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Abstract

It is a typical assumption that closed quantum systems must have real eigenvalues and hence,

be Hermitian. However, Parity-Time (PT ) symmetric systems are systems that, despite being

non-Hermitian, can have real eigenvalues. They have a number of properties and applica-

tions that have been demonstrated using a variety of classical systems. To date, while several

quantum simulations of PT -symmetric systems have been performed, they all require postse-

lection and no applications of physical quantum PT -symmetric systems have been shown or

demonstrated.

Here, we first look at simulating PT -symmetric and non-Hermitian systems using postselec-

tion by embedding the non-Hermitian system into a larger Hermitian system, including using

Halmos’ dilation to simulate two coupled PT -symmetric systems that are the time-reverse of

each other using single photons input into a unitary interferometer.

With the realisation that there is a link between symplectic transformations inherent in

nonlinear optical systems and PT -symmetry, we then consider a nonunitary interferometer

created using nonlinear optics in the form of squeezing that can perform postselection-free sim-

ulations of N -mode non-Hermitian systems and emulate this simulating a small 2-dimensional

PT -symmetric system.

Finally, we look at coupled microring resonators, which necessarily requires both squeezing

and loss terms to function as a single photon source. In considering this from the viewpoint

of PT -symmetry and creating an Exceptional Point, we theoretically show that this system

can create single photons with a purity above 99% at an enhanced efficiency compared with a

single ring.

As a result of considering these systems, we will demonstrate that non-Hermitian and

PT -symmetric dynamics can be naturally created using Hermitian systems.
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Chapter 1

Introduction

A common assumption in quantum mechanics is that for an operator to have real eigenvalues

(and hence be an observable), it must be Hermitian. However, it has been realised that this

is not necessarily the case and that if a non-Hermitian operator satisfies a certain symmetry

(referred to as Parity-Time, or PT symmetry) [1] or can be related to a Hermitian operator by a

similarity transform (known as being pseudo-Hermitian) [2–4], it also can have real eigenvalues.

When the eigenvalues are real, the symmetry is referred to as being unbroken and when they

are complex, the symmetry is then broken.

These operators have a range of features, often related to the Exceptional Point (EP),

a point between the broken and unbroken regimes where the eigenvectors (as well as the

eigenvalues) of the operator coalesce. Where in the unbroken regime, the evolution of a PT -

symmetric Hamiltonian is oscillatory; and in the broken regime, the evolution decays or grows

exponentially; at the EP, the evolution becomes polynomial. The eigenvalues and eigenvectors

are also affected by the presence of a nearby EP, leading to different potential applications such

as information retrieval [5] and reducing decoherence [6] if a quantum PT -symmetric system

could be created. As such, there is also interest in simulating such systems [7–9].

Classical PT -symmetric systems, usually involving gain and loss, have been created and

shown to have a variety of uses [10–20]. However, creating a quantum PT -symmetric system

relies on either creating a purely lossy system or using postselection [7, 21–23]. As such, no

applications of quantum PT -symmetry have yet been shown to be experimentally viable.

In this thesis, we look at using different methods of simulating non-unitary transformations

to simulate PT -symmetric Hamiltonians. One of these methods shows a link between nonlinear

optics and PT -symmetry, which we then use to show that quantum PT -symmetric systems

with gain and loss can exist and show that the enhancement typical of EPs in equivalent

classical systems also exists in quantum systems and can be used to improve the generation of

single photons.
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CHAPTER 1. INTRODUCTION

1.1 Thesis Outline

Chapter 2 is a background chapter on PT -symmetric and pseudo-Hermitian Hamiltonians, the

simulation and creation of which is one of the goals of this thesis. This starts by looking at

the fundamental ideas behind the postulates of quantum mechanics in section 2.2, leading to

defining PT -symmetric and pseudo-Hermitian Hamiltonians in section 2.3. Some features at

and near exceptional points are looked at in section 2.4, how these systems can be simulated

in section 2.5 and some applications and potential issues of them 2.6.

Chapter 3 is the second background chapter and is on quantum optics, which is used

throughout this thesis to create and simulate PT -symmetric Hamiltonians. This chapter starts

by quantising the electromagnetic field to derive the photonic creation and annihilation op-

erators in section 3.2. Transformations on these operators are then considered in section 3.3.

These transformations can be split into linear/passive transformations, including unitary inter-

ferometers, looked at in section 3.4 and nonlinear/active transformations in section 3.5. This

chapter then ends by considering microring resonators in the linear regime in section 3.6.

Chapter 4 is the first results chapter and primarily looks at the method of unitary dilation

to simulate PT -symmetric Hamiltonians. Before considering unitary dilation, we first look

at embedding PT -symmetric systems into open quantum systems using the Lindblad master

equation in section 4.2, demonstrating that purely lossy PT -symmetric systems can be created.

This is also adapted to show that PT -symmetric systems with gain and loss can be embedded

into a non-Markovian open system, although the probability of a successful postselection may

be small. Section 4.3 then looks at the various properties of using unitary dilation to simulate

coupled PT -symmetric systems, including different normalisation methods (section 4.3.2) and

defining an effective Hamiltonian that gives the dilated unitary (section 4.3.3). This chapter

ends by considering different applications of unitary dilation in section 4.4, such as simulating

exotic non-Hermitian versions of particles (section 4.4.2) and considering unitary dilation as

an extension of the HOM effect [24] to tune the coupling of the coupled systems by varying

the distinguishability of the input photons (section 4.4.1).

Chapter 5 is the second results chapter and in looking at how unitary interferometers are

created by being unitary transformations (using linear optics) on the creation and annihila-

tion operators, considers how nonunitary interferometers could be created by using symplectic

transformations (i.e. nonlinear optical transformations) on the creation and annihilation op-

erators. By considering this transformation as the matrix exponential of what we here refer

to as an ‘effective Hamiltonian’, shown in section 5.2, we show a connection between symplec-

tic transformations and PT -symmetry in section 5.3. That is, any symplectic transformation

is necessarily a PT -symmetric transformation. This idea is used in section 5.4 to design a

nonunitary interferometer using the singular value decomposition with loss and gain (in the

form of squeezing). Section 5.5 further shows that this design can be made more efficient using

typical methods from (Hermitian) Hamiltonian simulation algorithms. We then create a model

2



1.1. THESIS OUTLINE

of a 2D PT -symmetric lattice in section 5.6 and emulate the nonunitary interferometer from

section 5.4 simulating this lattice in section 5.7 using code given in appendix A.

Chapter 6 is the final results chapter and focuses on creating a quantum PT -symmetric

system using coupled microring resonators as well as finding a well defined practical appli-

cation of PT -symmetry in quantum physics. At a fundamental level, this can be done by

considering squeezing as gain, with loss arising naturally from the system, as well as from the

coupling to a waveguide that is necessary for the system to have an output. In comparing

with the typical idea of a PT -symmetric system with gain and loss, this gives the design and

Hamiltonian described in section 6.2. This section also gives a derivation of loss rates, the

effective Hamiltonian of the system (as defined in section 5.2) and shows that there is a steady

state solution when a continuous wave pump is input to the system. Section 6.3 calculates the

eigenvalues and eigenvectors of this system and in doing so, demonstrates that it is a quantum

PT -symmetric system with exceptional point surfaces.

Having done this, we now aim to find a practical application of these coupled microring

resonators. One typical application of a microring resonator is to create single photons by

creating a two-mode squeezed state and heralding one of the modes. The correlation functions

of this process are given for coupled rings in section 6.4 and in more detail in appendix C.

Using the solutions to the equations of motion (the equations of motion are given in full in

appendix B) calculated in section 6.5 using properties given in appendix D, these correlation

functions are then calculated in section 6.6, demonstrating an enhancement in single photon

generation typical of exceptional points in PT -symmetric systems.

Chapter 7 ends this thesis, coming to a conclusion about using nonlinear quantum optics

to create and simulate PT -symmetric systems.
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Chapter 2

Quantum Mechanics and Parity-Time

Symmetry

Answers were always important, but they were seldom easy

— Patrick Rothfuss, The Slow Regard of Silent Things

This is a background chapter that summarises already existing results.

2.1 Introduction

The idea of Parity-Time (PT ) symmetry in quantum mechanics was first realised by Bender

and Boettcher [1], who1 considered the possibility of non-Hermitian Hamiltonians with real

eigenvalues. Since then, PT -symmetric systems have been created classically [10–12], often

using some form of cavity or resonator [13–20] and simulated or recreated using postselection in

quantum systems [7, 21–23]. Here, we review the main discoveries of quantum PT -symmetry,

starting with a brief discussion of the fundamental ideas behind the postulates of quantum

mechanics in section 2.2, which leads into how the postulates can be adjusted to include (non-

Hermitian) PT -symmetric and pseudo-Hermitian Hamiltonians without necessarily having to

change the fundamental principles in section 2.3. We then look at various properties of these

Hamiltonians in section 2.4, how they can be simulated using quantum simulators (with posts-

election) in section 2.5 and some recent applications of and potential issues with PT -symmetric

quantum theory in section 2.6.

2.2 The Hamiltonian and Time Evolution in Quantum

Mechanics

While there are multiple ways of writing the postulates of quantum mechanics, usually differing

by levels of mathematical rigour (although may also vary by the number of postulates, such

1after a discussion with D. Bessis
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CHAPTER 2. QUANTUM MECHANICS AND PARITY-TIME SYMMETRY

as [25] and [26]), they generally agree on the fundamental principles. As the focus of Parity-

Time (PT )-symmetry is generally on the Hamiltonian and time evolution of the system being

studied, we here look at the postulates relating to the Hamiltonian and time evolution of a

quantum system in more detail.

Most lists of the postulates start with a statement about how the state of a quantum system

is described by a wavefunction in a Hilbert space H. Relevant here is that the wavefunction

is normalised. For a discrete system, the wavefunction can be described by a weighted sum of

orthonormal basis states, here denoted by

|ψ⟩ =
∑
j

aj |ej⟩ and |ϕ⟩ =
∑
j

bj |ej⟩ . (2.1)

This normalisation is typically described using the inner product (here referred to as the ‘Dirac

inner product’), often written as

(|ϕ⟩ , |ψ⟩) = ⟨ϕ|ψ⟩ =
∑
j

b∗jaj (2.2)

for a discrete system, where ⟨ϕ| = (|ϕ⟩)† and

(|ϕ (x, t)⟩ , |ψ (x, t)⟩) =

∫ ∞
−∞

ϕ∗ (x, t)ψ (x, t) dx (2.3)

for a continuous system. However, as discussed in section 2.3, this is already a simplification

of the more general mathematical definition of an inner product. From this, the normalisation

is typically given by

(|ψ⟩ , |ψ⟩) = 1 or (|ϕ (x, t)⟩ , |ψ (x, t)⟩) = 1. (2.4)

Importantly, this normalisation is time-independent. That is, evolving the state for some

time or letting it undergo some transformation does not change the normalisation of the state

(assuming a closed system).

The remaining postulates tend to follow from various logical ideas applied to the above.

From the assumption that the expectation value

⟨A⟩ = ⟨ψ|A|ψ⟩ or ⟨A⟩ =

∫ ∞
−∞

ψ∗ (x, t)Aψ (x, t) dx (2.5)

of an observable A must be real, it is then assumed that any operator corresponding to an

observable must be Hermitian. By itself, this statement is not strictly true in that a real

expectation value does not necessarily imply a Hermitian operator [27], although further con-

text and constraints apply which makes it valid for practical applications (again, of a closed

system). This will also be discussed in section 2.3.

A measurement is often described by saying that the state after a measurement outcome

(that is, an eigenvalue of an observable) is the sum of eigenvectors corresponding to that eigen-

value. As this is generally outside the scope of this thesis, we comment no further except to
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2.2. THE HAMILTONIAN AND TIME EVOLUTION IN QUANTUM MECHANICS

mention that this is more accurately and easily described using the language of Projection Val-

ued Measures (PVMs), Positive Operator Valued Measures (POVMs) and Krauss Operators,

describing quantum channels, looked at in more detail in e.g. [25].

The evolution of a closed quantum system is then described in one of two equivalent ways:

By the time evolution of the state being described by the Schrödinger equation; or by the state

at some later time t being an operator applied to the state at an earlier time t0. That is, the

Schrödinger equation is given by

iℏ
d

dt
|ψ⟩ = H |ψ⟩ . (2.6)

If the Hamiltonian H is time-independent, the transformation is then given by the matrix

exponential

U (t, t0) = e−iH(t−to). (2.7)

If H is instead time-dependent, U can potentially be described by a Dyson series or Magnus

expansion. However, we can still describe this for small δt by

U (t0 + δt, t0) = e−
i
ℏHδt = I − i

ℏ
Hδt+O

(
δt2
)
, (2.8)

valid when δt is much less than the relevant time parameter given by the fastest term in the

Hamiltonian. Comparing with classical physics, H is then the Hamiltonian describing the

energy of a system. As such, as energy is an observable, H is then usually assumed to be

Hermitian, or H = H†. As H is Hermitian, U must then be unitary. However, this is again a

simplistic treatment of this idea and will be expanded on in more detail in section 2.3.

While the above applies to dynamics of closed systems, an open system dynamics are best

described by using density matrices. That is, for a system with a state vector basis |ej⟩, an

arbitrary density matrix can be written as

ρ =
∑
jk

cjk |ej⟩⟨ek| . (2.9)

We can calculate the time evolution of a density matrix in a closed system:

ρ̇ =
∑
jk

cjk

[
d

dt
(|ej⟩) ⟨ek|+ |ej⟩

d

dt
(⟨ek|)

]
(2.10)

= − i
ℏ
∑
jk

cjk (H |ej⟩⟨ek| − |ej⟩⟨ek|H) (2.11)

= − i
ℏ

[H, ρ] . (2.12)

This can be further extended to time evolution in an open system by considering a system HS

coupled to an environment HE to give the overall Hilbert space HS ⊗HE . This Hilbert space

is assumed to be closed so that the overall evolution is unitary. Then, the environment modes
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are traced over to get a quantum channel. The equation of motion that gives this evolution is

often given by the Lindblad (Master) equation [28]:

L (ρ) = ρ̇ = −i [H, ρ] +
1

2

∑
l

κl

(
2FlρF

†
l − F

†
l Flρ− ρF †l Fl

)
, (2.13)

which is Markovian (the environment ‘forgets’ the previous state/interaction of the system

much faster than the time-scale used) for κl > 0 ∀ l, t. While physical quantum systems tend

to evolve using non-Markovian open dynamics, the amount of non-Markovianity gets less

pronounced as the environment gets larger.

2.3 Pseudo-Hermitian and Parity-Time-symmetric

Hamiltonians

While the above is generally accepted as a valid description of quantum physics, in recent

years and decades, some of the assumptions intrinsic to the postulates as originally written

have begun to be questioned. One such question arises from the realisation that having real

eigenvalues does not necessarily imply that an operator has to be Hermitian, which led to the

discovery of Parity-Time-symmetric (PT -symmetric) Hamiltonians [1], discussed in section

2.3.1. Further study of PT -symmetric Hamiltonians then led to considering the more general

case of pseudo-Hermitian Hamiltonians [2–4], discussed in section 2.3.3.

2.3.1 Parity-Time-Symmetric Hamiltonians

As mentioned, enforcing that observables must have real eigenvalues does not actually imply

that the observable must be Hermitian. This was first realised by Carl Bender [1] for continuous

systems where he gave the prototypical example of a PT -symmetric Hamiltonian:

H = p2 +m2x2 − (ix)N , (2.14)

which is equivalent to the Hamiltonian

H = p2 + x2 (ix)ϵ (2.15)

for N = 2 + ϵ. For ϵ ≥ 0, this has a real and positive spectrum despite being non-Hermitian

for ϵ ̸= 2N for N ∈ N. This was shown by approximating the energy levels for m = 0 using

the WKB method to get

En ≈

[
Γ
(
3
2 + 1

N

)√
π
(
n+ 1

2

)
sin
(
π
N

)
Γ
(
1 + 1

N

) ] 2N
N+2

. (2.16)

A reproduction of the graph showing the first 10 energy levels is given in figure 2.1 for N ≥ 2.
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2 4 6 8 10
N

5

10

15

20
En

Figure 2.1: Reproduction of figure 1 in [1] showing the first 10 energy levels of the continuous
PT -symmetric Hamiltonian given by equation 2.14 for m = 0 and N ≥ 2 calculated using the
WKB method to give the approximate solutions in equation 2.16.

Bender showed that this Hamiltonian has real energies by considering the (linear) Parity

and (anti-linear) Time reversal operators P and T . Here, these are defined by

P : p 7→ −p, x 7→ −x (2.17)

T : p 7→ −p, x 7→ x, i 7→ −i (2.18)

and an operator O is defined as being PT -symmetric when it commutes with the PT operator:

[O,PT ] = 0. (2.19)

For a linear operator, if it commutes with another (linear) operator O, then an eigenstate of

O is simultaneously an eigenstate of that operator. However, the PT operator is anti-linear,

so this does not necessarily always apply. When this does apply, O is considered to have

unbroken PT -symmetry (alternatively, in the PT -unbroken phase or PT -unbroken regime)

and the eigenvalues are real. When this does not apply but the Hamiltonian is still PT -

symmetric, it is either in the broken regime, where eigenvalues are complex-conjugate pairs,

or at the Exceptional Point (EP), discussed further in section 2.4.

This idea can also be applied to discrete Hamiltonians. The prototypical examples a discrete

PT -symmetric Hamiltonian is given by2 [29]

H ′2 =

(
reiθ s

s re−iθ

)
, (2.20)

2We refer to this as H ′
2 due to using H2 and H3 in chapter 4 which differ only by relabelling r = γ and

setting s = 1 and θ = π/2
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CHAPTER 2. QUANTUM MECHANICS AND PARITY-TIME SYMMETRY

where the Parity and Time reversal operators are now given by

P =

(
0 1

1 0

)
(2.21)

T : i 7→ −i (2.22)

H ′2 has eigenvalues

λ′± = r cos θ ±
√
s2 − r2 sin2 θ (2.23)

which are plotted in figure 2.2. This shows the PT -unbroken regime for s2 > r2 sin2 θ where the

eigenvalues are real and the broken regime for s2 < r2 sin2 θ where the eigenvalues are instead

complex. At s2 = r2 sin2 θ, we have that λ′+ = λ′−, showing the eigenvalues are degenerate.

However, as discussed in section 2.4, the eigenvectors also become degenerate at this point,

known as the Exceptional Point (EP).

Figure 2.2: Real (left) and imaginary (right) parts of the eigenvalues (equation 2.23) of the
2-dimesnional PT -symmetric Hamiltonian given by equation 2.20. When s2 > r2 sin2 θ, the
system is in the unbroken regime. When s2 < r2 sin2 θ, the system is in the broken regime.
The point where s2 = r2 sin2 θ has degenerate eigenvalues and is known as the Exceptional
Point (EP). The EP will be discussed in more detail in section 2.4.

2.3.2 Introducing the Charge Operator

While PT -symmetric Hamiltonians demonstrate that requiring an operator to have real eigen-

values does not necessarily mean that the operator has to be Hermitian, this is not the only

constraint of quantum systems. Taking θ = π/2 and calculating the time evolution of a state

evolving under the Hamiltonian H ′2 gives

|ψ (t)⟩ = e−iH
′
2t |ψ (0)⟩ (2.24)

=

cos
(√

s2 − r2t
)

+
r sin(

√
s2−r2t)√

s2−r2 −i s sin(
√
s2−r2t)√

s2−r2

−i s sin(
√
s2−r2t)√

s2−r2 cos
(√

s2 − r2t
)
− r sin(

√
s2−r2t)√

s2−r2

 |ψ (0)⟩ . (2.25)
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Calculating the norm of this time evolved state then gives that the norm (hence, probability)

is not conserved with time: for a state starting in

|ψ (0)⟩ = |0⟩ , (2.26)

at some later time t, this state is now

|ψ (t)⟩ =

cos
(√

s2 − r2t
)

+
r sin

(√
s2 − r2t

)
√
s2 − r2

 |0⟩ − is sin
(√

s2 − r2t
)

√
s2 − r2

|1⟩ , (2.27)

which has a (Dirac) norm

⟨ψ (t) |ψ (t)⟩ =

∣∣∣∣∣∣cos
(√

s2 − r2t
)

+
r sin

(√
s2 − r2t

)
√
s2 − r2

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
s sin

(√
s2 − r2t

)
√
s2 − r2

∣∣∣∣∣∣
2

(2.28)

= cos2
(√

s2 − r2t
)

+

(
s2 + r2

)
sin2

(√
s2 − r2t

)
s2 − r2

+
r sin

(
2
√
s2 − r2t

)
√
s2 − r2

(2.29)

̸= 1, (2.30)

as shown in figure 2.3.

Figure 2.3: Inner product norm of a state starting in (left) |0⟩ and (right) |1⟩ evolving under
the PT -symmetric Hamiltonian H ′2 (θ = π/2). This shows that the norm oscillates with time
in the unbroken PT -symmetry region and increases above 1 with increasing parameter r.

A typical idea might be to enforce that the evolution is manually normalised, to get∣∣ψ′ (t)〉 =
1

⟨ψ (t) |ψ (t)⟩
|ψ (t)⟩ . (2.31)

However, an alternative approach can be found be reconsidering the definition of the inner

product. That is, outside of convention and simplicity, there is no a priori reason that the

11
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inner product has to be defined as it is in equations 2.2 and 2.3. In general, an inner product

is instead determined by a metric. For a PT -symmetric system in the PT -unbroken regime,

this can be done with the addition of a charge operator C and redefining the inner product to

be ⟨ϕ|ψ⟩CPT = (CPT ϕ) · ψ. This is done by defining

⟨ψ|CPT = (CPT |ψ⟩)T . (2.32)

The charge operator is defined by first realising that the PT -norm is constant but not always

positive. For H ′2 given by equation 2.20, the eigenvectors are given by

|ε+⟩ =
1√

2 cosα

(
eiα/2

e−iα/2

)
and |ε−⟩ =

i√
2 cosα

(
e−iα/2

−eiα/2

)
, (2.33)

where s sinα = r sin θ. The PT -inner product gives

⟨ε±|ε±⟩PT = ±1 (2.34)

⟨ε±|ε∓⟩PT = 0, (2.35)

demonstrating orthogonality although not positivity. To make these inner products positive,

C is introduced as

C = |ε+⟩⟨ε+|CPT − |ε−⟩⟨ε−|CPT =
1

cosα

(
i sinα 1

1 −i sinα

)
(2.36)

and now the inner products are orthonormal:

⟨ε±|ε±⟩CPT = 1 (2.37)

⟨ε±|ε∓⟩CPT = 0. (2.38)

This holds for other PT -symmetric systems in the unbroken regime, where the charge operator

required to make the inner product positive is defined in terms of the eigenvectors of the system.

2.3.3 Pseudo-Hermitian Hamiltonian formalism

Alternatively, the concept of PT -symmetric Hamiltonians can be extended to include pseudo-

Hermitian Hamiltonians [2–4]. This is defined by using the metric operator η to redefine the

inner product

⟨ϕ|ψ⟩η = ⟨ϕ| η |ψ⟩ . (2.39)

The property that H is η-pseudo-Hermitian is then defined by

H† = ηHη−1. (2.40)

Using the inner product to get the expectation value of H now gives

⟨ϕ| η |Hψ⟩ = ⟨Hϕ| η |ψ⟩ , (2.41)
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equivalent to being Hermitian in this new inner-product space. For a CPT -symmetric Hamil-

tonian, this gives η = PC by definition. This can also be done by considering a similarity

transform ϱ = ϱ† = +
√
η such that the pseudo-Hermitian (equivalently, quasi-Hermitian)

Hamiltonian H is related to a Hermitian Hamiltonian h by 3

H = ϱ−1hϱ. (2.42)

This in turn defines the properties of H and its inner product. The expectation value of h is

given by the Dirac inner product, which relates to the pseudo-Hermitian inner product by

⟨ϕ|H |ψ⟩η =
〈
ϕ|ϱ2Hψ

〉
= ⟨ϕ|ϱhϱψ⟩ = ⟨ϱϕ|h |ϱψ⟩ . (2.43)

This can further be made time dependent [30] and is useful in simulating PT -symmetric,

pseudo-Hermitian and other non-Hermitian Hamiltonians, as looked at in section 2.6.

2.4 Eigenvectors and Exceptional Points

2.4.1 Left and Right Eigenvectors

As a result of being non-Hermitian, the eigenvectors of pseudo-Hermitian and PT -symmetric

operators are different to those of Hermitian operators. For a Hermitian operator O, the

eigenvectors are defined by O |vj⟩ = λj |vj⟩, with ⟨vj | = (|vj⟩)†. However, for a Hermitian

system, this no longer holds, so the ‘right’ eigenvectors are different to the ‘left’ eigenvectors.

Continuing with the example of H ′2, we have that

|ε+⟩ ∝

(
−e−iα

1

)
and |ε−⟩ ∝

(
eiα

1

)
, (2.44)

which comes from H ′2 |vj⟩ = λj |v1⟩ where

λ1/2 =
r

s
cos θ ∓ cosα. (2.45)

The left eigenvectors are then then transpose of the (right) eigenvectors of the transpose of the

operator, or

⟨uj | O = σjO =⇒ O† |uj⟩ = O†σ†j . (2.46)

In this case, as H ′2 is transpose-symmetric, the left eigenvectors are the transpose of the right

eigenvectors, as opposed to the conjugate-transpose in the Hermitian case.

2.4.2 Exceptional Points

There are various regions of PT -symmetric Hamiltonians. Aside from the real-valued, symmet-

ric (and therefore Hermitian) point (r = 0 in H ′2), these are split into the regions of unbroken

symmetry, broken symmetry and Exceptional Point (EP).
3Technically, this equation only defines quasi-Hermitianity. However, if it is quasi-Hermitian, it must also

be pseudo-Hermitian, so we ignore this distinction here.
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Dynamics

As mentioned in section 2.3.1, the unbroken symmetry region has real eigenvalues and the

broken region has complex eigenvalues, which gives different dynamics. While in the unbroken

region, the dynamics are oscillatory, the dynamics in the broken region either increase or decay

exponentially with time. However, at the transition between these two regions is the EP. Here,

both the eigenvalues and the eigenvectors become degenerate (known as coalescence) and the

behaviour of the dynamics is polynomial with time. The number of eigenvectors that coalesce

to a single vector is the order of the EP, which determines the exact behaviour of the system.

As an example, we again take the eigenvectors of H ′2. These become equal at

−e−iα = eiα =⇒ e−2iα = −1 =⇒ α = π

(
1

2
+ n

)
. (2.47)

This gives that the EP occurs at s = r sin θ or,

H ′2,EP = r

(
eiθ sin θ

sin θ e−iθ

)
. (2.48)

This can be simplified by further taking θ = π/2 to get

H ′2,EP = r

(
i 1

1 −i

)
. (2.49)

Squaring this gives H
′2
2,EP = 0, which demonstrates the polynomial behaviour typical of an

EP: The evolution of a system being acted on by this Hamiltonian is

e−iH
′
2t = I − iH ′2t =

(
1 + rt r

r 1− rt

)
. (2.50)

In general, an N th order EP (EPN) gives polynomial evolution of degree N − 1.

Jordan Decomposition

Aside from the evolution of a system at the EP being polynomial, the EPs of a system have

a number of properties. The first of these is that the matrix of the system at the EP can be

transformed into Jordan normal form4 via a similarity transform [31], such as

V −1HV =


λ1 0 0 0

0 λ1 1 0

0 0 λ1 0

0 0 0 λ2

 . (2.51)

4The Jordan normal form is where, instead of a matrix diagonalising into its eigenvalue decomposition, the
eigenvalues are in the main diagonal, with 1s in the superdiagonal
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Where a matrix has a degenerate eigenvalue λ (in this example, λ1), this first requires making

a distinction between degenerate values, where the eigenvectors are different and EPs, where

both eigenvectors and eigenvalues coalesce. The order of the EP is then given by the size of

the largest Jordan block. In this specific example, while there is a triple degeneracy in λ1, the

largest Jordan block is 2-dimensional, so this forms an EP2.

Behaviour near the EP

Near the EP, the behaviour of the system is also affected by the presence of the EP [5]. This

can be expressed by the difference between eigenvalues surrounding the EPN. Parameterising

the Hamiltonian by γ so that the EPN occurs at γc and moving away from the EPN by a small

δγ = γ − γc gives that the eigenvalues become

λ = λc +
∞∑
j=1

Cj (δγ)
j
N (2.52)

and the eigenvectors become

|v⟩ = |vEP ⟩+
∞∑
j=1

(δγ)
j
N |ϕj⟩ , (2.53)

where the different possible values of the N th root of δγ give the different eigenvalues and

eigenvectors. Near the EP
(
δγ1/N ≪ 1

)
, this then becomes

λ = λc + C1 (δγ)
1
N +O

(
δγ

2
N

)
(2.54)

|v⟩ = |vEP ⟩+ (δγ)
1
N |ϕ1⟩+O

(
δγ

2
N

)
. (2.55)

For H ′2 with θ = π/2, s = rc = 1 and r = rc + δr = 1 + δr, the eigenvalues are given by

λ± = ±
√

2iδr

√
1 +

δr

2i
, (2.56)

which can be expanded as a binomial expansion to be of the same form as equation 2.52 with

λc = 0. Similarly, the eigenvectors are given by

|v⟩ ∝

(
i

1

)
+ (δr + λ±)

(
1

0

)
, (2.57)

which can similarly be expanded. Near the EP (δr ≪ 1), these are

λ± = ±
√

2iδr +O (δr) (2.58)

|v⟩ ∝

(
i

1

)
±
√

2iδr

(
1

0

)
+O (δr) . (2.59)
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Topology and Riemann surfaces

The presence of an EP can also be shown by considering the topology of a system near an EP.

The Riemann surface (displaying the real and imaginary parts of each eigenvalue with the real

and imaginary parts of some parameter) shows the main features of the system, such as the

coalesence at the EP as well as the sheets and branch cut(s) that show their behaviour. Due

to the behaviour of the eigenvalues near the EPN that scales with δγ1/N , encircling the EP by

adding a phase to the parameter to get δγeiφ generates a topological Berry phase and changes

the eigenvector, which can also be shown in the Riemann surface [32]. This is characterised

by the winding number, which gives the number of times the EP needs to be encircled before

returning to the starting point. In the above example, using H ′2, we have that encircling the

EP once gives a phase of 2π to δr, so that

λ± (φ = 2π) ≈ ∓
√

2iδr and |v (φ = 2π)⟩ ∝

(
i

1

)
∓
√

2iδr

(
1

0

)
, (2.60)

so the point that started in one eigenvector is now on the other eigenvector. For more complex

systems with a larger winding number, the direction of travel also matters. The Riemann

surface of H ′2 is shown in figure 2.4 and graphically shows the above properties.

2.5 Previous/Current Simulation Methods

A number of classical methods of creating and simulating PT symmetric systems exist, such

as coupled lasers, optical simulation and electric circuits. However, while small systems can be

simulated classically, bigger systems require more efficient simulation methods. As there is a

computational limit to how quickly large N×N or 2N×2N systems can be simulated classically,

quantum simulation methods might potentially be able to offer a time advantage. However,

this often runs into potential issues as the time evolution of a PT -symmetric Hamiltonian,

as shown in figure 2.5, does not have a constant normalisation. As such, simulations of PT -

symmetric Hamiltonians need to be postselected, which is an inefficient process. Despite this,

a variety of simulations have been performed or simulation methods created, often falling into

the category of adding extra loss (or using a purely lossy Hamiltonian) or using the ideas of

pseudo-Hermitian Hamiltonians to create a method of simulation known as dilation.

2.5.1 Using loss transformations

Most often used in optical systems, this generally involves taking a PT -symmetric Hamiltonian

with both gain and loss terms along the diagonal of the Hamiltonian and subtracting the highest

gain term. In particular, for a Hamiltonian H = HHerm +Hdiag where HHerm is Hermitian and

Hdiag is a diagonal matrix containing terms iγjj (for real γ), the first step in this process is

to transform to the matrix H ′ = H − iI maxj γjj so that all the non-Hermitian terms in the
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Figure 2.4: Riemann surface of the eigenvalues ofH ′2 (θ = π/2, s = 1) near the EP at r = rc = 1.
This demonstrates a number of properties typical of EPs. Picking a point close enough to the
EP and encircling the EP once causes both a phase change and switches the eigenvectors and
eigenvalues. Encircling the EP a second time brings us back to the starting point, showing
this has a winding number of 2.

Hamiltonian are now loss terms. As the identity commutes with any operator, this gives that

the evolution is given by

U ′ (t) = e−maxj γjjU (t) , (2.61)

where U (t) is the evolution of H which contains both loss and gain terms. As such, if the

transformation U ′ (t) can be created, postselecting on a successful evolution will give the same

dynamics as the full Hamiltonian with gain and loss.

Two particular examples where this idea has been used (although in different ways) are in

PT -symmetric quantum interference [33] where loss was made in a continuous way and for a

PT -symmetric quantum random walk [21] where the loss happened at discrete places. The

quantum interference experiment consisted of two photons in two waveguides L and R, with
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Figure 2.5: Evolution of H ′2 for (top left) the Hermitian region with γ = 0, (top right) unbroken
region with γ = 0.5, (bottom left) EP with γ = 1 and (bottom right) broken region with
γ = 1.5. This demonstrates the typical regions of PT -symmetric systems where there are
oscillations in the unbroken region, polynomial (here linear) growth at the EP and exponential
growth in the broken region.

one of the waveguides (here L) being lossier than the other, with this extra loss created by

bending the waveguide, which causes continuous loss by interacting with the environment. This

can be modelled using the Lindblad equation (equation 2.13) with a single loss term (giving

l = 1) κ = γ and corresponding loss operator F = aL. When postselected (by detecting the

same number of photons as were input), this was used to model both PT -symmetric evolution

of a single photon and PT -symmetric Hong-Ou-Mandel (HOM) interference.

Alternatively, loss can also be made more discrete, such as in [21]. Here, in creating a

quantum walk, the system consists of a discrete position space (here, physical modes) coupled

to a qubit (such as polarisation of the light used here). The operators used consist of a
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2.5. PREVIOUS/CURRENT SIMULATION METHODS

translation operator S, coin operator C and loss operators L and L′, where

S =
∑
x

(|x⟩⟨x+ 1| ⊗ |0⟩⟨0|+ |x⟩⟨x− 1| ⊗ |1⟩⟨1|) (2.62)

C (θ (x)) = Ix ⊗

(
cos θ (x) sin θ (x)

sin θ (x) − cos θ (x)

)
(2.63)

L = Ix ⊗

(
l1 0

0 l2

)
(2.64)

L′ = Ix ⊗

(
l2 0

0 l1

)
, (2.65)

with 0 ≤ l1, l2 ≤ 1. This was then used to define a Floquet operator (due to the alternating

loss terms l1 and l2)

U = LSC (θ2 (x))L′SC (θ1 (x)) . (2.66)

The loss terms are then implemented by coupling that mode to another mode with a vacuum

state input by a beamsplitter such that l1 or l2 of the input light gets transmitted. This

particular experiment was used to create Floquet topological phases with topological edge

states.

2.5.2 Hamiltonian Dilation

The general approach to simulating the dynamics of a non-Hermitian system using dilation

is to embed the system to be simulated Hsys using an ancilla system (usually a single qubit)

Hanc to get the overall Hermitian Hilbert space H = Hsys⊗Hanc. The aim is then to simulate

the evolution of

|Ψ⟩ = µ |ψ⟩ |a⟩+ ν |χ⟩ |b⟩ , (2.67)

where |a⟩ and |b⟩ are orthogonal, µ and ν are normalisation parameters, |ψ⟩ is the state evolving

under the (normalised) non-Hermitian Hamiltonian and |χ⟩ is in general unknown, although

can be defined for pseudo-Hermitian Hamiltonians using the metric operator η as |χ⟩ = η |ψ⟩.
This has been done with the pseudo-Hermitian Hamiltonian [8]

H = E0I + s

(
i sinα 1

1 −i sinα

)
, (2.68)

which has the metric

η = eβσy =
1

cosα

(
1 −i sinα

i sinα 1

)
, (2.69)

where β is defined by tanhβ = sinα. This gives the initial state

|Ψ⟩ = |ψ⟩ |0⟩+ η |ψ⟩ |1⟩ . (2.70)
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With a normalisation factor

f =

√
cosα

2
, (2.71)

the overall (Hermitian) Hamiltonian is then

H =f2
[(
Hη−1 + ηH

)
⊗ I2 +

(
H − ηH†η−1

)
⊗ iσy

]
, (2.72)

which gives the evolution of this state as

U = f2
[(
Uη−1 + ηU

)
⊗ I2 +

(
U − ηUη−1

)
⊗ iσy

]
= F ⊗ I2 +G⊗ iσy. (2.73)

Postselecting on

P0 = I2 ⊗ |0⟩⟨0| (2.74)

then gives PT -symmetric evolution with a final output state

P0 |Ψ (t)⟩ = |ψ (t)⟩ |0⟩ . (2.75)

This idea was later extended to include time-dependent broken-PT -symmetric systems [7,9]

using a time-dependent metric operator

η (t) =
√(

1 + η20
)
e−iHteiHt − I (2.76)

with η0 > 0 arbitrarily chosen so that η† (t) η (t) is positive over the entire simulation time.

2.6 Creating PT -symmetric Quantum Systems

There are various methods of creating classical PT -symmetric systems, such as coupled lasers,

non-Hermitian electrical circuits and optomechanics. These can have various applications, such

as unidirectional optical transmission, creating a negative refractive index and improved light

absorption. Due to PT -symmetric systems being generally easier to create in classical systems

than quantum systems without having to rely on postselection, there are fewer experimental

applications of PT -symmetric quantum systems than there are of classical systems. Creating

a quantum PT -symmetric system without some form of loss or postselection is considered

extremely difficult if not fundamentally impossible. However, open and passive PT -symmetric

systems can and have been created in quantum systems and whether quantum analogues of

classical applications can occur can at least be looked at theoretically. As there are a wide

variety of classical PT -symmetric systems and potential applications, here we look at a small

subset of these that are relevant to optics and quantum information processing.
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Optical systems

Two common methods of creating PT -symmetric systems in classical optics are in waveguides

(or optical fibres) and microring resonators (which are also used in optomechanical systems).

Lossy systems can be created by having different losses in different waveguides, which also

applies in creating lossy quantum systems, such as in [33]. In a waveguide, the (classical)

refractive index is equivalent to the (quantum) potential. As such, being PT -symmetric is

equivalent to the condition that the refractive index n (r) = n∗ (−r). As the imaginary com-

ponent of the refractive index gives the loss present in the system, this condition requires the

amount of gain to match the amount of loss. This is often achieved using Optical Parametric

Amplification (OPA). As OPA is a classical effect, this cannot be directly used to create a

quantum PT -symmetric system. However, OPA is similar to the quantum effect of squeez-

ing (discussed in chapter 3), which we use throughout chapters 5 and 6 to create quantum

PT -symmetric systems. Semiconductor Optical Amplifiers have also been used in microring

resonators to create single mode PT -symmetric miroring lasers. Operating such systems near

the EP improves sensitivity and create unusual lasers, such as orbital angular momentum

microlasers.

If there is an equivalence between classical and quantum PT -symmetry, this potentially

suggests that an EP of a quantum optical system may have applications in sensing or photon

creation.

Slowing down of decoherence

This is a specific potential application of PT -symmetric systems that can occur when a PT -

symmetric system is coupled to an environment (here assumed to be Markovian) that causes

decoherence [6]. Similar to previous examples used in this chapter, this can be shown by

considering the 2D PT -symmetric Hamiltonian H ′2 with θ = π/2 and s = 1 in the PT -

unbroken regime. For an environment with spectral density J (ω) = J0ωe
−ω/ωc and ωc ≫ kBT ,

the decoherence functions behaves as

D (t) ∼ e−πJ0(1−r2)kBTt (2.77)

and so, increasing the strength of the PT -parameter r decreases the speed of the decoherence,

which vanishes completely at the EP.

Alternatively, the PT -symmetric system can also be considered as being embedded in (as

opposed to coupled to) a larger, overall Hermitian (closed) system such as in equation 2.67

except with an arbitrarily large ancilla system as opposed to a qubit. In this case, the trace

distance between two arbitrary states evolving under this Hamiltonian is then

D (t) =

1 +

2r sin2
(√

1− r2t
)

1− r2

2

− 1

2

. (2.78)
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As there are times when Ḋ > 0, this means that the system is retrieving information from the

environment, which is therefore non-Markovian behaviour.

‘Local PT symmetry violates the no-signaling principle’

However, aside from pseudo-Hermitian Hamiltonians being equivalent to Hermitian Hamiltoni-

ans, whether or not PT -symmetric quantum mechanics as typically considered is a valid theory

of quantum mechanics is still an open question. One result that shows this is [34]. Starting with

the assumptions that PT -symmetric systems are tomographically local (i.e. measurements oc-

cur locally) that can co-exist with a Hermitian system and that measurement probabilities are

calculated using normalisation conventional in quantum physics, they consider the entangled

state

|ψ⟩ =
1√
2

(|+⟩A |+⟩B + |−⟩A |−⟩A) , (2.79)

shared between the parties A and B, where
√

2 |±⟩ = |0⟩ ± |1⟩. If A then applies either I or

σx before evolving under the evolution given by H ′2 at the EP, B obtains the state

|±i⟩ =
1√
2

(|0⟩ ± i |1⟩) , (2.80)

depending on the operation A performed, with probability 1. As this is instananeous, this

occurs even when A and B are spacelike separated, which is superluminal signalling. The

authors propose 3 solutions to this problem:

1. The first assumption is wrong and PT -symmetric systems are not tomographically local.

As this is generally considered a requirement of real systems, this is saying that PT -

symmetry is not a valid theory.

2. The second assumption is wrong and the rules of a PT -symmetric system are different

to that of a Hermitian quantum system. One possible solution to this could be related

to the similarity transform between pseudo-Hermitian and Hermitian systems, although

this potentially reduces to that of regular Hermitian quantum mechanics.

3. Superluminal signalling is possible. As this is directly violating a fundamental law of

physics, this is considered to be extremely unlikely.

‘PT -symmetric photonic quantum systems with gain and loss do not exist’

The question of whether PT -symmetric quantum systems can exist has also been directly

applied to photonics [35]. While classical electromagnetic waves can have gain and loss, the

creation and annihilation operators a and a† of a quantum photonic systems have to fulfil the

commutation relation
[
a, a†

]
= 0, so creating loss in such a system requires the use of Langevin

noise operators f so that

ȧ = (−iω − Γ) a+ f, (2.81)
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where Γ is the loss rate. As such, the noise is related to the loss and so, nonzero noise is

impossible with nonzero loss. It follows that creating a system with gain would satisfy the

equation

ȧ = (−iω + Γ) a+ f †. (2.82)

As a result, inputting a coherent state into a system, such as a waveguide, with loss and gain

causes thermal broadening, which is used to make the claim that ‘PT -symmetric photonic

quantum systems with gain and loss do not exist’ unless postselection is used.

However, this approach only considers a linear medium, so that different frequency modes

cannot interact. As discussed in chapter 3, this is not generally true of optical systems. As

such, chapters 5 and 6 are dedicated to nonlinear optical systems, which can potentially be

used to create PT -symmetric photonic quantum systems.
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Chapter 3

Nonlinear Quantum Optics

This is a background chapter that summarises already existing results.

3.1 Introduction

Classical optics is a relatively common method for simulating and creating classical PT -

symmetric systems [10–20]. Similarly, quantum optics is a common method for simulating

passive, quantum PT -symmetric systems, as well more general simulations [7, 21–23]. Here,

we review the features of quantum optics that we will use later to simulate PT -symmetric

systems and create single photon states.

After deriving the photonic creation and annihilation operators from the electromagnetic

field in section 3.2, this consists at looking at the input/output formalism that considers in-

teractions with a medium as transformations of the creation and annihilation operators in the

Heisenberg picture in section 3.3. When these transformations are quadratic/Gaussian in the

operator terms, this gives two different types of transformations. The first, looked at in section

3.4 are here referred to as linear transformations, as they are transformations that arise from

interacting with a linearly responding medium and leads to unitary transformations on the

operators. The second, looked at in section 3.5 are referred to as nonlinear transformations as

they arise from interactions in a nonlinearly responding medium and gives symplectic trans-

formations on the operators. These transformations can be used to create approximate single

photon states. However, this can be enhanced by using microring resonators to create better

states. As such, we then look at microring resonators in the linearly responding regime in

section 3.6.
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3.2 Creation/annihilation operators

The electromagnetic field can be quantised by first starting with Maxwell’s equations [36]:

∇ ·E = ρ (3.1)

∇×B− Ė = J (3.2)

∇×E + Ḃ = 0 (3.3)

∇ ·B = 0, (3.4)

in Heavyside-Lorentz units (ϵ0 = 1 and µ0 = 1) with c = 1 (and later setting ℏ = 1), where E

is the electric field, B is the magnetic field, ρ is the charge density and J is the current density.

The electric and magnetic fields can then be written in terms of a scalar and vector potential

φ and A:

E = −∇φ− Ȧ (3.5)

B = ∇×A. (3.6)

This can be made relativistic by defining (using Einstein notation) the four-vector potential

Aµ, charge-current density Jµ and field strength Fµν

Aµ = (φ,A) (3.7)

Jµ = (ρ, J) (3.8)

Fµν = ∂µAν − ∂νAµ. (3.9)

This gives that the electric and magnetic fields are

F 0j = Ej (3.10)

F jk = εjklBl, (3.11)

which allows us to rewrite Maxwell’s equations as

∂νF
µν = Jµ (3.12)

εµνρσ∂
ρFµν = 0 (3.13)

and define the Lagrangian density as

L = −1

4
FµνFµν + JµAµ, (3.14)

as this gives the Lorentz, gauge, time-reversal and parity-reversal invariant action S =
∫
L d4x

that generates Maxwell’s equations. The coulomb gauge (∇ · A = 0) can then be enforced by

taking

Aj (x)→
(
δjk −

∇j∇k

∇2

)
Ak (x) (3.15)
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by using the Fourier Transform

Ãj (k)→
(
δjk −

kjkk
k2

)
Ak (k) . (3.16)

In a free field (when the charge-current density, Jµ = 0), requiring that S is stationary and

varying φ and A gives that

L =
1

2
ȦjȦj −

1

2
∇kAj∇kAj =⇒ ∂2Aj (x) = 0. (3.17)

This has the general solution

A (x) =
1

(2π)3 2ω

∑
λ=±

∫
v∗λ (k) aλ (k) eikx + vλ (k) a†λ (k) e−ikx d3k, (3.18)

where vλ are polarisation vectors that are orthogonal to k. The conjugate momentum operator

is then

Πj =
∂L
∂Ȧj

= Ȧj (3.19)

and the Hamiltonian density is

H = ΠjȦj − L =
1

2
ΠjΠj +

1

2
∇kAj∇kAj . (3.20)

This gives annihilation and creation operators

aλ (k) = ivλ (k) ·
∫
e−ikx∂0A (x)−

(
∂0e
−ikx

)
A (x) d3x (3.21)

a†λ (k) = −iv∗λ (k) ·
∫
eikx∂0A (x)−

(
∂0e

ikx
)
A (x) d3x, (3.22)

with commutation relations[
aλ (k) , aλ′

(
k′
)]

= 0 (3.23)[
a†λ (k) , a†λ′

(
k′
)]

= 0 (3.24)[
aλ (k) , a†λ′

(
k′
)]

= (2π)3 2ωδ3
(
k′ − k

)
δλλ′ . (3.25)

The Hamiltonian can be rewritten as

H =
1

2 (2π)3

∑
λ=±

∫
a†λ (k) aλ (k) d3k +

ω

(2π)3

∫
d3kV. (3.26)

Redefining the creation and annihilation operators such that[
aλ (k) , a†λ′

(
k′
)]

= δ3
(
k′ − k

)
δλλ′ , (3.27)

the Hamiltonian density becomes

H = ω

(
a†λaλ +

1

2

)
, (3.28)
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where the dependence on k is now implicit. This is the Hamiltonian of a single mode of a

free electromagnetic field, defining the number (of photons) operator as n = a†a. This has

eigenvalues and eigenstates

n̂ |n⟩ = n |n⟩ . (3.29)

While not used here, the quadrature operators X and P can also be defined as [37]

X ∝ 1√
2

(
a+ a†

)
(3.30)

P ∝ i√
2

(
a− a†

)
. (3.31)

3.3 Input/Output formalism/operators

This can then be extended to include interactions in a material that can cause transfor-

mations on the photons in the system. For a system with discrete values of allowed fre-

quency/wavenumber and multiple modes m, giving a Hamiltonian

H =
∑
m

∑
k

∑
λ=±

(
a†mkλamkλ +

1

2

)
ω +Hint, (3.32)

which then acts on the state of the system. This gives photon number (Fock) states⊗
mkλ

|np,mkλ⟩ (3.33)

Alternatively, this can be looked at in the Heisenberg picture to calculate the evolution of the

creation and anihilation operators. The expectation value of O = amkλ, a
†
mkλ is then〈

ψ
∣∣∣U † (t, t0)O (t0)U (t, t0)

∣∣∣ψ〉 , (3.34)

where U (t, t0) = e−iH(t−t0) for time-independent H. As there is no explicit time dependence

in amkλ and a†mkλ, this gives
d

dt
O (t) = i [H,O (t)] . (3.35)

From the commutation relations, this gives(
d

dt
+ iω

)
amkλ = i [Hint, amkλ] (3.36)(

d

dt
− iω

)
a†mkλ = i

[
Hint, a

†
mkλ

]
, (3.37)

which can be simplified by defining

āmkλ = aeiωt (3.38)

ā†mkλ = a†e−iωt (3.39)
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to get

d

dt
Ō (t) = i

[
Hint, Ō (t)

]
. (3.40)

When Hint is no more than quadratic in the creation and annihilation operators, this can be

written as a matrix equation
d

dt
ā (t) = Heffā (t) , (3.41)

where the vector of operators ā includes the creation and annihilation operators, potentially

with other operators, such as the identity or the noise operators in section 2.6; Heff is a matrix

acting on the operator space of the system S ⊂ B (H) and which exponentiates to give the

transformation

ā (t) = M (t, t0) ā (t0) (3.42)

= e−iHeff(t−t0)ā (t0) (3.43)

= U †int (t, t0) ā (t0)Uint (t, t0) . (3.44)

This can be considered as being output operators ā (t) = āout in terms of input operators

ā (t0) = āin and a transformation or scattering matrix M (t, t0) = e−iHeff(t−t0).

3.3.1 Symplectic transformations

In the case when ā consists only of the creation and annihilation operators āmkλ and ā†mkλ

(here ordered so that all the annihilation operators are written before the creation operators

so that āj are annihilation operators for 1 < j ≤ N and creation operators for N < j ≤ 2N),

we can write the transformation matrix M as

M =

(
A B

C D

)
, (3.45)

giving

āout,j =


∑N

k=1 (Ajkāin,k +Bjkāin,k+N ) for 1 < j ≤ N∑N
k=1 (Cj−N,kāin,k +Dj−N,kāin,k+N ) for N < j ≤ 2N

. (3.46)

As the commutation relations must remain valid and as āj+N = ā†j , this simplifies to a sym-

plectic transformation matrix

M =

(
A B

B∗ A∗

)
, (3.47)

with a determinant of 1. Defining

Ω =

(
0 I

−I 0

)
(3.48)

gives that this can also be considered as a matrix satisfying the equation

MTΩM = Ω. (3.49)
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3.4 Linear/passive transformations

A symplectic transformation is here considered linear1 when B = 0. From equation 3.49,

this gives that A†A = I, so that A is unitary. From this, we consider two different types

of transformations - those that are formed of a single evolution under a single Hamiltonian

that we consider as a ‘basic transformation’ that can be used to form a block element in a

larger transformation, such as a unitary interferometer that can simulate arbitrary unitary

transformations on N modes.

3.4.1 Basic transformations

Rotation/Phase Shift

This is defined by the Hamiltonian

Hint, phase = ϕmkλa
†
mkλamkλ (3.50)

that can act on a single mode. On that mode, this gives

Aphase = e−iϕmkλt = e−iϕ
′
mkλ , (3.51)

causing a phase shift of the input photon.

Beamsplitter

A standard beamsplitter has the Hamiltonian

Hint, BS = iθa†mkλam′kλ − iθ∗amkλa
†
m′kλ, (3.52)

which gives the transformation

ABS =

(
cos |θ| t θ∗

|θ| sin |θ| t
− θ
|θ| sin |θ| t cos |θ| t

)
=

(
cos |θ′| θ

′∗

|θ′| sin |θ
′|

− θ′

|θ′| sin |θ
′| cos |θ′|

)
(3.53)

between modes m and m′. At θ = 0, this performs the identity operation while at θ′ = ±π/2 or

θ′ = ±iπ/2, this performs a swap operation with differing phases. Alternatively, at θ′ = ±π/4
or θ′ = ±iπ/4, this is a balanced (i.e. ‘50:50’) beamsplitter, such as

ABS, θ=π/4 =
1√
2

(
1 1

−1 1

)
, (3.54)

1As there is an ambiguity over the term ‘linear’, we here use it to mean ‘optics in a linearly responding
medium’, as opposed to the alternative ‘transformations acting on the creation and annihilation operators that
are linear and can be described using matrices’. In the former terminology (used here), the latter can either
be linear or nonlinear, so as it is more useful here to have a distinction between the two, we use the former
definition.
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acting as a Hadamard matrix. This gives the Hong-Ou-Mandel (HOM) effect when a single

photon state is input into each mode and a two photon state is output from one mode, with a

zero photon (vacuum) state in the other mode.

A different variant of a beamsplitter is a polarising beamsplitter. This is a polarisation-

dependent beamsplitter such as

Hint, PBS = iθa†mkV am′kV − iθ∗amkV a
†
m′kV , (3.55)

where λ = V is arbitrarily chosen as a PBS acting on vertically polarised photons, while acting

as an identity transformation on horizontally polarised photons.

Displacement/Coherent states

Acting on a specific mode, the displacement operator is

Hint, D = iαa†mkλ − iα
∗amkλ, (3.56)

which gives

M :

(
amkλ

a†mkλ

)
7→

(
1 0 α

0 1 α∗

)amkλ

a†mkλ

I

 . (3.57)

Acting with the displacement operator on the vacuum state (or more generally, a coherent

state) then gives a coherent state

|αmkλ⟩ = e−
|α|2
2

∞∑
n=0

α2

√
n!
|nmkλ⟩ , (3.58)

as a result of the property that

eαa
†−α∗a = e−

|α|2
2 eαa

†
e−α

∗a. (3.59)

3.4.2 Unitary interferometers

It is possible to build up a series of beamsplitters and phase shifters with multiple inputs and

outputs that create a larger unitary transformation on photons input into a given number of

input modes.

Mach-Zender Interferometer

A variant of a Mach-Zender interferometer, consisting of a phase-shifter, followed by a 50:50

beamsplitter, phase-shifter and another 50:50 beamsplitter can then be used to create a variable

beamsplitter, as shown in figure 3.1.
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Figure 3.1: Mach-Zender interferometer consisting of 2 phase shifts with 2 50:50 beamsplitters,
which is equivalent to a single variable beamsplitter described by equation 3.60. In future
diagrams, the phases and beamsplitter notation will be omitted.

This gives the transformation

AVBS (θ, ϕ) = ABS

(π
4

)
Aphase (2θ)ABS

(π
4

)
Aphase (ϕ) =

(
e−iϕ cos θ − sin θ

e−iϕ sin θ cos θ

)
, (3.60)

which is used as a building block in larger interferometers shown in the rest of this section.

Reck scheme

An N -mode interferometer was first considered by Reck et. al. [38] who showed that a trian-

gular lattice of variable beamsplitters, such as in figure 3.2, can be used to create an arbitrary

unitary transformation. This works by recursively transforming into a basis where the elements

of the N th row and column of an N ×N unitary to be implemented UN become 0, except for

a phase on element N × N , leaving an N − 1 × N − 1 unitary. That is, the rotation matrix

consisting of variable beamsplitters acting on each mode

RN = AVBS;N,N−1 · · ·AVBS;N,1 (3.61)

can rotate between an arbitary row vector and a ‘computational’ basis state:(
0 . . . 1

)
·R−1N =

(
e−iϕ1 cos θ1 . . . sin θN−1 · · · sin θ1

)
. (3.62)

In this basis UN becomes

UN ·RN = UN−1 ⊕ eiα, (3.63)

at which point another rotation is applied on the N − 1 ×N − 1 unitary. This gives that an

arbitrary unitary UN can be described by the rotations

UN = R−1N · · ·R
−1
2 D, (3.64)

where D is a diagonal matrix of phases. As these phases are not measured when detecting

output photons, they do not need to be included on a physical implementation of a Reck

scheme.
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Figure 3.2: Diagram of a 6-mode Reck scheme consisting of a triangular lattice of variable
beamsplitters. An N -mode Reck scheme requires N (N − 1) /2 such beamsplitters. This works
by recursively rotating the N×N target unitary into a basis where it becomes an N−1×N−1
unitary with a phase on the remaining mode.

Clements scheme

The Reck scheme was later improved by Clements et. al. [39], who designed a shorter inter-

ferometer using a square lattice, shown in figure 3.3 for 8 modes. While this uses the same

number of beamsplitters as the Reck scheme, as it is shorter, it is less lossy. In addition, as each

mode or waveguide contains the same number of beamsplitters, the loss across each mode is

more uniform than the Reck scheme. Similar to the Reck scheme, the Clements scheme takes a

unitary and applies recursive transformations to rotate it into a diagonal basis by rotating the

outermost diagonal first, where the Reck scheme rotated rows and columns. Unlike the Reck

scheme, this is done by applying transformations to alternate sides of the unitary to rotate

into a basis where the unitary consists only of diagonal elements. The final transformation

then consists of variable beamsplitters acting on alternate rows, as shown in figure 3.3.

Figure 3.3: Diagram of an 8-mode Clements scheme consisting of a square/rectangular lattice
of variable beamsplitters. An N -mode Clements scheme requires N (N − 1) /2 such beamsplit-
ters, as with the Reck scheme. This works by recursively rotating the N × N target unitary
into a basis where the outermost diagonal elements are 0 until the main diagonal is the only
non-zero diagonal and consists only of phases.

33



CHAPTER 3. NONLINEAR QUANTUM OPTICS

3.5 Nonlinear/active transformations

When B ̸= 0, the transformations are no longer photon-number preserving and can often

include interactions between photons of different frequencies, unlike the linear and passive

transformations of section 3.4. While other transformations that cannot be described using

matrix transformations are possible, here, we only look at squeezing and its various forms, as

well as Self-phase modulation (SPM) and cross-phase modulation (XPM) that arise from Four

Wave Mixing (FWM).

3.5.1 Squeezing

Generally, squeezing happens in a single physical mode and can cause interactions between

different frequency or polarisation spaces, known as two mode squeezing. However, there is a

special case of this when the interactions happen on the same space, known as single mode

squeezing.

Single mode squeezing

This is described by the Hamiltonian

Hint, S1 =
i

2

(
z∗amkλamkλ − za†mkλa

†
mkλ

)
(3.65)

and gives the transformation, for zt = reiθ,

M =

(
cosh r −eiθ sinh r

−e−iθ sinh r cosh r

)
. (3.66)

This also defines a single mode squeezed vacuum state as

|S1⟩ = e−iHt |vac⟩ =
1√

cosh r

∞∑
n=0

√
(2n)!

2nn!

(
−eiϕ tanh r

)n
|2n⟩ , (3.67)

which ‘squeezes’ the vacuum state so that the standard deviation in one variable (such as

one of the quadratures) is below 1/
√

2, while the uncertainty in the conjugate variable is

correspondingly larger, as shown in figure 3.4.

Two mode squeezing

This is a more general form of squeezing, that acts on two physical or (more commonly)

frequency modes, potentially with different polarisations. The Hamiltonian is of the form

Hint, S2 = i
(
z∗amkλam′k′λ′ − za†mkλa

†
m′k′λ′

)
, (3.68)
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Figure 3.4: Phase diagram in quadrature space of (left) a vacuum state and (right) a squeezed
vacuum state. Squeezing causes the variance in one variable to decrease while increasing it in
the other such that (for an ideal squeezer) the area is preserved. Physical implementation of
squeezers are generally noisy, so the corresponding area under a physical (noisy) implementa-
tion of squeezing is likely to be larger.

where at least one of m′, k′ and λ′ must be different to m, k and λ respectively. This then

generates the transformation

M


amkλ

am′k′λ′

a†mkλ

a†m′k′λ′

 =


cosh r 0 0 −eiθ sinh r

0 cosh r −eiθ sinh r 0

0 −e−iθ sinh r cosh r 0

−e−iθ sinh r 0 0 cosh r



amkλ

am′k′λ′

a†mkλ

a†m′k′λ′

 , (3.69)

which gives a two-mode squeezed vacuum state as

|S2⟩ =
1

cosh r

∞∑
n=0

(
−eiϕ tanh r

)n
|n⟩mkλ |n⟩m′k′λ′ . (3.70)

In particular, for a low squeezing parameter r ≪ 1, this can be approximated as (arbitrarily

setting ϕ = 0)

|S2⟩ =
1

cosh r

[
− tanh r |1⟩mkλ |1⟩m′k′λ′ + tanh2 r |2⟩mkλ |2⟩m′k′λ′ +O

(
r3
)]

(3.71)

= −
(
r +O

(
r3
))
|1⟩mkλ |1⟩m′k′λ′ +

(
r2 +O

(
r4
))
|2⟩mkλ |2⟩m′k′λ′ +O

(
r3
)

(3.72)

= −r |1⟩mkλ |1⟩m′k′λ′ +O
(
r2
)
, (3.73)

approximating an entangled single photon state. Heralding on one of the modes then gives an

approximate heralded single photon state in the other mode. However, due to the requirement

that the squeezing parameter r ≪ 1, this can only occur with the low probability ∼ r2.
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3.5.2 Generating squeezing

Squeezing is usually physically creating by inputting a coherent (laser) state into a nonlinear

medium, where the order of the nonlinearity determines the interactions that occur [40]. The

two most commonly considered nonlinearities are the second order χ(2) generating Spontaneous

Parametric Down Conversion (SPDC) and the third order χ(3) generating Four Wave Mixing

(FWM), as well as Self Phase Modulation (SPM) and Cross Phase Modulation (XPM).

Spontaneous Parametric Down Conversion (SPDC)

SPDC is a second order process characterised by a single pump photon annihilating to create

two lower frequency signal and idler photons. This can be degenerate, where the created

photons are the same frequency; or non-degenerate, where the created photons are at different

frequencies. The Hamiltonian describing this process is typically given by

Hint, SPDC = ΛamP kPλP
a†mSkSλS

a†mIkIλI
+ Λ∗a†mP kPλP

amSkSλS
amIkIλI

, (3.74)

where Λ ∝ χ(2) is dependent on a variety of factors, such as the system SPDC is occuring in

(such as a waveguide spiral, microring resonator, or nonlinear crystal). This can be split into

3 types of SPDC, depending on the polarisation of the pump, signal and idler photons:

• Type 0: λP = λS = λI

• Type I: λP ̸= λS = λI

• Type II: λS ̸= λI .

SPDC calculations are generally made analytically and numerically tractable by either in-

putting a pulsed laser for the pump or a CW laser which can be approximated as a lossless

coherent state under the undepleted pump approximation so that2

amP kPλP
→ ⟨amP kPλP

⟩ = αmP kPλP
, (3.75)

allowing the SPDC Hamiltonian to be approximated as a squeezing Hamiltonian.

Four Wave Mixing (FWM)

FWM is a third order process characterised by two pump photons annihilating to create two

signal and idler photons. As two pump photons are involved, these can come from a single pump

input, in which case the created photons are nondegenerate. Two input pumps can also be

used, in which case, it can be possible to tune the system so that the process can be degenerate,

2As the creation and annihilation operators are still operators, this is more technically accurately done
by first calculating the relevant equations of motion of the various operators before approximating the pump
operators by their expectation values
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creating signal and idler photons of the same frequency. As there are four photons in total

involved in this process, FWM also allows other effects, Self- and Cross- Phase Modulation

(SPM and XPM). As such, the FWM Hamiltonian can typically be described by

Hint, FWM = ΛamP kPλP
amP kPλP

a†mSkSλS
a†mIkIλI

+ Λ∗a†mP kPλP
a†mP kPλP

amSkSλS
amIkIλI

+ ηa†mP kPλP
a†mP kPλP

amP kPλP
amP kPλP

+ ζa†mSkSλS
a†mP kPλP

amSkSλS
amP kPλP

+ ζa†mIkIλI
a†mP kPλP

amIkIλI
amP kPλP

,

(3.76)

where the Λ terms give FWM, the η term gives SPM and the ζ terms give XPM. As with

SPDC, this can be simplified by making the undepleted pump approximation and taking the

pump to be either pulsed or a CW coherent state to get the approximated Hamiltonian (for a

single input pump)

H ′int, FWM = Λα2a†mSkSλS
a†mIkIλI

+ Λ∗α∗2amSkSλS
amIkIλI

+ η |α|4

+ ζ |α|2 a†mSkSλS
amSkSλS

+ ζ |α|2 a†mIkIλI
amIkIλI

. (3.77)

The nondegenerate FWM term then gives two mode squeezing, the SPM term has the effect

of shifting the refractive index and the XPM term causes the input pump to shift the phase of

the output signal and idler photons.

3.6 Microring resonators

Generally, a microring (ring) resonator is a structure that allows for interference at the input

and output by coupling to one or more waveguides and allows any input resonant light to

make multiple trips around the ring. While the resonator depicted in figure 3.5 is a circle,

other shapes, such as racetracks, squares and rectangles are also possible and can often be less

lossy than circular resonators due to the continuous bend required for a circular ring.

For light confined in a waveguide or ring, the creation and annihilation operators in a ring

can be parametised by the angle in the ring, such that the distance travelled over an angle θ

is l = rθ. This gives that the ring annihilation operator b (θ = 0) = b (θ = 2π). As this is a

periodic boundary condition, the allowed wavenumbers are discretised to give

kn =
2πn

L
=
n

r
. (3.78)

Introducing waveguide modes ψJ,n for frequency (and potentially polarisation) mode J in

waveguide n, with a coupling rate γJ,n (which can be frequency dependent) allows for coupling

light into and out of the waveguide, as in figure 3.5. Loss can similarly be modelled by

similarly using a ‘phantom’ waveguide with modes ϕJ and coupling rates µJ . As multiple

phantom waveguides are equivalent to a single phantom waveguide with µJ =
∑

n µJ,n, we
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Figure 3.5: Diagram of a microring resonator coupled to two waveguides with an input mode
coupled through the lower waveguide and output through both the lower and upper waveguides.
Each waveguide has a corresponding coupling rate which, when combined with the loss intrinsic
to the waveguide (through e.g. a rough surface), contributes to an overall loss rate.

consider only a single phantom waveguide. With these modes input to the waveguide, this

gives the linear Hamiltonian

HL = Hwaveguides +Hring,L +Hcoupling, rw (3.79)

=
∑
J,n

[
ωJ

∫
ψ†J,n (x)ψJ,n (x) dx+

1

2
ivJ

∫
dψ†J,n (x)

dx
ψJ,n (x)− ψ†J,n (x)

dψJ,n (x)

dx
dx

]

+
∑
J

[
ωJ

∫
ϕ†J (x)ϕJ (x) dx+

1

2
ivJ

∫
dϕ†J (x)

dx
ϕJ (x)− ϕ†J (x)

dϕJ (x)

dx
dx

]
+
∑
J

[
ωJb

†
JbJ + µJb

†
JϕJ (0) + µ∗JbJϕ

†
J (0)

]
+
∑
J,n

[
γJ,nb

†
JψJ,n (0) + γ∗J,nbJψ

†
J,n (0)

]
.

(3.80)

splitting the waveguide operators into ‘input’ and ‘output’ operators

ψJ1 (x, t) =

ψJ1< (x, t) for x < 0

ψJ1> (x, t) for x > 0
, ψJ2 (x, t) =

ψJ2< (x, t) for x > 0

ψJ2> (x, t) for x < 0
(3.81)

ϕJn (x, t) =

 ϕJn< (x, t) for x < 0

ϕJn> (x, t) for x > 0,
, (3.82)

where the ring is taken to couple to the waveguides at x = 0, the ring operators are taken

to travel anti-clockwise, with input into waveguide 1 (coupled below the ring as in figure
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3.5) travelling left-to-right and the input to waveguide 2 (coupled above the ring) travelling

right-to-left, with

ψJn (0, t) =
1

2
(ψJn< (0, t) + ψJn> (0, t)) , (3.83)

gives the Heisenberg equation of motion(
d

dt
+ Γ̄J

)
b̄J (t) = −i

∑
n

γ∗Jnψ̄Jn< (0, t)− iµ∗J ϕ̄J< (0, t) , (3.84)

where the total loss rate is defined by

Γ̄J =
∑
n

ΓJn +MJ =
∑
n

|γJn|2

2v
+
|µJ |2

2u
. (3.85)

Typically, such as in chapter 6, a coherent CW or pulsed state α is input into waveguide 1

(assumed to be lossless for simplicity) with vacuum input into both waveguide 2 and the phan-

tom waveguide (although a thermal state input may be more realistic). Taking the expectation

value of the operators in equation 3.84 gives the classical equation of motion(
d

dt
+ Γ̄J

)
β̄J (t) = −iγ∗J1α (0, t) . (3.86)

For a CW input, the steady state solution can be calculated to be

β̄J = −i
γ∗J1
Γ̄J

α, (3.87)

while for a pulsed input, the Fourier transform can be taken to give

β̄J (k) = −i
γ∗J1

−ikv + Γ̄J
α (k) . (3.88)

A similar process can be used to calculate the steady state and Fourier transformed solutions

of the ring operators for pump, signal and idler modes of a nonlinear process such as FWM or

SPDC, which in turn gives the output mode operators used to calculate correlation functions

giving various photon statistics.
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Chapter 4

Simulation Methods by Embedding

into a Larger System

Section 4.1 is an introductory/background section and contains a summary of this chapter.

Sections 4.2.1 and 4.3.1 are background sections and summarise pre-existing work. The rest of

this chapter is my own work. Experimental data in sections 4.3 and 4.4 was taken by Nicola

Maraviglia and Patrick Yard and can be found in [41–43]. Also related, although not directly

referenced here is [44].

4.1 Introduction

A number of methods of simulating PT -symmetric and non-Hermitian systems have been con-

sidered or experimentally implemented. Generally, these consist of some method of embedding

the non-Hermitian Hamiltonian into a larger system. There are two main classes of methods

of achieving this. One such method involves making Hamiltonians that are non-Hermitian be-

cause of gain and loss terms purely lossy. This can be done by ‘shifting’ the Hamiltonian by the

value of the largest gain term and embedding this into a larger system, such as in [22, 23, 45].

Equivalently, this can also be achieved by adding in loss terms to the transformation in the form

of beamsplitters in a photonic system, as in [21]. Alternatively, the non-Hermitian Hamilto-

nian can be ‘dilated’ into a larger Hermitian Hamiltonian, which could be done using an ancilla

qubit, relying on the metric operator. While this method works for arbitrary non-Hermitian

Hamiltonians [8], in the case of PT -symmetric Hamiltonians in the unbroken regime, this is

considerably simplified due to the simpler definition of the metric operator [7].

In this chapter, we consider possible ways of adapting the first two methods, first using open

systems in section 4.2. Then, in section 4.3, in comparison with the ideas of [21], we use Halmos

‘Unitary’ dilation to consider two coupled PT -symmetric systems evolving such that the overall

combined system is unitary. Applications of such a combined system or simulation method are
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then considered in section 4.4. Unitary dilation has a number of potential applications, both

within and outside PT -symmetry. Varying the distinguishability of the input photons allows

for tuning the strength of the off-diagonal blocks of the dilated unitary, as in section 4.4.1.

As the system is comprised of non-Hermitian systems coupled in such a way that makes the

overall system Hermitian, this allows for simulating exotic particles and systems, as in section

4.4.2.

Throughout this chapter, we consider the 2- and 3- dimensional PT -symmetric Hamilto-

nians

H2 =

(
iγ 1

1 −iγ

)
and H3 =

iγ 1 0

1 0 1

0 1 −iγ

 . (4.1)

Defining ϵ2 =
√

1− γ2 and ϵ3 =
√

2− γ2, H2 has eigenvalues ϵ2 and −ϵ2 and H3 has eigen-

values ϵ3, 0 and −ϵ3. We also define the time evolution matrix of these Hamiltonians by

GN = e−iHN t, giving, for N = 2, 3,

GN = I − i 1

ϵN
HN sin ϵN t−

1

ϵ2N
H2

N (1− cos ϵN t) . (4.2)

At the EP, this becomes

G2 (γ = 1) =

(
1 + t −it
−it 1− t

)
(4.3)

G3 (γ = 1) =


1 +
√

2t+ 1
2 t

2 −i
(
t+ 1√

2
t2
)

−1
2 t

2

−i
(
t+ 1√

2
t2
)

1− t2 −i
(
t− 1√

2
t2
)

−1
2 t

2 −i
(
t− 1√

2
t2
)

1−
√

2t+ 1
2 t

2

 (4.4)

We also assume that inputs are single photon states, or other Fock states, as opposed

to more general quantum states of light, such as squeezed states. While this is discussed in

chapter 3 and more specifically in chapter 6, we assume that a single photon input is created

by inputting a pulsed laser into a source using Spontaneous Parametric Down Conversion

(SPDC) or Four Wave Mixing (FWM) to create pairs of photons, with one of these photons

heralded separately to the experiment or interferometer. It is also assumed that the squeezing

parameter is low enough that higher-order photon terms are small enough to be ignored. This

scheme is shown in figure 4.1, a more detailed experimental description of which can be found

in [41]. However, a different interferometric setup is given in chapter 5 which considers the

photon source as part of the simulation set-up.
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404 nm input 

coherent state 
BiBO crystal 

Filter 

808 nm 

squeezed 

state 

Mirrors 

Polarisation Maintaining (PM) Fibre, to Single Photon Detectors (SPDs) 

6 mode Reck scheme 

Figure 4.1: Diagram depicting the setup of a squeezed state, heralded to give a single photon
input into mode 4 of a 6-mode Reck scheme [38]. A 404 nm coherent state is input into a
BiBO crystal to undergo Spontaneous Parametric Down Conversion (SPDC), which creates a
squeezed state (with 1 frequency mode and 2 spatial modes) with a low squeezing parameter.
This is then heralded to approximately create a single photon input to the Reck scheme, which
implements an arbitrary unitary transformation on that single photon.

4.2 Embedding as an open subsystem

4.2.1 Passive systems using Markovian Dynamics

The evolution of a Markovian, open system can be described by the Lindblad master equation

[28]

L (ρ) = ρ̇ = −i [H, ρ] +
1

2

∑
l

κl

(
2FlρF

†
l − F

†
l Flρ− ρF †l Fl

)
, (4.5)

for κl > 0∀ l, t. Comparing with Hermitian evolution of a closed system,

LH (ρ) = ρ̇ = −i [H, ρ] , (4.6)

gives that we can desrcibe the evolution of the open system as the evolution of a non-Hermitian

effective Hamiltonian

Heff = H − i

2

∑
l

κlF
†
l Fl, (4.7)

with an additional ‘jump’ term given by LJ =
∑

l κlFlρF
†
l to give the overall evolution as

L (ρ) = ρ̇ = −i [Heff, ρ]# +
∑
l

κlFlρF
†
l = (LH + LJ) (ρ) , (4.8)

where the redefined commutator [Heff, ρ]# = Heffρ − ρH†eff, as in [46]. In the postselected

regime, the evolution is then described by the non-Hermitian Hamiltonian Heff.

To give an explicit example of such a system, we look at the 2-dimensional Hamiltonian

Heff =

(
0 1

1 −2iγ

)
= H2 − iγI, (4.9)
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which can be embedded into a 3-dimensional system, split into a Decoherence-Free Subsystem

(DFS) [46] and decohering subsystem using the Feshbach partitioning formalism [47], where

the effective Hamiltonian is embedded. That is, we define the Hamiltonian

HM3 =

0 0 0

0 0 1

0 1 0

 , (4.10)

along with Lindblad operator

FM3 =

0 0 1

0 0 0

0 0 0

 , (4.11)

where the bottom-right 2 × 2 block describes a subsystem where the effective, passive PT -

symmetric Hamiltonian acts,

Heff,M3 =

0 0 0

0 0 1

0 1 − i
2κ

 , (4.12)

with the jump term connecting this to the (upper-left) element ρ00 of the density matrix

describing a DFS

LJ,M3 (ρ) =

κρ33 0 0

0 0 0

0 0 0

 . (4.13)

Postselecting on the bottom-right 2 × 2 block gives passive PT -symmetric behaviour at the

cost of successful postselection decaying exponentially with time, as shown in figure 4.3.

4.2.2 Active systems using non-Markovian Dynamics

In principle, this can be adapted to embed an active PT -symmetric Hamiltonian into a 2× 2

subspace of a 4×4 non-Markovian system. This relies on the property that if κl (t) < 0 for some

t and
∫ t
t0
κl (t′) dt′ > 0 ∀t, evolution is a (completely positive) non-Markovian channel [48, 49].

Defining the Hamiltonian

HNM4 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

 (4.14)

as well as the Lindblad operators

F1,NM4 =


0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

 and F2,NM4 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 , (4.15)
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defines an effective Hamiltonian

Heff,NM4 =


0 0 0 0

0 0 0 0

0 0 − i
2κ1 1

0 0 1 − i
2κ2

 (4.16)

with jump terms given by

LJ,NM4 (ρ) =


κ1ρ33 0 0 0

0 κ2ρ44 0 0

0 0 0 0

0 0 0 0

 . (4.17)

To give an example of how this could be used to create PT -symmetric evolution, for a total

simulation time T , we can define

κ1 = 2γ , κ2 =

 2γ for 0 ≤ t ≤ T
2

−2γ for T
2 < t ≤ T

, (4.18)

which, when postselected in the bottom-right subsystem, gives purely lossy evolution for t ≤
T/2 followed by PT -symmetric evolution for T/2 < t < T . This is displayed in figure 4.2.

However, while this method can in principle be used to simulate non-Hermitian Hamilto-

nians with gain terms as well as loss, the success probability of measuring the system to be in

the subsystem described by the PT -symmetric Hamiltonian decays exponentially with simu-

lation time, although the final postselection probability is generally higher than the equivalent

Markovian version given in section 4.2.1, shown in figure 4.3.

4.3 Halmos Unitary Dilation

4.3.1 Definition of Unitary Dilation

Originally described in [50] and recently used in [51], (Halmos’) unitary dilation can be consid-

ered as a normalised variant of a Singular Value Decomposition (SVD). Starting with the SVD

of an arbitrary N ×N matrix M = U−→σ V † for U, V unitary matrices and −→σ a diagonal matrix

of the singular values, unitary dilation consists of performing the SVD of M and normalising

the singular values. This normalised SVD is then considered as a subsystem of a larger unitary

system, which allows it to be implemented by a unitary process, such as a Clements or Reck

scheme interferometer.

For a SVD of matrix M giving M = U−→σ V †, denoting the singular values as σj to give

the (j, k)th element of −→σ as −→σ jk = δjkσj and normalising by the maximum singular value
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Figure 4.2: Evolution described by equations 4.16 and 4.18. Plots show the real parts of ρ33,
ρ44 and the imaginary parts of ρ34 and ρ43, with Im (ρ33) = Im (ρ44) = Re (ρ34) = Re (ρ43) = 0.
Total evolution time is taken to be T = 8 arbitrary units, the second half of which is shown,
being the evolution of an active PT -symmetric Hamiltonian with both gain and loss, created
using non-Markovian Lindbladian dynamics. Top row starts with ρ33 = 1 and all other elements
being 0 and bottom row has ρ44 = 1, with all other elements being 0. Left is the unbroken
regime with γ = 0.5, middle is the Exceptional Point (EP) with γ = 1 and right is the
broken regime with γ = 1.5. This displays the usual behaviour of PT -symmetric Hamiltonians
with oscillatory behaviour in the unbroken regime, pollynomal decay/growth at the EP and
exponential decay/growth in the broken regime.

σM = maxj σj allows us to write

1

σM
M = M̃ = U

(
1

σM
D

)
V † = UD̃V †. (4.19)

As all the normalised singular values are 0 ≤ σj/σM ≤ 1, we can write these as

cos θj =
σj
σM

, (4.20)

so we can now write the elements of σ̃ as σ̃jk = δjk cos θj , which we denote by writing σ̃ = cos
−→
θ .

This can now be embedded into a larger unitary system by a beamsplitter-type transformation

to get

UM =

(
U 0

0 A

)(
cos
−→
θ i sin

−→
θ

i sin
−→
θ cos

−→
θ

)(
V † 0

0 B

)
, (4.21)

for any A,B ∈ U (N). Throughout the rest of this chapter, we take A = V and B = U †. This

46



4.3. HALMOS UNITARY DILATION

Figure 4.3: Comparison of the final postselection probability for Markovian (bottom) and non-
Markovian (top) cases with time, for γ = 0.5, 1.0, 1.5. Left is for an input state ρ33 = 1 with
all other elements of the density matrix = 0, right is for an input state ρ44 = 1, with all other
elements = 0. The Markovian version has a monotonically decreasing (most often with an
exponential decay) success probability, unlike the non-Markovian case. While this follows an
envelope of (often exponential) decay with time, there are γ-dependent oscillations within this
envelope.

gives

UM =

 U cos
−→
θ V † iU

√
I − cos2

−→
θ U †

iV

√
I − cos2

−→
θ V † V cos

−→
θ U †

 (4.22)

=

(
M̃ i

√
I − M̃M̃ †

i
√
I − M̃ †M̃ M̃ †

)
, (4.23)

using the property that
√
WCW−1 = W

√
CW−1. We also have that, when M = MT,(

MM †
)∗

= M †M =⇒ U∗ = V (4.24)

=⇒
(√

I − M̃ †M̃
)∗

=
√
I − M̃M̃ † (4.25)
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and so, defining D =
√
I − M̃M̃ † gives

UM =

(
M̃ iD

iD∗ M̃ †

)
. (4.26)

In order to simulate an N -dimensional system using spatial modes on a photonic chip

with this dilation method, we therefore require 2N -modes. To keep the mapping between

photon number and computational spaces simple, we initially assume the 2N -mode system

is constrained to the one-photon subspace, so we can decompose the Fock space into particle

number subspaces as F = H1, where the subscript gives the total particle number. Modes

1 to N are denoted as the forward/top (sub)system and N + 1 to 2N as the reverse/bottom

(sub)system. This gives the basis states as{
|k⟩ = |0p⟩⊗(k−1) |1p⟩ |0p⟩⊗(2N−k) = a†k |0p⟩

⊗2N
}2N

k=1
(4.27)

where |0p⟩ is the vacuum state. To make the transformation the dilated unitary gives between

different subspaces of the system explicit, this gives, for 1 ≤ j ≤ N and as shown in figure 4.4,

UM |j⟩ =
N∑
k=1

(
M̃kj |k⟩+ iD∗kj |k +N⟩

)
(4.28)

UM |j +N⟩ =

N∑
k=1

(
M̃ †kj |k +N⟩+ iDkj |k⟩

)
. (4.29)

 

𝑖𝐷∗ 

�̃� 

 

�̃�† 

𝑖𝐷 

Figure 4.4: Inputting a single photon into the topN modes gives that the photon has undergone
the transformation given by M̃ if detected in the top N modes or iD∗ if detected in the bottom
N modes. Similarly, a photon input into the bottom N modes undergoes the transformation
given by M̃ † if detected in one of the bottom N modes and iD if detected in the top N modes.
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4.3.2 Normalisation

Splitting the 2N × 2N matrix into subspaces allows for considering both of these subspaces

separately, meaning we can write a different (normalised) density matrix for each subspace,

with an additional ‘vacuum’ mode representing 0 photons in that subspace. The density matrix

at time t can be written as

ρ (t) = UMρ (0)U †M =

(
ρFF ρFR

ρRF ρRR

)
. (4.30)

For a system initially in the state ρ =
∑2N

k,l pkl |k⟩⟨l|, performing the partial trace over the

reverse subsystem gives

ρF = trRρ = trR

2N∑
k,l=1

pkl |k⟩⟨l|

= trR

2N∑
k,l=1

pkl |0p⟩⊗(k−1) |1p⟩ |0p⟩⊗(2N−k) ⟨0p|⊗(l−1) ⟨1p| ⟨0p|⊗(2N−l)

= trR

( N∑
k,l=1

pkl |0p⟩⊗(k−1) |1p⟩ |0p⟩⊗(2N−k) ⟨0p|⊗(l−1) ⟨1p| ⟨0p|⊗(2N−l)

+
2N∑

k,l=N+1

pkl |0p⟩⊗(k−1) |1p⟩ |0p⟩⊗(2N−k) ⟨0p|⊗(l−1) ⟨1p| ⟨0p|⊗(2N−l)

+
N∑
k=1

2N∑
l=N+1

pkl |0p⟩⊗(k−1) |1p⟩ |0p⟩⊗(2N−k) ⟨0p|⊗(l−1) ⟨1p| ⟨0p|⊗(2N−l)

+
2N∑

k=N+1

N∑
l=1

pkl |0p⟩⊗(k−1) |1p⟩ |0p⟩⊗(2N−k) ⟨0p|⊗(l−1) ⟨1p| ⟨0p|⊗(2N−l)
)

=

N∑
k,l=1

pkl |0p⟩⊗(k−1) |1p⟩ |0p⟩⊗(N−k) ⟨0p|⊗(l−1) ⟨1p| ⟨0p|⊗(N−l)

+
2N∑

k,l=N+1

pkl |0p⟩⊗n ⟨0p|⊗n δk,l

=
N∑

k,l=1

pkl |k⟩⟨l|+
2N∑

k=N+1

pkk |vac⟩⟨vac| ,

with equivalent results when the partial trace is performed over the forward system, showing

the partial trace operation over the reverse (forward) system sums the diagonal elements of

the bottom (top) N modes and places this value in the vacuum state of the forward (reverse)

system, as well as performing the decoherence map between the photon number subspaces,

as per the photon number superselection rule [52, 53]. This also shows the basis states of the

forward or reverse subsystem are
{
|k⟩(F/R) = |0p⟩⊗(k−1) |1p⟩ |0p⟩⊗(N−k)

}N

k=1
and an additional
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basis state in each subsystem of |0p⟩⊗N = |vac⟩. That is, this causes the Fock space of the

subsystems to be decomposed into particle number subspaces as F (F/R) = H(F/R)
0 ⊕ H(F/R)

1 ,

with no coherence between the single-particle subspace and the vacuum possible.

An ideal tomography measurement of this will then project on to the single photon subspace

and normalise to give

ρ̃F =

∑N
k,l=1 pkl |k⟩⟨l|∑N

k=1 pkk

for the forward subsystem and

ρ̃R =

∑2N
k,l=N+1 pkl |k⟩⟨l|∑2N

k=N+1 pkk

for the reverse subsystem. As both systems can be measured simultaneously, the diagonal

elements of one subsystem can then be used to calculate the elements of the ’un-normalised’

density matrix of the other subsystem.

For M = GN (t), there are different possible methods of matrix normalisation, which give

different dilated unitaries. One of these considers the maximum norm over the entire evolution

time, the other considers the norm at each instant of evolution time. Denoting the maximum

singular value of G (t) by ∥GN (t)∥2 = σmax (GN (t)), these different normalisations give

G̃N (t) =
GN (t)

∥GN (t)∥2
=

GN (t)

σmax (GN (t))
or G̃N (t) =

GN (t)

∥GN∥2
=

GN (t)

maxt [σmax (GN (t))]
. (4.31)

The type of normalisation used then determines the evolution of the system, with each

having its own advantages and disadvantages and giving different simulation results, as shown

in figures 4.5, 4.6 and 4.7. Here, we use σ1 (t) as the time-dependent maximum singular value,

giving the first normalisation method and σM to be the time-independent maximum singular

value, giving the second normalisation method.

In a PT -symmetric system in the unbroken regime, as the eigenvalues are real, the various

amplitudes oscillate with time, so the maximum singular value over the entire simulation time

is the maximum singular value over a single oscillation period. For general non-Hermitian

system, or a PT -symmetric system at the EP or in the broken regime, this is not the case.

The maximum singular value over all simulation time can often be at the start of the evolution,

such as in the case of systems with only loss terms. They can also be at the end of the simulation

time, such as in broken PT -symmetric systems with exponential growth as with H2. Starting

with equation 4.2, we can write

G2 =

(
cos ϵ2t+ γ

ϵ2
sin ϵ2t i 1ϵ2 sin ϵ2t

i 1ϵ2 sin ϵ2t cos ϵ2t− γ
ϵ2

sin ϵ2t

)
, (4.32)

so we can calculate the singular values of G2 as the square roots of the eigenvalues of

G2G
†
2 =

 1
ϵ22
− γ2

ϵ22
cos 2ϵ2t+ γ

ϵ2
sin 2ϵ2t −2iγ

ϵ22
sin2 ϵ2t

2iγ
ϵ22

sin2 ϵ2t
1
ϵ22
− γ2

ϵ22
cos 2ϵ2t− γ

ϵ2
sin 2ϵ2t

 , (4.33)
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Figure 4.5: Maximum Singular Values for G2. Upper-left plot shows the maximum singular
value over the entire simulation time σM in the PT -unbroken regime, varying with γ. Upper-
right shows the time-dependent maximum singular value σ1 as a function of time and γ. This
shows both the increase in σ as the EP is approached as well as the increase in period. Bottom-
left and bottom-right graphs show the maximum singular value σ1, varying with time, at the
EP and in the broken regime (γ = 1.5) respectively, showing polynomial growth with time at
the EP and exponential growth in the broken regime.

which gives the square of singular values of G2 as

σ21/2 (t) =
1

ϵ22

[
1− γ2 cos 2ϵ2t± γ

√
(1− cos 2ϵ2t) (2− γ2 − γ2 cos 2ϵ2t)

]
, (4.34)

with the maximum time dependent singular value being defined as σ1 (t). In the unbroken

regime, shown in figure 4.5, this has a maximum value (over time) of

σ2M =
1− γ4 + 2γϵ22

ϵ42
at t =

π + 2πn

2ϵ2
, (4.35)

for n ∈ Z. In the broken regime, the maximum singular value monotonically increases, so a

maximum singular value over time cannot be defined, so this is instead taken to be the largest

singular value (σ1) at the final simulation time T .

We can also repeat this process at the EP, which gives

G2 (γ = 1)G†2 (γ = 1) =

(
1 + 2t+ 2t2 2it2

−2it2 1− 2t+ 2t2

)
, (4.36)
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Figure 4.6: Elements of the Dilated Unitary, continued in figure 4.7
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Figure 4.7: Elements of the Dilated unitary, for time-independent normalisation, σM (left)
and time-dependent normalisation, σ1 (t) (right). These different normalisation methods give
qualitatively different results, with time-independent normalisation giving smooth values for
G̃2, although discontinuous values for D in the unbroken regime, while time-dependent nor-
malisation gives neither G̃2 or D as being necessarily smooth, but both being continuous. At
the EP and in the broken regime, the time-dependent normalisation method gives evolution
towards a stable point, while using the time-independent normalisation method gives typical
PT -symmetric behaviour with poynomial growth in G̃2 at the EP and exponential growth in
the broken regime.

which gives the singular values of G2 as

σ21/2 (γ = 1) = 1 + 2t2 ± 2t
√

1 + t2, (4.37)

again meaning that a maximum singular value over time cannot be defined, so we again use

σM = σ1 (T ).

Taking the normalisation to be the maximum singular value over entire simulation time

(‘time-independent scaling’, using σM for normalisation) gives that the entire transformation

matrix M gets scaled by this constant value and so, calculating the full un-normalised trans-

formation from the normalised transformation can be done by multiplying by this scale factor.

However, this has the disadvantage that when a different simulation time is used, this scaling

factor may need to be recalculated and so, will be different for each simulation.

Instead taking the normalisation to be the time dependent maximum singular value (‘time-

dependent scaling’, using σ1 (t) for normalisation) has the disadvantage that M is no longer
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scaled by a constant, rather a time-dependent value, so calculating the un-normalised transfor-

mation requires both full knowledge of the time-dependent scaling and additional calculations.

The corresponding advantage of this is that because the scaling factor is a time-dependent

variable, it does not depend on the total simulation time.

As in figures 4.6 and 4.7, these two simulation methods give qualitatively different results,

especially noticeable in the broken PT -symmetric regime and EP. Time-independent scaling

gives that the elements of the state or density matrix increase/decrease polynomially (at the

EP) or exponentially (in the broken phase) with time, as typical for PT -symmetric systems.

However, taking a time-dependent scaling instead gives evolution towards fixed stable points.

This contrasts with the unbroken regime, where both methods of normalisation cause the

system to oscillate with time, with time-dependent normalisation causing this oscillation to be

skewed.

4.3.3 Effective Hamiltonian

For either method of normalisation, we can then define an effective (Hermitian) Hamiltonian

Heff by U = e−iHefft. Differentiating with respect to time and post-multiplying by U † gives

dU

dt
U † = −iHeffUU

† = −iHeff (4.38)

While this can be numerically approximated, here we analytically calculate the off-diagonal

blocks D and D∗ for both normalisations of H2. We can do this by using the property that,

for a 2× 2 matrix M2, a square root of M2 can be calculated using1√
M2 =

1√
TrM2 + 2

√
detM2

(
M2 +

√
detM2I2

)
. (4.39)

Starting with time-independent scaling, we can then apply this to the matrix σMDM =√
σ2MI2 −G2G

†
2 to get

ϵ22σ
2
MD

2
M =

(
γ2 + 2γ + γ2 cos 2ϵ2t− γϵ2 sin 2ϵ2t 2iγ sin2 ϵ2t

−2iγ sin2 ϵ2t γ2 + 2γ + γ2 cos 2ϵ2t+ γϵ2 sin 2ϵ2t

)
(4.40)

Tr
(
σ2MD

2
M

)
=

2

ϵ22

(
γ2 + 2γ + γ2 cos 2ϵ2t

)
(4.41)

det
(
σ2MD

2
M

)
=

[
2γ cos ϵ2t

1− γ

]2
. (4.42)

1This can be shown by using this to calculate
√
M2

2
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Similarly, for the time-dependent scaling, for σtDt =

√
σ2t I2 −G2G

†
2, we get

σ21D
2
t =

1

ϵ22

(
ϵ22
2 Tr

(
σ21D

2
t

)
− γϵ2 sin 2ϵt 2iγ sin2 ϵt

−2iγ sin2 ϵ2t
ϵ22
2 Tr

(
σ21D

2
t

)
+ γϵ2 sin 2ϵt

)
(4.43)

Tr
(
σ21D

2
t

)
=

2

ϵ22
γ
√

(1− cos 2ϵ2t) (2− γ2 − γ2 cos 2ϵt) (4.44)

det
(
σ21D

2
t

)
= 0. (4.45)

This gives the elements of D, in turn giving the evolution of the state in figures 4.6 and 4.7.

We then use equation 4.38 to numerically calculate the elements of the effective Hamilto-

nian, shown in figure 4.8. This also shows a qualitative difference between the two normalisation

methods, with time-independent normalisation giving discontinuities in the effective Hamilto-

nian in the unbroken regime, similar to the discontinuities in the dilated unitary. The effective

Hamiltonian also shows the difference at the EP and in the broken regime, with the time-

dependent normalisation reaching a fixed point and time-independent normalisation showing

(normalised) exponential growth in the broken regime.

4.4 Applications of Unitary Dilation

4.4.1 Varying Distinguishability

While this dilated unitary can be used to simulate unitary evolution of coupled PT -symmetric

systems, it can also be used to simulate a single PT -symmetric system with non-unitary

evolution, using postselection. That is, for a N -mode system dilated into a 2N -mode unitary,

with a photon input into any of the top N modes (or a superposition of the top N modes),

postselecting the photon to be output from the top N modes simulates (normalised) evolution

of a PT -symmetric system. Using this same process for the bottom N modes would instead

simulate a time-reversed PT -symmetric system.

However, with M photons input, while inputting these photons into some combination of

the top N modes and postselecting on the same would allow for sampling from the nonunitary

transformation G⊗MN , being able to input photons of varying distinguishability between the top

and bottom N modes allows for different transformations to be created, using postselection.

To demonstrate this, we first consider 2 photons input into a 2N mode system and use the

system-label notation of [54,55]. That is, as well as assigning a ‘system’ mode number to a cre-

ation (annihilation) operator a†s (as) representing the physical waveguide the operator acts on,

we additionally assign a ‘label’ mode l, here written as ← or → that represents an orthogonal

non-spatial mode, such as frequency or temporal delay that determines the distinguishability

of the input photons. This gives creation (annihilation) operators a†sl (asl). Where the system

modes of a state are given by column-elements in a ket, the label modes are instead given by
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Figure 4.8: Non-zero elements of the effective Hamiltonian of the dilated unitary, defined by
equation 4.38. In the unbroken regime, the elements of the effective Hamiltonian are periodic,
although discontinuous when time-independent normalisation is used. This discontinuity van-
ishes at the EP and in the broken regime. In these regimes, the two different normalisation
methods again give qualitatively different results, with time-independent normalisation (left)
having a spike in the effective Hamiltonian at the end of the simulation time, while time-
dependent normalisation (right) has the elements of the effective Hamiltonian starting at a
non-zero value and decaying to zero as the transformation reaches a steady state.
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row-elements. For a 4-mode system (N = 2) with 2 label modes with one photon entering mode

1 and and another entering mode 3, we can write this as a distinguishable/indistinguishable

state in the Hilbert space H = Hs ⊗Hi ⊗Hs ⊗Hi by, for example,

|ψd⟩ = a†1←a
†
3→ =

∣∣∣∣∣∣∣∣∣∣
1 0

0 0

0 1

0 0

〉
= Sym [|1←⟩ |3→⟩] =

1√
2

[|1←⟩ |3→⟩+ |3→⟩ |1←⟩] (4.46)

|ψi⟩ = a†1←a
†
3← =

∣∣∣∣∣∣∣∣∣∣
1 0

0 0

1 0

0 0

〉
= Sym [|1←⟩ |3←⟩] =

1√
2

[|1←⟩ |3←⟩+ |3←⟩ |1←⟩] , (4.47)

where the symmetrisation occurs due to boson statistics. Measuring the label mode determines

which photon is in which mode in the distinguishable case. Generally, in most optics experi-

ments, such as boson sampling, distinguishability is considered a ‘bad’ effect, allowing for easier

classical simulation [56], however here, we consider it a ‘neutral’ quantum phenomenon that

can potentially even have useful consequences. Transformations, such as the interferometer

giving the transformation corresponding to a dilated unitary in the this section, are assumed

to act on the system modes without acting on the label modes to give the transformation

U : a†jl 7→
∑
k

Ukja
†
kl, (4.48)

giving the transformation U⊗I2 on a single photon. For two photons input, the transformation

given by U is then (U ⊗ I2)⊗ (U ⊗ I2). Relabling the modes to the Hilbert space Hs ⊗Hs ⊗
Hi ⊗Hi gives the transformation as U ⊗U ⊗ I4, which is then symmetrised. For UGN

, this is

UGN
⊗ UGN

=


GN ⊗GN iGN ⊗DN iDN ⊗GN −DN ⊗DN

iGN ⊗D∗N GN ⊗G†N −DN ⊗D∗N iDN ⊗G†N
iD∗N ⊗GN −D∗N ⊗DN G†N ⊗GN iG†N ⊗DN

−D∗N ⊗D∗N iD∗N ⊗G
†
N iG†N ⊗D∗N G†N ⊗G

†
N

 . (4.49)

However, we now impose the ‘pre-selection’ restriction that one photon is input into the top

N modes and one photon is input into the bottom N modes and similarly postselect on one

photon being output from the top N modes and one from the bottom N modes. This gives

both the input and ouptut states as being within the subspace defined by the states{
Sym

[
|jl⟩

∣∣(k +N) l′
〉]

= a†jla
†
(k+N)l′ |0p⟩

⊗2N
}j,k=N

j,k=1;l,l′∈{←,→}
. (4.50)

Within this pre- and post- selected subspace, the unitary transformation can be written as

UGN
⊗ UGN

=


∗ ∗ ∗ ∗
∗ GN ⊗G†N −DN ⊗D∗N ∗
∗ −D∗N ⊗DN G†N ⊗GN ∗
∗ ∗ ∗ ∗

 , (4.51)
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where ∗ represents elements outside the subspace of input and measured outcomes.

Inputting a state Sym [|jl⟩ |(k +N) l′⟩] = (|jl⟩ |(k +N) l′⟩+ |(k +N) l′⟩ |jl⟩) /
√

2 means we

can write the output state as

U ⊗ U |ψ⟩ =
1√
2


∗

GN ⊗G†N |jl⟩ |(k +N) l′⟩ −DN ⊗D∗N |(k +N) l′⟩ |jl⟩
−D∗N ⊗DN |jl⟩ |(k +N) l′⟩+G†N ⊗GN |(k +N) l′⟩ |jl⟩

∗

 (4.52)

= Sym
[
GN ⊗G†N |jl⟩

∣∣(k +N) l′
〉
−DN ⊗D∗N

∣∣(k +N) l′
〉
|jl⟩
]
. (4.53)

We can then project/postselect onto the same system subspace and label state as was input.

This can be done using the symmetrised form of the projector

P↑,l,↓,l′ = Sym
[
(IN ⊕ 0N )⊗ |l⟩⟨l| ⊗ (0N ⊕ IN )⊗

∣∣l′⟩⟨l′∣∣] , (4.54)

which postselects on the photon in label mode l being in the top subspace and the photon

in label mode l′ being in the bottom subspace. Represented in figure 4.9, this gives, for

distinguishable states (l ̸= l′),

P↑,l,↓,l′U ⊗ U |ψd⟩ = Sym
[
GN ⊗G†N |jl⟩

∣∣(k +N) l′
〉]

(4.55)

and for indistinguishable states (l = l′),

P↑,l,↓,lU ⊗ U |ψi⟩ = Sym
[
GN ⊗G†N |jl⟩ |(k +N) l⟩ −DN ⊗D∗N |(k +N) l⟩ |jl⟩

]
. (4.56)

This form of postselection therefore allows for using distinguishable states to simulate

uncoupled PT -symmetric systems, with one of these systems being the time reverse of the

other, while if the input state were instead indistinguishable, the overall combined system

would instead be coupled. We can however, make the system partially indistinguishable,

such as by time-delaying one of the input photons with a small enough delay that the two

photon wavepackets have a nonzero temporal overlap. We can write this as a superposition of

distinguishable and indistinguishable states,

|ψin⟩ = α
∣∣ψ′i〉+β ∣∣ψ′d〉 = Sym

∑
jk

ajk (α |j ←⟩ |(k +N)←⟩+ β |j ←⟩ |(k +N)→⟩)

 , (4.57)

which, after the transformation given by the dilated unitary, becomes

U ⊗ U |ψ⟩ =Sym

∑
jk

ajkGN ⊗G†N (α |j ←⟩ |(k +N)←⟩+ β |j ←⟩ |(k +N)→⟩)


− Sym

∑
jk

ajkDN ⊗D∗N (α |j ←⟩ |(k +N)←⟩+ β |j ←⟩ |(k +N)→⟩)

 .
(4.58)
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𝐺 

𝐺† 

 

𝑖𝐷 

𝑖𝐷∗ 

 

𝐺 ⊗𝐺†

− 𝐷⊗𝐷∗ 

 

Figure 4.9: Inputting a single photon into the top N modes (here, N = 3) and another
indistinguishable photon (using a different ‘label’ mode, represented here by a different
colour/frequency) into the bottom N modes and postselecting on one photon out the top
N modes and the other out the bottom N modes gives that we can additionally postselect
on which label comes out of the top/bottom modes. This is represented by the top diagram,
where the output top/bottom label mode is the same as the input top/bottom label mode,
giving the transformation G⊗G†, as well as the middle diagram where the output top/bottom
label mode is instead the input bottom/top label mode, which instead gives the transforma-
tion −D ⊗D∗. By contrast, inputting indistinguishable photons, represented by the bottom
diagram, gives that the cases represented by the top and middle diagrams are indistinguish-
able, so both of these events cannot be distinguished between and the overall transformation
is instead G⊗G† −D ⊗D∗.

We now project using the symmetrised form of the projection operator

P↑,l,↓ = Sym [(IN ⊕ 0N )⊗ |l⟩⟨l| ⊗ (0N ⊕ IN )⊗ I2] , (4.59)

similar to equation 4.54, except without projecting onto the second label mode. When the label

modes are the same (the photons are indistinguishable), the state is already in the subspace

spanned by the projection operator. When the label modes are different (the photons are

distinguishable), projecting one photon into one label mode automatically enforces that the
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other photon is in the other label mode. This gives the output state

|ψout⟩ = P↑,l,↓U ⊗ U |ψ⟩ (4.60)

= α Sym

(GN ⊗G†N −DN ⊗D∗N
)∑

jk

ajk |j ←⟩ |(k +N)←⟩

 (4.61)

+ β Sym

GN ⊗G†N
∑
jk

ajk |j ←⟩ |(k +N)→⟩

 (4.62)

= GN ⊗G†N |ψin⟩ − αDN ⊗D∗N
∣∣ψ′i〉 . (4.63)

That is, within this postselected space, the transformation is that of two coupled PT -symmetric

systems, one the time-reverse of the other, with a tunable coupling given by the strength of

the indistinguishability of the input photons. This is shown in figure 4.10 for H2.

1010 (11)

1001 (12)

0110 (21)

0101 (22)

0.2 0.4 0.6 0.8 1.0
α

0.1

0.2

0.3

0.4

0.5

0.6

Prob

Figure 4.10: Evolution of a partially distinguishable 2-photon state given by equation 4.63 with
γ = 0.25 with (left) both time and distinguishability parameter α and (right) cross-section of
the same evolution at t = 5. Graphs show that varying the input distinguishability can have a
large effect on the output photon statistics due to how the parameter α changes the strength
of the off-diagonal blocks that cause the interaction between forward and reverse systems.

This could be considered as a PT -symmetric extension of the HOM effect [24], which

involves a single mode system with G = cos θ. As such, this could be further extended to

higher numbers of photons, such as in [57,58].

4.4.2 Particle Physics simulations

There are two main applications of using unitary dilation in particle physics. One of these

applications is to explore exotic non-Hermitian particles and theories, such as the 8- and 12-

mode PT -symmetric Dirac equations in [59]. Another is to look at the evolution of decaying

particles, which, while not necessarily PT -symmetric, could be non-Hermitian, similar to the

Lindblad evolution of section 4.2. This can be done by defining a Hamiltonian H = M − iΓ,
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where both M (mass matrix) and Γ (loss matrix) are Hermitian, causing the overal Hamiltonian

to be non-Hermitian [60].

Here, we consider neutral B mesons, B0 and B̄0, comprising of down and bottom (anti-

)quarks, B0 = db̄ and B̄0 = d̄b. For the purposes of showing that basic models of non-Hermitian

particle physics can be simulated with current systems, similar to [61], we take a simplistic

approach and ignore strong force interactions. This allows us to write a single quark q in the

computational basis as

Q =

(
Q

Q̄†

)
=


q ↑
q ↓
q̄† ↑
q̄† ↓

 =


00

01

10

11

 , (4.64)

where q (q̄) is the quark (antiquark) state and ↑ (↓) is the up (down) spin state. This naturally

extends to the basis states for particles consisting of pairs of quarks, such as B mesons. For

such particles, consisting of down (d) and bottom (b) quarks, we can write these basis states

as 

000

001

010

011

100

101

110

111


=



d ↑
d ↓
b ↑
b ↓
d̄† ↑
d̄† ↓
b̄† ↑
b̄† ↓


=


D

B

D̄†

B̄†

 . (4.65)

In the regime of Hermitian physics, this could be considered to be two quarks evolving

under 2 separate Dirac equations, which are then coupled together by various interactions.

That is, for

γ0 =

(
0 I

I 0

)
, γj =

(
0 σj

−σj 0

)
, (4.66)

where j ∈ {1, 2, 3} and σj are the Pauli matrices, the Dirac equation is [36]

(−iγµ∂µ +m) Ψ = 0, (4.67)

where Ψ is a Dirac field, B or D. While a PT -symmetric version of the 4-mode Dirac equation

is the same as the Hermitian version, the 8-mode PT -symmetric Dirac equation, unlike the

Hermitian version, does not uncouple into separate Dirac equations. We can write this PT -

symmetric ‘model-8’ Dirac equation in Hamiltonian form as [59]
pjσ

j 0 (m0 +m3)I (m1 − im2)I

0 pjσ
j (m1 + im2)I (m0 −m3)I

(m0 +m3)I (m1 + im2)I −pjσj 0

(m1 − im2)I (m0 −m3)I 0 −pjσj

ψ = Eψ = Hψ. (4.68)
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This describes a PT -symmetric particle of mass m2
eff = m2

0 −m2
2. This could be combined as

in section 4.4.1, such as by simulating the evolution of the state Sym
[
D ⊗ B̄ +B ⊗ D̄

]
, which

would describe a simplified PT -symmetric variation of B − B̄ oscillations.

4.5 Discussion and Conclusion

In this chapter, we have shown that there are different ways of embedding a non-Hermitian or

non-unitary system into a larger system. We have shown this by considering an open system,

which can be Markovian, allowing for passive PT -symmetry, or non-Markovian, which allows

for a form of active PT -symmetric systems. However, using open systems to simulate PT -

symmetric systems causes additional loss that causes the elements of the density matrix of the

system to decay with an exponential envelope, although this could potentially be avoided by

using Floquet dynamics.

An alternative way of embedding a non-Hermitian (here, PT -symmetric) system into a

unitary is to use unitary dilation, which could be considered as taking two non-Hermitian

systems and coupling them with a time-dependent, potentially discontinuous coupling. In

order to do this, the system has to be normalised by its maximum singular value, which allows

for two different normalisation methods. The first is a time-independent normalisation, which

retains all the features of a PT -symmetric system, at the cost of discontinuities in both the

dilated unitary and effective Hamiltonian that descibes the dilated unitary. The alternative

is a time-independent normalisation which instead skews the typical unbroken PT -symmetry

behaviour, turning the oscilations of the PT -symmetric systems into more of a ‘sawtooth’

wave. At the EP and in the broken regime, it instead causes the system to converge towards a

fixed stationary point. However, for the system simulated here, no discontinuities were created

in the dilated unitary.

By considering inputting two photons into the interferometer giving the unitary transfor-

mation, unitary dilation can also be considered as an extension of the HOM effect, where

inputting photons of varying distinguishability and postselecting on the outcome allows for

this variability in the distinguishability to translate to variability in coupling strength. This

can lead to other applications, such as simulating composite particles. This method could be

further extended to larger system sizes and more photons.
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Chapter 5

Design of a Nonunitary Interferometer

Section 5.1 is an introductory/background section and contains a summary of this chapter.

This chapter is based on [62] and is my own work.

5.1 Introduction

One of the defining features of simulation method used in the previous chapter is that the

transformation created by the PT -symmetric Hamiltonian needs to be normalised. It is gen-

erally true with other current methods of simulating PT -symmetric systems that some form

of normalisation needs to be used such as removing gain terms, using a metric operator or

re-scaling the transformation matrix. This is fundamentally due to the transformation arising

from a non-Hermitian Hamiltonian being non-unitary. As a result, while the eigenvalues of the

system may be real, the norm is not necessarily constant, which is necessary for a quantum

system to conserve probability or particle number in a closed system.

However, particle number is not always a conserved quantity in quantum systems. In par-

ticular, in a given frequency mode, nonlinear optical transformations can create photons from a

vaccuum state, which suggests that nonlinear optics could be a potential method of simulating

PT -symmetric Hamiltonians. In this chapter, this is done by considering the transformations

on the mode operator space of a nonlinear optical system in section 5.2, which describes an

‘effective Hamiltonian’ of this space. In section 5.3, these transformations are then shown to

be exactly PT -symmetric transformations with a determinant of 1, making the set of allowed

effective Hamiltonians a subset of possible PT -antisymmetric Hamiltonians. From this, the

idea of a linear optical interferometer implementing a unitary transformation is extended to a

nonunitary optical interferometer implementing a nonunitary transformation in section 5.4. It

is further shown in section 5.5 that this can be Trotterised similar to the Trotterisation process

in (Hermitian) Hamiltonian simulation.

A 2D PT -symmetric lattice is considered in section 5.6 and its ground state is numerically
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calculated using a standard tensor network, for an infinite lattice. This shows the different

phases of the system, which is then used in section 5.7 to emulate the nonunitary interferometer

simulating a small lattice of this system accross the different feromagnetic and paramagnetic

phases in the PT -broken and -unbroken phases.

This shows that nonlinear optical transformations can be considered as a subset of PT -

symmetric transformations and as such, nonlinear optics can be used as a method to simulate

nonunitary transformations similar to how linear optics can be used to simulate unitary trans-

formations.

5.2 Effective Hamiltonians

While (unitary) transformations in quantum physics are typically considered to arise from the

exponential of some Hamiltonian, section 4.3 shows that this is not necessarily always the

simplest method of creating unitary transformations. However, section 4.3.3 shows that even

when this happens, an effective Hamiltonian (which may be time-dependent) that generates the

unitary evolution can still be defined. Here, this concept is extended to consider an ‘effective

Hamiltonian’ as the matrix generating the symplectic transformation of operators of (optical)

modes of a system, or more generally, the transformation of any operator in the Heisenberg

picture.

That is, measuring some operator O on the Hilbert space H of a system being acted on by

a (for the purposes of simplicity) time independent Hamiltonian H, this can alternatively be

described using the Heisenberg picture by considering the Heisenberg evolution of operator

O (t) = U † (t)OU (t) = eiHtOe−iHt = e−iAdH tO = MUO. (5.1)

As discussed in chapter 3, this arises from the existence of what could be considered as an

effective Hamiltonian acting on the operator space of the system S ⊂ B (H),

Heff = AdH = [H, ·] , (5.2)

which further allows for defining MU = e−iHefft, or equivalently, defining −iHefft as the matrix

logarithm of MU if and only if MU is invertible. As we can simply apply the inverse of the

original applied Hamiltonian, −H, to obtain the transformation M−1U , this inverse must exist.

To give explicit examples of this, we consider the optical transformations of: a phase shift;

beamsplitter; single mode squeezing; and two-mode squeezing. These are described by their

respective Hamiltonians

Hphase;j = ϕja
†
jaj (5.3)

HBS;jk = iθa†jak − iθ
∗a†kaj (5.4)

HS;j =
1

2
i
(
z∗ajaj − za†ja

†
j

)
(5.5)

HS;jk = iζ∗ajak − iζa†ja
†
k, (5.6)
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where the subscripts j and k refer to the modes the operation is being performed on. Calcu-

lating the effective Hamiltonians acting on a†j , a
†
k, aj and ak, written as elements of a vector,

this allows the effective Hamiltonians acting on these operators to be written in matrix form

as

Heff, phase;j

(
a†j
aj

)
=

(
ϕj 0

0 −ϕj

)(
a†j
aj

)
(5.7)

Heff, BS;jk


a†j
a†k
aj

ak

 = i


0 θ 0 0

−θ∗ 0 0 0

0 0 0 θ∗

0 0 −θ 0



a†j
a†k
aj

ak

 (5.8)

Heff, S;j

(
a†j
aj

)
= i

(
0 z∗

z 0

)(
a†j
aj

)
(5.9)

Heff, S;jk


a†j
a†k
aj

ak

 = i


0 0 0 ζ∗

0 0 ζ∗ 0

0 ζ 0 0

ζ 0 0 0



a†j
a†k
aj

ak

 . (5.10)

However, there is a difference in taking the expectation value of (or equivalently, measuring)

an operator O when using this as an ‘effective Hamiltonian’ on the operator space and using

the actual Hamiltonian that acts on the Hilbert space. As an example, for the start state |ψ⟩
and projection operator P = |ϕ⟩⟨ϕ|, the system is measured to be in state |ϕ⟩ with probability

|⟨ϕ|U |ψ⟩|2 = ⟨ψ|MU |ϕ⟩ ⟨ϕ|ψ⟩. As this is conceptually different to how measurements and

expectation values are typically considered, Heff is not a ‘true’ effective Hamiltonian, although

this terminology will be useful later in sections 5.3 (which shows that the properties of Heff

are still relevant) and 5.4 (which addresses this issue at a more fundamental level).

5.3 Symplectic Transformations as PT-symmetric

Transformations

As shown by equations 5.9 and 5.10, for nonlinear transformations (such as squeezing), the

effective Hamiltonian is not Hermitian. The specific example of combining a beamsplitter with

squeezing of one direction in one mode and the opposite direction in the second mode can be
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shown to be PT -anti-symmetric (arbitrarily taking θ and z to be real):

H = HBS;12 +HS;1 +H−S;2 (5.11)

= iθa†1a2 − iθa
†
2a1 +

1

2
i
(
za1a1 − za†1a

†
1

)
− 1

2
i
(
za2a2 − za†2a

†
2

)
(5.12)

=⇒ Heff;12


a†j
a†k
aj

ak

 = i


0 θ z 0

−θ 0 0 −z
z 0 0 θ

0 −z −θ 0



a†j
a†k
aj

ak

 . (5.13)

The eigenvalues of Heff are then

λ± = ±i
√
z2 − θ2, (5.14)

which has the usual typical features of eigenvalues of a PT -symmetric system. Shown by cal-

culating the eigenvectors, this has the unusual property that the system contains a degenerate

EP2 at z2 = θ2:

v1,± =
1

z


−θ

±
√
z2 − θ2

0

z

 , v2,± =
1

z


∓
√
z2 − θ2

−θ
z

0

 . (5.15)

Calculating MU = e−iHeff further gives

MU =


cosh

√
z2 − θ2 θ sinh

√
z2−θ2√

z2−θ2 z sinh
√
z2−θ2√

z2−θ2 0

−θ sinh
√
z2−θ2√

z2−θ2 cosh
√
z2 − θ2 0 −z sinh

√
z2−θ2√

z2−θ2

z sinh
√
z2−θ2√

z2−θ2 0 cosh
√
z2 − θ2 θ sinh

√
z2−θ2√

z2−θ2

0 −z sinh
√
z2−θ2√

z2−θ2 −θ sinh
√
z2−θ2√

z2−θ2 cosh
√
z2 − θ2

 (5.16)

= I4 cosh
√
z2 − θ2 + I2 ⊗ iY

θ sinh
√
z2 − θ2√

z2 − θ2
+X ⊗ Z z sinh

√
z2 − θ2√

z2 − θ2
, (5.17)

which at the EP, simplifies to

MU =


1 θ θ 0

−θ 1 0 −θ
θ 0 1 θ

0 −θ −θ 1

 = I4 − iHeff. (5.18)

This indicates a qualitative difference between the 3 regimes, depending on whether |z| < |θ|,
|z| > |θ| or |z| = |θ|. When |z| < |θ|, the eigenvalues of the system are real and the system

acts most like a squeezed beamsplitter, having oscillations of a nonzero photon number. In

contrast, when |z| > |θ|, the eigenvalues are imaginary and the system acts purely like a

squeezer. However, at the EP |z| = |θ|, the behaviour of the system is linear with z = ±θ,
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which is a transformation not typically considered in optics. Calculating the mean and variance

of the number and quadrature operators gives

⟨0|MUa
†
1MUa1 |0⟩ = ⟨0|

[
cosh

√
z2 − θ2a†1 − θ

sinh
√
z2 − θ2√

z2 − θ2
a†2 + z

sinh
√
z2 − θ2√

z2 − θ2
a1

]
·[

z
sinh
√
z2 − θ2√

z2 − θ2
a†1 + cosh

√
z2 − θ2a1 − θ

sinh
√
z2 − θ2√

z2 − θ2
a2

]
|0⟩ (5.19)

= z2
sinh2

√
z2 − θ2

z2 − θ2
(5.20)

⟨0|MUa
†
2MUa2 |0⟩ = ⟨0|

[
cosh

√
z2 − θ2a†2 + θ

sinh
√
z2 − θ2√

z2 − θ2
a†1 − z

sinh
√
z2 − θ2√

z2 − θ2
a2

]
·[

−z sinh
√
z2 − θ2√

z2 − θ2
a†2 + cosh

√
z2 − θ2a2 + θ

sinh
√
z2 − θ2√

z2 − θ2
a1

]
|0⟩

(5.21)

= z2
sinh2

√
z2 − θ2

z2 − θ2
(5.22)

for the number operator expectations ⟨N1⟩ and ⟨N2⟩,

(∆N1)
2 = (∆N2)

2 = z2
sinh2

√
z2 − θ2

z2 − θ2

[
θ2

sinh2
√
z2 − θ2

z2 − θ2
+ 2 cosh2

√
z2 − θ2

]
(5.23)

for their variances,

⟨x1⟩ = ⟨x2⟩ = ⟨p1⟩ = ⟨p2⟩ = 0 (5.24)

for the quadrature operator expectations and

(∆x1)
2 = z

sinh
√
z2 − θ2 cosh

√
z2 − θ2√

z2 − θ2
+
(
z2 + θ2

) sinh2
√
z2 − θ2

2 (z2 − θ2)
+

1

2
cosh2

√
z2 − θ2

(5.25)

(∆x2)
2 = −z sinh

√
z2 − θ2 cosh

√
z2 − θ2√

z2 − θ2
+
(
z2 + θ2

) sinh2
√
z2 − θ2

2 (z2 − θ2)
+

1

2
cosh2

√
z2 − θ2,

(5.26)

where (∆x1)
2 = (∆p2)

2 and (∆x2)
2 = (∆p1)

2. At the EP, this becomes

⟨N1⟩ = ⟨N2⟩ = z2 (5.27)

(∆N1)
2 = (∆N2)

2 = 2z2 + z4 (5.28)

(∆x1)
2 = (∆p2)

2 =
1

2
+ z + z2 (5.29)

(∆x2)
2 = (∆p1)

2 =
1

2
− z + z2. (5.30)

Overall, this shows the qualitatively different behaviour in the different regimes.
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Figure 5.1: Graphs showing the average photon number (left) and variation (right) of the
combined squeezing and beamsplitter Hamiltonian of equation 5.12, where the expectation
value is taken with respect to the vacuum state. Top graphs show the PT -symmetric regime
where |z| < |θ|, which shows that the system acts as expected with both squeezing and a
beamsplitter as the photon number is nonzero (with no photons input) and oscillates with z
and θ. Middle graphs show the EP |z| = |θ|, where the photon number and variance increases
polynomially with z. Bottom graphs show the broken regime where the system acts purely
like a squeezer with an exponentially increasing average photon number, although in a realistic
situation (such as Four Wave Mixing), this would eventually reach a saturation point.
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Figure 5.2: Graphs showing the quadrature operator variances (∆x2)
2 = (∆p1)

2 of the com-
bined squeezing and beamsplitter Hamiltonian of equation 5.12, where the expectation value
is taken with respect to the vacuum state. Squeezing occurs when (∆x2)

2 = (∆p1)
2 < 1/2.

In the unbroken regime (top left), this occurs at various points as the variance oscillates with
z and θ. At the EP (top right), the variance is polynomial and below 1/2 for z < 1, with
a minimum value at z = 1/2. The broken regime (bottom) shows the difference between a
typical squeezer (where the variance decreases exponentially) and this system where even a
small increase in θ increases the variance to above 1/2 and as z gets larger, the value of θ
required to do this decreases.

This concept can be further extended to arbitrarily large D-dimensional systems. For

D = 2n, defining

PX =

(
0 In

In 0

)
, PZ =

(
In 0

0 −In

)
and M =

(
A B

C D

)
, (5.31)

for A, B, C and D n× n matrices. Taking M to be PXT symmetric gives(
0 I

I 0

)(
A∗ B∗

C∗ D∗

)(
0 I

I 0

)
=

(
A B

C D

)
, (5.32)

giving

D∗ = A and C∗ = B. (5.33)

Writing

M =

(
A B

B∗ A∗

)
(5.34)
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immediately gives that enforcing M to be PXT symmetric with a determinant of 1 makes M

a Bogoliubov transformation. That is, we can describe any Bogoliubov transformation as a

PXT symmetric transformation with determinant 1. Alternatively, we can take

I2n = MSPZTMT
S (PZT )−1 (5.35)

=

(
A B

C D

)(
I 0

0 −I

)(
A∗ C∗

B∗ D∗

)(
I 0

0 −I

)
(5.36)

=

(
A B

C D

)(
A∗ −C∗

−B∗ D∗

)
(5.37)

=

(
AA∗ −BB∗ −AC∗ +BD∗

CA∗ −DB∗ −CC∗ +DD∗

)
, (5.38)

which gives the same constraints as the property MSΩMT
S = Ω.

5.4 Design of a Nonunitary Interferometer

In order to design an interferometer that can be used to implement nonunitary transformations,

we first look at a typical unitary interferometer (such as that used in chapter 4) implementing

the unitary channel UU created using linear transformations, that is, phase shifters and beam-

splitters. On the vaccuum state, the interferometer has no effect as it consists of only linear

components:

UU : |vac⟩ 7→ U |vac⟩ = |vac⟩ . (5.39)

Inputting a single photon before the interferometer then gives the desired unitary transforma-

tion:

UU : a†j |vac⟩ 7→ Ua†jU
†U |vac⟩ =

∑
j

Ukja
†
j |vac⟩ . (5.40)

This then helps define how a nonunitary interferometer should work. The aim is to create the

transformation matrix M such that the final output state is given by

|ψ⟩ =
∑
j

Mkja
†
j |vac⟩ . (5.41)

However, simply applying a nonlinear transformation may not give the correct output. This

can be shown by considering how the photons input into the typical interferometer are most

often created. While there are different methods of doing this, here we consider Four Wave

Mixing (FWM), equivalent to 2-mode squeezing (under the undepleted pump approximation)1

given by equation 5.6. After performing FWM/squeezing, the state is then given by (denoting

1This is discussed in more detail in chapter 6
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the modes used here by subscripts a and b to distinguish them from the numerical modes in

the interferometer)

UFWM |0⟩ = e−iHFWM |0⟩

=
(
1 +O

(
ζ2
))
|0⟩a |0⟩b −

(
ζ +O

(
ζ3
))
|1⟩a |1⟩b +O

(
ζ2
)
|2⟩a |2⟩b + . . . (5.42)

and heralding on mode b with (as an example) an ideal non-number-resolving single photon

detector, the state input to the interferometer (before normalisation) could be described as

ρ = −
(
ζ +O

(
ζ3
))
|1⟩⟨1|a +O

(
ζ2
)
|2⟩⟨2|a , (5.43)

which, for a low squeezing parameter ζ ≪ 1, approximates a single photon state. Applying

the transformation UM to this gives the transformation after heralding as

UM : ρ 7→ −M
(
ζ +O

(
ζ3
))
a†UM |0⟩⟨0|a U

†
M +O

(
ζ2M2

)
a†a†UM |0⟩⟨0|a U

†
M , (5.44)

which may or may not be a good approximation of the transformation M depending on the

effect UM has on the vacuum state. Instead, to achieve a better transformation, we first

apply the transformation U †M before creating the single photon state. This has the effect of

sandwiching the single photon creation between 2 unitary transformations, causing it to act as

if calculations are done in the Heisenberg picture while remaining in the Schrödinger picture.

That is, for the channel UM acting only on the ‘a’ modes of the system,

|ψ⟩ = UaUFWMU
†
a |0⟩ = eζ

∗UaajU
†
ab−ζUaa

†
jU

†
ab

†
|0⟩ , (5.45)

which when expanded out to first order in ζ as above, gives

|ψ⟩ =
(

1 +O
(
ζ2 ∥M∥2

))
|0⟩a |0⟩b −

ζ∑
j

Mkja
†
j +O

(
ζ3 ∥M∥3

) |0⟩aj |1⟩b
+O

(
ζ2 ∥M∥2

)
|2⟩a |2⟩b , (5.46)

which can be further heralded as above. To turn this into a reconfigurable interferometer,

similar to a Reck [38] or Clements [39] scheme built from basic components (here, phase

shifters, beamsplitters and squeezers), in comparison with chapter 4, similar to [63], we start

with the singular value decomposition (SVD) to get

M = MUMDMV † (5.47)

where MU and MV are unitary matrices and MD is a diagonal matrix consisting of the singular

values of M . Acting with M on the system modes can then be split into steps of implementing

MU , implementing the transformation given by the singular values and implementing MV † .
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Figure 5.3: Diagram of optical circuit representing the transformation given in equation 5.50.
|b⟩ represents heralding modes, S2 is two-mode squeezing generating pairs of photons and S1
and S†1 being single-mode squeezing, with S1UL = UD. UV and UU are transformations given
by other unitary interferometers, here a Clements scheme [39].

That is, the overall transformation, shown in figure 5.3, is given by

MA |vac⟩ = MUMDMV †A |vac⟩ (5.48)

= UUUDUV †AU
†
V †U

†
DU
†
U |vac⟩ (5.49)

= UUUDUV †AU
†
V †U

†
D |vac⟩ . (5.50)

where UU , UV † and U †
V † are unitary transformations that can be created with a Reck or

Clements interferometer and A is the vector representing the creation and annihilation opera-

tors

A =
(
a†1 . . . a†N a1 . . . aN

)T
. (5.51)

As the singular values MD are real and positive numbers, we can now write these as

MD,jj =


cosh rj if MD,JJ > 1,

1 if MD,jj = 1,

cos θj if MD,jj < 1.

(5.52)

Coupling the system to an ancilla system C allows for additional beamsplitters to act as

‘loss modes’ for singular values less than 1 and single-mode squeezers to act as ‘gain modes’

for singular values greater than 1. As there is no requirement for MD to have a constant norm,

there is no requirement for the non-Hermitian evolution to be norm preserving. Instead, non-

norm-preserving operations may indicate that a non-constant number of bosons or particles

may be present in the system being simulated.
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5.5 Trotterisation

Similar to creating unitary interferometers, when a single photon is input into a single mode,

given a nonunitary transformation matrix, calculating the various parameters required to cre-

ate the interferometer requires more computing than simply reading off the matrix elements

corresponding to the given input mode. While this method no longer works for multiple input

photons, calculating the SVD and further breaking the unitary transformations into smaller

components can still be made more efficient using e.g. methods from Hamiltonian simulation

at the cost of requiring more components and a physically longer interferometer. To give

an example of this, we start with the Hamiltonian to be simulated H =
∑

j Hj and define

µ = maxj (∥Heff,j∥) for

Ua,jAU
†
a,j = e−iHeff,jtA, (5.53)

which gives

Ua,kUa,jUFWMU
†
a,jU

†
a,k = Ua,ke

ζ∗Ua,jakU
†
a,jb−ζUa,ja

†
kU

†
a,jb

†
U †a,k (5.54)

= Ua,k exp
[
e−iHeff,jt

(
ζ∗akb− ζa†kb

†
)]
U †a,k (5.55)

= exp
[
e−iHeff,kte−iHeff,jt

(
ζ∗akb− ζa†kb

†
)]

(5.56)

= exp

[(
e−i(Heff,k+Heff,j)t +

1

2
[Heff,k, Heff,j ] t

2 +O
(
µ3t3

))(
ζ∗akb− ζa†kb

†
)]
. (5.57)

This process can be repeated for H =
∑n

j Hj to give

n∏
j

e−iHeff,jδt = e−i
∑n

j Heff,jδt + δt2
n∑

j=2

[
Heff,j ,

j−1∑
k=1

Heff,k

]
+O

(
µ3δt3

)
(5.58)

= e−i
∑n

j Heff,jδt +O
(
n2µ2δt2

)
. (5.59)

Applying this operator to the vacuum state and expanding further gives

U : UFWM |0⟩ 7→
∏
j

Ua,jUFWMU
†
a,j |0⟩ (5.60)

= exp
[
Ma

(
ζ∗akb− ζa†kb

†
)]
|0⟩ (5.61)

=

[
1 +Ma

(
ζ∗akb− ζa†kb

†
)

+
1

2

(
Ma

(
ζ∗akb− ζa†kb

†
))2

+O
(
∥Ma∥3ζ3

)]
|0⟩ ,

(5.62)

where

Ma = e−i
∑

j Heff,jδt + δt2
n∑

j=2

[
Heff,j ,

j−1∑
k=1

Heff,k

]
+O

(
µ3δt3

)
(5.63)

=

(
Fa Ga

G∗a F ∗a

)
. (5.64)

73



CHAPTER 5. DESIGN OF A NONUNITARY INTERFEROMETER

This gives

U : UFWM |0⟩ 7→ |0⟩a |0⟩b − Faζ |1k⟩a |1⟩b −
1

2
Ma

(
ζ∗akb− ζa†kb

†
)
Faζ |1k⟩a |1⟩b

+O
(
∥Ma∥3ζ3

)
|0⟩ (5.65)

= |0⟩a |0⟩b − Faζ |1k⟩a |1⟩b −
1

2
|ζ|2

∑
lm

F ∗a;mkFa;lkama
†
l |0⟩a |0⟩b

− 1

2
|ζ|2

∑
lm

G∗a;mkFa;lka
†
ma
†
l |0⟩a |0⟩b −

1√
2
ζ2
∑
lm

Fa;mkFa;lka
†
ma
†
l |0⟩a |2⟩b

− 1√
2
ζ2
∑
lm

Ga;mkFa;lkama
†
l |0⟩a |2⟩b +O

(
∥Ma∥3ζ3

)
(5.66)

=

[
1− 1

2
|ζ|2

(
F †aFa

)
kk

]
|0⟩a |0⟩b − Faζ |1k⟩a |1⟩b

− 1

2
|ζ|2

∑
lm

G∗a;mkFa;lka
†
ma
†
l |0⟩a |0⟩b −

1√
2
ζ2
∑
lm

Fa;mkFa;lka
†
ma
†
l |0⟩a |2⟩b

− 1√
2
ζ2
(
GT

a Fa

)
kk
|0⟩a |2⟩b +O

(
∥Ma∥3ζ3

)
, (5.67)

valid for ∥Ma∥ζ < 1. As ζ ≪ 1 is generally assumed and can easily be decreased in experiment

if large numbers of photons are measured, this will not be considered to be an issue. The

maximum singular value of Ma can additionally be bounded by enµδt = 1+nµδt+O
(
n2µ2δt2

)
[64], which can be used to find an initial maximum allowed value for ζ. Heralding with an

ideal non-number resolving photon detector in mode b gives

UFWM |0⟩ 7→ ρ

∝ Faζ |1k⟩⟨1k|a +
1√
2
ζ2
∑
lm

Fa;mkFa;lka
†
ma
†
l |0⟩⟨0|a

+
1√
2
ζ2
(
GT

a Fa

)
kk
|0⟩⟨0|a +O

(
ζ3
)
. (5.68)

The third term in the above contributes to the vacuum state in the a modes and so does

not contribute to any error. The second term, by contrast, is a two-photon term, which will

either contribute to an error, if a single photon is detected (m = l), or can be ignored, if two

photons get detected (m ̸= l). This can be described by rewriting ρ (after heralding with a

perfect detector) as

ρ ∝ Fa |1k⟩⟨1k|a + ζ
∑
l

F 2
a;lk |2k⟩⟨2k|a +

1√
2
ζ
∑
l,m̸=l

Fa;mkFa;lk |1l1m⟩⟨1l1m|a

+
1√
2
ζ
(
GT

a Fa

)
kk
|0⟩⟨0|a +O

(
ζ3
)
. (5.69)

At time δt this gives an overall error

δt2
n∑

j=2

[
Heff,j ,

j−1∑
k=1

Heff,k

]
+ ζF T

a Fa +O
(
µ3δt3 + ζ3

)
= O

(
n2µ2δt2 + ζ∥M∥

)
. (5.70)
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As e−i
∑

j Heff,jδt commutes with itself, the overall error for a state at time t = pδt only increases

linearly with p, or(
e−i

∑
j Heff,jt/p +O

(
n2µ2

t2

p2

))p

+O (ζ∥M (t)∥) = e−i
∑

j Heff,jt +O
(
n2µ2

t2

p
+ ζ∥M (t)∥

)
,

(5.71)

giving the final error as

ϵ = O
(
n2µ2

t2

p
+ ζ∥M (t)∥

)
. (5.72)

Simulating H to within error ϵ can therefore be achieved in a time complexity

O
(

n3µ2t2

ϵ− ζ∥M∥

)
. (5.73)

5.6 Model of a 2D Parity-Time Symmetric Hamiltonian

Having designed an interferometer that can simulate PT -symmetric (and other non-Hermitian)

systems with an arbitrary number of dimensions similar to a unitary interferometer, we now

consider an example system to be simulated. Here, this will be a staggered transverse field in

a Heisenberg spin lattice.

Moving from a one-dimensional to a two-dimensional lattice of size (N,M), the Parity P
reversal operator is now defined as Pσj,kP−1 = σN+1−j,M+1−k and the time reversal operator

remains defined as T iT −1 = −i. As with a 1D lattice, an operator O is PT -symmetric when

[PT ,O] = 0.

This staggered transverse field in a Heisenberg spin lattice can be considered as a 2D

extension to [65] combined with [66]. Starting with a single spin with a Hamiltonian

HA =

(
0 h+ γ

h− γ 0

)
, (5.74)

which has an EP at |γ| = |h|, this is PT -symmetric for |γ| < |h| and PT -broken for |γ| > |h|.
Unlike typically considered PT -symmetric Hamiltonians, where the Hamiltonian is neither T -

symmetric or P-symmetric, here, when h, γ ∈ ℜ the Hamiltonian is both Parity-symmetric and

Time-symmetric as there is no dependence on i. This can be built up into a larger Hamiltonian

by considering an arbitrary number of spins on an A-B lattice, with

Hnn;jk =
∑

l,m∈nn(j,k)

σzj,kσ
z
l,m (5.75)

HA;jk = hσxj,k + iγσyj,k (5.76)

HB;jk = hσxj,k − iγσ
y
j,k, (5.77)
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where σqj,k for q ∈ {x, y, z} is the Pauli matrix acting on qubit j. This gives the overall

Hamiltonian

H =
J

2

∑
j,k

Hnn;jk +
∑

j=k mod 2

HA;jk +
∑

j ̸=k mod 2

HB;jk (5.78)

= J

 N2∑
k=1

N1−1∑
j=1

σzj,kσ
z
j+1,k +

N2−1∑
k=1

N1∑
j=1

σzj,kσ
z
j,k+1

+

N2∑
k=1

N1∑
j=1

(
hσxj,k + (−1)j+k iγσyj,k

)
.

(5.79)

Numerical calculations of the eigenvalues suggest that the unbroken regime of this system

remains the same independent of the size of the system, unlike the D-dimensional Hamiltonian

HD with diagonal gain-loss terms and nearest neighbour interactions,

HD =

D∑
d=1

(−1)d iγ |d⟩⟨d|+
D−1∑
d=1

J (|d⟩⟨d+ 1|+ |d+ 1⟩⟨d|) , (5.80)

where the size of the PT -symmetric region shrinks with increasing D as shown in figure 5.4.
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Figure 5.4: Real part (left) and imaginary part (right) eigenvalues of 5.80 with D = 100,
demonstrating that, as the system gets larger, the EPs start to occur at values closer to γ = 0.
This means that the range of the PT -symmetric region gets smaller with increasing dimension.

5.6.1 Tensor network simulation of ground state of an infinite lattice

To numerically calculate the properties of the ground state of equation 5.78 for an infinite

lattice, we use the Time Evolving Block Decimation (TEBD) algorithm [67] described and

written by Glen Evenbly [68] to optimise an infinite Projected Entangled Pair States (iPEPS)

[69] tensor network. This is first done for a typical example of the Hermitian system (where

γ = 0) in figure 5.6 which numerically calculates the critical point at h ≈ 0.75. In order to

demonstrate that this process works in the unbroken PT -symmetric region, a typical example

of the convergence and energy density calculation at a single point (here h = 1.06 and γ = 0.11)

is given in figure 5.5, although the convergence at each point can vary considerably, with some
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numerical issues changing the amount of convergence possible at around h ≈ 0.65. While this

affect the quantitative results, the resulting outputs below and above this point are qualitatively

similar. These ground state solutions are given in figure 5.7 and the ground state density matrix

giving these solutions in 5.8.

Figure 5.5: Typical example of calculating the ground state of equation 5.78 at h = 1.06
and γ = 0.11 using the Time Evolving Block Decimation (TEBD) algorithm. After tens of
iterations, the state has approximately converged to the ground state, although letting the
program run for longer further improves the convergence.

Overall, this demonstrates that, due to the real eigenvalues in the PT -unbroken regime,

tensor networks are a viable option for finding ground phases of PT -symmetric systems as well

as PT -symmetric systems beyond one dimension with a non-vanishingly small unbroken region

can exist and can have additional phases that do not exist in the equivalent Hermitian system,

which could be of interest when simulating larger PT -symmetric systems. This also shows the

critical point of the Hermitian system, here numerically calculated at approximately h = 0.83,

which can be encircled by varying γ. The contour lines of the spontaneous magnetisation

suggest the possibility of a scaling with the parameter β =
√
h2 − γ2, similar to [66] below√

h2 − γ2 ≈ 0.83 for the spontaneous magnetisation, although the scaling of the energy density

with this parameter continues beyond this line. While the critical point only appears in

the Hermitian regime where γ = 0, this may nonetheless suggest some kind of transitional

behaviour where the system behaves differently far below and far above this line.

5.7 Example Simulation

Having looked at classical methods of calculating properties of the ground state of an infinite

lattice, we now turn to using the nonunitary interferometer of section 5.4 to simulate the time

evolution of a finite, small lattice with 4 spins in one direction and 2 in the other. This was

done with code shown in Appendix A using Strawberry Fields [70,71].

Starting in the paramagnetic ground state |+⟩2,4 =
∑4

k=1

∑2
j=1 |+⟩j,k and the ferromag-

netic ground state |0⟩2,4 =
∑4

k=1

∑2
j=1 |0⟩j,k, we simulate the evolution of this Heisenberg
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Figure 5.6: Graphs showing the calculated ground state of the Hermitian (γ = 0) Transverse
Field Ising model with bond dimension 4 and timestep = 0.01, after 200 iterations. Shown
in the top left graph, this generally converges well, although is slower to converge around the
critical point at h ≈ 0.75. The energy density (top middle) continually decreases with applied h.
The magnetisation (top right) in the σx-direction continually increases from 0 until saturation
at the critical point with a value of 1 and is the same for both A and B sites. The total
(spontaneous) magnetisation (bottom left) is smallest at the critical point, although remains
relatively constant for all values of h. The density matrix elements ρ00 (bottom middle) and
ρ01 (bottom right) display the transition from spins being aligned in the σz-direction at h = 0
to spins being aligned in the σx-direction past the critical point, for h ⪆ 0.75.
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Figure 5.7: Graphs show calculations of the ground state energy density (top left), spontaneous
magnetisation (top right), X magnetisation (‘A’ Lattice sites, middle left; ‘B’ lattice sites,
middle right) and convergence (bottom) of the lattice given by the Hamiltonian in equation
5.78. This shows that the energy density decreases with increasing h and increases with
increasing γ. The spontaneous magnetisation gives a critical point around h = 0.83, γ = 0
(which can now be encircled, unlike the Hermitian version of the lattice). The contours of
the spontaneous magnetisation appear to follow lines corresponding to β =

√
h2 − γ2 (at

least approximately), suggesting a non-Hermitian extension to the ferromagnetic phase for
approximately β < 0.83 in the unbroken PT -symmetric phase. Similar to the energy density,
the X magnetisation of the A lattice has no stationary points, although the B lattice has a
saddle point around h = 0.9 and γ = 0.3. Apart from an anomalous point around h = 0.5 and
near the EP past the critical point, this generally converges well.
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Figure 5.8: Graphs showing the calculated ground state of the Hamiltonian given by equation
5.78. Top shows ρ00, middle shows ρ01 = ρ10 and bottom shows ρ11. Left shows the ground
state of the ‘A’ lattice sites and right shows the ‘B’ lattice sites. The A lattice sites show
similar behaviour at all calculated values, where increasing h increases (decreases) the value
of that element of the density matrix and increasing γ decreases (increases) the value of that
element. This is demonstrated by the contour lines having no stationary points. This contrasts
with the B lattice sites which appear to show a saddle point around h = 0.9 and γ = 0.3.
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lattice for a variety of parameters in figure 5.9, dividing by ζ to account for the (undetected)

vacuum output to obtain the un-normalised evolution. We also plot the average (first order)

correlation between spins separated by a distance (n,m)

〈
σzJ,Kσ

z
J+n,K+m

〉
=

1

2 (N1 − n) (N2 −m)

N1−n∑
j=1

N2−m∑
k=1

(〈
σzj,kσ

z
j+n,k+m

〉
+
〈
σzj,kσ

z
j+n,k−m

〉)
,

(5.81)

demonstrating that this system still evolves in the paramagnetic and ferromagnetic phases in

the unbroken PT -symmetric regime.

These dynamics depend on the parameter β =
√
h2 − γ2. When β ∈ R, the evolution can

either be oscillatory, or if h≫ γ, can be paramagnetic as in figure 5.9.

To demonstrate the different phases of this system, we also plot the average normalised

correlation, 〈
σzJ,Kσ

z
J+n,K+m

〉
norm

=
1

P

〈
σzJ,Kσ

z
J+n,K+m

〉
, (5.82)

in figure 5.10 for the Hermitian and unbroken phase and figure 5.11 for the EP and broken

phase. These demonstrate the different correlations that arise from crossing the EP and the

Critical Points (CPs) where |h| = |j| and γ = 0. These CPs separate the ferromagnetic

phase from the paramgnetic phase. In the PT -unbroken phase, away from the CPs, in the

ferromagnetic phase, the system is always correlated, oscillating between a highly correlated

and less correlated system. In the paramagnetic phase, these oscillations can cause different

parts of the state to become anti-correlated in the σz direction. Breaking the PT symmetry

then causes the system to evolve towards a fixed point of low correlations. At the EP, the

system similarly evolves towards a fixed point, except here, it is a completely correlated/anti-

correlated one, depending on correlation distance.
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Figure 5.9: Evolution of the PT -symmetric Heisenberg spin lattice Hamiltonian given by
equation 5.78, setting J = 1, with qubit-qubit coupling in the z-direction, applied magnetic
field in the x-direction and PT -symmetry parameter γ in the y-direction. Top: Average spin
in the z-direction, ⟨σz⟩, starting from the state |0⟩2,4 Middle: Average spin in the x-direction,
⟨σx⟩, starting from the state |+⟩2,4. Bottom: Average Correlation, equation 5.81, starting from
the state |0⟩2,4. Left: h = 0.5, γ = 0.2. Right: h = 1000, γ = 1. While for γ < h ≤ J = 1,
the evolution of ⟨σx⟩ is seemingly random, if oscillatory, when h > J and h ≫ γ, the spin
chain is paramagnetic, with ⟨σx⟩ ≈ 1. In contrast, the evolution of ⟨σz⟩ is highly oscillatory
regardless of whether the system is in a paramagnetic or ferromagnetic phase, as long as it is
in the unbroken PT -symmetry phase.
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Figure 5.10: Evolution of the PT -symmetric Heisenberg spin lattice Hamiltonian given by
equation 5.78, setting J = 1, with qubit-qubit coupling in the z-direction, applied magnetic
field in the x-direction and PT -symmetry parameter γ in the y-direction. Left: Hermitian
phase, where γ = 0; right: non-Hermitian PT -unbroken phase, where 0 < γ2 < h2. Top:
Extension of ferromagnetic phase, with β < 0.83; middle: (approximate) Critical Point, h ≈
0.83 extended to values β ≈ 0.83; bottom: Paramagnetic phase, β > 0.83. This demonstrates
that in the Hermitian and PT -symmetric regime, increasing the value of h lowers both the
maximum and minimum value of the normalised correlation, with a small anticorrelation as
the Critical Point is approached. Increasing the value of γ tends to increase the correlation
(anticorrelation) of the spins with the same (different) j position, due to the alternating sign
of γ in the Hamiltonian.
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Figure 5.11: Evolution of the PT -symmetric Heisenberg spin lattice Hamiltonian given by
equation 5.78, setting J = 1, with qubit-qubit coupling in the z-direction, applied magnetic
field in the x-direction and PT -symmetry parameter γ in the y-direction. Left: Exceptional
Point (EP), γ2 = h2 and β = 0; Right: PT -broken phase, γ2 > h2. Top: h = 0.6 < 0.83;
middle: h = 0.83 ≈ 0.83; right: h = 1.2 > 0.83. This demonstrates that, at the Exceptional
Point, the system is maximally (anti-)correlated, where the normalised correlation between
any 2 points becomes ±1, depending on the j−distance between the two points. In the broken
phase, the system then becomes less (anti-)correlated.
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5.8 Discussion and Conclusion

In this chapter, we have shown a link between symplectic transformations in nonlinear opti-

cal systems and PT -(anti-)symmetry. We used this to create a design of a nonlinear optical

interferometer implementing a nonunitary transformation on the optical modes. This could

be considered as an extension to a typical linear interferometer, such as a Reck or Clements

scheme, which implements unitary transformations. As with these interferometers, there are

two sources of inefficiency in this nonunitary interferometer when used as a method of sim-

ulating Hamiltonians. One is unavoidable when creating transformations on modes in that,

comparing with qubits, a linear number of qubits (typically considered when calculating com-

putational complexity) is equivalent to an exponential number of modes. In this, an interferom-

eter with only a single photon input cannot be considered as an efficient method of quantum

simulation, which is also true of the nonunitary interferometer considered in this chapter.

However, the other source of inefficiency, arising from exponentiating the Hamiltonian, can in

principle be removed. As with Hermitian Hamiltonians, this is done by the process of Trot-

terisation. This allows us to simulate a Hamiltonian to within a given error in a polynomial

(here quadratic) time, with the difference between typical (Hermitian) Trotterisation processes

and the process used here being that the norm (maximum singular value) of the nonunitary

matrix being simulated multiplied by the probability of obtaining a single photon adds to the

simulation error. However, as the norm of a matrix can be efficiently upper bounded, the

process remains efficient for non-zero error.

We then created a model for a 2D PT -symmetric staggered transverse field Heisenberg

spin lattice and used a typical tensor network (with no additions) to numerically calculate the

ground state of an infinite lattice in the PT -unbroken phase. This showed a critical point in the

Hermitian phase that can be encircled in the PT -unbroken phase. This also showed that the

ferromagnetic and parramagnetic phases that appear in the Hermitian phase can be extended

into the PT -unbroken phase. We then emulated the nonunitary interferometer simulating this

Hamiltonian for a small lattice over the various different phases that exist. While the largest

differences occur between the Hermitian/unbroken (where the correlations are oscillatory) and

EP/broken phases (where the correlations tend towards a stationary fixed point), increasing

the value of the PT -symmetry parameter increases the amount of splitting that occurs in the

(anti-)correlation present in the lattice, where spins increasingly tend to align in one direction

or the other. This effect is maximised at the EP, after which (in the broken phase), while the

system still tends towards a fixed steady state, this state is less (anti-)correlated than at the

EP.
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Chapter 6

Parity-Time Symmetric Coupled

Microring Resonators

Forwards and backwards crossovers in a figure of 8

— British Ice Skating, Learn to Skate

Section 6.1 is an introductory/background section and contains a summary of this chapter.

The rest of this chapter is my own work The definitions and calculations in section 6.2 are

largely relatively trivial extensions of pre-existing work and are included for both completeness

and a lack of these definitions and calculations existing for coupled rings. This chapter is based

on [72].

6.1 Introduction

Many of the typical methods of creating PT -symmetric systems involve using systems with

both gain and loss. A typical small system would be two modes, such as waveguides, coupled

together, one with gain and the other with the same amount of loss as the first has gain, such

as [73]. Such a system is often described by a Hamiltonian with gain and loss terms on the

diagonal of the matrix, such as

H2 =

(
iγ 1

1 −iγ

)
, (6.1)

as considered in chapter 4. Much of the theoretical work of quantum PT -symmetry has

also been with such Hamiltonians featuring multiple modes with loss and gain. Similarly,

simulations of quantum PT -symmetric systems, whether quantum or classical simulations, are

also often focused on systems with loss and gain on the diagonal elements of the Hamiltonian,

such as [74]. This is true even of non-PT -symmetric systems with loss and gain, such as [75].

However, it was recently found that such ‘PT symmetric photonic quantum systems with

gain and loss do not exist’ [35]. As such, different forms of PT -symmetric Hamiltonians than

diagonal terms giving gain and loss are considered in this chapter. However, we still look
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Figure 6.1: Diagram of the coupled rings modelled in this chapter. A pump (pulsed or contin-
uous wave) is input into a waveguide, which couples into a microring resonantor. In this ring,
Four Wave Mixing (FWM) or Spontanteous Paramtric Down Converesion (SPDC) may occur,
creating a 2 mode squeezed state in signal and idler photon modes. The pump is therefore
considered as a ‘gain’ on these two modes in this first/lower ring. The created signal and idler
photons then couple into a second (top) ring and potentially out a second waveguide. Both
rings have an ‘intrinsic’ loss that is unavoidable due to e.g. surface roughness. Coupling into
the waveguide gives an additional (albeit coherent) loss term. This gives tunable gain, coupling
and loss, although the corresponding non-Hermitian matrix (describing the transformation on
the created photon modes) has a more complicated structure than most typically considered
or simulated PT -symmetric Hamiltonians.

at systems that could be considered to have gain and loss in a different format. To do this,

we look at nonlinear optical systems which give symplectic, nonunitary transformations on

the creation/annihilation operators. We consider squeezing as a ‘gain’ operation, which can

be balanced with any intrinsic loss of the system to create a PT -symmetric quantum system.

Such a system could be coupled waveguides, or as in this chapter, coupled microring resonators,

as shown in figure 6.1.

To do this, we follow the notation of Vernon and Sipe [76,77], which we extend to coupled

rings. In doing this, we show that PT -symmetric quantum systems can exist. This also gives

that different methods of creating the system give different results. This is shown by comparing

the results of a pulsed input to that of a continuous wave (CW) input. While both of these are

PT -symmetric, using the pulsed input, the Excpetionl Point of the system can only be found

numerically and appears independently of the input power. However, for a CW input, there

are multiple EPs and the quantum to classical threshold can be easily shown and depends on

the input power.

In section 6.2, we start by taking the Hamiltonian of the system, consisting of a linear

and a nonlinear term in the Hamiltonian and use this to calculate the transformation of the

creation and annihilation operators, which can then be used to write a matrix equation, which
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we descibe as an effective (non-Hermitian) Hamiltonian. The nonlinear term depends on

the order of the electric susceptibility χ(n) of the material. Typically considered materials

are either second order, allowing for effects such as Spontaneous Parametric Down Conversion

(SPDC, where each pump photon annihilated creates a signal and idler photon); or third order,

allowing for effects such as Four Wave Mixing (FWM, 2 pump photons creating a signal and

idler photon) and Cross- and Self- Phase Modulation (XPM and SPM, where the optical Kerr

effect causes changes in phases of the pump, signal and idler photons). In order to linearise

the equations of motion and write them as a matrix equation, non-degenerate processes will

be assumed, where the signal and idler photons have different frequencies so that they can be

treated separately. The eigenvalues and eigenvectors of the effective Hamiltonian created in

section 6.2 are then found in section 6.3 and used to find the Exceptional Points (EPs) of the

system. For a CW pump, this gives a variety of types of EPs, which can be defined by whether

they occur on a lossy background, neutral background, or a background with gain. However,

the transition from a lossy background to one with gain is the transition from quantum to

classical behaviour, so the background of gain gives (the classical effect of) Optical Parametric

Oscillation and cannot be described by the method used here due to the above method of

linearising, which ignores terms important in OPO. However, for a pulsed pump, the EPs

are found in reverse, by finding the results that demonstrate a typical EP-type enhancement

in section 6.6 from the Joint Spectral Intensity (JSI) defined in section 6.4, which shows a

noticeable difference between being at the EP and not, which also shows the effects of an EP

with a CW pump. To calculate these results, the equations of motions are solved in section

6.5.

However, an EP of the system does not necessarily mean that the system is better than the

non-PT -symmetric version. While an increase in the number of photons output from a PT -

symmetric photon source could be expected compared with the non-PT -symmetric equivalent,

we find that this does not always happen here. Rather, for a pulsed input, the best results

(being an enhancement in output photon number of orders of magnitude for the given input

pump strength and simultaneously single photon purities well above 99%) come from matching

the coupling with the difference between the losses in the rings to find an EP (i.e. the input

pump strength is independent of the EP enhancement) and if the difference in losses are

too small, there may be no EP enhancement found. This is opposed to the more typically

considered idea where gain, coupling and loss are matched. There may be other potential

advantages to having coupled rings not considered here, such as a potential reduction in thermal

noise due to parasitic nonlinear effects [78], as well as differences between the theoretical

model and experimental implementation that any such predictions need to be compared in

experiment.
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6.2 Transformation of operators in coupled rings

We start with the Linear part of the Hamiltonian of [76, 77], extending it to include multiple

rings and adding additional terms that describe point coupling between the rings. That is, we

take H = HL +HNL, where the linear term is given by

HL = Hwaveguides +Hring,L +Hcoupling, rr +Hcoupling, rw (6.2)

= ℏ
∑
J,n

[
ωJ

∫
ψ†J,n (x)ψJ,n (x) dx+

1

2
ivJ

∫
dψ†J,n (x)

dx
ψJ,n (x)− ψ†J,n (x)

dψJ,n (x)

dx
dx

]

+ ℏ
∑
J,n

[
ωJ

∫
ϕ†J,n (x)ϕJ,n (x) dx+

1

2
ivJ

∫
dϕ†J,n (x)

dx
ϕJ,n (x)− ϕ†J,n (x)

dϕJ,n (x)

dx
dx

]

+ ℏ
∑
J,n

[
ωJb

†
J,nbJ,n

]
+ ℏ

∑
J

[
κJb
†
J1bJ2 + κ∗Jb

†
J2bJ1

]
+ ℏ

∑
J,n

[
γJ,nb

†
J,nψJ,n (0) + γ∗J,nbJ,nψ

†
J,n (0) + µJ,nb

†
J,nϕJ,n (0) + µ∗J,nbJ,nϕ

†
J,n (0)

]
, (6.3)

where the subscript J represents the frequency mode (pump P , signal S and idler I) and

subscript n, the ring mode (rings 1 and 2 for 2 coupled rings). ω is the frequency of mode J , γ

is the coupling rate between ring and waveguide and κ is the coupling rate between rings. The

creation and annihilation operators of the photons in the waveguides are given by ψ† and ψ

respectively and similarly, the creation and annihilation operators of the photons in the rings

are given by b† and b. Additional creation and annihilation operators, denoted by ϕ† and ϕ

are also used to represent ‘phantom’ waveguides used to model additional intrinsic loss of the

system. The nonlinear term depends on the order of the electric susceptibility. For second

order χ(2) processes, there is only a single nonlinear term involving 3 frequency modes that

conserves energy, which gives the nonlinear part of the SPDC Hamiltonian

HNL2 = ℏ
∑
n

[
ΛbPnb

†
Snb
†
In + Λ∗b†PnbSnbIn

]
, (6.4)

where Λ is here given by [77,79]

Λ ≈

√
ℏω3

Pχ
(2)

4ϵ0n4Vring
. (6.5)

This describes the SPDC process where pump photons get down converted into signal and

idler photons. For third order χ(3) processes, there are multiple allowed terms for 3 modes, so

the nonlinear part of the FWM Hamiltonian is

HNL3 =ℏ
∑
n

[
ΛbPnbPnb

†
Snb
†
In + Λ∗b†Pnb

†
PnbSnbIn

+ ηb†Pnb
†
PnbPnbPn + ζb†Snb

†
PnbSnbPn + ζb†Inb

†
PnbInbPn

]
, (6.6)
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where we now have [77,79]

Λ = 2η =
ζ

2
≈

ℏω2
Pχ

(3)

4ϵ0n4Vring
=

ℏω2
P cn2

n2Vring
. (6.7)

Λ is the rate of FWM, where pairs of pump photons are converted into signal and idler photons,

η is the rate of SPM and ζ XPM, which cause the pump and signal idler photons to gain

additional phases. For the pump operator in ring 1, the Heisenberg equations of motion can

be written for SPDC as(
d

dt
+ iωP

)
bP1 (t) = −iγ∗P1ψP1 (0, t)− iµ∗P1ϕP1 (0, t)− iΛ∗bS1 (t) bI1 (t)− iκbP2 (t) , (6.8)

and for FWM as(
d

dt
+ iωP + 2iηb†P1 (t) bP1 (t)

)
bP1 (t) = −iγ∗P1ψP1 (0, t)− iµ∗P1ϕP1 (0, t)

− 2iΛ∗b†P1 (t) bS1 (t) bI1 (t)− iκbP2 (t) (6.9)

with equivalent equations for the other modes and ring. Defining ĀJ,n = eiωJ tAJ,n, ∆ =

ωS + ωI − 2ωP and splitting the waveguide operators into ‘input’ and ‘output’ operators

ψJn (x, t) =

ψJn< (x, t) for x < 0

ψJn> (x, t) for x > 0
, ϕJn (x, t) =

 ϕJn< (x, t) for x < 0

ϕJn> (x, t) for x > 0,
(6.10)

with

ψJn (0, t) =
1

2
(ψJn< (0, t) + ψJn> (0, t)) , (6.11)

allows us to calculate the Heisenberg Equations of Motion in the rotating frame, used through-

out this chapter. Given in full in appendix B, for the pump operators in ring 1, these are(
d

dt
+ Γ̄P1

)
b̄P1 (t) = −iγ∗P1ψ̄P1< (0, t)− iµ∗P1ϕ̄P1< (0, t)− iΛ∗b̄S1 (t) b̄I1 (t) e−i∆t − iκb̄P2 (t)

(6.12)

for SPDC and(
d

dt
+ Γ̄P1 + 2iηb̄†P1 (t) b̄P1 (t)

)
b̄P1 (t) = −iγ∗P1ψ̄P1< (0, t)− iµ∗P1ϕ̄P1< (0, t)

− 2iΛ∗b̄†P1 (t) b̄S1 (t) b̄I1 (t) e−i∆t − iκb̄P2 (t)

(6.13)

for FWM, where the loss rate of mode J in ring n is defined (independently of SPDC or FWM

processes) as

Γ̄Jn =
∑
m

ΓJm +MJn =
∑
m

|γm|2

2v
+
|µn|2

2u
, (6.14)
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where the sum over m accounts for the waveguides m that couple into ring n1. Taking the

undepleted pump approximation, making the Λ∗b̄†Pn (t) b̄Sn (t) b̄In (t) e−i∆t terms in the pump

equations negligible allows for a semi-classical solution. This is done by replacing the pump

operators by their expectation values:

⟨ϕP1<⟩ = ⟨ϕP2<⟩ = 0, bP1 → ⟨bP1⟩ = βP1, bP2 → ⟨bP2⟩ = βP2. (6.15)

The equations of motion can now be written as the matrix equation

i
d

dt


b̄S1 (t)

b̄†I1 (t)

b̄S2 (t)

b̄†I2 (t)

 = H̄eff


b̄S1 (t)

b̄†I1 (t)

b̄S2 (t)

b̄†I2 (t)

+ D̄, (6.16)

where

D̄ =


[
γ∗S1ψ̄S1< (0, t) + µ∗S1ϕ̄S1< (0, t)

]
−
[
γI1ψ̄

†
I1< (0, t) + µI1ϕ̄

†
I1< (0, t)

]
[
γ∗S2ψ̄S2< (0, t) + µ∗S2ϕ̄S2< (0, t)

]
−
[
γI2ψ̄

†
I2< (0, t) + µI2ϕ̄

†
I2< (0, t)

]

 (6.17)

is the driving term, consisting of the input waveguide operators, with elements labelled D̄Kn,

and

H̄SPDC, eff =


−iΓ̄S1 Λβ̄P1 (t) κ 0

−Λ∗β̄∗P1 (t) −iΓ̄I1 0 −κ∗

κ∗ 0 −iΓ̄S2 Λβ̄P2 (t)

0 −κ −Λ∗β̄∗P2 (t) −iΓ̄I2

 , (6.18)

H̄FWM, eff =


−iΓ̄S1 + ζ|β̄P1 (t)|2 Λβ̄2

P1 (t) κ 0

−Λ∗β̄∗2
P1 (t) −iΓ̄I1 − ζ|β̄P1 (t)|2 0 −κ∗

κ∗ 0 −iΓ̄S2 + ζ|β̄P2 (t)|2 Λβ̄2
P2 (t)

0 −κ −Λ∗β̄∗2
P2 (t) −iΓ̄I2 − ζ|β̄P2 (t)|2


(6.19)

are the effective Hamiltonians for SPDC and FWM determining the evolution of mode oper-

ators. This gives the state of the ring operators at time t as
b̄S1 (t)

b̄†I1 (t)

b̄S2 (t)

b̄†I2 (t)

 = −i
∫ t

−∞
Θ
(
t− t′

)
G
(
t− t′

)
D̄
(
t′
)
dt′, (6.20)

1For ring-waveguide couplings more complicated than the one-to-one coupling used here, a matrix containing
elements γnm could instead be used
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for G (t− t′) = e−iH̃eff(t−t′), with elements GJmKn relating input Kn to output Jm. That is,

b̃Jm = −i
∑

Kn

∫ t
−∞Θ (t− t′)GJmKn (t− t′) D̄Kn (t′), which allows for calculating the output

operators

ψ̄Jm> (0, t) = ψ̄Jm< (0, t)− iγJm
vJ

b̄Jm (t) (6.21)

ψ̄Jm> (0, t) =

∫ ∑
n

[
qJmJn

(
t− t′

)
ψ̄Jn<

(
0, t′
)

+ pJmJn

(
t− t′

)
ϕ̄Jn<

(
0, t′
)

+ qJmKn

(
t− t′

)
ψ̄†Kn<

(
0, t′
)

+ pJmKn

(
t− t′

)
ϕ̄†Kn<

(
0, t′
) ]
dt′, (6.22)

where for J = S (I), K = I (S) and the terms that describe the transformation from input

(real and phantom) waveguide operators to output waveguide operators are, for J = S,

qJmKn

(
t− t′

)
= δJKδmnδ

(
t− t′

)
±
γJmγ

∗
Kn

vJm
e−i∆p(t±t′)GJmKn

(
t− t′

)
, (6.23)

pJmKn

(
t− t′

)
= ±

γJmµ
∗
Kn

vJm
e−i∆p(t±t′)GJmKn

(
t− t′

)
(6.24)

and for J = I,

qJmKn

(
t− t′

)
= δJKδmnδ

(
t− t′

)
±
γJmγ

∗
Kn

vJm
e−i∆p(t±t′)G∗JmKn

(
t− t′

)
, (6.25)

pJmKn

(
t− t′

)
= ±

γJmµ
∗
Kn

vJm
e−i∆p(t±t′)G∗JmKn

(
t− t′

)
(6.26)

where + is used for J ̸= K and − for J = K. These can then be used to calculate the

correlation functions in section 6.4.

6.2.1 Stability of the steady state pump solution

When the pump is a CW pump, in the steady state, semi-classical approximation, we can

calculate the expectation value of the pump by putting the equations of motion for the pump

(equations 6.12 and B.4 for SPDC and 6.13 and B.10 for FWM) into matrix form. For SPDC,

this gives

d

dt

(
β̄P1 (t)

β̄P2 (t)

)
= −i

(
−iΓ̄P1 κ

κ∗ −iΓ̄P2

)(
β̄P1 (t)

β̄P2 (t)

)
− i

(
γ∗P1ᾱP1e

−i∆P1t

γ∗P2ᾱP2e
−i∆P2t

)
, (6.27)

where the input to each ring has been assumed to be a CW input with a constant dephasing

∆Pn such that 〈
ψ̄Pn< (0, t)

〉
= ᾱPne

−i∆Pn ,
〈
ϕ̄Pn< (0, t)

〉
= 0. (6.28)

We then define β̃Pn = β̄Pne
−i∆Pnt, which is constant in a steady state solution:

˙̃
βPn (t) = 0,

simplifying equation 6.27 into(
−iΓ̄P1 −∆P1 κei(∆P2−∆P1)t

κ∗e−i(∆P2−∆P1)t −iΓ̄P2 −∆P2

)(
β̃P1 (t)

β̃P2 (t)

)
= −

(
γ∗P1ᾱP1

γ∗P2ᾱP2

)
. (6.29)
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Figure 6.2: Graph of the photon number N = |β|2 in the coupled ring system of a χ(2) material,
with no detuning. Left is when there is only a single waveguide coupled to the system (via the
first ring) here giving Γ̄1 ∼ 109 and Γ̄2 ∼ 107 and the light gets ‘stored’ in the second ring.
However, very little of the light stored is able to get coupled out again, so the system has a
very low efficiency. Right graph is turning the second waveguide coupling on (although still
with only one pump input, into the first waveguide), now giving Γ̄2 ∼ 108. This waveguide now
means that the light can no longer be stored and it instead coupled out via the top waveguide.
However, as the light that was in the second ring can now be easily output, a higher proportion
of the input light is coupled to the output, as opposed to incoherently lost as is the case with
the left graph.

This gives the solution(
β̃P1 (t)

β̃P2 (t)

)
=

1(
iΓ̄P1 + ∆P1

) (
iΓ̄P2 + ∆P2

)
− |κ|2

(
iΓ̄P2 + ∆P2 κei(∆P2−∆P1)t

κ∗e−i(∆P2−∆P1)t iΓ̄P1 + ∆P1

)(
γ∗P1ᾱP1

γ∗P2ᾱP2

)
.

(6.30)

Particularly interesting is the case where the pump only couples in and out through one

waveguide. Here, shown in figure 6.2, the second ring acts as a ‘storage’ in the steady state,

having more light in a given instant than is coupled into the system at that instant (although

overall this system is very inefficient). In the case where only one ring is resonant with the

pump frequency (setting κ = 0 and αP2 = 0; taken to be ring 1 without loss of generality),

shown in figure 6.3 this further gives

β̃P =
γ∗P ᾱP

iΓ̄P + ∆P
=⇒ NP = |βP |2 =

|γP |2|αP |2

Γ̄2
P + ∆2

P

. (6.31)

Following [80] and adding a perturbation β̃Pn (t) = β̃
(0)
Pn + δβ̃Pn (t) gives

d

dt

(
δβ̄P1 (t)

δβ̄P2 (t)

)
= −i

(
−iΓ̄P1 −∆P1 κei(∆P2−∆P1)t

κ∗e−i(∆P2−∆P1)t −iΓ̄P2 −∆P2

)(
δβ̄P1 (t)

δβ̄P2 (t)

)
, (6.32)

which is stable when the real part of both eigenvalues are negative [80]. These eigenvalues,

shown in figure 6.4 for the pump only coupling into and out of a single ring (although being
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Figure 6.3: Graph of the photon number N = |β|2 in a single ring system of a χ(2) material,
varying detuning ∆, with Γ̄ ∼ 109. Increasing the detuning causes less of the input light to
couple into the ring system as the frequency of the input light goes further off-resonance with
the ring.

Re(λ1)

Re(λ2)

2 ×108 4 ×108 6 ×108 8 ×108 1 ×109
κ

-8 ×108

-6 ×108

-4 ×108

-2 ×108

0

Re(λ)
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Figure 6.4: Graph of the eigenvalues of the coupled ring system of a χ(2) material, with
no detuning, varying with coupling between the rings. Left (right) graph shows the real
(imaginary) parts of the eigenvalues of the system, showing a lossy-PT -symmetric-like system
with a second-order EP at κ =

(
Γ̄1 − Γ̄2

)
/2, independent of the input pump power. However,

this appears to make no difference to the system and the peak value of the pump occurs at a
different value of coupling.

resonant with both), are given by

1

2

[
−Γ̄P1 − Γ̄P2 + i (∆P1 + ∆P2)±

√(
Γ̄P1 − Γ̄P2 − i (∆P1 −∆P2)

)2 − 4|κ|2
]
. (6.33)

The real parts of these eigenvalues are always negative for Γ̄P1 = Γ̄P2 or ∆P1 = ∆P2.

However, for FWM, the solution is complicated by having SPM terms in the pump equations

of motion. Taking the same steady state, semi-classical approximation for FWM gives(
Γ̄P1 + 2iη|β̃P1|2 − i∆P1

)
β̃P1 (t) = −iγ∗P1ᾱP1< − iκβ̃P2 (t) ei(∆P2−∆P1)t (6.34)(

Γ̄P2 + 2iη|β̃P2|2 − i∆P2

)
β̃P2 (t) = −iγ∗P2ᾱP2< − iκ∗β̃P1 (t) e−i(∆P2−∆P1)t. (6.35)
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The absolute value squared gives(
Γ̄2
P1 +

(
2η|β̃P1|2 −∆P1

)2)
NP1 = |γP1|2|ᾱP1<|2 + |κ|2NP2

+ 2ℜ
[
γP1κ

∗ᾱP1<β̃
∗
P2 (t) e−i(∆P2−∆P1)t

]
(6.36)(

Γ̄2
P2 +

(
2η|β̃P2|2 −∆P2

)2)
NP2 = |γP2|2|ᾱP2<|2 + |κ|2NP1

+ 2ℜ
[
γP2κ

∗ᾱP2<β̃
∗
P1 (t) ei(∆P2−∆P1)t

]
, (6.37)

which can be solved by either taking ∆P1 = 2η|β̃|2P1 and ∆P2 = 2η|β̃|2P2, or again having only

a single ring resonant with the pump frequency. In the first case, we get(
Γ̄P1 iκei(∆P2−∆P1)t

iκ∗e−i(∆P2−∆P1)t Γ̄P2

)(
β̃P1 (t)

β̃P2 (t)

)
= −i

(
γP1ᾱP1<

γP2ᾱP2<

)
, (6.38)

which gives a similar solution to the SPDC case in equation 6.30,(
β̃P1 (t)

β̃P2 (t)

)
= − 1

Γ̄P1Γ̄P2 + |κ|2

(
iΓ̄P2 κei(∆P2−∆P1)t

κ∗e−i(∆P2−∆P1)t iΓ̄P1

)(
γP1ᾱP1<

γP2ᾱP2<

)
. (6.39)

when there is only an input in the first waveguide, this gives that

∆P1 = 2η|β̃P1|2 =
2ηΓ̄2

P2|γP1|2ᾱ2
P1(

Γ̄P1Γ̄P2 + |κ|2
)2 (6.40)

although the number of photons stored in each ring matches that of the SPDC case with the

solution given by equation 6.30 and shown in figure 6.2, although it varies by a constantly

varying phase. The other analytical solution here is when αP1 = αP2 and so, by symmetry,

∆P1 = ∆P2, again the same as the SPDC case with zero detuning. Alternatively, when the

pump is resonant only with the first ring, we have that NP is a solution to the equation

4ηN3
P − 4η∆PN

2
P +

(
Γ̄2
P1 + ∆2

P

)
NP − |γP |2|αP |2 = 0. (6.41)

From [80], we have that the solution is stable for |∆P | <
√

3Γ̄ and bistable for |∆P | >
√

3Γ̄.

In the bistable regime, the solution is unstable when N− < NP < N+, where

N± =
1

3Λ

(
2∆P ±

√
∆2

P − 3Γ̄2

)
, (6.42)

which happen to be the stationary points of equation 6.41. This is exactly the single-ring

solution calculated in [77], which contains various plots of the stability of this solution.

6.3 Eigenvalues, Eigenvectors and Exceptional Points

To calculate the eigenvalues of the SPDC case, we start with the Hamiltonian of equation 6.18

and use the detuned basis with ãJn = āJne
−i∆Pnt. We also assume that the detuning of each
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pump from the ring resonance is the same so that ∆P1 = ∆P2 = ∆P (in order to remove

oscillations, allowing the system to reach a steady state), assume that the loss of the signal

modes are equal to the loss of the idler modes, so that Γ̄S1 = Γ̄I1 = Γ̄1 and Γ̄S2 = Γ̄I2 = Γ̄2,

denote Λβ̄P1 = z1, Λβ̄P2 = z2 and make the simplifying assumption that all the parameters

are real. This gives

H̃SPDC,eff =


−iΓ̄1 −∆P z1 κ 0

−z1 −iΓ̄1 + ∆P 0 −κ
κ 0 −iΓ̄2 −∆P z2

0 −κ −z2 −iΓ̄2 + ∆P

 . (6.43)

When Γ̄1 = Γ̄2 = Γ̄, defining

σ̃±,SPDC =

√
∆2

P −
1

2

(
z21 + z22

)
+ κ2 ±

√
1

4

(
z21 − z22

)2 − κ2 ((z1 − z2)2 − 4∆2
P

)
, (6.44)

as shown in figure 6.5 for ∆P = z2 = 0, this has eigenvalues

−iΓ̄± σ+,SPDC and − iΓ̄± σ−,SPDC . (6.45)

First, we look at the case where (z1 − z2)2 = 4∆2
P . This gives

σ̃±,SPDC =

√
1

4
(z1 − z2)2 −

1

2

(
z21 + z22

)
+ κ2 ± 1

2

(
z21 − z22

)
(6.46)

=⇒

 σ+ =
√

1
4 (z1 − z2)2 − z22 + κ2

σ− =
√

1
4 (z1 − z2)2 − z21 + κ2

, (6.47)

also shown in figure 6.5.

For |z1 − z2| > 2∆P , setting

κ = ± z21 − z22
2
√

(z1 − z2)2 − 4∆2
P

(6.48)

gives

σ̃±,SPDC =
1

2

√√√√√4 (z1 + z2)
2 ∆2

P −
(

(z1 − z2)2 − 4∆2
P

)2
(z1 − z2)2 − 4∆2

P

, (6.49)

describing 2 second order EP surfaces that can be tuned to either be on a lossy background

where the eigenvalues have a −iΓ̄ term, to a ‘neutral’ background with no imaginary terms

in the eigenvalues, or a background with gain, where the eigenvalues instead have a term

equivalent to +iΓ̄. This transition from a lossy EP to one with gain can be shown by e.g.

setting ∆P = 0 and defining z′ = (z1 − z2) /2, which gives the eigenvalues as −i
(
Γ̄± z′

)
which
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Figure 6.5: Graph of σ±,SPDC , with (top) no detuning and z2 = 0, (bottom) |z1−z2| = 2|∆P |,
varying with pump strength. Left (right) graph shows the real (imaginary) parts. Top graphs
show a PT -symmetric-like system with coupled second-order EPs at z1 = 2κ. Bottom graphs
show a lossy EP2 line using σ+, which is symmetric under exchange of σ+ ↔ σ− and z1 ↔ z2.

gives a lossy background for z < Γ̄, a neutral background at z = Γ̄ and a background with

gain for z > Γ̄. For ∆P ̸= 0, shown in figure 6.6, setting

∆2
P =

1

2

(
z21 + z22

)
− κ2 =

1

2

(
z21 + z22

)
−

(
z21 − z22

)2
4
(

(z1 − z2)2 − 4∆2
P

) (6.50)

gives a fourth order lossy EP surface with eigenvalue −iΓ̄ at

∆P =
1

4

[
z1 + z2 ±

√
5z21 − 6z1z2 + 5z22

]
or ∆P = −1

4

[
z1 + z2 ±

√
5z21 − 6z1z2 + 5z22

]
.

(6.51)

While these solutions are not always valid, at z2 = 0, an EP4 line parametrised by z1 is

given by the solution ∆P = z1
(√

5− 1
)
/4. Alternatively, when Γ̄1 ̸= Γ̄2, the eigenvalues are

the solutions to the equation

λ4 + 2iλ3
(
Γ̄1 + Γ̄2

)
+ λ2

[
z21 + z22 −

(
Γ̄1 + Γ̄2

)2 − 2
(
Γ̄2Γ̄2 + ∆2

P + κ2
)]

+2iλ
[
−(Γ̄1 + Γ̄2)

(
Γ̄1Γ̄2 + ∆2 + κ2

)
+ Γ̄2z

2
1 + Γ̄1z

2
2

]
+κ4 +

(
Γ̄2
1 + ∆2

P − z21
) (

Γ̄2
2 + ∆2

P − z22
)
− 2κ2

(
−Γ̄1Γ̄2 + ∆2

P + z1z2
)

= 0. (6.52)
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Figure 6.6: Graph of σEP2,SPDC , showing the (lossy) EP2 surface described by equation 6.48
with an EP4 line with the value of ∆P given in equation 6.51, varying with pump strength for
|z1 − z2| > 2|∆P |. Left (right) graph shows the real (imaginary) part.

This can be simplified by taking the pump as resonant only in the first ring (so that z2 = 0)

and no waveguide coupling to the second ring, with both rings having the same intrinsic loss

µ, allowing us to write this Hamiltonian as

H̃ ′SPDC,eff = −iMI +


−iΓ1 −∆P z1 κ 0

−z1 −iΓ1 + ∆P 0 −κ
κ 0 −∆P 0

0 −κ 0 ∆P

 , (6.53)

which has eigenvalues as −iM + σ′SPDC , where σ′SPDC are now the solutions to the equation

λ4 + 2iλ3Γ1 + λ2
[
z21 − Γ2

1 − 2
(
∆2

P + κ2
)]
− 2iλΓ1

(
∆2

P + κ2
)

+
(
κ2 −∆2

P

)2
+ ∆2

P

(
Γ2
1 − z21

)
= 0. (6.54)

At ∆P = 0, shown in figure 6.7, this now gives

σ′1±,SPDC = − i
2

(z1 + Γ1)±
1

2

√
4κ2 − (z1 + Γ1)

2 (6.55)

σ′2±,SPDC =
i

2
(z1 − Γ1)±

1

2

√
4κ2 − (z1 − Γ1)

2. (6.56)

Further setting 2κ = z1 − Γ1 = 2M now gives an EP2, with respective eigenvalue 0. Overall,

this shows a rich multi-dimensional structure with multiple EPs in multiple regimes.

For FWM, defining z = Λβ̄2, again taken to be real and only coupling into a single (the
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Figure 6.7: Graph of σ2,SPDC , described by equation 6.56 with an EP2 at z1 − Γ1 = 2κ.
Left (right) graph shows the real (imaginary) part. This EP can be tuned to be on a lossy
background (for κ < M ; the imaginary term in the eigenvalue is negative), a background with
gain (κ > M ; imaginary term is positive), or a ‘neutral’ background that typifies an ideal
PT -symmetric system (κ = M with the coalescing eigenvalues equal to 0).

Figure 6.8: Graph of σ±,FWM , described by equation 6.59 with multiple EPs, with different
eigenvectors coalescing at different points. Left (right) graph shows the real (imaginary) part.
As with figure 6.7, this EP can be tuned to be on a lossy background, a background with gain,
or a ‘neutral’ background.

first) ring, we instead have

H̃FWM,eff =


−iΓ̄−∆P + 2z z κ 0

−z −iΓ̄ + ∆P − 2z 0 −κ
κ 0 −iΓ̄−∆P 0

0 −κ 0 −iΓ̄ + ∆P

 , (6.57)

which has eigenvalues

−iΓ̄± σ+,FWM and − iΓ̄± σ−,FWM , (6.58)

where, shown in figure 6.8,

σ±,FWM =

√
3

2
z2 − 2z∆P + ∆2

P + κ2 ± 1

2

√
z2 (3z − 4∆P )2 + 4 (z − 2∆P ) (3z − 2∆P )κ2.

(6.59)
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Setting

κ = ± z (3z − 4∆P )√
4 (2∆P − z) (3z − 2∆P )

(6.60)

for 2∆P /3 < z < 2∆P gives 2 second order EP surfaces as before, shown in figure 6.9. However,

solving to give a higher order EP, while enforcing that ∆P is real gives the solution

∆P =
z
(
5±
√

13
)

4
≈ 2.2 or 0.35, (6.61)

which are invalid solutions.
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Figure 6.9: Graph of σEP,FWM , described by equation 6.59, reaching an EP by setting the
coupling as in 6.60 within the allowed parameter range that allows for a physically valid κ.
However, in this regime, σ is here real and never 0 within the valid parameter range. As
such, there is no higher order EP within this parameter range and these EPs occur on a lossy
background.

As such, while SPDC has fourth order EPs, FWM only has second order EPs. As with

SPDC, we can alternatively set Γ2 = 0, so that the rings have different loss rates, given the

eigenvalues as −iM + σ′FWM , where σ′FWM are the solutions to the equation

λ4 + 2iλ3Γ1 + λ2
[
4z∆P − 3z2 − Γ2

1 − 2
(
∆2

P + κ2
)]
− 2iλΓ1

(
∆2

P + κ2
)

+∆2
(
3z2 + Γ2

1 − 4z∆P

)
+
(
∆2

P − κ2
)2

+ 4z∆Pκ
2 = 0. (6.62)

This has a quartic equation, which has multiple roots when

−9z4 + 24z3∆P + 2z2
(
3Γ2

1 − 8∆2
P − 6κ2

)
− 8z∆P

(
Γ2
1 − 4κ2

)
+ 4∆2

P

(
Γ2
1 − 4κ2

)
= 0 (6.63)
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Excluding the trivial solution z = ∆P = 0, this occurs at the values

Γ1 = ± z√
3
, ∆P =

z

2
; (6.64)

Γ1 = ±
√

3z, ∆P =
3z

2
; (6.65)

κ = ±

√
2Γ2

1

(
3z2 − 4z∆P + 2∆2

P

)
− z2 (3z − 4∆P )2

2
√

(3z − 2∆P ) (z − 2∆P )
. (6.66)

While whether equation 6.66 does or does not define an EP2 is considerably harder to verify,

this can still be compared with equation 6.60 in that the coupling value giving multiple roots

is parameterised in terms of z and ∆P and is valid within a given parameter range.

6.4 Definitions of Correlation Functions

A number of correlation functions are used to examine the behaviour of photon sources, which

we look at here. The initial definitions of these (temporal) correlation functions are taken from

[81]. While these correlation functions are later considered in frequency space, as per [77], the

assumption of an infinitely narrow pump in a CW solution can cause squares of delta functions

to appear, so definitions need to be adjusted to include the resolution of the photon detectors,

which has the result of smoothing the δ function. This will be implicitly applied in later

sections. Here, these definitions are rewritten in terms of the unnormalised and unheralded

first order correlation functions which are referred to here as G
(1)
m (tl, tp) and Am (tl, tp) and

hold for an arbitrary number of coupled rings. The correlation functions defined here can be

heralded or unheralded and normalised or unnormalised. They are also taken to be symmetric

under S ↔ I exchange. We assume that ΓJn = ΓKn = Γn and MJn = MKn = Mn for all J, K

throughout. A more extensive list is given in appendix C.

6.4.1 First order Correlation Functions

un-normalised cross-correlation

Due to the symmetry of the system, where ψSn< transforms into terms involving ψSm>, ψ†Im>,

ϕSm> and ϕ†Im>; and ψIn< transforms into terms involving ψSm>, ψ†Im>, ϕSm> and ϕ†Im>.

This means that ψSn> and ψ†In> commute, so the cross-correlation function is 0.

v
〈
ψ̄†Im> (tl) ψ̄Sm> (t2)

〉
= 0 (6.67)
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un-normalised, unheralded

These are the ‘fundamental’ correlation functions that other correlation functions can be writ-

ten in terms of. For the output being measured in mode m,

G(1)
m (tl, tp) =

[
G(1)

m (tp, tl)
]∗

= v
〈
ψ̄†Sm> (tl) ψ̄Sm> (tp)

〉
(6.68)

=

∫ ∑
n

[
q∗SmIn

(
tl, t
′) qSmIn

(
tp, t

′)+ p∗SmIn

(
tl, t
′) pSmIn

(
tp, t

′)] dt′ (6.69)

=

∫ ∑
n

Γ̄n

Γn
q∗SmIn

(
tl, t
′) qSmIn

(
tp, t

′) dt′ (6.70)

= 4Γme
−i∆p(tl−tp)

∫ ∑
n

Γ̄nG
∗
SmIn

(
tl − t′

)
GSmIn

(
tp − t′

)
dt′. (6.71)

At tl = tp this defines both a normalisation and the number of output photons,

Jm = G(1)
m (t, t) = 4Γm

∫ ∑
n

Γ̄n|GSmIn

(
t− t′

)
|2 dt′. (6.72)

in some given time-bin. This can also be simplistically considered in frequency space by first

considering tl = tS and tp = tS +τS . As seen in later sections, the only time dependence in this

correlation function is from the parameter tl − tp = τS . As a result, this correlation function

can simplistically (albeit naively and inaccurately; for full details see e.g. [77]) be considered

in frequency space by taking the Fourier Transform with respect to τS to give G
(1)
m (ω′S), where

ω′S is the difference in frequency from the signal frequency ωS . Although not directly measured

when measuring a single photon, we also define

Am (tl, tp) = A∗m (tp, tl) = v
〈
ψ̄Sm> (tl) ψ̄Im> (tp)

〉
(6.73)

=

∫ ∑
n

qSmSn

(
tl − t′

)
qImSn

(
tp − t′

)
+ pSmSn

(
tl − t′

)
pImSn

(
tp − t′

)
dt′ (6.74)

= 2Γme
−i∆(tp+tl)

[
GSmIm (tp − tl)

− 2

∫ ∑
n

Γ̄nGSmSn

(
tl − t′

)
GSmIn

(
tp − t′

)
dt′
]
. (6.75)

6.4.2 Second order Correlation Functions

Similar to the first order correlation functions, these can be heralded or unheralded and nor-

malised or unnormalised.

un-normalised, unheralded

G(2)
m (t1, t2, t3, t4) = v2

〈
ψ̄†Sm> (t1) ψ̄

†
Sm> (t2) ψ̄Sm> (t3) ψ̄Sm> (t4)

〉
(6.76)

= G(1)
m (t2, t3)G

(1)
m (t1, t4) +G(1)

m (t1, t3)G
(1)
m (t2, t4) . (6.77)

103



CHAPTER 6. PARITY-TIME SYMMETRIC COUPLED MICRORING RESONATORS

At t1 = t4 = t and t2 = t3 = t′, this becomes

G(2)
m

(
t, t′
)

= J2
m + |G(1)

m

(
t, t′
)
|2. (6.78)

normalised, unheralded

g(2)m (t1, t2, t3, t4; ts1 , ts2) =

〈
ψ̄†Sm> (t1) ψ̄

†
Sm> (t2) ψ̄Sm> (t3) ψ̄Sm> (t4)

〉
〈
ψ̄†Sm> (ts1) ψ̄Sm> (ts1)

〉〈
ψ̄†Sm> (ts2) ψ̄Sm> (ts2)

〉 (6.79)

=
G

(1)
m (t2, t3)G

(1)
m (t1, t4) +G

(1)
m (t1, t3)G

(1)
m (t2, t4)

J2
m

(6.80)

When t1 = t2 = t3 = t4 = t, this gives g(2) (t) = 2 as expected. Alternatively, setting

t1 = t4 = t and t2 = t3 = t′ gives

g(2)m

(
t, t′
)

= 1 + |g(1)m

(
t, t′
)
|2 =⇒ 1 ≤ g(2)m

(
t, t′
)
≤ 2, (6.81)

showing that unheralded single photons from such a source cannot be used as a good source

of single photons as they are equivalent to a thermal state in this correlation function.

normalised, heralded

g
(2)
m,h (t1, t2, t3, t4; ts1 , ts2) =

〈
ψ̄†Sm> (t1) ψ̄

†
Sm> (t2) ψ̄Sm> (t3) ψ̄Sm> (t4)

〉
h〈

ψ̄†Sm> (ts1) ψ̄Sm> (ts1)
〉
h

〈
ψ̄†Sm> (ts2) ψ̄Sm> (ts2)

〉
h

=

〈
ψ̄†Im> (ti) ψ̄

†
Sm> (t1) ψ̄

†
Sm> (t2) ψ̄Sm> (t3) ψ̄Sm> (t4) ψ̄Im> (ti)

〉〈
ψ̄†Im> (ti) ψ̄Im> (ti)

〉
〈
ψ̄†Im> (ti) ψ̄

†
Sm> (ts1) ψ̄Sm> (ts1) ψ̄Im> (ti)

〉〈
ψ̄†Im> (ti) ψ̄

†
Sm> (ts2) ψ̄Sm> (ts2) ψ̄Im> (ti)

〉 .
Using〈

ψ̄†Im> (ti) ψ̄
†
Sm> (ts) ψ̄Sm> (ts) ψ̄Im> (ti)

〉
= A∗m (ts, ti)Am (ts, ti) +G(1)

m (ti, ti)G
(1)
m (ts, ts)

(6.82)

= |Am (ts, ti)|2 + J2
m (6.83)

and setting t2 = t3 = t′ and t1 = t4 = t gives

g
(2)
m,h

(
t, t′; ts1 , ts2

)
=

2Jmℜ
[
A∗m (t′, ti)Am (t, ti)G

(1)
m (t, t′)

]
(|Am (ts1 , ti)|2 + J2

m) (|Am (ts2 , ti)|2 + J2
m)

(6.84)

+
J2
m

[
|Am (t′, ti)|2 + |Am (t, ti)|2 + J2

m + |G(1)
m (t, t′)|2

]
(|Am (ts1 , ti)|2 + J2

m) (|Am (ts2 , ti)|2 + J2
m)

. (6.85)
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At t = ts1 = ts2 = t′, this simplifies to

g
(2)
m,h (t, t; ts1 , ts2) = 2J2

m

2|Am (t, ti)|2 + J2
m

(|Am (t, ti)|2 + J2
m)2

. (6.86)

In the case of an ideal pure single photon source, this would be 0, so the aim is often to get

this value to be as close to 0 as possible.

un-normalised Joint Temporal Intensity

G
(2)
si,m (t1, t2, t3, t4) = v2

〈
ψ̄†Im> (t1) ψ̄

†
Sm> (t2) ψ̄Sm> (t3) ψ̄Im> (t4)

〉
(6.87)

= A∗m (t2, t1)Am (t3, t4) +G(1)
m (t1, t4)G

(1)
m (t2, t3) . (6.88)

As with the heralded G
(1)
m , setting t1 = t4 = ti and t2 = t3 = ts gives

G
(2)
si,m (ti, ts) = |Am (ts, ti)|2 + J2

m. (6.89)

However, the normalisation of the JTI is different to the other correlation functions and it is

also not usually heralded.

6.5 Solving the Equations of Motion

6.5.1 Continuous Wave solutions

To solve the equations of motion in the CW case, we start by calculating the elements of the

time evolution of the effective Hamiltonian, G (t) = e−iHefft, which are then used in equation

6.20 to calculate the transformation of the input waveguide operators into the ring operators

at time t. G (t) can be written as

G (t) =


GS1S1 GS1I1 GS1S2 GS1I2

GI1S1 GI1I1 GI1S2 GI1I2

GS2S1 GS2I1 GS2S2 GS2I2

GI2S1 GI2I1 GI2S2 GI2I2

 =
2e−Γt

σ2+ − σ2−


G11 G12 G13 G14

G∗12 G∗11 G∗14 G∗13
G13 −G∗14 G33 G34

−G14 G∗13 G∗34 G∗33

 . (6.90)

In general, these matrix elements are lengthy and involve many terms. However, when the total

loss in each ring is equal (which is likely not ideal for a PT -symmetric system) these terms

are considerably simplified. As an example, for FWM, these matrix elements are, defining
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σ± =
√
a± b,

G11 =
e−Γ̄t

2b

[ (
b+ 3z2 − 4z∆

)
cosσ+t+

(
b− 3z2 + 4z∆

)
cosσ−t

+ i
(
−6z3 + ∆

(
4κ2 + b

)
+ 11∆z2 − 2z

(
2∆2 + 2κ2 + b

)) 1

σ+
sinσ+t

+ i
(
6z3 + ∆

(
−4κ2 + b

)
− 11∆z2 + 2z

(
2∆2 + 2κ2 − b

)) 1

σ−
sinσ−t

]
(6.91)

G12 = iz
e−Γ̄t

b

[
1

σ−

(
σ2− −∆2

)
sinσ−t−

1

σ+

(
σ2+ −∆2

)
sinσ+t

]
(6.92)

G13 = κ
e−Γ̄t

2b

[
2 (z −∆) cosσ+t− 2 (z −∆) cosσ−t

+ i
(
−3z2 + 8z∆− 4∆2 − b

) 1

σ+
sinσ+t+ i

(
3z2 − 8z∆ + 4∆2 − b

) 1

σ−
sinσ−t

]
(6.93)

G14 =
e−Γ̄t

b
zκ

[
− cosσ+t+ cosσ−t+ i∆

1

σ+
sinσ+t− i∆

1

σ−
sinσ−t

]
(6.94)

G33 =
e−Γ̄t

2b

[ (
4z∆ + b− 3z2

)
cosσ+t+

(
−4z∆ + b+ 3z2

)
cosσ−t

+ i
(
4z∆2 − 4zκ2 + 4∆κ2 + ∆b− 3z2∆

) 1

σ+
sinσ+t

+ i
(
4zκ2 − 4∆κ2 + 3∆z2 − 4z∆2 + ∆b

) 1

σ−
sinσ−t

]
(6.95)

G34 = izκ2
e−Γ̄t

2b

[
1

σ+
sin (σ+t)−

1

σ−
sin (σ−t)

]
. (6.96)

6.5.2 Pulsed solutions

As inputting a pulsed pump into the coupled ring system gives a non-steady state solution,

giving a time-dependent effective Hamiltonian as well as meaning that section 6.2.1 no longer

applies, this is solved by taking the Fourier transform of the effective Hamiltonian and taking

a perturbative solution as in [76]. That is, the Fourier transform

b̄J (t) =
1√
2π

∫
b̄J (k) e−ikvJ t dk (6.97)

is taken and applied to the equations of motion in section 6.2.

To zeroth order, in the semi-classical approximation, with vP1 = vP2 = vP and Γ̄P1 =

Γ̄P2 = Γ̄P , we take η = ζ = 0 in the FWM equations of motion to give that the pump solutions
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for both SPDC and FWM are given by(
−ikvP + Γ̄P1

)
β̄
(0)
P1 (k) = −iγ∗P1αP1 (k)− iκβ̄(0)P2 (k) (6.98)(

−ikvP + Γ̄P2

)
β̄
(0)
P2 (k) = −iγ∗P2αP2 (k)− iκ∗β̄(0)P1 (k) , (6.99)

which gives the pump solutions[(
−ikvP + Γ̄P1

) (
−ikvP + Γ̄P2

)
+ |κ|2

]
β̄
(0)
P1 (k) =

− iγ∗P1

(
−ikvP + Γ̄P2

)
αP1 (k)− κγ∗P2αP2 (k) (6.100)[(

−ikvP + Γ̄P1

) (
−ikvP + Γ̄P2

)
+ |κ|2

]
β̄
(0)
P2 (k) =

− iγ∗P2

(
−ikvP + Γ̄P1

)
αP2 (k)− κ∗γ∗P1αP1 (k) . (6.101)

This process can be repeated for b̄
(0)
I1 , b̄

(0)
I2 , b̄

(0)
S1 and b̄

(0)
S2 to get[(

−ikvJ + Γ̄n

) (
−ikvJ + Γ̄m

)
+ |κ|2

]
b̄
(0)
Jn (k) =(

−ikvJ + Γ̄m

) (
−iγJnψ̄Jn< (k)− iµJnϕ̄Jn< (k)

)
− κγJmψ̄Jm< (k)− κµJmϕ̄Jm< (k) ,

(6.102)

for J = S (I), K = I (S) and n = 1 (2), m = 2 (1). These zeroth order equations similarly hold

for both SPDC and FWM. These then give the first order correction terms for SPDC(
−ikvJ + Γ̄n

)
b̄
(1)
Jn (k) = −iγJnψ̄Jn< (k)− iµJnϕ̄Jn< (k)− iκb̄(1)Jm (k)

− iΛ
∫
FJn

(
k, k′

)
b̄
(0)†
Kn

(
k′
)
dk′, (6.103)

where FSn (k, k′) and FIn (k, k′) are defined as

FSn,SPDC

(
k, k′

)
=

1√
2π

∫
β̄
(0)
Pn (kP ) δ

(
kvS − kP vP + k′vI + ∆

)
dkP (6.104)

FIn,SPDC

(
k, k′

)
=

1√
2π

∫
β̄
(0)
Pn (kP ) δ

(
kvI − kP vP + k′vS + ∆

)
dkP . (6.105)

This gives the solution to the frequency equations of motion in terms of the zeroth order terms,

to first order, as

b̄
(1)
Jn (k) = b̄

(0)
Jn (k)−

κΛ
∫
FJm (k, k′) b̄

(0)†
Km (k′) dk′[(

−ikvJ + Γ̄n

) (
−ikvJ + Γ̄m

)
+ |κ|2

]
−
iΛ
(
−ikvJ + Γ̄m

) ∫
FJn (k, k′) b̄

(0)†
Kn (k′) dk′[(

−ikvJ + Γ̄n

) (
−ikvJ + Γ̄m

)
+ |κ|2

] , (6.106)

where again, for J = S (I), K = I (S) and for n = 1 (2), m = 2 (1). Equation 6.21 then allows

this to be considered as the pulsed Fourier transformed version of equation 6.22. This can then

be substituted into the frequency versions of the correlation functions defined in section 6.4 to

give the first order semiclassical pulsed solution.
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This can also be repeated for FWM to give the similar equations[(
−ikvJ + Γ̄n

) (
−ikvJ + Γ̄m

)
+ |κ|2

]
b̄
(1)
Jn (k) =

[(
−ikvJ + Γ̄n

) (
−ikvJ + Γ̄m

)
+ |κ|2

]
b̄
(0)
Jn (k)

− iζ

2π

∫
β̄
†(0)
Pn

(
k′P
)
β̄
(0)
Pn (kP ) b̄

(0)
Jn

(
k +

vP
vJ

(
k′P − kP

))
dkP dk

′
P

(
−ikvJ + Γ̄m

)
− κζ

2π

∫
β̄
†(0)
Pm

(
k′P
)
β̄
(0)
Pm (kP ) b̄

(0)
Jm

(
k +

vP
vJ

(
k′P − kP

))
dkP dk

′
P

− κΛ

∫
FJm

(
k, k′

)
b̄
(0)†
Km

(
k′
)
dk′ − iΛ

(
−ikvJ + Γ̄m

) ∫
FJn

(
k, k′

)
b̄
(0)†
Kn

(
k′
)
dk′, (6.107)

where FSn (k, k′) and FIn (k, k′) are defined here as

FSn,FWM

(
k, k′

)
=

1

2π

∫
β̄
(0)
Pn (kP ) β̄

(0)
Pn

(
k′P
)
δ
(
kvS − kP vP − k′P vP + k′vI + ∆

)
dkP dk

′
P

(6.108)

FIn,FWM

(
k, k′

)
=

1

2π

∫
β̄
(0)
Pn (kP ) β̄

(0)
Pn

(
k′P
)
δ
(
kvI − kP vP − k′P vP + k′vS + ∆

)
dkP dk

′
P .

(6.109)

This can be simplified by neglecting the XPM terms, by setting ζ = 0, which reduces the

FWM solutions to the SPDC solutions, except that FJn,FWM definitions are used instead of

FJn,SPDC .

6.6 Calculating Correlation Functions

6.6.1 Continuous Solution

Appendix D gives the integrals for the different terms that appear in calculating the correlation

functions G
(1)
m and Am, which are in turn used in calculating the other correlation functions

of section 6.4. Fourier transforming then gives these correlation functions in frequency space.

Throughout this section, we assumme that the pump is resonant only with the first ring. We

give the analytic formula for the FWM solution given in section 6.5.1, having used the formulas

in appendix D. These apply when the total loss in the first ring equals the total loss in the

second ring, Γ̄1 = Γ̄2. However, when this does not apply, the matrix elements are considerably

longer, so we calculate these numerically.

In addition, there are other potiential issues in comparing a single ring to coupled rings

that are more noticeable when the input pump is CW. The easiest way of comparing a single

ring to coupled rings is by saying that each of the coupled rings have the same loss, which

is equal to the loss of the single ring. However, in doing this, because the coupled rings are

individually only coupled to a single waveguide, this is implicitly saying that the single ring

only couples to a single waveguide when comparing like-for-like. However, especially in the

case of a CW input, having two waveguides coupled to the system considerably changes its
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behaviour. One particular example is that the second waveguide allows for considerably larger

amounts of destructive interference of the pump with istelf at the point of coupling to/from

the input waveguide/ring, allowing the ring to be used as a add-drop filter, such as in [82].

As such, having two waveguides potentially allows the system to perform different functions,

or the same functions in different ways. As this is the case, the fairest way to compare the

systems would be to compare the coupled rings (when there are also two waveguides) with

both a single ring coupled to a single waveguide and a single ring coupled to two waveguides.

We start with the un-normalised, unheralded first order correlation function given by equa-

tion 6.71,

G(1)
m (tl, tp) = 4Γme

−i∆p(tl−tp)
∫ ∑

n

Γ̄nG
∗
SmIn

(
tl − t′

)
GSmIn

(
tp − t′

)
dt′. (6.110)

Valid for σ± < Γ̄, this gives the output photon numbers

J1 = Γz2
[(
σ2− + Γ̄2

) (
σ2+ + Γ̄2

) (
(σ− − σ+)2 + 4Γ̄2

) (
(σ− + σ+)2 + 4Γ̄2

)]−1[
σ4−
(
σ2+ + Γ̄2

)
+ Γ̄2σ4+ +

(
8Γ̄4 + κ2

(
3Γ̄2 + ∆2

p

)
− 2Γ̄2∆2

p + ∆4
p

)
σ2+

+ σ2−
(
2
(
4Γ̄2 − 2∆2

p + κ2
)
σ2+ + σ4+ + 8Γ̄4 + κ2

(
3Γ̄2 + ∆2

p

)
− 2Γ̄2∆2

p + ∆4
p

)
+ 2Γ̄2

(
8Γ̄4 + Γ̄2

(
8∆2

p + 6κ2
)

+ 5∆2
p

(
∆2

p + κ2
)) ]

(6.111)

J2 = Γκ2z2
σ2−
(
8σ2+ + 12Γ̄2 + 4∆2

p + κ2
)

+
(
12Γ̄2 + 4∆2

p + κ2
)
σ2+ + 48Γ̄4 + 10Γ̄2

(
4∆2

p + κ2
)

4
(
σ2− + Γ̄2

) (
σ2+ + Γ̄2

) (
(σ− − σ+)2 + 4Γ̄2

) (
(σ− + σ+)2 + 4Γ̄2

) .

(6.112)

However, shown in figure 6.10, for a single ring, this simplifies to

Jsingle = J1 (κ = 0) =
z2Γ

3z2 + Γ̄2 − 4z∆p + ∆2
p

, (6.113)

which is valid for −3z2 + 4z∆p−∆2
p < Γ̄2. Beyond this point, the effect of Optical Parametric

Oscillation (OPO) occurs, where the photons in the system oscillate between being at the pump

photons and signal/idler photons, directly meaning that the number of pump photons in the

systems oscillates with time, so no steady state solution exists. Although simply maximising

the output (average) photon number is (at least equivalent or similar to) maximising the

squeezing produced, this may or may not be the desired outcome. However, being able to

produce the same brightness with less pump power is a more efficient system. As such, we

start by plotting the rate of output photons J1 for a single ring in figure 6.10 and for equivalent

coupled rings in figure 6.12. From these graphs, while the output rate of photons from the

coupled rings can be greater than the equivalent single ring for particular detunings, at the

optimum detuning ∆ =
√

3Γ̄, the output from a single ring is maximised at a lower value of z

than the coupled rings. From this, the output rate from a single ring can always be saturated
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with a lower input power than the equivalent coupled rings. This is true even at the EP surface,

plotted in figure 6.11. However, unlike with a pulsed input, with a CW input, the EP can be

adiabatically explored, which may be of interest in PT -symmetry experiments. In contrast

with section 6.6.2, only having a single waveguide coupled to the system, so that the second

ring has lower loss, the coupled ring system is still no better than the single ring, as shown in

figure 6.13.

Figure 6.10: Graph of the average photon number output J of FWM in a single ring. This
shows the bistability at ∆P >

√
3Γ̄, where there is a range of invalid stable solutions for z,

which coincides with the phenomenon of Optical Paramtric Oscillation (OPO).

1 2 3 4 5

z

Γ

2

4

6

J1

Γ

Figure 6.11: Graph of the average photon number output J of FWM along the lossy EP2 given
by equation 6.60 (left) and additionally along the line z = ∆P (right). While this region is
always stable and also shows an almost linear increase with z for (approximately) Γ̄ < z < 4Γ̄,
it offers none of the typical enhancements of an EP, although as this is an EP surface, may be
of theoretical interest in e.g. adiabatically exploring phases in the EP.
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Figure 6.12: Graph of the average photon number output J of FWM in a coupled rings. Top
left has 2∆P = z and top right has ∆P = z. These top graphs give regimes where having 2
rings (and larger coupling) improves the rate of single photons output. However, the bottom
graphs show the opposite, where the equivalent single ring (or, smaller coupling) coupled to a
single waveguide gives a larger output. Bottom left shows 2∆P = 3z and bottom right shows
the critical detuning ∆P =

√
3Γ̄.
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Figure 6.13: Numerically calculated graph of the average photon number output J of FWM
in a coupled rings where the second ring remains uncoupled to any waveguides and has a loss
rate Γ̄2 = M2 = Γ̄1/100. Top left has 2∆P = z and top right has ∆P = z. As in figure 6.12,
these top graphs give regimes where having 2 rings (and larger coupling) improves the rate of
single photons output. However, the bottom graphs still show the opposite, where the single
ring system coupled to a single waveguide gives a larger output. Bottom left shows 2∆P = 3z
and bottom right shows the critical detuning ∆P =

√
3Γ̄. As this is numerically calculated,

errors near the transition point between stable and unstable regions occur.
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This can also be looked at with a system with a CW input that undergoes SPDC, as in

figure 6.14 for rings with equal loss and figure 6.15 for rings with Γ̄1 = 100Γ̄2. This again

demonstrates that a single ring undergoing SPDC has the ability to produce a similar number

of output photons (i.e. the same amount of squeezing) as the coupled rings, although at a

lower input pump power. This also holds even when the rate of loss in the second ring is much

smaller than the rate of loss in the first ring.

Figure 6.14: Numerically calculated graph of the average photon number output J1 of SPDC
in a coupled ring system with Γ̄1 = Γ̄2 (and z2 = 0). Top left has ∆P = 0 and top right has
2∆P = z1. Bottom graphs shows 4∆P =

(√
5− 1

)
z1. This shows that the single ring system

coupled to a single waveguide gives a similar output to the coupled ring system at a lower
pump input power.

While this gives the rate of getting photons output from the system, the distribution of

these photons is also an important property. As such, the first order correlation function G1 is

plotted in frequency space in figure for rings with equal loss undergoing FWM. This shows that

coupled rings can cause frequency splitting, although this does not always necessarily occur.

While coupled rings have parameters that give large narrow spikes in the correlation function

(indicating a large squeezing parameter), this also occurs in single ring systems. This indicates

that a CW input into coupled rings has a similar qualitative effect to a CW input to a single

ring, although may be of theoretical interest in exploring PT -symmetric systems.
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Figure 6.15: Numerically calculated graph of the average photon number output J1 of SPDC
in a coupled ring system with Γ̄1 = 100Γ̄2 (and z2 = 0). Top left has ∆P = 0 and top right
has 2∆P = z1. Bottom graphs shows 4∆P =

(√
5− 1

)
z1. As with figure 6.14, this shows that

the single ring system coupled to a single waveguide gives a similar output to the coupled ring
system at a lower pump input power.

Rings with a CW input may be of theoretical interest and have applications, such as

exploring the high squeezing limit and the threshold between quantum and classical behaviour,

or the breakdown of the undepleted pump approximation. However, a CW input generally

creates less than ideal single photons, when the aim is to, for example, interact photons from

different sources. This can be shown by calculating the Joint Spectral Intensity (JSI) with the

aim of finding unentangled photons/a highly pure state. From section 6.4.2, we already have

that the Joint Temporal Intensity depends on both G(1) and A correlation functions. As done

in [77] for a single ring, this results in a highly correlated term in the Joint Spectral Intensity

that cannot be ignored. As such, a CW input is rarely considered a good single photon source

when interfering multiple photons from different sources as the (heralded) single photon purity

is much lower than other sources, or the same source with a pulsed input.
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Figure 6.16: Graphs show the first order correlaton function G(1) (ω) for a variety of parameters
for both single and coupled rings. This shows that, although the calculated quantitative
numbers are different, both single and coupled rings have similar qualitative features in their
outputs. Top graphs show that both single and coupled rings can have large spikes in their
output at a single frequency, potentially indicating the approach of instability (or OPO) as
well as breakdown of the undepleted pump approximation. Bottom graphs show that, at the
single photon output level, both the single ring and coupled rings can have single frequency
peaks as well as multiple peaks, depending on the parameters, although coupled rings can have
extra peaks due to the frequency splitting from both coupling between rings and detuning.

6.6.2 Pulsed Solution

Taking the definition of Joint Spectral Intensity (JSI) as

G
(2)
si,m

(
k, k′

)
= vSvI

〈
ψ̄†Im> (k) ψ̄†Sm>

(
k′
)
ψ̄Sm>

(
k′
)
ψ̄Im> (k)

〉
(6.114)

and using

ψ̄Jm> (k) = ψ̄Jm< (k)− iγJm
vJ

b̄Jm (k) (6.115)

immediately gives

G
(2)
si,m

(
k, k′

)
= 2Γ̄ImvS

〈
b̄†Im (k) ψ̄†Sm>

(
k′
)
ψ̄Sm>

(
k′
)
b̄Im (k)

〉
. (6.116)
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This is further expanded by using the property that, to first order,

b̄
(0)
Im (k) |vac⟩ = 0 (6.117)

=⇒ b̄
(1)
Im (k) |vac⟩ = − κΛ[(

−ikvJ + Γ̄n

) (
−ikvJ + Γ̄m

)
+ |κ|2

] ∫ FIn

(
k, k′

)
b̄
(0)†
Sn

(
k′
)
dk′

−
iΛ
(
−ikvI + Γ̄n

)[(
−ikvJ + Γ̄n

) (
−ikvJ + Γ̄m

)
+ |κ|2

] ∫ FIm

(
k, k′

)
b̄
(0)†
Sm

(
k′
)
dk′,

(6.118)

which gives

ψ̄Sm<

(
k′
)
b̄
(1)
Im (k) |vac⟩ =

γ∗SmΛ
[(
−ikvI + Γ̄n

) (
ik′vS + Γ̄n

)
FIm (k, k′) + κ2FIn (k, k′)

][(
−ikvI + Γ̄n

) (
−ikvI + Γ̄m

)
+ |κ|2

] [(
ik′vS + Γ̄n

) (
ik′vS + Γ̄m

)
+ |κ|2

] |vac⟩ (6.119)

and similarly using
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(0)
Jm

(
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)
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2vJ Γ̄m
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) (
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ikvJ + Γ̄n

) (
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] (6.120)
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)
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gives
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At this point, the effects of XPM are often ignored by setting ζ = 0. While the XPM term is

larger than (although the same order of magnitude as) the FWM term Λ, this can be shown

as a valid approximation by calculating the Joint Spectral Amplitude (JSA) to first order in

Λ to get

b̄Sm
(
k′
)
b̄Im (k) |vac⟩ ≈ b̄(1)Sm

(
k′
)
b̄
(1)
Im (k) |vac⟩ = b̄

(0)
Sm

(
k′
)
b̄
(1)
Im (k) |vac⟩+O (ζΛ) +O

(
Λ2
)
.

(6.124)

While the higher order terms are necessary for higher order expansions (such as for large

amounts of squeezing), when creating individual pairs of photons, these higher order terms
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are small, the XPM terms (as well as the terms involving higher orders of Λ) can therefore be

ignored here. Assuming γS = γI = γ and vS = vI = v, this gives
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(6.125)

We first plot this for typically coupled rings with a Q factor of Q ∼ 106, with pump resonant in

both rings and input into both waveguides to give an example of a typical system and compare

this with an equivalent single ring (using equation 6.127 below) in figure 6.17. However, this

system is worse than the equivalent single ring, so we now aim to optimise parameters and try

to find an enhancement typical of (at least classical) PT -symmetric systems.

Alternatively, as picking a value of coupling to match the loss in the ring gives an output

worse than that of a single ring, in order to help compare coupled rings with a single ring

more effectively, the case where the pump is resonant only a single ring (here, the first) can be

considered, to give

G
(2)
si,m

(
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= 4v2SΓmΓ̄m |Λ|2 ·∣∣∣∣∣
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(6.126)

In the limit of zero coupling between rings (κ = 0), we obtain the JTI of a single ring (setting

Γ̄ = Γ̄1)

G
(2)
si,1

(
k, k′

)
= 4v2SΓΓ̄ |Λ|2

∣∣∣∣∣ FIm (k, k′)(
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) (
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2

. (6.127)

This allows for defining an ‘enhancement’ factor (which may or may not be an enhancement)

by taking the ratio of multiple rings to a single ring, which is here independent of the process

(SPDC or FWM) used,∣∣∣∣∣
(
−ikvI + Γ̄n

) (
ikvI + Γ̄1

) (
ik′vS + Γ̄1

)[(
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) (
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. (6.128)
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At the central frequency k = k′ = 0, this then becomes

E0 =

∣∣∣∣∣ Γ̄nΓ̄2
1

[(
Γ̄n + 2Γ̄m

)
|κ|2 − Γ̄2

nΓ̄m

][
Γ̄nΓ̄m + |κ|2

]3
∣∣∣∣∣
2

. (6.129)

Plotting this, as in figure 6.18, makes it apparent that having a large difference in loss pa-

rameters is important, to the extent that the most effective method is to remove the second

waveguide from the system entirely, so that the only loss in the second ring is the intrinsic loss

M2, which we here assume is equal to M1 = M . From that, the value of the coupling rate that

gives the largest enhancement in brightness then depends on the loss rates of the rings.

We then plot the JSIs of the coupled rings at the approximate value of coupling, κ, that

maximises the enhancement factor in figure 6.19 for SPDC and figure 6.20 for FWM. This shows

that the idea of PT -symmetry that maximising the brightness also narrows the distribution

into an output resembling that of an EP, giving much higher purities holds even for this

type of quantum PT -symmetric system. In comparison with coupled rings with randomly

chosen parameters, which have lower purities and brightness than their equivalent single ring

counterpart, coupled rings at an EP regime show an increased brightness of potentially several

orders of magnitude (depending on the intrinsic loss M) and a purity that gets arbitrarily

close to 1, also depending on the intrinsice loss. However, in practice, this will likely not hold

exactly due to other effects such as backscattering and the effect of higher order terms not

calculated here. As such, while it is reasonable to expect coupled rings at an EP to have a

considerably higher purity than the equivalent single ring (which also suffers from the same

theoretical approximations), the maximum limit of purity is highly likely to be < 1. These

graphs also show an asymmetry in the calculated JSI with respect to the photon frequency.

As such, as the photon modes chosen to be signal and idler are arbitrary, the true JSI will be

the frequency-symmetric version Sym
[
G

(2)
si,m (k, k′)

]
= 1

2

(
G

(2)
si,m (k, k′) +G

(2)
is,m (k′, k)

)
. While

filtering can be used to recreate the JSIs shown in figures 6.19 and 6.20, this is shown explicitly

in figure 6.21 for FWM with Γ̄1 = 100Γ̄2. However, the (numerically calculated) purity remains

unchanged from the unsymmetrised version.
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Figure 6.17: Graph of the Joint Spectral Intensity (JSI) of (top) FWM and (bottom) SPDC
of a single ring (left) coupled to a single waveguide with a single pump input and (right)
equivalent coupled rings with equal loss Γ̄ equal to the coupling rate κ and two pumps coupled
in through two waveguides. As the value of intensity scales with α4

P for FWM and α2
P for

SPDC, the actual value is arbitrary, so both graphs are normalised to the peak brightness of
the output of the relevant single ring. This gives several features: As the (normalised) output
is independent of the input pump strength, this is not reminiscent of a typical PT -symmetric
system, where the gain is matched to the loss of the system. The brightness of the coupled
rings is lower than the single ring despite having effectively twice the input pump power and
twice the number of rings FWM/SPDC can occur in. The relatively large value of coupling
between rings causes the central frequency to shift. While it’s possible that this has other uses
outside of typical single photon production, the purity of this system is ∼ 79% for FWM and
∼ 68% for SPDC, in comparison with the single ring purity of ∼ 88% for FWM and ∼ 76%
for SPDC. This shows that, in this regime, the coupled rings have no benefit over a single ring
as a typical single photon emitter.
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Figure 6.18: Graph of the Enhancement Factor E0 of coupled rings compared with a single
ring. Graphs are for rings with Γ̄1 = 109 Hz and µ1 = µ2 = µ and in order of top to bottom
show loss rates M as a proportion of Γ̄1: 50%, 10%, 1% and 0.1%. Left graphs show E0

plotted with both coupling rates γ2 and κ. These consistently give that, when the maximum
enhancement possible is greater than 1, it occurs at γ2 = 0 (i.e. no second waveguide) and
for maximum enhancement equal to 1, a single ring (being κ = 0) is optimal (for this reason,
maximum enhancement cannot be < 1). Right graphs show E0 at γ2 = 0. This shows that,
the lower the intrinsic loss rate M (i.e. the greater in difference of loss rates between rings),
the larger the enhancement (up to several orders of magnitude) and the smaller the value of
the coupling required to reach that enhancement.
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Figure 6.19: Graph of JSI of coupled rings for SPDC compared with the peak brightness of
the single ring in figure 6.17. Graphs are for rings with Γ̄1 = 109 Hz and µ1 = µ2 = µ.
Loss rates M as a proportion of Γ̄1 are: (top left) 50%, (top right) 10%, (bottom left) 1%
and (bottom right) 0.1%. They have respective numerically evaluated purities of: 65.0805%
(as a result of frequency splitting causing multiple peaks), 99.2569%, 99.9929%, 99.9999%.
While these values will likely be smaller in reality, due to other effects, such as backscattering,
this demonstrates that points equivalent to EPs in physical quantum PT -symmetric systems
are possible and that here, it results in increased brightness (by orders of magnitude) and
arbitrarily high purities, depending on the quality of the system.
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Figure 6.20: Graph of JSI of coupled rings for FWM compared with the peak brightness of the
single ring in figure 6.17. Graphs are for rings with Γ̄1 = 109 Hz and µ1 = µ2 = µ. Loss rates
M as a proportion of Γ̄1 are: (top left) 50%, (top right) 10%, (bottom left) 1% and (bottom
right) 0.1%. They have respective numerically evaluated purities of: 79.2902% (as a result of
frequency splitting causing multiple peaks), 99.7731%, 99.9980%, 1. While these values will
likely be smaller in reality, due to other effects, such as backscattering (and the last, due to
numerical approximation errors), this demonstrates that, as with figure 6.19, points equivalent
to EPs in physical quantum PT -symmetric systems are possible and that here, it results in
increased brightness (by orders of magnitude) and arbitrarily high purities, depending on the
quality of the system.
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Figure 6.21: Graph of the (true) frequency-symmetrised JSI of coupled rings for FWM com-
pared with the peak brightness of the single ring in figure 6.17. Graphs is for rings with
Γ̄1 = 109 Hz and µ1 = µ2 = µ. Loss rate is M = Γ̄1/100. The numerically evaluated purity
is 99.9980%, matching that shown in figure 6.20 although this is highly likely to be smaller in
reality.

6.7 Discussion and Conclusion

In this chapter, we have demonstrated the theoretical feasability of a native PT -symmetric

quantum system with both gain (which appears in the form of squeezing) and loss, which

necessarily appears as the system being looked at is coupled to a waveguide which allows the

output to be detected (in addition to any intrinsic loss of the system from being coupled to an

environment). In this respect, both the gain and loss are required for the system to function

and output to be detected, in contrast to most PT -symmetric systems typically considered.

As shown in [35], this also enforces that (Langevin) noise operators appear in the equations

of motion. However, these are also necessary to the function of the system in that these noise

operators are the vacuum ‘fluctuations’ that allow for the photons to be created.

Having shown such a system can exist, there are now two different types of this system:

one exists in the steady state, with a stable solution; the other has a pulsed input making

it time dependent. These approaches are different in both details and results. In the steady

state with a Continuous wave input, the system can be analytically shown to have different

Exceptional Points and Exceptional Point surfaces with what can be considered to be different

‘backgrounds’ of lossiness. In a lossy background, the Exceptional Points are little different to

any other point in the parameter space and are likely only of theoretical interest in exploring

PT -symmetric quantum systems (although having the coupled rings required to create the

EP allows for other possibilities that cannot occur in a single ring, such as more frequency

splitting). By contrast, any point on a background of gain causes effects such as Optical

Parametric Oscillations, or at least, saturation of the system, so that the system may no
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longer be in a steady state or the semi-classical approximation breaks down when the number

of signal/idler photons approaches the number of pump photons in the system. The transition

point between these (such as what can occur at the ‘neutral’ EP) is when saturation of the

system is likely to occur, preventing the output from reaching an infinitely large number of

photons.

The opposite approach, with a pulsed (time dependent) input, has no analytical Excep-

tional Points. However, this gives vastly different outputs to a pulsed input into a single ring.

Where a single ring has a fundamental limit to the amount of purity that can be obtained

from generating heralded single photons, this no longer applies to coupled rings. In this case,

the input gain no longer appears as an important parameter in creating the effects that typ-

ically arise in PT -symmetric systems. Instead, the difference between losses of the ring is

what matters, alongside the coupling between the rings. Here, we find that when there is a

large difference in the losses, there is a (numerically tractable) value of coupling that gives

enhancements that typically only exist in the EP of a non-Hermitian system, that doesn’t

exist for single rings. That is, a large enhancement in the efficiency of the system appears and

the frequency distribution of the output becomes much narrower than the single ring. As this

enhancement and narrowing is independent of the input pump strength, unlike for a continu-

ous wave input, decreasing the pump power input allows for the same rate of photons to be

output (avoiding the potential saturation problems and allowing for weaker lasers to be used)

while giving improving the purity to values arbitrarily close to unity, impossible for a standard

single ring. As such, we consider this as an Exceptional Point of a Quantum system that

is intrinsically Parity-Time symmetric with a fundamentally important practical application,

demonstrating that quantum natively PT -symmetric systems with gain and loss can exist and

even be practically advantageous.
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Chapter 7

Conclusion

In this thesis, we have looked at simulating and creating PT -symmetric quantum systems, as

well as the applications of such simulation methods and systems. We have shown in chapter 4

that there are different ways of adapting the pre-existing simulation method of unitary dilation

to simulate coupled non-unitary systems and that this has applications that are not typically

considered in other simulation methods. In chapter 5, we showed that the idea of a unitary

interferometer can be extended into a nonunitary interferometer by using a singular value

decomposition and using squeezing to implement gain terms. This also demonstrated a link

between PT -symmetry and nonlinear optics. This was then used in chapter 6 to show that

coupled microring resonators with gain (in the form of squeezing) and loss are PT -symmetric

and when applied to the physical process of single photon creation, the non-Hermitianity

inherent in this system can be used to create large enhancements in both purity and efficiency

of a single photon, in line with the exceptional points of classical PT -symmetric systems,

except here done in the quantum regime with the ability to output a highly pure quantum

state of light.

In chapter 4, we started by looking at embedding purely lossy PT -symmetric Hamiltonians

into a controllable and Markovian open system and extended this idea to include simulating

PT -symmetric Hamiltonians with gain and loss using non-Markovian open systems in section

4.2.2. While this simulation method necessarily involves postselection due to jump terms in

the evolution, often with low success probabilities, this is perhaps a natural way of creating

systems with PT -symmetric subsystems. The gain term in these subsystems aligns with the

non-Markovianity present in the system and effects such as information retrieval are directly

present, although in a limited amount. This could potentially be further adapted to look

at Floquet systems where the gain and loss terms oscillate with time. Alternatively, spe-

cific examples of (potentially small) environments could be considered to demonstrate larger

amounts of information retrieval that arises from the entire system behaving unitarily with

only a small subsystem able to be measured. We then looked at using Halmos’ unitary dila-
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tion to simulate coupled time-reversed PT -symmetric systems in section 4.3. In this section,

we looked at how a pre-existing simulation method could be adapted using various different

normalisation methods. While other examples are possible and could be looked at further, we

considered the specific example of 2- and 3- mode PT -symmetric systems evolving in temporal

directions that are the reverse of each other, coupled together such that the overall system

remains unitary. In itself, this leads to a number of fundamental questions, including whether

such a system could exist in reality. One such possible example of this is a coupled particle-

antiparticle system, where the particle and antiparticle individually appear to evolve under

a PT -symmetric Hamiltonian, such as the one considered in section 4.4.2. This looked at

the concept of neutral B-meson mixing (consisting of a down quark with a bottom anti-quark

coupled to a bottom quark with a down anti-quark) from the context of PT -symmetry, demon-

strating that in principle, while the overall evolution remains unitary, this does not necessarily

restrict the postselected individual subsystems to being Hermitian, directly reconsidering the

(previously asked) question of whether, as an example, the Dirac equation must be Hermitian

when it is used to describe individual particles that combine to form larger systems. We also

demonstrated that the different methods of normalisation in this dilation shown in section

4.3.2 lead to different effective Hamiltonians, as in section 4.3.3. While this is an unsurprising

result, this demonstrates a qualitative difference between different simulation methods, in that

time-dependent normalisation leads to a steady state solution at the EP and broken regimes,

while time-independent normalisation has polynomial and exponential growth and decay. This

also showed that the effective Hamiltonian of the system can be discontinuous and in the case

of time-dependent normalisation, can have large discontinuous spikes even when the dilated

unitary is well behaved. In addition, in section 4.4.1, we demonstrated that unitary dilation

can be considered as an extension of the HOM effect into multiple modes of the system. This

also demonstrates that the coupling term in the dilated unitary can effectively be tuned by

varying the amount of distinguishability present in the photons input into the system. This

could potentially be further extended to consider more complex types of dilation involving N

subsystems with N (or more) photons input, or by looking at more general states of light input

into the system or by modelling loss and noise effects in the system.

In chapter 5, we then looked at extending the idea of a unitary interferometer to that of

a nonunitary interferometer. In looking at the idea of an effective Hamiltonian describing the

transformation given by a unitary interferometer in more detail in section 5.2, we found that

the effective Hamiltonian of a unitary interferometer (consisting of beamsplitters and phase

shifters) is necessarily Hermitian. We also found that the equivalent effective Hamiltonians

given by squeezing operations was non-Hermitian. This idea was extended in section 5.3

to show that any symplectic transformation on the creation and annihilation operators is a

PT -symmetric transformation on the operator space of creation and annihilation operators.

This allowed us to demonstrate a design of a nonunitary interferometer in section 5.4 that
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used nonlinear optics to, in effect, ‘sandwich’ the single photon creation process and create a

nonunitary transformation on the heralded input state analagous to a unitary interferometer.

We further showed in section 5.5 that this can be Trotterised similarly to (standard, Hermitian

and local) Hamiltonian simulation albeit requiring a longer time to achieve the same error, or

alternatively, in the same simulation time giving a larger error. To demonstrate that this can

theoretically simulate a non-Hermitian system, we then gave a model for a 2D PT -symmetric

staggered transverse field Heisenberg spin lattice in section 5.6 where an individual spin can

be parameterised by a value β and is PT -symmetric for β ∈ R, PT -broken for β ̸∈ R and at

the EP when β = 0. Using a tensor network to numerically calculate the properties of the

gound state of this lattice showed that, unlike a randomly chosen lattice model, the lattice

remains PT -symmetric when β ∈ Re and the EP stays at β = 0. Calculating the spontaneous

magnetisation also showed that the critical point occurs in the Hermitian limit and can be

encircled in the non-Hermitian regime. It also appears that non-Hermitian extensions to the

ferromagnetic and paramagnetic phases exist within the PT -unbroken phase. Simulating the

evolution of this lattice in section 5.7 confirmed that, when β ∈ R, the evolution is oscillatory,

or stationary in the paramagnetic phase (β ≫ 0). Calculating the correlations between spins

showed that, in the PT -unbroken and Hermitian phases, the correlations oscillate between

being more- or less- correlated and as β gets larger in the unbroken phase, this splits, with

an anti-correlation becoming larger with increasing β. At the EP, the system then becomes

maximally (anti-)correlated in a steady state, with all the spins pointing in either one direction

or the other. In the broken phase, the amount of (anti-)correlation then decreases.

In chapter 6, we demonstrated that a practical application of the Exceptional Point in

natively PT -symmetric quantum systems is possible, in the form of improved single photon

sources. Considering squeezing as a form of PT -symmetric gain suggested the idea of modelling

a PT -symmetric quantum system as coupled microring resonators, one with gain (i.e. squeez-

ing), the other with loss. While loss is necessarily present in both rings, both as an intrinsic

loss rate and from coupling out to the output waveguides, it can be imbalanced such that the

loss in one ring is much greater than the loss in the other ring by varying the coupling to the

waveguides. We considered this idea for both Continuous Wave (CW) and pulsed pump inputs

and both Spontaneous Parametric Down Conversion (SPDC) and Four Wave Mixing (FWM)

processes. After looking at the dynamics and steady state solution in section 6.2, showing that

a pulsed input can be analytically solved in the frequency domain and the CW input in the

(temporal) steady state regime, we calculated the eigenvalues and eigenvectors of this system

in section 6.3, demonstrating that multiple second and fourth order EPs and EP surfaces exist,

with more complex topological structures than seen in 2- and 3- dimensional PT -symmetric

systems. While this example of a quantum PT -symmetric system could be explored in line

with other PT -symmetric systems to demonstrate e.g. Berry phases when encircling an EP,

or even encircling multiple EPs, microring resonators are already commonly used as a sin-
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CHAPTER 7. CONCLUSION

gle photon source. From this, it seems the best method to demonstrate the application of a

quantum EP would be to use it to find an enhancement in single photon generation. Such an

enhancement can be theoretically shown by calculating the correlation functions, such as the

Joint Spectral Intensity (JSI), shown in section 6.4. This was done by solving the equations of

motion from section 6.2 in section 6.5, which gave the solutions shown in section 6.6. While, for

a CW input, no particular improvement over a single ring was shown (when compared with the

best possible output from a single ring), for a pulsed input, calculating the JSI demonstrated

that EP-like behaviour can be found by minimising the intrinsic loss rate and only coupling

to a single waveguide (to give a maximum amount of difference in loss between the rings). In

doing so, a coupling value can be numerically calculated that maximises the efficiency of the

output state in terms of the laser power required to create that state. Calculating the JSI at

this point then gave a purity well above 99%, considerably greater than that of a single ring,

getting arbitrarily close to 1 for lower losses, reminiscent of the classical effect of single mode

lasing at an EP. This directly demonstrates that quantum Exceptional Points can exist and

can have practical applications analogous to classical Exceptional Points.

Overall, this demonstrates that, while a Hamiltonian acting on the Hilbert space of a

quantum system is Hermitian, non-Hermitian and PT -symmetric dynamics can still be found

within that system. This could be from using an open or embedded system, or by using nonlin-

ear optical transformations. While performing simulations using an open or embedded system

requires some form of postselection to replicate non-Hermitian dynamics, non-Hermitian and

PT -symmetric effects can be recreated using nonlinear optics. This includes using squeezing

to perform nonunitary simulations in an interferometer with the same heralding required as

in the equivalent unitary interferometer. However, using nonlinear optics to recreate quantum

PT -symmetry also demonstrates that the ideas typical of PT -symmetry can then be used in

quantum optical applications, such as in efficient generation of ultra pure single photon states.
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Appendix A

Simulation Code for 2D PT -symmetric

lattice

from thewalrus.quantum import pure_state_amplitude

import matplotlib.pyplot as plt

import math

import numpy as np

from numpy import sqrt

from scipy.linalg import expm

#parameters

gamma = 0.0

hFieldStrength = 1.0

jFieldStrength = 1.0

mode = 1 #input mode

N = 500 #number of time steps

dt = 0.1

#probability of heralded single photons = sinh^2 r < 1/10

avgPhotonNo = 1/100

noOfSpins = 4

size = 2**noOfSpins

noOfHeraldModes = 1

#creates file

f = open("PTEvolution.txt", "w+")
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APPENDIX A. SIMULATION CODE FOR 2D PT -SYMMETRIC LATTICE

#definitions

#Creates arrays for G (non-unitary evolution matrix) and state for each

#time step

GArray = np.zeros((N, size, size), dtype=complex)

GArray[0] = np.eye(size)

stateArray = np.zeros((N, size), dtype=complex)

stateArray[0, mode-1] = 1.0

actualStateProb = np.zeros((size, N), dtype=complex)

#creates arrays for the singular value decomposition udv^\dagger = ud(vh)

uArray = np.zeros((N+1, size, size), dtype=complex)

uArray[0] = np.eye(size)

dArray = np.zeros((N+1, size), dtype=float)

dArray[0] = np.ones(size)

vhArray = np.zeros((N+1, size, size), dtype=complex)

vhArray[0] = np.eye(size)

#creates array for squeezing and loss:

#when element is > 1, gives squeezing, < 1 is loss

squeezingLossArray = np.zeros((N+1, size), dtype = float)

lossTransmission = np.zeros((N+1, size), dtype = float)

lossReflection = np.zeros((N+1, size), dtype = float)

#Defines the n-mode PT-symmetric Hamiltonian HPT

HPT = np.zeros((size, size), dtype=complex)

#1D PT-symmetric spin-chain (time independent), Heisenberg/Ising model

#hPTFieldStrength = gamma

#sigmaX = [[0, 1.0], [1.0, 0]]

#HIsing2 = \

# jFieldStrength*np.kron([[1.0, 0], [0, -1.0]], [[1.0, 0], [0, -1.0]])

#for n in range(0, noOfSpins):

# HIsing1 = [[0, hFieldStrength+((-1.0)**n)*hPTFieldStrength],\

# [hFieldStrength-((-1.0)**n)*hPTFieldStrength, 0]]

# HPT += np.kron(np.identity(2**n, dtype=complex),\

# np.kron(HIsing1, np.identity(2**(noOfSpins-n-1),\
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#dtype=complex)))

#for n in range(0, noOfSpins-1):

# HPT += np.kron(np.identity(2**n, dtype=complex),\

# np.kron(HIsing2, np.identity(2**(noOfSpins-n-2),\

# dtype=complex)))

#2D PT-symmetric spin-chain (time independent), Heisenberg/Ising model

hPTFieldStrength = gamma

sigmaX = [[0, 1.0], [1.0, 0]]

HIsing2 = jFieldStrength*np.kron([[1.0, 0], [0, -1.0]], [[1.0, 0], [0, -1.0]])

HIsing3 = jFieldStrength*np.kron([[1.0, 0], [0, -1.0]],\

np.kron([[1.0, 0], [0, 1.0]], [[1.0, 0], [0, -1.0]]))

for n in range(0, noOfSpins):

HIsing1 = [[0, hFieldStrength+((-1.0)**n)*hPTFieldStrength],\

[hFieldStrength-((-1.0)**n)*hPTFieldStrength, 0]]

HPT += np.kron(np.identity(2**n, dtype=complex),\

np.kron(HIsing1, np.identity(2**(noOfSpins-n-1),\

dtype=complex)))

for n in range(0, (noOfSpins-1)//2):

HPT += np.kron(np.identity(2**(2*n), dtype=complex),\

np.kron(HIsing2, np.identity(2**(noOfSpins-(2*n)-2),\

dtype=complex)))

for n in range(0, noOfSpins-2):

HPT += np.kron(np.identity(2**n, dtype=complex),\

np.kron(HIsing3, np.identity(2**(noOfSpins-n-3),\

dtype=complex)))

#classical precomputation

hadamardSingle = [[1/sqrt(2), 1/sqrt(2)], [-1.0/sqrt(2), 1.0/sqrt(2)]]

hadamardFull = hadamardSingle

for n in range(0, noOfSpins-1):

hadamardFull = np.kron(hadamardFull, hadamardSingle)

#at each time step, calculates the value of G and the 'state'

#after such an evolution

for n in range(0, N):

#G = exp(-iHt)
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APPENDIX A. SIMULATION CODE FOR 2D PT -SYMMETRIC LATTICE

GArray[n] = expm(-1.0j*HPT*n*dt)

#basis change

#GArray[n] = np.dot(hadamardFull.T, np.dot(GArray[n], hadamardFull))

stateArray[n] = np.dot(GArray[n], stateArray[0])

for m in range(0,size):

actualStateProb[m, n] = np.abs(stateArray[n, m])**2

#quantum circuit precomputation

maxSqueezingValue = 0.0

#circuit parameters depend on the singular value decomposition

for n in range(1, N):

uArray[n], dArray[n], vhArray[n] = np.linalg.svd(GArray[n],\

full_matrices=True)

for k in range(0, size):

if dArray[n, k] > 1.0: #squeezing when singular value > 1

squeezingLossArray[n, k] = np.arccosh(dArray[n, k])

print(str(n) + ": " + str(squeezingLossArray[n, k]) +\

", " + str(dArray[n,k]))

if squeezingLossArray[n, k] > maxSqueezingValue:

maxSqueezingValue = squeezingLossArray[n, k]

elif dArray[n, k] < 1.0: #loss when singular value < 1

lossTransmission[n, k] = sqrt(dArray[n,k])

lossReflection[n,k] = sqrt(1-dArray[n,k])

#sets number of qumodes (number of modes in system)

#+ (number of heralding modes)

noOfModes = int(size + noOfHeraldModes)

#Defines matrices for the mean and covariance

muArray = np.zeros((N+1, 2*noOfModes), dtype=float)

covArray = np.zeros((N+1, 2*noOfModes, 2*noOfModes),dtype=float)

#transformation matrix giving 2-mode squeezing for photon generation

S2PhotonGeneration = np.identity(2*noOfModes, dtype=complex)

S2PhotonGenerationDiag = np.identity(2*noOfModes, dtype=complex)

S2PhotonGenerationBS = np.identity(2*noOfModes, dtype=complex)
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S2PhotonGenerationDiag[mode-1, mode-1] = np.exp(-photonSqueezingValue)

S2PhotonGenerationDiag[mode+size, mode+size] = np.exp(photonSqueezingValue)

S2PhotonGenerationDiag[size, size] = np.exp(photonSqueezingValue)

S2PhotonGenerationDiag[2*size+1, 2*size+1] = np.exp(-photonSqueezingValue)

S2PhotonGenerationBS[mode-1, mode-1] = 1.0/sqrt(2)

S2PhotonGenerationBS[mode-1, size] = -1.0/sqrt(2)

S2PhotonGenerationBS[mode+size, mode+size] = 1.0/sqrt(2)

S2PhotonGenerationBS[mode+size, 2*size+1] = -1.0/sqrt(2)

S2PhotonGenerationBS[size, size] = 1.0/sqrt(2)

S2PhotonGenerationBS[size, mode-1] = 1.0/sqrt(2)

S2PhotonGenerationBS[2*size+1, 2*size+1] = 1.0/sqrt(2)

S2PhotonGenerationBS[2*size+1, mode+size] = 1.0/sqrt(2)

S2PhotonGeneration = np.matmul(S2PhotonGenerationBS.T,\

np.matmul(S2PhotonGenerationDiag, S2PhotonGenerationBS))

#transforms between quadrature and creation/annihilation operator spaces

hadamardComplex = [[1/sqrt(2), 1/sqrt(2)], [1.0j/sqrt(2), -1.0j/sqrt(2)]]

hadamardComplex = np.kron(hadamardComplex,\

np.identity(noOfModes, dtype=complex))

#creating the quantum circuit

#quantum circuit initialised in vacuum state by default

#modes 0 to size-1 are computational modes, size is heralding modes

for n in range(0, N):

print("t = " + str(n*dt))

gainLossMat = np.identity(2*(noOfModes+size), dtype=float)

gainLossDaggerMat = np.identity(2*(noOfModes+size), dtype=float)

gainLossTransform = np.identity(2*(noOfModes+size), dtype = complex)

gainLossDaggerTransform = np.identity(2*(noOfModes+size), dtype = complex)

#additional size modes for loss

uTransformMat = np.identity(2*noOfModes, dtype=complex)

vTransformMat = np.identity(2*noOfModes, dtype=complex)

vTempTransformMat = np.identity(2*noOfModes, dtype=complex)
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APPENDIX A. SIMULATION CODE FOR 2D PT -SYMMETRIC LATTICE

uTempTransformMat = np.identity(2*size, dtype=complex)

vhTempTransformMat = np.identity(2*size, dtype=complex)

uhTempTransformMat = np.identity(2*size, dtype=complex)

uhTransformMat = np.identity(2*noOfModes, dtype=complex)

vhTransformMat = np.identity(2*noOfModes, dtype=complex)

transformation = np.identity(2*noOfModes, dtype = complex)

#apply Clements decomposition of uh

uhTransformMat[0:size, 0:size] = uArray[n].conj().T

uhTransformMat[noOfModes:noOfModes+size, noOfModes:noOfModes+size]\

= uArray[n].T

uhTransformMat = np.matmul(hadamardComplex,\

np.matmul(uhTransformMat, hadamardComplex.conj().T))

transformation = np.matmul(uhTransformMat,\

np.matmul(transformation, uhTransformMat.T))

#apply gain (squeezing) corresponding to d

for k in range(0, size):

if dArray[n, k] > 1.0:

gainLossDaggerMat[k, k] = np.exp(squeezingLossArray[n, k])

gainLossDaggerMat[k+noOfModes+size, k+noOfModes+size] =\

np.exp(-squeezingLossArray[n, k])

elif dArray[n, k] == 1.0:

gainLossDaggerMat[k, k] = 1.0

gainLossDaggerMat[k+noOfModes+size, k+noOfModes+size] = 1.0

gainLossDaggerTransform[0:noOfModes, 0:noOfModes] =\

transformation[0:noOfModes, 0:noOfModes]

gainLossDaggerTransform[noOfModes+size:2*noOfModes+size,\

noOfModes+size:2*noOfModes+size] =\

transformation[noOfModes:2*noOfModes, noOfModes:2*noOfModes]

gainLossDaggerTransform =\

np.matmul(gainLossDaggerMat, np.matmul(gainLossDaggerTransform,\

gainLossDaggerMat.T))

transformation[0:noOfModes, 0:noOfModes] =\

gainLossDaggerTransform[0:noOfModes, 0:noOfModes]

transformation[noOfModes:2*noOfModes, noOfModes:2*noOfModes] =\

gainLossDaggerTransform[noOfModes+size:2*noOfModes+size,\

noOfModes+size:2*noOfModes+size]
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#apply v

vTransformMat[0:size, 0:0+size] = vhArray[n].conj().T

vTransformMat[noOfModes:noOfModes+size, noOfModes:noOfModes+size] =\

vhArray[n].T

vTransformMat =\

np.matmul(hadamardComplex, np.matmul(vTransformMat,\

hadamardComplex.conj().T))

transformation = np.matmul(vTransformMat, np.matmul(transformation,\

vTransformMat.T))

#create an approximate single photon state using 2-mode squeezing

#and heralding

#using input mode

transformation = np.matmul(S2PhotonGeneration, np.matmul(transformation,\

S2PhotonGeneration.T))

#apply clements decomposition of v

vhTransformMat[0:size, 0:size] = vhArray[n]

vhTransformMat[noOfModes:noOfModes+size, noOfModes:noOfModes+size] =\

vhArray[n].conj()

vhTransformMat =\

np.matmul(hadamardComplex, np.matmul(vhTransformMat,\

hadamardComplex.conj().T))

transformation = np.matmul(vhTransformMat, np.matmul(transformation,\

vhTransformMat.T))

#apply gain (squeezing) and loss (beamsplitter coupled to vacuum mode)

#corresponding to d

for k in range(0, size):

if dArray[n, k] > 1.0:

gainLossMat[k, k] = np.exp(-squeezingLossArray[n, k])

gainLossMat[noOfModes+size+k, noOfModes+size+k] =\

np.exp(squeezingLossArray[n, k])

if dArray[n, k] < 1.0:

gainLossMat[k, k] = lossTransmission[n,k]

gainLossMat[k+noOfModes, k+noOfModes] = lossTransmission[n,k]

gainLossMat[k+noOfModes+size, k+noOfModes+size] =\
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APPENDIX A. SIMULATION CODE FOR 2D PT -SYMMETRIC LATTICE

lossTransmission[n,k]

gainLossMat[k+2*noOfModes+size, k+2*noOfModes+size] =\

lossTransmission[n,k]

gainLossMat[k, k+noOfModes+size] = -lossReflection[n,k]

gainLossMat[k+noOfModes+size, k] = lossReflection[n,k]

gainLossMat[k+noOfModes, k+2*noOfModes+size] =\

-lossReflection[n,k]

gainLossMat[k+2*noOfModes+size, k] = lossReflection[n,k]

elif dArray[n, k] == 1.0:

gainLossMat[k, k] = 1.0

gainLossMat[noOfModes+size+k, noOfModes+size+k] = 1.0

gainLossTransform[0:noOfModes, 0:noOfModes] =\

transformation[0:noOfModes, 0:noOfModes]

gainLossTransform[noOfModes+size:2*noOfModes+size,\

noOfModes+size:2*noOfModes+size] =\

transformation[noOfModes:2*noOfModes, noOfModes:2*noOfModes]

gainLossTransform = np.matmul(gainLossMat, np.matmul(gainLossTransform,\

gainLossMat.T))

transformation[0:noOfModes, 0:noOfModes] =\

gainLossTransform[0:noOfModes, 0:noOfModes]

transformation[noOfModes:2*noOfModes, noOfModes:2*noOfModes] =\

gainLossTransform[noOfModes+size:2*noOfModes+size,\

noOfModes+size:2*noOfModes+size]

#apply Clements decomposition of u

uTransformMat[0:size, 0:size] = uArray[n]

uTransformMat[noOfModes:noOfModes+size, noOfModes:noOfModes+size] =\

uArray[n].conj()

uTransformMat = np.matmul(hadamardComplex, np.matmul(uTransformMat,\

hadamardComplex.conj().T))

transformation = np.matmul(uTransformMat, np.matmul(transformation,\

uTransformMat.T))

covArray[n] = transformation
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Appendix B

Heisenberg Equations of Motion for

Coupled Rings

This appendix contains the Heisenberg Equations of Motion in the rotated basis (using oper-

ators Ā) for coupled rings undergoing the processes of SPDC and FWM respectively. These

are(
d

dt
+ Γ̄P1

)
b̄P1 (t) = −iγ∗P1ψ̄P1< (0, t)− iµ∗

P1ϕ̄P1< (0, t)− iΛ∗b̄S1 (t) b̄I1 (t) e−i∆t − iκb̄P2 (t) (B.1)(
d

dt
+ Γ̄S1

)
b̄S1 (t) = −iγ∗S1ψ̄S1< (0, t)− iµ∗

S1ϕ̄S1< (0, t)− iΛb̄P1 (t) b̄†I1 (t) ei∆t − iκb̄S2 (t) (B.2)(
d

dt
+ Γ̄I1

)
b̄I1 (t) = −iγ∗I1ψ̄I1< (0, t)− iµ∗

I1ϕ̄I1< (0, t)− iΛb̄P1 (t) b̄†S1 (t) ei∆t − iκb̄I2 (t) (B.3)(
d

dt
+ Γ̄P2

)
b̄P2 (t) = −iγ∗P2ψ̄P2< (0, t)− iµ∗

P2ϕ̄P2< (0, t)− iΛ∗b̄S2 (t) b̄I2 (t) e−i∆t − iκ∗b̄P1 (t) (B.4)(
d

dt
+ Γ̄S2

)
b̄S2 (t) = −iγ∗S2ψ̄S2< (0, t)− iµ∗

S2ϕ̄S2< (0, t)− iΛb̄P2 (t) b̄†I2 (t) ei∆t − iκ∗b̄S1 (t) (B.5)(
d

dt
+ Γ̄I2

)
b̄I2 (t) = −iγ∗I2ψ̄I2< (0, t)− iµ∗

I2ϕ̄I2< (0, t)− iΛb̄P2 (t) b̄†S2 (t) ei∆t − iκ∗b̄I1 (t) . (B.6)
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APPENDIX B. HEISENBERG EQUATIONS OF MOTION FOR COUPLED RINGS

for SPDC and(
d

dt
+ Γ̄P1 + 2iηb̄†P1 (t) b̄P1 (t)

)
b̄P1 (t) = −iγ∗P1ψ̄P1< (0, t)− iµ∗

P1ϕ̄P1< (0, t)

− 2iΛ∗b̄†P1 (t) b̄S1 (t) b̄I1 (t) e−i∆t − iκb̄P2 (t) (B.7)(
d

dt
+ Γ̄S1 + iζb̄†P1 (t) b̄P1 (t)

)
b̄S1 (t) = −iγ∗S1ψ̄S1< (0, t)− iµ∗

S1ϕ̄S1< (0, t)

− iΛb̄P1 (t) b̄P1 (t) b̄†I1 (t) ei∆t − iκb̄S2 (t) (B.8)(
d

dt
+ Γ̄I1 + ζb̄†P1 (t) b̄P1 (t)

)
b̄I1 (t) = −iγ∗I1ψ̄I1< (0, t)− iµ∗

I1ϕ̄I1< (0, t)

− iΛb̄P1 (t) b̄P1 (t) b̄†S1 (t) ei∆t − iκb̄I2 (t) (B.9)(
d

dt
+ Γ̄P2 + 2iηb̄†P2 (t) b̄P2 (t)

)
b̄P2 (t) = −iγ∗P2ψ̄P2< (0, t)− iµ∗

P2ϕ̄P2< (0, t)

− 2iΛ∗b̄†P2 (t) b̄S2 (t) b̄I2 (t) e−i∆t − iκ∗b̄P1 (t) (B.10)(
d

dt
+ Γ̄S2 + iζb̄†P2 (t) b̄P2 (t)

)
b̄S2 (t) = −iγ∗S2ψ̄S2< (0, t)− iµ∗

S2ϕ̄S2< (0, t)

− iΛb̄P2 (t) b̄P2 (t) b̄†I2 (t) ei∆t − iκ∗b̄S1 (t) (B.11)(
d

dt
+ Γ̄I2 + iζb̄†P2 (t) b̄P2 (t)

)
b̄I2 (t) = −iγ∗I2ψ̄I2< (0, t)− iµ∗

I2ϕ̄I2< (0, t)

− iΛb̄P2 (t) b̄P2 (t) b̄†S2 (t) ei∆t − iκ∗b̄I1 (t) (B.12)

for FWM.
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Appendix C

Coupled Ring Correlation Functions

This appendix contains a list of correlation functions that appear in analysing the output of

SPDC and FWM in coupled rings of chapter 6.

C.1 First order Correlation Functions

un-normalised cross-correlation

Due to the symmetry of the system, where ψSn< transforms into terms involving ψSm>, ψ†Im>,

ϕSm>, ϕ†Im> and ψIn< transforms into terms involving ψSm>, ψ†Im>, ϕSm>, ϕ†Im>, meaning

that ψSn> and ψ†In> commute, the cross-correlation function is 0.

v
〈
ψ̄†Im> (tl) ψ̄Sm> (t2)

〉
= 0 (C.1)

un-normalised, unheralded

These are the ‘fundamental’ correlation functions that other correlation functions can be writ-

ten in terms of. For the output being measured in mode m,

G(1)
m (tl, tp) =

[
G(1)

m (tp, tl)
]∗

= v
〈
ψ̄†Sm> (tl) ψ̄Sm> (tp)

〉
(C.2)

=

∫ ∑
n

[
q∗SmIn

(
tl, t
′) qSmIn

(
tp, t

′)+ p∗SmIn

(
tl, t
′) pSmIn

(
tp, t

′)] dt′ (C.3)

=

∫ ∑
n

Γ̄n

Γn
q∗SmIn

(
tl, t
′) qSmIn

(
tp, t

′) dt′ (C.4)

= 4Γme
−i∆p(tl−tp)

∫ ∑
n

Γ̄nG
∗
SmIn

(
tl − t′

)
GSmIn

(
tp − t′

)
dt′. (C.5)

At tl = tp this defines both a normalisation and the number of output photons,

Jm = G(1)
m (t, t) = 4Γm

∫ ∑
n

Γ̄n|GSmIn

(
t− t′

)
|2 dt′. (C.6)
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in some given time-bin. Although not directly measured when measuring a single photon, we

also define

Am (tl, tp) = A∗m (tp, tl) = v
〈
ψ̄Sm> (tl) ψ̄Im> (tp)

〉
(C.7)

=

∫ ∑
n

qSmSn

(
tl − t′

)
qImSn

(
tp − t′

)
+ pSmSn

(
tl − t′

)
pImSn

(
tp − t′

)
dt′ (C.8)

= 2Γme
−i∆(tp+tl)

[
GSmIm (tp − tl)

− 2

∫ ∑
n

Γ̄nGSmSn

(
tl − t′

)
GSmIn

(
tp − t′

)
dt′

]
. (C.9)

normalised, unheralded

Normalising gives information about the coherence time of the output photons

g(1)m (tl, tp; ts) =

〈
ψ̄†Sm> (tl) ψ̄Sm> (tp)

〉
〈
ψ̄†Sm> (ts) ψ̄Sm> (ts)

〉 =
G

(1)
m (tl, tP )

Jm
(C.10)

un-normalised, heralded

G(1) can also be heralded to give

G
(1)
m;h (tl, tp) = v

〈
ψ̄†Sm> (tl) ψ̄Sm> (tp)

〉
h

(C.11)

= v

〈
ψ̄†Im> (ti) ψ̄

†
Sm> (tl) ψ̄Sm> (tp) ψ̄Im> (ti)

〉
〈
ψ̄†Im> (ti) ψ̄Im> (ti)

〉 (C.12)

=
A∗m (tl, ti)Am (tp, ti)

Jm
+G(1)

m (tl, tp) . (C.13)

The subscript h represents that the expectation value is taken with respect to the heralded

photon. At tl = tp = t, we further have

G
(1)
m;h (t, t) =

|Am (t, ti)|2

Jm
+ Jm, (C.14)

which gives the number of heralded output photons.
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normalised, heralded

g
(1)
m,h (tl, tp) =

〈
ψ̄†Sm> (tl) ψ̄Sm> (tp)

〉
h〈

ψ̄†Sm> (ts) ψ̄Sm> (ts)
〉
h

(C.15)

=

〈
ψ̄†Im> (ti) ψ̄

†
Sm> (tl) ψ̄Sm> (tp) ψ̄Im> (ti)

〉
〈
ψ̄†Im> (ti) ψ̄

†
Sm> (ts) ψ̄Sm> (ts) ψ̄Im> (ti)

〉 (C.16)

=
A∗m (tl, ti)Am (tp, ti) + JmG

(1)
m (tl, tp)

|Am (ts, ti)|2 + J2
m

(C.17)

C.2 Second order Correlation Functions

Similar to the first order correlation functions, these can be heralded or unheralded and nor-

malised or unnormalised.

un-normalised, unheralded

G(2)
m (t1, t2, t3, t4) = v2

〈
ψ̄†Sm> (t1) ψ̄

†
Sm> (t2) ψ̄Sm> (t3) ψ̄Sm> (t4)

〉
(C.18)

= G(1)
m (t2, t3)G

(1)
m (t1, t4) +G(1)

m (t1, t3)G
(1)
m (t2, t4) . (C.19)

At t1 = t4 = t and t2 = t3 = t′, this becomes

G(2)
m

(
t, t′
)

= J2
m + |G(1)

m

(
t, t′
)
|2. (C.20)

normalised, unheralded

g(2)m (t1, t2, t3, t4; ts1 , ts2) =

〈
ψ̄†Sm> (t1) ψ̄

†
Sm> (t2) ψ̄Sm> (t3) ψ̄Sm> (t4)

〉
〈
ψ̄†Sm> (ts1) ψ̄Sm> (ts1)

〉〈
ψ̄†Sm> (ts2) ψ̄Sm> (ts2)

〉 (C.21)

=
G

(1)
m (t2, t3)G

(1)
m (t1, t4) +G

(1)
m (t1, t3)G

(1)
m (t2, t4)

J2
m

(C.22)

When t1 = t2 = t3 = t4 = t, this gives g(2) (t) = 2 as expected. Alternatively, setting

t1 = t4 = t and t2 = t3 = t′ gives

g(2)m

(
t, t′
)

= 1 + |g(1)m

(
t, t′
)
|2 =⇒ 1 ≤ g(2)m

(
t, t′
)
≤ 2, (C.23)

showing that unheralded single photons from such a source cannot be used as a good source

of single photons as they are equivalent to a thermal state in this correlation function.
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un-normalised, heralded

G
(2)
m,h (t1, t2, t3, t4) = v2

〈
ψ̄†Sm> (t1) ψ̄

†
Sm> (t2) ψ̄Sm> (t3) ψ̄Sm> (t4)

〉
h

(C.24)

= v2

〈
ψ̄†Im> (ti) ψ̄

†
Sm> (t1) ψ̄

†
Sm> (t2) ψ̄Sm> (t3) ψ̄Sm> (t4) ψ̄Im> (ti)

〉
〈
ψ̄†Im> (ti) ψ̄Im> (ti)

〉
(C.25)

=
1

Jm

[
A∗m (t2, ti)Am (t4, ti)G

(1)
m (t1, t3) +A∗m (t2, ti)Am (t3, ti)G

(1)
m (t1, t4)

+A∗m (t1, ti)Am (t4, ti)G
(1)
m (t2, t3) +A∗m (t1, ti)Am (t3, ti)G

(1)
m (t2, t4)

+G(1)
m (t1, t4)G

(1)
m (t2, t3)G

(1)
m (ti, ti)

+G(1)
m (t1, t3)G

(1)
m (t2, t4)G

(1)
m (ti, ti)

]
. (C.26)

setting t2 = t3 = t′ and t1 = t4 = t gives

G
(2)
m,h

(
t, t′
)

= 2
ℜ
[
A∗m (t′, ti)Am (t, ti)G

(1)
m (t, t′)

]
Jm

+ |Am

(
t′, ti

)
|2 + |Am (t, ti)|2 + J2

m + |G(1)
m

(
t, t′
)
|2 (C.27)

normalised, heralded

g
(2)
m,h (t1, t2, t3, t4; ts1 , ts2) =

〈
ψ̄†Sm> (t1) ψ̄

†
Sm> (t2) ψ̄Sm> (t3) ψ̄Sm> (t4)

〉
h〈

ψ̄†Sm> (ts1) ψ̄Sm> (ts1)
〉
h

〈
ψ̄†Sm> (ts2) ψ̄Sm> (ts2)

〉
h

=

〈
ψ̄†Im> (ti) ψ̄

†
Sm> (t1) ψ̄

†
Sm> (t2) ψ̄Sm> (t3) ψ̄Sm> (t4) ψ̄Im> (ti)

〉〈
ψ̄†Im> (ti) ψ̄Im> (ti)

〉
〈
ψ̄†Im> (ti) ψ̄

†
Sm> (ts1) ψ̄Sm> (ts1) ψ̄Im> (ti)

〉〈
ψ̄†Im> (ti) ψ̄

†
Sm> (ts2) ψ̄Sm> (ts2) ψ̄Im> (ti)

〉 .
Using〈

ψ̄†Im> (ti) ψ̄
†
Sm> (ts) ψ̄Sm> (ts) ψ̄Im> (ti)

〉
= A∗m (ts, ti)Am (ts, ti) +G(1)

m (ti, ti)G
(1)
m (ts, ts)

(C.28)

= |Am (ts, ti)|2 + J2
m (C.29)

and setting t2 = t3 = t′ and t1 = t4 = t gives

g
(2)
m,h

(
t, t′; ts1 , ts2

)
=

2Jmℜ
[
A∗m (t′, ti)Am (t, ti)G

(1)
m (t, t′)

]
(|Am (ts1 , ti)|2 + J2

m) (|Am (ts2 , ti)|2 + J2
m)

(C.30)

+
J2
m

[
|Am (t′, ti)|2 + |Am (t, ti)|2 + J2

m + |G(1)
m (t, t′)|2

]
(|Am (ts1 , ti)|2 + J2

m) (|Am (ts2 , ti)|2 + J2
m)

. (C.31)
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At t = ts1 = ts2 = t′, this simplifies to

g
(2)
m,h (t, t; ts1 , ts2) = 2J2

m

2|Am (t, ti)|2 + J2
m

(|Am (t, ti)|2 + J2
m)2

. (C.32)

For a pure single photon source, this is 0, so the aim is often to get this value to be as close to

0 as possible.

un-normalised Joint Temporal Intensity

G
(2)
si,m (t1, t2, t3, t4) = v2

〈
ψ̄†Im> (t1) ψ̄

†
Sm> (t2) ψ̄Sm> (t3) ψ̄Im> (t4)

〉
(C.33)

= A∗m (t2, t1)Am (t3, t4) +G(1)
m (t1, t4)G

(1)
m (t2, t3) . (C.34)

As with the heralded G
(1)
m , setting t1 = t4 = ti and t2 = t3 = ts gives

G
(2)
si,m (ti, ts) = |Am (ts, ti)|2 + J2

m. (C.35)

However, the normalisation of the JTI is different to the other correlation functions and it is

also not usually heralded, as it is already a function of both the signal and idler photons.

normalised Joint Temporal Intensity

g
(2)
si,m;h (t1, t2, t3, t4) =

〈
ψ̄†Im> (t1) ψ̄

†
Sm> (t2) ψ̄Sm> (t3) ψ̄Im> (t4)

〉
〈
ψ̄†Im> (t1) ψ̄Im> (t4)

〉〈
ψ̄†Sm> (t2) ψ̄Sm> (t3)

〉 (C.36)

=
A∗m (t2, t1)Am (t3, t4) +G

(1)
m (t1, t4)G

(1)
m (t2, t3)

G(1) (t1, t4)G(1) (t2, t3)
. (C.37)

Setting t1 = t4 = ti and t2 = t3 = ts gives

g
(2)
si,m (ti, ts) = 1 +

|Asi,m (ts, ti)|2

J2
m

. (C.38)

From [81], we also have that

g
(2)
h (t, t; t, t) =

2

g
(2)
si,m (t, t)

(
2− 1

g
(2)
si,m (t, t)

)
. (C.39)
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Appendix D

Integrals for Coupled Rings

This appendix contains a list of integrals useful in calculating integrals that appear in the

coupled rings equations of chapter 6, especially in section 6.6

∫
e−Γ̄(tj+tk−2t′) sin

(
σ±
(
tj − t′

))
sin
(
σ±
(
tk − t′

))
dt′

=
σ±e

−Γ̄|tj−tk|

4Γ̄
(
Γ̄2 + σ2±

) [Γ̄ sin (σ±|tj − tk|) + σ± cos (σ±|tj − tk|)
]
,

∫
e−Γ̄(tj+tk−2t′)

[
sin
(
σ+
(
tj − t′

))
sin
(
σ−
(
tk − t′

))
+ sin

(
σ−
(
tj − t′

))
sin
(
σ+
(
tk − t′

))]
dt′

=
1

2
e−Γ̄|tj−tk|

{
2Γ̄ [cos (σ+|tj − tk|) + cos (σ−|tj − tk|)] + (σ+ − σ−) [sin (σ−|tk − tj |)− sin (σ+|tk − tj |)]

(σ+ − σ−)2 + 4Γ̄2

+
(σ+ + σ−) [sin (σ+|tj − tk|) + sin (σ−|tj − tk|)]− 2Γ̄ [cos (σ+|tj − tk|) + cos (σ−|tj − tk|)]

(σ+ + σ−)2 + 4Γ̄2

}
,

∫
e−Γ̄(tj+tk−2t′) cos

(
σ±
(
tj − t′

))
cos
(
σ±
(
tk − t′

))
dt′

=
e−Γ̄|tj−tk|

4Γ̄
(
Γ̄2 + σ2±

) [(σ2± + 2Γ̄2
)

cos (σ±|tj − tk|)− σ±Γ̄ sin (σ±|tj − tk|)
]
,
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∫
e−Γ̄(tj+tk−2t′)

[
cos
(
σ+
(
tj − t′

))
cos
(
σ−
(
tk − t′

))
+cos

(
σ−
(
tj − t′

))
cos
(
σ+
(
tk − t′

))]
dt′

=
1

2
e−Γ̄|tj−tk|

{
2Γ̄ [cos (σ+|tj − tk|) + cos (σ−|tj − tk|)] + (σ+ − σ−) [sin (σ−|tk − tj |)− sin (σ+|tk − tj |)]

(σ+ − σ−)2 + 4Γ̄2

+
2Γ̄ [cos (σ+|tj − tk|) + cos (σ−|tj − tk|)]− (σ+ + σ−) [sin (σ+|tj − tk|) + sin (σ−|tj − tk|)]

(σ+ + σ−)2 + 4Γ̄2

}
,

∫
e−Γ̄(tj+tk−2t′) sin

(
σ±
(
tj − t′

))
cos
(
σ±
(
tk − t′

))
dt′

=
e−Γ̄|tj−tk|

4Γ̄
(
Γ̄2 + σ2±

) [Γ̄2 sin (σ±|tj − tk|) + σ±Γ̄ cos (σ±|tj − tk|)−
(
σ2± + Γ̄2

)
sin (σ± (tj − tk))

]
,

∫
e−Γ̄(tj+tk−2t′)

[
sin
(
σ+
(
tj − t′

))
cos
(
σ−
(
tk − t′

))
+ sin

(
σ−
(
tj − t′

))
cos
(
σ+
(
tk − t′

))]
dt′

=
1

2
e−Γ̄|tj−tk|

{
2Γ̄ [sin (σ+ (tj − tk)) + sin (σ− (tj − tk))]

(σ+ − σ−)2 + 4Γ̄2
+

sgn (tj − tk) (σ+ − σ−) [cos (σ+|tj − tk|)− cos (σ−|tj − tk|)]
(σ+ − σ−)2 + 4Γ̄2

+
2Γ̄ [sin (σ+|tj − tk|) + sin (σ−|tj − tk|)] + (σ+ + σ−) [cos (σ+|tj − tk|) + cos (σ−|tj − tk|)]

(σ+ + σ−)2 + 4Γ̄2

}

∫
e−Γ̄(tj+tk−2t′)

[
sin
(
σ+
(
tj − t′

))
cos
(
σ−
(
tk − t′

))
− sin

(
σ−
(
tj − t′

))
cos
(
σ+
(
tk − t′

))]
dt′

=
1

2
e−Γ̄|tj−tk|

{
2Γ̄ [sin |σ+ (tj − tk|)− sin (σ−|tj − tk|)] + (σ+ − σ−) [cos (σ+|tj − tk|) + cos (σ−|tj − tk|)]

(σ+ − σ−)2 + 4Γ̄2

+
2Γ̄ [sin (σ+ (tj − tk))− sin (σ− (tj − tk))]

(σ+ + σ−)2 + 4Γ̄2

+
sgn (tj − tk) (σ+ + σ−) [cos (σ+|tj − tk|)− cos (σ−|tj − tk|)]

(σ+ + σ−)2 + 4Γ̄2
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∫
e−Γ̄(tj+tk−2t′)

[
sin
(
σ±
(
tj − t′

))
cos
(
A∓
(
tk − t′

))
−cos

(
σ±
(
tj − t′

))
sin
(
A∓
(
tk − t′

))]
dt′

=
e−Γ̄|tj−tk|

(σ+ − σ−)2 + 4Γ̄2

{
[
2Γ̄ sin (A∓ (tj − tk)) + (σ± −A∓) cos (A∓|tj − tk|)

]
Θ (tk − tj)

+
[
2Γ̄ sin (σ± (tj − tk)) + (σ± −A∓) cos (σ±|tj − tk|)

]
Θ (tj − tk)

}
=

1

2

e−Γ̄|tj−tk|

(σ+ − σ−)2 + 4Γ̄2

{
2Γ̄ [sin (σ+ (tj − tk)) + sin (σ− (tj − tk))] + 2Γ̄ [sin (σ+|tj − tk|)− sin (σ−|tj − tk|)]

+ (σ± −A∓) [cos (σ+|tj − tk|) + cos (σ−|tj − tk|)]

+ sgn (tj − tk) (σ+ − σ−) [cos (σ+|tj − tk|)− cos (σ−|tj − tk|)]
}

∫
e−Γ̄(tj+tk−2t′)

[
sin
(
σ±
(
tj − t′

))
cos
(
A∓
(
tk − t′

))
+cos

(
σ±
(
tj − t′

))
sin
(
A∓
(
tk − t′

))]
dt′

=
e−Γ̄|tj−tk|

(σ+ + σ−)2 + 4Γ̄2

{
[
2Γ̄ sin (A∓|tj − tk|) + (σ+ + σ−) cos (A∓|tj − tk|)

]
Θ (tk − tj)

+
[
2Γ̄ sin (σ±|tj − tk|) + (σ+ + σ−) cos (σ±|tj − tk|)

]
Θ (tj − tk)

}
=

e−Γ̄|tj−tk|

(σ+ + σ−)2 + 4Γ̄2

{
2Γ̄ [sin (σ+|tj − tk|) + sin (σ−|tj − tk|)] + 2Γ̄ [sin (σ± (tj − tk))− sin (A∓ (tj − tk))] +

(σ+ + σ−) cos (A∓|tj − tk|)Θ (tk − tj)

+
[
2Γ̄ sin (σ±|tj − tk|) + (σ+ + σ−) cos (σ±|tj − tk|)

]
Θ (tj − tk)

}
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