins using Kettunen data. Funnel plot shows the results of a single-
SNP Mendelian randomization analysis with effect estimate and standard error. Asymmetry in the funnel
may indicate the presence of pleiotropy.
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Figure A.23: Representative figure: funnel plot of effect estimates of the association between
body mass index and histidine using Kettunen data. Funnel plot shows the results of a single-SNP
MR with effect estimate and standard error. Asymmetry in the funnel may indicate the presence of
pleiotropy.
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Figure A.24: Representative figure: leave-one-out Mendelian randomization analysis of the as-
sociation between body fat percentage and acetoacetate using Kettunen data. A leave-one-out
analysis performs an Mendelian randomization analysis of an exposure and outcome for all SNPs ex-
cluding a different SNP each time. Forest plot shows the effect estimate and 95% confidence interval for
each SNP exclusion with acetoacetate. Effect estimates represent an SD unit change in the metabolite
per SD unit increase in the exposure.
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Figure A.25: Representative figure: leave-one-out Mendelian randomization analysis of the as-
sociation body mass index and acetate using Kettunen data. A leave-one-out analysis performs an
Mendelian randomization analysis of an exposure and outcome for all SNPs excluding a different SNP
each time. Forest plot shows the effect estimate and 95% confidence interval for each SNP exclusion
with acetoacetate. Effect estimates represent an SD unit change in the metabolite per SD unit increase
in the exposure. On the X axis is each SNP excluded from the analysis; the X-axis labels are squashed
in order to fit the plot on the page.
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Analysis using INTERVAL data Broadly speaking, sensitivity analyses using INTERVAL data

were similar to that of the sensitivity analyses using the Kettunen data. In single-SNP MR, visual

inspection of forest plots showed S shaped distributions of effect estimates for all tests similar to

analyses using the Kettunen data (Representative Figure A.26, figure also shows outlier SNP with effect

estimate close to -6). As with the Kettunen data, effect estimates for some SNPs in the single-SNP MR

analysis were much greater than others.

As with the Kettunen analysis, to investigate whether there were many SNPs with potentially outlying

effect estimates, the median effect size across all metabolites for each SNP was investigated. A number

of SNPs showed larger median effect sizes across a majority of metabolites. Many of these SNPs had

similarly large effect sizes across both the Kettunen and INTERVAL datasets. As an example, for BF,

more often than not, rs6857 showed a greater effect estimate than the other 6 SNPs and CIs that did not

overlap the null or the 6 other SNPs used as instruments. rs6857 was found in both the Kettunen and

INTERVAL data to have a disproportionately larger effect estimate than other SNPs. For BMI and WHR,

SNPs with disproportionally larger effect sizes tended to have CIs which overlapped other SNPs. The

degree of overlap was minimal however and mostly at the tail-end of the CI.

Funnel plots did not highlight outlying SNPs, but did reflect some SNPs having larger effect estimates

across the board (Representative Figure A.27). The low number of SNPs used for BF did not result in

meaningfully interpretable funnel plots (Representative Figure A.28). In leave-one-out analysis, visual

inspection of forest plots showed that no single-SNP altered the direction of effect for any metabolite

across exposures. For BF, CIs for one or more SNPs crossed the null for a majority of metabolites tested

(Representative Figure A.29). This was not the case for BMI and WHR, where CIs for many metabolite

estimates did not cross the null for any SNPs (Representative Figure A.30).
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Figure A.26: Representative figure: single-SNP Mendelian randomisation analysis of the asso-
ciation between body mass index and glycine using INTERVAL data. Forest plot shows the effect
estimate and 95% confidence interval for each individual SNPs effect on glycerol. Effect estimates
represent a standard deviation (SD) change in the outcome per SD unit increase in the exposure. On
the X axis is each SNP included in the analysis; the X-axis labels are squashed in order to fit the plot on
the page.
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Figure A.27: Representative figure: funnel plot of effect estimates of the association between
body mass index and tyrosine using INTERVAL data. Funnel plot shows the results of a single-SNP
MR with effect estimate and standard error. Asymmetry in the funnel may indicate the presence of
pleiotropy.
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Figure A.28: Representative figure: funnel plot of effect estimates of the association between
body mass index and histidine using INTERVAL data. Funnel plot shows the results of a single-SNP
MR with effect estimate and standard error. Asymmetry in the funnel may indicate the presence of
pleiotropy.
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Figure A.29: Representative figure: leave-one-out Mendelian randomization analysis of the as-
sociation between body fat percentage and acetoacetate using INTERVAL data. A leave-one-out
analysis performs an Mendelian randomization analysis of an exposure and outcome for all SNPs ex-
cluding a different SNP each time. Forest plot shows the effect estimate and 95% confidence interval for
each SNP exclusion with acetoacetate. Effect estimates represent an SD unit change in the metabolite
per SD unit increase in the exposure.
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Figure A.30: Representative figure: leave-one-out Mendelian randomization analysis of the as-
sociation body mass index and acetate using INTERVAL data. A leave-one-out analysis performs
an Mendelian randomization analysis of an exposure and outcome for all SNPs excluding a different SNP
each time. Forest plot shows the effect estimate and 95% confidence interval for each SNP exclusion
with acetoacetate. Effect estimates represent an SD unit change in the metabolite per SD unit increase
in the exposure. On the X axis is each SNP excluded from the analysis; the X-axis labels are squashed
in order to fit the plot on the page.
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Additional analyses

A number of additional SNP lists were used to instrument BMI, WHR, and BF due to potential

limitations of instrument lists used in the main analysis. All analyses, including sensitivity analyses, were

repeated for these additional SNP lists.

Results from additional instruments for BMI showed broadly larger effect estimates but consistent

directions of effect across metabolites. For the BMI SNPs obtained from a non-UK Biobank GWAS,

effect estimates had much wider CIs (Figure A.31 and A.32). Spearman’s Rho correlataion of MR results

was highest between the two SNP lists from Yengo et al. (2018) (0.98) – correlation between the Locke

et al. (2015) SNP list and the COJO SNP list from Yengo et al (2018) (0.9) and the non-COJO SNP list

from Yengo et al. (2018) (0.93) were also high. For WHR, the global pattern of association was similar

between both the main and additional exposure (Figure A.33 and A.34) with high correlation between

MR results (0.9). Effect estimates were larger for the additional exposure from Shungin et al (2014), for

which fewer results reached the multiple testing threshold with wider CIs which crossed the null more

often than with the main analysis.

For BF, there was considerable similarity between the main analysis and the additional analysis

from Lu et al (2016) which did not include two SNPs previously identified as being associated with

favourable adiposity (Figure A.35 and A.32). More metabolites reached the multiple testing threshold

when using the 5 SNPs from Lu et al (2016) as opposed to the full 7 SNPs, this included associations

with apolipoprotein A-1, phenylalanine, tyrosine, glucose, and cholesterol esters in very large HDL. For

the additional analysis which used 76 SNPs from Hubel et al (2016), MR results were considerbaly

smaller and appeared to show conflicting directions of effect with that of the Lu et al. (2016) SNPs

(both using 7 and 5 SNPs). CIs were much tighter and two metabolites (phenylalanine and glycoprotein

acetyls) reached the multiple testing threshold. Correlation coefficients between the two Lu et al (2016)

SNP lists was high (0.93), however both the 5 (-0.64) and 7 (-0.52) SNP lists from Lu et al. (2016)

showed weaker inverse correaltions with the SNP list from Hubel et al (2016).
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Figure A.31: Mendelian randomization additional analysis: association between body mass index
and metabolites using Kettunen data. Circos plot shows each track as different body mass index
(BMI) instruments: the outer track is the main analysis using Yengo et al. (2018)53 using 941 COJO
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Available on GitHub.
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Figure A.32: Mendelian randomization additional analysis: association between body mass index
and metabolites using INTERVAL data. Circos plot shows each track as different BMI instrumentation:
the outer track is the main analysis using Yengo et al. (2018)53 using 941 COJO SNPs; the middle track
is Yengo et al. (2018)53 using 656 non-COJO SNPs; the inner track is Locke et al. (2015)48 77 SNPs.
Solid points indicate a multiple testing threshold (p-value < 0.0018) has been reached. Effect estimates
represent a standard deviation (SD) change in the outcome per SD unit increase in the exposure; 95%
confidence intervals are shown and may be hidden by the point estimate if very tight. Metabolites are
grouped by subclass and arranged alphabetically within each subclass. Available on GitHub.
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Figure A.33: Mendelian randomization additional analysis: association between waist hip ratio
and metabolites using Kettunen datas. Circos plot shows each track as different WHR instrumentation:
the outer track is the main analysis using Pulit et al. (2020)54 using 316 SNPs; the inner track is Shungin
et al. (2015)49 using 26 SNPs. Solid points indicate a multiple testing threshold (p-value < 0.0018) has
been reached. Effect estimates represent a standard deviation (SD) change in the outcome per SD unit
increase in the exposure; 95% confidence intervals are shown and may be hidden by the point estimate
if very tight. Metabolites are grouped by subclass and arranged alphabetically within each subclass.
Available on GitHub.
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Figure A.34: Mendelian randomization additional analysis: association between waist hip ratio
and metabolites using INTERVAL data. Circos plot shows each track as different WHR instrumentation:
the outer track is the main analysis using Pulit et al. (2020)54 using 316 SNPs; the inner track is Shungin
et al. (2015)49 using 26 SNPs. Solid points indicate a multiple testing threshold (p-value < 0.0018) has
been reached. Effect estimates represent a standard deviation (SD) change in the outcome per SD unit
increase in the exposure; 95% confidence intervals are shown and may be hidden by the point estimate
if very tight. Metabolites are grouped by subclass and arranged alphabetically within each subclass.
Available on GitHub.
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Figure A.35: Mendelian randomization additional analysis: association between body fat per-
centage index and metabolites using Kettunen data. Circos plot shows each track as different BF
instrumentation: the outer track is the main analysis using Lu et al. (2016)51 using 7 SNPs; the middle
track is Lu et al. (2016)51 using 5 SNPs having removed two for being associated with favourable
adiposity; the inner track is Hubel et al. (2019)55 using 76 SNPs. Solid points indicate a multiple testing
threshold (0.0023) has been reached. Effect estimates represent a standard deviation (SD) change in the
outcome per SD unit increase in the exposure; 95% confidence intervals are shown and may be hidden
by the point estimate if very tight. Metabolites are grouped by subclass and arranged alphabetically
within each subclass. Available on GitHub.
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Figure A.36: Mendelian randomization additional analysis: association between body fat per-
centage and metabolites using INTERVAL data. Circos plot shows each track as different BF instru-
mentation: the outer track is Lu et al. (2016)51 using 7 SNPs; the middle track is Lu et al. (2016)51 using
5 SNPs having removed two for being associated with favourable adiposity; the inner track is Hubel et
al. (2019)55 using 76 SNPs. Solid points indicate a multiple testing threshold (0.0018) has been reached.
Effect estimates represent a standard deviation (SD) change in the outcome per SD unit increase in the
exposure; 95% confidence intervals are shown and may be hidden by the point estimate if very tight.
Metabolites are grouped by subclass and arranged alphabetically within each subclass. Available on
GitHub.
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A.5 Chapter 6: Associations between adiposity associated metabolites

and endometrial cancer: Mendelian randomization analysis

In Chapter 6, the potential intermediary role of metabolites in the association between adiposity and

endometrial cancer was investigated. The following sections provide a list of metabolites used in these

analyses,

Table A.7: Metabolites used in univariable and multivariable Mendelian randomization analyses

Metabolite Label Class Subclass Derived

gln Glutamine (mmol/l) Amino acids Amino acids no

his Histidine (mmol/l) Amino acids Amino acids no

phe Phenylalanine (mmol/l) Amino acids Aromatic amino acids no

tyr Tyrosine (mmol/l) Amino acids Aromatic amino acids no

ile Isoleucine (mmol/l) Amino acids Branched-chain amino acids no

leu Leucine (mmol/l) Amino acids Branched-chain amino acids no

val Valine (mmol/l) Amino acids Branched-chain amino acids no

apoa1 Apolipoprotein A-I (g/l) Apolipoproteins Apolipoproteins no

apob Apolipoprotein B (g/l) Apolipoproteins Apolipoproteins no

hdlc Total cholesterol in HDL (mmol/l) Cholesterol Cholesterol no

mufa Monounsaturated fatty acids; 16:1, 18:1

(mmol/l)

Fatty acids Fatty acids no

totalfa Total fatty acids (mmol/l) Fatty acids Fatty acids no

albumin Albumin (signal area) Fluid balance Fluid balance no

lactate Lactate (mmol/l) Glycolysis related

metabolites

Glycolysis related metabolites no

pyruvate Pyruvate (mmol/l) Glycolysis related

metabolites

Glycolysis related metabolites no

hdlsize Mean diameter for HDL particles (nm) Lipoprotein particle size Lipoprotein particle size no

vldlsize Mean diameter for VLDL particles (nm) Lipoprotein particle size Lipoprotein particle size no

xxlvldll Total lipids in chylomicrons and extremely

large VLDL (mmol/l)

Lipoprotein subclasses Extremely large VLDL no

xxlvldlp Concentration of chylomicrons and extremely

large VLDL particles (mol/l)

Lipoprotein subclasses Extremely large VLDL no

xxlvldlpl Phospholipids in chylomicrons and extremely

large VLDL (mmol/l)

Lipoprotein subclasses Extremely large VLDL no

idltg Triglycerides in IDL (mmol/l) Lipoprotein subclasses IDL no

lhdlc Total cholesterol in large HDL (mmol/l) Lipoprotein subclasses Large HDL no

lhdlce Cholesterol esters in large HDL (mmol/l) Lipoprotein subclasses Large HDL no

lhdlfc Free cholesterol in large HDL (mmol/l) Lipoprotein subclasses Large HDL no

lhdll Total lipids in large HDL (mmol/l) Lipoprotein subclasses Large HDL no
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Table A.7: Metabolites used in univariable and multivariable Mendelian randomization analyses (contin-
ued)

Metabolite Label Class Subclass Derived

lvldlfc Free cholesterol in large VLDL (mmol/l) Lipoprotein subclasses Large VLDL no

lvldll Total lipids in large VLDL (mmol/l) Lipoprotein subclasses Large VLDL no

lvldlp Concentration of large VLDL particles (mol/l) Lipoprotein subclasses Large VLDL no

lvldlpl Phospholipids in large VLDL (mmol/l) Lipoprotein subclasses Large VLDL no

lvldltg Triglycerides in large VLDL (mmol/l) Lipoprotein subclasses Large VLDL no

mhdlc Total cholesterol in medium HDL (mmol/l) Lipoprotein subclasses Medium HDL no

mhdlce Cholesterol esters in medium HDL (mmol/l) Lipoprotein subclasses Medium HDL no

mhdlfc Free cholesterol in medium HDL (mmol/l) Lipoprotein subclasses Medium HDL no

mhdll Total lipids in medium HDL (mmol/l) Lipoprotein subclasses Medium HDL no

mvldlfc Free cholesterol in medium VLDL (mmol/l) Lipoprotein subclasses Medium VLDL no

mvldll Total lipids in medium VLDL (mmol/l) Lipoprotein subclasses Medium VLDL no

mvldltg Triglycerides in medium VLDL (mmol/l) Lipoprotein subclasses Medium VLDL no

shdll Total lipids in small HDL (mmol/l) Lipoprotein subclasses Small HDL no

shdltg Triglycerides in small HDL (mmol/l) Lipoprotein subclasses Small HDL no

svldll Total lipids in small VLDL (mmol/l) Lipoprotein subclasses Small VLDL no

svldltg Triglycerides in small VLDL (mmol/l) Lipoprotein subclasses Small VLDL no

xlhdlce Cholesterol esters in very large HDL (mmol/l) Lipoprotein subclasses Very large HDL no

xlhdlfc Free cholesterol in very large HDL (mmol/l) Lipoprotein subclasses Very large HDL no

xlhdll Total lipids in very large HDL (mmol/l) Lipoprotein subclasses Very large HDL no

xlhdlp Concentration of very large HDL particles

(mol/l)

Lipoprotein subclasses Very large HDL no

xlhdlpl Phospholipids in very large HDL (mmol/l) Lipoprotein subclasses Very large HDL no

xlhdltg Triglycerides in very large HDL (mmol/l) Lipoprotein subclasses Very large HDL no

xlvldll Total lipids in very large VLDL (mmol/l) Lipoprotein subclasses Very large VLDL no

xlvldlp Concentration of very large VLDL particles

(mol/l)

Lipoprotein subclasses Very large VLDL no

xlvldlpl Phospholipids in very large VLDL (mmol/l) Lipoprotein subclasses Very large VLDL no

xlvldltg Triglycerides in very large VLDL (mmol/l) Lipoprotein subclasses Very large VLDL no

xsvldll Total lipids in very small VLDL (mmol/l) Lipoprotein subclasses Very Small VLDL no

xsvldltg Triglycerides in very small VLDL (mmol/l) Lipoprotein subclasses Very Small VLDL no

Table gives the metabolite abbreviation, label with originally measured units, class and subclass the metabolites were grouped in, and

whether the metabolite is a derived measure such as a ratio. HDL = high density lipoprotein; LDL = low density lipoprotein; IDL = intermedi-

ate density lipoprotein; VLDL = very large low density lipoprotein.
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A.5.1 Results

Two-sample univariable Mendelian randomization: association between adiposity measures and

endometrial cancer

Non−endometroid

Endometrioid

Endometrial cancer

1e−01 1e+00 1e+01 1e+02 1e+03 1e+04

BF
WHR
BMI

Weighted mode
Weighted median
MR Egger
IVW−MRE

Figure A.37: Univariable Mendelian randomization analysis: association between adiposity mea-
sures and endometrial cancer. Odds ratios and associated 95% confidence per SD unit higher body
mass index (BMI), waist hip ratio (WHR), or body fat percentage (BF). Models shown are for the main
analysis, inverse variance weighted multiplicative random effects, and sensitivity models (weighted
median, weighted mode, and MR Egger). Solid points indicate a nominal p-value threshold of 0.05 has
been reached. Available on GitHub.
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Figure A.38: Representative figure: funnel plot of effect estimates of the association between
body mass index and endometrial cancer. Funnel plot shows the results of a single-SNP Mendelian
randomization with effect estimate and standard error. Asymmetry in the funnel may indicate the
presence of pleiotropy. Effect estimates (log odds; x-axis) and standard error (y-axis) per SD unit higher
body mass index (BMI) are shown.
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Figure A.39: Representative figure: leave-one-out Mendelian randomization analysis of the as-
sociation between body mass index and endometrial cancer. A leave-one-out analysis performs an
Mendelian randomization analysis of an exposure and outcome for all SNPs excluding a different SNP
each time. Forest plot shows the effect estimate and 95% confidence interval for each SNP exclusion
with endometrial cancer. Effect estimates (log odds) and associated 95% confidence per SD unit higher
body mass index (BMI) are shown.
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Figure A.40: Representative figure: single-SNP Mendelian randomization analysis of the asso-
ciation between body mass index and endometrial cancer. Forest plot shows the effect estimate
and 95% confidence interval for each individual SNPs effect on glycerol. Effect estimates (log odds)
represent a standard deviation (SD) change in the outcome per SD unit higher body mass index (BMI)
are show.
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Two-sample univariable Mendelian randomization: association between adiposity measures and

metabolites
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Figure A.41: Representative figure: funnel plot of effect estimates of the association between
body mass index and acetate using UK Biobank data. Funnel plot shows the results of a single-SNP
Mendelian randomization with effect estimate and standard error. Asymmetry in the funnel may indicate
the presence of pleiotropy. Effect estimates (log odds; x-axis) and standard error (y-axis) per SD unit
higher body mass index (BMI) are shown.
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Figure A.42: Representative figure: leave-one-out Mendelian randomization analysis of the asso-
ciation between body mass index and tyrosine using UK Biobank data. A leave-one-out analysis
performs an Mendelian randomization analysis of an exposure and outcome for all SNPs excluding a
different SNP each time. Forest plot shows the effect estimate and 95% confidence interval for each
SNP exclusion with tyrosine. Effect estimates and associated 95% confidence per standard deviation
(SD) unit change in the exposure per SD unit higher body mass index (BMI) are shown.
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Figure A.43: Representative figure: single-SNP Mendelian randomization analysis of the associ-
ation between body mass index and phenylalanine using UK Biobank data. Forest plot shows the
effect estimate and 95% confidence interval for each individual SNPs effect on phenylalanine. Effect
estimates represent a standard deviation (SD) change in the outcome per SD unit higher body mass
index (BMI).

Two-sample univariable Mendelian randomization: association between adiposity-associated

metabolites and endometrial cancer
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Figure A.44: Two-sample univariable Mendelian randomization analysis: association between
metabolites and endometrial cancer using UK Biobank data. Forest plot shows odds ratio (OR) and
95% confidence interval for metabolites associated with body mass index, waist hip ratio, and/or body
fat percentage with endometrial cancer, endometrioid cancer, and non-endometrioid cancer. Data are
presented for all metabolites. The main analysis (inverse variance weighted multiplicative random effects
(IVW-MRE)) is presented alongside sensitivity analyses (weighted median, weighted mode, MR-Egger).
Available on GitHub.

https://github.com/mattlee821/000_thesis/blob/master/index/data/mediation/figures/003_metabolite_endometrial/forestplot_all.pdf
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Figure A.45: Representative figure: funnel plot of effect estimates of the association between
apolipoprotein B and endometrial cancer using UK Biobank data. Funnel plot shows the results of
a single-SNP Mendelian randomization with effect estimate and standard error. Asymmetry in the funnel
may indicate the presence of pleiotropy. Effect estimates (log odds; x-axis) and standard error (y-axis)
per SD unit higher body mass index (BMI) are shown.
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Figure A.46: Representative figure: leave-one-out Mendelian randomization analysis of the asso-
ciation between phenylalanine and endometrial cancer using UK Biobank data. A leave-one-out
analysis performs an Mendelian randomization analysis of an exposure and outcome for all SNPs
excluding a different SNP each time. Forest plot shows the effect estimate and 95% confidence interval
for each SNP exclusion with endometrial cancer. Effect estimates (log odds) and associated 95%
confidence per SD unit phenylalanine are shown.
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Figure A.47: Representative figure: single-SNP Mendelian randomization analysis of the asso-
ciation between phenylalanine and endometrial cancer. Forest plot shows the effect estimate and
95% confidence interval for each individual SNPs effect on glycerol. Effect estimates (log odds) represent
a standard deviation (SD) change in the outcome per SD unit higher phenylalanine (BMI).

Two-sample multivariable Mendelian randomization: intermediate effects of adiposity-

associatied metabolites in the association between adiposity measures and endometrial

cancer
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Table A.8: Two-sample univariable and multivariable Mendelian randomization analysis of the association
between body mass index and endometrial cancer.

Exposure Outcome Analysis Adjusted OR Lower CI Upper CI p-value

BMI Endometrial cancer Univariable MR - 1.91 1.62 2.25 7.47e-15

SVLDLTG Endometrial cancer Univariable MR - 1.11 0.98 1.25 0.1

XSVLDLTG Endometrial cancer Univariable MR - 1.11 0.98 1.24 0.1

BMI Endometrial cancer Multivariable MR SVLDLTG 1.90 1.57 2.29 5.18e-09

SVLDLTG Endometrial cancer Multivariable MR BMI 1.30 1.00 1.67 0.05

BMI Endometrial cancer Multivariable MR XSVLDLTG 1.87 1.53 2.28 7.26e-08

XSVLDLTG Endometrial cancer Multivariable MR BMI 1.18 0.85 1.63 0.34

BMI Endometroid Univariable MR - 2.02 1.68 2.43 1.6e-13

SVLDLTG Endometroid Univariable MR - 1.11 0.96 1.28 0.16

XSVLDLTG Endometroid Univariable MR - 1.11 0.96 1.27 0.15

BMI Endometroid Multivariable MR SVLDLTG 1.97 1.57 2.47 1.46e-07

SVLDLTG Endometroid Multivariable MR BMI 1.27 0.93 1.74 0.13

BMI Endometroid Multivariable MR XSVLDLTG 1.97 1.55 2.50 5.59e-07

XSVLDLTG Endometroid Multivariable MR BMI 1.11 0.75 1.65 0.59

BMI Non-endometroid Univariable MR - 1.63 1.11 2.39 0.01

SVLDLTG Non-endometroid Univariable MR - 1.79 1.25 2.56 0.001

SVLDLTG Non-endometroid Univariable MR - 1.79 1.12 2.17 0.001

BMI Non-endometroid Multivariable MR SVLDLTG 1.28 0.88 1.87 0.2

SVLDLTG Non-endometroid Multivariable MR BMI 2.96 1.77 4.95 9.81e-05

BMI Non-endometroid Multivariable MR XSVLDLTG 1.36 0.91 2.03 0.14

XSVLDLTG Non-endometroid Multivariable MR BMI 2.14 1.11 4.12 0.02

Results for univariable Mendelian randomization (MR) are using an inverse variance weighted multiplicative ran-

dom effects (IVW-MRE) model; results for multivariable MR are using an IVW model. Effect estimates are given

as the odds (OR) of endometrial cancer per SD unit increase in exposure. BMI = body mass index; SVLDLTG =

triglycerides in small VLDL; XSVLDLTG = triglycerides in very small VLDL.
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Table A.9: Two-sample univariable and multivariable Mendelian randomization analysis of the association
between waist hip ratio and endometrial cancer.

Exposure Outcome Analysis Adjusted OR Lower CI Upper CI p-value

WHR Endometrial cancer Univariable MR - 1.26 0.95 1.66 0.1

SVLDLTG Endometrial cancer Univariable MR - 1.11 0.98 1.25 0.1

XSVLDLTG Endometrial cancer Univariable MR - 1.11 0.98 1.24 0.09

WHR Endometrial cancer Multivariable MR SVLDLTG 1.17 0.70 1.96 0.55

SVLDLTG Endometrial cancer Multivariable MR WHR 1.37 0.98 1.91 0.08

WHR Endometrial cancer Multivariable MR XSVLDLTG 1.17 0.71 1.93 0.55

XSVLDLTG Endometrial cancer Multivariable MR WHR 1.29 0.86 1.93 0.24

WHR Endometroid Univariable MR - 1.25 0.91 1.74 0.17

SVLDLTG Endometroid Univariable MR - 1.11 0.96 1.28 0.16

XSVLDLTG Endometroid Univariable MR - 1.11 0.96 1.27 0.15

WHR Endometroid Multivariable MR SVLDLTG 1.24 0.65 2.38 0.52

SVLDLTG Endometroid Multivariable MR WHR 1.36 0.89 2.07 0.17

WHR Endometroid Multivariable MR XSVLDLTG 1.16 0.62 2.18 0.65

XSVLDLTG Endometroid Multivariable MR WHR 1.27 0.76 2.12 0.38

WHR Non-endometroid Univariable MR - 2.31 1.23 4.35 0.01

SVLDLTG Non-endometroid Univariable MR - 1.79 1.25 2.56 0.001

SVLDLTG Non-endometroid Univariable MR - 1.79 1.12 2.17 0.001

WHR Non-endometroid Multivariable MR SVLDLTG 0.77 0.30 1.97 0.58

SVLDLTG Non-endometroid Multivariable MR WHR 3.14 1.70 5.81 0.001

WHR Non-endometroid Multivariable MR XSVLDLTG 1.32 0.51 3.41 0.57

XSVLDLTG Non-endometroid Multivariable MR WHR 1.99 0.92 4.30 0.09

Results for univariable Mendelian randomization (MR) are using an inverse variance weighted multiplicative ran-

dom effects (IVW-MRE) model; results for multivariable MR are using an IVW model. Effect estimates are given

as the odds (OR) of endometrial cancer per SD unit increase in exposure. WHR = waist hip ratio; SVLDLTG =

triglycerides in small VLDL; XSVLDLTG = triglycerides in very small VLDL.
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Table A.10: Two-sample univariable and multivariable Mendelian randomization analysis of the associa-
tion between body fat percentage and endometrial cancer.

Exposure Outcome Analysis Adjusted OR Lower CI Upper CI p-value

BF Endometrial cancer Univariable MR - 2.54 2.04 3.16 1.02e-16

SVLDLTG Endometrial cancer Univariable MR - 1.11 0.98 1.25 0.1

XSVLDLTG Endometrial cancer Univariable MR - 1.11 0.98 1.24 0.09

BF Endometrial cancer Multivariable MR SVLDLTG 2.23 1.25 3.98 0.02

SVLDLTG Endometrial cancer Multivariable MR BF 1.39 1.04 1.87 0.04

BF Endometrial cancer Multivariable MR XSVLDLTG 2.28 1.27 4.11 0.02

XSVLDLTG Endometrial cancer Multivariable MR BF 1.20 0.82 1.77 0.37

BF Endometroid Univariable MR - 2.73 1.83 4.09 9.94e-07

SVLDLTG Endometroid Univariable MR - 1.11 0.96 1.28 0.16

XSVLDLTG Endometroid Univariable MR - 1.11 0.96 1.27 0.15

BF Endometroid Multivariable MR SVLDLTG 2.59 1.17 5.73 0.03

SVLDLTG Endometroid Multivariable MR BF 1.39 0.93 2.08 0.14

BF Endometroid Multivariable MR XSVLDLTG 2.48 1.12 5.48 0.05

XSVLDLTG Endometroid Multivariable MR BF 1.12 0.66 1.89 0.69

BF Non-endometroid Univariable MR - 2.01 0.52 7.70 0.31

SVLDLTG Non-endometroid Univariable MR - 1.79 1.25 2.56 0.001

SVLDLTG Non-endometroid Univariable MR - 1.79 1.12 2.17 0.001

BF Non-endometroid Multivariable MR SVLDLTG 0.98 0.41 2.35 0.96

SVLDLTG Non-endometroid Multivariable MR BF 3.07 1.96 4.82 2e-04

BF Non-endometroid Multivariable MR XSVLDLTG 0.92 0.36 2.35 0.87

XSVLDLTG Non-endometroid Multivariable MR BF 2.15 1.16 3.98 0.03

Results for univariable Mendelian randomization (MR) are using an inverse variance weighted multiplicative

random effects (IVW-MRE) model; results for multivariable MR are using an IVW model. Effect estimates are

given as the odds (OR) of endometrial cancer per SD unit increase in exposure. BF = body fat percentage;

SVLDLTG = triglycerides in small VLDL; XSVLDLTG = triglycerides in very small VLDL.
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