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Abstract 
Global warming has led to the increase in average temperature and annual rainfall in most 
parts of India. The country has also faced a remarkable change in land cover in the past 
decades. These anthropogenic impacts can potentially have a serious impact on hydrology. 
The Mahanadi river basin is a large-scale river basin located in the eastern part of India. The 
basin has undergone severe environmental changes during the last decades resulting in 
serious threat of increased flows. Therefore, understanding how these environmental 
impacts affect the hydrological behaviour of the basin, especially on a regional scale, forms 
an important step towards water resources planning and management. Such impacts on the 
hydrological components are sometimes predicted using a single model realization in 
conjunction with different land use or climate scenarios. However, such impacts are 
associated with considerable uncertainties which can arise from model parameterisation, 
calibration procedures, and due to data availability at local to regional scale as opposed to 
global products. Little attention has been directed towards understanding these uncertainties 
while assessing the hydrological impacts of climate and land cover changes in India. In this 
thesis, we use the most recently released land cover and climate scenarios from Land Use 
Harmonisation, version 2 (LUH2) database and Climate Model Intercomparison Project, 
version 6 (CMIP6), respectively, to predict the hydrological responses of Mahanadi 
river basin to changing land cover and climate conditions. We accounted for the uncertainties 
associated with modelling those responses, through the sensitivity-guided model calibration 
performed within a Monte Carlo Framework. This will likely make the predictions more robust 
and reliable. We identified the important parameters that would have a major control in 
simulating the hydrological components thereby yielding good simulations on a daily scale for 
all subbasins, with median KGE ranging between 0.63 to 0.86 in calibration and 0.59 to 0.82 
in validation across subcatchments. With regards to predicting the hydrological system in the 
Mahanadi basin, our findings suggests that a noticeable increase in the cropland at the 
expense of forest would cause a percent increase in the extreme flows of upto 347 m3s-1. The 
effects of projected increase in temperature and precipitation in the basin is however more 
pronounced, resulting in a significant increase in mean annual discharge and peak river 
discharge upto 29,776 and 2849 m3s-1 respectively. Further, modelling hydrological responses 
in developing countries like India face additional challenges, because of acute shortages of in-
situ hydro-meteorological data. In this respect, we seek to understand how reliable the 
hydrological model predictions in the region are when combinations of global datasets are 
used instead of locally available observations. Our results suggest, some global datasets (such 
as precipitation from Global Precipitation Measurements and soil from SoilGrids) could be 
used as a viable alternative to local observations in this river basin. Our modelled hydrological 
responses will be useful for water resource managers to mitigate future risks associated with 
climate and land use changes, and also would help in selection of the most robust 
combination of input datasets for the basin. 
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1. Introduction 
 

 

1.1. Background and overview 

1.1.1. Changing environment and its impact on hydrology 

Environmental change is occurring globally, which includes land degradation, loss of 

biodiversity, changes in climate patterns and hydrology, resulting from the continuously 

increasing greenhouse emissions from the enhanced anthropogenic activities. About 41% of 

the global natural vegetation has been replaced by the anthropogenic land cover such as 

croplands or pasture (Sterling et al., 2013). The increasing anthropogenic activities is causing 

worrying levels of global warming which is also causing a constant rise in the global 

temperatures (Yaduvanshi et al., 2019). Under the warmer climate, global monsoon rainfall is 

likely to increase at the end of 21st century (Chen et al., 2020). The anthropogenic impacts, of 

both, emission driven climate change as well as human-intervened changes such as building 

river projects, water withdrawals and land use changes, have a serious impact on hydrology. 

These impacts includes changes, in local and regional water availability, quality and quantity 

of both surface and ground water (Dwarakish and Ganasri, 2015), magnitude and timing of 

streamflow, and frequency and intensity of hydrologic extremes such as floods and droughts 

(Bosmans et al., 2017; Jiang et al., 2007).  

Change in climate affects the basic components of the water cycle such as precipitation, 

atmospheric water content and soil moisture. On the other hand, land cover changes alters 

water cycle by directly changing the timing and magnitudes of evapotranspiration (Sterling et 

al., 2013), thus affecting the runoff to evaporation ratio and also the interception and 

infiltration rates (Bosmans et al., 2017). Understanding these changes in hydrological 

behaviour due to the changes in land cover and climate forms an important step towards the 

water resources planning and management (Chawla and Mujumdar, 2015).   

The interrelationships of LULC changes with various aspects of the hydrological processes 

remains a prominent topic of research around the world (Berihun et al., 2019; Costa et al., 

2003; Legesse et al., 2003; Liu et al., 2011; Mishra et al., 2010; Tekleab et al., 2014). A 

significant increase is observed in the annual river discharge worldwide since 1900 (Sterling 
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et al., 2013), and the researchers suggest that about 50% of this increase is due to the LULC 

change (Kumar et al., 2017).  Specifically, a remarkable increase in runoff due to cropland 

expansion is produced by Southern Asia, Eastern Europe, and Eastern South America while 

few regions, principally eastern part of North America have undergone reduction in crop area, 

consequently resulted in reduced runoff (Piao et al., 2007). Studies dealing with land cover 

change impacts on global hydrology generally find increased discharge through reduced  

evapotranspiration (Bosmans et al., 2017; Gordon et al., 2005; Piao et al., 2007; Rost et al., 

2008). A recent study by Bosmans et al., (2017) showed that land cover change impacts from 

year 1800 to 2000, when globally averaged, resulted in reduced evapotranspiration through 

increased discharge.  

Some studies investigating land cover impacts on a regional scale has reported large 

variability in the signs and magnitudes of changes, at different climate zones with a specific 

land cover change. For instance, Urban expansion resulted in significant increase in runoff in 

Midwestern United States having a humid continental climate (Wu et al., 2013), while this 

similar change in land cover has decreased surface runoff in a subtropical catchment in India 

(Kumar et al., 2018). There are also studies that have reported similar responses i.e., higher 

surface runoff and/or reduced evapotranspiration, due to conversion from natural vegetation 

to agricultural land in similar climate zones, for instance, in tropical and subtropical river 

basins (Abe et al., 2018a; Babar and Ramesh, 2015; Berihun et al., 2019; Costa et al., 2003; 

Gebremicael et al., 2019). However, different LULC changes in different river basins may 

produce significantly different hydrological responses hence land cover changes in one river 

basin cannot be superimposed onto a nearby basin to generate same hydrological responses 

as in previous basin. This is because discharge produced from river basins is dependent on 

many other factors such as soil, vegetation and spatial and temporal variation in climate 

(Kumar et al., 2018). 

Changes in Land Use and Land Cover (LULC) is mostly noticeable over regions having high 

population density, agricultural heterogeneity, deforestation, and urbanization. India is the 

second most populous country in the world and is characterized by a wide range of climate, 

flora, fauna, land use and land cover, topography and socioeconomic conditions (Faostat, 

2017) . In the past 140 years in India, there has been a remarkable change in the land use and 

land cover including cropland changes, deforestation, and urban expansion (Roy et al., 2015). 
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Specifically, the increases in the agricultural production have been notable over the last 

decades. The annual loss of forest cover recorded for the period between 1990 and 2000 is 

380 km2 (FAO,2000). It is observed that the launch of India's 'Green Revolution' to support a 

large population in terms of sustainable economic development and food security has led to 

expansion of agricultural land through extensive deforestation (Singh, 2000). These ongoing 

developmental activities in the country has impacted the LULC in each river basin in India 

(Garg et al., 2019).  

Ganga river basin, a large-scale river basin in India, has undergone a substantial land cover 

change over the last four decades including an increase in the urban land (Behera et al., 2014) 

and agricultural land (Patidar and Behera, 2019) at the cost of natural vegetations and barren 

land. These changes have resulted in an increase in flows during monsoon. Tons River basin 

in semi-arid regions in India, has been facing drastic land cover change due to rapid increase 

in population (Kumar et al., 2018) which has predicted a decrease in surface flow and slight 

increment in groundwater flow in future.  Similar changes were also observed in the river 

basins of Pune, a rapidly developing city in India (Wagner et al., 2013), where decrease in ET 

is reported. However, despite the substantial land cover changes in some of these basins, 

negligible impacts on runoff and ET are reported at the basin scale. In the last decades, 

Mahanadi river basin, a major peninsular river basin in east-central India have also undergone 

drastic reduction in forest areas due to agricultural expansions, dam constructions, 

industrialization, and urbanisation. A similar trend is also observed in future LULC prediction 

for year 2025 with a total decrease in forest areas of 1376 km2 in the basin (Behera et al., 

2018) (See Figure 1.1 a). Frequent occurrences of floods (example shown in Figure 1.1 b), 

droughts and cyclones in this basin in recent times suggests a shift in the hydrological 

response of the basin which might be attributed to landcover changes (Dadhwal et al., 2010). 

Few previous studies (Dadhwal et al., 2010; Das et al., 2018) reported an increase in runoff in 

this basin owing to these land cover changes. Moreover, a recent research at national scale 

in India suggests agricultural lands are likely to extend in the future to meet food demands, 

due to population growth and climate change, resulting in biodiversity losses (Hinz et al., 

2020). This necessitates the need for investigating LULC impacts and its future prediction at 

basin scale which shall guide towards proper decision making and resource management. In 

this thesis, we will be focussing on Mahanadi River basin in India. 
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(a) 

(b) 

 

  

 

 

 

 

 

Figure1.1 (a) Bar chart showing change in LULC area estimates during 1985 to 1995, 1995 to 

2005 and 2005 to 2025 for Mahanadi river basin in India; AQ – Aquaculture; BL- Barren land; 

BU – Built up; CL – Cropland; DBF- Deciduous broadleaf forest; FL- Fallow land; MF- Mixed 

forest; MG- Mangrove; PL- Plantation; SL- Scrubland; SP- Saltpan; WB- Water body; WL- 

Waste land (Behera et al., 2018). (b) Downstream of Mahanadi river and its tributaries 

submerged (location: Khurda, 20.1863° N, 85.6223° E), as the excess water released from 

Hirakud dam, located at the upstream, Source: Times of India, August, 2020 (Mahanadi floods 

more downstream areas, situation expected to worsen | Bhubaneswar News - Times of India 

(indiatimes.com).  

The rise in temperature is expected to be causing changes in the intensity, frequency and 

duration of precipitation and most studies reported that higher air temperature may increase 

the chances of more recurrent and extreme precipitation events due to the increased water 

vapor content in the atmosphere (Stoffel et al., 2014). This, in turn can have significant 

impacts on the hydrological processes such as magnitudes of runoff, baseflow, 

evapotranspiration, groundwater recharge and sediment load (DeFries and Eshleman, 2004).  

Both global and regional hydrological cycles are greatly impacted by climate change in the 

past decades. Climate modelling on a global scale suggests that precipitation is projected to 

increase by the end of the 21st century across some middle and higher latitude regions while 

some regions including the Mediterranean region, Africa and Southern Australia will receive 

less precipitation (Hagemann et al., 2013). Future changes in runoff is predicted to follow the 

same pattern as the projected precipitation to a large extent (Hagemann et al., 2013) i.e. 

runoff is likely to increase in those regions where precipitation increases. Moreover, extreme 

https://timesofindia.indiatimes.com/city/bhubaneswar/mahanadi-floods-more-downstream-areas-situation-expected-to-worsen/articleshow/77833065.cms
https://timesofindia.indiatimes.com/city/bhubaneswar/mahanadi-floods-more-downstream-areas-situation-expected-to-worsen/articleshow/77833065.cms
https://timesofindia.indiatimes.com/city/bhubaneswar/mahanadi-floods-more-downstream-areas-situation-expected-to-worsen/articleshow/77833065.cms
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precipitation events are also expected to increase in most parts of the world under climate 

change (Groisman et al., 2005), which shall potentially lead to increase in the magnitude of 

extreme flows (Eccles et al., 2019). Despite a certain level of uncertainty in these climate 

projections, a great deal of scientific studies predict that, global warming will exceed by 2°C 

and may accelerate up to 6 °C by the year 2100 (Betts et al., 2016). New climate projections 

from Climate Model Intercomparison Project (CMIP6) indicated potential global exposure to 

flooding as a result of global warming in many regions of the world including South Asia 

(Hirabayashi et al., 2021) (See Figure 1.2).  

 

 

 

 

 

 

 

 

Figure1.2: Projected change in global flood frequency. Multi-model median return period 

(years) in future (2071– 2100) for discharge corresponding to a 100-year flood in the past 

(1971–2000), for CMIP6 models under the high emission scenario SSP5-8.5 (RCP8.5 and 

ssp585) (Hirabayashi et al., 2021). 

South Asia is among the global hot spots that are expected to face adverse impacts of climate 

change and pose threats on agriculture, infrastructure, water resources and livelihood of a 

huge population (Mishra et al., 2020a). Global advances in economy and higher living 

standards have led to a growing dependency on water resources (Legesse et al., 2003). This 

dependence is even more evident in India, as 70% of her population is dependent on 

agriculture (Jain et al., 2007) which is largely controlled by the southwest monsoon rainfall 

occurring during the months of June-Oct (Jin et al., 2018). The Indian monsoon is a complex 

oceanic-atmospheric-coupled mechanism of the tropics that is manifested with the 

development of low-pressure region in the north-western part of Indian landmass (Tibetian 
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plateau) due to seasonal migration of the inter-tropical convergence zone (ITCZ). This shift in 

ITCZ is caused due to differential heating of the Indian landmass, which leads to heavy 

precipitation during June, July, August, and September (Gusain et al., 2020). Studies related 

to Indian monsoon rainfall speculates that global teleconnections such El Niño Southern 

Oscillation (ENSO), Indian Ocean Dipole (IOD) Atlantic Multidecadal Oscillation (AMO), 

Atlantic zonal mode (AZO), Eurasian snow cover, equatorial Indian Ocean Oscillation, low 

pressure systems, and Madden- Julian Oscillation pose a notably strong influence on 

intraseasonal, interannual and multi-decadal variability of Indian monsoon (Gusain et al., 

2020; Saha et al., 2014). Particularly, Mahanadi river basin is sensitive to ENSO and IOD 

because it is located adjacent to the Bay of Bengal (Maity and Nagesh Kumar, 2009). Panda 

et al., (2013) found a direct correspondence of the rainfall and streamflow series with the 

ENSO in the basin, which is contrary to the established inverse relationship over India. 

India ranks 10th among highest climate risk countries in Asia based on extreme environment 

events (Global Sustainable Development Report 2015) (Yaduvanshi et al., 2019). Therefore, 

developing countries like India are likely to face severe impacts due to their agriculturally 

based rural economy (Jin et al., 2018). Various studies exist on the variability of Indian rainfall 

under warming conditions suggesting annual precipitation has significantly increased in the 

last century. Yaduvanshi et al., (2019) attempted to understand the implications of global rise 

in temperature by 1.5-2◦C (IPCC, 2014) using global climate models on a regional scale across 

India. Findings of this study indicates rise in temperature between 0.5-4◦C across states in 

India and increase in the annual rainfall in most parts, with maximum increase during the 

monsoon season (0-350 mm). An increasing trend in Indian monsoon rainfall is also found in 

Jin and Wang, (2017). The peak flood discharge, frequency of extreme floods and also 

tendency of expansion of flood prone areas are apparently on rise in India (Kapuria and 

Modak, 2019) that can be attributed to the significant increase in rainfall during the monsoons. 

Increased flooding under climate change is projected in various catchments in India (Eccles et 

al., 2019; Whitehead et al., 2018).  Mahanadi river basin is a major large scale river basin in 

India and is predicted to face severe floods under the future climate change scenarios (Asokan 

and Dutta, 2008; Gosain et al., 2006; Jin et al., 2018). Similar hydrological responses are also 

reported for other major basins, Ganga river basin (Tsarouchi and Buytaert, 2018; Whitehead 

et al., 2015) and  Brahmaputra river (Mohammed et al., 2017; Philip et al., 2018).  
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Climate models predict that intensification of monsoon rainfall in India and its annual 

variability would also result in an increased inter- annual variability in terms of droughts and 

floods (May, 2004; Rickards et al., 2020; Rupa Kumar et al., 2006). India experiences uneven 

distribution of available water resources over space and time that results in floods in some 

parts of the country and droughts in others. For instance, studies also predicted reduction in 

the occurrence of high flow events in parts of Mahanadi river basin, thereby resulting in 

increasing trend of extreme meteorological drought (Ghosh and Mujumdar, 2007b, 2007a; 

Mujumdar and Ghosh, 2008). During the dry season, many regions of India are likely to face 

critical levels of water scarcity due to the growing water demand due to rapid population 

growth, exacerbated by climate change, affecting food supply and livelihoods (Mall et al., 

2006; Rickards et al., 2020; Saleth, 2011). These hydrological extremes have a direct effect on 

regional water storage and utilization (Mall et al., 2006).  

With the scarcity in the water resources availability in some parts and increase in floods in 

other parts of the country, hydrologists are studying more about the role of land cover and 

climate in affecting these hydrological responses. India along with the state governments has 

pledged to address these climate change issues through its National Action Plan of Climate 

Change (NAPCC) (Yaduvanshi et al., 2019). The hydrological cycle is expected to be altered as 

a result of both, human induced land use activities such as deforestation and agricultural 

activities within the river basin (Babar and Ramesh, 2015), as well as the increase in 

temperature (Joseph et al., 2018). Simulating these hydrological consequences has received 

increased attention within the hydrological and land surface modelling communities (Xu et 

al., 2005). The study of these hydrological impacts especially on a regional scale is crucial for 

the management of water resources. 

1.1.2. Modelling hydrological changes 

Hydrologic models have become increasingly important tools for solving the hydrological 

problems and for the management of the water resources. Hydrologists agree that the 

relationship among the land use, climate and the hydrological processes can be best solved 

through a hydrological model that considers the spatio-temporal basin characteristics, 

enabling accurate estimation of dynamic water balance of a watershed (Costa et al., 2003; 

Dwarakish and Ganasri, 2015; Thanapakpawin et al., 2007).  
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Hydrological processes represented by hydrological models are 1. Soil-Vegetation-

Atmosphere transfer processes such as evapotranspiration through vegetation canopies, rain 

and snow interception, snowmelt, and soil evaporation; 2. Soil moisture storage and runoff 

generation processes such as, infiltration, surface, and subsurface runoff. 3. Channel routing 

and 4. Other processes such as groundwater recharge, snow and glacial melt (Thanapakpawin 

et al., 2007). 

Two major criterions for selecting a model for specific application are model functionality and 

complexity. The model functionality differs from one model to another in terms of different 

process representations, different equations used to represent those processes and model 

discretization. On the other hand, model complexity is based on the requirement of measured 

data, time, cost, resources for calibration and parameterization of a model and also 

experience needed to employ these models (Dwarakish and Ganasri, 2015).  

Traditionally, the hydrological models can be classified based on their representations of 

hydrological processes such as empirical, conceptual and distributed (Bergström and Graham, 

1998; Refsgaard et al., 1989). Empirical approaches are based on simple relationships derived 

from experiments, such as linear regressions. Priestley-Taylor method is an empirical 

approach for computing evapotranspiration (Gardelin and Lindström, 1997), used in HEC-

HMS and HBV model. Conceptual modelling involves simplified assumptions to derive 

solutions for the governing equations which are used to describe conservation of mass, 

momentum, and/or energy (Cornelissen et al., 2013). An example is the Green-Ampt equation 

for partitioning of rainwater into infiltration and surface runoff (Li et al., 2009). In physically 

based models, partial differential equations are used to describe the conservation of mass, 

momentum and energy. A few examples are Penman Monteith equation for estimating 

evapotranspiration (Mao and Cherkauer, 2009), St. Venant’s equation for channel routing 

(Lohmann et al., 1996) and Richard’s equation for saturated zone flow (Gao et al., 2010). 

Another important aspect to consider while simulating land cover impacts, is the model’s 

ability to spatially discretize the watershed as per different soil and vegetation types, to 

account for the vegetation heterogeneity. Also, temporal discretization, meaning the time 

steps at which simulations can be performed, must be considered. Running the model at 

different time steps may lead to different outputs. 
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These types of hydrologic models have their own advantages and disadvantages. Physical 

based distributed models are able to explicitly represent the spatial variability of the land 

surface characteristics (Legesse et al., 2003), thus, are more suited for complex catchments 

and predicting the hydrological responses to the dynamics of environmental changes (Beven, 

2011). However, a physically based fully distributed models are quite data intensive i.e., need 

large number of input parameters to represent the surface and sub-surface hydrological 

processes, which makes the model calibration task extremely challenging. On the contrary, 

lumped conceptual models are less complex and typically have modest input data 

requirements, but generally fail to replicate the non- linear dynamics of catchment 

characteristic (Sivapalan et al., 2003).  

In recent years, several attempts are made to understand the land cover and climate change 

impacts on land surface hydrologic responses, using hydrologic models ranging from 

conceptual to fully physically based distributed/semi- distributed models for various 

geographic locations (Ashagrie et al., 2006; Hundecha and Bárdossy, 2004; Hurkmans et al., 

2009; Legesse et al., 2003; Liu et al., 2011; Patidar and Behera, 2019; Tekleab et al., 2014; 

Tsarouchi and Buytaert, 2018; Woldesenbet et al., 2017) including Indian river basins (Gosain 

et al., 2006; Joseph et al., 2018; Raje et al., 2014; Wilk and Hughes, 2002). Most of these 

studies use the traditional way of predicting hydrologic responses to land cover change which 

is done by (1) Setting up a hydrological model for a baseline land cover scenario, (2) calibrating 

and validating the model using the present meteorological conditions and (3) Finally, using a 

single calibrated model to run the model for different land use scenarios using same 

meteorological inputs. Climate change is a rather complex issue entailing interactions and 

feedbacks among atmosphere, oceans and the land surface. The traditional way of tackling 

the climate change problem is by using global climate models that solves large scale physical 

processes governing the climate system. Currently, Global Climate Models (GCM) are the 

most reliable models for providing information about the future global climate change by 

simulating the time series of climate variables (Jiang et al., 2007). However, GCMs are at very 

coarse resolution, hence it is not yet possible to obtain reliable predictions directly from the 

climate models, for regional hydrologic changes. Therefore, simulating climate change 

impacts on a regional scale involves (1) Obtaining time series of future climate variables using 
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GCMs (2) Downscaling the GCM climate outputs to the regional scale and using these as 

meteorological forcing in a hydrological model to simulate the hydrologic impacts.  

The impact assessments, both in case of land cover and climate change is associated with 

considerable uncertainties that are involved in every step of modelling these changes (Beven, 

2011; Hagemann et al., 2013; Seibert and van Meerveld, 2016). Hydroclimatic modelling 

involves uncertainties originating from climate projections, downscaling techniques, and 

hydrologic model structures and parameters (Xu, 1999). Similarly, hydrological modelling 

under changed land cover conditions are also subjected to wide range of uncertainties that 

are commonly from measured input data, model structures and parameters (Chen et al., 

2019b; Ma et al., 2010).  

The concept of equifinality is ignored in most of the studies. Equifinality means multiple 

parameter sets can result in equally good or acceptable model outputs. Although the impact 

of equifinality is considered substantial in hydrologic modelling (Her et al., 2019), little 

attention has been directed towards understanding the model parameter uncertainties 

associated with these hydrologic impacts. Notable exceptions are (Breuer et al., 2006; Chen 

et al., 2019, Bennett et al., 2018; Her et al., 2019; Joseph et al., 2018), which indicated that 

model parameters could exert significant influence on land cover and climate change impacts, 

and should not be overlooked in environmental impact assessment, especially for decision 

makers. Calibration approaches in these studies also involves sensitivity analysis, which has 

been acknowledged as a necessary modelling tool in hydrology to identify key processes and 

ways to reduce model parameter uncertainties (Beven and Binley, 1992; Muleta and Nicklow, 

2005). Sensitivity analysis is carried out to divide the model parameters into two groups; 

influential and non-influential, so as to eliminate the non-influential parameters from the 

calibration space to reduce the uncertainties resulting from overparameterization (van 

Griensven et al., 2006). To allow consideration of equifinality or different parameter sets in 

hydrological modelling, Monte Carlo approaches (Breuer et al., 2006; Demaria et al., 2013; 

Yang, 2011) are typically employed which generates a large sample, by sampling across a 

specified parameter range, to run the models (Beven and Freer, 2001). Notice Monte Carlo 

approaches requires a large number of model runs.  

Understanding the land surface hydrologic responses to the land cover and climate 

perturbations requires a sophisticated representation of detailed hydrologic processes within 
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a hydrologic or a land surface model (Van Den Hurk et al., 2011). This has encouraged the 

development and assessment of many high resolution hydrologic models for simulating the 

interactions between land and atmosphere over regional and global scales (Bierkens et al., 

2015; Demaria et al., 2013; Wood et al., 2011). But the problem lies in the availability of the 

prerequisite datasets (high resolution meteorological and ancillary datasets) locally in 

developing countries (Lorenz and Kunstmann, 2012; Rodríguez et al., 2020), including India 

(Mujumdar, 2015). Either low density rain-gauge network, for instance in Amazonian basin 

(Zubieta et al., 2016), or data not being openly accessible for research purposes, such as in 

India (Beria et al., 2017; Mujumdar, 2015), limits the understanding of hydrological processes 

and modelling over the region. However, in the last two decades, high quality satellite 

products from the ever-expanding remote sensing activities, reanalysis products and other 

large data global datasets forms a motivation to be used as a viable alternative to the local 

datasets, especially in the data scarce region (Bierkens et al., 2015; Gao et al., 2020). Satellite 

based precipitation datasets such as from TRMM, GPM, TMPAV7, TMPA RT have been widely 

used for hydrometeorological applications in various regions of the world (Gilewski and 

Nawalany, 2018; Tang et al., 2020; Zubieta et al., 2016) including Indian river basins (Beria et 

al., 2017; Prakash et al., 2018). Similarly, precipitation and temperature from reanalysis 

products such as ERA-Interim, ERA5 etc. are also being tested for hydrologic applications 

(Dembélé et al., 2020; Gao et al., 2020; Mahto and Mishra, 2019). Both satellite and the 

numerical weather prediction system are continuously improving with the development of 

new data assimilation approaches and improvements in model parameterisations. 

Consequently, a comprehensive evaluation of the benefits and limitations of these recently 

released products is essential to understand their suitability for hydrological applications. 

1.2. Research objectives 

The overall aim of this thesis is to understand the hydrological responses of Mahanadi 

river basin in India, to the changing environment, including land cover and climate changes. 

In addition, the thesis investigates the hydrological responses to using various input datasets, 

including local or global data in a regional scale hydrological model. Mahanadi river basin is a 

large-scale (140,000 km2) river basin and is one of the twelve major river basins in India. This 

basin have undergone severe deforestation during last decades (Behera et al., 2018) and 

under the serious threat of increased flows during the wet period, which enhances the flood 
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potential (Jin et al., 2018; Raje et al., 2014). Several studies exist in this domain in various 

regions (Abe et al., 2018a; Eum et al., 2016a; Rodriguez and Tomasella, 2016), including river 

basins in India (Chawla and Mujumdar, 2015; Dadhwal et al., 2010; Das et al., 2018; Patidar 

and Behera, 2019). These studies have provided key insights into the mechanisms of 

environmental change impacts on hydrological responses; however, the uncertainty of these 

impacts is poorly understood (Chen et al., 2019b). These hydrological impacts are simulated 

using hydrological models in conjunction with different land cover or climate scenarios. 

However, hydrological models through their complex interactions among the model 

parameters to generate hydrological processes, can introduce significant uncertainties to the 

hydrological projections. The methodological approach for assessing the land cover and 

climate change impacts adopted in this study accounts for the uncertainties associated 

with modelling those hydrological responses, which shall possibly make the predictions more 

robust and reliable. Further, modelling hydrological responses in developing countries like 

India face challenges, because of acute shortages of in-situ hydro-meteorological data. 

However, recent advances in global data availability of the geophysical attributes, such as soil, 

vegetation and fine-scale meteorological data from the ever-expanding remote sensing 

activities, reanalysis products and other large data sets makes it a unique opportunity to 

evaluate such products in the region. The hydrological impacts in this thesis are 

modelled using a semi-distributed macroscale hydrological or a land surface model, known as 

Variable Infiltration Capacity model (VIC) (Nijssen et al., 1997). Prior to simulating these 

hydrological impacts, we performed a sensitivity guided model calibration to understand the 

important VIC model parameters across Mahanadi river basin, that would have a major 

control in simulating the hydrological components and analysed the performance of our 

calibration framework over the basin. Specifically, in this thesis we address the following main 

research questions: -  

1) What are the sensitive VIC model parameters across Mahanadi river basin?  

2) How does our calibration framework perform over the basin? 

3) What are the expected impacts of LULC changes on the water balance components of 

the Mahanadi river basin? 

4) What is the influence of future climate conditions on hydrological responses of 

Mahanadi river basin?  
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5) How reliable are the global datasets in producing a comparable hydrological model 

performance when compared against local observations? 

Figure 1.3 outlines the content of the individual chapters of this thesis. Chapter 2 presents 

the descriptions of the research area and introduces all the input datasets (meteorological, 

soil and LULC) used in all research chapters and provides an overview of the VIC modelling 

including processes and parameterizations. The results of the thesis are described separately 

in the next four chapters. In Chapter 3, we address research question 1 and 2 where we design 

Monte Carlo experiments to perform a detailed sensitivity analysis of the VIC model 

parameters, calibrate, and validate the model at different subcatchments of Mahanadi river 

basin. Here, we intend to identify the behavioural parameter sets (behavioural models) for 

the research area to further model the impacts of environmental changes shown in the 

subsequent chapters. We address research question 3 in Chapter 4, where we implement 

these behavioural models, in conjunction with the land cover scenarios over Mahanadi river 

basin to assess the impacts on modelled discharge, and water balance components such as 

runoff and ET. Researchers formulate various land use or land cover change scenarios for the 

future and asses the hydrological impacts of those scenarios, such as based on socio-

economic scenarios in Cornelissen et al., (2013), regional development plans in He and Hogue, 

(2012), hypothetical scenarios based on Oil-Sands development in Eum et al., (2016b) and 

extreme hypothetical scenarios, where entire river basin is replaced by predominating land 

use types in (Yang et al., 2014). The land cover scenarios that we used to address this question 

are most up-to-date scenarios, available from version 2 of the Land Use Harmonization (LUH2) 

dataset (Hurtt et al., 2018), which represents future changes in the LULC based on Shared 

Socioeconomic Pathways (SSPs) (O’Neill et al., 2016). We further explore the contribution of 

uncertainty from model parameterization to the hydrologic predictions due to LULC change.  
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Figure 1.3: Summary of the thesis structure 

We then address research question 4 in Chapter 5. We use the climate projections from latest 

global climate models from Coupled Model Intercomparison Project Phase 6 (CMIP6) (Mishra 

et al., 2020) and the behavioural hydrological models to assess the hydrological impacts in 

the basin. In chapter 6, we address research question 5. In this chapter, we evaluate the 

impacts of using global vs local datasets such as meteorological forcings, soil, and land use 

datasets, in a regional scale hydrological model, on discharge, runoff and ET. We identify 

critical input datasets which may have significant impacts on our model performance. Our 

intention here is to discern the hydrological impacts caused due to the changes in a model 

Chapter 2: Data and methods 
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input (local or global) or a combination of model inputs (local and global) in a data scarce 

region to provide a basis for relying on the global data in a regional scale hydrological 

model for future use.   
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2. Data and Methods 

 

2.1. Study area 

The Mahanadi river basin (Figure 2.1) is one of the major river basins located in eastern part 

of India draining an area of 141,589 km2, which nearly accounts for 4.3% of the total 

geographical area of India. It extends from 80°28’E to 86°43 E and 19°8’N to 23°32’ N. The 

river flows through the states of Chhattisgarh (53%) and Odisha (46.3%). The basin has a 

varying topography with its lowest elevated area (-17 m) lying in the coastal reaches and the 

highest elevated area (1323 m) in the northern hills. It ranks second after Godavari river basin 

in India in terms of water holding and flood producing capacity. Summer, Winter, monsoon 

and post monsoon are the 4 dominant seasons experienced by the river basin.  

The basin is characterized by tropical climate zone and receives rainfall from southwest 

monsoons between June and October. The average annual rainfall is 1200 mm, with 90% of 

the total annual rainfall occurring during the monsoon months (Jin et al., 2018). The 

southwest monsoon is therefore the major controlling factor of river discharge in this basin. 

Figure 2.2a shows the seasonal rainfall pattern of the basin averaged for the time period 1951-

2016. Figure 2.2b shows the daily discharge measured at Kantamal, a subbasin of Mahanadi, 

in a flood year, 2008. The uneven distribution of rainfall within the basin has resulted in 

recurrent floods in some parts of the basin such as at the eastern coast and drought in the 

central region of the basin (Dilley, 2005). The maximum temperature within the basin ranges 

between 39 and 45 ◦C and minimum temperatures varies between 4 and 12 ◦C. The long-term 

average annual rainfall and temperature trend in the basin is shown in Figure 2.3a and 2.3b. 

These trends are based on gridded rainfall datasets obtained from Indian Meteorological 

department (IMD). 

The basin comprises of several water resource structures such as dams, weirs and barrages 

which stores the water for different purposes such as producing hydroelectric power, 

irrigation, supplying drinking water and regulating flood. Hirakud dam (shown in Figure 2.1) 
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with a length of 4800 m is the longest dam in the basin and is also considered as Asia’s largest 

dam with a catchment area of 83400 sq. km. This dam was constructed in the year 1957 

mainly to alleviate the flood problems. Notice that about 65% of the basin is placed upstream 

of the Hirakud dam. Despite its significant storage capacity, the large flows from upstream of 

dam and middle reaches of the catchment causes devastating floods during the monsoon in 

the deltaic region of the basin (Jena et al., 2014). Please note as there is no major control 

structure located upstream of the Hirakud dam, the river discharge at the gauging stations 

(shown in Figure 2.1) are considered as unregulated, also followed in (Panda et al., 2013). The 

basin has been subjected to high floods frequently, exceeding 35000 m3s-1 in the past decades 

such as in the year 1980, 1982, 2001, 2003, 2006, 2008, and 2011, mainly due to the release 

of huge discharges from the Hirakud dam (Jena et al., 2014; Panda et al., 2013).  

 

 

 

 

 

 

 

 

 

Figure 2.1 The Mahanadi river basin boundary and the analysed gauges and their catchments. 

Abbreviations for gauge names are Ba- Basantpur, Ka-Kantamal, Ke-Kesinga, Su- Sundergarh 

and Sa-Salebhata 

  



 

19 
 

 

 

 

 

 

 

Figure 2.2. (a) Seasonal rainfall pattern averaged for the time period 1990-2016 in Mahanadi 

river basin (b) Measured daily discharge at Kantamal (subbasin of Mahanadi river basin) for 

year 2008. 

 

 

 

 

 

 

Figure 2.3. (a) Long term pattern of (a) mean annual rainfall (b) annual average temperature 

averaged over Mahanadi river basin of spatial area of 140,000 km2, for the time period 1951-

2016 obtained from Indian Meteorological Department (IMD)  

The major vegetation types are forest and agriculture with approximately 30% and 48% of the 

basin area respectively. The Indian cropping season is classified into two main seasons 1) 

Kharif and 2) Rabi. 30% of the agricultural land is cropped during the kharif season, from July 

to October during the south-west monsoon and 3% during Rabi season from October to 

March during winter. Rest 15% of the agricultural land is under double or triple irrigation. 

Deciduous Broadleaved Forest (DBF) being dominant among other forest types, covers 25% 

of the basin area. Built up, plantation, grassland, shrubland, water bodies and other forest 

types constitute the rest 22 % of the basin area. Comparison of the LULC maps of 2005 and 

2014, obtained from the National Remote Sensing Centre (NRSC), India shows an increase in 

(a) (b) 

(a) (b) 
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the agricultural land from about 43 to 48% at the expense of fallow land, built up areas and 

water bodies while changes in forest covers were insignificant. Figure 2.4 shows the percent 

change in the LULC classes obtained from LULC map of 2013-2014 relative to the LULC map 

of year 2005-2006. In addition, loamy and clayey are the major soil types covering roughly 53% 

and 42% respectively of the total basin area (NBBSS-LUP, India). Approximately 90% of the 

basin has moderately shallow to deep soil having depth greater than 50 cm. The population 

of Mahanadi river basin as per the census, 2001 is approximately 3 million out of which more 

than 1.49 million dwells in lower region of the basin.  

 

 

 

 

 

 

 

 

Figure 2.4. Percent change in the LULC classes obtained from LULC map of 2013-2014 relative 

to the LULC map of year 2005-2006, obtained from the National Remote Sensing Centre 

(NRSC) 

Owing to the hydroclimatic sensitivity of this river basin (Panda et al., 2013), various 

researchers in the past have evaluated streamflow (including floods) change under the 

changing climate (Asokan and Dutta, 2008; Ghosh et al., 2010; Gosain et al., 2006; Jena et al., 

2014; Jin et al., 2018; Panda et al., 2013; Raje et al., 2014). Mahanadi is a rain-fed river basin, 

mostly covered by agriculture and forest, however, have undergone severe deforestation 

during last decades mainly due to dam constructions, industrialization, urbanization and 

agricultural expansion (Behera et al., 2018). Studies assessing  the LULC impacts on hydrology 

of this river basin also exists (Dadhwal et al., 2010; Das et al., 2018), however are limited 

compared to the climate impact studies. 
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2.2. Data 

2.2.1. Meteorological data 

2.2.1.1. Local gridded observations 

The reference precipitation data set used is daily gridded precipitation product at a grid 

resolution, 0.25◦. X 0.25◦, developed by the Indian Meteorological Department (IMD)(Pai et 

al., 2014) and archived at National Data Centre, IMD, Pune. The rain gauge observations are 

recorded from about 7000 rain gauges well-spread across India (A. K. Srivastava, 2009) and 

having 201 gauges within Mahanadi river basin. These rain gauge observations are 

interpolated using a modified version of the angular distance weighing algorithm, proposed 

by Shepard, (1968) to prepare the gridded rainfall dataset. Twelve years of records (January 

1988–December 2016) for IMD are used for analysis in this study. This recently released 

dataset is an advancement over the previously used gridded rainfall dataset of 1◦ (Rajeevan 

et al., 2006, 2008) and 0.5◦ (A. K. Srivastava, 2009) from IMD and is comparable with other 

existing daily gauge based precipitation products (Pai et al., 2014). It is worth pointing out 

that other available gauge-based precipitation datasets use only a subset of rain gauge data 

sets over India (Prakash et al., 2018).  

Daily gridded maximum and minimum temperature datasets are also obtained from IMD at a 

grid resolution, 1◦ X 1◦. developed from 395 station observations across India using 

interpolation technique proposed by Shepard, (1968). There are 20 grids present within 

Mahanadi river basin (Srivastava et al., 2009). Temperature datasets from IMD are also found 

comparable with other existing datasets in the region.  

Both rainfall and temperature datasets from IMD is extensively used in a variety of studies 

(Beria et al., 2017; Ghodichore et al., 2018; Mahto and Mishra, 2019; Mishra et al., 2020a; 

Prakash et al., 2016). All local gridded observations are re-gridded to spatial resolution of 0.05◦ 

X 0.05◦ to be consistent with the VIC model grid resolution (See section 2.3) used in all the 

research chapters of this study. 

2.2.1.2. Satellite observation 

In this study, we used the recently released (June 2019) version (V06B) of Integrated Multi-

Satellite Retrievals (IMERG) mission Early Run (Near real time product), with high spatial (0.1°) 
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and temporal (30 min) resolution (George et al., 2019). IMERG algorithm uses all available 

sensors of TRMM and GPM eras to provide high resolution global precipitation estimates. The 

latest version of this product, V06 is a retrospective processing of IMERG to TRMM era and 

uses new algorithm with several major improvements, which is believed to enhance the 

quality of the precipitation estimates (Tang et al., 2020). Since the reference gauge-based 

data set from IMD accumulates rainfall ending at 0300 UTC; we computed daily rainfall from 

half-hourly IMERG ending at the same time for being consistent. Precipitation products from 

IMERG are re-gridded to spatial resolution of 0.05◦ X 0.05◦ to be consistent with the VIC model 

grid resolution used in all the research chapters of this study. 

Several studies exist that assessed the quality of IMERG rainfall products and used this 

product (especially the previous versions) for hydrological applications worldwide (Gao et al., 

2020; Gilewski and Nawalany, 2018; Sharifi et al., 2016; Sungmin et al., 2017; Tang et al., 2020; 

Zubieta et al., 2016), including in India (Beria et al., 2017; Prakash et al., 2016, 2018). 

2.2.1.3. Reanalysis data 

We derived hourly precipitation and temperature datasets from European Center for 

Medium-Range Weather Forecasts Reanalysis v5 (ERA5-Land) (Muñoz-Sabater et al., 2021). 

This is a recently released reanalysis product and replay of the land component of ERA5, which 

is also a new climate reanalysis dataset from ECMWF. ERA5-Land is based on several 

improvements and particularly an advancement over other recently released reanalysis 

product, such as having much finer spatial resolution of ~9km compared to ERA5 (31 km) and 

ERA-Interim (80 km) and finer temporal resolution. In this study, we used the hourly 

temperatures to derive the daily maximum and minimum temperatures as required by the 

VIC model. Since the reference gauge-based data set from IMD accumulates rainfall ending 

at 0300 UTC; we computed daily rainfall from half-hourly ERA5-Land ending at the same time 

for being consistent. Both precipitation and temperature products are re-gridded to spatial 

resolution of 0.05◦ X 0.05◦ to be consistent with the VIC model grid resolution used in all the 

research chapters of this study. 

Local observations of daily wind speed are not available, hence were obtained from National 

Centers for Environmental Prediction (NCEP), and the National Center for Atmospheric 

Research (NCAR) reanalysis of resolution 1◦ X 1◦ (Kalnay et al., 1996). This dataset is then 

further re-gridded to 0.05◦ X 0.05◦ to be consistent with the VIC model grid resolution used in 
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all the research chapters of this study. Daily wind speed from NCEP-NCAR, in combination 

with precipitation and temperature extremes from IMD, has been tested for hydrological 

simulations of Indian river basins in previous studies (Hengade et al., 2018; Saha et al., 2014). 

2.2.1.4. Historical and Future climate scenarios 

Climate projections used in this study for Mahanadi river basin is derived from the recently 

released, bias corrected climate projections for South Asia from Coupled-Model 

intercomparison project-6 (Mishra et al., 2020a). The CMIP6 climate projections are produced 

with updated versions of climate models (than CMIP5) and are driven based on new future 

pathways of societal development, the Shared Socioeconomic Pathways (SSPs) scenarios and 

radiative concentration pathways (RCPs). These scenarios are produced with updated 

versions of integrated assessment models (IAMs) and recent emission trends (O’Neill et al., 

2016).   

These bias corrected data of precipitation, maximum temperatures and minimum 

temperatures are available at daily temporal and 0.25◦ spatial resolution for South Asian 

countries including 18 river basins in India. A total of thirteen GCMs (Table 2.1) are considered 

for bias correction based on the availability of all three climate variables and four scenarios, 

combining SSPs and RCPs at the end of 21st century (Gidden et al., 2019). These scenarios are 

SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5, explained in Table 2.2. For instance, SSP1-2.6 indicates 

SSP-1 and target radiative forcing of 2.6 Watt/m2 at the end of the 21st century, which is a 

mitigation scenario (Gidden et al., 2019). More descriptions regarding these scenarios can be 

found in (Gidden et al., 2019).  

Mishra et al., (2020a) employed Empirical Quantile Mapping (EQM) for the bias corrections 

of the historic (1951–2014) and projected (2015–2100) climate data. EQM is a statistical 

approach, based on the distribution and relationship between the observed and projected 

data for the historical period (Pierce et al., 2015). Observed daily gridded climate variables 

(gridded precipitation, maximum and minimum temperatures) from IMD (spatial resolution 

of 0.25◦) is considered as a reference for the bias correction in Mishra et al., (2020a), as IMD 

datasets are widely used for hydroclimatic studies in India, and also station data is not 

available. 
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Table 2.1 CMIP6 GCMs considered for bias correction in Mishra et al., (2020a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. 2. Description of the Scenarios used in this thesis (Gidden et al., 2019) 

 

 

 

 

 

 

 

 

S. No. Model name 

1 ACCESS-CM2 

2 ACCESS-ESM1-5 

3 BCC-CSM2-MR 

4 CanESM5 

5 EC-Earth3 

6 EC-Earth3-Veg 

7 INM-CM4-8 

8 INM-CM5-0 

9 MPI-ESM1-2-HR 

10 MPI-ESM1-2-LR 

11 MRI-ESM2-0 

12 NorESM2-LM 

13 NorESM2-MM 

Scenario Name SSP 
Target forcing level 

RCP (Wm-2) 
Scenario type 

SSP126 1 2.6 Mitigation 

SSP245 2 4.5 Mitigation 

SSP370 3 7.0 Baseline 

SSP434 4 3.4 Mitigation 

SSP460 4 6.0 Mitigation 

SSP585 5 8.5 Baseline 
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Figure 2.5 a-c shows the total annual precipitation, mean annual maximum and minimum 

temperatures, for the fifty-two ensembles (13 CMIP6 models*4 SSP based scenarios) (red 

colour) and the mean of the ensemble (blue colour) for the future period 2015-2100, for the 

entire Mahanadi river basin. The increase of both mean annual minimum and maximum 

temperature, based on the mean of the ensemble, is 0.3 ⁰C per decade and mean annual 

rainfall shall increase with a rate about 42 mm per decade. 
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Figure 2.5 Projected (a) annual precipitation, (b) minimum and (c) maximum temperatures 

from 52 (13 models*4 scenarios) ensembles of CMIP6 (red) and the ensemble mean (blue), 

for Mahanadi river basin for the future period 2015-2100. 

 

(a) 

(b) 

(c) 
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2.2.2. Ancillary data 

2.2.2.1. Soil dataset 

Local soil dataset 

National or local level soil map (Figure 2.6 a) is derived from the digitized soil map as provided 

by National Bureau of Soil Survey and Land Use Planning (NBBSSLUP) of spatial resolution of 

500 metres (Scale 1:250000). Loam and clay are the dominant soil textures within the basin. 

The local soil map is resampled to model grid size of 0.05◦. X 0.05◦.  

Global soil dataset 

Global gridded soil textures (Figure 2.6 b) are derived from SoilGrids (Hengl et al., 2017), 

recently released most detailed global soil dataset, of resolution 250 m. The soil texture 

fractions of clay, sand and silt in SoilGrids are mapped at 7 standard depths ranging from 0 to 

200 cm. There were not many differences observed in the soil fractional maps at individual 

depths. We averaged soil fraction maps of 30, 60, 100 and 200 cm (typical VIC soil depths for 

individual soil layers respectively) and resampled to model grid size of 0.05◦. X 0.05◦. Next, 

zonal statistics of the soil fractional maps is performed with respect to the model grid in 

ArcMap to obtain fraction of clay, sand and silt for each grid. USDA soil classification is then 

used to generate mean soil texture for each VIC model grid. As per the global soil map, clay 

loam and clay are the dominant soil types in the river basin. 

We observe differences in the soil textures, and also fractional area covered by each soil type, 

while comparing both soil maps. Local soil map indicates loam (54%) and clay (42%) are the 

dominant soil textures within the basin whereas clay (29) and clay loam (69) are found to be 

dominant in the global soil map. 
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Global data Local data 

 

 

 

 

 

 

 

Figure 2.6 (a) National soil map derived from National Bureau of Soil Survey and Land Use 

Planning (NBBSSLUP) with a spatial resolution of 500 metres and (b) Global soil map derived 

from SoilGrids with a spatial resolution 250 metres for the Mahanadi river basin. The spatial 

resolution of the maps shown here is 5km which is used by the VIC model to perform the 

simulations. 

2.2.2.2. LULC dataset 

Local LULC dataset 

National level or local LULC map is derived from National Remote Sensing Centre (NRSC) of 

year 2005 and 2014 (scale 1:250000) of resolution 56 meters. Figure 2.7 a shows LULC map 

of year 2014 to enable comparison with the global LULC map.  

Global LULC dataset 

Global LULC map (Figure 2.7 b) for the year 2015 is obtained from the recently released, 

European Space Agency Climate Change Initiative (ESA CCI) (version 2.0.7) (Jiang and Yu, 

2019). ESA CCI is a consistent series of annually generated land cover products for the period 

1992-2015 at a complete range of 38 land cover types.  
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Local data Global data 

 

 

 

 

 

 

 

Figure 2.7 (a) National LULC map derived from National Remote Sensing centre (NRSC), India 

of year 2013-2014 of resolution 56 meters and (b) Global LULC map derived from ESA CCI of 

year 2014 of resolution 250 metres 

Both the local and global LULC maps are resampled to the model grid size of 0.05◦. X 0.05◦. 

Both the local and global LULC maps are reformatted and reclassified into USGC LULC types 

as required by the VIC model. Both LULC maps show that Deciduous Broadleaf Forest (DBF) 

and cropland (CL) are the major land cover types in the basin. However, we observe that 

percentage of area covered by both land cover types varies, especially in cropland, which 

covers 64% in global map whereas 48% in the local map. 

  

(a) (b) 
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2.2.2.3. Historical and Future land cover scenarios 

We used a set of land use scenarios based on Socio-economic Pathways (SSPs) and 

Representative Concentration Pathways (RCPs), from the recently released , Land Use 

Harmonization Project (LUH2) data set (release “LUH2v2h” and LUH2v2f) for the time period 

of (850–2005) and (2015-2100) respectively (Hurtt et al., 2018) (Table 2.3). These scenarios 

are the combination of RCP’s projecting  the magnitude and extent of climate change  (Taylor 

et al., 2012; van Vuuren et al., 2011) and SSP’S  (Hausfather, 2018) based on worlds of various 

levels of challenges to adaptation and mitigation (van Vuuren et al., 2014).  

Table 2.3 LUH2 future scenarios and models used in the thesis. Description of the Scenarios 

can be found in Table 2.2. 

 

 

 

 

 

The LUH2 approach estimates the gridded land use fractions, annually at a resolution of 0.25◦. 

The land use fraction maps are therefore available for each land use type at a resolution of 

0.25◦. So, we have first obtained LUH2 fraction maps of different LULC types for Mahanadi 

basin extent at a resolution of 0.25◦ and further re-gridded to the model grid size of 0.05◦. 

Land cover changes and fractional area covered in each of these scenarios are shown in Figure 

2.8. 

 

 

 

  

Scenarios Models 

RCP2.6 SSP1 IMAGE 

RCP3.4 SSP4 GCAM 

RCP4.5 SSP2 MESSAGE-GLOBIOM 

RCP6.0 SSP4 GCAM 

RCP7.0 SSP3 AIM 

RCP8.5 SSP5 REMIND-MAGPIE 
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Figure 2.8 Land cover changes and fractional area covered in all LUH2 scenarios mentioned in 

Table 2.3.  

2.2.3. Validation data  

Observed streamflow data for five subbasins Basantpur, Kantamal, Kesinga, Sundergarh and 

Salebhata (shown in Figure 2.1), are obtained at a daily scale, for the time period 1989 – 2016 

from Central Water Commission (CWC), India. Observed streamflow data obtained are used 

for model set up, calibration and validation. Information about the gauging locations is given 

in Table 2.4. 
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Table 2.4 Gauging stations and their descriptions 

 

 

 

 

 

 

 

 

2.2.4. Summary of datasets used in each chapter 

All result chapters i.e., chapter 3 to 6 have used the meteorological datasets (precipitation, 

maximum and minimum temperature) from Indian Meteorological Department (IMD), and 

soil and LULC datasets from NBBSS&LUP and IGBP respectively. However, the time period of 

the meteorological forcings used in each chapter are different. Land cover scenarios from 

LUH2 and climate scenarios from CMIP6 are used in chapter 4 and 5 respectively. Global soil 

and LULC datasets from SoilGrids and ESA CCI respectively, and meteorological datasets from 

satellite (IMERG) and reanalysis products (ERA5-Land) are used in Chapter 6. The detailed 

information of all input datasets used in the chapters is summarized in Table 2.5. 

 

 

 

Gauging station 
Catchment area 

(km2) 
Period 

Mean 

discharge 

(m3s-1) 

Maximum 

discharge 

(m3s-1) 

Basantpur 57780 1989-2016 665 33088 

Kantamal 19,600 1989-2016 375 20000 

Kesinga 11,960 1989-2016 246 21192 

Sundergarh 5870 1989-2016 102 10404 

Salebhata 4650 1989-2016 63 7916 
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Table 2.5: Data information used in this thesis. 

 

2.2.5. Comparisons between local, satellite and reanalysis meteorological observations 

Quality comparisons of the precipitation and temperature products for the analysis period 

(2014-2016) are performed prior to using these datasets as the model inputs to capture the 

hydrological responses in Chapter 6. Note that year 2014-2016 is the common period of data 

for both precipitation and temperature, available from all three different sources mentioned 

in the previous section.  

To enable comparisons, precipitation datasets from IMERG and ERA5-Land are re-gridded to 

the spatial resolution of the reference precipitation dataset, IMD (0.25◦ X 0.25◦). To achieve 

Chapter Input data Data type Data Source Resolution Period/Year 

Chapters 

3,4,5,6 

Precipitation 

Local gridded IMD 

0.25◦. X 0.25◦ 

1989-2010 
Max. Temp. 

1◦ X 1◦ 
Min. Temp. 

Wind Speed Reanalysis NCEP 1◦ X 1◦ 

Soil Local NBBSS&LUP 500 m 
2005/2006 

Land cover Local IGBP 56 m 

Chapter 4,5 
Land cover 

scenarios 
Global LUH2 0.25◦. X 0.25◦ 2005-2100 

Chapter 5 
Climate 

scenarios 
Global CMIP6 0.25◦. X 0.25◦ 1990-2100 

Chapter 6 

Precipitation Satellite GPM IMERG 

0.01◦ X 0.01◦ 
2014-2016 

Precipitation 

Reanalysis ERA5-Land Max. Temp. 

Min. Temp. 

Precipitation Local gridded IMD 0.25◦. X 0.25◦ 

Soil global SoilGrids 250m - 

Land cover global ESA CCI 300m 2015 
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this, IMERG and ERA5-Land gridded precipitation values (0.1°) are first resampled to 0.05°and 

then spatially averaged to 0.25° to match each target grid of IMD.  Similar approach has also 

been applied in other studies (Essou et al., 2016; Mahto and Mishra, 2019; Prakash et al., 

2018). Figure 2.9 shows spatial distributions of mean annual rainfall over Mahanadi river basin 

for all three datasets averaged for the time period 2014-2016 at a common resolution of 0.25◦. 

 

 

 

Figure 2.9: Spatial distributions of mean annual rainfall over Mahanadi river basin averaged 

for the time period 2014-2016, derived from IMD gauge-based, IMERG, and ERA5-LAND 

precipitation datasets 

Two skill measures are used to statistically evaluate the different precipitation and 

temperature datasets (Pearson correlation coefficient (r) (Eq. 2.1), and percentage bias (PBIAS) 

(Eq. 2.2). The comparison between the rainfall and temperature products from different 

sources are beneficial to understand their error characteristics and how it propagates to the 

estimated hydrological components.   

𝑟 =  (
∑ (𝑂− 𝑂)(𝑃− 𝑃𝑛

𝑖 = 1 )

√∑ (𝑂− 𝑂)2𝑛
𝑖 = 1 ∑ (𝑃− 𝑃)2𝑛

𝑖 = 1

)

2

                Eq. 2.1 

                 𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑂−𝑃).100𝑛

𝑖 =1

∑ 𝑂𝑛
𝑖 =1

                        Eq. 2.2                                                     

Where 𝑂 and 𝑃 are the observed (IMD) and predicted (IMERG and ERA5-Land) rainfall and 

temperature values respectively and  𝑂 and 𝑃 are the observed mean and predicted mean. n 

is the number of data points. The skill measures for the global rainfall and temperature 

products against locally available data from IMD are computed and represented spatially for 

the entire Mahanadi river basin averaged for the time 2014-2016, shown in Figure 2.10 and 

2.12. 
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Figure 2.10: Spatial distributions of (a) Correlation between GPM and IMD (b) Correlation 

between ERA5-Land and IMD (c) PBIAS of GPM against IMD (d) PBIAS of ERA5-Land and IMD 

daily rainfall over Mahanadi river for 2014-2016. 

Correlation pattern suggests IMERG precipitation is more correlated to the reference 

precipitation, IMD in the basin with an average correlation of 0.7 compared to ERA5-Land of 

average correlation 0.6. Spatial bias maps suggest similar bias pattern in both IMERG and 

ERA5-Land precipitation in almost entire basin and both rainfall products are found to be 

positively biased indicating overestimation of rainfall values. But the overestimation is higher 

in IMERG with an average (spatially) positive bias of 21% than ERA5-Land of 17%. Temporal 

correlation between IMD and IMERG is in the range of 0.72-0.86 across the subbasins which 

is higher than ERA5-Land (0.59-0.79) (Not shown here). Minimum correlation in Figure 2.10, 

a & b and maximum negative bias in Figure 2.10, c & d is observed in 2 grids (See the grids 

with latitude-21-21.5 and longitude 81.25-81.5). This is because annual precipitation in IMD 

gridded data (in the range of 1434-1619 mm) at these grids are higher than the annual 

precipitation in GPM (1387-1393 mm) and ERA5-Land (1278-1337 mm). We have analyzed 

IMD precipitation of individual years 2014, 2015 and 2016, and found that the higher annual 

(a) (b) 

(c) (d) 
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precipitation values in IMD is mainly due to the very high daily precipitation values (such as 

397mm and 673mm) recorded in year 2016. 

Daily maximum and minimum temperatures from ERA5-Land of spatial resolution 0.1° are re-

gridded to 1°, spatial resolution of IMD maximum and minimum temperatures.  Owing to the 

coarse resolution of IMD temperatures, there are only few grids in the entire basin. So, we 

compared max. and min. temperatures from ERA5-Land and IMD (See Figure 2.11) for the 

entire river basin. Both maximum and minimum temperatures from ERA5-Land showed high 

spatial correlation with an average of 0.93 and 0.96 (Figure 2.12). The temporal correlation 

coefficient between the daily time series of IMD max. temp. and ERA5-Land max. temp. is 

0.94 and IMD min. temp. and ERA5-Land min. temp. is 0.95. Spatial RMSE shows that in overall, 

error in the maximum temperature (2.39) is more than the minimum temperature (1.6). 

Spatial bias maps indicate that the maximum temperature in ERA5-Land is mostly negatively 

biased i.e., has the tendency to underestimate whereas minimum temperature is mostly 

positively biased i.e., has the tendency to overestimate. Average bias in the maximum 

temperature and minimum temperature across the basin is (-5%) and (4%) respectively. 
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Figure 2.11: Spatial distributions of mean daily maximum temperature derived from (a) IMD 

and (b) ERA5-LAND. Spatial distributions of mean daily minimum temperature derived from 

(c) IMD and (d) ERA5-Land. averaged for the time 2014-2016 

  

(a) (b) 

(c) (d) 



 

38 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.12: Spatial distributions of (a) Correlation between maximum temperature from 

ERA5-Land and IMD (b) Correlation between minimum temperature from ERA5-Land and IMD 

(c) P-Bias between maximum temperature from ERA5-Land and IMD (d) P-Bias between 

maximum temperature from ERA5-Land and IMD, over Mahanadi river averaged for 2014-

2016. 

2.3. Variable Infiltration Capacity (VIC) model 

The VIC model (Figure 2.13 a) is a semi-distributed, land surface hydrologic model which 

solves both water and energy balance within the grid cells (Cherkauer and Lettenmaier, 1999). 

VIC was originally developed as a land surface model, however, the model has been 

predominantly employed in uncoupled modelling studies, where there is no feedback from 

the land surface to the atmosphere (Hamman et al., 2018). VIC model was first described as 

a single soil layer model and employed the runoff and infiltration scheme from Xianjiang 

model (Zhao et al., 1980). Next, (Liang et al., 1994) introduced the two soil layer VIC model 

(VIC-2L) which included multiple soil layers and spatially varying vegetation types within the 

grid cells. (Liang et al., 1996) found, VIC-2L had a tendency to underestimate the ET due to 

the lack of soil moisture movement from the bottom soil layer to the topsoil layer. The 

diffusion of moisture between the layers is then enabled and an additional 10cm soil layer is 

(a) (b) 

(c) (d) 
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added on top to generate VIC-3L model. To obtain the discharge at the basin outlet, the VIC-

3L model is coupled to a stand-alone routing model (Lohmann et al., 1996).  

  

 

 

 

 

 

 

 

Figure 2.13: (a) Schematic diagram for Variable Infiltration Capacity (VIC) macroscale 

hydrological model (b) Schematic diagram of VIC river network routing model (Gao et al., 

2010) 

2.3.1. Water balance processes 

Equation 2.3 (Gao et al., 2010) below shows the water balance in the VIC model, computed 

at every time step. 

   𝜕𝑠/𝜕𝑡 = 𝑃 − 𝐸 − 𝑅                                                Eq. 2.3 

 

                                                           
𝜕𝑤𝑖

𝜕𝑡
= 𝑃 − 𝐸𝐶 − 𝑃𝑡                                                              Eq. 2.4                                                     

where 𝜕𝑠/𝜕𝑡 , 𝑃 , 𝐸 , and 𝑅  are the change of soil moisture storage, precipitation, 

evapotranspiration, and runoff, respectively. Within the time step, all variables are in mm. 

Precipitation when falls over vegetated areas is termed as throughfall (𝑃𝑡). Eq. 2.4 (Liang et 

al., 1994) shows the water balance equation in the canopy layer (interception), where 𝑤𝑖 is 

canopy intercepted water (mm), 𝐸𝐶  is evaporation from canopy layer (mm), and 𝑃𝑡  is 

througfall (mm) (Gao et al., 2010). 

 

 

(a) (b) 
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Evapotranspiration 

The model considers three kinds of evaporation to compute the total evapotranspiration: 

evaporation from canopies from each vegetation tile, transpiration from each vegetation tile 

and evaporation from bare soil. Total evaporation is computed by using Eq. 2.5 shown below.  

                                    𝐸 =  ∑ 𝐶𝑛(𝐸𝑐,𝑛 + 𝐸𝑡,𝑛
𝑁
𝑛=1 ) +  𝐶𝑁+1. 𝐸1                                  Eq. 2.5 

Where 𝐶𝑛 is the fractional area of nth vegetation tile,  𝐸𝑐,𝑛 and 𝐸𝑡,𝑛is the canopy evaporation 

and transpiration for nth vegetation tile respectively, 𝐸1 is the bare soil evaporation, N is the 

total number of vegetation types, 𝐶𝑁+1 is the fraction of bare soil and ∑ 𝐶𝑛 = 1𝑁+1
𝑛=1  (Gao et 

al., 2010). 

Another important vegetation parameter in VIC is Leaf Area Index (LAI) which governs the 

amount of water intercepted by the canopy. The relationship between vegetation 

transpiration (Et) and LAI is shown in Eq. 2.6 and Eq. 2.7.  

   𝐸𝑡  =  (1 − (
𝑊𝑖

𝑊𝑖𝑚
)2/3)𝐸𝑝

𝑟𝑤

𝑟𝑤+𝑟0+𝑟𝑐
                                                  Eq. 2.6 

    𝑟𝑐 =  
𝑟0𝑔𝑡𝑔𝑣𝑝𝑑𝑔𝑃𝐴𝑅𝑔𝑠𝑚

𝐿𝐴𝐼
                                                          Eq. 2.7 

𝑊𝑖𝑚  (mm) is the maximum amount of rain that canopy can intercept. 𝐸𝑝  is the potential 

evaporation, computed using the Penman-Monteith equation. Aerodynamic resistance 𝑟𝑤 (s 

m-1) is the transfer of heat and water vapor from the canopy surface to the air. 𝑟0 (s m-1) is 

the architectural resistance, which is caused by the variation of the humidity gradient 

between the canopy and the air above canopy. 𝑟𝑐 is the canopy resistance (s m-1), is a function 

of LAI, minimum canopy resistance (s m-1) and four environmental factors, temperature 

factor 𝑔𝑡 , vapor pressure deficit factor 𝑔𝑣𝑝𝑑 , photosynthetically active radiation flux 𝑔𝑃𝐴𝑅, 

and soil moisture factor 𝑔𝑠𝑚 respectively (Gao et al., 2010). 

Bare soil evaporates only from the top thin soil layer. When the surface soil is saturated, bare 

soil evapotranspiration occurs at a same rate of potential ET. When top thin soil layer is not 

saturated, bare soil ET in VIC is a function of infiltration capacity of the surface soil , estimated 

using the ARNO formulations by (Franchini and Pacciani, 1991). The infiltration capacity is 

expressed as  

                                                          𝑖 = 𝑖𝑚(1 − (1 − 𝐴)1/𝑏𝑖)                                     Eq. 2.8                                                                 
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                                                            𝑖𝑚 = (1 + 𝑏𝑖). ɵ𝑠. |𝑍|                                           Eq. 2.9                                                                            

Where 𝑖𝑚 is the maximum infiltration capacity (mm), A is the fraction of area for which the 

infiltration capacity is less than i, 𝑏𝑖 is the infiltration shape parameter, ɵ𝑠 is the soil porosity, 

and z is the soil depth (m). 

Soil Moisture and Runoff 

A Variable Infiltration Curve (Zhao et al., 1980) is used to generate the grid based runoff within 

the model. Surface runoff or the direct runoff occurs from the top thin layer and middle soil 

layer in the model. Sub surface runoff or baseflow is estimated by Arno model 

conceptualization. 𝑄 (Eq. 2.10) is the total runoff comprising of surface runoff and baseflow. 

                                                     𝑄 =  ∑ 𝐶𝑛. (𝑄𝑑,𝑛
𝑁+1
𝑛=1  +  𝑄𝑏,𝑛)                            Eq. 2.10                                                                            

Where 𝑄𝑑 is the direct or surface runoff and 𝑄𝑏 is the sub-surface runoff or baseflow. 

VIC model assumes there is no lateral flow in the top two soil layers and movement of soil 

moisture only occurs vertically. The movement of soil moisture i.e., the drainage from one 

layer to another is designed using one dimensional Richard’s equation, which is a function of 

saturated hydraulic conductivity (Wang et al., 2008). Drainage and sub-surface drainage 

occuring from the third soil layer combine to form baseflow. The parameters used by the Arno 

formulation to compute baseflow are maximum sub surface flow (dsmax), fraction of dsmax 

(ds), fraction of maximum soil moisture in the third soil moisture layer (ws). Maximum soil 

moisture is the porosity of the soil layer ɵ𝑠 multiplied by the soil depth. Baseflow is assumed 

to be linear below threshold (wsɵ𝑠) and non-linear above the threshold. More details on soil 

moisture and runoff generation processes can be found in Liang et al., (1996).  

2.3.2. Routing model 

VIC has a stand-alone routing model (Figure 2.13b) that mainly calculates the concentration 

time of the runoff flowing to the outlet of the grid cell as well as channel flow in the river 

network. Most horizontal flows at each grid joins the channel network within the grid cell 

before it passes on to the adjacent grid cell. Daily surface and subsurface flows from the 

channel network are first routed to the outlet of the grid using a triangular shaped unit 

hydrograph and then routed to the basin outlet through the river network using the linearized 

Saint-Venant equation (Lohmann et al., 1996). Wave velocity (v) and Diffusivity (diff) are the 

two effective river routing parameters, used in Saint-Venant equation. 
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The model version used in this study is VIC 4.2.d. We implemented VIC-3L model in the water 

balance mode at a daily time step and at a grid resolution of 0.05◦ over the 5 subcatchments 

of the Mahanadi river basin. Flows are routed to the subcatchments of Basantpur (Ba), 

Kantamal (Ka), Kesinga (Ke), Sundergarh (Su) and Salebhata (Sa) (Figure 2.1). We abstained 

from routing the flow for the entire Mahanadi river basin due to the presence of a major 

water management structure, Hirakud dam at the middle reach of the basin.  

2.3.3. Model parameterization 

2.3.3.1. Soil parameters 

VIC requires a soil parameter file as an input, where the unique soil properties are described 

for each grid cells in the model domain. This file also indicates which grids are to be simulated 

and their latitude and longitudes to find the forcing files (having meteorological input values) 

for the grid cells. The VIC model developers categorizes the soil parameters into two types: 

parameters that can be derived from the existing global databases and literatures (Cosby et 

al., 1984; FAO 1998; Rawls et al., 1998; Reynolds et al., 2000), hence need not to be adjusted. 

These parameters are soil porosity (ɵ𝑠), field capacity (fc), wilting point (Wp), saturated 

hydraulic conductivity (Ksat), and the exponent for the unsaturated flow (Exp). Next are those 

which are most sensitive for most climatic, edaphic and physiographic watershed settings and 

cannot be obtained by field measurements and therefore are subjected to calibration. These 

include infiltration related parameter (binf), depths of each soil layer (d1, d2 and d3) and 

baseflow related parameters, dsmax, ds and ws. However, we also test the sensitivity of some 

rarely implemented soil properties, that are selected based on our preliminary experiments, 

known sensitive model properties and previous studies. These parameters are Bulk density 

(BD), Fractional water content at wilting point (Wcrf) and at critical point (Wcrf), ksat and Exp. 

The dominant soil textures within the basin derived from national level soil map, are loam, 

clay loam and clay. The specific soil characteristics for each dominant soil texture obtained 

from (Cosby et al., 1984; Rawls et al., 1998; Reynolds et al., 2000) are given below in table 2.6 

and the equations for estimating these soil parameters are given in Table 2.7. 
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Table 2.6 Hydraulic properties of the dominant soil textures in Mahanadi river basin 

Texture 
Bulk Density 

(kg/m3) 

Field Capacity 

(FC) 

Saturated Hydraulic 

Conductivity (Ksat) 

(cm/hr) 

Slope of Retention Curve (in 

log space) b** 

Loam 1490 0.29 1.97 5.3 

Clay loam 1430 0.34 1.77 8.02 

Clay 1390 0.36 3.18 12.28 
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Table 2.7 Soil parameters and equations used for estimation of these soil parameters 

 

where BD is bulk density, and PD is particle density. A standard value of 2.65 g/cm3 was used 

for PD, as spatial measurements were not available.  

 

2.3.3.2. Vegetation parameters 

We first prepare a vegetation parameter file that states the vegetation composition of each 

grid cell within the basin. Vegetation in VIC is represented by a mosaic scheme where a single 

grid cell can have multiple vegetation types i.e., VIC maintains vegetation heterogeneity 

within a grid cell. We then set up a vegetation library file for the selected land cover classes 

for the study area which consists of the vegetation properties of all vegetation types. Each 

vegetation type in the parameter file is then cross-indexed to the vegetation library file. Land 

cover classes from different input data sources are converted into representative land use 

types for the VIC model based on the classes in its standard vegetation library. Land cover 

Parameters Equations 

Porosity 
ɵ𝑠 = 1 −

𝐵𝐷

𝑃𝐷
 

 

Soil moisture at critical point 
𝑊𝑐𝑟 =  0.7 ∗  𝐹𝐶 

 

Initial soil content 
𝐼𝑛𝑖. 𝑆𝑀 = 0.7 ∗  𝑀𝑎𝑥. 𝑆𝑀 

 

Maximum soil moisture 
𝑀𝑎𝑥. 𝑆𝑀 = 𝑃 ∗  𝑑𝑛 

 

Fractional Soil moisture content at critical point 
𝑊𝑐𝑟𝑓 =

𝑊𝑐𝑟

𝑃
 

 

‘n’ is the exponent used in Campbell’s equation 

for hydraulic conductivity 

𝑛 = 3 + 2 ∗ 𝑏 
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classes are described using the vegetation parameters such as LAI, albedo, roughness length, 

rooting depths and fractions, and other related biophysical parameters. Monthly LAIs were 

obtained from the moderate resolution imaging spectroradiometer (MODIS)/terra+Acqua, 8- 

day product (MCD15A2H) of 500 m resolution (Myneni et al., 2015). Parameters such as 

albedo, roughness length and displacement height are assembled based on Land Data 

Assimilation System (LDAS) (http://ldas.gsfc.nasa.gov/) and  Hansen et al., (2000). Details of 

the vegetation parameters including LAI, albedo, displacement height and roughness, for the 

dominant vegetation types in the study area are shown in Table 2.8. Vegetation parameters 

are kept same for all the simulations conducted in this study. Therefore, hydrological impacts 

of land cover change are limited to the changes in the distribution of different land cover 

types and not in the parameter values of the land cover types themselves (Mishra et al., 2010). 

Minimum stomatal resistance and architectural resistance are subjected to sensitivity analysis 

(see Table 3.1, Chapter 3). Most vegetation parameters in VIC are static, only LAI changes 

monthly to capture the seasonal variability. However, these monthly values remain constant 

throughout the simulation period. The root allocation approach employed in this study is 

described in section 2.3.5. 

Table 2.8 Details of the vegetation parameters for the dominant vegetation types in Mahanadi 

river basin 

Description Albedo LAImin LAImax 
Roughness 

length (m) 

Displacement 

height (m) 

Deciduous 

broadleaf forest 
0.08 0.91 2.75 0.83 15.36 

Cropland 0.09 1.72 0.27 0.08 0.26 

Grassland 0.11 0.68 2.39 0.08 0.26 

Open shrubland 0.17 0.70 2.03 0.04 0.27 

LAImin : minimum LAI ; LAImax: maximum LAI 
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2.3.3.3. Meteorological forcing 

VIC model is forced with observed surface meteorological variables such as precipitation, 

maximum temperature, minimum temperature, and wind speed at a daily scale. VIC requires 

meteorological forcing file for each grid cells containing all four meteorological variables. 

2.3.4. Model calibration and validation 

Description of model calibration and validation can be found in Chapter 3 of this thesis.  

2.3.5. Root depth and fraction estimation approach in VIC model 

Typical implementation of VIC-3L model includes three soil layers and three root zones to 

represent soil moisture uptake through the plant roots. Depths and fractions of the root zones 

are user-defined for each land use types so that shorter vegetation draw soil moisture from 

the upper soil layer and deep-rooted plants from the deeper soil layers. VIC assumes that the 

roots are linearly distributed within the root zones and computes the root fractions for each 

soil layer by linear interpolation (Figure 2.14 left). Soil moisture depths are generally 

calibrated which requires the model to redistribute the user-defined root fractions specified 

for each root zone, in the soil layer by linear interpolation. Most of the studies related to VIC 

model have adopted this approach where the soil depths are calibrated and allocation of 

roots are kept constant (Demaria et al., 2007; Lilhare et al., 2020; Mishra et al., 2010; Park 

and Markus, 2014; Parr et al., 2015; Yeste et al., 2020). Demaria et al., (2007) tested the 

sensitivity of root distribution on the second soil layer in VIC-3L and found that different root 

allocations have impacted the ET and baseflow in the basin.  

In this study we replace typical system of using fixed root depths and root fractions for varying 

soil depths in VIC model by determining the root allocations for the changed soil depths 

considering Zeng (2002) root distribution approach. We first obtained the effective rooting 

depth of each vegetation types from Zeng (2002). The three root zone depths add up to the 

effective rooting depth. We assumed that the depth of the root zones is same as the depth of 

the soil layer i.e., if the effective rooting depth is exactly equal to the total soil depth, then 

each soil layer corresponds to each root zone. However, there may be cases where the 

effective rooting depth are less than the total soil depths, for example as in Figure 2.14 (right). 

In this case, third root zone depth (z3) is obtained after subtracting root depths of first two 

root zones (z1, z2) from the total root depth (zt). Therefore, the root depths of each vegetation 
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type in our approach are a function of effective rooting depth, that is kept fixed for each 

vegetation types, and the soil depths are subjected to change during calibration. Although the 

root depths are not subjected to SA in this study, causing change in root depths by this 

approach will have implications on the sensitivity of soil depths. Next, the root fractions for 

each land cover type is determined using Zeng's (2002) vegetation root distribution approach. 

                                                              𝑓 = 1 −  
1

2
(𝑒−𝑎𝑧𝑟 + 𝑏−𝑏𝑧𝑟)                                     Eq (2.9) 

Where f is the cumulative root fraction from the surface to the effective root depth zr. a and 

b are the vegetation coefficients that depends on the vegetation types. We used this equation 

directly to derive root fractions for each layer. Vegetation coefficients and the effective root 

depths used for the vegetation types are given in Table 2.9. 

 

 

 

 

 

 

Figure 2.14: (left) Representation of rooting distributions in VIC-3L model. z1, z2 and z3 are 

the user-defined depths of three root zones, respectively. d1, d2, d3 are the depths of three 

soil layers. f1, f2 and f3 are user-defined fractions of root in each zone, respectively. f1’, f2’ 

and f3’ are fractions of root in each soil layer computed by VIC. (right) Our approach of 

representation of rooting distributions in VIC-3L model. zt is the total root depth. 
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Table 2.9: Coefficients a and b in vegetation root distribution for Eq 2.9 for the land cover 

types used in this study. The depth of the rooting zone zt is also given (Zeng, 2002) 

 

 

 

 

 

 

 

 

 

 

  

Land cover type a (m-1) b (m-1) zt (m) 

Deciduous broadleaf 

Forest 
5.99 1.95 2 

Cropland 5.56 2.61 1.5 

Grassland 10.74 2.61 1.5 

Open shrubland 7.72 1.26 3.1 

Barren 4.37 0.98 4 
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3. Sensitivity analysis and model calibration 

 

3.1. Introduction 

Streamflow modelling of a river basin plays a crucial role in many practical hydrological 

problems such as flood or drought forecasting, water resources management and 

management of ecological services (Gou et al., 2020a). The ongoing changes in climate and 

land cover because of global warming has been impacting the hydrological behaviour of river 

basins significantly across the world. This necessitates use of regional hydrological or land 

surface models to represent the fundamental runoff mechanisms controlling the streamflow 

generation (Yeste et al., 2020) and to identify the changes in magnitudes and timings of 

associated hydrological processes (Wang et al., 2018). However, with the increasing 

complexity of these new generation models (e.g., in terms of parameters to be prescribed a 

priory), modelling such hydrological changes is an extremely challenging task, especially in 

data sparse regions in developing countries (Sheffield et al., 2014). In this respect, model 

calibration helps in adjusting parameters that conceptually represents the physical 

characteristics of a river basin, so that the modelled streamflow matches the observations 

more accurately (Eum et al., 2014). Therefore, emphasis should be laid on strengthening 

model parameter calibration approaches when solving aforementioned practical water-

related issues. 

The increase in computing power, more complete data sets and growing demand for better 

representation of physical processes within the river basins have led to the development of 

more complex hydrological models (Beven and Cloke, 2012; Chaney et al., 2015; Demaria et 

al., 2007). The complexity within these models is accompanied by a large number of tuneable 

This chapter is adapted from paper and its supplementary section, published in the 

Hydrology and Earth System Sciences journal (HESS). This paper has been modified to 

enhance consistency all through this dissertation. 

Citation: Naha, S., Rico-Ramirez, M. A., & Rosolem, R. (2021). Quantifying the impacts of 

land cover change on hydrological responses in the Mahanadi river basin in 

India. Hydrology and Earth System Sciences, 25(12), 6339-6357. 
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parameters which further increases the calibration burden (Muleta and Nicklow, 2005). Some 

parameters can be estimated from field or remote sensing observations such as vegetation 

types, albedo and LAI whereas some can be obtained from small scale in-situ or laboratory 

experiments. However, parameters values estimated based on laboratory experiments such 

as saturated hydraulic conductivity, may lose their physical meaning when applied over large 

scales, therefore are often subjected to model calibration (Demaria et al., 2007). Nonetheless, 

calibrating unnecessary parameters can lead to overparameterization (Her et al., 2019). For 

instance, there are studies where calibration is performed for the parameters based on expert 

judgement from other studies or as recommended by the model developers without the 

understanding of how sensitive the parameter to the model output is. Also, the sensitivity of 

model parameters varies from watershed to watershed based on the climate and other 

characteristics of river basin (Demaria et al., 2007). Therefore, Sensitivity Analysis is required 

to screen out the most important parameters and to reduce the number of parameters prior 

to calibration process. Parameters having little effects on model outputs can either be 

eliminated or can be assigned constants during calibration.  

The parameter estimation methods for hydrological model calibration are also sometimes 

questionable. For instance, manual calibration using trial and error method is still frequently 

performed (Rodriguez and Tomasella, 2016), which is not only a tedious and time-consuming 

process, but also can be quite subjective and highly depends on the modeler’s experience 

level (Muleta and Nicklow, 2005). Since 1960’s, the research community has been devoted 

towards developing automatic model calibration methods or optimization programs such as 

Genetic Algorithms (GA) and Shuffled Complex Evaluation Algorithms (SCEA) with the aim of 

producing a very high speed and an objective calibration process (Beven and Binley, 1992; 

Gou et al., 2020a). However, researchers till date mostly tends to identify the best or an 

‘optimal’ parameter set, using these automatic optimization techniques (Eum et al., 2014) to 

predict the hydrological changes. Using a single calibrated model for hydrological predictions 

ignores the concept of ‘equifinality’ i.e., there may exist several models that can produce 

equally good model simulations, often known as ‘behavioural models’ (Beven and Binley, 

1992; Mantovan and Todini, 2006; Yeste et al., 2020). The existence of many sets of 

parameters that could result in equally good simulations is thus unavoidable and hence 

recognising the equifinality concept is necessary (Beven and Freer, 2001). Major focus has 

been given to structural uncertainties while performing hydrological modelling, whereas 
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studies relating to uncertainties resulting from different parameterisation is relatively less 

(Blöschl et al., 2019). Therefore, the correct identification of modelling uncertainties remains 

an important question for hydrologic models after even several decades of continuous 

progress in the field of model calibration and parameter identification. 

In this thesis, the Variable Infiltration Capacity (VIC) model (For, more details, please refer to 

Chapter 2). is a physically semi-distributed macroscale hydrologic model (Liang et al., 1994) 

which has also played the role of land surface models in many previous studies (Yeste et al., 

2020). This model has been widely used for streamflow simulations for various hydrological 

applications such as climate and land cover impacts in hydrology across the world (Eum et al., 

2016a; Liu et al., 2011; Mao and Cherkauer, 2009; Mishra et al., 2010) including India (Chawla 

and Mujumdar, 2015; Dadhwal et al., 2010; Garg et al., 2019; Hengade et al., 2018; Joseph et 

al., 2018). Within the context of model calibration, VIC has more than 40 tuneable parameters 

(Bennett et al., 2018). There exist about 190 peer-reviewed studies where VIC model is 

calibrated and validated for various river basins, wherein majority of researchers have either 

straightaway calibrated the seven default or recommended parameters (Hengade et al., 2018; 

Linde et al., 2007; Niraula et al., 2017; Park and Markus, 2014; Xie et al., 2007) or have used 

manual calibration methods (Xie et al., 2007). Very few studies exist that have tested the 

sensitivity of VIC parameters (Demaria et al., 2007; Gou et al., 2020a; Joseph et al., 2018; 

Yeste et al., 2020) and findings of these studies indicates that sensitivity of parameters is 

dynamic in nature i.e., varies with respect to the climate conditions and basin characteristics. 

Therefore, using the default parameters for regional VIC calibration might preclude our ability 

to understand the hydrologic behaviour of a particular basin. Also, the common practise of 

using the ‘best fit’ model for hydrological applications hides the potential uncertainties 

associated with model performances that may arise from different model parameterisation 

(Chen et al., 2019b). 

Our study region, the Mahanadi river basin, is mainly characterised by south-west monsoon 

rainfall and has been facing seasonal fluctuations in water availability (Asokan and Dutta, 

2008). Moreover, the spatial variability of rainfall within the basin which makes it vulnerable 

to floods and cyclones at some parts while droughts at other parts of the basin. Some studies 

anticipated that these catastrophic hazards in the basin could be due to the isolated or 

combined impacts of increase in extreme precipitation and changes in land use land cover 

(Das et al., 2018; Gosain et al., 2006). Several studies investigated the hydrological impacts 
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owing to climate and land cover changes using hydrological modelling tools including VIC. 

However, the existing modelling studies for this basin and the nearby basins using VIC are 

mostly confined to using single deterministic calibrated model and not testing the sensitivity 

of the parameters prior to the calibration (Dadhwal et al., 2010; Das et al., 2018; Garg et al., 

2019; Raje et al., 2014). Therefore, the results obtained from these studies are less reliable as 

it does not consider the uncertainties due to model parameterisation, hence not effective for 

decision making towards the water resources management of the basin.  

In this study, we provide a large‐scale comprehensive simulation of discharge and other water 

balance components in the Mahanadi river basin for 1990 to 2010. In support of this goal, we 

perform a detailed sensitivity analysis and calibrate catchment‐specific parameters for 

streamflow simulations in the VIC model over 5 subcatchments of Mahanadi basin. We 

attempt to address the following two questions:  

1. What are the sensitive VIC model parameters across Mahanadi River basin?  

2. How does our calibration framework perform over the basin? 

3.2. Model input datasets and uncertain parameters 

The key input data required by the VIC model are meteorological forcings (precipitation, 

maximum temperature, minimum temperature, and wind speed), soil type, land cover 

information and topographic features. Topographical features are determined using the 30-

meter CARTO-DEM (Cartosat-1 Digital Elevation Model), a national DEM developed by ISRO 

(Indian Space Research Organization) (Sivasena Reddy and Janga Reddy, 2015). Daily gridded 

precipitation (resolution, 0.25◦) and maximum and minimum temperature (resolution, 1◦) for 

the time period (1988-2010) are obtained from India Meteorological Department (IMD) (Pai 

et al., 2014). All climate variables are resampled to the model grid resolution of 0.05◦. Soil 

textures are derived from the digitized soil map as provided by National Bureau of Soil Survey 

and Land Use Planning (NBSSLUP) (Scale 1:250000) (Figure 2.6a, Chapter 2). The local LULC 

map (Figure 4.1a) is derived from National Remote Sensing Centre (NRSC), India of year 2005 

(scale 1:250000; resolution 56 meters) 

VIC has more than 40 tuneable parameters, however we have selected 16 VIC model 

parameters (Table 3.1) for the Sensitivity Analysis (SA), as these parameters cannot be ((or 

are difficult to be) measured directly and are typically subjected to calibration. The choice of 

these parameters are also based on our preliminary experiments (considering more than 16 
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parameters) and expected sensitive properties from previous studies (Demaria et al., 2007; 

Gou et al., 2020a; Joseph et al., 2018; Yanto et al., 2017) (See Table 3.1).  

Typical calibration in VIC involves only streamflow related parameters as also recommended 

by VIC model developers (Gao et al., 2010; Gou et al., 2020b; Xie et al., 2007). However a few 

studies have reported that runoff simulated by VIC are sensitive to the vegetation parameters 

(Demaria et al., 2007; Joseph et al., 2018). Parameters subjected to SA in this study include, 

among others, rarely tested soil properties: Bulk Density (BD), Fractional water content at 

wilting point (Wpf) and at critical point (Wcrf); vegetation properties: architectural resistance 

(rarc) Stomatal Resistance (rmin); and routing parameters: velocity (v) and diffusion (diff). Note 

that a multiplier of Wcrf is used to compute Wpf, to meet the criteria that soil moisture at 

wilting point should always be less than soil moisture at critical point and the multiplier is 

tested for sensitivity rather than the actual parameter. Similar approach is followed by 

Rosolem et al., (2012) while testing sensitivity of parameters in a land surface model. Feasible 

ranges (minimum and maximum values) of soil parameters (BD, Wcrf, Ksat, Exp) are obtained  

based on average hydraulic properties of USDA soil textural classes (Cosby et al., 1984; Rawls 

et al., 1998; Reynolds et al., 2000) considering only the dominant soil textures within the basin. 

Ranges for the rest of the soil parameters are based on suggestions from the VIC model 

developers and published studies. Feasible ranges of the vegetation parameters are obtained 

based on the recommended ranges provided in the Land Data Assimilation System values 

(LDAS) for the dominant vegetation types in the basin (Hansen et al., 2000). Our preliminary 

experiments suggest Canopy height is not sensitive hence, Roughness length (RL) and 

Displacement Heights (Disp), which are computed from canopy height are not accounted for 

SA. Sensitivity analysis for all five subcatchments of Mahanadi river basin are performed using 

the ranges shown in Table 3.1. 

In addition, Leaf Area Index (LAI) is an important vegetation factor, having substantial control 

over the water balance by directly influencing the evapotranspiration (ET) rates (Gao et al., 

2010; Matheussen et al., 2002). LAI is specified at a mean monthly basis in VIC. We compared 

the monthly mean LAI averaged over the time period 2000-2015 from MODIS AQUA/TERRA 

with the LAI values from Global Land Data Assimilation (GLDAS) database for the river basin 

(Figure 4.1, Chapter 4). The plots show that MODIS LAI has a seasonal pattern with lower 

values of LAI during June/July and increases with the progress of a monsoon, whereas LAI 

values in GLDAS is maximum in June and reduces thereafter. Also, an overestimation in LAI 
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values is observed for all LULC types in GLDAS compared to MODIS. We find that both 

seasonal pattern and values of LAI obtained for each LULC type from MODIS are well in 

agreement with LAI studies carried out in India (Patidar and Behera, 2019; Paul et al., 2016). 

Thus, the monthly mean LAI from MODIS captures the phenological characteristics more 

realistically than the GLDAS LAI which shall have further implications on water balance. 

Several VIC related studies exist which have used LAI from MODIS products (Bennett et al., 

2018; Patidar and Behera, 2019; Tesemma et al., 2015). 
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Table 3.1: VIC and routing model parameters tested for sensitivity analysis and feasible 

ranges. 

* Wpf is analyzed based on its multiplier (i.e., the M term in Wpf parameter’s equation). Although description and units refer to actual 

parameter in VIC, parameter range represent the multiplier values (instead of actual parameter). 

Parameter names in bold are sampled on log domain. “a” indicates parameters that are suggested by VIC model developers as the most 

sensitive parameters (Gao et al., 2010). “b” indicates parameters suggested in the literatures to be tested for sensitivity (Demaria et al., 

2007; Gou et al., 2020b; Joseph et al., 2018; Yanto et al., 2017). A complete list of VIC model parameters can be found in  

https://vic.readthedocs.io/en/vic.5.0.0/Documentation/Drivers/Image/Params/. 

 

Parameters Description Units Minimum Maximum 

Soil parameters 

Wcrf Fraction of water content at critical pointb - 0.40 0.60 

Wpf *(Wpf = M* Wcrf) Fraction of water content at wilting pointb - 0.50 0.99 

BD 
Bulk density of soil (used in VIC estimation of 

porosity) b 
Kg/m3 1350 1550 

Ksat Saturated hydraulic conductivity b mm/day 240 840 

Exp 

Parameter characterizing the variation of 

saturated hydraulic conductivity with soil 

moisture b 

 

- 10 30 

d1 Thickness of first soil layer a m 0.01 0.3 

d2  Thickness of second soil layer a m 0.31 3.5 

d3  Thickness of third soil layer a m 0.31 3.5 

dsmax  Max. velocity of baseflow a mm/day 10-4 101.48 

ds  Fraction of max. velocity of baseflow a - 10-4 100 

binf  
Parameter to describe the Variable 

Infiltration Curve a 
- 10-4 100.6 

ws 
Fraction of maximum soil moisture of the 

third layer a 

 

- 

 

10-4 
100 

Vegetation parameters 

rarc Architectural Resistanceb (sm-1) 20 70 

rmin Minimum stomatal resistanceb (sm-1) 100 170 

routing 

v Flow velocityb m/s 0.1 3 

diff Flow diffusivityb m2/s 500 5000 

https://vic.readthedocs.io/en/vic.5.0.0/Documentation/Drivers/Image/Params/
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Another important factor linking vegetation characteristics to hydrological processes in VIC is 

the root zone distribution. Typically, root zone allocation in VIC requires parameters such as 

user-defined root-zone depths and fractions for each land cover types that are kept fixed 

during the calibration process. We derived root zone depths and estimated the fractions of 

roots in each zone following (Zeng, 2002) for each vegetation type, and used a simplified 

approach to vary the root zone distributions with respect to the soil depths during calibration. 

This ensures root zone properties vary for different model calibration with a reduced number 

of parameters, hence providing a more manageable calibration strategy. For details on our 

root allocation approach, please refer to Chapter 2. 

3.3. Methods 

3.3.1. Morris Sensitivity Analysis Method  

Morris (1991) is a well-established and widely used global sensitivity analysis (GSA) methods. 

There are many studies that have conducted parameter sensitivity analysis for hydrological 

models based on Morris screening method (Herman et al., 2013; Huang et al., 2020; 

Pappenberger et al., 2008; Pianosi et al., 2015; Sarrazin et al., 2016, 2018; Wang and 

Solomatine, 2019). It is a global extension of One-factor-At-the-Time local SA method (Morris, 

1991). It is based on estimation of several elementary effects. The EE of the 𝑖th input factor, 

𝑥𝑖−1, at a single baseline point and for a known perturbation Δ can be calculated as given 

below (Campolongo et al., 2011). 

 𝐸𝐸 =
𝑦(𝑥1,𝑥2,...,𝑥𝑖−1,𝑥𝑖+𝛥,...,𝑥𝑚) − 𝑦(𝑥1,𝑥2,...,𝑥𝑖−1,𝑥𝑖,...,𝑥𝑚)

Δ
     Eq. (3.1) 

‘m’ is the total number of parameters subjected to sensitivity analysis and ‘𝑦’ is EEs for each 

input parameter, which is estimated at ‘𝑟’ (See Eq. 3.2) random baseline points across the 

input parameter space. The estimated mean (µi) of the EEs is a measure of total-order effects 

of the 𝑖th input parameter and standard deviation (σi) indicates the interaction effects of 𝑖th 

input factor with another. 

Morris method in this study is implemented as follows: 

1. We performed the computational experiments  using the SAFE (SA For Everybody) 

Toolbox (Pianosi et al., 2015) 

2. ‘m’ denotes the number of factors (model input parameters) subjected to sensitivity 

analysis, which is 16 in our case. 
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3. We used the radial design strategy proposed by Campolongo et al., (2011) to define 

the baseline points and the perturbation Δ.  

4. ‘𝑟’ baseline points sampled across the input parameter space are generated by the 

Maximin Latin Hypercube Sampling. 

5. In this method, total number of model simulations (𝑁) required depends on the base 

sample size or the number of EEs (r) and number of parameters (m). It is worth 

mentioning that EET can be used for three purposes: parameter screening, parameter 

ranking and parameter mapping. And the choice of r depends on the purpose of EET. 

In this study, we are more interested in screening out the non-influential parameters. 

We choose r as 70, and the choice is made based on the recommendations in the 

existing literatures, where EET is used for screening purposes (Saltelli et al., 2008; 

Sarrazin et al., 2016; Vanuytrecht et al., 2014, Ruano et al., 2012).  

6. Base sample size of r = 70 have resulted in over 1000 model evaluations (N): 

    𝑁 = 𝑟(𝑚 + 1)                Eq. (3.2) 

Next, we compute the sensitivity measures for each input factor (Eq. 3.3). To avoid the 

problems due to effects of opposite signs, we estimate the mean of the absolute values of 

elementary effects (|𝐸𝐸𝑖|) as proposed by Campolongo et al., (2011) 

    µ𝑖
∗ =

1

𝑟
∑ |𝐸𝐸𝑖|𝑟

1                 Eq. (3.3)  

 

3.3.2. Screening of input parameters  

The screening objective consists of separating the model input parameters into two distinct 

groups, parameters that are: influential (sensitive) and non-influential (insensitive) for 

streamflow simulation. There may be parameters with sensitivity index value, zero, which is 

completely insensitive. However, our goal is not only to screen out a completely insensitive 

parameters but also the parameters having small or negligible impact. We therefore assumed 

a threshold value for the sensitivity index, below which the parameters can be regarded as 

either completely insensitive or less influential (Eq. 3.4). This is a common practice followed 

in several studies while dealing with parameter screening using different SA methods (Gou et 

al., 2020b; Sarrazin et al., 2016; Tang et al., 2007; Vanrolleghem et al., 2015). 

    Eq. (3.4) 𝑋0 = {𝑋𝑖  𝑤ℎ𝑒𝑛 𝑆𝑖 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑} 
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Where 𝑋0  is the non-influential parameter, 𝑋𝑖  is the 𝑖 th input parameter and  𝑆𝑖  is the 

sensitivity index (mean of EE, µ𝑖
∗) of the 𝑖th input parameter. The choice of screening threshold 

can be subjective depending on the screening objective and case-specific threshold value are 

usually used (Sarrazin et al., 2016; Vanuytrecht et al., 2014), however very little information 

exists on this topic in the literature (Vanrolleghem et al., 2015). In this study, we set a 

screening threshold of 0.05 based on the visual analysis of the sensitivity index values of all 

factors at all subcatchments. We choose this threshold with the intention of screening out 

also the less sensitive parameters, apart from completely insensitive parameters with an aim 

of reducing the over-parameterization effects in the model. One should evaluate the SA 

results by assessing the screening convergence which can be assessed by quantifying the 

stability in the partitioning of sensitive and insensitive parameter as derived from Eq. 6. 

However, the results would then depend on the choice of threshold value which is not 

predefined. Therefore, to achieve a more objective screening convergence result, we 

compute the width of the 95% confidence interval of the sensitivity indices, estimated by the 

bootstrap method (Archer et al., 1997; Efron and Tibshirani, 1993), also followed in studies 

(Herman et al., 2013; Wang and Solomatine, 2019). We then use maximum width of the 95% 

confidence interval, as a statistic, across the lower influential input parameters, 𝑋0 suggested 

by (Sarrazin et al., 2016) shown in Eq. 3.5. 

    𝑆𝑡𝑎𝑡𝑆𝑐𝑟𝑒𝑒𝑛 =  max
𝑥𝑖∈𝑥0   

𝑆𝑖
𝑢𝑏 − 𝑆𝑖

𝑙𝑏     Eq. (3.5) 

where 𝑆𝑖
𝑢𝑏 and 𝑆𝑖

𝑙𝑏 are the upper and lower bounds of the sensitivity index of the 𝑖th input 

factor while m is the number of input factors. We consider screening convergence is reached, 

when  𝑆𝑡𝑎𝑡𝑆𝑐𝑟𝑒𝑒𝑛 value for the non-influential parameters (found in Eq. 3.5) is below 10% of 

the sensitivity index value of the most influential parameter. This is also followed in Herman 

et al., (2013) whereas Sarrazin et al., (2016), assessed convergence by directly using a 

threshold value. If the convergence is not reached for the lower influential parameters, it 

would require adding more samples to our previously chosen base sample size and run the 

model again and repeat this process again. 

3.3.3. Calibration strategy 

Next, we calibrate sensitive parameters separately on a subbasin level for the time (1990-

2000) with a 2-year warm up period (defined as 1988-1999). We use a sequence of Monte-

Carlo simulation, by generating 5000 near-random parameter sets from within the specified 



 

59 
 

range using Latin Hypercube Sampling Method (LHSM) with uniform distribution. LHS is one 

of the most effective and economical sampling methods that reduces the computational time 

and cost significantly (Wang and Solomatine, 2019). This method has been used in several 

studies relating to sensitivity and calibration problems in hydrology (Abe et al., 2018b; 

Bennett et al., 2018; Chaney et al., 2015; Muleta and Nicklow, 2005; Yeste et al., 2020). 

Different number of Latin hypercube samples were generated in these studies, for instance, 

Muleta and Nicklow, (2005) generated 5000 SWAT model parameter sets to calibrate daily 

streamflow; Yeste et al., (2020) calibrated VIC model using 10000 parameter samples. The 

choice of 5000 simulations in our study is based on the findings of some preliminary 

calibration experiments wherein we have tested 2000 to 10000 parameter sets for calibration. 

Calibration success is highly dependent on the choice of objective function or known as 

‘performance metric’ that measures the goodness of fit between the model simulations and 

observations. An objective function can have significant impact on the calibration 

performance. The most commonly used performance metrics are based on comparisons of 

simulated and observed response time series (e.g. Streamflow), such as the mean squared 

error (MSE), Nash– Sutcliffe efficiency (NSE), and root mean squared error (RMSE) (Mizukami 

et al., 2018). The objective function should be aligned with the modelling applications (Gupta 

et al., 1998). Our overall objective in this study is to achieve a reasonable simulation of 

streamflow. In most of the studies, also including this study, models are calibrated using 

observed river discharge due to its better availability than other variables such as soil 

moisture and ET. We use Kling-Gupta Efficiency KGE (Eq. 3.6-3.8) as the objective function to 

assess the model performance in the calibration period. The KGE metric balances the 

contribution to the error coming from all three main components, namely correlation (e.g., 

timing/dynamics), variability (e.g., seasonality), and systematic bias, and is now a widely used 

metric in hydrometeorological studies (Gupta et al., 2009; Knoben et al., 2019; Lilhare et al., 

2020; Mishra et al., 2020b; Rodriguez and Tomasella, 2016). For instance, (Mizukami et al., 

2018) compared VIC simulations calibrated with NSE and KGE and found the later results in 

overall better performance than NSE by improving mean and variability of the flow. KGE 

ranges in [-∞,1] with larger values indicating better performance. Additionally, we use the 

Percent-Bias (PBIAS) (Eq. 3.9) to evaluate our model performance specially to account for the 

high flow conditions. We adopt a common practice of selecting the best model simulations 

by using a top certain percentage of the total simulations (Chaney et al., 2015; Mockler et al., 
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2016). This is relevant in our study as choosing model simulations based on a particular KGE 

score is subjective given that the behavioral performance, as well as the behavioral 

parameters, vary across the subcatchments.  Therefore, we first assess the performance of 

top 10%, 5% and 2% of model simulations at every subbasin and choose the top 2% and top 

5% based on overall model performance across the subcatchments, hence not compromising 

with the performance quality and also accounting for equifinality. These behavioral models 

are further used to simulate streamflow in the validation period (2001-2010) for all the 

subcatchments. Top2% simulations are used for simulating the land cover and climate change 

impacts on hydrology (Chapter 4 and 5) and top5% simulations are used for evaluating the 

impacts of using local and global datasets in VIC (Chapter 6). Please note that choosing 2% 

models for chapter 4 and 5 is a compromise made, to have an ensemble of (best) calibrated 

models which are to be run in conjunction with different land cover and climate scenarios, 

and also to be able to perform the model runs within a reasonable time.  

   KGE =  1 − √(r − 1)2  +  (𝛼 − 1)2  +  (β − 1)2,  Eq. (3.6) 

        𝛼 =
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
     Eq. (3.7) 

                                                      β =
µ𝑠𝑖𝑚

µ𝑜𝑏𝑠
      Eq. (3.8) 

Where r is the linear correlation between observed and simulated discharge, 𝛼 is an estimate 

of flow variability error and β is a bias term. 𝜎𝑠𝑖𝑚 and 𝜎𝑜𝑏𝑠 are standard deviations in 

simulated and observed discharge, respectively. μ𝑠𝑖𝑚 and μ𝑜𝑏𝑠 are mean of simulated and 

observed discharge, respectively.   

    𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑂−𝑃).100𝑛

𝑖 =1

∑ 𝑂𝑛
𝑖 =1

                                       Eq. (3.9) 

Where 𝑂 and 𝑃 are the observed and predicted discharge values respectively and  𝑂 and 𝑃 

are the mean of observed and predicted discharge. n is the number of data points. 

         

3.4. Results 

3.4.1. Morris screening  

We first obtain the sensitivity indices for all the subcatchments shown in Figure 2.1 (Chapter 

2). We apply Eq. 3.4 on all the subcatchments to obtain five different sets of 𝑋0 i.e., five sets 

of non-influential parameters. We notice that there is a common set of parameters (binf, ds, 

dsmax, ws) which is more influential across all five subbasins. Also, there is a common set of 
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non-influential parameters (Ksat, diff, d1, d3, bd, rarc). Although the resulting influential and 

non-influential parameters at the subcatchments are comparable, we see few parameters 

which might be slightly influential for one subbasin whereas non-influential for the others. 

For instance, parameters exp and Wpf  are slightly above the threshold for Salebhata, whereas 

for other subbasins they are non-influential. Note that we cannot compare the value of the 

sensitivity indices of the parameters among the subcatchments, as µ𝑖 depends on scale of 

measurements of the model output, we can only compare the rank of the parameters. 

We realize there are no major differences in the sensitivity results of these subcatchments 

(Figure 3.1), hence we choose to obtain a single set of influential parameters for the whole 

basin and discard the rest (Figure 3.1, weighted average). We compute the weighted average 

of the sensitivity indices of each subcatchment, and the weights are assigned based on the 

catchment area (Eq. 3.10).  

  µ𝑖(𝑤𝑎) = ( ABa. µi + Aka* µi + ... + ASa* µi) / (ABa + AKa + ... + ASa)               Eq. (3.10) 

Where µ𝑖(𝑤𝑎)  is the weighted average of the ith input parameter; ABa, Aka and ASa are the 

catchment areas of Basantpur, Kantamal and Salebhata, respectively. We observe that the 

influential parameters obtained for the whole subbasin is dsmax, d2, binf, v, ws and ds, which 

is same as the common set of influential parameters obtained earlier for all the subbasins, 

with only one additional parameter, v. Convergence analysis of the Morris screening results 

suggest that the convergence for the non-influential parameters (Figure 3.2) has reached 

before reaching the total number of simulations (1190 simulations) and that the total number 

of model simulations run for Morris screening method was sufficient. Figure 3.3 shows 

maximum width of the 95% confidence interval of all the parameters below 0.08 (10% of the 

sensitivity index value of the most influential input factors) are indicated by a red dotted line. 

It satisfies the criteria that we set in Eq 3.5: all the parameters that are considered non-

influential in Figure 3.3, 𝑆𝑡𝑎𝑡𝑆𝑐𝑟𝑒𝑒𝑛 values of those parameters (marked in red) are below 0.08. 

The influential parameters identified by the Morris Method for the entire Mahanadi river 

basin are 4 soil parameters (binf, ds, dsmax, ws) and one routing parameter (v). Dsmax is the 

most sensitive parameter found in 4 out of 5 subbasins and having the largest interaction and 

direct effects on KGE. In the largest catchment, Basantpur, d2 is having the largest direct 

effect on KGE, however, dsmax is having the largest interaction effect. There is a clear 

separation in the sensitivity indices of dsmax from the sensitivity indices of the other 
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influential parameters. d2 and binf are the second most influential parameters followed by 

ws and v. d2 is the most important soil layer probably because it is the thickest soil layer and 

majority of the roots are placed in this layer which controls ET. Dsmax, ds and ws are the 

baseflow related parameters, interlinked with each other, associated with the third layer of 

soil moisture d3. 
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Figure 3.1: Sensitivity indices (Mean and Standard deviation) of Morris Method for VIC-3L 

parameters for (a-e) individual subbasins of Mahanadi river basin respectively (f) weighted 

average of all subcatchments. Parameters, top to bottom, listed on the right side are in 

ranking order, highest to lowest respectively, based on Mean of EEs. Red dashed vertical line 

is the screening threshold. Parameters that are Influential i.e., above the screening threshold 

are within the black dashed box. Rest of the parameters are non-influential. 
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(c) (d) 

(e) (f) 
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Figure 3.2: Convergence analysis with increasing sample size (expressed as number of 

simulations) for (a-e) all individual subcatchments respectively (f) weighted average of all 

subcatchments. 
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Figure 3.3: Maximum width of the 95% bootstrap confidence interval of all parameters for all 

subbasins. Dotted red line is the 𝑆𝑡𝑎𝑡𝑆𝑐𝑟𝑒𝑒𝑛 threshold, below which are the non-influential 

parameters that have converged. 

3.4.2. Calibration and validation 

Figure 3.4 shows the performance of VIC with respect to KGE and PBIAS in the calibration and 

validation period for all the subcatchments in the highest order of their catchment size. In 

overall, evaluation result suggests the model reproduced the observed flows remarkably well 

with the median KGE values of 0.85, 0.86, 0.82, 0.75, 0.63 in calibration and 0.77, 0.82, 0.72, 

0.60, 0.59 in validation at Basantpur, Kantamal, Kesinga, Salebhata and Sundergarh, 

respectively for top 2% model simulations. This is a considerable improvement, when 

compared to the total number (5000) of simulations with median KGE values of 0.46, 0.60, 

0.55, 0.51 and 0.02 at Basantpur, Kantamal, Kesinga, Salebhata and Sundergarh, respectively, 

and with lowest KGE values ranging from -0.08 to -0.91 across subcatchments. However, we 

observe a relative reduction in the daily KGE values at the smaller subcatchments (Sundergarh 

and Salebhata) in both calibration and validation period. The PBIAS values obtained in the 

calibration period (Figure 3.4 b) indicate that the model tends to be more biased (positively) 

as the catchment size decreases and that the largest catchment, Basantpur is least biased. 

The median PBIAS values at Sundergarh and Salebhata are +9% and +23% respectively in the 

calibration period and +19% and +55% in the validation period. It is to be noted that subbasins 

analyzed are human intervened and observed streamflow are controlled by minor reservoirs 

and dams which will affect the VIC simulations especially in the smaller subcatchments. 

Moreover, non-consideration of groundwater recharge and irrigation in VIC can also possibly 
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affect performance at smaller subcatchments (Chawla and Mujumdar, 2015). We observe a 

systematic reduction of performance (as measured by KGE and PBIAS) when moving from 

calibration to validation dataset. In overall, models reproduced the daily flows consistently 

when compared to the observed flows, during both calibration and validation period. Figure 

3.5 shows simulated and observed discharge in a calibration and validation year (zoomed to 

the monsoon period) for all subcatchments. Similar performance is observed throughout the 

simulation period. The overestimation in discharge (or the peak flows) in the smaller 

subcatchments as observed in Figure 3.4b is also reflected in the hydrographs of Figure 3.5. 

Overall, calibration and validation performances indicate that the model parameters were 

robust enough across both periods with comparable skills. Figure 3.7 shows plots of the water 

balance components (runoff and ET) resulting from the Monte Carlo simulation for all 

subcatchments.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4:  Boxplots showing (a) KGE and (b) PBIAS range for calibrated (black) and validated 

(grey) simulations, respectively. 

Figure 3.6 shows that the distribution of behavioral parameters/ best parameter sets within 

their respective variability ranges differs from one parameter to another as well as across 

subcatchments. The values of ds and ws are more broadly distributed in entire range of 

parameter space, reflecting high effect of these parameters on modelled streamflow through 

their interaction with other parameters. Contrarily, calibrated values of binf, dsmax, d2 and v 

(a) (b) 
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are relatively constrained in smaller ranges across subcatchments, towards either higher, mid, 

or lower values indicating direct influence of these parameters on the behavioral simulations. 

For instance, higher values of d2 and v, lower values of dsmax and mid values of binf resulted 

in the behavioral model simulations at the smaller subcatchment, Salebhata. Thickness of 

second soil layer, d2 is the most identifiable parameter across all subcatchments.  
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Figure 3.5:  Simulated and observed discharge in the calibration and validation period for all 

subcatchments. Hydrographs are zoomed in to the monsoon season of the most wet year 

during the calibration and validation period; model performance is similar in other years. 
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Figure 3.6: Parallel coordinate plot representing VIC-3L behavioural parameterization for all 

subcatchments obtained during model calibration. Lines in black are simulations where KGE 

lies within top 2% i.e., behavioural simulations and lines in grey are non- behavioural 

simulations. Behavioural KGE at Ba, Ka, Ke, Su and Sa ranges from 0.83 to 0.88, 0.85-0.88; 

0.81-0.84; 0.74-0.76 and 0.62 to 0.66 respectively. Parameters are defined in Tables 1. 
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Figure 3.7: Plots of the water balance components (runoff and ET) resulting from the Monte 

Carlo simulation for all subcatchments in the calibration and validation period. ‘Cal’ indicates 

calibration and ‘val’ indicates validation. 
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3.5. Discussions 

Our results are in agreement with previous VIC related studies conducted on several basins 

which show binf and d2 are the most sensitive parameters (Demaria et al., 2007; Gou et al., 

2020b; Lilhare et al., 2020; Yanto et al., 2017; Yeste et al., 2020). The most sensitive VIC model 

parameters as recommended by the model developers for most climatic, edaphic, and 

physiographic water settings are binf, d1, d2, d3, ds, dsmax and ws (Gou et al., 2020b). 

However, first- and third-layer soil depth (d1 and d3) are not found sensitive in this study. d1 

is the thinner topmost soil layer having no control on ET and subsurface processes. d3 

although have been tested within same (thick) range as d2, our root allocation approach in 

VIC probably would have affected the sensitivity of d3. Therefore, in line with (Gou et al., 

2020b), calibrating all seven soil parameters without SA screening would result in including 

unnecessary parameters. This result also agrees with the findings of (Bao et al., 2011; Demaria 

et al., 2007), that not all the default recommended parameters are sensitive, and also 

parameters not within the recommended list can be sensitive. For instance (Gou et al., 2020b) 

found only three parameters are sensitive for simulated streamflow across China among the 

default or recommended parameters whereas drainage parameter, exp (not recommended 

for calibration) is found sensitive in (Demaria et al., 2007). Also, the sensitivity is largely 

dependent on the objective function used, for instance most of these studies tested the 

sensitivity on NSE that focusses on peak flows. binf partitions the rainfall into surface runoff 

and soil moisture storage thus influencing the peak flows in the basin. On the contrary, 

baseflow parameters like Ds and Dsmax are found unimportant when tested against PBIAS, 

relative to NSE and KGE in (Lilhare et al., 2020). 

Typically, only the soil parameters are calibrated in VIC and vegetation parameters are kept 

constant. Varying soil depths (during calibration) pose indirect influences on both timing and 

magnitude of the soil water available for ET, thereby influencing the ET rates. However, our 

approach of varying root zone depths and fractions during each model run provides 

substantial control over the water balance by directly influencing the ET rates. Also, in many 

LSM’s (Ex: Noah) in contrast to the practice surrounding VIC, soil depths are kept constant 

whereas vegetation parameters which influences ET are varied. However, soil depths affects 

many characteristics of the rainfall runoff response, thus having greater control on overall 

model performance than the vegetation parameters(Newman et al., 2017). 
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Our calibration results suggests that parameter ds and ws requires more intensive calibration 

to constrain their ranges whereas d2 and binf, although being more important, but are easier 

to calibrate as the values are more concentrated in smaller ranges. This contradicts the 

findings of (Zhao et al., 2012) that parameters d2 and binf require intensive calibration, but 

other parameters only need minor adjustments. Interaction between VIC parameters related 

to subsurface flows, dsmax, ds and ws appears to play an important role in the calibration 

process which is also outlined in (Huang and Liang, 2006). We observe that the calibrated 

parameter ranges are quite different for individual subbasins i.e., different parameterization 

favors different subbasins, which have implications on the simulated hydrological 

components for each subbasin. Therefore, selecting a common set of parameter for 

simulating the hydrological processes in entire basin, as done in previous studies in this region 

(Dadhwal et al., 2010; Das et al., 2018) would introduce errors in the hydrological response in 

some subbasins. For instance, higher values of binf in Sundergarh and lower values of binf at 

kesinga may lead to large differences in their corresponding hydrological processes which 

shall have a consequence on partition of water in soil layer. We observe even after the 

rigorous sensitivity analysis and model calibration process, top 2% of the model simulations 

have resulted in KGE uncertainties that ranges from 0.63 to 0.88 across subcatchments. This 

suggests that calibrating all parameters without reduction of parameters through SA would 

have resulted in more equifinality i.e., resulting in a greater number of comparable 

simulations. Therefore, careful screening of the model parameters is required to reduce the 

impacts of uncertainties due to model parameters on model simulations. 

Despite the available automatic calibration techniques, it is difficult to find a unique set of 

optimal parameters in the calibration period (Huang and Liang, 2006). Moreover, the optimal 

or the best parameter set during calibration are not necessarily the best parameter sets for 

the validation period as also observed in our case (not shown here). Therefore, it is important 

that we identify and represent the model simulation uncertainties that are associated with 

model parameter uncertainties in our studies, especially for basins having limited data 

available for streamflow, for instance, only streamflow in our case. Also, the uncertainty 

bound of the simulations are likely to be compensating for errors due to other model 

prediction uncertainty sources, such as input data and structural uncertainties associated 

with the underlying model (Gou et al., 2020b). 
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3.6. Conclusions 

A sensitivity analysis is carried out prior to the calibration process to identify the important 

parameters that would have a major control in simulating discharge and other water balance 

components of Mahanadi river basin and also reduce the number of parameters for 

calibration. We found that not all the recommended parameters (by VIC model developers) 

are sensitive, for instance, first and third depth of soil layer (d1 and d3) is not found sensitive, 

instead routing parameter, flow velocity (v) is found sensitive. However, in line with other 

studies, soil parameters (binf, d2, ds, dsmax and ws) are found more sensitive than the 

vegetation parameters. 

The sensitivity guided VIC calibration technique was efficient and yielded very good to good 

simulations for all subbasins with median KGE ranging between (0.63-0.86) in calibration and 

(0.59-0.82) in validation across subcatchments. Calibration using Monte Carlo simulations 

showed that there are many parameters sets that can be regarded as ‘equally good 

simulations’ based on their KGE values, which is known as equifinality and hence should be 

taken into consideration in hydrological modelling. This technique is also in agreement with 

other possible practical applications of the VIC model for studying the hydrological impacts of 

environmental changes, where a parameter set forming an uncertainty bound, must be 

chosen prior to the simulations using land cover and climate scenarios (Yeste et al., 2020). 
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4. Quantifying the impact of land cover changes on 
hydrological responses 

 

 

4.1. Context and Background 

Land use and land cover change (LULC) induced by the rapid anthropogenic activities, is one 

of the major causes of change in hydrological and watershed processes (Rogger et al., 2016). 

Alterations of existing land cover types and land management practices in a catchment can 

thereby, significantly modify the rainfall path into runoff by changing the hydrological 

dynamics such as surface runoff, baseflow, Evapotranspiration (ET), water holding capacity of 

the soil, interception and groundwater recharge, thus reflecting a change in the water 

demand (Berihun et al., 2019; Bosch and Hewlett, 1982; Costa et al., 2003; Foley et al., 2005; 

Garg et al., 2017; Hamman et al., 2018; Mao and Cherkauer, 2009; Rogger et al., 2016; Zhang 

et al., 2014). For instance, developing countries like India are facing rapid growth in 

population which has prominent effects on LULC dynamics through deforestation, rapid 

urbanization, and agricultural intensification, subsequently modifying the hydrological cycle 

in many river basins of India. A recent analysis on global land cover change have shown a 

significant increase of 82% in the croplands in India (Chen et al., 2019a; IPCC, 2019). 

Therefore, a comprehensive understanding and evaluation of land cover change impacts on 

hydrological processes are essential for decision makers to plan environmental policies which 

focuses on water resource allocations, riparian ecosystem protection and river restoration 

(Chen et al., 2019b; Chu et al., 2013). 

This chapter is published in the Hydrology and Earth System Sciences journal (HESS). This 

paper has been modified to enhance consistency all through this dissertation. 

Citation: Naha, S., Rico-Ramirez, M. A., & Rosolem, R. (2021). Quantifying the impacts of 

land cover change on hydrological responses in the Mahanadi river basin in 

India. Hydrology and Earth System Sciences, 25(12), 6339-6357. 
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Many studies have attempted to evaluate the hydrological responses to different LULC 

patterns on specific geographic locations (Abe et al., 2018a; Chu et al., 2013; Eum et al., 

2016b; Li et al., 2015; Ma et al., 2010; Rodriguez and Tomasella, 2016; Viola et al., 2014; 

Woldesenbet et al., 2017) including Indian river basins (Babar and Ramesh, 2015; Dadhwal et 

al., 2010; Das et al., 2018; Gebremicael et al., 2019; Wilk and Hughes, 2002). Most of these 

studies used physically distributed hydrological models (e.g., SWAT, VIC, MIKE-SHE) to 

simulate the complex hydrological processes and to examine the impact of LULC changes on 

those processes. Conventionally, this is done by calibrating and validating the hydrological 

model against the observed data and then setting up that single calibrated model for a 

baseline land cover scenario. The calibrated model is then run for different land use scenarios 

and subsequently the differences in simulations are compared. However, it is widely 

recognised that hydrological predictions obtained from single calibrated model can be biased 

and therefore the measure of their reliability is always questionable (Beven and Binley, 1992; 

Huang and Liang, 2006). There may exist ‘equally probable parameter set’ or ‘behavioural set’ 

that can yield equally good or acceptable model predictions, due to the complex interactions 

among the model parameters to represent the complex hydrological processes (Beven and 

Binley, 1992). This is known as equifinality and is considered as one of the main sources of 

uncertainty in hydrological modelling (Her et al., 2019). Recent climate change studies have 

acknowledged the uncertainties stemming from model parameters, and therefore they take 

into account these uncertainties while predicting the hydrological responses due to climate 

change (Chaney et al., 2015; Feng and Beighley, 2020; Her et al., 2019; Huang and Liang, 2006; 

Joseph et al., 2018; Mockler et al., 2016; Singh et al., 2014). However, little is known about 

the contributions of model parameter uncertainties to the land use change impacts and thus, 

very few studies exist (Breuer et al., 2006; Chen et al., 2019b) which reported that 

uncertainties associated with the model parameters could significantly influence land cover 

change impacts and hence should not be overlooked while modelling hydrologic responses to 

LULC change. 

This paper specifically focusses on the Mahanadi river basin, an easterly flowing river basin in 

India. Eastern part of India is amongst the most rapidly changing landscape over the country, 

specifically, Mahanadi river basin has undergone drastic land cover changes in the last 
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decades (Behera et al., 2018; Dadhwal et al., 2010). In this study, we address the science 

questions: 

1. What are the expected impacts of LULC changes on the water balance of the Mahanadi 

river basin?  

2. How these predicted impacts vary as a result of model parameter uncertainties?  

The major objectives of this study are: 

1. To predict the changes in hydrological processes owing to historical and future 

changes in LULC 

2. To understand the contribution of uncertainty from hydrologic parameterization to 

the hydrologic projections due to LULC change. 

To this end, a large scale physically semi-distributed hydrological model, the Variable 

Infiltration Capacity (VIC) (Liang et al., 1994) and historical and future land cover scenarios 

from the Land Use Harmonisation 2 (LUH2) database (Hurtt et al., 2011) are used to simulate 

the discharge and other hydrological components at daily time scales in the Mahanadi river 

basin.  

We first perform sensitivity analysis of the model parameters and calibrate the hydrological 

model using Monte Carlo simulations to identify behavioural model simulations that implicitly 

account for the uncertainties from model parameterisation. Behavioural models are then 

used to predict the hydrological impacts due to different LULC scenarios. The land cover 

scenarios used in this study are most up-to-date scenarios, available from version 2 of the 

Land Use Harmonization (LUH2) dataset, which represents future changes in the LULC based 

on Shared Socioeconomic Pathways (SSPs) (O’Neill et al., 2016). Previous studies (Breuer et 

al., 2006; Chen et al., 2019b) have focussed only on the historical land use scenarios to 

evaluate the hydrological impacts, however and to our knowledge , this is the first study that 

uses applications of the VIC model in conjunction with future land cover datasets produced 

under combined SSP and RCP scenarios (descriptions in Chapter 2) . While most past studies 

in other catchments used aggregated (monthly) time steps to model the change, we use daily 

time steps to capture the dynamics of daily flow variability. Moreover, analysis in most land 

use impact studies is limited just with the streamflow, missing an overall picture of the 

hydrological processes.  
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4.2. Materials and Methods 

4.2.1. Model input datasets and parameters 

We implement VIC model, version 4.2.d in the water balance mode at a daily time step and 

at a grid resolution of 0.05◦ over the 5 subcatchments of the Mahanadi river basin. Flows are 

routed to the subcatchments of Basantpur (Ba), Kantamal (Ka), Kesinga (Ke), Sundergarh (Su) 

and Salebhata (Sa) (See Figure 2.1, Chapter 2). The ability of VIC model to simulate the impacts 

of LULC changes on hydrology are well documented in various research articles (Garg et al., 

2017, 2019; Hurkmans et al., 2009; Mao and Cherkauer, 2009; Patidar and Behera, 2019; 

Zhang et al., 2014). For, descriptions about the structure and formulations of the model 

please refer to Chapter 2 of this thesis. 

The key input data required by the VIC model are meteorological forcings (precipitation, 

maximum temperature, minimum temperature, and wind speed), soil type, land cover 

information and topographic features. Topographical features are determined using the 30-

meter CARTO-DEM (Cartosat-1 Digital Elevation Model), a national DEM developed by ISRO 

(Indian Space Research Organization) (Sivasena Reddy and Janga Reddy, 2015). Daily gridded 

precipitation (resolution, 0.25◦) and maximum and minimum temperature (resolution, 1◦) for 

the time period (1988-2010) are obtained from India Meteorological Department (IMD) (Pai 

et al., 2014). All climate variables are resampled to the model grid resolution of 0.05◦.  

Soil textures are derived from the digitized soil map as provided by National Bureau of Soil 

Survey and Land Use Planning (NBSSLUP) (Scale 1:250000) (Figure 2.6a, Chapter 2). Land cover 

maps from two different sources i.e., local and global, are used in this study. The local LULC 

map (Figure 4.1a) is derived from National Remote Sensing Centre (NRSC), India of year 2005 

(scale 1:250000; resolution 56 meters) and is used in the model runs while performing 

sensitivity analysis, model calibration and validation. Global land cover scenarios are obtained 

from LUH2 (Section 2.2.2.3, Chapter 2) which are used in model simulations for predicting 

impacts of land cover changes on hydrological components. All LULC maps used in this study 

are reformatted and reclassified into USGC LULC types as required by the VIC model (Figure 

2.7 a, Chapter 2). Leaf Area Index (LAI) is an important vegetation parameter which is specified 

at a mean monthly basis in VIC. We obtained monthly mean LAI averaged over the time period 

(2000-2015) from MODIS AQUA/TERRA, shown in Figure 4.1b. Wind speed for the period 

1988-2010 is obtained from NCEP/NCAR reanalysis of resolution 1◦. The observed discharge 
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at daily scales at multiple gauges (Figure 2.1) for the simulated time (1988-2010) are obtained 

from the Central Water Commission (CWC), India, for validating the simulated discharge. 

To analyse the parameter space uncertainty, we calibrated the influential parameters which 

we obtained from sensitivity analysis (performed over 16 VIC model parameters) at all 

subcatchments of Mahanadi river basin using Monte Carlo simulations, to obtain the best or 

‘behavioural’ set of VIC models. Ten years (1990–2000) of daily discharge was used for model 

calibration with a warmup period of two years 1988-1989, and 14 years of data (2001–2014) 

was used for validation. These behavioural parameter set was selected, based on Kling-Gupta 

Efficiency (KGE). More details regarding sensitivity analysis, model calibration and validation 

can be found in Chapter 3 of this thesis. 

 

 

 

 

 

 

 

 

Figure 4.1 (a) LULC map of Mahanadi river basin from NRSC of year 2005 (b) Comparison of LAI 

values from MODIS, averaged over the time period, 2000-2015 and GLDAS for the land cover 

classes shown in LULC map on (a). 

Another important factor linking vegetation characteristics to hydrological processes in VIC is 

the root zone distribution. We derived root zone depths and estimated the fractions of roots 

in each zone following Zeng, (2002) for each vegetation type, and used a simplified approach 

to vary the root zone distributions with respect to the soil depths during calibration. For 

details on our root allocation approach, please refer to Chapter 2 of this thesis. 

(a) 
(b) 
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4.2.2. LULC scenarios 

All the simulations in the calibration and validation period are performed using a static local 

LULC map of year 2005 derived from NRSC (Figure 4.1a). Simulations using this land use map 

shall be termed as NRSC2005 henceforth. Next, we used a set of land use scenarios based on 

Socio-economic Pathways (SSPs) and Representative Concentration Pathways (RCPs), from 

the recently released , Land Use Harmonization Project (LUH2) data set (release “LUH2v2h” 

and LUH2v2f) for the time period of (850–2005) and (2015-2100) respectively (Hurtt et al., 

2018)  (Table 2.3, Chapter 2). The LUH2 approach estimates the gridded land use fractions, 

annually at a resolution of 0.25◦.  

 Table 4.1 LUH2 LULC classes remapped to VIC LULC cover classes. 

 

 

 

 

 

 

 

 

 

 

 

The land use fraction maps are available for each land use type at a resolution of 0.25◦. So, 

we have first obtained LUH2 fraction maps of different LULC types for Mahanadi basin extent 

at a resolution of 0.25◦ and further re-gridded to VIC grid size of 0.05◦. Next, to run the VIC 

model, we have prepared a vegetation parameter file where we included the fractional 

coverage of all LULC types for each grid cell ensuring that each grid will contain more than 

one vegetation type. The land use classes are reduced to simplify our model application, and 

consequently remapped to the VIC land use classes by assuming all primary (Forested or Non-

LUH VIC 

Forested primary land Deciduous Broadleaf Forest (DBF) 

Non forested primary land Deciduous Broadleaf Forest (DBF) 

Potentially forested secondary land Deciduous Broadleaf Forest (DBF) 

Potentially non-forested secondary land Deciduous Broadleaf Forest (DBF) 

Managed pasture Grassland (GL) 

Rangeland Grassland (GL) 

Urban land Urban/built up (UB) 

C3 annual crops Cropland (CL) 

C3 perennial crops Cropland (CL) 

C4 nitrogen-fixing crops Cropland (CL) 
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forested) and secondary (Forested and Non-forested) land to Deciduous Broadleaf Forest 

(DBF), Managed pasture and Rangeland are considered as Grassland and all crops are merged 

into a single Cropland class. Urban land and water bodies are retained (See Table 4.1). It is 

worth mentioning that the ‘potentially non-forested secondary land’ class in the LUH2 

datasets matched to the forested areas in NRSC2005 and hence both mapped into DBF which 

is the dominant forest type in the basin (Figure 4.2).  

 

 

 

 

 

 

Figure 4.2 Forested areas in NRSC, ‘Potential Non-Forested areas’ in LUH2 and ‘potentially 

forested areas’ in LUH2. ‘Potential Non-Forested areas’ in LUH2 is comparable with the 

Forested areas in NRSC, through visual inspection. Therefore, both the ‘potentially forested 

area’ and ‘potentially non-forested area’ are combined and mapped as forest. 
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Figure 4.3 Comparison of spatial patterns of land cover types from NRSC and LUH for the 

baseline year, 2005. All land cover classes shown here are resampled to the model grid 

resolution of 5km. The color bar represents the fraction of area covered by each land cover 

type. 

We used the behavioural models to simulate discharge for the baseline scenario using land 

cover map from LUH2 of year 2005 so as to attain more confidence in the future scenarios. 

We compare LULC maps, NRSC2005 and LUH2005 (Figure 4.3) and observe spatial patterns of 

the most dominant land-use classes, Cropland (CL) and Forest (F), shows a similar spatial 

distribution and having comparable aerial coverage. The only notable difference in both maps 

is that the Barren ground (BG) class is missing in LUH2005. Table 4.2 shows the percentage of 

area covered by each land use classes in the basin. Note that we will refer to DBF as Forest (F) 

henceforth. 
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Table 4.2 Percent of each Land use type in NRSC2005 and LUH2005 in the entire Mahanadi 

river basin (WB – Water Body; ENF – Evergreen Needleleaf Forest; DBF – deciduous Broadleaf 

Forest; GL- Grassland; CL- Cropland; U – Urban) 

 

 

 

 

 

 

 

 

 

Among the future scenarios, owing to the large computational demand of our simulations, 

we only considered the ‘worst’ case scenario, RCP3.4 SSP4, which resulted in maximum 

change in the land cover fractional area (Figure 4.4). For our study, we have not taken into 

account the actual uncertainty due to the land cover scenarios. However, the percentage of 

land cover change relative to the baseline from other LUH2 scenarios is either negligible or 

are comparable to our chosen scenario. Therefore, our chosen scenario which shows the 

maximum changes in land cover will likely produce the largest impact. 

Land cover changes and fractional area covered in other future scenarios are shown in Figure 

2.7 in Chapter 2. Four distinct years have been chosen for this study: 2005 (Baseline), 2015 

(Present), 2050 (Near Future) and 2100 (Far Future) to study the impacts of LULC change in 

the Mahanadi river basin. A sharp decrease in the forest cover is observed at the expense of 

agriculture in the years 2050 and 2100 (Figure 4.4). We run the behavioural models three 

times using the individual LUH datasets: (1) with land use map ‘LUH2015’, termed as the 

‘present’ (P) scenario (2) with land use map ‘LUH2050’, termed as the ‘Near Future’ (NF) 

scenario (3) and with land use map ‘LUH2100’ which is termed as the ‘Far Future’ (FF) 

scenario. To account for the extreme hydrological effects that these changes could cause, two 

hypothetical scenarios are framed (1) ‘All Cropland’ (CL) scenario where all the grassland and 

LULC classes (%)         NRSC2005 

 

LUH2005 

 
W  2.6 0.76 

ENF  0.08 0 

DBF  35.98 41 

GL  0.13 4.7 

CL  49 53 

U  0.52 0.4 

BG  12.3 0 
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forest areas are transformed into cropland (2) ‘All Forest’ (F) scenario where all the cropland 

and grassland areas are transformed into forest. The urban and water bodies in these 

hypothetical scenarios are retained as per the baseline scenario. Notice that the daily 

meteorological forcing used in all the model simulations is the same and obtained from the 

current climatology (i.e., 1990-2010). Here, we focus on identifying the impacts on 

hydrological responses mainly by applying individual land cover scenarios. Therefore, any 

changes observed in the predicted hydrological components will be only attributed to 

changes in LULC. It is also worth mentioning that running model simulations with different 

land cover scenarios would not directly impact the soil parameters identified in our chosen 

behavioural models. That is because all soil related parameter values in VIC are assigned solely 

based on soil textures. 

In all the five cases of model simulations, meteorological forcing for the time (2001-2010) is 

held constant i.e., the daily precipitation, maximum and minimum temperatures and wind 

speed are same across all the scenarios. Therefore, any changes observed in the hydrological 

components in these scenarios will be only due to the change in land use. The percent areas 

covered by each land use classes at all subcatchments across the scenarios are shown in Table 

4.3.  
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Figure 4.4: Top: Fraction of catchment area occupied by Land use classes for scenario RCP3.4 

SSP4 Bottom: land cover scenarios from LUH (resolution- 25 km) for years 2015, 2050 and 

2100 used in this study. LUH land cover classes shown here are resampled to the model grid 

resolution and only the predominant class is shown here for clarity. For actual model 

simulations VIC accounts for the individual proportion for each land cover type at each grid 

point. 
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Table 4.3 Land cover area change across all subcatchments of Mahanadi river basin 

 

  

LULC 
classes 

(%) 

 
Baseline 
2005 

 

Present 
2015 

Near Future 
2050 

Far Future 
2100 

All Cropland All Forest 

   Basantpur    

CL  40 54 69 78 94 0 
F  54 41 23 16 0 94 

GL  1 4 6 4 0 0 
w 5 1 1 1 5 5 
U  1 1 1 1 1 1 

   Kantamal    

CL  51 44 58 70 95 0 
F  44 51 33 25 0 95 

GL  0 5 8 5 0 0 
w 5 0 0 0 5 5 
U  0 0 1 1 0 0 

   Kesinga    

CL  44 50 62 73 95 0 
F  51 45 30 22 0 95 

GL  0 5 7 5 0 0 
w 5 0 0 0 5 5 
U  0 0 1 1 0 0 

   Sundergarh    

CL  29 67 77 83 96 0 
F  67 29 17 15 0 96 

GL  0 3 4 2 0 0 
w 4 0 0 0 4 4 
U  0 0 1 1 0 0 

   Salebhata    

CL  34 61 73 83 95 0 
F  61 34 19 11 0 95 

GL  0 0 7 6 0 0 
w 5 0 0 0 5 5 
U  0 0 1 0 0 0 
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4.3. Results 

4.3.1. Sensitivity Analysis, Model Calibration and Validation 

It is to be noted that SA is conducted for all subbasins individually, hence the Morris screening 

results obtained for each subbasin are independent of each other. However, we observe that 

the non-influential parameters match closely with each other across subbasins (Figure 3.1, 

Chapter 3). Based on the Morris sensitivity measures, there are six sensitive (or influential) 

parameters namely dsmax, d2, binf, v, ws and ds.  

Figure 3.4a (Chapter 3) shows the performance of VIC with respect to KGE in the calibration 

and validation period for all the subcatchments in the highest order of their catchment size. 

In overall, evaluation result suggests the model reproduced the observed flows remarkably 

well with the median KGE values of 0.85, 0.86, 0.82, 0.75, 0.63 in calibration and 0.77, 0.82, 

0.72, 0.60, 0.59 in validation at Basantpur, Kantamal, Kesinga, Salebhata and Sundergarh, 

respectively. Figure 3.6 shows that the distribution of behavioral parameters within their 

respective variability ranges differs from one parameter to another as well as across 

subcatchments. Thickness of second soil layer, d2 is the most identifiable parameter across 

all subcatchments. More details on the results of sensitivity analysis and model calibration 

can be found in Chapter 3. 

4.3.2. Baseline scenario performance 

We compare the performance of calibrated VIC models in the baseline scenario (using 

LUH2005) against the validation performance (using the NRSC2005) for the period 2001-2010.  

The boxplots in Figure 4.5(a) shows daily KGE values for the baseline and validation 

simulations for all subcatchments studied here. The KGE range for the calibration, validation 

and baseline simulations of daily streamflow for all subcatchments are listed in Table 4.4. The 

median KGE values for the baseline at Ba, Ka, Ke, Su and Sa are 0.62, 0.64, 0.58, 0.62 and 0.72 

respectively. The model performed relatively better (to the calibration) at the smaller 

subcatchments, Sa and Su in the baseline whereas decline in the performance is observed at 

subcatchments, Ba, Ka and Ke. PBIAS values (Figure 4.5(b)) indicates that baseline simulations 

are more biased (negatively) than validation simulations at bigger catchments. The median 

PBIAS values at Ba, Ka and Ke are -28%, -29% and -33% respectively. This underestimation can 

be attributed to the absence of 12% Barren Ground in the baseline land cover, which is 

replaced by croplands (4%), forests (5.02%), grasslands (4.57). The increase in flows due to 
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the increase in cropland is compensated by the decrease in flows due to the increase in forest. 

Therefore, the underestimation in the simulated flows using LUH2005 may result from the 

increasing grasslands which increased LAI, thus resulting in an increase in ET and decrease in 

surface runoff, respectively. Contrarily, a slight positive bias of 3% is observed at the smallest 

subcatchment (Sa) in the baseline simulation, compared to +55% in the validation simulation. 

KGE values obtained across calibration, validation and baseline period indicates an overall 

good performance of the basin as per the existing studies that have used KGE as a 

performance metric (Knoben et al., 2019). In overall, baseline land cover map, LUH show 

comparable model performance against local land cover map, NRSC, in the historical period 

with the model being able to capture the seasonality and LULC dynamics while simulating the 

daily flows. 
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Figure 4.5 Box plot showing (a) KGE range and (b) PBIAS for calibrated, validated and 

baseline scenario simulations   

(a) 

(b) 
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Table 4.4 Range of KGE’S for the daily calibration and validation at all subcatchments. 

 

4.3.3. LULC impacts and uncertainties 

Mahanadi river basin receives approximately 85% of the total annual rainfall during the 

monsoon months (June-Sept) which also results in 85% of the annual river discharge during 

the monsoon months. Moreover peak discharge also mostly occurs during the monsoon (Jin 

et al., 2018). Therefore, we first compute the percent change in annual average of extreme 

flows, i.e., flows of 95th percentile or higher (to represent the peak flows). Figure 4.6a shows 

percent change in annual average of extreme flows (i.e., 95th percentile or higher) for the 

time 2001-2010 in scenarios NF, FF, All Cropland (CL) and All Forest (F) with respect to baseline 

scenario for the behavioural models. The range of percent change represents the related 

uncertainty in model predictions arising from the behavioural model parameters. We observe 

an insignificant positive change in projected extreme flows in the Present (P) scenario despite 

a major increase 6% to 36% in croplands replacing forests across four out of five 

subcatchments (not shown Figure 4.6a). We observe a prominent increase in the extreme 

flows at all subcatchments in both future scenarios (NF and FF). The projected change in 

extreme flows in NF ranges between 1.3% and 10.7% across the subcatchments. The median 

percent change in the NF scenarios at subcatchments Ba, Ka, Ke, Su and Sa are 3.6%, 2.6%, 

1.8%, 8.1% and 3.8%, respectively. This increase in extreme flows in NF can be attributed to 

the reduction in forest cover (-20% to -42%) at the expense of cropland (+7% to +48%) across 

the subcatchments. Percent increase of slightly higher magnitudes are observed in FF 

scenario in response to further increase in croplands. The projected changes in extreme flows 

in FF ranges between 1.4% and 15.4% across the subcatchments. The median percent change 

Subcatchments Calibration (1990-2000)  

 

Validation (2001-2010) 

 

Baseline (2001-2010) 

Ba 0.83-0.88 0.70-0.83 0.54-0.75 

Ka 0.85-0.88 0.76-0.88 0.54-0.73 

Ke 0.81–0.84 0.65-0.76 0.50-0.65 

Sa 0.74-0.76 0.55-0.67 0.58-0.67 

Su 0.62-0.66 0.54-0.60 0.61-0.75 
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in FF scenario at subcatchments Ba, Ka, Ke, Su and Sa are 4%, 2.8%, 2.3%, 11.3% and 4.1% 

respectively in response to reduction in forest cover (-19 to -50%) at the expense of cropland 

(+19 to +54%) across the subcatchments. As anticipated, maximum percent increase in the 

extreme flows (1.2 to 20.5%) are observed in hypothetical ‘All Cropland’ scenario where all 

forests and grasslands are replaced by cropland and maximum reduction (-2 to -41%) 

observed in ‘All forest’ scenario where all the croplands and grasslands are converted to 

forests. The projected percent changes in mean annual flows (Figure 4.6c) are slightly higher 

than the extreme flows across all scenarios and subcatchments. The median values in both 

future and CL scenario shows slightly higher positive percent change in the range of 3 to 11% 

and higher negative percent change -5 to -25% in F scenario.  

Maximum increment in extreme flows and annual flows across all scenarios, is recorded at 

the largest subcatchment Basantpur which is in the range of 194 to 496 m3s-1 and 31 to 35 

m3s-1 respectively. The maximum reduction of 712 m3s-1 and 59 m3s-1 is observed in ‘All Forest’ 

scenario at Basantpur. Much lesser change in terms of magnitudes is observed in the annual 

flows (Figure 4.6b) compared to the extreme flows (Figure 4.6d). This can be explained by the 

fact that the basin receives approximately 85% of the total annual rainfall during the monsoon 

months (June-Sept). Therefore, with negligible changes occurring during rest of the year, 

changes in extreme flows occurring only during the monsoon months are masked out when 

computed for the entire year. We further computed the difference between maximum and 

minimum values (ranges) of projected extreme flows as a measure of the amount of 

uncertainty contained in ensemble predictions made using land cover scenarios and multiple 

(behavioural) parameter sets (Table 4.5). Among all the scenarios, maximum uncertainty is 

observed in the hypothetical ‘All Forest’ scenario followed by ‘All Cropland’ scenario. In 

overall the uncertainty of hydrological model parameterization is observed at the largest 

subcatchment Basantpur and decrease with respect to the decrease in the catchment size. 

  



 

90 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: (a) Percent change in extreme flows (i.e., 95th percentile or higher) (b) Change in 

extreme flows in m3s-1 (c) Percent change in mean flows (d) Change in mean flows in m3s-1, 

averaged annually over the time 2001-2010 in the Near future (NF), Far future (FF), Cropland 

(CL) and Forest (F) scenarios with respect to baseline scenario for all the subcatchments. 

Please note that the climate forcing is kept fixed for the period corresponding to year (2001-

2010) The results are shown for the behavioural model simulations obtained through 

calibration. 

We analysed the water balance components to understand the factors causing changes in the 

streamflow. We notice that the model is able to estimate all the water budget components 

and maintain proper closure of the water balance in all the scenarios across the 

subcatchments. In overall, we found that the increase in the mean annual flows is caused due 

to the increment in runoff and reduction in ET across all subcatchments.  

  

(a) (b) 

(c) (d) 
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Figure 4.7: Percent change in (a) mean runoff (b) mean ET averaged annually over the time 

(2001-2010) in the Near future (NF), Far future (FF), Cropland (CL), Forest (F) scenarios with 

respect to baseline scenario for all the subcatchments. Please note that the climate forcing is 

kept fixed for the period corresponding to year (2001-2010). The results are shown for the 

behavioural model simulations obtained through calibration. 

Figure 4.7 shows the percent change in mean runoff mean ET averaged annually over the time 

(2001-2010) in the future scenarios with respect to baseline scenario for all the 

subcatchments. Positive median changes are observed in runoff in scenarios (NF, FF and CL) 

ranging between 2.8 to 14 % and negative changes of -4 to -37 % in F scenario. Negative 

median changes are observed in ET in scenarios (NF, FF and CL) ranging between -1.4 to -3.4 

% and positive changes of 1.9 to 7.8 % in F scenario. Removal of forests at the expense of 

cropland decreases the LAI of the natural vegetation and hence decreases ET. Moreover, the 

removal of forest cover reduces the root water uptake by plants which increases the water 

content of the second and third layer of the soil. The top thin soil layer in VIC model helps in 

partitioning the rainfall amount into direct runoff and the amount entering the soil. 

Therefore, the increase in the cropland results in more direct runoff thus reducing the soil 

moisture content in the first soil layer. The increase in runoff is not significant, despite the 

occurrence of major deforestation in the future scenarios. This is because the decrease in ET 

due to forests removal is compensated as increment in croplands also leads to a major  

(a) (b) 
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Table 4.5 Ranges of percent change, change in flows, and uncertainty (i.e., difference between 

max. and min. predicted flow) in extreme and mean annual flows in all the scenarios with 

respect to the baseline scenario. 

 

Mean annual extreme Ba Ka Ke Su Sa 

       Near future    

Change (%) 2.3 to 5.5 1.4 to 4.7 1.3 to 2.7 4.7 to 10.7 2.7to 4.3 

change (m3s-1) 132 to 289 62 to 166 42 to 77 32 to 75 27 to 41 

Uncertainty (m3s-1) 157           104 36 41 14 

                                                                                           Far future 

Change (%)      2.4 to 6.5 1.4 to 5.6 1.6 to 3.5 6 to 15.4 3 to 4.7 

change (m3s-1) 137 to 347 63 to 195 51 to 100 42 to 109 28 to 45 

Uncertainty (m3s-1) 210 132 49 67 17 

                                                                                           All Cropland 

Change (%) 2.4 to 1.2 1.2 to 8.6 2.1 to 5.7 6.5 to 20.5 5 to 8.5 

change (m3s-1) 124 to 496 51 to 301 67 to 164 45 to 147 49 to 81 

Uncertainty (m3s-1) 372 250 97 102 32 

                                                                                              All Forest 

Change (%) -4 to -14.4 -2 to -11.4 -2.6 to -6.6 -15.8 to -41 -13.5 to -22 

change (m3s-1) -218 to -712 -85 to -400 -86 to -190 -109 to -289 -131 to -213 

Uncertainty (m3s-1) 494  315 104 180 82 

      

Mean annual flows Ba Ka Ke Sa Su 

     Near future    

Change (%) 3.7 to 7.6 2.5 to 6.13 2.4 to 4.2 4.9 to 9.7 3.4 to 4.6 

change (m3s-1) 21 to 31 8.6 to 16 5.2 to 7.5 34 to 61 2.6 to 3.3 

Uncertainty (m3s-1) 10 7.4 2.3 27 0.7 

      

                                                                                           Far future 

Change (%)       3.4 to 7.9 2.12 to 6.5 3.4 to 4.6 6 to 13.2 3.24 to 4.6 

 change (m3s-1) 19 to 32.6 7.3 to 16.8 5 to 8.8 4 to 8.3 2.4 to 3.3 

Uncertainty (m3s-1) 13.6 9.5 3.8 4.3 0.9 

      

                                                                                           All Cropland 

Change (%) 2.8 to 8.5 1 to 7.7 2.1 to 5.6 6 to 16 4.1 to 6.6 

change (m3s-1) 15.6 to 35 3.4 to 20 4.7 to 12 4.2 to 10 3.1 to 5 

Uncertainty (m3s-1) 19.4 16.6 7.3 5.8 2 

      

                                                                                             All Forest 

Change (%) -4.6 to -14.34 -2.4 to -11.1 -2.9 to -7.2 -14.5 to -34.2 -12 to -18.6 

change (m3s-1) -26.2 to -59 -8.2 to -29 -6.4 to -15.8 -10.2 to -21.3 -9.1 to -13.3 

Uncertainty (m3s-1) 33 20.8 9.4 11 4.2 
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increase in ET rates, which is why we do not see a sharp reduction in the ET rates. Negligible 

changes are observed in baseflow while slight increase in total soil moisture is noticed across 

the subcatchments (Not shown). The water balance indicates that 15 to 21% of precipitation 

is direct runoff and 64 to 80% is ET across all subbasins and all land cover scenarios whereas 

negligible baseflow and soil moisture change are observed. This is probably because the third 

soil moisture layer in the model does not reach saturation to cause the non-linear baseflow, 

as precipitation in the basin is highly concentrated in only three to four months in monsoon 

and rest of the year remains dry. 

4.4. Discussions 

Performing a comprehensive sensitivity analysis and model calibration enhances the accuracy 

for predicting hydrological responses, which subsequently improves the representations of 

changes in the hydrological regime due to land cover changes. Our SA results are in agreement 

with existing studies conducted on several basins using VIC which show binf and d2 are the 

most sensitive parameters (Demaria et al., 2007; Gou et al., 2020b; Lilhare et al., 2020; Yeste 

et al., 2020). Moreover, not all the parameters recommended for calibration by VIC model 

developers (binf, d1, d2, d3, ds, dsmax and ws) are sensitive to this basin which is also in line 

with findings of Bao et al., (2011), Demaria et al., (2013) and Gou et al., (2020) for other basins. 

For, instance, first- and third-layer soil depth (d1 and d3) are not found sensitive in this study. 

d1 is the thinner topmost soil layer having not much control on ET and subsurface processes. 

d3 is probably not sensitive as most of the roots are present in the second soil layer, hence 

not contributing to the soil moisture uptake through the roots. We found that soil properties 

impose greater control on model performance than the vegetation parameters. However, 

while varying soil depths influences the ET rates by posing indirect influences on both timing 

and magnitude of the soil water available for ET, varying root depths and fractions (using our 

root zone allocation approach) has provided substantial control over the water balance by 

directly influencing the ET rates, thereby improving KGE (not shown). The weakness in 

reproducing flows at smaller subcatchments in Mahanadi basin are also reported previously 

in some studies (Kneis et al., 2014; Mishra et al., 2008; Nayak, Venkatesh, Thomas, & Rao, 

2010). 

LUH2 is a new dataset, not yet extensively used in basin-scale hydrology. A recent study by 

Krause et al., (2019) predicted worldwide increment in runoff (67%) and a variable response 
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of ET across different land use scenarios using LUH2 dataset. The major changes occurring in 

Mahanadi in the future scenarios as predicted by LUH2 agrees with a recent study by Behera 

et al., (2018) in the same basin, wherein they found a prominent conversion of DBF to 

croplands in year 2025 relative to year 2005.  

Our findings indicate increase of 27-496 m3s-1 in extreme flows and 2.6-35 m3s-1  in annual 

mean flows due to deforestation, across the subbasins and scenarios (including the 

hypothetical cropland scenario). These increasing trends are consistent with other studies in 

the Mahanadi river basin in India (Dadhwal et al., 2010), neighbouring basins (Das et al., 2018; 

Kundu et al., 2017) and elsewhere (Abe et al., 2018a; Berihun et al., 2019; Cornelissen et al., 

2013; Costa et al., 2003). Kundu et al., (2017) found an increase in runoff and decrease in ET 

due to the expansion in projected agricultural land in Narmada river basin in India. Das et al., 

(2018) predicted that deforestation, urbanization and cropland expansion in eastern river 

basins of India, in the future would increase runoff and baseflow and decrease ET%. It should 

be noted that 15% of the agricultural land in the basin is under the irrigation effects; however, 

this version of VIC (version 4.2.d) does not represent irrigation. Therefore, reduction in ET 

rates due to conversion of forest to cropland could be compensated by the moisture available 

due to the irrigation during the non-monsoon season. However, this may not have a 

significant effect on the assessments of impacts on runoff, especially on extreme flows, 

because those events are likely to be related to the monsoon season, where the effect of 

irrigation is minimum. 

We found a small change in mean annual discharge as well as in water balance components 

despite a major change in land cover. This correlates with research (Ashagrie et al., 2006; 

Fohrer et al., 2001; Hurkmans et al., 2009; Kumar et al., 2018; Patidar and Behera, 2019; 

Rogger et al., 2016; Viglione et al., 2016; Wagner et al., 2013; Wilk and Hughes, 2002) wherein 

they have reported that the impacts of land cover change on water balance components in a 

large-scale river basin are too small to be detected due to the compensation effects. Wilk and 

Hughes, (2002) showed that removal of large forests led to little or no changes in annual 

runoff in large heterogeneous catchments in South India. Patidar and Behera, (2019) in a 

recent study in a large river basin in India, reported that the conversion of forest to agriculture 

may not alter the water balance significantly as the impacts on ET and runoff cancels out at 

the basin scale. 
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The range of these hydrological estimates (Figures 4.6, 4.7 and Table 4.5) provides more 

straightforward and explicit quantification of uncertainty than other statistical measures such 

as variance, interquartile ranges (Her et al., 2019). Our results suggest that even a small set 

of calibrated models can predict a wide range of flows through different hydrological 

processes occurring within the basin and therefore the impacts of uncertainty derived from 

model parameters on the relative changes cannot be neglected. The uncertainty due to model 

parameters did not alter the trend of changes in extreme flow, mean annual flow and 

hydrological components due to land use change in comparison to the baseline simulations. 

However, a considerable variation is observed especially in the magnitudes of extreme flows 

simulated for the different land cover scenarios. For instance, the competing interactions 

among Ds and Ws, lead to the varying hydrological processes occuring within the basin, 

thereby affecting the partition of water in the soil column. Similar conclusions are outlined in 

Chen et al., (2019b) that the projected monthly and annual flows simulated for different land 

use scenarios were having significant uncertainty due to model parameterization. In addition, 

we found that the trends within the scenarios especially in the mean annual flows, runoff and 

ET are not consistent. For instance, we expect the increase in flows to be more in Far Future 

scenarios than Near Future, given that the increase in agricultural land in the Far Future is 

relatively more. However due to different parametrization, some models predicted decrease 

in Far Future flows relative to Near Future (Figure 7). This clearly indicates that the impact of 

land use could be biased when a single model prediction is used, as the impacts could be 

potentially hidden within simulation uncertainty derived from model parameters (Chen et al., 

2019b). Only a small percentage of model simulations (2%; 100 model simulations) with 

relatively high daily KGE scores (KGE> 0.8 at 3 out of 5 subcatchments) were used for assessing 

the impacts, yet significant variations in extreme flow magnitudes and trends (in some cases) 

are observed. Therefore, selecting models with relatively lower KGE values might have led to 

larger uncertainty bound and inconsistent trends in the relative change. Equifinality in 

hydrological modelling and its influence on hydrological analysis of climate change has been 

discussed in several studies. However, its influence on hydrological analysis of land cover 

change has not been studied enough to provide a clear idea about the contributions of model 

parameter uncertainty to hydrological projections. Our results thus underline the importance 

of considering model uncertainty and consequently equifinality while modelling the 

landcover change impacts.  
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4.5. Conclusions 

In this study an attempt is made to quantify the hydrologic response of the subcatchments of 

Mahanadi river basin owing to different land cover scenarios obtained from LUH, through the 

implementation of a sensitivity based calibrated semi-distributed hydrological model.  Our 

findings are insights to the plausible hydrological scenarios in future at a river basin level 

These findings are particularly important for developing countries, at the backdrop of today's 

growing focus on integrated water resources management (IWRM) in river basins (Behera et 

al., 2018). In overall, VIC captured the observed daily flows well in calibration, validation and 

baseline period across subcatchments. Deforestation at the expense of cropland dominated 

the land cover change processes across all scenarios and subcatchments, which has led to an 

increase in the extreme flows and mean annual flows. Analysis of other hydrological 

components have shown that the increase in flows is caused by the increase in runoff and 

decrease in ET. The uncertainties due to model parameterization in land use change impacts, 

varies from one subcatchment to another. The uncertainties did not alter the trend of changes 

when compared to the baseline; however, a considerable variation is observed especially in 

the magnitudes of extreme flows simulated for the different land cover scenarios. This result 

suggests a significant constraint on the usage of hydrological models for the variations of 

extreme flows due to land use change, even with high KGEs at daily time step as the impacts 

could be potentially hidden within simulation uncertainty derived from the model 

parameters. Therefore, uncertainties associated with model parameterization needs to be 

considered in land cover change impact assessment for more robust and reliable analysis 

(Chen et al., 2019b). This shall make the land cover change mitigation strategies and water 

resources management plans more effective. 

This study indicates that the recurrent flood events occurring in the Mahanadi river basin 

might be influenced by the changes in LULC at the catchment scale. However, projected 

increase in precipitation due to climate change might have more pronounced effect on the 

streamflow on this basin, especially extreme flows (Asokan and Dutta, 2008; Ghosh et al., 

2010; Jin et al., 2018), thereby hiding the hydrological impacts of LULC changes. Therefore, 

future studies shall focus on modelling the combined impacts of climate and land cover 

changes on hydrology of Mahanadi river basin, considering the uncertainties from model 

parameterization, which is currently lacking in many studies. 



 

97 
 

 

 

 

5. Assessing the impact of future climate changes on hydrological 
responses  

 

5.1. Context and background 

The impacts of climate change on the hydrological cycle and water resource systems have 

been an important concern worldwide in recent years (Hengade et al., 2018). Especially, 

developing countries like India is facing some of the serious consequences through changes 

in magnitude and intensity of rainfall, changes in hydrological extremes related to floods and 

droughts and changes in water availability (Singh and Saravanan, 2020; Thokchom, 2020). 

However, these hydrological responses to climate change have regional variations because of 

the local climate, geographical characteristics, and regional physical processes (Hengade et 

al., 2018; Mondal and Mujumdar, 2015).  

The Mahanadi river basin in India is one of the recognized climatic vulnerable regions (Panda 

et al., 2013). Few studies exists that assesses future climate change induced impacts on 

regional scale hydrology in context of Mahanadi river basin. Panda et al., (2013) found 

increasing and decreasing trends in streamflow in different months during monsoon and also 

reported an overall decline in discharge in the basin. Studies such as Asokan and Dutta, (2008), 

Ghosh et al., (2010) and Jin et al., (2018) predicted an increase either in the high (peak) flows 

or monsoon flows in the future, that would potentially enhance the flood potential, whereas, 

insignificant to significant decline in low flows and water availability is reported. Jena et al., 

(2014) reported that the recent floods in the basin is caused by the increased extreme rainfall 

events, contradicted by Ghosh et al., (2010) observing a significant decreasing trend in 

streamflow. Gosain et al., (2006) found an increase in evapotranspiration under future 

climate change. Understanding these regional hydrologic implications of changing climate has 

crucial role in the management of water resources (Joseph et al., 2018). 

Global climate Models (GCM’s) simulates time series of climate variables and provide the 

possible future climate projections. However, GCM’s are at very coarse resolution, and 

downscaling is required to reproject it to the finer scale, to get reliable projections at the 
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regional scales (Christensen et al., 2008). A variety of statistical and dynamic approaches are 

developed for downscaling and bias correction of GCM climate projections (Janes et al., 2019; 

Mishra et al., 2020a; Raje et al., 2014; Singh and Saravanan, 2020; Wood et al., 2004). The 

downscaled projections from different GCM products are directly used in hydrological impact 

assessment studies (Chawla and Mujumdar, 2015; Jin et al., 2018; Joseph et al., 2018; Mishra 

et al., 2010, 2020b; Rickards et al., 2020; Wang et al., 2018). For instance, Janes et al., (2019) 

dynamically downscaled GCMs from the recent generation of Climate Model Intercomparison 

Project 5 (CMIP5) GCM, to a high resolution of 25 kms for South Asia. Recently, these 

downscaled climate projections are used by Jin et al., (2018) for hydrological impact 

assessment in Mahanadi river basin in India, which predicted an increase in the peak flows in 

future. Several studies pointed out the drawbacks of CMIP5 models such as 

under/overestimating the monsoon characteristics over Indian subcontinent (Saha et al., 

2014; Sharmila et al., 2015) and to overcome these challenges, most recent generation of 

climate models i.e., the sixth phase, CMIP6 was released. These are now the most improved 

version of climate models available. CMIP6 models shows significant improvement in 

reproducing the characteristics of Indian monsoon such as mean and extreme precipitation, 

intra-seasonal variability and seasonal climatology, which is comparable to that of 

observations (IMD), when compared to its predecessor, CMIP5. However, the spatial 

improvement is inconsistent among the models, especially in capturing the seasonal 

climatology i.e., active and break spell variations in observations. However, averaging across 

the models has shown better representation of the intra-seasonal variations. These 

improvements in CMIP6 simulations can be attributed to the Modified deep convective 

schemes, advanced microphysics parameterization options, improved spatial and vertical 

resolution, incorporating indirect effects of aerosols in cloud formation, and improved ocean-

ice models (Gusain et al., 2020; Rajendran et al., 2021). CMIP6 has produced new scenarios 

called Shared Socioeconomic Pathway (SSP) 1–2.6, SSP 2–4.5, SSP 3–7.0, and SSP 5–8.5 

(described in Chapter 2 of this thesis) (O’Neill et al., 2016). Gusain et al., (2020) reported a 

significant improvement in CMIP6 models in reproducing the monsoon characteristics over 

India. Recently, Mishra et al., (2020a) used climate models from CMIP6 to develop high 

resolution bias corrected climate projections over Indian subcontinent. It is essential to derive 

the hydrological change projections for the Indian river basins under these new scenarios for 

the ongoing climate change mitigation and adaptation activities. 



 

99 
 

Climate impact assessment studies suffer from several uncertainties associated with the 

choice of climate models, greenhouse gas emissions scenario, downscaling techniques, 

hydrological models and parameterisation (Chen et al., 2011; Eum et al., 2014; Hagemann et 

al., 2013; Jiang et al., 2007; Xu et al., 2005). Uncertainties associated with climate models are 

considered to be the largest and are represented using information from multiple GCMs (Her 

et al., 2019), and some other approaches are also employed such as probabilistic approaches 

(Mujumdar and Ghosh, 2008) and non-parametric approach (Ghosh and Mujumdar, 2007b). 

The choice of downscaling techniques also adds to the uncertainty and has been addressed 

in many studies (Chen et al., 2011; Joseph et al., 2018). Given the availability of a wide range 

of climate models, emission scenarios and downscaling techniques, it is becoming a difficult 

task to assess the uncertainties resulting from these sources and their combination (Wilby 

and Harris, 2006). Further difficulties arise when we consider the choice of a hydrological 

model and its parameterization, which contribute to the total uncertainty. 

Distributed hydrological models are highly parameterised and are commonly used in climate 

impact studies. Hydrological processes are non-linear in nature and different combinations of 

model parameters can produce similar model performance, known as equifinality (Beven and 

Freer, 2001). Therefore, simulated hydrological impacts based on single set of model 

parameters can be difficult to interpret. Despite this, most of the hydrological studies in the 

context of climate change, especially in India are carried out using a single calibrated 

hydrological model (Chawla and Mujumdar, 2015; Gosain et al., 2006; Hengade et al., 2018; 

Jin et al., 2018; Raje et al., 2014; Singh and Saravanan, 2020) and therefore, this approach 

underestimates or ignores the uncertainties associated with the model parameters. Jin et al., 

(2018) emphasized on proper model calibration and consideration of uncertainties associated 

with inputs and parameters while simulating future hydrologic projections. Since previous 

studies showed that the calibration of hydrological models contributes little to overall 

uncertainty (Chen et al., 2011), there are only few known studies about the influence of model 

parameter uncertainties on climate change impact assessment (Eum et al., 2014; Feng and 

Beighley, 2020; Her et al., 2019; Joseph et al., 2018). Feng and Beighley, (2020) found that the 

contributions from model parameters to the total uncertainty is relatively less whereas Eum 

et al., (2014) reported that the annual peak flows in a river basin in Canada is significantly 

impacted by the choice of parameter set. These studies underlined the need of climate 
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change impact assessment based on multiple hydrological models and parameterisation. In 

this chapter, we address the following science questions: - 1. How does future climate 

projections impact the hydrological responses of Mahanadi River basin in India? 2. How are 

those projected hydrological responses impacted by different hydrological model 

parameterisation? 

To respond to these questions, we used a behavioural set of Variable Infiltration Capacity (VIC) 

models in conjunction with climate projections from most recently available GCMs from 

CMIP6, to predict the hydrological responses in Mahanadi river basin. Ensemble VIC models 

for the individual subcatchments of the basin are obtained after performing rigorous 

sensitivity analysis and calibration experiments under the Monte Carlo framework (described 

in Chapter 3 of this thesis). Changes in hydrological responses under future climate conditions 

and its associated uncertainties are essential to assess the vulnerability of Mahanadi river 

basin and make adaptation strategies to evaluate the impacts of climate change. 

5.2. Materials and methods 

5.2.2. Model Input datasets and parameters 

VIC model has been used in several regional-scale climate impact assessment studies (Eum et 

al., 2014; Feng and Beighley, 2020) including river basins in India (Chawla and Mujumdar, 

2015; Hengade et al., 2018). Model descriptions can be found in Chapter 2 of this thesis. 

The key input data required by the VIC model are meteorological forcings (precipitation, 

maximum temperature, minimum temperature, and wind speed), soil type, land cover 

information and topographic features. Topographical features are determined using the 30-

meter CARTO-DEM (Cartosat-1 Digital Elevation Model), a national DEM developed by ISRO 

(Indian Space Research Organization) (Sivasena Reddy and Janga Reddy, 2015). Soil textures 

are derived from the digitized soil map as provided by National Bureau of Soil Survey and Land 

Use Planning (NBSSLUP) (Scale 1:250000) (Figure 2.6a, Chapter 2). 

Daily gridded precipitation (resolution, 0.25◦) and maximum and minimum temperature 

(resolution, 1◦) for the historical time period 1990-2014 are obtained from India 

Meteorological Department (IMD) (Pai et al., 2014). Global climate projections for 

precipitation, maximum temperature, and minimum temperatures for the time 2015-2100 

are obtained from Coupled Model Intercomparison Project-6 (CMIP6) which are used in 

model simulations for predicting hydrological impacts of future climate changes. All climate 



 

101 
 

variables (precipitation, maximum temperature, and minimum temperature) from both 

sources, IMD and CMIP6 are resampled to the model grid resolution of 0.05◦. LULC map for 

the historic period is derived from National Remote Sensing Centre (NRSC), India of year 2005 

(scale 1:250000; resolution 56 meters) (see Figure 4.1a, chapter 4). This LULC map is used in 

all the model runs during historic period, i.e., while performing sensitivity analysis, model 

calibration and validation. Future land cover maps are obtained from Land Use Harmonisation 

2 (LUH2) database which are used in model simulations for predicting impacts of future 

climate changes. All LULC maps used in this study are reformatted and reclassified into USGC 

LULC types as required by the VIC model. Wind speed for the historical period is obtained 

from NCEP/NCAR reanalysis of resolution 1◦.  

We have used daily climate data from 13 GCMs under four combined scenarios of the SSPs 

and the Representative Concentration Pathways (RCPs), viz, SSP1–2.6, SSP2–4.5, SSP3–7.0, 

and SSP5–8.5 scenarios (O’Neill et al., 2016). These models are selected based on the 

availability of daily precipitation, maximum and minimum temperatures for the historical and 

future time period and four scenarios (Mishra et al., 2020a). Please note that time series of 

wind speed for the future i.e., 2015-2100 was not available from all the climate models and 

scenarios used in this study. Therefore, we computed the mean monthly wind speed and 

averaged over the historical time 1990-2014 to obtain the long-term seasonal variation of 

wind speed. We used these values for wind speed and kept it constant throughout the future 

period 2015-2100. Prior to the model runs for the future period, we performed an experiment 

where we compared the hydrological components simulated using wind speed from 

NCEP/NCAR to that of using constant mean monthly wind speed, during the historical period. 

We observed insignificant changes between these two simulations. 

The observed discharge at daily scales at multiple locations of Mahanadi river basin (Figure 1, 

Chapter 2) for the simulated time (1988-2015) are obtained from the Central Water 

Commission (CWC), India, for validating the simulated discharge. 

To analyse the parameter space uncertainty, we calibrated the influential parameters 

(obtained from sensitivity analysis) at all subcatchments of Mahanadi river basin using Monte 

Carlo simulations and obtained the best or behavioural set of VIC models. Ten years (1990–

2000) of daily discharge was used for model calibration with a warmup period of two years 

1988-1989, and 14 years of data (2001–2014) was used for validation. These behavioural 
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parameter set was selected, based on Kling-Gupta Efficiency (KGE). More details regarding 

sensitivity analysis, model calibration and validation can be found in Chapter 3 of this thesis. 

5.2.3. Setting up climate scenarios impact study 

5.2.3.1. Bias-corrected climate projections from Coupled Model Intercomparison Project-6 

(CMIP6) 

Climate projections used in this study for Mahanadi river basin are derived from the recently 

released, bias corrected climate projections for South Asia from Coupled-Model 

intercomparison project-6 (Mishra et al., 2020a). These bias corrected data of precipitation, 

maximum temperatures and minimum temperatures are available at daily temporal and 0.25◦ 

spatial resolution for South Asian countries including 18 river basins in India. A total of 

thirteen GCMs are considered for bias correction based on the availability of all three 

variables and four scenarios (SSP126, SSP245, SSP370, SSP585).  

Mishra et al., (2020a) employed Empirical Quantile Mapping (EQM) for the bias corrections 

of the historic (1951–2014) and projected (2015–2100) climate data. EQM is a statistical 

approach, based on the distribution and relationship between the observed and projected 

data for the historical period (Pierce et al., 2015). EQM based statistical bias correction 

method has been extensively used, and its performance was found to be satisfactory when 

compared to the other methods (Mishra et al., 2020a). Observed daily gridded climate 

variables (gridded precipitation, maximum and minimum temperatures) from IMD (spatial 

resolution of 0.25◦) is considered as a reference for the bias correction in Mishra et al., (2020a), 

i.e. bias in mean annual precipitation, maximum and minimum temperatures from 13 CMIP6 

models in the historical period were estimated against IMD observations. IMD gridded 

observations are used for bias corrections as station data are not available and also IMD 

gridded datasets are widely used for hydroclimatic studies in India. The CMIP6 models 

showed a negative (dry) bias (15-20%) in mean annual precipitation and also in extreme 

precipitation in the majority of South Asia. CMIP6 models also showed warm bias in mean 

annual minimum temperature and also 90th percentile of maximum and minimum 

temperatures in the majority of South Asia. However, Mishra et al., (2020a) reported that 

EQM based bias correction has resulted in substantial reduction in the bias of both mean and 

extreme annual precipitation in the historical period and also has successfully removed the 

bias in maximum and minimum temperatures across South Asia. The seasonal cycle of the 
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CMIP6 bias-corrected precipitation, maximum, and minimum temperatures also compare 

well against the observations. Moreover, the bias-corrected dataset is also able to capture 

the covariability of the monsoon season precipitation and air temperature. Since the bias-

corrected dataset is consistent with observation for a climatological mean period, it would be 

easier to infer the predicted changes and its implications that it might have for our results. 

We would assume that a slight dry bias in the bias corrected precipitation dataset along with 

the warm bias in the mean annual temperatures might lead to slight underestimation of 

projected flows (both mean annual and extreme flows). 

Figure 5.1 shows the comparison of total monthly precipitation produced by IMD against 

thirteen CMIP6 models used in this study, spatially averaged for the entire Mahanadi river 

basin in the historical period. We observe that IMD precipitation is lying within the upper and 

lower ranges of precipitation from CMIP6 ensembles, which indicates IMD precipitation could 

represent one of the CMIP6 ensembles. The majority of CMIP6 models tend to overestimate 

precipitation, especially during the monsoon months, compared to IMD, and few models are 

underestimating precipitation. We computed the percent bias (PBIAS) of monthly 

precipitation from CMIP6 models against IMD, which ranges from -8.67 to 8.2 across CMIP6 

ensembles. The mean annual precipitation for the historical time period, from IMD is 1329 

mm year-1, whereas from CMIP6 models ranges between 1210 and 1438 mm year-1.  

Figure 5.2 shows the comparison of monthly mean maximum and minimum temperatures 

produced by IMD against thirteen CMIP6 models, spatially averaged for the entire Mahanadi 

river basin in the historical period. We observe an overestimation in both maximum and 

minimum temperatures from CMIP6 during the monsoon months whereas slight 

underestimation is observed during January to May. Annual average maximum temperature 

derived from IMD is 32.44◦C and from CMIP6 ranges from 32.57 to 32.97◦C. Annual average 

minimum temperature from IMD is 20◦C and from CMIP6 ranges from 20.52 to 20.98◦C.  
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Figure 5.1. Comparison of monthly mean precipitation produced by IMD (blue) against 

thirteen CMIP6 models (red), spatially averaged for the entire Mahanadi river basin for the 

historical time 1990-2014 considered in this study. 

 

 

  

 

 

 

 

Figure 5.2. Comparison of monthly mean (a) maximum temperature and (b) minimum 

temperature produced by IMD (blue) against thirteen CMIP6 models (red), spatially averaged 

for the entire Mahanadi river basin for the historical time 1990-2014 considered in this study. 

Figure 2.4 (a-c) (Chapter 2) shows the total annual precipitation, mean annual maximum and 

minimum temperatures, for the fifty-two ensembles (i.e., 13 CMIP6 models * 4 SSPs) (red 

colour) and the mean of the ensemble (blue colour) for the future period 2015-2100. The 

increase of both mean annual minimum and maximum temperature, based on the mean of 

the ensemble, is 0.3 ⁰C per decade and mean annual rainfall shall increase with a rate about 

42 mm per decade. We want to understand how strongly these future climate change might 

impact the hydrological responses of the Mahanadi river basin. Within the hydrological 

responses, we specifically focus on the impacts on mean annual flows and peak flows (and 

monsoon flows) in the future. We specifically focus on peak flows because Mahanadi river 
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basin receives approximately 85% of the total annual rainfall during the monsoon months 

(June-Sept) which also results in 85% of the annual river discharge during the monsoon 

months. Moreover peak discharge also mostly occurs during the monsoon (Jin et al., 2018). 

5.2.3.2. Sampling of CMIP-6 Projections 

This subsection describes the methodology we follow to select samples of the climate 

projections for our model runs. There are 13 climate models, 4 scenarios and 101 behavioral 

VIC models i.e., in total 5200 ensembles (13*4*101) are formed, and each ensemble is to be 

run for a long-term period of 86 years i.e., 2015-2100. Running all these ensemble members 

would probably result in more robust impact modelling activities. However, this is not always 

feasible due to the computational restrictions and modelling capabilities (Janes et al., 2019). 

For this reason, many researchers have been limited either in their selection of GCMs to only 

few models (Janes et al., 2019; Singh and Saravanan, 2020) or choosing specific time periods, 

such as in (Chen et al., 2020).  

Despite recent advancements in GCMs, large uncertainties still exist in GCM predictions, 

downscaling and bias correction techniques (Jiang et al., 2007). Hence, choosing a few 

decades to represent a short-term and a long-term future is considered subjective and not 

well informative, as we cannot project the exact climate conditions of the future decades due 

to the inherent uncertainty from GCMs (Wootten et al., 2017). For instance, given the 

deficiencies in GCM predictions, Jiang et al., (2007) adopted hypothetical future climate 

change scenarios based on IPCC report, which includes a combinations of few temperature 

and precipitation increases. For example, the combinations of changes in mean annual 

temperature of 1◦C, 2◦C, 3◦C, 4◦C and annual precipitation of 5%, 10%, 15%, 20%, 25%, 

relative to the baseline climate. Moreover, VIC simulations are computationally very 

expensive and time consuming and therefore, we have adopted a relatively new methodology 

to choose the sample simulations from all the ensembles following the approach by Batelis, 

(2021). We refrain from using a selective approach, rather we use a new more objective 

approach that could give a better insight on the impact of climate change. We try to identify 

the hydrological impacts of a specific change in mean annual temperature and precipitation 

(e.g., +3 °C of mean annual temperature and +30% of mean annual precipitation) on the 

hydrological responses, instead of simulating the climate change impacts for a specific decade 

or specific scenarios in the future (e.g., 2080s or scenario SSP585). 
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(b) 

The 25-year period [1990-2014] from IMD is used as the reference period in this study. First, 

we estimated the 25-year moving average for precipitation and temperature for the 52 (13 

models * 4 scenarios) ensembles. For each ensemble, the 86-year time series (2015-2100) 

gives 62 values of 25-year average precipitation and temperature. Therefore, in total, 3224 

(62*52) sets of 25-year periods for 52 ensembles are  formed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 (a) Different possible combinations of normalized differences for temperature ΔΤ 

(°C) and precipitation ΔP (%) between the 3224 sets of 25-year periods from the 52 (13 

(a) 
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models*4 scenarios) ensembles of CMIP6 against the 25-year Control Period from IMD, 

averaged over the entire Mahanadi river basin. Black cross denotes that one sample point is 

chosen from each bin for model simulation (b) Heat map showing the density of sample points 

lying within each bin of Figure 5.3 (a). 

Next, we compute the deviations of these values against the control 25-year representative 

values for precipitation (P_ctrl) and temperature (T_ctrl) from IMD. In case of precipitation 

(P), we compute the percentage deviation (ΔP) (Equation 5.1); whereas, for the temperature 

(T), we estimate difference of the two values (ΔT) (Equation 5.2).  

𝛥𝑃 = [(𝑃 (𝑚𝑛) − 𝑃_𝑐𝑡𝑟𝑙)/ 𝑃_𝑐𝑡𝑟𝑙]100                    Eq. 5.1      

𝛥𝑇 = (𝑇 (𝑚𝑛) − 𝑇_𝑐𝑡𝑟𝑙)            Eq. 5.2 

Where P and T are the 25-year mean annual precipitation and temperature respectively, for 

every one of the 62 values (m = 62) from each model/scenario (n = 52).  

Figure 5.3 a shows the difference (ΔT) of each 25-year mean temperature T (m,n) with the 

control 25-year representative mean (�̅�_𝑐𝑡𝑟𝑙) against the percentage deviation (ΔP) of each 

25-year mean precipitation P (m,n) with the control precipitation (�̅�_𝑐𝑡𝑟𝑙). The range of x and 

y axis are divided into 12 and 7 bins, respectively. The range of bins in x axis is 1°C and in y 

axis is 10%. Figure 5.3b shows percentage of sample points located in each grid, from which 

we can find the scenarios that are most likely to occur in the future. We observe that 

maximum number of sample points are in the grids where precipitation increases from 0 to 

30% and temperature rises from 0 to 3°C. Note that we are not predicting hydrological 

impacts of any specific scenarios (shown in Figure 5.3b), rather we are predicting the impacts 

with respect to the increase in precipitation and temperature. 

We observe there are 40 bins (Figure 5.3a) in total, having at least one climate sample point. 

We then choose a climate sample point from each bin as a representative of that bin; 

therefore, we choose a total of 40 sample points from 40 bins. These points (i.e., each point 

from each grid) are chosen based on an approach given below. 

1. First, we choose a scenario (ex: SSP126 or SSP245) which occurs maximum times in a 

bin. To find this, we have computed the mode of the scenarios in every bin (See Figure 

5.4a). 



 

108 
 

2. Next, we choose a 25-year time period (ex: 2037-2062) from within the time periods, 

linked to our chosen scenario (in step 1). To find this, we have computed the median 

of the time periods. Remember that each point in a bin could represent a different 25-

year time period from within 2015-2100. 

3. Next, we choose a climate model that is occurring maximum times in a bin. To find 

this, we have computed the mode of the models in the bin. If the model that occurs 

maximum times in a bin, is not linked to the scenario (step1) and time period (step2) 

we have already chosen, we then choose any other model linked to our chosen 

scenario and time period. This is because we are giving maximum priority to the 

scenario followed by the time period. 

4. Finally, we choose a future land cover map from LUH2 land cover scenarios, based on 

the chosen scenario and chosen time period (year). For example, if the median time 

period is 2037-2062, then we choose a land cover map of year 2050 (i.e., middle of 

the median time period). Notice that same scenarios that we use for climate 

projections are also available from LUH2 database.  

Figure 5.4 a-d further explains choosing a sample point from a particular grid, where 

temperature (ΔT) varying from 1°C to 2°C and precipitation (ΔP) varying from 10% to 20%.  
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(a) (b) 

(c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Procedure to choose a climate sample point from a particular grid, for instance for 

a grid where temperature (ΔT) varying from 1°C to 2°C and precipitation (ΔP) varying from 10% 

to 20%. (a) choosing a scenario based on the maximum occurrences (i.e., computed from 

mode of the scenarios), SSP245 (marked in black) is the chosen scenario for this particular 

grid (b) choosing a time period from within the time periods linked to our chosen scenario 

(SSP245) based on the median of time periods. 2037-2062 (marked in black) is the chosen 

time period for this particular grid (c) choosing a model based on maximum occurrences (i.e., 

computed from mode of the models) Model 7 (marked in black) is the chosen model for this 

particular grid (d) Choosing a future land cover map from LUH2 land cover scenarios, based 

on our chosen scenario and time period. Land cover map for year (2050) (marked in black) is 

chosen for this particular grid. 

 

 

(d) 
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5.3. Results  

5.3.1. Model performance in historical period 

The VIC model is calibrated for the period 1990-2000. In overall, evaluation result suggests 

the model reproduced the observed flows remarkably well with the median KGE values of 

0.85, 0.86, 0.82, 0.75, 0.63 in calibration period. More details about the model performance 

in calibration period is described in Chapter 3. Next, we consider the historical time 1990-

2014 as the reference period to assess the climate change impacts in future, therefore, we 

assess the model performance of the entire time 1990-2014. Figure 5.5 presents the KGE and 

PBias values over the whole record 1990-2014, obtained with the behavioral parameter sets, 

i.e., each boxplot represents 101 values for the subcatchments of Mahanadi river basin. In 

overall, the model reproduced the observed flows well in the reference period with the daily 

median KGE values of 0.68, 0.59, 0.50, 0.59, 0.54 at Basantpur, Kantamal, Kesinga, Salebhata 

and Sundergarh, respectively. However, we observe best performance at the largest 

subcatchment, Basantpur and relative reduction in the daily KGE values at the smaller 

subcatchments. The PBIAS values obtained indicate that the model tends to be negatively 

biased i.e., tending to underestimate the daily discharge values, with the maximum reduction 

observed at Kesinga. The median PBIAS values are -22%, -32%, -37%, -25%, -18% at Basantpur, 

Kantamal, Kesinga, Salebhata and Sundergarh, respectively.  

 

 

 

 

 

 

 

Figure 5.5:  Boxplots showing KGE and PBIAS range for 101 VIC model simulations for the 

subcatchments of Mahanadi river basin (Ba- Basantpur; Ka- Kantamal; Ke- Kesinga; Su- 

Sundergarh; Sa- Salebhata). 
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Note that the bias in terms of flow volume in the non-monsoon or the dry season is negligible 

(not shown) compared to the wet or monsoon season, therefore percentage of bias 

computed for the entire time period (shown above) mainly represents bias in the monsoon 

flows, where the effect of irrigation is supposed to be minimum. 

2.1.1. Impacts on mean annual flows and model parameter uncertainties 

The percentage change in mean annual flow is computed for future climate projections based 

on the combination of change in precipitation and temperature as shown in Figure 5.3 (a). 

Figure 5.6 (A) shows the percentage change in the mean annual discharge in the future period 

relative to the control case simulation in the historical period 1990-2015. Note that the 

percentage change is computed for each sample point shown in Figure 5.3, that represents a 

different 25-year time period in the future. Percent changes in mean annual flows in Figure 

5.6 (A) are the average of percent changes resulting from behavioral set of VIC models i.e., 

we do not consider the parameter uncertainty in this figure. The results are analyzed for 

individual subcatchments of Mahanadi river basin. In overall, we observe that the change in 

precipitation from -5 to +105% and change in temperature from 0-7◦C has resulted in change 

in mean annual flows ranging from -95 to +645% across subcatchments. The change in mean 

annual flows in terms of flow magnitudes varies from +728 to +2849 m3s-1 across 

subcatchments.  

We observe that percent increase in mean annual discharge across subcatchments is more 

prominent with the percent increase in rainfall above 20%, irrespective of the rise in 

temperature. Negative or small percentage change in annual rainfall (in the range of -10 to 

10%) combined with increase in temperature ranging from 0 to 4◦C in most subcatchments, 

has resulted in decrease in the mean annual flows. In these cases, the increase in temperature 

might have resulted in the increase of ET thereby reducing the runoff. In relatively bigger 

catchments like Basantpur and Kantamal, almost all grids show an increase in the mean 

annual flows with the increase in annual rainfall, with an average percentage change of +80% 

(614 m3s-1) and +24% (100 m3s-1) respectively. At Kesinga, we observe reduction in mean 

annual flows even with an increase of precipitation upto 50%, with an average percentage 

change of -20% (-44 m3s-1). In smaller subcatchments like Salebhata and Sundergarh, all 

precipitation and temperature combinations, even including those with slight precipitation 

increase, has resulted in positive percent change with an average change of +206% (+98 m3s-
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1) and +215% (+116 m3s-1) respectively. This indicates a strong positive correlation between 

precipitation and streamflows in the smaller subcatchments. Maximum increase in the 

percent change of mean annual flow (+645%, +296 m3s-1) is observed at the smaller 

subcatchment, Salebhata with about +100% percent increase in precipitation and +7% 

increase in temperature respectively. Likewise, maximum decline in flows of (-78%, -170 m3s-

1) is also observed at Basantpur when the percent change in rainfall and temperature lies 

between 20 to 30% and 2-3◦C respectively.  

From Figure 5.3 (b), we observe that the changes in precipitation and temperature that are 

most likely to occur in the future lies within the temperature range of 1 to 2 ◦C and 

precipitation ranging from 0 to 30%. Particularly, within these ranges of precipitation and 

temperature change, change in mean annual flows ranges from -77 to +174% across 

subcatchments and in terms of flow volume is -169 to 300 m3s-1. Maximum percent increase 

in discharge within the ranges most likely to occur, is observed at Sundergarh (+174%), 

however, maximum increase in flow volume (300 m3s-1) is observed at Basantpur. 

Next, we want to understand the uncertainties associated with the predicted mean annual 

flows, from model parameterization. Figure 5.6 (C) shows standard deviation in the percent 

changes of mean annual flows resulting from 100 behavioral models, representing the 

hydrological model parameter uncertainty. The uncertainties vary from about being negligible 

to 50% across subcatchments, with the maximum uncertainty of 50 m3s-1 at Basantpur. On an 

average, we observe that 3 to 17% uncertainties across subcatchments exists in the predicted 

mean annual flows for the future. We observe that with the increase in both precipitation and 

catchment size, uncertainties in the predicted mean annual flows increase which attributes 

to the increase in flow magnitudes (Figure 5.6 B). 
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Figure 5.6 (A) Percentage change in mean annual flows (B) change in mean annual flows in 

m3s-1 (C) Standard deviation in the percent change of mean annual flows resulted from 100 

behavioral VIC models, representing the VIC model parameter uncertainty, at all 

subcatchments in the future period against the control case simulation in the historical period 

1990-2015.  
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5.3.2. Impacts on peak flows and model parameter uncertainties 

Figure 5.7A shows percentage change of peak flows (flows above 95 percentile) at all 

subcatchments in the future period against the peak flows in control case simulation in the 

historical period 1990-2015. We have also considered predicting the hydrological responses 

during the monsoon season, as maximum flows in Indian river basins occurs during the 

monsoon. However, we found that both the magnitudes and direction of change are identical 

to that of peak flows, so we restrict our results and discussions to only peak flows. 

We observe that the patterns in the change in peak flows with respect to the change in 

precipitation and temperature (Figure 5.7A) are similar to that of change in mean annual flows 

(Figure 5.6A). Overall change in precipitation and temperature from -5 to +105% and 0 to 7◦C 

respectively, has caused -93 to 485% change in peak flows across subcatchments. The percent 

changes are lesser compared to the annual flows, however, much higher in terms of flow 

magnitudes. Change in peak flows ranges from -5723 to 29,776 m3s-1 across subcatchments. 

Likewise, average change in peak flows across subcatchments (-3.4% to +173%) is lesser in 

terms of percentage, compared to mean annual flows (-20 to -240%). However, average 

change in terms of flow magnitudes is much higher in peak flows (-1058 to +10181 m3s-1) 

compared to annual flows (-56 to +586 m3s-1). 

Increase in precipitation (even those with slightest increase in precipitation, unlike in case of 

mean annual flows) has resulted in positive percent change in peak flows across most 

subcatchments. The average percentage change at Basantpur and Kantamal in peak flows in 

the future is +93% (11,144 m3s-1) and +58% (3445 m3s-1) respectively. At Kesinga, the average 

percent change in the peak flows is negligible. Relatively, higher number of 

precipitation/temperature combinations has indicated reduction in peak flows at this 

subcatchment. A non-identical behavior of the hydrological responses at Kesinga can be 

attributed to the fact that this subcatchment is negatively biased relative to other 

subcatchments in the historical period (See Figure 5.5 PBIAS).  In smaller subcatchments like 

Salebhata and Sundergarh, an average change of +70% (+1227 m3s-1) and +85% (+1164 m3s-1) 

respectively, is observed. Like the mean annual flows, maximum increase in peak flows (+ 

29776 m3s-1) is also observed at the largest subcatchment, Basantpur with an increase in 

precipitation above 100% and rise in temperature by 5◦C respectively. Maximum decline in 

flows (-2443 m3s-1) is also observed at Basantpur with an increase in precipitation between 

20 to 30% and increment in temperature between 3 to 4◦C respectively.  
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Figure 5.7 (A) Percentage change in peak flows (flows above 95 percentile) (B) change in peak  

flows in m3s-1 (C) Standard deviation in the percent change of peak flows resulted from 100 

behavioral VIC models, representing the VIC model parameter uncertainty, at all 

subcatchments in the future period against the control case simulation in the historical period 

1990-2015.  
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For the climate changes that are most likely to happen (See Figure 5.3b), change in peak flows 

are predicted to be varying between -1494 and +8318 m3s-1 (-70 to +136%) with the negative 

percent change is mostly observed at Kesinga.  

In overall, uncertainties in the predicted peak flow magnitudes varies from 13 to 1211 m3s-1 

(1.5 to 50%) across subcatchments, which is considerably higher than the uncertainties in the 

predicted annual flow magnitudes. On an average, we observe (7 to 17%) uncertainties across 

subcatchments in the predicted peak flows for the future. The uncertainties associated with 

the model parameters are however only observed in the magnitudes of the predicted change, 

and not in direction of change. Prediction uncertainties are found more prominent in the 

bigger subcatchments with higher flow rates, such as maximum uncertainty is observed at 

Basantpur and minimum uncertainty at Salebhata.  

5.4. Discussions 

Mahanadi river basin is a peninsular river, where precipitation mainly controls the entire 

water flows, since 85% of the annual river discharge occurs during the monsoon months (Jin 

et al., 2018). This holds true also in case of future predicted flows in the basin, especially peak 

or monsoon flows, as indicated by the findings in this study.  Bias corrected climate 

projections from CMIP6 showed a considerably large increase in both precipitation and 

temperature under the highest emission scenario of SSP585 for the entire South Asian region 

(Mishra et al., 2020a). CMIP6 datasets indicates a rise in the temperatures upto 7◦C in the 

future for Mahanadi river basin, which also agrees with few studies (Jin et al., 2018; Singh and 

Saravanan, 2020) where a rise in  average temperature ranging from 2 to 6◦C is found using 

CMIP5 models. Maximum increment in both annual precipitation and mean annual 

temperature for the basin are found under the highest emission scenario of SSP585, which 

agrees with several studies (Jin et al., 2018; Mishra et al., 2020a; Singh and Saravanan, 2020). 

Jin et al., (2018) also reported a maximum of 50-70% increase of precipitation during 

monsoon in 2090’s. On contrary, Singh and Saravanan, (2020) found only a small increase in 

monthly rainfall (2%) and a decline in rainfall during the monsoon months for Mahanadi basin. 

These differences can be attributed to the use of different climate models for predictions. 

In our study, both reduction and increment in the mean annual flows are observed in the 

future, depending upon the changes in the precipitation and temperature. While in most 

cases, we found an increment, there are some instances where despite the increase in rainfall 
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(upto 20%), we observe either reduction in mean annual discharge or negligible change. This 

is consistent with other studies where either increase in rainfall under future climate 

conditions have a neutral impact on Indian river basins including Mahanadi river basin (Gosain 

and Rao, 2004) or indicating a declining trend of surface runoff in the future (Singh and 

Saravanan, 2020). We expect that the decline in runoff is probably due to the overall increase 

in ET as found in other studies (Gosain et al., 2006; Gosain and Rao, 2004; and Kundu et al., 

2017).  

Future scenarios consistently indicate an increase (of same flow rates) in both peak flows and 

the monsoon flows (not shown here) which is much higher than the mean annual flows. This 

indicates the potential for increased flooding. Peak discharge mostly occurs during the 

monsoon months and as 85% of total annual water discharge occurs during the monsoon (Jin 

et al., 2018), flow dynamics in the Mahanadi river basin are largely controlled by monsoon. 

Results related to the change in peak flows also agrees with previous studies in Mahanadi 

river basin (Asokan and Dutta, 2008; Ghosh et al., 2010; Jin et al., 2018). However, some 

studies exist (Ghosh and Mujumdar, 2007b, 2007a; Jin et al., 2018; Mujumdar and Ghosh, 

2008) which predicted reduction in the occurrence of extreme high flow events thereby 

resulting in increasing trend of extreme meteorological drought and claimed that this 

reduction flows are due to the significant increase in temperature due to surface warming. 

For instance, despite an increase in the precipitation in monsoon, minor reduction of 5 to 7% 

in peak flows are observed in Jin et al., (2018). 

Findings of previous studies on Mahanadi river basin indicates that dissimilarity exists 

between bias corrected GCM simulations under different scenarios, even in two scenarios of 

a single GCM, despite both scenarios project similar changes in rainfall. These dissimilarities 

are often attributed to the wide range of uncertainties associated with future projections of 

flow including GCM and emission scenario selection, downscaling techniques and 

hydrological model structures and parameterization.  In this study, we refrain from using a 

particular GCM or a particular scenario to assess the hydrological impacts. Instead, we take 

into consideration all possible combinations of precipitation and temperature changes in the 

future, and also attempted to investigate the uncertainties in the hydrological predictions 

associated with the hydrological model parameterization. Majority of the impact assessments, 

however, only use a single hydrological impact model (Hagemann et al., 2013). Streamflow 
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calibration is performed carefully at every subcatchment to represent the main processes that 

controls the flow dynamics in the Mahanadi river basin. We observe that the equifinality has 

provided significant amount of uncertainty in the prediction of flows in the future, especially 

peak flows or flows during the monsoon season. These uncertainties indicate the importance 

of considering multiple calibrated models which shall give more confidence to a hydrologist 

to further use the projections for water management. Hagemann et al., (2013), while 

predicting future global water resources, reported that different hydrological models with 

different model parameterization results in considerably different results and the spread of 

the hydrological models in some regions is even larger than that of the climate models. Our 

results are contradictory with findings of many studies (Chen et al., 2011; Joseph et al., 2018) 

where the impact of hydrological model parameterization on future hydrological predictions 

is found to be negligible. However, some of these studies have not considered enough 

number of behavioral models, for instance, Chen et al., (2011) used only ten different 

parameter sets to represent uncertainties associated with model parameterization. Also, 

most of these studies compared the hydrological model parameter uncertainties with other 

uncertainties such as associated with choice of GCMs or downscaling techniques. GCMs are 

commonly recognized as the largest contributor to uncertainty (Chen et al., 2011), however 

comparisons among the sources of uncertainties is beyond the scope of this study.  

Note, that we are linking the changes in mean annual flows (and peak flows) at every 

subcatchment with the changes in both precipitation and temperature (i.e., the different 

possible combinations) predicted for the entire Mahanadi river basin. Therefore, investigating 

the link between the changes in climate of individual subcatchments and their projected 

streamflow would help to better understand or differentiate among the hydrological 

responses of each subcatchments. 

In this study, the percent change in the hydrologic predictions using GCM models in the future 

are computed with respect to the simulations in reference period (1990–2014) using IMD 

climate variables. Despite the availability of CMIP6 climate variables during the historical 

period from all GCM models, we use IMD as a common reference point to compute the 

percent changes which shall enable comparisons among future hydrological predictions from 

different climate models. However, although CMIP6 ensembles fairly captures the seasonal 

variations of precipitation and temperature of IMD in the historical period, a control scenario 
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experiment comparing simulations using IMD and CMIP6 models in the historical period 

would have provided more confidence into the future hydrologic projections. Further, it is 

also essential to understand the role of hydrological components such as Runoff, ET and soil 

moisture storage to have a proper idea about the potential factors causing the increase or 

decrease in the basin discharge in future. 

It is noteworthy, since we are analyzing the climate change impacts on the mean state of 

annual flow and the peak flows (or by aggregating flows over the monsoon season), the 

information on the contrasting characteristics of flows in different monsoon months (sub-

seasonal variability) or different years (inter annual variability) is probably lost. For instance, 

in the context of Mahanadi river basin, Panda et al., (2013) found a significant difference in 

the sub seasonal rainfall patterns and streamflow during the monsoon, with a predominance 

of the increasing trends in June and decreasing trends in August. This contradictory rainfall 

patterns in different monsoon months would necessitate the reservoir managers to store 

water based on the flow curve to meet the requirements of the existing hydropower plant, 

irrigation and industrial facilities. Moreover, huge inflow into the dam resulting from heavy 

rainfall at some months would compel the dam authorities to open gates abruptly, causing 

flash floods in the coastal areas of the basin within a few hours of release (Panda et al., 2013). 

Also, Indian monsoon rainfall exhibits interannual variation with a standard deviation of 9.7% 

of its climatological mean of ∼837 mm during 1951–2010 (Rajendran et al., 2021).  

Climate change analyses are usually performed by driving hydrological models using future 

climate scenarios, assuming that the model parameters calibrated to historical flows are 

representative of the future. However, Interannual and interdecadal variations in climate 

conditions, such as mainly for precipitation (mainly controls streamflow), can also cause 

parameter estimates to vary. For instance, calibrating a hydrological model for a certain 

period of time (say 1990-2010), may result in different parameter values when compared to 

calibrating a model for another period of time (say 2000-2010), depending on drier or wetter 

catchment conditions. This temporal changes in the calibrated parameters can be related to 

the climate conditions of that particular time period when the hydrological model is calibrated 

for. This might have important implications for hydrologic prediction, such as might increase 

model uncertainty, especially for climate impact analysis. However, certain rainfall features 

such as the variability of rainfall on a sub seasonal scale or intra annual scale and its impacts 
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on model calibration and flows are beyond the scope of this study and further studies are 

required to analyze these features due to their high relevance, e.g., for high-risk flooding 

events. 

5.5. Conclusions 

This research assessed the impact of climate change on the hydrology of Mahanadi river basin 

and outlined the contribution of uncertainty associated with model parameters in quantifying 

the impact of climate change. Hydrological impacts due to climate change in this basin are 

assessed in several studies, however either using the previous climate projections (E.g., 

CMIP3, CMIP5), or not accounting for the uncertainties associated with hydrological model 

parameters. This is the first study in Mahanadi river basin, where we assess the hydrological 

impacts using the recently released climate projection from CMIP6, moreover also 

considering the importance of model calibration in climate impact studies. We here try to 

identify the impacts all possible combinations of changes in mean annual temperature and 

precipitation, irrespective of any GCM or scenarios, on the mean annual flow and peak flows 

over the subcatchments of Mahanadi river basin. To analyze the parameter uncertainty space 

of VIC model, 101 best calibrated models are used to assess the climate change impacts. 

From the analysis of outcomes, following key conclusions can be drawn: 

1. VIC model reproduced the observed flows well in the historical or reference period 

(1990-2014) with the daily median KGE values of 0.54 to 0.68 across subcatchments. 

2. All climate variables (precipitation, maximum and minimum temperature) from bias 

corrected CMIP6 models in the historical period well captured the seasonal pattern of 

the reference dataset, IMD. However, majority of CMIP6 models tend to overestimate 

these variables, during the monsoon.  

3. Future projections for the time 2015-2100 indicate increase in total annual 

precipitation by 42 mm/year, maximum and minimum temperatures by 0.3◦C 

respectively. 

4. Overall change in mean annual precipitation in the entire basin ranges from -5 to 

+105% across all models and scenarios and in mean annual average temperature from 

0-7◦C. This has resulted in change in mean annual flows ranging from -95 to +645% (-
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728 to +2849 m3s-1) and -93 to +485% (-5723 to +29,776 m3s-1) change in peak flows 

across subcatchments.  

5. Uncertainties associated with the VIC model parameters, while predicting percent 

change of mean annual flows varies from about being negligible to 50% (+ 50cumces), 

and in peak flows 1.5 to 50% (+13 to +1211 m3s-1) across subcatchments. 

6. Increase in precipitation, in majority cases has resulted in increase in discharge at most 

of subcatchments, especially in peak flows. However, in some cases, despite a small 

increment in precipitation, decrease in temperature has led to reduction in 

streamflow, probably caused by the increase in ET.  

This study has provided a set of results on the likely future behavior of the subcatchments of 

Mahanadi river system for mean annual and peak flows under the CMIP6 biased corrected 

projections. Future projections of hydrologic variables, along with the associated model 

parameter uncertainties shall help in better hydrologic impact assessment and developing 

adaptation strategies for Mahanadi river basin in India. 
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6. Assessing the impact of local versus global datasets on 
hydrological responses  

 

6.1. Introduction 

Land Surface Models (LSMs) have evolved considerably in the past decades to incorporate the 

sophisticated representation of biochemical, biophysical and detailed surface and subsurface 

hydrological processes (Fisher and Koven, 2020; Van Den Hurk et al., 2011). This accelerating 

advances in land surface models also led to the increase in resolution for large-scale modelling 

(Beven and Cloke, 2012) and resulted in the need for novel global high resolution data (Wood 

et al., 2011). While current land surface models with their increased spatial resolutions entails 

an unprecedented demand for high resolution data sets which should allow in principle, for 

improved simulations, the problem lies with the availability of local/in-situ observations 

(Lorenz and Kunstmann, 2012; Rodríguez et al., 2020). Many developed countries have 

models devoted in modelling the hydrological changes under environmental impacts to 

support water resources management and planning. However, in many developing countries, 

high resolution LSM’s are poorly constrained because of acute shortages of in-situ hydro-

meteorological data (Bierkens et al., 2015, Hannah et al., 2011, Essou et al.,2016). This is 

either due to the decline in the in-situ monitoring gauges (Connor, 2015) or the data not being 

openly accessible for research (Beria et al., 2017). For example, Mujumdar, (2015) has 

recently highlighted about the difficulties faced by the Indian hydrologic community, owing 

to the lack of keenness of the relevant governmental organisations, to openly share required 

hydro-meteorological data and its metadata to the research bodies. This limits the ongoing 

research of analysing real-time hydro-meteorological processes, amidst the continuously 

changing climate and its impact on water resources. This urges the need for integrating high-

quality global datasets into the LSM’s (Beria et al., 2017; Liu et al., 2011; Mujumdar, 2015; 

Strömqvist et al., 2009; Zubieta et al., 2016). 

In recent years, there have been enormous advances in the global data availability of the 

geophysical attributes, such as soil, vegetation and fine-scale meteorological data (Bierkens 

et al., 2015; Clark et al., 2015) from the ever-expanding remote sensing activities, reanalysis 
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products and other large data sets. A major focus is required to utilize these datasets in 

parameterizing high resolution global LSM’s to improve representations of hydrological 

processes by capturing the sub grid heterogeneity more explicitly. As such, Clark et al., (2015) 

stated that understanding the information content in these available data and also how the 

land models use this information, is crucial for advancing the hydrologic benchmarking 

activities  for improving process representations in land surface models.  

Both satellite and global reanalysis data sets are widely used for hydrological applications 

especially in data sparse regions (Collischonn et al., 2007; Essou et al., 2016; Mahto and 

Mishra, 2019; Shah and Mishra, 2014a; Voisin et al., 2008). The launching of new earth 

observatory missions and better sensors has led to improvements in the quality of 

precipitation estimates worldwide (Huffman et al., 2007, 2015, 2018). For instance, 

emergence of The Integrated Multi-satellite Retrievals for GPM (IMERG) in 2014 have 

improved the hydrologic applications of satellite-based precipitation (Gilewski and Nawalany, 

2018). Recent studies have noted improvement in precipitation quality of different version of 

GPM IMERG over other satellite rainfall products such as TRMM Multi-satellite , TRMM Multi-

satellite Precipitation Analysis (TMPA-3B42), TMPA V7, and others; particularly in India and 

elsewhere (Beria et al., 2017; Gilewski and Nawalany, 2018; Prakash et al., 2018; Sharifi et al., 

2016; Sungmin et al., 2017; Tang et al., 2020; Zubieta et al., 2016). Simultaneously, the 

numerical weather prediction systems are also continuously improving (Mahto and Mishra, 

2019). For instance, Mahto and Mishra, (2019) evaluated five new reanalysis products against 

local observations for hydrological applications in India. Analysis showed ERA5 captured best 

monsoon season rainfall and maximum temperature over other reanalysis products such as 

MERRA-2, ERA-Interim, CFSR, and JRA55. A recent development in ECMWF is the release of a 

global dataset for land component of ERA5, hereafter named as ERA5-Land (Muñoz-Sabater 

et al., 2021). In a recent study by Gao et al., (2020) ERA5-Land performed better than other 

reanalysis products while outperformed by GPM IMERG for hydrological applications in China. 

Ability of reanalysis datasets for hydrological predictions are less explored compared to the 

satellite datasets (Essou et al., 2016) 

Global soil and land cover information are also available on a much finer spatial scale. Among 

the current global soil maps, the latest version of SoilGrids at a resolution 250 metres (Hengl 

et al., 2017) involves most detailed estimation of soil distribution having highest accuracy and 

resolution (Dai et al., 2019). Very few studies exist that tested the impact of using global soil 
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in a hydrological model (Dembélé et al., 2020; Krpec et al., 2020), for instance Krpec et al., 

(2020), tested the impacts of using global soil from SoilGrids on hydrological responses. 

Recently released time series of global land cover product from European Space Agency 

Climate Change Initiative (ESA CCI) of relatively finer resolution is an advancement over other 

available global land cover products such as IGBP, Global Land Cover 2009, Glob cover 2009 

and global land cover from GLC (Jiang and Yu, 2019). Therefore, it is essential to evaluate the 

advancements and updates of these datasets for their suitability for hydroclimatic 

applications in regional scale studies. With the above motivation, we intend to answer the 

following research questions:  

1. How does the inclusion of global datasets in a regional scale hydrological model impact 

model predictions in a subtropical climate? or, how reliable are global datasets in 

producing a comparable hydrological model performance when compared against 

local observations?  

2. How does the impacts of those different inputs can propagate to different hydrological 

components simulated by the model?  

This study is driven by the hypothesis that using all local datasets will result in better model 

performance compared to when introducing global datasets in the model. We seek to 

understand the usefulness and applicability of recently released global datasets within a land 

surface model for hydrological simulations in a data scarce region in India. To this end, we 

employed a Variable Infiltration Capacity (VIC) hydrological or land surface model over the 

Mahanadi river basin located on the eastern part of India which drains an area of 141,589 

km2. 

The objectives of this study are to 1) perform various model experiments combining forcings, 

soil, and land use datasets from local and global products for hydrological predictions 2) to 

comprehensively analyse the model performance of each experiment and identify critical 

input datasets or combinations of input dataset which may have significant impacts on model 

performance. Overall, this analysis aims to discern the hydrological impacts caused due to the 

changes in a model input (local or global) or a combination of model inputs (local and global) 

to provide a basis for relying on the global data in a hydrological or land surface model for 

future use. Very few studies exist that explore various combinations of input in LSM to achieve 

maximum gain in model performance. Later groups focussed on selecting a proper 

combination of model inputs prior to model calibration (Faramarzi et al., 2015; Tarawneh et 
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al., 2016). Our study is also an advancement from few published studies (Ghodichore et al., 

2018; Kneis et al., 2014; Mahto and Mishra, 2019; Prakash et al., 2018; Shah and Mishra, 

2014b) on this domain as we evaluate the recently released and finer resolution global 

datasets which to our knowledge have not been tested yet in India river basins for 

hydrological applications.  

6.2. Data and Methods 

6.2.1. Model input datasets and parameters 

We applied the VIC model version VIC 4.2.d using the water balance mode at a daily time step 

and 0.05◦ spatial resolution over the 5 subcatchments of the Mahanadi river basin. The inputs 

required by VIC model are meteorological forcing (precipitation, maximum and minimum 

temperature, and wind speed), soil properties, land use and vegetation properties, and 

topographical details. DEM CARTO 30, a national DEM developed by ISRO (Indian Space 

Research Organization) is used for extracting all topographical features and for delineating 

the Mahanadi river basin. Sivasena Reddy and Janga Reddy, (2015) evaluated 6 DEM’s of 

different resolutions including SRTM 90, CARTO 30 and ASTER 30 in an Indian river basin and 

found that CARTO 30 provided accurate estimates of runoff and watershed areas than other 

DEMs. Therefore, we refrained from testing any global DEM in this study. Table 6.1 provides 

a summary of the input data used in this study and a detailed description of the inputs are 

given below. 
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Table 6.1: Summary of model input datasets used in this study 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.1.1. Soil type and land cover maps 

National level soil map is derived from the digitized soil map as provided by National Bureau 

of Soil Survey and Land Use Planning (NBBSSLUP) with a spatial resolution of 500 metres 

(Figure 2.6a) (Scale 1:250000). Global gridded soil textures are derived from SoilGrids (Figure 

2.6b). For the sake of clarity, global soil map for the basin is shown at a model grid resolution 

of 5 kms (instead of showing 3 different soil texture maps of clay, sand and silt at 250 m 

resolution).  

National level LULC map is derived from National Remote Sensing centre (NRSC) of year 2013-

2014 (scale 1:250000) of resolution 56 meters (Figure 2.7a). Global LULC map for the year 

2014 (Figure 2.7b) is obtained from the consistent series of annually generated land cover 

products from ESA CCI (version 2.0.7) (Jiang and Yu, 2019) for the period 1992-2015 at a 

resolution of 300 meters. Both LULC maps show that Deciduous Broadleaf Forest (DBF) and 

cropland (CL) are the major land cover types in the basin.  

6.2.1.2. Meteorological forcings 

Precipitation datasets in this study are obtained from 3 different sources (i) Daily gridded 

precipitation data from IMD at a grid resolution, 0.25◦. X 0.25◦.  (ii) Half-hourly precipitation 

Inputs Resolution Data type 

Land Use 

NRSC 50 metres Local 

ESA CCI 300 metres Global 

Soils 

NBSSLUP 500 metres Local 

SOILGRIDS 250 metres Global 

Precipitation 

IMD    0.25 ◦ X 0.25 ◦ Local 

GPM IMERG       0.1 ◦ X 0.1 ◦ Global 

ERA5-Land      0.1 ◦ X 0.1 ◦ Global 

Temperature 

IMD          1 ◦ X 1 ◦ Local 

ERA5-Land       0.1 ◦ X 0.1 ◦ Global 
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data from The Integrated Multi-Satellite Retrievals for GPM IMERG, early run (Near real-time 

product- VO6) with a spatial resolution 0.1◦. X 0.1◦ (iii) Hourly precipitation data from ERA5-

Land, recently released new-era reanalysis product of ECMWF and replay of the land 

component of ERA5 climate reanalysis with much finer spatial resolution of ~9km compared 

to ERA5 (31 km) and ERA-Interim (80 km).  

IMERG algorithm uses all available sensors of TRMM and GPM eras to provide global 

precipitation estimates at a spatial resolution of 0.1◦ and a temporal resolution of 30 min. The 

latest version of this product, V06 is a retrospective processing of IMERG to TRMM era and 

uses new algorithm with several major improvements, which could enhance the quality of the 

precipitation estimates (Tang et al., 2020). As ERA5-Land is based on several improvements, 

which is most importantly, the enhanced horizonal resolution (9km vs 31km) than ERA5, it is 

crucial to assess its suitability in hydrometeorological applications. Temperature data in this 

study is obtained from 2 different sources (i) Daily gridded maximum and minimum 

temperature data from IMD at a resolution, 1◦ X 1◦. developed using 395 stations and having 

20 grids within Mahanadi river basin. (ii) hourly temperature from ERA-Land with a horizontal 

resolution of ~9km. The daily maximum and minimum temperature are derived from hourly 

temperature. Wind speed is obtained from NCEP/NCAR reanalysis of resolution 1◦. Please 

note that both rainfall datasets from GPM and ERA5-Land and temperature from ERA5-Land 

were accumulated to daily time scale and the spatial resolutions of all datasets including IMD 

are kept at VIC model resolution of 0.05◦. Figure 6.1 shows cumulative daily precipitation and 

temperature at Basantpur from IMD, GPM IMERG and ERA5-Land, for the period 2014–2016.  

A dense network of rain gauges consisting of 7000 stations is well-spread across India (Beria 

et al., 2017), among which 201 rain gauges exists within this basin. We choose a basin in India 

which contains relatively sufficient local data to enable comparisons among the model 

performances using local and global datasets. This will be useful in validating the use of these 

global datasets and understanding the value in case these local datasets are not available or 

utilizing these datasets in data sparse regions of tropical climate zone. Similar concept is also 

followed in (Essou et al., 2016). 
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Figure 6.1 (a) Cumulative daily precipitation of Subbasin Basantpur from IMD, GPM IMERG 

and ERA5-Land, for the time 2014–2016. (b) Daily minimum and maximum temperatures from 

IMD and ERA5-Land, for the time 2014–2016 of Subbasin Basantpur  

6.2.1.3. Model parameters 

The VIC model has 46 tuneable parameters (Bennett et al., 2018). We had performed a Global 

Sensitivity Analysis (GSA) on some soil, vegetation and routing parameters based on the 

suggestions by VIC model developers (Gao et al., 2010) and existing literatures (Demaria et 

al., 2007; Gou et al., 2020b; Joseph et al., 2018; Yanto et al., 2017). Among those parameters, 

soil parameters, infiltration capacity (binf), fraction of maximum velocity of baseflow (ds), 

velocity of baseflow (dsmax), soil moisture in third soil layer (ws), second and third soil layer 

depth (d2) and (d3) respectively and routing parameters, (vel) are found sensitive hence are 

subjected to calibration. The rest of the soil properties such as soil porosity (ɵ𝑠), field capacity 

(a) 

(b) 
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(FC), Wilting point (Wp), Saturated Hydraulic Conductivity (Ksat), and Initial soil moisture etc. 

are obtained based on average hydraulic properties of USDA soil textural classes (Cosby et al., 

1984; Rawls et al., 1998; Reynolds et al., 2000). Among the vegetation parameters, monthly 

mean LAI values are derived from the daily LAI product for the time 2000-2015 from MODIS 

AQUA/TERRA. We derived root zone depths and estimated the fractions of roots in each zone 

following Zeng, (2002). Other related biophysical parameters required by VIC such as 

roughness length, albedo and displacement height etc., are assembled based on Land Data 

Assimilation System (LDAS).  

6.2.2. Experimental design and model evaluation 
 

Precipitation, temperature, soil, and land use datasets from local and global products are 

combined to yield 11 different model experiments (Table 6.2). These experiments are 

designed with an objective of testing the impacts on model performance of using (i) all local 

datasets (Experiment 1) (ii) combinations of local and global datasets (Experiments 2 to 9) and 

(3) all global datasets in a hydrological model (Experiments 10 and 11). Exp3 and exp4 uses 

global precipitation datasets from GPM and ERA5-Land respectively, while the rest of the 

inputs are local. Exp7 and exp8 is designed to test global soil and land cover respectively. Exp9 

is a follow up Experiment to exp7 and exp8 where we test the hydrological response of using 

both soil and land cover from global sources. In exp 2 we are replacing coarse resolution local 

temperature from IMD with fine resolution temperature from ERA5-Land. Both exp5 and exp6 

is framed to understand the impact of using both rainfall and temperature datasets from 

global products. Exp 10 and exp 11 is to test the impact of using all global datasets as model 

inputs. The difference between exp 10 and exp 11 is the source of global rainfall product i.e., 

GPM and ERA5-Land, respectively.  

A set of behavioural models (250 models) are first obtained by calibrating the model using all 

local datasets, using a sequence of 5000 Monte Carlo simulations, for the time 1990-2010 

including 2-year warm up period (1988-1999). These behavioural models were derived based 

on Kling-Gupta Efficiency (KGE) (Gupta et al., 2009) (More details can be found in Chapter 3). 

We calibrated the model using the measured local data, which is believed to be the most 

accurate data available. Satellite data produce indirect measurements, as it provides 

‘estimates’ of precipitation as the satellite do not measure rainfall directly.  
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Next, all experiments, including exp1 (experiment using all local dataset) are run using these 

behavioural models for an entirely different time period (2014-2016), owing to the availability 

of all datasets. These behavioural models shall consider uncertainties in the model outcome 

stemming from model parameterization or any biases in the input datasets. The VIC model in 

this study is set up to produce daily streamflow at all subcatchments shown in Figure 2.1 

(Chapter 2). To ensure accurate initialization of the VIC soil moisture for the rest of the 

experiments (exp2-11), the behavioural models are spun up by forcing data of time 2014-

2016 repeatedly for 21 years (7 loop cycles through a 3-year period) following similar 

recommendation by Rodell et al., (2005). Since we calibrated the models using local datasets, 

exp 1 is considered as the reference or a benchmark simulation. It is worth mentioning that 

we restrict to a shorter analysis period, i.e., only 3 years, due to the lack of availability of the 

local daily estimates of maximum and minimum IMD temperature beyond year 2016. The 

observed discharge data at multiple gauges for the time 1988-2010 are available from the 

Central Water Commission (CWC), India. 

The model performance was evaluated by quantitative comparison with the observed 

discharge using performance metric KGE (Eq. 6.1-6.3). KGE metric balances the contribution 

to the error coming from all three main components, namely correlation (e.g., 

timing/dynamics), variability (e.g., seasonality), and systematic bias, and is now a widely used 

metric in hydrometeorological studies (Gupta et al., 2009; Knoben et al., 2019; Mishra et al., 

2020b; Rodriguez and Tomasella, 2016; Tang et al., 2020). KGE ranges in [-∞,1] with values 

closer to one indicating better performance. 
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Table 6.2: Describing the experiments performed in this study 

  

Where r is the linear correlation between simulated and observed discharge, 𝛼 is an estimate 

of flow variability error and 𝛽  is a bias term. 𝜎𝑠𝑖𝑚  and 𝜎𝑜𝑏𝑠  are standard deviations in 

simulated and observed discharge, respectively. µ𝑠𝑖𝑚  and µ𝑜𝑏𝑠  are mean of simulated and 

observed discharge, respectively. 

Experiments Local Global 

1 
IMD rainfall, IMD 

temperature, soil, LULC types  
- 
 

2 
IMD rainfall, soil textures, 

LULC types 
 

ERA5-Land temperature 
 

3 
IMD temperature, soil 
textures, LULC types 

 

GPM rainfall 
 

4 
IMD temperature, soil 
textures, LULC types 

 

ERA5-Land rainfall 
 

5 
soil textures, LULC types 

 

GPM rainfall, Reanalysis 
ERA5-Land temperature 

 

6 
soil textures, LULC types 

 

ERA5-Land rainfall, ERA5-
Land temperature 

 

7 
IMD rainfall, IMD 

temperature, LULC types 
 

Soil textures 
 

8 
IMD rainfall, IMD 

temperature, soil textures 
 

LULC types 
 

9 
IMD rainfall, IMD 

temperature 
 

Soil textures, LULC types 
 

10 
- 
 

GPM rainfall, ERA5-Land 
temperature, soil, LULC 

 

11 
- 
 

ERA5-Land rainfall, ERA5-
Land temperature, soil, LULC 
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6.3. Results 

6.3.1. Model performance of all experiments 

Calibration of VIC model is performed against local dataset on a daily time scale with respect 

to KGE for the time 1990-2000 for all the subcatchments. Overall, the model reproduced the 

observed flows remarkably well with the median KGE values of 0.85, 0.86, 0.82, 0.75, 0.63 at 

Basantpur, Kantamal, Kesinga, Salebhata and Sundergarh, respectively (see Figure 4.5a in 

Chapter 4). These calibrated models are then used, however, in a completely different period 

2014-2016 to evaluate the simulated daily discharge from eleven VIC model experiments 

(table 2) for the subcatchments of the Mahanadi river basin. Figure 6.2 (top panel) shows the 

model performance (KGE) for the simulated discharge obtained from 11 model experiments 

against the observed discharge for all subcatchments. The boxplots represent uncertainties 

in the KGE values due to different model parameterizations (or 250 behavioural models). We 

averaged the ranks achieved by each experiment at all subbasins to have an overview of the 

model performances. Reference experiment (exp1) shows the best performance. Similar 

performance to the reference experiment is observed for the simulation using global soil 

(exp7) thereby having negligible difference in the KGE values. Simulation using precipitation 

from GPM (exp3) has shown a comparable performance to the reference experiment. Among 

all experiments, lowest performances are obtained by the experiments driven by 

precipitation from ERA5-Land (exp4,6,11). Experiments using global temperatures, land 

cover, combination of global soil and land cover, and combination of global precipitation 

(both sources) and temperature, have shown a moderate performance in overall.  

KGE exhibit significant variability in model response among 11 experiments across 

subcatchments. The median of KGE suggests reference (exp1) produced the best performance 

at Basantpur, Kantamal and Sundergarh, while performed moderately for the rest 

subcatchments. The median KGE values for the reference (exp1) simulation across 

subcatchments Ba, Ka, Ke, Sa and Su are 0.80, 0.74, 0.46, 0.66 and 0.25 respectively. 

Simulation driven by GPM rainfall (exp3) outperformed reference simulation and 

simultaneously have produced the best performance at 2 subcatchments (Kantamal and 

Kesinga), while slight to significant deterioration in KGE is observed for the rest 

subcatchments. Conversely, the other global source of precipitation, ERA5-Land (exp4) have 

shown relatively much poorer performance, with respect to both reference and exp3, with 



 

133 
 

decline in KGE at every subcatchment. Simulations using ERA5-Land temperatures (exp2) 

have performed well across all subcatchments with a slight decline in KGE as compared to the 

reference simulation. Simulations using both precipitation and temperature from global 

sources (exp5,6) caused more decline in KGE than using either of them as a sole input from 

global sources. Especially, combination of ERA5-Land precipitation and temperature (exp6) 

have shown significant deterioration at all subcatchments. Global soil map from SoilGrids 

(exp7) yielded KGE values identical to (lying almost in the same interquartile range) 

benchmark (exp1) at four subcatchments, suggesting an insignificant change in overall model 

performance. On the contrary, the use of the global land cover map from ESA CCI (exp8) has 

shown deterioration in model performance at four subcatchments while producing best 

performance at one subcatchment, Salebhata. The impacts of replacing all local datasets by 

global datasets in the VIC model (exp10,11) varies across subcatchments. However, at most 

of the instances, experiments using all global datasets (exp10,11) showed better 

performances than experiments using only precipitation and temperature from global 

sources (exp4,10), implying that global soil and LULC in exp10 and 11 compensates for the 

poor performances in exp4 and 10. 

On some occasions, we observe that KGE enable a finer distinction among experiments, 

exhibiting clear trends stemming from the influence of the various input datasets, however 

varying across subcatchments (see Figure A.1 in Appendix A). For instance, at Basantpur, we 

observe a finer distinction between experiments driven by IMD precipitation (exp 1,2,7,8,9) 

and global precipitation (exp 3,4,5,6,10,11). The later yielded much lesser KGE values than 

the experiments using IMD precipitation, emphasizing on the importance of local 

precipitation estimates at this subcatchment. At Kesinga, simulations involving GPM 

precipitation (exp3,5,10) produced best results whereas simulations using reanalysis forcings 

(exp4,6,11) have shown maximum deterioration in KGE. Simulations using local forcings 

performs moderately at this subcatchment. At Salebhata, we observe that all experiments 

involving global land cover (8,9,10,11) outperformed the experiments involving local land 

cover (1,2,3,4,5,6,7). 
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Figure 6.2: (top) Values of KGE calculated for prediction of discharge of all experiments at all 

subbasins. Boxplot of KGE values represents 250 behavioural models, meaning the 

uncertainties stemming from 250 model parameters sets (b) Bar charts representing the 

percent changes in datasets (precipitation, temperature, soil and land cover) obtained from 

global sources with respect to that of datasets from local source. In the legend, T, P, S and L 

are temperature, precipitation, soil and LULC respectively. 

6.3.2. Factors causing changes in model performance due to different data sources 

6.3.2.1. Weather datasets 

Figure 6.2 (bottom panels) shows the percent change in the input factors (precipitation, 

temperature, soil and land cover) obtained from global sources relative to the datasets from 

local sources. Each of the experiments (shown in the horizontal axis) in bottom panel 
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represented by the bar plots for different factors corresponds to the same experiment 

numbers in the top panel showing boxplot of KGE values. The performance produced by each 

experiment (shown by KGE boxplot in top panel) can be related to all four factors of the 

corresponding experiment to understand which factor is responsible for the change in the 

KGE values. 

Both global rainfall datasets, GPM and ERA5-Land have overestimated the daily rainfall values 

when compared to IMD rainfall across subcatchments. However, the decline in KGE is mainly 

caused while using ERA5-Land rainfall datasets. Moderate to large overestimation (11-20%) 

in ERA5-Land rainfall have produced consistently poor performance (See exp4 in Figure 6.2). 

5% increase in GPM annual rainfall at Kesinga outperformed benchmark simulation by 

improving slight positive biases and variability (not shown here) in streamflow implying that, 

precipitation estimates of IMD resulted in slight overestimation in discharge at this 

subcatchment. However, to understand the factor causing reduction in discharge despite 5% 

increase in GPM precipitation, we assessed the water balance components (Figure 6.3). We 

observe that replacing IMD precipitation with GPM, had induced more evapotranspiration 

thereby reducing total runoff. Annual average of runoff and ET for rest of the subcatchments 

are shown in appendix (Figure A.2, Appendix A). Further increase (16-26%) in GPM annual 

rainfall have largely overestimated the streamflow at Basantpur, Sundergarh and Salebhata.  

The decline in KGE while using ERA5-Land temperatures is attributed to the decrease in 

average temperature by 0.5-4.8% that tends to overestimate the discharge. Decrease in 

maximum temperature have reduced the evapotranspiration thereby increasing runoff (see 

Figure A.2, Appendix A). Please note that both maximum and minimum temperatures are 

used as inputs in the model, however for sake of simplicity, only the change in the average 

temperatures is shown in Figure 6.2. The overestimating tendency of both precipitation and 

temperatures from ERA5-Land, caused further deterioration in exp 6.   

Figure 6.4 shows a visual comparison between observed and simulated discharges of the 

experiments at Basantpur to understand how prediction of discharge differs between 

experiments and to visually assess the model performance. Visual comparison of observed 

and simulated discharge for the rest of the subcatchments is in Figure A.3, Appendix A. Figure 

6.4a clearly illustrates that at Basantpur, benchmark simulation using IMD rainfall closely 

matches the observed flow whereas some overestimation is observed in simulations driven 
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by GPM (exp3) and ERA5-Land (exp4) rainfall. At this subcatchment, simulations driven by 

reanalysis precipitation, ERA5-Land (exp4,6,11) have performed better than GPM 

precipitation (exp 3,5 and 10). This is because Δ P for GPM (303 mm) is higher than ERA5-Land 

(219 mm) therefore relative overestimation is higher in GPM.  

 

 

 

 

 

 

 

 

Figure 6.3: Annual average of runoff and evapotranspiration at Basantpur for all experiments. 

In the legend, T, P, S and L are temperature, precipitation, soil and LULC respectively. Please 

note that the precipitation varies across experiments. 

6.3.2.2. Soil and land cover datasets 

The significant difference in the granularity of data is clearly visible in the soil maps which 

ranges from 83-97% across subcatchments (Figure 2.6, Chapter 2). Loam and some 

percentage of clay in the local soil map is mapped as clay loam in SoilGrids. Despite a 

significant variation in the percentage of soil textures and spatial distribution in both soil 

maps, we observe insignificant changes in model performance i.e., closely represents the 

benchmark flows which is simulated using local soil. This is because the mismatch in soil 

classification is among the soil types of comparable hydraulic properties thereby having least 

influence on the predicted discharge. Figure 6.4c clearly illustrates that discharge patterns 

using global soil closely represents the benchmark flows and observed flows. 
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Figure 6.4: Comparison of daily observed discharge and ensemble mean of simulated 

discharge of experiments at Basantpur using (a) precipitation from GPM, ERA5-land and IMD 

(reference) (b) temperature from ERA5-Land and IMD (reference) (c) soil from SoilGrids and 

local soil (reference) (d) LULC from ESA CCI and local LULC (reference) (e) all global datasets 

and all local datasets (reference), averaged for the years (2014-2016). In order to show the 

details of the hydrographs, they are zoomed in to the monsoon (wet) months; Results for 

other subcatchments are similar and can be found in the Appendix (Figure A.3). 

Global land cover map has an underestimating tendency primarily due to reduced barren 

grounds in ESA CCI, thereby deteriorating the model performance across the subcatchments 

except for Salebhata. Underprediction in discharge might also be caused due to agricultural 

expansion (10-21) % through increased ET (See Figure A.2 and Figure A.3). However, global 

map captured the low flows better than the local land cover across the subcatchment, as can 

be observed from Figure 6.4d. This indicates ESA CCI mainly under-predicted the peak flows. 

At Salebhata, reduction in barren ground by 17% and expansion in cropland by 24% in the 

global land cover (exp8,9) had outperformed all other experiments related to local land cover. 

The local land cover seems to have overpredicted the flows at this subcatchment. 

Interestingly, using all model inputs from global sources did not yield the worst KGE values as 

we hypothesized. This is because simulation using all global inputs includes global land cover 

that compensates for the poor performance due to the overestimating tendency of global 

weather inputs, specifically precipitation. 

 

 

 

(e) 
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6.4. Discussion 

Precipitation estimates from both GPM IMERG, and ERA5-Land have overestimated the 

discharge. Overestimation using IMERG rainfall estimates is in line with the findings of Beria 

et al., (2017); Zubieta et al., (2016). For instance, Beria et al., (2017) found overestimation in 

low runoff at Hirakud subcatchment of Mahanadi river basin during 2014 monsoon. Peak 

discharge simulated by GPM IMERG, although are well captured, showed an overestimation 

which contradicts the findings of Beria et al., (2017), that the runoff peaks are underreported. 

Gilewski and Nawalany, (2018) also reported overestimation of extreme rainfall events by 

GPM in monsoon dominated regions. ERA5-Land is a recent advancement among the ECMWF 

reanalysis products, therefore very limited studies exist worldwide. A recent study by Gao et 

al., (2020) evaluated the state-of-the-art gridded rainfall products, wherein IMERG 

outperforms all reanalysis datasets including ERA5-Land at both hourly and daily scales. As 

reported in literatures (Dhanya and Villarini, 2017; Mahto and Mishra, 2019; Shah and Mishra, 

2014a) the majority of the reanalysis products including ERA5 show consistent increasing 

trend during Indian monsoons and largely fail to reproduce observed flows in the monsoon 

season in most parts of India. This finding correlates with our analysis as ERA5-Land 

overestimated the discharge at all subbasins and 90% of rainfall is received during the 

monsoon. This overestimation in discharge while using both IMERG and ERA5-Land can 

directly be linked to the overestimation of rainfall estimates at these subcatchments as also 

reported by Mahto and Mishra, (2019) and Zubieta et al., (2016). For instance, in Zubieta et 

al., (2016) both over/underprediction in runoff occurs when the rainfall estimates are 

over/underestimated respectively. However, much larger overestimation is observed in 

reanalysis products than satellite products as reanalysis models generate too much light 

rainfall. IMD gridded rainfall products are acquired from reasonably good network of rain 

gauge observations spread across the country, hence might be expected to capture average 

daily events more accurately. To the best of our knowledge, Indian Meteorological 

Department (IMD) (Pai et al., 2014) never reported of any errors in this gridded precipitation 

dataset across the Indian region, except for the observations in the mountainous areas due 

to the orographic precipitation effects. However, errors might result from the interpolation 

effects (while interpolating the rain gauge observations to obtain the gridded observation) 
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and the fact that how well maintained and calibrated the rain gauge measurement 

instrumentations are.  

Moreover, very high resolution IMERG rainfall products might be a reason to produce better 

simulations than IMD rainfall which is relatively coarse. Maximum and minimum 

temperatures from ERA5-Land had overestimated discharge, however lesser than caused by 

precipitation from ERA5-Land. Generally, temperature exhibits smaller biases compared to 

precipitation as also found in Essou et al., (2016). Overestimation of monsoon runoff caused 

by an increase in maximum temperature, is also reported by Mahto and Mishra, (2019) and 

Ghodichore et al., (2018) for ERA5 and other reanalysis product over India.  

Global soil texture information from SoilGrids of resolution 1km has resulted in a comparable 

performance to the reference experiment at all subbasins. In line with our findings, Yeste et 

al., (2020) obtained good hydrological responses using textural information from 

SoilGrids1km in the north of the Iberian Peninsula. In contrary, Tarawneh et al., (2016) found 

that the local detailed soil map produced much better simulations than the global soil map. 

However, the difference between the impact of using global or local soil map on the simulated 

discharge depends on the difference between the soil textures present in both the sources. 

For instance, replacing local soil with global did not have much impact on simulations in 

Faramarzi et al., (2015) and  Strömqvist et al., (2009). In Strömqvist et al., (2009) change of 

soil type from clay to loam (both having similar hydraulic properties) have little effect on 

streamflow. The global LULC in overall, tends to underpredict the discharge. However, global 

LULC map, when used across rest of scenarios, with other inputs showing overestimating 

tendency (such as global rainfall and global temperature), it compensates for the positive bias 

and improves the model performance. As also found in our study, global LULC map from USGS 

improved the biases however significantly did not improve the streamflow in Tarawneh et al., 

(2016), and global LULC map had least influence on model performance.  

Although we conducted the analysis for selected subbasins to avoid the effects of a major 

dam/reservoir in the middle reach, subbasins analyzed are also human intervened and 

observed streamflow are still controlled by minor reservoirs and dams. This will affect the VIC 

model simulations especially in the smaller subcatchments which is possibly the reason 

behind poor benchmark performance at Kesinga and Salebhata, despite being calibrated 

using local datasets. Moreover, non-consideration of groundwater recharge and irrigation in 
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the model could also affect the performance. This is in line with some literatures (Kneis et al., 

2014; Mishra et al., 2008; Nayak et al., 2010) wherein the calibrated hydrological models 

yielded poor performance at smaller subbasins of Mahanadi.  

VIC (and other land surface models) has a large number of parameters which often contribute 

to uncertainties in the simulated discharge and there may exist multiple model parameter 

sets that can yield equally good or behavioral model output which can lead to widely 

divergent results under novel conditions (Her et al., 2019). Therefore, using 250 behavioral 

VIC models while capturing the hydrological responses, driven by datasets of multiple sources, 

makes our analysis more robust and reliable. Instead, employing only one parameter set 

could have led to improper representation of hydrological processes thus making it difficult 

to disentangle the impacts of using these datasets on discharge predictions. 

Model performances using all these global datasets varies from one subcatchment to another 

which might be due to the regional differences in quality of these datasets particularly, 

satellite datasets. But to clearly understand, whether the poor performance at some stations 

is due to limitations in input datasets, or due to the process representations in the VIC model, 

other land surface models or hydrological models should be used.  

6.5. Conclusions 

Lack of availability of local/in-situ observations in developing countries like India limit the 

ongoing research of analyzing real-time hydrological processes. This urges the need for 

integrating high-quality global datasets into a regional scale hydrological model. In this study, 

we seek to understand the impacts of using new high resolution global datasets as inputs in 

a macroscale hydrological or a land surface model, VIC, on hydrological responses of 

Mahanadi river basin. To elucidate those impacts, we frame different model experiments 

using precipitation, temperature, soil, and land use datasets from both local and global 

products and perform comprehensive evaluation of the model performance. Global 

precipitation datasets are acquired from GPM IMERG and ERA5-Land and global temperature 

dataset from ERA5-Land. Global soil and land cover data are obtained from SoilGrids and ESA 

CCI respectively.  

From the analysis of outcomes, following key conclusions can be drawn: 
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1. Reference produced best simulation results at three out of five subcatchments in the 

evaluation period with median KGE ranging from 0.66-0.80. Note that the calibration 

using all local datasets are performed in a completely different period (1990-2000). 

Replacing local precipitation with IMERG improved model performance at 2 

subcatchments, specifically at Kesinga with median KGE value 0.7 compared to 0.5 for 

reference simulation. Replacing local land cover map with ESA CCI map produced best 

result at one subcatchment with median KGE 0.67. 

2. Both satellite and reanalysis product, GPM and ERA5-Land respectively overestimated 

daily rainfall estimates (5-26%), which has caused overprediction in discharge 

compared to the reference experiment, however, decline in performance is 

significantly more, using ERA5-Land, at all subcatchments. Performance of GPM at 

three out of five subcatchment (KGE 0.58-0.76) is better than ERA5-Land (KGE 0.37-

0.40) and could be used as an alternative to local precipitation estimates from IMD.  

3. Maximum and minimum temperatures from ERA5-Land slightly overestimated 

discharge, however in overall showed a moderate performance with KGE values 

slightly lower than the reference experiment. 

4. Not many changes are observed in the hydraulic properties of the soil textures in both 

(global and local) maps, hence global soil from SoilGrids produced a performance 

comparable to the reference experiment.  

5. Global land cover map from ESA CCI tends to underestimate the discharge at all 

subcatchments primarily due to reduced barren grounds. However, the low flows are 

better captured compared to the local map.  

6. Experiments using all input datasets from global sources (exp8 and 11) outperformed 

some experiments involving local land cover. This is because underestimating 

tendency of global land cover and overestimating tendency of global forcings 

ultimately improves the biases in streamflows. 

7. The ranking of the global products (used in this study) most suitable for this region are 

SoilGrids, GPM rainfall, ER5-Land temperatures, ESA CCI land cover and ERA5-Land 

rainfall. However, effects of inclusion of different combination of these datasets may 

vary the model predictions. 
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These results are based on 3 years (2014-2016) analysis, primarily due to the unavailability of 

local maximum and minimum temperature records from IMD. Moreover, retrospectively 

processed fully GPM-based IMERG data starting from 1998 became available during the later 

stage of our study. The future work should involve a long-term hydrological analysis using 

these datasets and it is also essential to test the global products, esp. rainfall and temperature 

at their native resolution against IMD observations, which would provide an in-depth aspect 

of these new datasets. 
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7. Conclusions and future outlook 
 

7.1. Summary 

Variability in land cover and climate are the important factors determining changes in 

hydrological processes in a river basin. These factors are expected to pose serious impacts in 

countries like India due to their agricultural-based rural economy. The Mahanadi river basin, 

located under a sub-tropical climate zone in India, is vulnerable to the hydrological extremes 

including floods and droughts (Jin et al., 2018). The hydrological cycle in the basin is expected 

to be altered further because of human induced land use activities, such as deforestation and 

agricultural activities (Behera et al., 2018), as well increase in precipitation and temperature 

(Jin et al., 2018). Therefore, evaluation and prediction of likely future behaviour of the basin 

flows are necessary for judicious planning and management of water resources. Distributed 

hydrological models like the Variable Infiltration Capacity (VIC) are typically employed to 

better understand the complex hydrological processes and their interactions under land cover 

and climate changes. However, there is still limitation in its accuracy of the outputs because 

of the uncertainties associated with the modelling predictions. These uncertainties can arise 

from model structures, model parameterisation and calibration procedures, and can also be 

associated with data availability such as availability of meteorological forcing and other input 

data.  

This thesis presents an approach to predict hydrological responses under changing 

environment and model input datasets for Mahanadi river basin in India, using a regional-

scale hydrological model and analysing the model performance under these changed 

conditions while properly reporting model uncertainties due to parameter estimation. The 

key findings of each chapter are summarised below: 

Identifying behavioural parameter sets for regional scale hydrological modelling resulted in 

very good model performance  

Physically distributed hydrological models are commonly employed to model the hydrological 

responses under the impacts of environmental changes. However, with the growing 

complexity of these new generation models (e.g., in terms of parameters to be prescribed a 
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priory), modelling hydrological changes is an extremely challenging task, especially in data 

sparse regions in developing countries. Using uncalibrated or poorly calibrated hydrological 

models can induce model parameter uncertainties on model simulations. To minimize these 

uncertainties, these models should pass through a careful calibration procedure, aiming to 

reduce the number of model parameters, prior to applying the model to address practical 

problems. Most regional based hydrological studies have applied the VIC model using a single 

model realization while predicting the hydrological impacts. This hides the potential 

uncertainties associated with model performances that may arise from different model 

parameterisation. Further, in those studies, calibration is mostly performed considering 

parameters that are either recommended by the model developers or has been considered 

as sensitive parameters in other river basins with different basin characteristics. This can lead 

to involving unnecessary parameters or excluding the important parameters which will 

ultimately reduce the model calibration accuracy and efficiency. For my research, I use a 

methodological approach where I first perform a detailed sensitivity analysis of the VIC model 

parameters to screen out the non-influential parameters at each subcatchment, followed by 

the calibration of only the influential parameters across those subcatchments to generate 

streamflow. This sensitivity-guided model calibration is performed within a Monte Carlo 

framework to generate behavioural models for subcatchments of the Mahanadi river basin. 

We found that the soil related parameters such as the infiltration parameter and second soil 

layer depth are the most influential parameters affecting the modelled streamflow while 

vegetation parameters have a very little impact on discharge. We also found that the routing 

parameter, flow velocity, is also a sensitive parameter which is however not often 

recommended for model calibration. The behavioural models that we obtained showed a 

substantial improvement compared to the non-behavioural models with median KGE ranging 

between 0.63 to 0.86 in calibration and 0.59 to 0.82 in validation across subcatchments. This 

KGE range suggests equifinality (equally good models resulting from different parameter 

combinations), however representing the uncertainties associated with the model 

parameterisation can help with a more robust quantification of hydrological impacts. 
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Future land cover changes are likely to result in an increase by up to 347 m3s-1 in Mahanadi 

river basin discharge 

Commonly, hydrological impact assessments are accomplished by using distributed 

hydrological models in conjunction with different land use scenarios. However, these models, 

through their complex interactions among parameters, can introduce significant uncertainties 

to the hydrological projections. Therefore, we seek to understand the change in hydrological 

responses due to different land cover scenarios while also including the uncertainties 

associated with model parameterization in those simulated hydrological responses. The 

behavioural models which we obtained are used in conjunction with historical and future land 

cover scenarios from the recently released, Land use Harmonisation (LUH2) to generate 

hydrological predictions and related uncertainties from behavioural model parameterisation. 

The LUH2 dataset indicates a noticeable increase in the cropland (23.3% cover) at the expense 

of forest (22.65% cover) by the end of year 2100 compared to the baseline year, 2005. As a 

result, my simulations indicate percent increase in the peak flows and mean annual flows upto 

347 m3s-1 and 33 m3s-1 respectively in the basin. The direct conversion of forested areas to 

agriculture (on the order of 30,000 km2) reduces the Leaf Area Index and which subsequently 

reduces the Evapotranspiration (ET) and increases surface runoff. Further, the range of 

behavioural hydrological predictions indicated variation in the magnitudes of extreme flows 

simulated for the different land cover scenarios, for instance uncertainty in peak river 

discharge of upto 210 m3s-1 is found in far future scenario. These findings indicate that the 

recurrent flood events occurring in the Mahanadi river basin might be influenced by the 

changes in LULC at the catchment scale and suggests that model parameterisation represents 

an important source of uncertainty in the hydrological predictions, and this should be 

accounted for in any land-use change impact assessment study. 

Climate change impacts in the future would have a more pronounced effect (relative to 

LULC impacts) and would increase the river flows by up to 29,776 m3s-1  in the Mahanadi 

river basin 

Some of the serious hydrological consequences of climate change faced by developing 

countries like in India show regional variability, caused sometimes due to local climate, 

geographical characteristics, and regional physical processes. Understanding these regional 

hydrologic impacts has crucial role in the management of water resources. Several studies 
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dealing with hydrological impacts due to climate change in the Mahanadi basin (and other 

basins) are often contradictory depending on factors, for example which climate models are 

used, or scenarios used, as well as the hydrological model and calibration approaches 

employed. We employed a new, and arguably more objective, approach that could give a 

better insight on the impact of climate change. We try to identify the impacts of all possible 

combinations of specific change within the possible mean annual temperature and 

precipitation 2-dimensional scenario space (derived from thirteen CMIP6 models) on the 

hydrological responses. This is done instead of simulating the climate change impacts for a 

specific decade, specific scenarios, or specific models in the future (e.g., 2080s or scenario 

SSP585), which are more commonly done. Our methodological approach also involves using 

an ensemble of VIC models, representing the overall model uncertainty due to parameter 

choices, in conjunction with these climate projections, instead of using a single calibrated 

model to predict the hydrological responses. The climate projections show an overall change 

in mean annual precipitation and mean annual average temperature that ranges from -5 to 

+105% and 0-7◦C respectively. This has resulted in significant changes in both mean annual 

flows and peak flows of upto 2849 and 29,776 m3s-1 respectively. Uncertainties associated 

with the model parameters, of upto 1211 m3s-1 is observed in the predicted peak flow 

magnitudes, which is considerably higher than in predicted annual flow magnitudes. Our 

findings indicate that precipitation mainly controls the future predicted flows in the basin, 

especially peak or monsoon flows. In some cases, small percentage change in annual rainfall 

combined with rise in temperature has resulted in decrease in the mean annual flows possibly 

due to the increase in ET. This study has provided a set of results on the likely future behavior 

of the subcatchments of Mahanadi river system mean annual and peak flows under the CMIP6 

biased corrected projection. Future projections of hydrologic variables, along with the 

associated model parameter uncertainties can help with better hydrologic impact assessment 

and developing adaptation strategies for Mahanadi river basin in India. 

Global input datasets (meteorological, soil and land cover) might can be a viable alternative 

to the local datasets for regional scale modelling in data scarce region in India  

Land Surface Models (LSMs) used for large scale applications are getting finer in terms of their 

spatial resolution which should allow in principle for improved simulations. However, the 

problem lies with the availability of local/in-situ observations and therefore, high resolution 
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LSMs are still poorly constrained in many developing countries. On the other hand, there are 

enormous advances in global data availability. With this motivation, we seek to understand 

how reliable these global datasets are in producing a comparable hydrological model 

performance when replacing local observations. To this end, we designed VIC model 

experiments to explicitly examine the impacts of specific local and global datasets (global 

meteorological inputs from IMERG GPM and ERA5-Land; global soil and land cover from 

SoilGrids and ESA CCI, respectively) on model performance. Our results showed that model 

performances varied substantially across subcatchments depending on the input 

combinations. Experiment using ‘all local datasets’ is considered as the reference (or 

benchmark) simulation, which have most closely represented the observed discharge across 

subcatchments, as suggested by the performance metric. Both global rainfall datasets (IMERG 

GPM and ERA5-Land) have overestimated the rainfall values however, simulations, 

particularly using ERA5-Land rainfall (due to relatively more overestimation) underperformed 

at all subcatchments. Performance using global temperature and global soil has shown 

comparable model performance to the reference scenario performance. We have found 

mismatch in soil classification of local and global data, however, which is among the soil types 

of comparable hydraulic properties, thereby having least influence on the predicted 

discharge. Global land cover map has an underestimating tendency primarily due to reduced 

barren grounds in ESA CCI, thereby deteriorating the model performance across the 

subcatchments, however, captured the low flows better than the local land cover. Our 

findings indicate that some of these global datasets could be used as a viable alternative to 

local observations in this river basin and potentially in nearby basins where there is a lack of 

in-situ observations. 

7.2. Overarching remarks 

This thesis provided a set of results on the likely future behavior of the subcatchments of 

Mahanadi river discharge (mean annual and peak flows) under the future climate and land 

cover projections. We have used recently released meteorological forcing data, soil and land 

cover datasets from satellite and reanalysis products, and climate and land cover scenarios. 

In addition, this thesis also presents results on the differences in hydrological responses with 

respect to using different combinations of local and global input datasets in a regional scale 

hydrological model. All the hydrological predictions presented here are presented with 
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proper uncertainty estimates, resulting from varying model parameters within realistic 

uncertainty bounds using a Monte Carlo framework. While the modelled hydrological impacts 

are helpful for catchment management and planning, the uncertainty associated with these 

models should be considered carefully. For instance, sensitivity analysis techniques may help 

modellers in selecting influential and non-influential parameters as well as identifying 

interactions among parameters prior performing model calibration to reduce uncertainties in 

model simulations. The results and analysis in the thesis have implications to the manner in 

which we calibrate and evaluate models, and the calibration framework can be considered 

for relevant simulation studies in other parts of India. Some key findings are that the increase 

in temperature and precipitation in the Mahanadi river basin can result in a significant 

increase in river discharge in the future. The recurrent flood events occurring in the Mahanadi 

river basin might also be influenced by the changes in LULC at the catchment scale, however 

relatively much lesser than the change in climate. Uncertainties associated with these 

predicted river discharge (mean annual or peak flows) indicates that the uncertainties in 

hydrological projections are higher in case of climate change than the land cover change. 

These findings are based on land cover scenarios from recently released LUH2 dataset and 

climate scenarios from latest climate model generation, CMIP6. The latest update of the 

climate models in CMIP6 are expected to produce more accurate projections, as also the 

ability to simulate climate variables, especially Indian monsoon have improved over time 

(Katzenberger et al., 2020). It is therefore essential to evaluate these updates and 

advancements in these datasets and scenarios for their suitability for hydroclimatic 

applications.  

The predicted high volume flood discharges of a certain magnitude along with the uncertainty 

bound in future will enable modification of the rule curve of the major dam (Hirakud dam, 

see Figure 2.1) in the basin, and also would be useful in designing the proposed second 

reservoir in the middle reaches of the basin (Jena et al., 2014). This will have a positive impact 

on resilience, lives and livelihoods of over 10 million people living in the deltaic region of the 

basin. Moreover, a study on hydrological impacts of future LULC change at basin scale can 

also offer much needed inputs for policy decision making and adequate water resource 

management. With a widespread consensus that the Indian monsoon rainfall will increase 

due to climate change in the 21st century, and a notable increase in the agricultural 
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production over the last decade, the findings of this research are expected to help the water 

managers for decision making and policy makers to develop the adaptation and mitigation 

strategies in the vulnerable regions within the basin. 

7.3. Recommendations for future work 

Availability of wider range of modern hydrologic modelling applications  

Several macroscale hydrological models like VIC have been used in addressing issues related 

to historical and future water resources over the last few decades. However, most studies 

focussed on climate and land cover change impacts on only natural water resources and water 

availability. The version of the model used in this thesis, VIC 4.2.d although incorporates many 

upgrades compared to the older versions, however, further model developments are needed 

for comprehensively assessing the anthropogenic impacts on water resources.  

• Incorporating anthropogenic impact modules into water resource assessments in 

future studies 

Recently, efforts have been put on incorporating anthropogenic impacts into water resource 

assessments, including dam operations and water withdrawals (Droppers et al., 2019; 

Haddeland et al., 2006; Hanasaki et al., 2017). Dams and reservoirs are built to make water 

available for different sectors including hydropower, irrigation and domestic uses, which will 

strongly affect river discharge. Haddeland et al., (2006) had developed a reservoir model to 

implement in VIC model, which included important modules such as dam operation and 

irrigation, which is also used by few other studies. Future river flows, especially water 

availability under the low flows is predicted to be affected by the increase in irrigation water 

demand from the changing land uses (agricultural expansion) in the Mahanadi river basin (Jin 

et al., 2018). Specifically in Mahanadi river basin in India, where agriculture is mainly 

supported by large scale irrigation infrastructure, consideration of these anthropogenic 

impact modules would be helpful in implementing agricultural policies. In our thesis, VIC 

model has been set up for five major subcatchments, located upstream of Hirakud dam, which 

is a major dam (See Figure 3.1, Chapter3) within the Mahanadi river basin. However, during 

the high rainfall events, very high flows released from Hirakud dam and other minor irrigation 

dams in upstream, floods the downstream of the basin (Jena et al., 2014). Therefore, future 

studies dealing with hydrological impacts of climate or land cover changes shall also focus on 
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the effects of reservoir operations and irrigation water withdrawals on hydrological 

components.  

• Utilizing the Improved model infrastructure 

The anthropogenic modules (Haddeland et al., 2006) (dam operation, water withdrawals for 

several purposes) were however not fully integrated, requiring several successive model runs 

which was computationally expensive. Hamman et al., (2018), recently have attempted to 

improve the model infrastructure and released a recent version of the model, VIC-5. Not many 

improvements have been noticed in the model infrastructure since the VIC’s initial release in 

1990’s until the release of version 5 (VIC-5). Major improvements in VIC-5 includes supporting 

a wide range of modelling applications, parallel computing strategy to enable efficient large-

scale simulations and improvements on input/output formats required by the model. 

Previous versions including VIC 4.2.d (used in this thesis) involved extensive pre/post 

processing and reformatting of model input and output files, however, representation of 

hydrological processes in VIC-5 is same as VIC 4.2.d. Since previous versions did not allow for 

parallelising model runs (i.e., running VIC simulations for different grid cells on separate cores 

or computers), this had direct implications on the number of model simulations performed in 

some chapters of this thesis. A more recent work by Droppers et al., (2019) have utilized this 

improved model infrastructure (Hamman et al., 2018) and fully integrated the anthropogenic 

impacts into the VIC model framework while also reducing computation times.  
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• Representation of groundwater processes 

Moreover, large-scale hydrological models also require better representations of 

groundwater processes to improve simulations of regional scale hydrology and climate, as in 

most models, groundwater is either ignored or crudely represented (Scheidegger et al., 2021). 

The standard version of VIC used in our study does not have the groundwater storage 

component, thus results in a poor representation of baseflow. In Indian scenario, 

groundwater gets recharged during the monsoon season, which contributes to the surface 

flows during the dry season. Our PBIAS indicates negative bias in the non-monsoon season 

i.e., underestimation in low flow conditions in most of the subcatchments which attributes to 

the non-consideration of groundwater in VIC. This is also reported by Chawla and Mujumdar, 

(2015) and Joseph et al., (2018) in other river basins in India. For instance, lack of baseflow 

contributions from groundwater had resulted in decrease of simulated flows after the end of 

monsoons, in the river ganga in India. This limitation is partially addressed in some studies 

(Rosenberg et al., 2013; Sridhar et al., 2018). This is an important issue as VIC is applied widely 

in Indian river basins across scales and range of hydrologic applications. To address these issue, 

Scheidegger et al., (2021), recently incorporated a 2D lateral groundwater flow model into 

the VIC model, which will simulate baseflow contributions from diffusive groundwater flow 

to the rivers and will enable considering more realistic groundwater irrigation schemes 

especially within India.  

Considering uncertainty sources while modelling hydrological changes  

Modelling hydrological changes and the associated uncertainties are vital for water 

management including planning of water resources, assessments of floods and droughts etc. 

Decision makers are increasingly interested in the uncertainty bound of the streamflow 

predictions therefore modellers are required to quantify the uncertainties and communicate 

them for policy development (Mockler et al., 2016). Climate and land cover change 

assessments are generally accomplished using a hydrological model. From hydrological 

modelling perspective, dominant sources of uncertainties are three different sources i.e., 

model structure, model parameterisation and forcing data (Mockler et al., 2016). In this thesis, 

we have accounted for the uncertainties in hydrologic predictions resulting from model 

parameterisation in both Chapter 4 and Chapter 5, also accounted for uncertainties in 

streamflow predictions due to different model input datasets including forcing data in 
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Chapter 6. There are also studies which showed that choice of model, i.e., model structure 

has significant effect on predicted river discharge (Karlsson et al., 2016). Apart from these 

three dominant sources, uncertainties may also arise due to using the observed discharge, for 

performing the hydrological model calibration, which thereafter is used to understand the 

model parameter uncertainty issues. Most models do not account for water regulation (due 

to non-availability of data), while considering the observed flows for model calibration. For 

instance, in this study, although we have calibrated flows upstream to the major reservoir 

present in the basin, there are also minor water related structures present in the analysed 

subbasins that we have not considered. This can make the calibration process erroneous and 

difficult, particularly for Indian case studies, as flows are mostly regulated. It is therefore 

further recommended to consider other hydrological variables such as ET, soil moisture etc., 

for hydrological model calibration. 

Considering all these uncertainty sources while modelling hydrological changes, would result 

in total predictive uncertainty. Most studies have focussed on addressing one or two 

uncertainty sources (Bennett et al., 2018; Karlsson et al., 2016) and very few studies have 

addressed all (or most of) the aspects of these uncertainty sources, while simulating 

hydrological responses under changing climate and land cover (Chen et al., 2019b; Feng and 

Beighley, 2020; Mockler et al., 2016). In this context, Blöschl et al., (2019) raised an important 

research question “How can we disentangle and reduce model structural/parameter/input 

uncertainty in hydrological prediction?”. Future land cover and climate change studies shall 

therefore focus on assessing the relative importance of these uncertainties and their 

interactions in model simulations and reducing the total predictive uncertainty while 

assessing hydrological impacts, which is important for the decision makers. 

We understand that the exact nature of impacts on the water sector at regional, river basin 

scales are associated with a notable uncertainty and methodologies are framed to quantify 

and constrain that uncertainty. However, in the context of water management, scientific 

community are responsible for communicating the results along with these uncertainties in 

such a manner that policy makers and stakeholders find it useful and easy to understand, 

while planning for future. For example, there may be many sources of uncertainty that a 

modeller may consider, but details of these sources are not necessarily required by end users.  
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The modellers will have to be responsible for understanding the sources of uncertainty and 

minimizing it, before communicating the results to the decision makers. Modellers while 

explaining the results should emphasize on the consequences of ignoring or underestimating 

the uncertainty range or ignoring the extreme events (outliers), which often tend to be 

rejected by the operational hydrologists. For instance, while communicating the probable 

changes in peak flows at the Mahanadi river basin outlet, rather than offering a range of 

increase in flow magnitudes, it is better to convey the loss of lives, property and costs 

associated with these uncertain impacts. Moreover, the choice of appropriate terminology is 

particularly important such as “probabilities”, “frequencies” in conveying these uncertainties, 

as well as the choice of exact information, modellers would like to convey based on users’ 

goal. 

Enormous advances in global data availability  

The advent of global hyper resolution hydrological modelling and its needs has led to 

enormous advances in global data availability from both satellite and reanalysis products 

(Beven and Cloke, 2012). The quality and number of these high-resolution datasets are 

expected to increase even more with the launch of new missions with better sensors hence 

can be used for parameterizing regional scale hydrological model, especially in developing 

countries where there is a shortage of in-situ data. It is worth mentioning that our judgement 

of the performances of eleven VIC model experiments (using eleven combinations of local 

and global datasets) was based on a benchmark model, which is the model calibrated against 

local datasets i.e., deterioration or improvement of the models are measured with respect to 

the benchmark model. It would be interesting to further understand whether all models (11 

models experiments) if calibrated against their respective combination of input datasets, 

would produce similar model performance as presented in Chapter 6. To address this, 

notwithstanding all the calibration efforts presented in Chapter 3, the performances of 11 VIC 

model experiments can be treated as a pre-calibration approach to help in selection of the 

most robust suite of input datasets for this region, also allowing rapid estimation of quality of 

input datasets. Calibration of the model using the right combination of input datasets would 

also minimize the systematic bias and predictive uncertainty introduced during model 

calibration.  
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Looking at other important aspects of hydrological analysis 

Mahanadi river basin receives approximately 85% of the total annual rainfall during the 

monsoon months (June-Sept) which also results in 85% of the annual river discharge during 

these months. The discharge hydrograph at all subbasins (Figure B.1 in appendix) for the time 

period 2014-2016, shows negligible flows occurring during the rest of the year. Moreover 

peak discharge in the basin mostly occurs during the monsoon (Jin et al., 2018). Various 

studies in the past such as Asokan and Dutta, (2008), Ghosh et al., (2010) and Jin et al., (2018) 

predicted an increase either in the high (peak) flows or monsoon flows in the future, that 

would potentially enhance the flood risk, whereas, insignificant to significant decline in low 

flows and water availability is reported. Therefore, in this study, we choose to restrict our 

analysis to the high flows, (in Chapter 4, land cover change impacts), and peak flows or 

monsoon flows (in Chapter 5, Climate change impacts) instead of analysing all percentiles of 

flows. We have also considered analysing the mean state i.e., the mean annual flows in all 

chapters. However, full comprehensive analysis of all percentiles of flow along with the 

evaluation of the changes in flow regime based on the flow duration curve analysis is 

recommended for future studies to discuss modelling efforts. We observed that the relative 

changes in land cover change impacts on river discharge were insignificant, further analysis 

can be carried out to understand if the impacts are more embodied in the timing change 

rather than magnitudes or variability of streamflow. Besides, changes in annual peak flow 

estimates in future can also be used in the flood frequency analysis i.e., to estimate the 

frequency of high-flow events (number of days exceeding high flow threshold) under the 

projected future land cover and climate scenarios. 
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Data availability 

Dem is freely available from https://bhuvan-app3.nrsc.gov.in/data/download/index.php.  

Unit Hydrograph is adopted from 

https://vic.readthedocs.io/en/vic.4.2.d/Documentation/Routing/UH/.  

Daily gridded rainfall, maximum and minimum temperature are freely available from 

http://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html. 

Observed discharge data are available from http://cwc.gov.in/.  

The source code for VIC-3L version 4.2.d is available from  

https://github.com/UW-Hydro/VIC/releases/tag/VIC.4.2.d.  

Wind speed data is freely available from 

https://psl.noaa.gov/cgibin/db_search/DBSearch.pl?Dataset=NCEP+Reanalysis+Daily+Avera

ges 

LUH2 datasets are downloaded from https://luh.umd.edu/data.shtml.  

Soil textural information to prepare soil map of soilGrids is derived from 

(https://soilgrids.org/)  

Land cover map from ESA CCI is downloaded from www.esa-landcover-cci.org/. 

ERA5-Land precipitation and temperature products are obtained from 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form 
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Appendix A – Supporting information for chapter 6 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1: (top) Values of KGE calculated for prediction of discharge of all experiments, 

ranked in order of their performance, at all subbasins. Boxplot of KGE values represents 250 

behavioural models, meaning the uncertainties stemming from 250 model parameters sets 

(b) Bar charts representing the corresponding percent changes in datasets (precipitation, 

temperature, soil and land cover) obtained from global sources with respect to that of 

datasets from local source. In the legend, T, P, S and L are temperature, precipitation, soil and 

LULC respectively. 
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Figure A.2: Annual average of runoff and evapotranspiration at Kantamal, Kesinga, 

Sundergarh and Salebhata, for all experiments. In the legend, T, P, S and L are temperature, 

precipitation, soil and LULC respectively. Please note that the precipitation varies across 

experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kantamal 

(a) 

(b) 

(c) 

(d) 



 

180 
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kesinga 

(e) 

(a) 

(b) 

(c) 

(d) 



 

181 
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sundergarh 

(e) 

(a) 

(b) 

(c) 



 

182 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Salebhata 

(d) 

(e) 

(a) 

(b) 



 

183 
 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

   

 

 

 

 

 

Figure A.3. Comparison of daily observed discharge and ensemble mean of simulated 

discharge of experiments at Kantamal, Kesinga, Sundergarh and Salebhata using (a) 

precipitation from GPM, ERA5-land and IMD (reference) (b) temperature from ERA5-Land and 

IMD (reference) (c) soil from SoilGrids and local soil (reference) (d) LULC from ESA CCI and 

local LULC (reference) (e) all global datasets and all local datasets (reference), averaged for 

the years (2014-2016). In order to show the details of the hydrographs, they are zoomed in 

to the monsoon (wet) months.  
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Figure B.1 Comparison of daily observed discharge and ensemble mean of simulated 

discharge at Basantpur, Kantamal, Kesinga, Sundergarh and Salebhata for the years 2014-

2016.  
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