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Abstract

Simulating quantum-mechanical systems relating to quantum chemistry or
solid-state physics is one of the most important problems that quantum com-
puters are anticipated to tackle. However, near-term quantum computers will
be noisy and have a limited number of qubits, restricting the types of com-
putations that can be performed. This has lead to the development of hybrid
quantum-classical algorithms, which are suitable for use on these near-term
devices. Systematic studies involving high-performance classical simulations
are required to thoroughly assess the effectiveness of these algorithms.

In this thesis, we address this challenge for the variational quantum eigen-
solver applied to the Hubbard model, an important model from condensed-
matter physics used to describe the behaviour of correlated electrons. We
consider both the solution of instances of this model directly and a com-
pressed form obtained using density matrix embedding theory. All aspects
of this hybrid quantum-classical algorithm are considered, from the initial
encoding of the fermionic Hamiltonian onto the quantum computer, to the
ansatz circuits and the classical optimisation routine.

For the purpose of speeding up future simulations of variational quantum
algorithms, we develop a new high-performance quantum simulator. We de-
scribe the efficient algorithms used for performing gates and measurement.
We also discuss how certain circuit properties, such as number or spin preser-
vation, can lead to further algorithmic speed-ups. Implementing these tech-
niques on high-performance classical hardware may facilitate the numerical
exploration of larger problems.
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Chapter 1

Introduction

The field of quantum computing is currently undergoing a period of intense research.

The construction of devices with more than 50 qubits [1, 2] has brought closer the

promise of being able to solve classically intractable problems. Quantum comput-

ers take advantage of the properties of quantum systems such as superposition and

entanglement to speed up solutions to certain types of problems. Famous exam-

ples are Shor’s algorithm for factorising large numbers [3], Grover’s algorithm for

unstructured search [4] and, naturally, the simulation of quantum systems [5].

Current quantum devices are “noisy”; controlling a quantum system is a difficult

task and current technology is not capable of maintaining the states of the qubits

for very long. Nevertheless, the race is on to reach “quantum advantage”, the

point at which a useful task (beyond the ability of classical computers) can be

carried out on a quantum computer. To reach a quantum advantage we not only

need research on the hardware for quantum computing, but also on appropriate

algorithms and applications that make best use of the limited resources of near-

term quantum computers.

Applying variational quantum algorithms (VQAs) to quantum chemistry prob-

lems is expected to be one of the ways quantum advantage will be reached [6, 7].

Analogously to machine learning, VQAs prepare a parametrised quantum circuit

and use a classical optimiser to find the parameters that best solve the problem

at hand; they are also known as hybrid quantum-classical algorithms. The hybrid

nature of these algorithms places a looser requirement on qubit coherence times and

they have also been shown to have some resilience to noise, making them suitable

for use on current and near-term quantum computers [8, 9].

Quantum chemistry problems are a good target application due to their expo-

nential nature. Solving an electronic structure problem on N spin orbitals requires

1



Chapter 1. Introduction

the storage of 2N complex amplitudes on a classical computer, but only N qubits on

a quantum device. We cannot simulate 50 qubits using a powerful supercomputer,

but it seems reasonable that it may be possible to do a useful 50-qubit computation

on a quantum device in the next couple of years.

There are a lot of aspects of VQAs that can be tailored to the specific prob-

lem being solved. For example, the mapping of the fermionic quantum chemistry

problem onto qubits, the precise parametrised circuit run on the quantum computer

and the classical optimisation routine. Systematic and thorough studies involving

high-performance classical simulations are required to assess the performance of

these algorithms. The aim of this thesis is to perform this investigation for a VQA

called the variational quantum eigensolver (VQE) applied to the Hubbard model.

The Hubbard model [10] is one of the simplest models of interacting electrons in

a grid, making it a good test case for trying out techniques before extending to

more complicated systems. The 2D model has remained unsolved despite decades

of research and is thought to be relevant to applications such as high-temperature

superconductivity [11].

In the remainder of this introductory chapter, we will define this problem in

more detail. We will begin by giving a brief overview of the key aspects of quan-

tum computing in Section 1.1. We will then discuss noisy quantum devices, the

restrictions they place on the types of computations that can be run, and VQAs in

Section 1.2. Following this, in Section 1.3 we formally define the Hubbard model

and explain what makes it an interesting model to solve on a quantum computer.

We conclude by giving an outline of the rest of the thesis in Section 1.4.

1.1 Quantum computing

The quantum analogue of the classical bit is the quantum bit, or qubit. Whereas

bits can only be 0 or 1 at any time, a qubit can be in a superposition (i.e. linear

combination) of the two. As such, a qubit |ψ〉 exists in the two-dimensional complex

Hilbert space C2 and can be written as

|ψ〉 = a|0〉+ b|1〉 ≡
(
a

b

)
, (1.1)

where a, b ∈ C. When the qubit is measured, it collapses to one of the states |0〉
or |1〉. The outcome ‘0’ is observed with probability |a|2 and the outcome ‘1’ with

probability |b|2. The condition |a|2 + |b|2 = 1 is imposed so that the probabilities

2



1.1. Quantum computing

sum to one. The dual space associated to the Hilbert space consists of dual vectors

of |ψ〉, denoted

〈ψ| = a∗〈0| + b∗〈1| ≡
(
a∗ b∗

)
, (1.2)

where a∗ is the complex conjugate of a.

To represent multi-qubit systems, we take the tensor product of their Hilbert

spaces. For example, |ψ1〉⊗|ψ2〉 exists in the four-dimensional Hilbert space C2⊗C2.

In general, a quantum state of n qubits exists in a 2n-dimensional Hilbert space. This

is partly where the power of quantum computing comes from, an n-qubit quantum

computer can be in a superposition of up to 2n states at once, whereas a classical

computer can be in only one of those states.

An important aspect of quantum mechanics is entanglement. Two or more

qubits are entangled if they cannot be factored into a tensor product of states of

its component systems. For instance, if a two-qubit state |ψ〉 can be written as

|ψ〉 = |ψ1〉⊗ |ψ2〉 where |ψ1〉, |ψ2〉 ∈ C2, then it is a product state; otherwise it is an

entangled state.

To preserve the norm of the quantum state vector in a Hilbert space, the linear

operators that act on qubits must be unitary. A unitary operator U is defined by

UU † = U †U = I where I is the identity operator and U † is the adjoint (conjugate

transpose) of U . Due to this property of unitary operators, all quantum computa-

tions are reversible, as the adjoint of the operation done can be applied to reverse it.

For an n-qubit system, the Hilbert space is 2n-dimensional, so all unitary operators

can be expressed as 2n × 2n complex matrices.

In the language of quantum computation, we call these unitary operations gates.

The most common types of gates are one- or two-qubit gates. An important group

of one-qubit gates are the Pauli matrices

X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
. (1.3)

The gate X corresponds to a bit-flip, swapping between |0〉 and |1〉. The gate Z

corresponds to a phase-flip, adding a phase of −1 to |1〉 and leaving |0〉 unchanged.

Furthermore, the exponentials of these matrices, for example RX(θ) = e−iθX/2, are

rotation matrices, which are another commonly used group of gates. An arbi-

trary one-qubit gate can be constructed using these rotation matrices as U =

RX(α)RZ(β)RX(γ) [12].

Two-qubit gates are typically used to create entanglement. An example of a

two-qubit gate is the controlled-NOT (CNOT) operation. This gate applies an X

3



Chapter 1. Introduction

gate to the second qubit if the first qubit is in the state |1〉:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (1.4)

It can be shown that any n-qubit unitary can be constructed using combinations of

arbitrary one-qubit and CNOT gates, making this set of gates universal for quantum

computation [12].

A quantum computation will typically start by preparing all the qubits in the

|0〉 state and then applying gates to construct a quantum circuit. The final step

is measuring the qubits in the computational basis to learn something about the

quantum state that has been produced at the end of the computation. This can

require multiple preparations of the quantum state, as each time we measure, the

state collapse to one of the 2n basis states of the Hilbert space.

1.2 Noisy intermediate-scale quantum

algorithms

The term “noisy intermediate-scale quantum” (NISQ) was coined by Preskill in

2018 to describe the regime where quantum computers may be able to surpass

classical computers, but are still too small for fault-tolerance [13]. “Noisy” refers

to the fact that qubits in this regime will likely be low quality and subject to many

different types of error, some of which will be discussed below. “Intermediate-scale”

refers to the size of such devices, ranging from around 50 to a couple of hundred

qubits. Fifty qubits is well beyond what can be classically simulated on the world’s

largest supercomputers, when storing the entire state vector and doing an arbitrary

computation1.

We will now discuss some of the characteristics that NISQ devices are expected

to have, and the consequences for the types of computations that can be performed.

• Qubit decoherence – Controlling a quantum system is a difficult task. Cur-

rent technology is not capable of maintaining very long coherence times [16,

1An arbitrary 50-qubit simulation would require 8 Petabytes of RAM using single-precision
floating-point arithmetic. However, simulations of more qubits using less memory have been
demonstrated using tensor networks for specific types of circuits [14, 15].

4



1.2. Noisy intermediate-scale quantum algorithms

17]; this restricts the depth of the circuit that can be run on the device before

the qubits decohere into the maximally mixed state.

• Gate errors – On a NISQ device it will likely not be possible to perform a

quantum gate without introducing some error into the computation; this limits

the number of gates that can be carried out on the qubits. Two-qubit gate

fidelities of over 99% for superconducting qubits [16] and as high as 99.9% for

trapped-ions [17] have been reported, but this still restricts circuits to having

around 1000 gates [13].

• Limited connectivity – Ideally, we would like to be able to apply two-qubit

gates between arbitrary pairs of qubits. A device with this property is said

to be fully-connected. In reality, it is not always possible to construct a fully-

connected device. For example, due to the way superconducting qubits work,

qubits have to be physically close on the device to be able to perform two-qubit

gates between them. This limited connectivity means that qubits may need

to be swapped around in the quantum circuit, increasing the circuit depth

(see Section 3.1.3). In addition, the variety of different connectivities such

as Google’s offset-rectangular lattices [1], Rigetti’s square-octagon lattice [18]

and IBM’s connected rectangles [19], mean that quantum circuits have to be

re-designed for different quantum devices.

• Limited gate sets – Different quantum devices have different types of gates

that can be done “natively” on the hardware. Before being run, an arbitrary

quantum gate will need to be decomposed in terms of these one- and two-

qubit native gates to run on the hardware; this affects the gate depth of the

circuit. NISQ devices will likely have a small native gate set, thereby increasing

the gate depth required to run arbitrary circuits. For example, the iSWAP

and controlled-phase gates are some of the two-qubit gates that are native

to superconducting hardware [1, 16]. To do a CNOT gate – a basic building

block of quantum algorithms – two iSWAP gates and several one-qubit gates

need to be strung together.

• No error correction – One of the key aspects of NISQ devices is that there

will be no in-built error detection or correction. Errors caused by decoherence,

applying gates, or measurement readout will need to be taken into consider-

ation manually when running a quantum circuit. On NISQ devices it will be
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Chapter 1. Introduction

advantageous to run algorithms which have a resilience to noise, whilst also

making use of error mitigation techniques [20].

To make the most out of NISQ devices, we must carefully design the algorithms

and circuits that will be run on them. A class of algorithms which have shown

significant promise are VQAs, also known as hybrid quantum-classical algorithms.

The field of VQAs is already too large to summarise here; see [8, 9, 20] for reviews. A

wide variety of algorithms and applications have been researched, such as algorithms

to variationally solve systems of linear equations, factorise numbers and simulate

Hamiltonians.

One popular VQA is the quantum approximate optimisation algorithm (QAOA)

which can be used to solve combinatorial problems such as MaxCut [21]. In this

thesis, we focus on the algorithm which kick-started the field, the VQE. It was

developed by Peruzzo et al. in 2013 to calculate the ground state energies for

molecules [22]. Since then, adaptations of the VQE algorithm have been introduced

to also find excited states [23–25], which could be useful for investigating chemical

reaction dynamics. VQE can also be extended to the study of open systems which

are governed by Lindblad operators. Mapping a density matrix onto the quantum

computer doubles the number of qubits, but being able to simulate quantum systems

that interact with the environment could, for example, facilitate the investigation

of non-equilibrium states [26]. In this thesis, however, we restrict the work to the

standard VQE algorithm for calculating ground states. Chapter 2 contains an in-

depth overview of the standard VQE algorithm, covering many of the details of

VQAs that are omitted in this brief introduction.

VQAs are suitable NISQ algorithms for a number of reasons. First, the hybrid

quantum-classical nature of these algorithms keeps the circuit depth low, which is

necessary due to the short coherence times of the qubits. For instance, the cir-

cuit requirements for implementing the more traditional quantum phase estimation

algorithm are much higher than using the VQE to find the ground state of a Hamil-

tonian [27]. Second, VQAs are naturally able to suppress some forms of noise. For

example, systematic coherent errors such as over-rotations can be corrected by the

classical optimiser as the specific values of the parameters are irrelevant [8, 28].

Third, there is flexibility in the parametrised quantum circuits that are run as part

of the algorithms. It is possible to tailor these circuits to the device, making use of

its specific strengths (see Section 2.3).

On the other hand, VQAs can suffer from the problem of “barren plateaus”

where the gradient of the objective function decays exponentially to zero as the
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number of qubits increases. These barren plateaus appear when running randomly

initialised random circuits and prevent the classical optimisation component of the

VQA from working [29]. In addition, hardware noise of the types described above

have been shown to cause barren plateaus, even when running more structured

circuits and when using gradient-free optimisation routines. These noise-induced

barren plateaus negatively impact the scalability of VQAs on NISQ devices [30].

Certain problems which VQAs attempt to solve can be shown to be computa-

tionally hard. For example, finding the ground state energy of an arbitrary k-local

Hamiltonian is QMA-complete [31], even for instances of simple models such as the

Hubbard model [32]. This means, in general, that a quantum algorithm such as the

VQE cannot be guaranteed to find the ground state of a Hamiltonian in polynomial

time. In addition, even if we are trying to find the ground state of a Hamiltonian

that is not computationally hard, the VQA optimisation problem may still be NP-

hard [33]. However, simple problems in machine learning have similarly been shown

to be NP-hard [34], but this does not mean that no machine learning algorithm

is viable. Furthermore, a large amount of numerical studies and experiments that

have been carried out on quantum hardware have shown that VQAs can work in

practice for small system sizes [35–37].

Investigating VQAs theoretically is difficult and it is often not possible to prove

rigorous results about them. For certain toy models, the landscape of the optimisa-

tion function has been investigated, but in general is non-convex and very compli-

cated, making it difficult to prove that the algorithm will converge [38]. As a result,

numerical work is the most popular approach to investigating the performance of

VQAs. Although there may be some limits to the applicability of numerical simu-

lations outside the region of validity (e.g. > 30 qubits), it is a viable approach to

show what might be suitable on larger NISQ devices.

1.3 The Hubbard model

The Hubbard model was independently formulated in the 1960s by Gutzwiller [39],

Hubbard [10] and Kanamori [40] to describe the behaviour of strongly correlated

electrons in transition metals. Since then, the Hubbard model has been found to

describe a wide variety of physical phenomena such as metal-insulator transitions,

superconductivity, magnetism and topologically ordered phases [11, 41, 42].

In the Hubbard model, the atoms in a solid are simplified to a lattice of sites

where each site is a single spatial orbital; i.e. the site may be empty, occupied by

7



Chapter 1. Introduction

a spin-up electron, occupied by a spin-down electron, or doubly occupied by both

spin-up and -down electrons. Electrons can move between these sites and double-

occupied sites are subject to an energy penalty. The Hubbard Hamiltonian is defined

as

Hhub = −
∑
ij,σ

tij(a
†
iσajσ + a†jσaiσ) + U

∑
i

ni↑ni↓, (1.5)

where a†iσ, aiσ are fermionic creation and annihilation operators for a spin-σ ∈ {↑, ↓}
electron in site i; niσ = a†iσaiσ is the number operator. The first term in equa-

tion (1.5) is called the “hopping term”, as it represents spin-σ fermions hopping

between sites i and j. Typically (and in this thesis) the nearest-neighbour Hubbard

model is considered, meaning that we take tij = t for sites that are adjacent in

the lattice and tij = 0 elsewhere. The parameter t is then called the “tunnelling

amplitude”. The second term is called the interaction or “onsite term”, where U is

the “Coulomb potential”.

More specifically, in this thesis we will focus on solving the 1D and 2D Hubbard

models occupied by Nocc electrons. For the 1D model, we consider a line of sites

of length N . The 2D model uses a rectangular lattice (“grid”) of N = Nx × Ny

sites. An example of this is demonstrated in Figure 1.1 for a 3 × 3 grid with

nearest-neighbour hopping interactions. The nearest-neighbour terms correspond to

hopping terms between horizontally and vertically adjacent sites2. When periodic

boundary conditions are considered, there are additional hopping terms between

sites in the first and last rows, and the first and last columns, of the grid. The

observables that we are interested in calculating in this thesis are the ground state

energy and the double occupancy. The double occupancy per site is calculated as
1
N

∑
i〈ni↑ni↓〉 and measures the probability of finding two electrons on one site.

While the 1D Hubbard model is exactly solvable using the Bethe ansatz [43, 44],

a full description of the 2D model and its phase diagram is still an open problem.

In the U � t limit at half-filling (one electron per site), the Hubbard model reduces

to the antiferromagnetic Heisenberg model; away from half-filling, it reduces to

the t − J model [45]. In this thesis we will focus on the case of U/t = 1 to 8,

known as the weak coupling and intermediate-to-strong coupling regimes, where

the Hubbard model is thought to exhibit insulating, magnetic, superconducting and

striped behaviours. A wide variety of numerical methods have been used to probe

the Hubbard model in these parameter regimes [46–48].

2A common extension is to consider next-nearest-neighbour hopping terms. These would
correspond to hopping interactions between diagonally adjacent sites with tij = t′.

8



1.3. The Hubbard model

Figure 1.1: The Hubbard model on a 3× 3 grid occupied by four spin-up and three
spin-down electrons. This is a demonstration of nearest-neighbour hopping and
onsite terms.

Despite it’s apparent simplicity, the properties of the Hubbard model are far

from fully understood [11, 46, 47]. Its regular structure and relatively simple form

suggests it may be easier to implement on a NISQ device than, for example, model

systems occurring in quantum chemistry. This makes the Hubbard model a good test

bed for trying out different techniques, before extending to more complex models.

At the same time, the use of near-term quantum computers may be able to reveal

properties of the Hubbard model of relevance to problems of practical importance,

such as high-temperature superconductivity [49].

On a grid with N sites, the Hubbard Hamiltonian can be represented as a sparse

square matrix with 22N rows and columns. Although the size of this matrix can be

reduced by restricting to a subspace corresponding to a given occupation number,

and taking advantage of translation- and spin-invariance, the worst-case growth

of the size of these subspaces is still exponential in N . This exponential growth

severely limits the capability of classical exact solvers to address this model. For

example, Yamada et al. [50] report an exact solution of the Hubbard model with

17 fermions on 22 sites requiring over 7TB of memory and 13 TFlops on a 512-

node supercomputer. By contrast, a Hubbard model instance with N sites can be

represented using a quantum computer with 2N qubits (each site can contain at

most one spin-up and at most one spin-down fermion, so two qubits are required

per site). This suggests that a quantum computer with around 50 qubits could
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already simulate instances of the Hubbard model beyond classical capabilities.

Approximate classical techniques such as the quantum Monte Carlo (QMC) and

density matrix renormalisation group (DMRG) methods can address larger grids

than near-term quantum computers (up to thousands of sites), but experience dif-

ficulties in stronger coupling regimes and away from half-filling, leading to substan-

tial uncertainties in physical quantities [46]. Another approach to understanding

the Hubbard model via a quantum device is analogue quantum simulation [51,

52]: engineering a special-purpose quantum system that implements the Hubbard

Hamiltonian directly [53–55]. While these analogue simulators are easier to imple-

ment experimentally than universal quantum computers, and enable access to much

larger systems than will be possible using near-term quantum computers, they are

inherently less flexible than digital quantum simulation. The hope is that quantum

computing could evade the difficulties experienced by these various methods and

enable a more direct solution to the Hubbard model.

1.4 Thesis outline

The focus of this thesis is on assessing the performance of the VQE algorithm

when solving the Hubbard model. We begin in Chapter 2 by giving a detailed

overview of the VQE algorithm. We discuss fermion-to-qubit encodings, ansatz

circuits, measurement of expectation values and the classical optimisation routine.

In each case, we give a brief summary of the field and then focus on techniques

that we use Chapters 3 and 5. We discuss the application of VQE to a general

quadratic Hamiltonian with Hubbard-like onsite interactions, which covers the types

of Hamiltonians solved in this thesis.

In Chapter 3 we present a systematic study into finding the ground state of the

Hubbard model using VQE. We first introduce a generalisation of the Hamiltonian

variational ansatz called the number-preserving ansatz, which gives more freedom

in the choice of initial state. We determine the precise complexity of implement-

ing this ansatz circuit for fully-connected, nearest-neighbour and Google Sycamore

device architectures. We then carry out extensive numerical simulations for grids

with up to 12 sites (24 qubits) at three levels of realism: assuming that we know

the exact expectation value to test which ansätze are effective; simulating realis-

tic measurements; and simulating depolarising noise to test how well the classical

optimisers cope with varying types and levels of noise. Based on the results, it

seems plausible that an instance of the Hubbard model larger than the capacity of
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classical exact diagonalisation methods could be solved by optimising over quantum

circuits with depth 300–500 (on a fully-connected architecture). This is substan-

tially smaller than previous estimates for other proposed applications of near-term

quantum computers, albeit beyond the capacity of leading hardware available today.

Calculating the ground state properties of a Hamiltonian can be mapped to the

problem of finding the ground state of a smaller Hamiltonian through the use of

embedding methods. These embedding techniques have the ability to drastically

reduce the problem size, and hence the number of qubits required when running

on a quantum computer. However, the embedding process can produce a relatively

complicated Hamiltonian, leading to a more complex quantum algorithm. In Chap-

ters 4 and 5, we investigate how one of these embedding techniques, density matrix

embedding theory (DMET) could be implemented on a quantum computer to solve

the Hubbard model. In particular, we consider the VQE algorithm as the solver for

the embedded Hamiltonian within the DMET algorithm.

In Chapter 4 we focus on the “classical” aspects of the combined DMET and

VQE algorithm. We begin by introducing the DMET algorithm. This is followed

by an in-depth description of how the single-shot embedding algorithm (a variant

of DMET) can be applied to the Hubbard model; we have found this to be lacking

in other literature. We conclude the chapter with a derivation of the structure of

the embedded Hamiltonian produced by DMET, which is key to determining the

complexity of the VQE algorithm.

Chapter 5 covers the “quantum” aspects of the combined DMET and VQE

algorithm. We carry out a similar analysis to the one in Chapter 3 by determining

detailed resource and complexity estimates for running the VQE algorithm on a

fully-connected quantum device. The theoretical work is followed by numerical

simulations up to a fragment size of four (16 qubits) for a variety of Hubbard model

parameters. We find that DMET with VQE is an efficient and accurate method for

finding ground state properties of the Hubbard model. In our experiments, we were

able to reproduce previous results based on exact diagonalisation.

The results presented in this thesis, in particular in Chapters 3 and 5, rely

greatly on being able to run many/large VQE simulations in a reasonable time

frame. To do this we wrote code in C++ using the Quantum Exact Simulation

Toolkit (QuEST) [56] to simulate the quantum circuits, which we ran on GPUs. In

Chapter 6, we present a new quantum simulator coded in C++ called the Quantum

Simulation Library (QSL), intended to speed up the type of simulations performed

in this thesis. We discuss the techniques and methods used in the development of

11
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QSL, for example the best way to lay out the state vector, and how to simulate

gates and measurements as efficiently as possible. Timings are compared against

QuEST and we find that our simulator can implement gates up to 8-10× faster.

We conclude by showing how known properties of a circuit, such as number or spin

preservation, could be used to speed up simulations. This could be useful when

simulating the VQE algorithm for quantum chemistry problems.

1.4.1 List of publications

Chapter 3, Appendix A and parts of Chapter 2 and Section 1.3 are based on the

following paper:

• “Strategies for solving the Fermi-Hubbard model on near-term quantum com-

puters” by Chris Cade, Lana Mineh, Ashley Montanaro and Stasja Stanisic.

Physical Review B 102, 235122 (2020) [57].

Data are available at the University of Bristol data repository, data.bris [58].

Chapters 4, 5, Appendix B and parts of Chapter 2 are based on:

• “Solving the Hubbard model using density matrix embedding theory and

the variational quantum eigensolver” by Lana Mineh and Ashley Montanaro.

Physical Review B 105, 125117 (2022) [59].

Data are available at the University of Bristol data repository, data.bris [60].

Chapter 6 is based on unpublished work done whilst coding the following quantum

simulator:

• C++ Quantum Simulation Library (QSL). Lana Mineh and John R. Scott

https://github.com/lanamineh/qsl [61].

The following work was published during the course of the PhD, but is outside of

the scope of this thesis:

• “Designing quantum experiments with a genetic algorithm” by Rosanna Nichols,

Lana Mineh, Jesús Rubio, Jonathan C. F. Matthews and Paul A. Knott.

Quantum Science and Technology 4(4), 2019 [62].
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Chapter 2

The variational quantum

eigensolver

The VQE is a hybrid quantum-classical algorithm used to produce the ground state

of Hamiltonians. As mentioned in Section 1.2, it is suitable as a NISQ algorithm

because of lower circuit depth requirements (as opposed to an algorithm such as

phase estimation) and intrinsic robustness to certain types of noise [28]. The VQE

algorithm was developed by Peruzzo et al. in 2013 as a way of using a quantum

co-processor to calculate ground state energies for molecules [22]. The initial exper-

iment was done on a photonics chip, but since then the VQE has been implemented

using ion traps and superconducting qubits [27, 35, 63, 64]. The VQE algorithm

can potentially be tailored to run on any quantum hardware.

This chapter is intended as an overview of the VQE algorithm, with a particular

focus on techniques that will form a basis for Chapters 3 and 5. Parts of this chap-

ter have appeared in “Strategies for solving the Fermi-Hubbard model on near-term

quantum computers” [57] and “Solving the Hubbard model using density matrix em-

bedding theory and the variational quantum eigensolver” [59]. Sections 2.4 and 2.5.2

contain original work that was done during the course of these projects.

2.1 Outline of the VQE algorithm

The VQE algorithm used to produce the ground state of a Hamiltonian H. It relies

on the variational principle, which states that

〈ψ|H|ψ〉 ≥ Eg, (2.1)
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where |ψ〉 is an arbitrary normalised state and Eg is the ground energy (lowest

eigenvalue) of H.

In brief, the steps of the algorithm are [8, 28]:

1. Prepare a parametrised state |ψ(θ)〉 = U(θ)|ψ0〉 on the quantum computer.

U(θ) is an ansatz circuit intended to reproduce the ground state and |ψ0〉 is

an initial state.

2. Measure the expectation value 〈ψ(θ)|H|ψ(θ)〉. Multiple preparations of |ψ(θ)〉
on the quantum computer are required to accurately estimate this expectation

value.

3. Use a classical optimisation method to determine a new value for θ that will

minimise the expectation value.

4. Repeat steps 1-3 until the optimiser converges. The final value of θ will

parameterise the ground state and give an expectation value equal to the

ground energy.

We will spend the rest of this chapter explaining these steps in detail. At each

step of the algorithm there are many choices that can be made. For example, it is

desirable to choose an ansatz circuit that can parameterise the ground state in as

few parameters and as low a circuit depth as possible. In addition, we would like to

measure the expectation value using the minimum number of circuit preparations.

We must also carefully consider the classical part of the algorithm; we need to

choose a suitable optimisation algorithm that typically converges in a low number

of iterations and can cope with noise. The VQE algorithm performs best if all of

these are tailored to the Hamiltonian H that is being solved.

In this thesis we are interested in the application of the VQE algorithm to

fermionic Hamiltonians of the form

HF =
∑
i 6=j,σ

tij (a†iσajσ + a†jσaiσ) +
∑
i

Ui ni↑ni↓ +
∑
i,σ

µi niσ, (2.2)

where tij, Ui, µi ∈ R. As for the Hubbard model in Section 1.3, we will refer

to terms in the first sum as hopping terms, as they represent fermions of spin-σ

hopping between spatial orbitals (sites) i and j. Terms in the second sum will be

called onsite terms as they represent the interaction between a spin-up and -down

fermion occupying the same site. The terms in the final sum will be referred to as

number terms as niσ is the fermionic number operator.
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HF is a general quadratic Hamiltonian with Hubbard-like onsite interactions,

it preserves both electron number and spin. This covers both the Hubbard model

(which will be solved directly in Chapter 3) and the embedded Hamiltonian obtained

from DMET (see Chapters 4 and 5). Some of the discussion in this chapter will

be restricted to Hamiltonians of this form; for example in Section 2.2 we will focus

on how to encode HF on a quantum computer, in Section 2.3.1 we show how to

apply the Hamiltonian variational ansatz to HF and in Section 2.4 we discuss how

to measure the expectation value 〈HF 〉.

2.2 Fermion-to-qubit encodings

When using the VQE to find the ground state of a fermionic Hamiltonian, we must

first transform it to a qubit (spin-1
2
) Hamiltonian using a fermion-to-qubit encoding.

This transformation is necessary as we need a way of mapping operators that act

on indistinguishable fermions to distinguishable qubits. Fermion-to-qubit encodings

preserve the canonical anti-commutation relations

{a†i , aj} = δij, {a†i , a†j} = {ai, aj} = 0. (2.3)

In this thesis we use the Jordan-Wigner (JW) encoding [65], which is one of the

simplest encodings. It introduces no overhead in qubit count as each spin orbital1

maps to one qubit. The state |0〉 represents an unoccupied orbital and |1〉 occupied.

The JW encoding is given by

a†j 7→
1

2
(Xj − iYj)Z0 · · ·Zj−1 (2.4)

aj 7→
1

2
(Xj + iYj)Z0 · · ·Zj−1, (2.5)

where Xj, Yj and Zj are the Pauli operators acting on qubit j. The JW encoding

requires us to choose an ordering for the spin orbitals as it maps the fermionic modes

to a line of qubits. We will often have an ordering where all of the spin-up orbitals

are followed by the spin-down.

Turning to the fermionic Hamiltonian from equation (2.2), the hopping terms

between qubits are transformed as

a†jak + a†kaj 7→
1

2
(XjXk + YjYk)Zj+1 · · ·Zk−1, (2.6)

1A spin orbital combines the site i and spin σ indexing into one. Spin orbitals can be ei-
ther occupied by an electron or unoccupied, unlike spatial orbitals which can have four different
configurations.
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where j < k without loss of generality. The number operator terms become

nj = a†jaj 7→
1

2
(I − Zj) = |1〉〈1|j, (2.7)

where I is the identity matrix, and the onsite terms become

njnk 7→
1

4
(I − Zj)(I − Zk) = |11〉〈11|jk. (2.8)

The hopping terms contain long Z-strings, leading to encoded operators with a

large Pauli weight (the number of qubits the Pauli string acts on). If we wanted to

apply an evolution according to this term on a quantum computer i.e. ei(a
†
kaj+a†jak),

this would be a gate on |j−k|+1 qubits which can be costly to implement (see Sec-

tion 2.3.1). This makes the ordering of the orbitals important; certain orderings can

either reduce or increase the length of the Z-strings. Fermionic swap networks [66]

for implementing hopping term evolutions can also help mitigate issues caused by

these long Z-strings (see Section 2.3.2).

There are a variety of other fermion-to-qubit encodings which produce operators

that have a lower Pauli weight, but at a cost of additional qubits [67–69]. There are

also encodings which prioritise decreasing the number of qubits at the expense of

more complicated or additional quantum gates [70]. Examples of the former are the

Ball-Verstraete-Cirac (BVC) and Bravyi-Kitaev superfast (BKSF) encodings. The

BVC encoding [71, 72] adds an extra auxiliary qubit for every qubit (doubling the

qubit count). These auxiliary qubits are then used to carry out the hopping inter-

actions, eliminating the need for Z-strings. The BKSF encoding [73, 74] introduces

a qubit for every interaction term in the Hamiltonian and produces Pauli weights

of O(d), where d is degree of the Hamiltonian’s interaction graph.

The compromise between having a low qubit count versus low Pauli weights is

one that should be carefully considered based on the Hamiltonian to be solved and

the targeted quantum device. In the regime of the NISQ era where there are a

lower number of qubits, it may be preferable to use the JW encoding to maximise

the size of the Hamiltonians solved. It may also be more efficient to use a simpler

encoding. An example of this is the Nx × Ny Hubbard model; the JW encoding is

more efficient in terms of both qubit count and circuit depth (compared to the BVC

and BKSF encodings) when min(Nx, Ny) ≤ 8 [57]. On the other hand, it has been

shown that the long Z-strings produced by the JW encoding can lead to barren

plateaus in VQAs, potentially limiting the use of JW for larger systems [75, 76].
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2.3. Ansatz circuits

2.3 Ansatz circuits

The ansatz circuit is the cornerstone of the VQE algorithm. The circuit U(θ) is used

to prepare the parametrised state |ψ(θ)〉 = U(θ)|ψ0〉 on the quantum computer. An

ideal ansatz circuit would parameterise part of the Hilbert space which contains the

ground state ofH, while having a low circuit depth and as few variational parameters

as possible. Having fewer parameters simplifies the classical optimisation problem

and a low circuit depth makes it suitable for use on NISQ devices.

When choosing an ansatz circuit we must keep in mind the specific problem that

is being solved. For example, if we know our problem has certain symmetries or

properties, then picking an ansatz that respects these will likely perform better than

one that does not. On the other hand, if the circuit required for this is too complex,

then it may not be easily implementable on a NISQ device. It is important to keep in

mind that the goal is to be able to run the circuit on a NISQ computer, and consider

the challenges this poses (e.g. restricted gate set, limited qubit connectivity).

Developing ansatz circuits is an active area of research; see [8, 9] for reviews.

Below we present a summary of some popular ansatz circuits. In Section 2.3.1 we

provide details about the Hamiltonian variational ansatz, which we will make use

of in Chapters 3 and 5.

Hardware efficient ansatz

The hardware efficient ansatz was designed to be used on NISQ devices [35], there-

fore it is very generic and does not take any properties of the problem into account.

Gates can be chosen from the native gate set of the hardware, and two-qubit gates

only performed between qubits that are connected on the device.

The initial state for this ansatz is usually the all-zero state |0〉⊗n. The ansatz

circuit itself typically consists of a series of parametrised one-qubit gates, followed

by fixed two-qubit entangling gates. This structure is repeated D times, where D

is the “ansatz depth” (see Figure 2.1). This repeating structure is typical of many

ansatz circuits. Using Euler angles, an arbitrary one-qubit gate can be decomposed

in terms of three rotation gates, e.g. RZ(α)RX(β)RZ(γ), leading to a parameter

count of 3nD. For n qubits, an example of the hardware efficient ansatz circuit is

|ψ(θ)〉 =
D∏
d=1

Uent

n∏
i=1

RZ(θi,d1 )RX(θi,d2 )RZ(θi,d3 ) |0〉⊗n, (2.9)

where Uent is a unitary representing the two-qubit entangling gates performed in

one layer of the ansatz.
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|0〉 U1,1

Uent

U1,2 · · · U1,D

Uent

|0〉 U2,1 U2,2 · · · U2,D

...
...

...
...

|0〉 Un,1 Un,2 · · · Un,D

Figure 2.1: The hardware efficient ansatz circuit on n qubits. Arbitrary one-qubit
gates Ui,d = RZ(θi,d1 )RX(θi,d2 )RZ(θi,d3 ) act on the |0〉⊗n state, followed by entangling
gates that respect the connectivity of the device. This cycle repeats D times, where
D is the ansatz depth.

The hardware efficient ansatz has been successfully used on quantum hardware

for a low number of qubits (e.g. 2-6) [22, 35, 77, 78]. However, theoretical work

has shown that these types of generic circuits suffer from the problem of barren

plateaus, where the gradient of the objective function decays exponentially to zero

as the number of qubits increases [29]. This could make the hardware efficient ansatz

unsuitable for larger experiments.

Unitary coupled-cluster

Unitary coupled-cluster (UCC) is an example of a problem-inspired ansatz that is

used for solving quantum chemistry problems. Coupled-cluster methods have been

used for decades by the quantum chemistry community [79], making UCC a good

candidate for an ansatz.

The UCC ansatz is defined by the following equation,

|ψ(θ)〉 = eT (θ)−T †(θ)|ψ0〉, (2.10)

where |ψ0〉 is often taken to be the Hartree-Fock ground state of H. The cluster

operator T (θ) = T1(θ) + T2(θ) + . . . is defined by

T1(θ) =
∑
i,j

θij a
†
iaj, (2.11)

T2(θ) =
∑

i1,i2,j1,j2

θi1i2j1j2 a
†
i1
aj1a

†
i2
aj2 , (2.12)

where the θ’s are the variational parameters to optimise over, with the i’s indexing

the occupied orbitals and j’s the unoccupied ones [28, 80].

18



2.3. Ansatz circuits

The general idea is to explore states close to the initial state. For example, T1(θ)

is the single-excitation operator exploring the states where one of the electrons has

moved from an occupied orbital to an unoccupied one. T2(θ) is the double-excitation

operator where two electrons have moved position. It is possible to include higher

orders of Ti(θ), but going up to second order is usually sufficient for most quantum

chemistry calculations. This version of UCC is often referred to as UCCSD (UCC

with single- and double-excitations).

The circuit eT (θ)−T †(θ) cannot be implemented exactly on the quantum computer.

To convert the UCC circuit to a sequence of one- and two-qubit gates, it is first

Trotterised, leading to long circuits [80, 81]. For UCCSD, this leads to a gate

scaling of O(n2m3) using the JW encoding with O(n2m2) variational parameters,

where n is the number of spin-orbitals and m is the number of electrons in the

system [80].

There have been many experiments implementing UCC on superconducting [27,

82, 83] and trapped-ion [63, 64, 84, 85] quantum computers. There have also been

a number of variants of UCC developed which aim to make UCC more efficient to

implement or more effective [86–88].

Other ansätze

It is possible to take an approach that is between the generic hardware efficient

ansatz and the more specialised UCC. For example, Dallaire-Demers et al. introduce

a low-depth ansatz which is inspired by quantum chemistry. Double-excitations are

removed and replaced with nearest-neighbour phase coupling rotations, making it

more viable for use on NISQ computers [87]. Gard et al. introduce an efficient ansatz

which conserves particle number, total spin, spin projection, and time-reversal sym-

metry [89].

An entirely different approach is the one taken by ADAPT-VQE, where the form

of the ansatz circuit itself is optimised over. The ansatz is grown gate by gate; these

gates are kept or discarded depending on the performance of the ansatz circuit [90,

91].

2.3.1 The Hamiltonian variational ansatz

In this thesis we make use of the Hamiltonian variational (HV) ansatz [92]. This

ansatz has been primarily studied in relation to solving the Hubbard model, where it

has been shown to be effective [92–95]. It has also been used with small molecules [92],
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the transverse field Ising and XXZ models [96], and more recently the antiferromag-

netic Heisenberg model on a Kagome lattice [97, 98]. While numerical evidence has

shown that the HV ansatz may only have mild or non-existent barren plateaus [96],

it may not be possible to avoid it for every problem [99].

The HV ansatz is inspired by adiabatic quantum state preparation and the

QAOA algorithm [21]. Imagine we have a Hamiltonian H = H0 +H1, such that the

ground state |ψ0〉 of H0 is easy to prepare. Using adiabatic state preparation, it is

possible to reach the ground state of H from |ψ0〉 by alternating many evolutions

of the form e−itH0 , e−itH1 where the time step t is sufficiently small. The HV ansatz

generalises this idea by allowing arbitrary angles in the evolution terms (as opposed

to a fixed t) and splitting up the Hamiltonian into more than two terms,

H =
∑
j

Hj, (2.13)

where the terms inside each Hj are commuting.

The ansatz consists of applying evolutions of the form eiθHj to an initial state,

where θ is a parameter to be determined in the VQE optimisation loop. The ini-

tial state |ψ0〉 is typically the ground state of the non-interacting part of H (for

HF this corresponds to ui = 0). This is a quadratic Hamiltonian which means

its ground state can be prepared efficiently on a quantum computer using Givens

rotations [100]. The parametrised state is

|ψ(θ)〉 =
∏
d

∏
j

eiθd,jHj |ψ0〉, (2.14)

where applying all the Hj evolutions makes up one layer of the ansatz whose depth

is indexed by d. The purpose of Hj is to group together terms which share the

same variational parameter θd,j. By only doing operations according to terms in the

Hamiltonian, the HV ansatz can make use of properties of the Hamiltonian such as

electron number and spin preservation.

It is possible to consider two extreme cases of splitting H into commuting groups

Hj. In one case we can pick the groups so that there are as few as possible. In the

other, each Hj can contain only one term from H which leads to the maximum

number of parameters per layer. This has the effect of making the optimisation

routine more difficult, but can reduce the ansatz depth required to solve the problem.

We will now discuss how the HV ansatz can be applied to HF by laying out the

specific implementation of eiθHj in terms of quantum gates. There are three types

of evolutions in equation (2.2): hopping terms, onsite terms and number operator
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j . . . • RX • . . .

j + 1 • . . . . . . •
j + 2 • . . . . . . •

...

k − 2 . . . • • . . .

k − 1 . . . • • . . .

k • • . . . • • • • • . . . • •

Hopping(θ)

Figure 2.2: Implementation of the hopping gate between qubits j and k, decomposed
as a series of two-qubit gates. The two-qubit hopping gate from equation (2.17) is
sandwiched between a series of controlled-Z gates. Inside the box is an example
decomposition of the hopping gate as three controlled gates – a controlled X rotation
between two CNOTs.

terms. It is important that the terms in Hj commute so that the quantum circuit

can be decomposed into these three types of operations.

The number terms can be implemented as

eiθnj = eiθ|1〉〈1|j =

(
1 0

0 eiθ

)
, (2.15)

which is a phase shift on qubit j. The onsite terms are implemented as

eiθnjnk = eiθ|11〉〈11|jk =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiθ

 , (2.16)

which is a controlled phase shift between qubits j and k. The hopping terms are

more complicated; starting with the case where j and k are neighbouring qubits in

the JW ordering i.e. k = j + 1,

eiθ(a
†
jak+a†kaj) = eiθ(XjXk+YjYk)/2 =


1 0 0 0

0 cos θ i sin θ 0

0 i sin θ cos θ 0

0 0 0 1

 . (2.17)

We will refer to this gate as Hopping(θ); it performs an X rotation on the {|01〉, |10〉}
subspace. In general, the hopping gate eiθ(a

†
jak+a†kaj) is a |j−k|+1-qubit gate due to
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the Z-strings in the JW encoding. This can be decomposed as a series of 2|j−k|+1

two-qubit gates [93] which is shown in Figure 2.2.

Since all the number terms commute with each other, we can, for example, group

them altogether in one Hj and parameterise them all with a single θ. The same

applies for the onsite terms. The hopping terms can then be split into a number

of groups of commuting terms, depending on which tij are non-zero. In a typical

HV ansatz circuit, at each layer of the ansatz we could implement all of the onsite

gates, followed by the hopping gates and then the number gates.

2.3.2 Fermionic swap networks

The need for a relatively large numbers of gates to implement hopping gates mo-

tivates the use of fermionic swap networks [66]. We use fermionic swap (FSWAP)

gates to move orbitals that were originally not adjacent in the JW ordering into

JW-adjacent positions. The FSWAP gate acts as a swap gate for fermions (i.e. it

preserves anti-symmetry), and corresponds to the unitary operator

FSWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1

 . (2.18)

Now, for example, if qubits j and k are swapped so that they are adjacent to each

other in the JW ordering, the hopping gate between them can be implemented more

simply as the two-qubit gate given by equation (2.17).

Using a swap network, only n layers of two-qubit gates are required to implement

all possible hopping terms for n qubits. Figure 2.3 demonstrates how this can be

done for four qubits. The swap network is formed of two alternating layers: in the

first layer, odd-numbered qubits are swapped with the qubits to their right; and in

the second layer, the even-numbered qubits are swapped with the qubits to their

right2. After n layers, all of the orbitals will have been adjacent to every other

orbital exactly once and the ordering of the orbitals will have been reversed [66].

The hopping gates can then be folded into this swap network, since

FSWAP · Hopping(θ) = (S† ⊗ S†) · Hopping(θ + π/2), (2.19)

2If n is odd, the last qubit in the first layer is left untouched. If n is even, the last qubit in
the second layer is left untouched. Note that in the second layer, the first qubit is always left
untouched.
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Qubit: 1 2 3 4

1: 1 2 3 4

2: 2 1 4 3

3: 2 4 1 3

4: 4 2 3 1

Final: 4 3 2 1

Figure 2.3: Generic swap network for four qubits done in four layers. The arrows
represent FSWAP gates which are applied to qubits that are JW-adjacent. The JW
ordering is a horizontal line from the first to the last qubit, with the numbers in the
circles labelling the spin-orbitals.

where the S gate implements a π/2 phase shift. In total, n layers of two-qubit gates

(plus some one-qubit corrections) are required to implement all possible hopping

interactions between every pair of qubits.

The generic swap network provides us with an upper bound for the number of

circuit layers required to implement the hopping gates. It is possible to improve

upon this generic swap network by considering the pattern of hopping terms in the

specific Hamiltonian that is being solved. For example, in Section 3.1.1 we describe

an efficient swap network for the Hubbard model with Nx ×Ny sites, which carries

out all of the hopping terms in 2Nx layers of two-qubit gates.

2.4 Measuring the expectation value

At the end of each run of the ansatz circuit we must measure the energy of the

ansatz state |ψ(θ)〉 with respect to H, ideally in as few preparations of the circuit

as possible. The most näıve method to achieve this would involve measuring 〈Hi〉
for each term Hi in H, then using

〈H〉 =
∑
i

〈Hi〉. (2.20)

This method is inefficient, especially if there are a lot of terms in the Hamiltonian or

many qubits. Instead, we can group together commuting terms and measure them

all in parallel. There have been a number of recent works on general techniques for
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splitting the terms of a local Hamiltonian into commuting sets [101–106]; see [9] for

a review. In the rest of this section we discuss which terms in HF can be measured

in parallel, and how to do the measurements.

All of the onsite and number operator terms can be measured simultaneously by

doing a computational basis measurement on every qubit. The number terms are

measured as

〈ni〉 = 〈|1〉〈1|i〉 = Prob(measure a 1 on qubit i). (2.21)

The onsite terms are measured as

〈ninj〉 = 〈|11〉〈11|ij〉 = Prob(measure a 1 on both qubit i and j). (2.22)

Calculating the expectation values of all the hopping terms 〈a†iaj + a†jai〉 =
1
2
〈XiXj + YiYj〉 is more complex and requires multiple circuit preparations. Let us

first focus on a single hopping term on JW-adjacent qubits i.e. j = i+ 1. We need

to measure the expectation 1
2
〈XX +Y Y 〉 on qubits i and i+ 1. One of the simplest

ways of doing this is to first measure 〈XX〉3, followed by 〈Y Y 〉 at the next circuit

preparation.

In fact, it is possible to measure the hopping term in just one circuit preparation

by diagonalising 1
2
(XX + Y Y ). This comes at a cost of applying a two-qubit gate

between qubits i and i + 1. A unitary M which diagonalises the hopping term is

given by

M =


1 0 0 0

0 1√
2

1√
2

0

0 1√
2
− 1√

2
0

0 0 0 1

 , i • H •

i+ 1 •

. (2.23)

The result of the diagonalisation is

D = |01〉〈01| − |10〉〈10|4, (2.24)

so once computational basis measurements are done, the hopping term expectation

value can be obtained via

〈a†iai+1 + a†i+1ai〉 = Prob(measure 1 on qubit i and 0 on qubit i+ 1)

− Prob(measure 0 on qubit i and 1 on qubit i+ 1). (2.25)

3This can be done by applying the Hadamard gate to qubits i and i+ 1, then doing a compu-
tational basis measurement.

4Using little-endian representation to index the computational basis states, see Section 6.1.
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1:

2:

3:

4:

5:

6:

Figure 2.4: Measurement of all hopping terms on six qubits in six rounds via rain-
bows of non-crossing pairs. Each row corresponds to a measurement round and each
pair of qubits is included in exactly one round.

This can be extended fairly simply to hopping terms 1
2
(XiXj +YiYj)Zi+1 · · ·Zj−1

between arbitrary qubits i and j. First, M is applied to qubits i and j, and equa-

tion (2.25) is used to work out the expectation 1
2
〈XX + Y Y 〉 (replacing i+ 1 with

j and taking i < j without loss of generality). The Z-strings are then dealt with by

multiplying this expectation by a parity term. Doing a computational basis mea-

surement on qubits i + 1 through j − 1 and counting the number of times that ‘1’

is measured gives the parity term. If there are an even number of ones, the parity

is 1, otherwise it is −1.

Due to the application of M , two different hopping terms that have the qubit i or

j in common cannot be measured at the same time. However, M has the property

that

M †(Z ⊗ Z)M = Z ⊗ Z, (2.26)

allowing for the simultaneous measurement of sets of hopping terms under certain

circumstances. Suppose we wish to measure the hopping term on the pair (i, j),

where i < j without loss of generality. We can simultaneously measure the term

on (a, b) if i < a, b < j, or a, b < i, or j < a, b. In this case, we say that the pairs

(i, j) and (a, b) are “non-crossing”; Figure 2.4 demonstrates why we have chosen this

name. Since M preserves Z ⊗ Z, statistics for measuring D and the Z-strings can

be collected at the same time for non-crossing pairs. However, M does not preserve

Z ⊗ I; for example, if we had i < a < j < b, the statistics for the two pairs could

not be collected simultaneously.

We can use this fact to measure hopping terms between every pair of qubits for
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an arbitrary number of qubits n using n preparations of the circuit. The idea is to

produce a sequence of measurement rounds where each round contains at most two

“rainbows”. A rainbow between qubits i and j consists of the pairs

(i, j), (i+ 1, j − 1), . . . , ((i+ j − 1)/2, (i+ j + 1)/2) (2.27)

when j − i is odd, and the pairs

(i, j), (i+ 1, j − 1), . . . , ((i+ j)/2− 1, (i+ j)/2 + 1) (2.28)

when j − i is even, corresponding to all non-crossing pairs between i and j centred

at (i + j)/2. Then the kth round contains rainbows between qubits 1 and k − 1,

and between qubits k and n (where we do not include rainbows which have one end

below qubit 1 or above qubit n). Each pair of qubits is then included in exactly one

rainbow centred at their midpoint. This is illustrated for n = 6 in Figure 2.4.

Similarly to the swap networks, it is possible to improve upon this generic mea-

surement scheme by considering the pattern of hopping terms in the specific Hamil-

tonian being solved. For example, in Section 3.1.2 we describe how all the hopping

terms in the Hubbard model can be measured in four circuit preparations.

We conclude this section with a brief discussion of a simple error detection pro-

cedure this measurement scheme allows. If the Hamiltonian to be solved preserves

the number of electrons (or equivalently, Hamming weight after the JW transform),

and the ansatz circuit for the VQE algorithm is also number preserving, then at ev-

ery circuit preparation we can measure the Hamming weight without any additional

cost. This is because the operator M is number preserving5. If the final measured

state has a different Hamming weight to the starting state, then we can be confident

an error has occurred.

2.5 Classical optimiser

The final part of the VQE algorithm is the classical optimisation routine used to

choose the values of θ. The VQE algorithm makes many calls to the quantum

computer to produce trial quantum states |ψ(θ)〉. First we will lay out some of the

terms that will be important in our analysis.

• Circuit evaluation/preparation = one run of the quantum computer.

5The Hadamard gate is not number-preserving. If we were measuring 〈XX〉, then we could
not measure the Hamming weight simultaneously.
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• Energy measurement = x circuit evaluations. One measurement of all of the

terms in H is obtained. For HF , we showed in Section 2.4 that x ≤ n + 1

when there are n qubits.

• Energy estimate = m energy measurements (also referred to as function eval-

uation in the context of optimisation routines).

The optimisation problem is stochastic since the function that we are optimising,

f(θ) = 〈ψ(θ)|H|ψ(θ)〉, is noisy. We require an optimisation routine that is robust to

the statistical noise from the measurements, and noise from the quantum computer

(e.g. depolarisation, decoherence). Circuits to calculate analytic gradients can often

not be implemented on NISQ devices due to the increased gate depth required. The

optimisation routine will either have to use finite-difference methods to calculate

gradients, or a gradient-free method.

Another property desirable in the optimiser is the ability for it to converge using

a relatively low number of function evaluations. We can determine a rough budget

for a reasonable number of calls to the quantum computer as follows. We start

by assuming that we can perform each two-qubit quantum gate in 100ns and that

measurements are instantaneous [107, 108]. If we assume for simplicity that the

depth of the whole circuit is 100, and that the cost of classical computation is

negligible, one circuit evaluation will take 10µs. If we want an accuracy of ∼ 10−2

in the energy estimate, 104 energy measurements (or 104x circuit evaluations) are

required (using that the error is ∼ 1/
√
m for m measurements). Using the quantum

circuit time above, these 104x circuit evaluations will take 0.1x seconds. Taking a

representative number of 105 VQE loop iterations/function evaluations, this would

take 104x seconds ≈ 2.7x hours on the quantum computer.

There have been a large number of works recently on determining the best opti-

misation algorithms for VQE. For example, see [8, 9] for reviews and [109, 110] for

detailed comparisons of various optimisation routines. In the rest of this section we

will explain the details of two optimisation algorithms that we will be making use of

in this thesis. One is a gradient-based optimiser called simultaneous perturbation

stochastic approximation (SPSA), and the other is a gradient-free optimiser called

coordinate descent (CD). Aside from gradient-based and -free methods, there has

also been work done on machine learning and evolutionary strategy based optimisa-

tion methods [111, 112]. Research has also been conducted into measurement-frugal

optimisers which aim to minimise the number of circuit evaluations. These have

been shown to be competitive with, and in certain cases outperform, SPSA and
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CD [113, 114]. Detailed descriptions of machine learning and measurement-frugal

optimisation routines are outside the scope of this thesis.

2.5.1 Simultaneous perturbation stochastic approximation

One place to start looking for a suitable optimisation routine is the field of stochas-

tic optimisation which deals with minimising/maximising functions which include

random noise [115]. The SPSA algorithm [116] is one example of a stochastic op-

timisation algorithm. SPSA has been successfully used in small VQE experiments

on superconducting hardware [35, 77, 117].

SPSA works in a similar way to the standard gradient descent algorithm, but

instead of estimating the full gradient, a random direction is picked to estimate the

gradient along. This is intended to make SPSA robust to noise and to require fewer

function evaluations. Many aspects of this algorithm can be tailored to the specific

problem at hand such as parameters that govern the rate of convergence, terminating

tolerances, and the number of gradient evaluations to average the estimated gradient

over.

Each gradient evaluation is estimated from two function evaluations (as com-

pared with typically twice the number of parameters for finite difference methods)

and is given by

g(θk) =
f(θk + ck∆k)− f(θk − ck∆k)

2ck
∆−1

k , (2.29)

where θk is the current parameter vector after the kth step and ck is the gradient

step size. Each element in the vector ∆k is ±1, chosen randomly with an equal

probability for each outcome. The parameters are then updated via

θk+1 = θk − akg(θk), (2.30)

where ak dictates the speed of convergence. Before carrying out the parameter

update, it is possible to take several estimates of g(θk) in random directions ∆k and

use them to produce an averaged g(θk).

The parameter and gradient step sizes are given by

ak =
a

(k + 1 + A)α
, ck =

c

(k + 1)γ
, (2.31)

where α, γ, a, A and c are the SPSA metaparameters. These metaparameters can

be tailored to the specific problem that is being solved. Below we state what each

of these parameters are and some guidelines for selecting values [118].
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• α is the scaling exponent for the step size. α = 0.602 is often recommended as

a theoretically valid and practically effective value. α = 1 is the asymptotically

optimal value and may be used where there is a large amount of data.

• γ is the scaling exponent for the gradient step size. γ = 0.101 is often recom-

mended as a theoretically valid and practically effective value. γ = 1
6

is the

asymptotically optimal value.

• a is the scaling parameter for the step size and is often chosen jointly with A.

One recommended procedure for picking a is to choose it so that a0 times the

magnitude of elements in g(θ0) is approximately equal to the smallest change

of magnitude desired in the elements of θ.

• A is the stability constant for the step size. It stops the algorithm from making

very large jumps in the early iterations and becoming unstable. It is typically

chosen to be around 10% (or less) of the maximum number of iterations.

• c is the scaling parameter for the gradient step size. A recommended value is

approximately the standard deviation of the noise in f(θ).

In Sections 3.2.2 and 5.2.2 we discuss choices for these metaparameters, in-

formed by numerical simulations, for our specific VQE optimisation problems. In

Section 3.2.2, we also introduce a three-stage version of the SPSA algorithm, where

different numbers of energy measurements are made at each stage of the algorithm.

2.5.2 Coordinate descent algorithm

We now describe an alternative algorithm, based on an approach independently

discovered in [119–121]. The basic algorithm presented in these works can be applied

to variational ansätze where the gates are of the form eiθA for Hamiltonians A such

that A2 = I. It is based on the observation that, for gates of this form, the energy

of the corresponding output state is a trigonometric polynomial in θ (if all other

variational parameters are fixed). This implies that it is sufficient to evaluate the

energy at a small number of choices for θ in order to analytically determine its

minimum with respect to θ. The algorithm proceeds by choosing parameters in

some order (e.g. a simple cyclic sequential order, or randomly) and minimising with

respect to each parameter in turn. It is shown in [119–121] that this approach can

be very effective for small VQE instances.
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We use a generalisation of this approach which works for any Hamiltonian with

integer eigenvalues. This enables us to apply the algorithm to the HV ansatz because

each gate in the ansatz can be seen as combining the gates of the form eiθ(XX+Y Y )/2,

eiθ|11〉〈11|, and eiθ|1〉〈1| (see Section 2.3.1). The corresponding Hamiltonians have

eigenvalues {0,±1}, {0, 1} and {0, 1} respectively. The generalisation is effectively

the same as the one presented in [119, 121] to optimise over separate gates which

share the same parameters.

The algorithmic approach has been given different names in the literature (“se-

quential minimal optimisation” [119], “Rotosolve” [120], “Jacobi diagonalisation”

[121]). Here we prefer another name, coordinate descent (CD) [122], because this

encompasses the approach we consider, whereas the above names technically refer

to special cases of the approach which are not directly relevant to the algorithm we

use6.

Let A be a Hermitian matrix with eigenvalues λk ∈ Z, and assume that eiθA is

one of the gates (parametrised by θ) in a variational ansatz. Then the energy of the

output state with respect to H can be written as

F (θ) = Tr[HUeiθA|ψ〉〈ψ|e−iθAU †] (2.32)

for some state |ψ〉 and unitary operator U that do not depend on θ. Writing A =∑
k λkPk for some orthogonal projectors Pk and using linearity of the trace, this

expands to

F (θ) =
∑
k,l

eiθ(λk−λl)Tr[HUPk|ψ〉〈ψ|PlU †]. (2.33)

If ∆ denotes the set of possible differences λk−λl, and D = maxk,l |λk−λl|, this

expression can be rewritten as

F (θ) =
∑
δ∈∆

cδe
iθδ =

D∑
δ=−D

cδe
iθδ (2.34)

for some coefficients cδ ∈ C. This is a complex trigonometric polynomial in θ of

degree D. Therefore, it can be determined completely by evaluating it at 2D + 1

points. A particularly elegant choice for these is θ ∈ {hδ : −D ≤ δ ≤ D}, where

h = 2π/(2D+1). Then the coefficients cδ can be determined via the discrete Fourier

transform:

cδ =
1

2D + 1

D∑
l=−D

e−ihlf(hl). (2.35)

6Sometimes the term “coordinate descent” is used for algorithms that perform gradient descent
in each coordinate; we stress that here we exactly minimise over each coordinate.
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To minimise F , we start by computing the derivative

dF

dθ
= i

D∑
δ=−D

δcδe
iδθ, (2.36)

and finding the roots of this function. To find these roots, we consider the function

G(θ) = e2iDθ dF

dθ
. (2.37)

Every root of dF
dθ

is a root of G(θ), and as G(θ) is a polynomial of degree 2D in eiθ, its

roots can be determined efficiently by computing the eigenvalues of the companion

matrix of G. Finally, we ignore all roots that do not have modulus 1 (i.e. consider

only roots of the form eiθ) and choose the root eiθmin at which F (θmin) is smallest.

Note that the only steps throughout this algorithm which require evaluation of F (θ)

using the quantum hardware are the 2D + 1 evaluations required for polynomial

interpolation.

This argument also extends to the situation where we have m Hamiltonian evo-

lution operations in the circuit that all depend on the same parameter θ; in this

case, we obtain a trigonometric polynomial of degree mD (see [119, 121] for a proof),

which is determined by its values at 2mD + 1 points.

The above procedure demonstrated how to find the minimal parameter for a

single θ (using 2D + 1 function evaluations) whilst keeping the other variational

parameters fixed. To carry out the full CD algorithm, this procedure is repeated

for each parameter in turn, and then repeated again until a termination criteria is

reached. This criteria could limit the number of passes through the parameters, or

it could halt if the θ’s stop changing – indicating that a minima has been reached.
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Chapter 3

Solving the Hubbard model using

the variational quantum

eigensolver

There are a number of important questions which must be answered to understand

whether solving the Hubbard model is a realistic target for near-term quantum

computers. These include:

• Which ansätze can effectively parametrise the ground state?

• What is the precise complexity of implementing the variational ansatz and of

carrying out the measurements?

• How well will the optimisation routines used handle statistical noise, and noise

in the quantum circuit?

In this chapter we address these questions in order to estimate how well realistic

near-term quantum computers will be able to solve the Hubbard model. We de-

velop detailed resource estimates and circuit optimisations, as well as carrying out

extensive numerical experiments for grids with up to 12 sites (24 qubits). Although

the Hubbard model is easily solvable directly by a classical algorithm for systems of

this size, these experiments give insight into the likely performance of VQE on in-

stances that are beyond the capability of classical hardware. In the NISQ regime, it

is essential to carry out precise complexity calculations to understand the feasibility

of the VQE approach.

A number of works have applied VQE to the Hubbard model. Wecker et al. [92]

developed the HV ansatz, which is a key tool that we use and expand upon. They
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tested it for the half-filled Hubbard model for systems of up to 12 sites – in the case

of simulated exact energy estimates, they used ladders with dimensions Nx × 2 for

Nx = 2, . . . , 6; in the case of realistic energy estimates, they tested a system of size

4× 2. Implementation of two layers of this ansatz for a 4× 2 system would require

around 1000 gates according to their estimate (we reduce this estimate substantially;

see Section 3.1.1).

Reiner et al. [93] have studied how gate errors affect the HV ansatz. They

considered a model where gates are subject to fixed unitary over-rotation errors,

and found that for small system sizes (grids of size 2×2, 3×2 and 3×3), reasonably

small errors did not prevent the variational algorithm from finding a high-quality

solution. Verdon et al. [111] developed an approach to optimising VQE parameters

using recurrent neural networks, and applied it to Hubbard model instances of size

2 × 2, 3 × 2 and 4 × 2. Dallaire-Demers et al. [87] developed a low-depth circuit

ansatz inspired by the UCC ansatz and applied it to the 2× 2 Hubbard model.

Concurrently with this work, Cai [94] determined detailed theoretical resource

estimates for applying the HV ansatz to solve the Hubbard model, using silicon spin

qubits as the quantum hardware. The circuit complexities obtained are qualitatively

similar to ours but are not directly comparable since they use a more restrictive gate

set and topology aimed at efficient implementation on a specific hardware platform.

More recently, small-scale experiments on quantum hardware using up to four qubits

have been demonstrated for solving the Hubbard model using VQE [117, 123].

We start this chapter with theoretical work describing how we can efficiently im-

plement the HV ansatz (and a generalisation we call the number-preserving (NPr)

ansatz) and how to measure the expectation values on a quantum computer. We fol-

low this with extensive numerical simulations with three levels of realism: assuming

we can directly extract the exact value of 〈ψ(θ)|H|ψ(θ)〉; simulating measurements

to represent an ideal quantum computer; and simulating the effect of noise during

the circuit. The work in this chapter is based on Sections I-III and Appendices B

and D of the paper “Strategies for solving the Fermi-Hubbard model on near-term

quantum computers” [57].

3.1 VQE implementation details

We are concerned with finding the ground state of the Hubbard model

Hhub = −t
∑
〈i,j〉,σ

(a†iσajσ + a†jσaiσ) + U
∑
i

ni↑ni↓ (3.1)
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Figure 3.1: An illustration of how fermionic modes can be mapped to physical qubits
on a physical architecture such as Google’s Sycamore device [1]. The fermionic
modes (blue: spin-up, red: spin-down) on a 6 × 6 grid are mapped to qubits in an
array of size 2 × 6 × 6. The red line represents the order associated with the JW
encoding of the qubits, which moves from the top left towards the right. The blue
panels are added to aid visualisation. Note that the red line does not follow the
true connectivity of the qubits (the thin black lines), and hence any ‘local’ operator
with respect to the JW encoding is not necessarily local with respect to the physical
connectivity of the qubits, and vice versa.

on an N = Nx×Ny grid occupied by Nocc fermions, with open boundary conditions.

The notation 〈i, j〉 indicates that the sum is performed over nearest-neighbour (hor-

izontal and vertical) sites i, j in the grid, this is the simplest version of the Hubbard

model that was introduced in Section 1.3.

The first step in the VQE algorithm is to apply a fermion-to-qubit encoding to

this Hamiltonian. We use the JW encoding (see Section 2.2) which maps one spin or-

bital to one qubit, i.e. for an N site Hubbard model, we require 2N qubits. Although

this is one of the simplest encodings, for small grid sizes where min(Nx, Ny) ≤ 8 it

appears to be the most efficient approach in terms of qubit count and circuit depth

required [57].

The JW encoding maps the fermionic modes to a line, therefore an ordering

must be chosen. We use a“snake”-shaped configuration [45, 94, 100], which is

demonstrated in Figure 3.1 superimposed on a device with Google Sycamore ar-

chitecture [1]. All of the spin-up electrons are followed by all of the spin-down,

and within each spin-type, the sites take on the snake ordering. The advantage of

using this configuration is that in Section 3.1.1 we can make use of fermionic swap
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0 1 2 3

7 6 5 4

8 9 10 11

15 14 13 12

Figure 3.2: The four sets of hopping terms (for a fixed spin). Hopping terms of the
same colour commute, and hence in principle can be implemented simultaneously.
Purple corresponds to the horizontal terms h1, dashed orange to h2, blue to the
vertical terms v1 and dashed green to v2.

networks for efficiently implementing the ansatz circuits, and carry out Hamiltonian

measurements using the lowest number of circuit preparations.

The next step in the VQE algorithm is choosing an appropriate ansatz circuit.

We will be making use of the HV ansatz which was discussed in Section 2.3.1. Recall

that in the HV ansatz we split up a Hamiltonian into the sum H =
∑

j Hj where

the terms inside Hj are commuting, and then apply evolutions of the form eiθHj to

the starting state. In the case of the Hubbard model, one layer of the HV ansatz is

a unitary operator of the form

eiθv2Hv2eiθh2Hh2eiθv1Hv1eiθh1Hh1eiθoHo , (3.2)

where Ho is the onsite term; Hv1 and Hv2 are the vertical hopping terms; Hh1 and

Hh2 are the horizontal hopping terms as shown in Figure 3.2. Different layers can

have different parameters. Note that there is some freedom in the order with which

we can implement these terms. In addition, some of terms may not be needed

depending on the grid dimensions.

The HV ansatz has been shown to be effective for small Hubbard model in-

stances [92, 93], and involves a small number of variational parameters: at most 5

per layer. One disadvantage of this ansatz is that preparing the initial state |ψ0〉
(the ground state of the non-interacting U = 0 Hubbard model) is a nontrivial task.

It can be produced using the 2D fermionic Fourier transform, for which efficient

algorithms are known [100, 124], or via a direct method based on the use of Givens

rotations [100]. For grids of size up to 20 × 20, using Givens rotations is the most
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efficient [57] method; on a fully-connected architecture it leads to a circuit depth of

N − 1.

The number-preserving ansatz

It is possible to avoid the depth overhead for constructing the non-interacting ground

state if an ansatz is used that allows for simpler initial states (such as computational

basis states). Here we introduce one such ansatz, the NPr ansatz, which is a gener-

alisation of the HV ansatz. A trade-off for being able to use simpler initial states is

that the NPr ansatz uses more parameters, making the optimisation process more

challenging.

The NPr ansatz is derived from the HV ansatz by replacing all hopping and

onsite terms with a more general number-preserving operator1 parametrised by two

angles θ and φ, and implemented by the two-qubit unitary

UNPr(θ, φ) =


1 0 0 0

0 cos θ i sin θ 0

0 i sin θ cos θ 0

0 0 0 eiφ

 = eiθ(XX+Y Y )/2eiφ|11〉〈11|. (3.3)

The non-interacting ground state can still be used as the initial state, although

computational basis states (where the Hamming weight is equal to the fermionic

occupation number of interest) can also be used with some success (see Appendix A).

One layer of the ansatz then consists of applying a UNPr(θ, φ) gate across each pair of

qubits that correspond to fermionic modes that interact according to the Hubbard

Hamiltonian Hhub, i.e. where there are hopping or onsite interactions. As before,

different layers can have different parameters.

For an N = Nx ×Ny grid, one layer of the NPr ansatz requires

2
(
2
[
Nx(Ny − 1) +Ny(Nx − 1)

]
+NxNy

)
= 10N − 4Nx − 4Ny (3.4)

parameters. The HV ansatz is the special case of the NPr ansatz that also preserves

spin and where many parameters are fixed to be identical or zero. Although the NPr

ansatz has more parameters, the gate depths for the two ansätze will be the same

as they both require the application of gates where there are hopping and onsite

terms.

1This is similar to the exchange-type entangling gates discussed in [77, 81]; an alternative
notion of number-preserving VQE ansatz was studied in [89].
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Architecture Ansatz circuit depth per layer

Nx even Nx odd 4× 4 5× 5 6× 6

Fully-connected 2Nx + 1 2Nx + 2 9 12 13

Nearest-neighbour 4Nx − 1 4Nx 16 21 24

Google Sycamore 6Nx + 1 6Nx + 2 25 32 37

Table 3.1: Circuit depths per layer of the EHV and NPr ansätze for various archi-
tectures.

In Section 3.1.1 we will explain how to implement the HV and NPr ansätze

efficiently on a quantum computer with arbitrary qubit connectivity. We will then

discuss how the next step of the VQE algorithm, the measurement of the expectation

value 〈ψ(θ)|Hhub|ψ(θ)〉, can be done efficiently in Section 3.1.2. We will extend these

in Section 3.1.3 to more realistic hardware architecture such as nearest-neighbour

connectivity and the Google Sycamore device. The resulting two-qubit gate depths

for these different architectures are summarised in Table 3.1. We leave the discussion

of the final step of the VQE algorithm, the classical optimisation routine, to the

numerical simulations in Section 3.2.2.

3.1.1 Efficient ansatz circuit implementation

A key ingredient in the complexity calculations for our circuits will be their depths.

To compute this, we assume that the quantum computer can implement arbitrary

two-qubit gates between connected qubits, and that one-qubit gates can be imple-

mented at zero cost. These assumptions are not too unrealistic. Almost all the

two-qubit gates we will need are rotations of the form ei(θ(XX+Y Y )+γZZ) (up to one-

qubit unitaries), which can be implemented natively on some superconducting qubit

platforms; and one-qubit gates can be implemented at substantially lower cost (e.g.

shorter gate times with a higher fidelity) in some architectures [107]. For now we

will also assume that two-qubit gates can be applied across arbitrary pairs of qubits

i.e. we have a fully-connected architecture.

We will now analyse how one layer of the HV ansatz (and hence also the NPr

ansatz) from equation (3.2) can be carried out efficiently. All of the onsite gates

eiθoHo can be implemented in depth one as they act on disjoint pairs of qubits.

Taking Figure 3.1 as an example, doing the onsite gates corresponds to doing UNPr

between pairs of blue and red qubits that are connected by a thin black line on the

blue panels. All of the horizontal hopping terms eiθh2Hh2 , eiθh1Hh1 can be carried out
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in depth two, since these correspond to gates between qubits that are adjacent in

the JW ordering. The vertical hopping terms eiθv2Hv2 , eiθv1Hv1 are more complicated

to implement since they are accompanied by strings of Z operators due to the

JW encoding. For example, the vertical hopping term between qubits 0 and 7 in

Figure 3.2 is an 8-qubit gate which can be costly to implement (see Figure 2.2).

Therefore, we must make use of fermionic swap networks [66].

We will now restrict our analysis to one spin-type as the horizontal and vertical

hopping terms act on qubits with the same spin. There are N = Nx × Ny qubits,

therefore the generic swap network described in [66] and Section 2.3.2 would require

N layers of two-qubit gates to implement all possible hopping terms. Here we

present a scheme that implements all of the horizontal and vertical hopping terms

in 2Nx layers for Nx even and 2Nx + 1 for Nx odd. It is based on a technique

that Kivlichan et al. [66] used to simulate Trotter steps of the Hubbard model. In

particular, we remove some unnecessary vertical fermionic swap gates and instead

only swap horizontally adjacent qubits. This means that, for an n × n grid, only

n repetitions of a column-permuting sub-routine (which itself has depth two) are

necessary to be able to implement all vertical hopping terms locally, in comparison

to the 3√
2
n iterations that are deemed to be necessary in [66]. In what follows, when

we say that an operator is implemented locally, we mean that the two qubits that

it acts on are JW-adjacent.

We repeatedly apply the operator URUL, where UL swaps odd-numbered columns

with those to their right, and UR swaps even-numbered columns with those to their

right. After each application of URUL, a new set of qubits that were previously not

vertically JW-adjacent are made JW-adjacent, meaning that the vertical hopping in-

teraction between them can be implemented locally using a single number-preserving

operator, without Z-strings. For an Nx ×Ny grid, it suffices to apply URUL a total

of Nx times (giving a two-qubit gate depth of 2Nx) to allow all vertical interactions

to be implemented locally and return the qubits to their original positions. This is

demonstrated in Figure 3.3 for a 4× 4 grid.

Note that the vertical terms are implemented in a different order to the horizontal

terms. If the columns begin in the order 1, 2, 3, 4 . . . , Nx (assuming that Nx is even),

then after a single application of URUL, they are re-ordered to 2, 4, 1, 6, . . . , Nx −
3, Nx − 1. Each subsequent application of URUL will place a new even-numbered

column to the far-left, and a new odd-numbered column to the far-right, so that after

Nx/2 applications each column will have been at the far-left or -right exactly once.

Since it is at the far ends that vertical terms can be applied locally, then after Nx/2
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1

1

1

2

2

2

3

3

3

4

4

4

(a)

UL

(b)

UR

Figure 3.3: (a) Vertical hopping term implementation for a 4×4 Hubbard model grid.
The numbers i show which vertical term will be implemented after i applications
of URUL. The highlighted blue lines show the only places where the hopping terms
can be implemented – at the JW-adjacent positions. (b) Action of UL and UR on
the grid of qubits.

applications of URUL (a depth Nx circuit), all terms that can be applied locally at

the left will have been applied for the even-numbered columns, and similarly for the

odd-numbered columns. Applying another Nx/2 iterations of URUL will move all

the even-numbered columns move to the far-right, and all odd-numbered columns

to the far-left, which allows the remaining terms to be implemented locally.

This circuit can be used to implement all vertical hopping terms in depth 2Nx

for even Nx, and depth 2Nx+1 for odd Nx. This is because for even Nx the hopping

terms can be implemented in parallel with UR, and for odd Nx some hopping terms

can be implemented in parallel with UL and others with UR; one hopping term is left

over in the latter case, leading to an overall overhead of depth one. The horizontal

hopping terms can be folded into this swap network using equation (2.19). The

onsite terms cannot be folded in, hence the final depth of the circuit that implements

one layer of the ansatz is 2Nx + 1 for Nx even and 2Nx + 2 for Nx odd. Figure 3.4

shows the circuit used to implement a single layer of the ansatz for a 4× 4 grid, for

just one of the spins (and therefore omitting the onsite interactions).

We stress that this efficient version of the HV ansatz is different from the stan-

dard HV ansatz in equation (3.2), in that vertical hopping terms are implemented in

a different order. We refer to it as the efficient HV (EHV) ansatz for the remainder

of this chapter. We also remark that all this discussion has assumed the use of open

boundary conditions in the Hubbard model. Periodic boundary conditions in the

horizontal direction can be implemented without any overhead, but periodic bound-

aries in the vertical direction are significantly more challenging. However, smooth

boundary conditions, which can be even more advantageous in terms of reducing
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(a) (b) (c) (d)

Figure 3.4: Gates required to implement one layer of the EHV or NPr ansatz for a
single spin-type. Circuit layers go from (a) to (d), with (c) and (d) repeated three
more times to complete the swap network. Wavy green lines are UNPr and purple
arrows are FSWAP gates. (c) represents UL and (d) represents UR implemented in
parallel with vertical hopping terms. In our implementation, (a) is combined with
the first (c), and (b) with the last (d), allowing horizontal hopping terms to be
combined with the FSWAP gates.

finite-size effects [125], can also be implemented without an overhead.

Finally, we give an estimate of the number of two-qubit gates required for a

complete run of the whole circuit for EHV or NPr ansatz. The cost of preparing

the initial state is at most 2(N − 1)bN/2c gates, where N = NxNy. The cost of the

ansatz circuit itself is at most the depth per layer multiplied by the maximal number

of two-qubit gates applied per step of the circuit (which is at most N), multiplied

by the number of layers. Finally, there is a cost of at most N for the two-qubit

gates required for performing the final measurement. For example, in the case of a

fully-connected architecture, the gate count for a circuit with L layers is at most

(N − 1)N + (2Nx + 1)NL+N (3.5)

for even Nx, and

2(N − 1) bN/2c+ (2Nx + 2)NL+N (3.6)

for odd Nx. In the special case of a 2×4 system with two layers, using a more careful

calculation, we obtain a bound of at most 36 gates per layer, giving an upper bound

of 136 gates in total. By contrast, the estimate for this case in [92] was around 1000

gates, more than a factor of 7 higher.

3.1.2 Measurement scheme

After each run of the ansatz circuit, we need to measure the energy of the state

produced with respect to Hhub. For an N = Nx×Ny grid, there are 4N−2Nx−2Ny

hopping terms and N onsite terms that need to be measured. It turns out that all
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Type Alternating ↑, ↓ All ↑, then all ↓
Sequential Snake Sequential Snake

Onsite 1 1 1 1

Horizontal hopping 3 3 2 2

Vertical hopping 2Nx + 1 2 Nx + 1 2

Total 2Nx + 5 6 Nx + 4 5

Table 3.2: Number of circuit preparations needed to measure all of the Hubbard
model terms (using the non-crossing measurement method) for different JW order-
ings. Note that we have not included the possibility of rearranging the ordering
after the ansatz circuit; for example, for the alternating snake ordering, we could
measure all of the horizontal hopping terms in two circuit preparations using an
additional layer of SWAP gates.

of these terms can be measured in five circuit preparations if we make use of the

notion of non-crossing measurements introduced in Section 2.4.

All of the onsite terms can be measured in one circuit preparation by doing

computational basis measurements on every qubit. If we break the hopping terms

into four sets of commuting terms – two horizontal and two vertical as displayed in

Figure 3.2 – then each of the groups can be measured using one circuit preparation.

The hopping terms in each of these groups are non-crossing and so we can simulta-

neously apply the operator M in equation (2.23) to pairs of qubits corresponding to

these terms (for example, for the first set of vertical hopping terms, these would be

the pairs (0, 7), (1, 6), . . . , (11, 12)), and collect statistics as described in Section 2.4.

Note that, in our scheme, measurement is the one point in the circuit where quantum

gates need to be applied across qubits that are not JW-adjacent.

Recently, Cai [94] described an alternative approach to obtaining the expecta-

tion value using five measurements, based on switching the JW ordering around at

different circuit preparations. The snake ordering is changed to go up and down,

as opposed to left and right (see Figure 3.2) at circuit preparations where we wish

to measure the vertical hopping terms. This makes the vertical hopping terms the

JW-adjacent ones and hence removes the Z strings. The cost of implementing this

approach would be similar to the approach proposed here in the case of square grids

(or perhaps slightly more efficient). For non-square grids the approach proposed

here will be more efficient, as one can choose the orientation of the grid to minimise

the length of Z-strings for the ansatz circuit implementation.

We finish this section with a demonstration of how the JW ordering can change
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the number of circuit preparations required for measuring all of the terms in Hhub.

In Table 3.2 we compare the snake ordering with the sequential ordering of sites

(the columns are numbered from left to right for every row, i.e. the second row

will read 4, 5, 6, 7 in Figure 3.2), and the case where we alternate spin-up and

-down versus where each spin is grouped together. In the worst case scenario,

an extra 2Nx circuit preparations are required to measure all of the terms in the

Hamiltonian. This highlights the need for choosing an optimal JW ordering for

performing measurements, but we stress that the choice of JW ordering must also

be informed by the ansatz circuit.

3.1.3 Implementation on realistic hardware

The description of the EHV and NPr ansätze from Section 3.1.1 assumes that two-

qubit gates can be implemented across arbitrary pairs of qubits. Most quantum

computing architectures have restrictions on their connectivity. These architectures

will in general require additional swap operators to move pairs of qubits into po-

sitions in which they can interact, and then to move them back again. However,

almost all of the gates that are applied in the ansätze take place along the 1D line

of the JW ordering; the only other gates are onsite terms. This means that these

ansätze can be implemented on a 2 × (NxNy) nearest-neighbour architecture with

no additional gate depth per circuit layer. However, this approach would require

an overhead scaling with Nx to measure the vertical hopping terms, e.g. qubits will

need to be swapped to apply M between sites 0 and 7 in Figure 3.2. It would also

require the qubit layout to be particularly long and thin (or a larger lattice of which

this would be a subgraph). In this section we describe alternative approaches to

implement the EHV and NPr ansätze on realistic architectures whose shape is closer

to the shape of the grid itself.

Once we have decided on a qubit layout, we can consider the cost of implementing

the operator URUL from Section 3.1.1, and how it can be combined with the vertical

hopping terms. Since vertical hopping terms are always applied in the same positions

(those pairs of qubits that are vertically JW-adjacent), the same operator, V , is used

to apply all of them (one round at a time). The depth of the circuit required to

implement one layer of the ansatz will then be determined by the depth of the circuit

required to implement V URUL, which is repeated Nx times, plus the depth of the

circuits used to implement the horizontal hopping and onsite terms.
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Figure 3.5: Implementation of the operator V URUL (each split into 3 layers) on the
Google Sycamore architecture for even Nx, shown here for a 4 × 3 grid. The red
lines represent the ordering of qubits due to the JW encoding, and the thin black
lines the connectivity of the qubits.

Nearest-neighbour connectivity

On a nearest-neighbour architecture, we could use a qubit layout similar to that

described in Figure 3.1, but where the lattice consists of alternating rows of spin-up

and spin-down qubits. In this layout, horizontally JW-adjacent qubits are physically

adjacent, but vertically JW-adjacent qubits are not. This means that the opera-

tors UL and UR, which swap horizontally JW-adjacent qubits, can be implemented

directly in depth one each. However, the operator V requires that each pair of

vertically JW-adjacent qubits are moved so that they become physically adjacent,

and then moved back again, which can be achieved using two layers of SWAP gates.

The first layer of SWAP gates can be implemented in parallel with the UR operator

(for even Nx
2), meaning that V URUL can be implemented by a circuit of depth four.

Also, as discussed in Section 3.1.1, we can fold the horizontal hopping interactions

into the swap network. Finally, all onsite interactions can be implemented in depth

one. This yields a final circuit depth of 4Nx+1 per layer for Nx even. This could be

2For odd Nx, some of the SWAP gates can be implemented in parallel with UR, and others
with UL. In the end this incurs an extra overhead of only depth one, using an approach similar to
that described in Figure 3.6.
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decreased to 4Nx – to match the approach taken by Cai [94] – by combining onsite

interactions with swapping operations, although this would change the ordering of

the interactions performed in the ansatz.

The above interlaced approach would result in a physical lattice of shape Nx ×
(2Ny). However, instead of alternating rows of spin-up and spin-down, we can also

place the spin-up grid physically next to the spin-down grid. This results in a lattice

of shape (2Nx)× (Ny). The horizontally and vertically JW-adjacent terms are then

adjacent on the physical lattice as well, and we can carry out these terms as described

in Section 3.1.1. However, the qubits between which we want to implement onsite

terms are distance Nx from each other. Using a swap network of depth Nx − 1,

where the ith layer swaps i pairs of adjacent qubits starting from the middle of

each row, we can bring the required qubits next to each other. We then perform

the onsite gate and use Nx − 1 more layers to swap to the original position. This

approach gives a final depth of 4Nx − 1 for even Nx, and 4Nx for odd Nx which

is a slight improvement on the interlaced approach. Also, the interlaced approach

requires an additional layer of SWAP gates at the end of the algorithm to measure

vertical hopping terms, which is not required for the separated approach.

Google Sycamore architecture

As another example, we consider how to implement the EHV and NPr ansätze

efficiently on Google’s Sycamore architecture [1]. Once again we are concerned

with the depth of the circuit required to implement V URUL. In the Sycamore

architecture, no JW-adjacent qubits are physically adjacent and so each of UR,

UL, and V must be split into 3 layers each: one to swap qubits into physically

adjacent positions; one to carry out the required interaction; and one more to swap

the qubits back to their original positions. Many of these layers overlap and can

be implemented in parallel. Figure 3.5 illustrates how to implement the operator

V URUL with a circuit of depth 6 for even values of Nx.

As in Section 3.1.1, we can fold the horizontal hopping interactions into the swap

network, and all onsite interactions can be implemented in depth one. This yields

a final circuit depth of 6Nx + 1 per layer for even values of Nx. For odd values of

Nx, we lose the ability to implement the vertical hopping terms in parallel with the

operator UR, which increases the depth of the final circuit. In Figure 3.6 we show

how to implement the operator V URUL in depth 7. Here (but not in the even Nx

case), the first and last layers can be implemented in parallel, and so we obtain a
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Figure 3.6: Implementation of the operator V URUL on the Google Sycamore archi-
tecture for odd Nx, shown here for a 5× 3 grid. Note the controlled-Z (CZ) gates
in the fourth layer of the circuit are a combination of the FSWAP gate from Layer
2 of UR and the SWAP gate from Layer 1 of V .

final circuit depth for the ansatz of 6Nx + 2 per layer, one more than in the even

case.

3.2 Numerical results

When simulating a VQE experiment on a classical computer, we will consider three

different levels of realism:

46



3.2. Numerical results

• The simplest but least realistic level is to assume that we can obtain exact

energy estimates to learn 〈ψ(θ)|Hhub|ψ(θ)〉, which can be used directly as

input to a classical optimiser. This will allow us to test which ansätze are

effective, because an ansatz circuit which performs poorly at this level of

realism will likely not be suitable for use on a quantum computer. This is

covered in Section 3.2.1.

• The next level of realism is to simulate the result of measurements as if they

were performed on a quantum computer, but to assume that the quantum

computer is perfect, i.e. does not experience any noise. This level allows us to

test how well the classical optimisers handle statistical effects due to random

measurements and gives an idea of the best performance the VQE algorithm

could have in practice. This is covered in Section 3.2.2.

• Finally, we can simulate the effect of noise during the quantum computation.

For this we use a depolarising noise model. These simulations allow us to test

how well the optimisers cope with additional noise and to test simple error

detection procedures. This is covered in Section 3.2.3.

We developed a high-performance software tool in C++, based on the quan-

tum simulator QuEST [56] which enabled the ansätze we used to be validated and

compared. The tests were mainly carried out on the Google Cloud Platform. In

the preliminary tests, we found that GPU-accelerated QuEST commonly outper-

formed QuEST running on CPU only (whether single-threaded, multi-threaded, or

distributed). For most of the results reported here, we found a speed-up of 4-5×
when compared with a 16 vCPU machine available on Google Cloud, which is sim-

ilar to the speed-up reported in [56]. The GPU-accelerated tests were carried out

using a single vCPU machine equipped with either Nvidia Tesla P4 or Nvidia Tesla

K80. Some of the noisy experiments were carried out on a single vCPU instance, as

for some of the smaller grid sizes it was found that a single CPU performs similarly

to a GPU-accelerated version (for small grid sizes, the data transfer between CPU

and GPU dominates the run-time).

For realistic energy measurements we obtained a significant speedup by storing

the probability amplitudes of the final state produced by the circuit. Computational

basis measurements on that state were then simulated by sampling from this distri-

bution, hence avoiding the need to rerun the circuit; see Section 6.3 for more details.

This optimisation is not available with noisy circuits, so those tests are much more

computationally intensive.
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Occupied orbitals Grid sizes

2 1× 2, 1× 3, 2× 2
3 1× 4
4 1× 5, 1× 6, 2× 3
6 1× 7, 1× 8, 2× 4, 3× 3
7 1× 9
8 1× 10, 1× 11, 2× 5, 2× 6
9 1× 12, 3× 4

Table 3.3: Number of occupied orbitals corresponding to the lowest energy of the
t = 1, U = 2 Hubbard Hamiltonian for each grid size tested.

We now outline some implementation decisions that were made. First, unless

specified otherwise, we ran VQE for the t = 1, U = 2 Hubbard model and started

with the number of occupied orbitals that corresponds to the lowest energy of the

Hamiltonian Hhub (not, for example, the half-filled case as in [92]). These occupation

numbers are listed in Table 3.3. The ansätze we use preserve fermion number, so

remain in this subspace throughout the optimisation process.

In these simulations we ran the HV, EHV and NPr ansätze. For the HV ansatz,

there is a flexibility in the ordering of Hamiltonian terms for time-evolution (see

equation (3.2)). In the case of 1×Ny grids, we used a o, v1, v2 ordering. For 2×Ny

grids, we used a o, h1, v1, v2 ordering (except 2× 2, where there is no v2 term). For

3×Ny grids, we used an o, h1, v1, v2, h2 ordering. By contrast, for the two efficient

ansätze, this ordering is largely pre-determined, except that we have a choice of

when to implement the onsite terms in the EHV ansatz; we chose to do so at the

start of each layer.

For all ansätze, one needs to choose initial parameters. We used a simple deter-

ministic choice of initial parameters, which (similarly to [93]) were all set to 1/L,

where L is the number of layers. We also experimented with choosing initial pa-

rameters at random, we found that as long as the initial parameters were small, e.g.

[0, π/10], a similar performance was achieved. Unless otherwise specified, the initial

state was the ground state of the non-interacting Hubbard model.

3.2.1 Exact simulations

We will now present the simulation results for the first level of realism which assumes

we have direct access to the expectation value 〈ψ(θ)|Hhub|ψ(θ)〉. Unless stated oth-

erwise, we use the implementation choices detailed above. For the classical optimi-
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sation routine we use the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-

BFGS) optimisation algorithm. We evaluated different optimisation methods given

in the NLopt C library for nonlinear optimisation [126] and found that L-BFGS

was usually a very effective algorithm to use when considering a perfect, noiseless,

version of VQE with simulated exact energy estimates. Other algorithms required

many more iterations, or often found lower-quality local minima. To estimate the

gradient, as required for L-BFGS, we used a simple finite difference approximation.

Ability to represent the ground state of the Hubbard model

The circuit ansätze we consider are divided into layers; as the number of layers

increases, the representational power of the ansatz increases. An initial test of the

power of the variational method for producing ground states of the Hubbard model

is to determine the number of layers required to produce a state |ψ〉 of 0.99 fidelity

with the ground state |ψG〉, where

Fidelity(|ψ〉) = |〈ψG|ψ〉|2. (3.7)

In Figure 3.7 we show this for the HV, EHV, and NPr ansätze. This illustrates

that the EHV ansatz (which can be implemented efficiently) performs relatively well

in comparison with the well-studied HV ansatz. In most cases (except the 2 × 3

grid), the HV ansatz requires a lower number of layers, but this is outweighed by

the depth reduction per layer achieved by using the EHV ansatz. Note that in the

case Nx = 1, the two ansätze are equivalent.

Figure 3.7 also demonstrates that the NPr ansatz generally requires lower depth

than the other two ansätze to achieve high fidelity. This is expected, as it corre-

sponds to optimising over a larger set of circuits. It also shows that the optimisation

procedure does not experience significant difficulties with this larger set other than

increased run time. This caused by the increased number of function evaluations

required to optimise the larger set of parameters. This increase can be significant;

for example, a 1 × 11 grid required approximately 105 function evaluations and a

run time of 16.5 hours on a GPU-accelerated system to achieve fidelity 0.99 using

the NPr ansatz, whereas achieving the same fidelity using the EHV ansatz required

fewer than 9000 function evaluations and a run time of 1.5 hours.

Focusing on the EHV ansatz, in Figure 3.8 we illustrate how the fidelity improves

with depth, for the largest grid sizes we considered. In each case, the infidelity (1

- fidelity) decreases exponentially with depth. Notably, 2 × 6 seems to be more

challenging than 3× 4.
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Figure 3.7: Ansatz depths required to represent the ground state of the Nx × Ny

Hubbard model for the HV, EHV and NPr ansätze. Each point corresponds to
the minimal-depth circuit instance we found (using the L-BFGS optimiser) that
produces a final state with fidelity at least 0.99 with the true Hubbard model ground
state (t = 1, U = 2). Tests were run for all grids of size NxNy ≤ 12. For 1×n grids,
HV and EHV are the same.
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Figure 3.8: Scaling of infidelity (1−fidelity) with number of layers of the EHV ansatz
for grids with 12 sites.
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Figure 3.9: Final fidelity achieved with varying U for a 2×2 grid (at depth 1), 1×6
(at depth 5), and 3× 3 (at depth 6), using the EHV ansatz, simulated exact energy
estimates, and the L-BFGS optimiser. U incremented in steps of size 0.1.

Effect of choice of U parameter

For many of the simulations in this chapter, we fix the weight U of the onsite term

in the Hhub to 2, as was also done in [92]. Here we will demonstrate how the

performance of the EHV ansatz changes with U . We considered three grid sizes

(2× 2, 1× 6 and 3× 3), and evaluated the fidelity achieved for different choices of

U at the same depth for which the U = 2 case achieves fidelity > 0.99. This gives

a measure of the difficulty of finding the ground state. The results are shown in

Figure 3.9, we can see that the fidelity decreases as U increases. However, the final

fidelity achieved continues to be quite high for all U ≤ 4.

Figure 3.10 demonstrates the minimal depth of the EHV ansatz required to reach

0.99 fidelity as U varies. In general the depth required increases with U , which is to

be expected as we begin in the U = 0 ground state. As we can see from Figure 3.10,

to get to the physically interesting intermediate coupling regime U = 4, where

classical methods experience significant uncertainties [46, Table V], only requires

one or two extra ansatz layers from U = 2. However, the more strongly correlated

model U = 8 requires roughly double the ansatz layers.

We remark that, when optimising with realistic measurements, the statistical

uncertainty in the energy estimates is likely to increase linearly with U . This is

because the energy is estimated by summing several measurement results, some of

which are scaled by a U factor. Thus going from U = 2 to U = 8 (for example) would
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Figure 3.10: Depth of the EHV ansatz required to reach 0.99 fidelity with the ground
state of the Hubbard model as a function of U with grid sizes 2× 2, 1× 6 and 3× 3.

likely require 16 times more measurements to achieve the same level of statistical

uncertainty.

The half-filled regime

While we are mostly concerned with finding the overall ground state of Hhub, solu-

tions of certain restricted cases can be of interest as well. A prominent restriction

is that of half-filling, where the number of fermions in the grid is exactly half of

the number of sites. This case is easier to solve classically due to the lack of a sign

problem [46], enabling quantum Monte Carlo methods to succeed. However, the

special physical and mathematical characteristics of the half-filled regime make it

an important benchmark for VQE methods

The performance of the EHV ansatz in terms of depth to high-fidelity solution

can be seen in Figure 3.11; we can see that the depths required in the half-filling case

are comparable to depths required to find the ground state of the full Hamiltonian

(using the occupancies in Table 3.3).

In Figure 3.12, we see how the infidelity, absolute error with the actual ground

state, and absolute error with the true double occupancy of the ground state changed

with depth for an example grid size of 2×4, also at half-filling. While the optimisa-

tion is carried out by minimising the energy, we can see that the infidelity and the

error in the double occupancy follow a very similar trend to the error in the ground

energy. This gives us reason to believe that energy is a good figure-of-merit to op-
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Figure 3.11: Depth of the EHV ansatz required to reach 0.99 fidelity with the
ground state of the half-filled Hubbard model at t = 1, U = 2. Comparison with
depth required to find the overall ground state (data reproduced from Figure 3.7).
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Figure 3.12: Infidelity, absolute error with the actual ground state and absolute
error with the true double occupancy for various depths of the EHV ansatz for the
2× 4 half-filled Hubbard model.
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timise, even if a different property of the ground state (such as double occupancy)

is of interest. The situation is similar away from half-filling.

Another peculiarity about the half-filled case is that degeneracy in the ground

states of the non-interacting Hamiltonian, which is the initial state for the EHV

ansatz, is common. If the degeneracy is low enough (only a few states), then trying

out each of the degenerate states as the initial state might be feasible. However, in

some of the grids with higher degeneracy we tried a few different solutions to arrive

at a successful initial state. For the results presented in Figure 3.11, the initial

states were generated as follows: if there was no degeneracy then the choice was the

single ground state; for grid size 2× 2, one of the hopping terms in the Hamiltonian

was altered by ε = 0.0001 allowing for a splitting between the degenerate states; for

grid sizes 2×5, 3×3, a superposition over all the degenerate states was created and

the weights of each of the states were added as parameters to be optimised over in

the main optimisation; for all other degenerate states, a manual selection of initial

state was carried out by trial-and-error.

3.2.2 Incorporating measurements

In this section we present results for the second level of realism, taking account of

the statistical effect of measurements but assuming that we have an ideal quantum

computer. We will compare the ability of SPSA (see Section 2.5.1) and CD (see

Section 2.5.2) to find the ground state of the Hubbard model for four representative

grid sizes. Before we present these results, we will first discuss optimiser choices.

As discussed in Section 2.5.1, we must specify values for the SPSA metaparame-

ters; these can be tailored to the specific problem at hand. We fixed α = 0.602 and

γ = 0.101 to the recommended theoretical and practically effective values [118]. We

chose the stability constant A = 100 to be around 10% of the maximum number of

iterations. Finally, a = 0.15 and c = 0.2 were chosen by a joint parameter sweep

(using SPSA to solve a small instance of the Hubbard model). We found that a and

c generally had to be small to reduce the rate of convergence, which allowed us to

reach a more accurate result but with more iterations.

In addition to selecting the values of the metaparameters, we made an extra mod-

ification to the SPSA algorithm where we perform multiple runs of the optimiser.

We start with two coarse runs with a high level of statistical noise where we calcu-

late the energy estimate using only 102 and then 103 energy measurements. This

is followed by a finer run where SPSA is restarted using 104 energy measurements
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Figure 3.13: Infidelity achieved over five runs of the standard SPSA algorithm
(where each energy estimate is formed of 104 energy measurements and two gradient
evaluations are taken in each iteration) and a modified three-stage SPSA algorithm
which starts with less accurate measurements, as described in the text. Results are
shown for a 1×6 grid, EHV ansatz, depth 5. The solid lines show the median of the
runs and the limits of the shaded regions are the maximum and minimum values
seen over the five runs.

for the estimate and averaging over two gradient evaluations in random directions

for g(θk). The number of steps in this three-stage optimisation is determined by a

ratio of 10 : 3 : 1. Figure 3.13 shows the benefit of using coarse energy estimates

near the start of the algorithm, so as to rapidly obtain a good approximation to the

optimal value.

We now compare the ability of the three-stage SPSA and CD algorithms to

find the ground state of Hubbard model instances for four representative grid sizes:

2× 2, 1× 6, 2× 3, and 3× 3. For CD, we fixed the number of approximate energy

estimates to ∼ 1.2× 103, where each estimate consists of 104 energy measurements.

This translates to a limit of ∼ 6× 107 circuit evaluations. For SPSA, the number of

energy estimates was limited to ∼ 1.2×104, due to the number of measurements per

estimate changing throughout the course of the optimisation. As described above,

we carry out a three-stage optimisation routine and set the ratio of 10 : 3 : 1 for

very coarse, coarse, and smooth function evaluations, respectively. By limiting to a

total of ∼ 1.2 × 104 energy estimates, we allow for a similar total limit as that of

CD, ∼ 1.2× 107 energy measurements (or ∼ 6× 107 circuit evaluations).

For each grid size, we determined the final fidelity of the output of the VQE algo-
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Figure 3.14: Infidelity reached during the optimisation process with CD and SPSA
optimisers using realistic measurements. Results are shown for five runs of a 3× 3
grid, using the depth 6 EHV ansatz. The solid lines show the median of the runs
and the limits of the shaded regions are the maximum and minimum values seen
over the five runs.

Grid Depth CD SPSA L-BFGS

2× 2 1 0.0068 0.0066 0.0066
1× 6 5 0.0293 0.0199 0.0098
2× 3 3 0.0202 0.0199 0.0075
3× 3 6 0.0307 0.0227 0.0068

Table 3.4: Final infidelity reached for CD and SPSA optimisers using realistic mea-
surements, compared with the best infidelity achieved by the L-BFGS optimiser
with exact estimates. The CD and SPSA results are the median of five runs.

rithm with the true ground state after the fixed number of measurements. We chose

the minimal ansatz depth for which the ground state is achievable (via Figure 3.7).

The results are shown in Figure 3.14 and Table 3.4. In all cases, both algorithms are

able to achieve relatively high fidelity (considering that each energy measurement

involves at most 104 circuit runs, suggesting an error of ∼ 10−2). However, in the

case of 1 × 6 and 3 × 3 grids, SPSA achieves a noticeably higher fidelity. It is also

interesting to note in Figure 3.14 that SPSA uses substantially fewer energy mea-

surements to achieve a high fidelity. One reason for this may be that each iteration

of CD requires more energy estimates (2NxNy+1 = 19 for a 3×3 grid, as compared

with two energy estimates for SPSA).
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2× 2 1× 6 2× 3

p CD SPSA CD SPSA CD SPSA

10−3 No ED 0.0066 0.0066 0.0262 0.0187 0.0231 0.0201
ED 0.0066 0.0067 0.0297 0.0176 0.0174 0.0196

10−4 No ED 0.0067 0.0066 0.0250 0.0188 0.0169 0.0194
ED 0.0068 0.0066 0.0259 0.0180 0.0179 0.0195

10−6 No ED 0.0065 0.0066 0.0288 0.0197 0.0174 0.0199
ED 0.0064 0.0066 0.0257 0.0185 0.0183 0.0194

Table 3.5: Infidelities at end of runs for varying grid sizes and noise rates, with
error detection (ED) off/on. The results presented are the median of three runs.
The EHV ansatz at depths of 1, 5, 3 respectively was used.

3.2.3 Depolarising noise

Finally, we evaluate the effect of noise on the ability of the VQE algorithm to

find the ground state of the Hubbard model. We considered a simple depolarising

noise model where, after each two-qubit gate, each qubit experiences a Pauli error

with probability p, which is either an X, Y or Z operation (chosen with equal

probability) [12]. We examined noise rates p ∈ {10−3, 10−4, 10−6} for grid sizes

2 × 2, 1 × 6 and 2 × 3. These experiments are substantially more computationally

costly than those with realistic measurements, because of the need the recompute

the circuit (accounting for the depolarisation errors) for each energy measurement.

We also tested the effect of the simple error detection procedure described in Sec-

tion 2.4. When an error is detected by the wrong Hamming weight being obtained,

that run is ignored. The measurement procedure then continues until the intended

number of valid energy measurements are produced for each type of term. Hence,

the total number of energy measurements is somewhat larger than the noiseless case.

We list the final fidelities achieved for different grid sizes, error rates, and opti-

misation algorithms in Table 3.5. An illustrative set of runs for a 2×3 grid is shown

in Figure 3.15. The overhead of error detection is not shown in this figure (that

is, measurements where an error is detected are not counted). One can see that

in all cases, errors due to depolarisation do not make a significant difference to the

final fidelities achieved, compared with the noiseless results in Table 3.4. The use of

error detection seems to usually lead to a small but noticeable improvement in the

final fidelity achieved, as well as seeming to make the performance of the optimiser

during a run less erratic. We note that error detection might have a more relevant
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Figure 3.15: Infidelity reached during the optimisation process with CD and SPSA
optimisers, with and without error detection. The results are for a 2× 3 grid using
the depth 3 EHV ansatz with an error rate of 10−3. The solid lines show the median
of the runs and the limits of the shaded regions are the maximum and minimum
values seen over the 3 runs.

role for bigger grid sizes, due to higher depths and longer circuit run times.

Although our experiments indicate that low levels of depolarisation noise have

little effect on the ansatz, it is necessary to look into more realistic noise models to

fully investigate the effect of noise in real quantum devices.

3.3 Summary

We have carried out a detailed study of the complexity of variational quantum

algorithms for finding the ground state of the Hubbard model. Our numerical

results are consistent with the heuristic that the ground state of an instance on N

sites could be approximately produced by a variational quantum circuit with ∼ N

layers (and in all cases we considered, the number of layers required was at most

1.5N).

If only around N layers are required, then the ground state of a 5 × 5 instance

(larger than the largest instance solved classically via exact diagonalisation [50])

could be found using a quantum circuit on 50 qubits with around 25 layers. This

corresponds to an approximate two-qubit gate depth of 24+25×(2×5+2)+1 = 325

in a fully-connected architecture, including the depth required to produce the initial
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state. This is still beyond the capabilities of today’s quantum computing hardware.

Although we only considered relatively shallow quantum circuit depths, the ability

of the NPr ansatz to find ground states suggests that the classical optimisation

routines used could continue to work for these deeper circuits, as this ansatz used a

much larger number of parameters, e.g. over 400 for the largest grids we considered.

In numerical experiments with simulated realistic energy measurements on sys-

tems with up to nine sites, the CD and SPSA algorithms were able to achieve high

fidelity with the ground state (e.g. SPSA achieves fidelity > 0.977 for a 3× 3 grid)

by making a number of measurements which would require a few hours3 of execu-

tion time on a real quantum computer. Including simulated depolarising noise in

the quantum circuit for systems with up to six sites, error rates of up to 10−3 did

not have a significant effect on the fidelity of the solution. These results are a step

towards building confidence that the VQE algorithm could be effective on quantum

hardware.

Determining the optimal choice of classical optimiser remains an important chal-

lenge. It is plausible that the optimisers used here could be combined or modified to

improve their performance. Other methods that have been studied in this context

include adaptive optimisation algorithms [113] and techniques based on machine

learning [111, 112]. Future work should evaluate such methods for larger-scale in-

stances of the Hubbard model and other challenging problems in many-body physics.

Variational methods show significant promise for producing the ground state of

the Hubbard model for grid sizes somewhat beyond what is accessible with classical

computational methods. Over the next two chapters, we will determine whether this

is also the case when larger instances of the Hubbard model are first compressed

using an embedding technique.

3∼ 57M circuit evaluations; Google’s Sycamore processor can perform 1M circuit evaluations
in 200s [1].
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Chapter 4

Density matrix embedding theory

applied to the Hubbard model

Due to the limited number of qubits on NISQ devices, embedding algorithms which

reduce the size of the problem Hamiltonian could be very useful. Methods such

as density functional theory (DFT), dynamical mean-field theory (DMFT), density

matrix renormalisation group (DMRG) and matrix product states (MPS), which

have been used for decades in the classical simulation of solid-state systems, are

gaining popularity in the quantum computing community [127–133].

The idea behind embedding methods is that the properties of a Hamiltonian H

can be reproduced using a smaller embedded Hamiltonian. Density matrix embed-

ding theory is one method for obtaining a suitable embedded Hamiltonian [134, 135]

which has been used to study the Hubbard model [46, 134, 136, 137]. In the DMET

algorithm a fragment of the original system is retained, with the rest of the system

being mapped to a bath that is the same size as the fragment.

DMET is well suited for use with the VQE since it does not require the compu-

tation of any complicated time- or frequency-dependent quantities such as Green’s

functions. There have been a number of works over the past few years that have

combined DMET with VQE. Rubin [138] investigated solving the 1D Hubbard model

using a fragment containing one site with UCC as the VQE ansatz. Yamazaki et

al. [139] conducted an analysis of DMET along with other embedded techniques

for alkanes using classical quantum chemistry simulations to estimate qubit counts

and sampling errors. More recently, experiments have been done on quantum hard-

ware. Kawashima et al. [140] conducted an experiment on a trapped-ion quantum

computer using an embedded Hamiltonian with two qubits to estimate the energy

of a ring of hydrogen atoms. Tilly et al. [141] solved the Hubbard model on a
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Bethe lattice using energy-weighted DMET with four qubits on IBM superconduct-

ing hardware.

Over the next two chapters we discuss in detail how the combination of DMET

and VQE could be used to solve the Hubbard model on a quantum computer. We

go beyond these small-scale experiments with a more systematic study of the topic,

involving an analysis of the quantum circuit complexity and numerical simulations

up to four sites (16 qubits).

In this chapter we focus on the classical aspects of the combined DMET and VQE

algorithm. We start by discussing the idea behind DMET, followed by detailed steps

of the single-shot embedding algorithm (a variant of DMET) applied to the Hubbard

model. We finish the chapter with a derivation of the structure of the embedded

Hamiltonian produced by single-shot embedding; this is key to determining the

complexity of the VQE algorithm in the next chapter. This chapter is based on

Section II and Appendices A and C from “Solving the Hubbard model using density

matrix embedding theory and the variational quantum eigensolver” [59]. Original

work is contained in Section 4.3, and additional details that were omitted from the

paper are included there.

4.1 Introduction to DMET

In general, states of a quantum system can be written in terms of the basis states

of two of its sub-systems. For our purposes, let us call the first sub-system F the

fragment and the second sub-system E the environment. For example, for a system

that consists of electrons in a grid, the fragment could be a subset of sites of the

grid. Any state |Ψ〉 of the system can be written as

|Ψ〉 =

NF∑
i=1

NE∑
j=1

Ψij|Fi〉|Ej〉, (4.1)

where |Fi〉, |Ej〉 are basis states of F and E, and NF/E are the sizes of their respective

Hilbert spaces. Using the singular value decomposition of Ψij it can be rewritten as

|Ψ〉 =

NF∑
i=1

NE∑
j=1

min(NF ,NE)∑
α=1

UiαλαV
†
αj|Fi〉|Ej〉

=

NF∑
α=1

λα|F ′α〉|Bα〉, (4.2)
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where without loss of generality we have taken NE > NF . The |Fi〉 states have been

rotated to a new basis |F ′α〉 =
∑

i Uiα|Fi〉 of the fragment. The |Bα〉 =
∑

j V
†
αj|Ej〉

are a reduced set of states, spanning a system called the bath. The bath represents

the portion of the environment needed to model interactions with the fragment.

This is the Schmidt decomposition of |Ψ〉 [142].

If |Ψ〉 were the ground state of a Hamiltonian H in the full system, then by

construction it is also the ground state of a smaller embedded Hamiltonian Hemb

given by

Hemb = P†HP , (4.3)

with the projector P being

P =
∑
αβ

|F ′αBβ〉〈F ′αBβ|. (4.4)

In practice |Ψ〉 is not known so the exact embedding procedure cannot take

place. Instead we look to approximate P by taking the Schmidt decomposition of

another state |Φ〉 which is determined self-consistently. Typically, |Φ〉 is taken to

be the ground state of a mean-field quadratic Hamiltonian HMF , where HMF is an

approximation to H, as this can be calculated efficiently. Furthermore, depending

on the variant of DMET, an alternative to equation (4.3) may be used to determine

the embedded Hamiltonian from P .

At the end of the self-consistency procedure, observables of Hemb (on the frag-

ment and between the fragment and bath) are used to approximate observables of

the full Hamiltonian H.

4.2 The single-shot embedding algorithm

There are many variants of the DMET procedure which choose different mean-field

Hamiltonians HMF , different ways of projecting onto the problem Hamiltonian H

and different termination criteria for self-consistency. Here we have chosen to focus

on the simplest form of DMET, single-shot embedding [142, 143]. This will highlight

the key issues that would be associated with implementing any form of DMET on

a quantum computer. Single-shot embedding has been shown to be effective in

practice [139, 143] and has been successfully used with the VQE algorithm [138,

140] for one fragment site.

In Figure 4.1 we estimate the energy per site for the infinite 1D Hubbard model

using single-shot embedding with fragment sizes Nfrag of one and four (4 and 16
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Figure 4.1: Energy per site for the 1D U = 4 Hubbard model solved with the Bethe
ansatz (BA) [43, 44], exact diagonalisation for small models with periodic boundary
conditions and single-shot embedding. Note that none of the calculations involve
VQE.

qubits), and exact diagonalisation for small Hubbard models of 6 and 10 sites (12

and 20 qubits) with periodic boundary conditions. On a small quantum computer

it may be preferable to run DMET as it can achieve a high accuracy with a small

number of sites. It is also possible to input any fraction for 〈n〉 with DMET, whereas

with small models the site occupancy will be restricted to values for which there are

a whole number of electrons.

We will now lay out the steps in the single-shot embedding algorithm in the con-

text of the Hubbard model. Recall from Section 1.3 that the Hubbard Hamiltonian

is defined as

Hhub = −t
∑
〈i,j〉,σ

(a†iσajσ + a†jσaiσ) + U
∑
i

ni↑ni↓ = T +W. (4.5)

Here T describes the kinetic energy in the system, these are the hopping terms

between nearest-neighbour sites. W describes the interactions between particles in

the system, which are the onsite terms.

We will be considering the problem of finding properties of the ground state

for the model on an infinite 1D or 2D rectangular grid that has a fixed fraction of

the sites filled with electrons with the same proportion of spin-up and -down. In

practice we will approximate the infinite grid by a large number of sites N with
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4.2. The single-shot embedding algorithm

periodic or anti-periodic boundary conditions1, and occupied by Nocc fermions split

equally between spin-up and -down. The procedure to reduce this problem to an

embedded Hamiltonian with Nfrag sites in the fragment using single-shot embedding

is as follows [142]:

1. Calculate the ground state of the approximating mean-field Hamiltonian

The simplest form the mean-field Hamiltonian, HMF , can take is the one-

particle (quadratic) part of Hhub,

HMF = T = −t
∑
〈i,j〉,σ

(a†iσajσ + a†jσaiσ). (4.6)

Note that HMF could be chosen to be different from T , which would lead to

a different embedded Hamiltonian.

We must find the one-particle reduced density matrix (1-RDM) of the ground

state of HMF . The 1-RDM expresses the relationship between the behaviour

of an electron at two different sites and the matrix diagonal contains electron

densities. For a state |ψ〉 it is defined to be

ρ(|ψ〉)ij = 〈ψ|a†jai|ψ〉. (4.7)

HMF is a quadratic Hamiltonian which can be solved efficiently and its ground

state is a Slater determinant. This ground state can be found by taking the

matrix C of coefficients of HMF . Restricting to one spin-type since in this

case both spins are identical, C is an N ×N matrix with the (i, j)th element

being the coefficient of a†i↑aj↑ in the Hamiltonian. Without loss of generality

we assume that the orbitals have been ordered such that the environment sites

follow the fragment sites.

We then diagonalise C and put the eigenvectors corresponding to the lowest

Nocc/2 eigenvalues (recall that half of the electrons are spin-up) into an N ×
Nocc/2 matrix Φ which now represents the ground state Slater determinant

(each column is an occupied orbital written as a linear combination of the

original orbitals). Since Φ is a Slater determinant, its 1-RDM can be simply

calculated as

ρ(Φ) = ΦΦ†. (4.8)

A derivation for this fact is provided in Appendix B.

1Periodic boundary conditions introduce −ta†0σaNσ terms into the Hamiltonian. Anti-periodic

boundary conditions introduce ta†0σaNσ.
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Chapter 4. Density matrix embedding theory applied to the Hubbard model

2. Construct the projector from the mean-field ground state

The 1-RDM of the ground state is used to construct the projector that will

reduce the environment orbitals to the bath orbitals. If we delete the first Nfrag

rows and columns of the 1-RDM, we are left with an Nenv × Nenv submatrix

(where Nenv = N−Nfrag) representing the environment orbitals. Diagonalising

this submatrix leads to 3 different scenarios:

• Eigenvalues of 0 correspond to unoccupied environment orbitals.

• Eigenvalues of 1 correspond to occupied environment orbitals. Counting

these tells us the occupation number of the embedded Hamiltonian we

will need to solve in step 4. If there are m of these then the embedded

occupation number including both spin-types is Nemb = Nocc − 2m.

• Eigenvalues between 0 and 1 have overlap on the environment and the

fragment. There will be Nfrag of these and we will write the eigenvectors

associated to them as vi.

The eigenvectors associated to eigenvalues of 0 and 1 are discarded and the

rest are used to define the projector

P =

(
I 0

0 v1...vNfrag

)
, (4.9)

where I is the identity matrix of size Nfrag × Nfrag. Note that this procedure

outlined in steps 1 and 2 is equivalent to finding the Schmidt decomposition

of |Φ〉 to calculate the projector [142].

3. Construct the embedded Hamiltonian from the projector

The embedded HamiltonianHemb is constructed using the non-interacting bath

formulation [142] where only the quadratic part of Hhub is projected and higher

order terms are only added back to the fragment. This is a simpler construction

than projecting the full Hamiltonian Hhub which can lead to more complicated

interaction terms.

The projection of the quadratic part, T , of Hhub into the embedded basis is

obtained as follows. Write T = T ↑+T ↓ (separating spin-up and -down terms)

and interpret each term as a matrix of coefficients K↑ and K↓, similarly to C

in step 1. Now project the matrices of coefficients into the embedded basis to

obtain

Kσ
emb = P †KσP, σ ∈ {↑, ↓}. (4.10)
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4.2. The single-shot embedding algorithm

The Kσ
emb can then be re-interpreted as Hamiltonians T σemb, which can be added

up to obtain Temb.

The two-particle interaction term in the embedded Hamiltonian is simply set

to be the terms in W that act only on the fragment,

Wemb = U
∑
i∈frag

ni↑ni↓. (4.11)

Finally, a chemical potential µ that governs the number of electrons in the frag-

ment is also added to the embedded Hamiltonian. This is the only parameter

that is determined self-consistently in this variant of DMET (the “single-shot”

refers to this single free parameter) and makes the embedded Hamiltonian

Hemb = Temb +Wemb − µ
∑

i∈frag,σ

niσ. (4.12)

4. Solve the embedded problem

Hemb is a Hamiltonian on 4Nfrag orbitals (2Nfrag for each spin’s fragment and

bath sites). The ground state |Φemb〉 of Hemb occupied by Nemb electrons can

be found using methods such as exact diagonalisation, DMRG, or VQE.

5. Adjust the chemical potential until there are the correct number of particles in

the fragment

Repeat from equation (4.12) in step 3, adjusting µ until the fraction of occu-

pied orbitals in the fragment matches the site occupancy of Hhub. Since µ is

only one parameter, it can be fitted by finding roots of f(µ) = 0 where

f(µ) =
N

Nfrag

∑
i∈frag,σ

〈Φemb|niσ|Φemb〉 −Nocc. (4.13)

In the rest of this thesis we refer to this as the DMET function. f(µ) is equal

to the number of electrons in the fragment scaled up to fill the large model,

minus the number of electrons in the Hubbard model to be solved for.

More general forms of DMET have an extra optimisation loop. A correlation

potential V is introduced in the mean-field Hamiltonian, giving HMF = T + V ,

which is adjusted until the 1-RDMs of |Φ〉 and |Φemb〉 match [142]. In general

DMET calculations, the system can also be split into multiple disjoint fragments,

with the bath for each fragment being constructed from the union of the other

fragments. Consistency then has to be enforced between all the separate fragment-

bath systems [135, 142]. We do not need to consider this as the Hubbard model is
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Chapter 4. Density matrix embedding theory applied to the Hubbard model

translationally invariant. This makes the use of multiple fragments redundant as

they would all have the same properties.

4.2.1 Calculating observables from the embedded

Hamiltonian

Observables relevant to the original problem Hamiltonian Hhub can be calculated

from the final |Φemb〉 given by the single-shot embedding algorithm. The quantities

of interest in this thesis are the energy and double occupancy per site. These are

calculated by taking expectation values of |Φemb〉 on the fragment and fragment-

bath. Contributions purely from the bath are ignored.

For example, the energy of the fragment is calculated as [135, 136]

Efrag = 〈T frag
emb〉+

1

2
〈T frag-bath

emb 〉+ 〈Wemb〉 (4.14)

where T frag
emb and T frag-bath

emb are the terms of Temb that act on the fragment-only, or

between the fragment and bath, respectively. The energy per site is then obtained by

dividing by the number of sites in the fragment. Double occupancy of the fragment

is calculated as [137]

Dfrag =
∑
i∈frag

〈ni↑ni↓〉 =
〈Wemb〉
U

. (4.15)

4.3 Form of the embedded Hamiltonian

This section contains a summary and derivation of the structure of the embedded

Hamiltonian, which will be necessary for developing efficient swap networks and

measurement schemes in Section 5.1. Unlike when using a classical procedure such

as exact diagonalisation, having more terms in the embedded Hamiltonian results in

a more complicated circuit being run on the quantum computer and requires more

measurements to estimate the expectation values.

In general, the embedded Hamiltonian from equation (4.12) can be written more

explicitly as

Hemb =
∑

i 6=j∈emb,σ

tij(a
†
iσajσ + a†jσaiσ) +

∑
i∈bath,σ

tiiniσ + U
∑
i∈frag

ni↑ni↓ − µ
∑

i∈frag,σ

niσ.

(4.16)

Determining the form of Hemb now comes down to knowing which terms are present

in the Hamiltonian (non-zero tij). Here we will state the structure of the embedded
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4.3. Form of the embedded Hamiltonian

Hamiltonian when the single-shot embedding procedure is carried out for the 1D

and 2D Hubbard models. These results are derived in Sections 4.3.1 and 4.3.2 by

considering the matrix of coefficients of T and its projection Temb. This derivation

has been made possible due to the simple structure of T and properties of the

Hubbard model such as translational invariance.

There are three different types of terms to consider – fragment-only terms, bath-

only terms and fragment-bath hopping terms. The fragment-only terms retain the

same structure as the Hubbard model and are nearest-neighbour hopping terms.

For the fragment-bath interactions, each fragment site on the edge of the fragment

shares a hopping term with all of the bath sites. In the 1D Hubbard model, the

edge sites are the first and last sites of the fragment. For the 2D Hubbard model

with a 1D fragment all of the fragment sites are on the edge.

For the terms acting only on the bath, the tii are generally all non-zero. With the

1D Hubbard model when using anti-periodic boundary conditions and taking the

number of electrons of one spin-type (Nocc/2) to be even (or with periodic boundary

conditions and Nocc/2 odd), the bath hopping terms in Hemb split into two groups

– even- and odd-numbered sites. Within each of these two groups, every site has

a hopping term with all the other sites. If these conditions are not met then all of

the bath sites can interact with all of the other bath sites, increasing the number of

interactions, as described in Section 4.3.1.

The embedded Hamiltonian of the 2D Hubbard model with a 1D fragment has

the same structure of bath hopping terms as the 1D model. However when using

a 2D fragment, the bath sites split into four groups where within each group all

possible interactions occur. Unlike the 1D case there is no clear split (e.g. even/odd),

but the size of the groups are roughly equal. Conditions on when this split occurs

is discussed are Section 4.3.2.

From the standpoint of quantum circuit complexity, it will always be advanta-

geous to use a 2D shaped fragment when solving the 2D Hubbard model. This is

due to the fact that both the fragment-bath and bath-only hopping terms will be

fewer in number than when using a 1D fragment shape.

4.3.1 1D Hubbard model

Here we will present a derivation for why the embedded Hamiltonian takes the form

that it does when solving the 1D Hubbard model. In particular, we will explain why

the bath hopping terms split into two groups, where in the first group all the even-
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numbered sites interact with each other, and in the second group odd-numbered

sites interact. We will show that this occurs using periodic boundary conditions

when Nocc/2 is odd or using anti-periodic boundary conditions when Nocc/2 even.

To do this we will be following through the first three steps of the single-shot

embedding algorithm from Section 4.2. Throughout the derivation we will need to

make use of K↑, the N ×N coefficient matrix of the hopping terms T restricted to

one spin-type. For simplicity of notation, we will refer to this matrix as T for the

rest of this section. We will also take t = 1 in T and let M = Nocc/2.

For T with periodic boundary conditions, we will show:

1. T is a circulant matrix. If M is odd then the 1-RDM will also be circulant

(note that circulant matrices are also Toeplitz). The 1-RDM is symmetric by

construction and so it is a symmetric Toeplitz matrix.

2. The properties of symmetric Toeplitz matrices imply that half of the eigen-

vectors of the 1-RDM placed in the projector P will be symmetric and half

skew-symmetric.

3. When doing the matrix multiplication Temb = P †TP , the symmetric and skew-

symmetric vectors cancel, leading to zeroes in the bath part of Temb.

We will first present the details for the periodic case and then follow up with the

anti-periodic case. Apart from the first step, the argument for the two cases is

identical.

Periodic boundary conditions

Step 1

Let Φ = (v0, v1, . . . , vM−1) where vi are the eigenvectors of T associated to the

lowest M eigenvalues. The 1-RDM can be written as

ρ = ΦΦ† =
M−1∑
i=0

viv
†
i =

∑
λ

Pλ (4.17)

where the Pλ group together the viv
†
i where the vi share the same eigenvalue λ. If

the vi contained in Pλ spans the full eigenspace of λ, then Pλ is a projector onto

that eigenspace.
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The matrix T is

T =



0 −1 −1

−1
. . . . . . 0
. . . . . . . . .

0
. . . . . . −1

−1 −1 0


. (4.18)

That is, T is the matrix with −1 on the off-diagonals and in the top-right and

bottom-left corners, and zeros everywhere else. T is a circulant matrix which there-

fore commutes with the cyclic permutation matrix S where

S =


0 1

1
. . .
. . . . . .

1 0

 . (4.19)

Commuting matrices preserve each other’s eigenspaces and in particular commute

with the projectors onto each other’s eigenspaces. This means that S commutes

with Pλ – and therefore ρ – provided that the Pλ project onto whole eigenspaces.

Whether the Pλ project onto whole eigenspaces depends on M , if there are

eigenvalues with multiplicities greater than 1. To determine this we need to find the

eigenvalues of T , which turns out to be a simple task since the eigenvalues/vectors

of circulant matrices are well known [144]. The eigenvalues of T are given by

λj = −ωj − ω(N−1)j = −2 cos

(
2πj

N

)
, (4.20)

for j = 0, . . . , N − 1 and where ω = e2πi/N is the N th root of unity. There is one

eigenvalue of −2 and one of 2 (if N is even), and the rest all come in pairs; hence

M must be odd for the eigenvector pairs to be included in Φ.

From the discussion above, if M is odd, all the Pλ in ρ are projectors which

commute with S, hence ρ commutes with S. A matrix is circulant if and only if it

commutes with S [144], meaning that ρ is also circulant. Furthermore, a matrix of

the form ρ = ΦΦ† is always symmetric, and a circulant matrix is Toeplitz, therefore

the 1-RDM is a symmetric Toeplitz matrix.

In fact, since T is circulant, we can go a step further and give an explicit formula

for the 1-RDM. Eigenvectors of circulant matrices are given by

Vj =
1√
N

(
1 ωj ω2j . . . ω(N−1)j

)T
(4.21)
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For j = 0 this is the (normalised) all-one vector. For j > 0, since λj = λN−j, the

eigenspace associated to λj is spanned by {Vj, VN−j}. Therefore it is possible to

construct two eigenvectors from this that are real

Vj + VN−j
2

=
1√
N

(
1 cos(Ωj) cos(2Ωj) . . . cos((N − 1)Ωj)

)T
, (4.22)

Vj − VN−j
2i

=
1√
N

(
0 sin(Ωj) sin(2Ωj) . . . sin((N − 1)Ωj)

)T
, (4.23)

where Ω = 2π/N . If we use these eigenvectors to construct Φ, then row a of Φ is

equal to

1√
N

(
1 cos(aΩ) sin(aΩ) cos(2aΩ) . . . cos(bM/2c aΩ) sin(bM/2c aΩ)

)
.

(4.24)

The (a, b)th element of the 1-RDM ρ is obtained by multiplying row a by column b

which gives

ρab = (ΦΦ†)ab =
1

N

1 +

bM/2c∑
k=1

cos(kaΩ) cos(kbΩ) + sin(kaΩ) sin(kbΩ)


=

1

N

1 +

bM/2c∑
k=1

cos(|a− b|kΩ)

 . (4.25)

Some intuition for why the elements of the 1-RDM only depend on the distance

between sites a and b is that the Hubbard model is translationally invariant. Ma-

trices with this property are symmetric Toeplitz.

Step 2

To calculate the projector P onto the embedded basis, we take the submatrix ρE

of ρ that corresponds to the environment and calculate its eigenvalues/vectors. We

then place the Nfrag eigenvectors with eigenvalues between 0 and 1 into the projector

according to equation (4.9). The rest of the eigenvectors have eigenvalues of either

0 or 1; these are discarded.

Since ρE is a symmetric Toeplitz matrix, dNenv/2e of its eigenvectors will be

symmetric and bNenv/2c skew-symmetric2. This equal split of eigenvectors applies

to the eigenspaces corresponding to multiple eigenvalues as well [145].

Therefore the eigenspaces associated to the eigenvalues of 0 and 1 will split as

evenly as possible into symmetric and skew-symmetric, thereby leaving an equal

2Let J be the N × N matrix Jij = δi,N−1−j . A vector v is symmetric if Jv = v and skew-
symmetric if Jv = −v.
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split of eigenvectors for the eigenvalues between 0 and 1. This means that when the

eigenvectors corresponding to the eigenvalues between 0 and 1 are placed in P , half

of them will be symmetric and half skew-symmetric.

Step 3

We now project T using P to get Temb.

Temb = P †TP

=

(
I 0

0 V T

)(
AF B

BT AE

)(
I 0

0 V

)

=

(
AF BV

(BV )T V TAEV

)
, (4.26)

where the definitions of the submatrices are as follows. I is the identity matrix of

size Nfrag and 0 is the matrix of zeros. V is the matrix of eigenvectors of ρE that

were placed in P , it is of size Nenv × Nfrag and since ρE is symmetric, V is real.

AF/E are the matrices with −1s on the off-diagonal and are of size Nfrag×Nfrag and

Nenv×Nenv respectively. B has a −1 in the bottom-left corner of the matrix and in

the top-right.

It can be seen from equation (4.26) that AF defines the fragment-only interac-

tions, BV the fragment-bath interactions and V TAEV the bath-only interactions.

The hopping terms on the fragment have been preserved and are nearest-neighbour.

Due to the structure of B, BV has zeros everywhere except the top and bottom

row. This corresponds to the fragment sites on the ends of the fragment interacting

with every bath site.

Finally, we turn to the bath-only interactions. Since AE preserves the space of

symmetric and skew-symmetric vectors, the columns of AEV are all symmetric or

skew-symmetric. When the matrix multiplication V TAEV is done, the symmetric

rows of V T will cancel with the skew-symmetric columns of AEV (and vice-versa),

leading to zeroes in the bath part of Temb. This corresponds to the bath sites

splitting into two equal-sized groups where inside each group all of the sites share

hopping terms. If we did not know that V contained symmetric and skew-symmetric

eigenvectors then we could not show that the bath-only hopping terms have this

structure, and V TAEV could be completely dense.

We have observed in practice that when the eigenvectors in V are ordered ac-

cording to their eigenvalues, they alternate symmetric and skew-symmetric. This

is where the split into even and odd bath sites comes in. This property is called
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interleaving and in general is hard to prove, it is sufficient to just show the split into

equal-sized groups for our purpose.

This analysis can be applied to any mean-field Hamiltonian that has a matrix of

coefficients that is circulant (or almost-circulant; see the following section). One of

the differences will be that the multiplicities of the eigenvalues of the Hamiltonian

could lead to different restrictions on Nocc. Another will be the types of fragment-

bath interactions that occur as this will depend on the form of B. For example,

for the Hubbard model with next-nearest-neighbour interactions, the two fragment

sites closest to each end will interact with all of the bath sites.

Anti-periodic boundary conditions

Step 1

Let T ′ be the matrix associated to the anti-periodic Hubbard model and S ′ a

modified cyclic permutation matrix as follows,

T ′ =



0 −1 1

−1
. . . . . . 0
. . . . . . . . .

0
. . . . . . −1

1 −1 0


, S ′ =


0 −1

1
. . .
. . . . . .

1 0

 . (4.27)

T ′ is almost circulant but a minus sign is introduced when an element wraps back to

the first column of the matrix. We will refer to this as an almost-circulant matrix.

T ′ and S ′ commute.

Following a similar argument to before, S ′ will commute with ρ if the Pλ project

onto whole eigenspaces. We will show that the eigenvalues of T ′ are given by

λ′j = −2 cos

(
(2j + 1)π

N

)
for j = 0, . . . , N − 1 (4.28)

which come in pairs (and if N is odd, an additional eigenvalue of 2), implying that

M must be even for ρ to commute with S ′.

Consider the principal submatrix T ′N−1 of size (N − 1) × (N − 1) of T ′. This

matrix is tridiagonal and Toeplitz, therefore its eigenvalues3 are distinct and given

by 2 cos(πj/N) for j = 1, . . . , N − 1. Let v be the eigenvector associated to λ i.e.

TN−1v = λv, and let vext be the vector obtained by lengthening v by one and setting

3The eigenvalues of a tridiagonal Toeplitz matrix with a on the diagonal and b and c on the
off-diagonals is well-known to be a+ 2

√
bc cos( kπ

N+1 ) for k = 1, . . . , N .
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the last component to zero. Let x be a column vector of length N − 1 with 1 as its

first element, −1 as its last, and zeros everywhere else. Then we have

T ′vext =

[
T ′N−1 x

xT 0

][
v

0

]
=

[
T ′N−1v

v0 − vN−2

]
=

[
λv

0

]
= λvext (4.29)

if v0 = vN−2, i.e. if v is symmetric. According to Proposition 2 of [146], this means

that eigenvalues of T ′N−1 associated to symmetric eigenvectors are also eigenvalues

of T ′ with multiplicity 2. The eigenvalues of T ′N−1 associated to skew-symmetric

eigenvectors are not eigenvalues of T ′.

Furthermore, since T ′N−1 is tridiagonal, symmetric and Toeplitz, it is possible

to show that when its eigenvalues are arranged in descending order, they alternate

symmetric and skew-symmetric. When N − 1 is odd, the first eigenvector will be

symmetric (since there are more symmetric than skew-symmetric vectors). When

N − 1 is even, since the off-diagonal is negative, the largest eigenvalue will be

skew-symmetric [147]. Therefore, the symmetric eigenvectors of T ′N−1 correspond to

the eigenvalues given in equation (4.28), which are also the eigenvalues of T ′ with

multiplicity 2.

Returning to the main part of the derivation, we must now determine what the

structure of ρ is using the fact that it commutes with S ′, i.e. that ρ = S ′TρS ′. We

can match the right and left hand sides of this equation to get
ρ00 · · · ρ0,N−2 ρ0,N−1

...
. . .

...
...

ρN−2,0 · · · ρN−2,N−2 ρN−2,N−1

ρN−1,0 · · · ρN−1,N−2 ρN−1,N−1

 =


ρ11 · · · ρ1,N−1 −ρ10

...
. . .

...
...

ρN−1,1 · · · ρN−1,N−1 −ρN−1,0

−ρ01 · · · −ρ0,N−1 ρ00

 .

(4.30)

This implies that ρ is almost-circulant, and hence symmetric Toeplitz.

Step 2 and 3

The rest of the argument is now identical to the periodic case except that the

matrix B has 1 in the top-right, not −1.

4.3.2 2D Hubbard model

Let Tn be the coefficient matrix of hopping terms for the n site 1D Hubbard model

with (anti-)periodic boundary conditions. The hopping matrix T for the 2D n×m
model is T = Tn ⊗ Im + In ⊗ Tm, where In is the identity matrix of size n. If the
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eigenvalues of Tn are given by λni and the eigenvectors by vni, then the eigenvalues

of T are λij = λni + λmj and the eigenvectors vij = vni ⊗ vmj.
Taking periodic boundary conditions as an example, it is clear to see that T

commutes with Sn ⊗ Sm where Sn is the cyclic permutation matrix of size n × n.

Similar to the 1D case, we find that if whole eigenspaces are included in Φ then the

1-RDM also commutes with Sn ⊗ Sm and it turns out to be block circulant with

circulant blocks (with the block sizes depending on n and m).

However, this structure does not remain in the submatrix ρE, making an analysis

like the previous one very difficult. We observed that when the fragment shape is

1D, the bath sites split into odd and even groups. When the shape of the fragment

is 2D, the bath sites split into four roughly equal groups and the grouping of terms

changes with different input parameters to the model. These splits only happen

when full eigenspaces are included in Φ. Since the multiplicities of the eigenvalues

λij depend on n and m, so do the allowed values of Nocc.
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Chapter 5

The variational quantum

eigensolver as an embedded

system solver

In this chapter we turn our attention to the quantum aspects of the combined DMET

and VQE algorithm. In the previous chapter we introduced the single-shot embed-

ding algorithm, the simplest variant of DMET, which we will implement in this

chapter. The VQE algorithm is used as a sub-routine to solve the embedded Hamil-

tonian Hemb within the single-shot embedding loop; in this chapter we investigate

the details of the VQE algorithm.

While DMET reduces the number of qubits required to calculate ground state

properties of a Hamiltonian, it leads to an embedded Hamiltonian with a more

complicated structure than the original Hubbard Hamiltonian. Due to this, more

complex ansatz circuits are required to find the ground state, and higher numbers

of circuit preparations are needed to measure expectation values of the embedded

Hamiltonian. To properly determine the quantum circuit complexity, we use the

form of the embedded Hamiltonian derived in Section 4.3 to design optimised swap

networks for the HV ansatz and construct efficient measurement schemes in Sec-

tion 5.1. We follow this theoretical work with extensive numerical simulations in

Section 5.2 with two levels of realism: assuming we can directly extract the ex-

act expectation values, and simulating realistic measurements to represent an ideal

quantum computer.

This chapter is based on Sections III-V and Appendices D and E from “Solv-

ing the Hubbard model using density matrix embedding theory and the variational

quantum eigensolver” [59], with an extra discussion about the choice of SPSA meta-
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Hubbard Fragment Ansatz depth Measurements

1D 1D Nfrag + 3 Nfrag + 2

2D 1D 2Nfrag 2Nfrag

2D 2D
Nfrag +NE +Nx−2

Nfrag +NE+(Ny − 4)
⌈
Nx−4

2

⌉
Table 5.1: Number of layers of two-qubit gates required to implement one layer
of the ansatz, and circuit preparations needed to measure all of the terms in the
embedded Hamiltonian. Nfrag is the DMET fragment size and corresponds to an
embedded system with 4Nfrag qubits. For a 2D fragment we take Nfrag = Nx × Ny

where we assume Nx ≤ Ny. NE = 2(Nx +Ny−2) is the number of sites on the edge
of the 2D fragment.

parameters included in Section 5.2.2.

5.1 VQE implementation details

We will once again make use of the HV ansatz (see Section 2.3.1), which was shown

to be effective for solving the Hubbard model in Chapter 3. The initial state for this

ansatz will be the ground state of the non-interacting (U = 0) part of the embedded

Hamiltonian Hemb, which can be efficiently prepared using Givens rotations [100].

The ansatz itself will consist of parametrised evolutions according to the hopping,

onsite and number terms in Hemb.

As was done in Section 3.1.1 for the Hubbard model, in Section 5.1.1 we will

perform an analysis of the two-qubit gate depth required to implement the HV

ansatz circuit using swap networks on a fully-connected quantum computer. In

Section 5.1.2 we present procedures for reducing the number of circuit preparations

needed to obtain a measurement of 〈Hemb〉; this is analogous to Section 3.1.2 for

the Hubbard model. The results of these analyses are summarised in Table 5.1 for

combinations of the Hubbard model dimension and rectangular shaped fragments.

5.1.1 Efficient ansatz circuit implementation

In the HV ansatz, we alternate evolutions according to the onsite, hopping and

number terms in Hemb. Similarly to Section 3.1.1, the onsite terms can all be

implemented in one layer of two-qubit gates as they act on disjoint pairs of qubits.
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5.1. VQE implementation details

The number operator terms are one-qubit gates. To determine the complexity of

implementing the hopping gates, we will make use of fermionic swap networks [66].

We can restrict our analysis of implementing the hopping terms to one spin-type

since the two spins are identical, therefore we consider swap networks on 2Nfrag

qubits (Nfrag fragment and Nfrag bath for one spin-type). From the generic swap

network described in [66] and Section 2.3.2, we have an upper bound of 2Nfrag layers

of two-qubit gates since this accounts for all possible hopping interactions. If we

use the structure of the embedded Hamiltonian it is possible to reduce the number

of layers required.

Swap network for 1D model

Here we present a scheme for the 1D model where all the hopping interactions are

done in Nfrag + 2 layers, giving almost a factor of 2 improvement compared with the

upper bound for Nfrag large.

Recall from Section 4.3 that when Hhub is one-dimensional, Hemb has the follow-

ing hopping terms:

• Fragment-only: Nearest-neighbour, like the Hubbard model.

• Fragment-bath: The fragment sites on the edge (i.e. the first and last

fragment site) interact with all of the bath sites.

• Bath-only: The bath sites split into two groups of odd- and even-numbered

sites, where all the sites within a group interact with each other.

Note that the lower bound on the layers of two-qubit gates required to implement

all of these hopping gates is Nfrag + 1, since each fragment site on the edge needs to

interact with its one neighbouring fragment site and all Nfrag bath sites.

Let Fi denote fragment site i and Bi bath site i. We choose a JW ordering for

one spin-type such that the fragment-edge sites F0 and FNfrag−1 start close to the

bath, and the even/odd bath sites are placed next to each other. Let the ordering

be

FNfrag−3 FNfrag−4 · · ·F2 F1 F0 FNfrag−2 FNfrag−1 B1B3 · · ·BNo B0B2 · · ·BNe , (5.1)

where if Nfrag is even, No = Nfrag − 1 and Ne = Nfrag − 2 and vice-versa if Nfrag is

odd.

At the first layer of the swap network the hopping term between FNfrag−1 and

FNfrag−2 is carried out. For the following Nfrag layers, combined FSWAP and hopping
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1: F3 F2 F1 F0 F4 F5 B1 B3 B5 B0 B2 B4

2: F3 F2 F1 F0 F4 F5 B1 B3 B5 B2 B0 B4

3: F3 F2 F1 F4 F0 B1 F5 B3 B5 B2 B4 B0

4: F2 F3 F4 F1 B1 F0 B3 F5 B5 B2 B4 B0

5: F2 F3 F4 F1 B1 B3 F0 B5 F5 B2 B4 B0

6: F2 F3 F4 F1 B1 B3 B5 F0 B2 F5 B4 B0

7: F2 F3 F4 F1 B3 B1 B5 B2 F0 B4 F5 B0

8: F2 F3 F4 F1 B3 B5 B1 B2 B4 F0 B0 F5

Figure 5.1: Demonstration of the swap network for the 1D model using Nfrag = 6.
The blue lines are hopping gates, the orange are fermionic swap gates and the purple
are combined FSWAP and hopping gates between two neighbouring qubits. The
dashed lines are added to aid the eye and unused qubits are greyed out.

gates are done between FNfrag−1 and the bath sites to its right. This implements all

of the hopping terms for the fragment-edge site FNfrag−1. Simultaneously, a similar

procedure can be carried out for the other edge site F0. At the first layer the hopping

term between the pair (F0, F1) is implemented, at the second layer an FSWAP

is done between F0 and FNfrag−2 to place F0 next to the bath sites, and for the

following Nfrag layers F0 interacts with all the bath sites through combined FSWAP

and hopping gates. Therefore, Nfrag + 2 layers of two-qubit gates are required to

implement all of the hopping gates associated to the fragment-edge sites.

The remaining fragment- and bath-only hopping terms can be fitted within these

Nfrag +2 layers. All of the fragment hopping terms can be implemented in two layers

(see Section 3.1.1) except for (FNfrag−2, FNfrag−3), which need to be placed adjacent

to each other first. After the second layer of the swap network, there are Nfrag − 4

qubits between them, requiring d(Nfrag − 4)/2e layers of FSWAPs to bring the two

sites next to each other in the JW ordering.

The hopping terms between the even bath sites can be implemented in dNfrag/2e
layers using the generic swap network from [66]. FNfrag−1 takes bNfrag/2c+ 1 layers

to interact with its neighbouring fragment site and the odd bath sites, so the entire

even bath swap network can fit in these layers. Similarly, the odd bath swap network

requires bNfrag/2c layers of two-qubit gates and these can all fit in the layers after

they have interacted with F0.

Figure 5.1 demonstrates this full procedure with fragment size Nfrag = 6. Note

that this swap network leaves the qubits in a less structured order. To get the same
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1: F0 F1 F2 F3 B1 B3 B0 B2

2: F0 F1 F2 B1 F3 B3 B0 B2

3: F0 F1 B1 F2 B3 F3 B0 B2

4: F0 B1 F1 B3 F2 B0 F3 B2

5: B1 F0 B3 F1 B0 F2 B2 F3

6: B1 B3 F0 B0 F1 B2 F2 F3

7: B1 B3 B0 F0 B2 F1 F2 F3

Figure 5.2: Demonstration of the swap network for the 2D model using a 1D frag-
ment of size four. The blue lines are hopping gates and the purple are combined
FSWAP and hopping gates between two neighbouring qubits. The dashed lines
enclose all the fragment-bath interactions.

two-qubit gate depth of Nfrag + 2, we simply reverse the swap network at the next

ansatz layer.

Finally, incorporating the onsite and number gates brings the total two-qubit

gate depth for one complete layer of the ansatz to Nfrag + 3. All the onsite gates

need an additional layer to complete. The number operator terms are one-qubit

gates which can act on idle qubits in the swap network.

Swap network for 2D model

When Hhub is 2D but the shape of the fragment is 1D, recall from Section 4.3 that the

structure of Hemb is similar to that of the 1D model except now all of the fragment

sites interact with all of the bath sites. Consider two sets A and B of NA and NB

qubits. If every qubit in set A has a hopping term with every qubit in B and the JW

ordering has all the qubits in A followed by B, then NA +NB − 1 layers of FSWAP

gates are required to do all the interactions by swapping the qubits in A through

B. As a result, 2Nfrag − 1 layers of two-qubit gates are required to implement all

the necessary hopping terms (mapping A to the fragment and B to the bath).

If the JW ordering has all fragment sites followed by the odd bath sites followed

by all the even bath sites, all the fragment-bath interactions for one spin-type can be

done in 2Nfrag − 1 layers. The fragment- and bath-only hopping terms can then fit

within these layers. This is demonstrated in Figure 5.2 for a fragment size Nfrag = 4.

The more complicated (and interesting) case is when the shape of the fragment

is also 2D. We start with a reminder of the hopping terms:

81



Chapter 5. The variational quantum eigensolver as an embedded system solver

• Fragment-only: Nearest-neighbour horizontal and vertical, like the Hubbard

model.

• Fragment-bath: The fragment sites on the edge interact with all of the bath

sites.

• Bath-only: The bath sites split into four groups of approximate size Nfrag/4,

where all the sites within a group interact with each other.

Let us take the fragment size to be Nfrag = Nx ×Ny and assume that Nx ≤ Ny.

The fragment sites will be ordered with the snake ordering [45, 100] (see Section 3.1)

and will be followed by the bath sites placed in their four groups. We could use a

different ordering, but this has the advantage of simplicity and enables us to make

use of the efficient swap network for the Hubbard model described in Section 3.1.1.

The general structure of the swap network is as follows. The bath sites will be

swapped through the fragment sites (where the bath sites come across a fragment-

edge site a combined FSWAP and hopping gate will be done, otherwise just an

FSWAP), and simultaneously fragment-edge sites will be moved along the snake

towards the incoming bath sites. During this, the nearest-neighbour hopping terms

will be implemented using the efficient swap network designed for the Hubbard

model. The four sets of bath site hopping terms will be implemented using the

generic swap network [66].

To determine the complexity of the circuit, we must consider the different com-

ponents that make up the network separately.

• Fragment-only: The fragment hopping terms (nearest-neighbour horizontal

and vertical) can be completed in 2Nx or 2Nx + 1 layers of two-qubit gates for

Nx even or odd respectively; see Section 3.1.1.

• Fragment-bath: If all the NE fragment-edge sites where

NE = 2(Nx +Ny − 2) (5.2)

are placed next to the Nfrag bath sites, then Nfrag +NE− 1 layers of two-qubit

gates are required to carry out all the fragment-bath interactions (using the

procedure described for the 2D model with a 1D fragment).

• Bath-only: If the four groups of bath sites are of size Ni ≈ Nfrag/4 for

i = 1, 2, 3, 4 then each of their individual swap networks can complete in Ni

layers [66].
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Layer 1: Layer 2:

(a) First two layers of the swap network for Nx = 4.

Layer l: Layer l + 1:

(b) Selected layers of the swap network for Nx = 6.

Figure 5.3: Sections of the swap network for a 2D fragment. The dark blue circles
represent fragment-edge sites, the light blue circles represent middle fragment sites
and the orange circles are bath sites. The dotted line shows the JW snake ordering;
quantum gates should only happen along this line. When acting between a bath
site and a fragment-edge site, the arrows represent combined FSWAP and hopping
gates; otherwise they represent FSWAP gates.

We now combine these three different swap networks together in as few layers

as possible. Since the fragment-bath interactions will require the most layers, let

us first consider how many will be required when the fragment starts in the snake

ordering. For Nx ≤ 4, it is possible to use FSWAPs to move the middle fragment

sites away in time so that they never come into contact with the bath sites, as can

be seen in Figure 5.3a. In this case all the fragment-bath interactions can be done

in the minimum Nfrag +NE − 1 layers of two-qubit gates.

For Nx > 4, the pattern that the fragment sites settle into is: edge, middle, edge,

Nx − 3 middle sites, repeated. When a bath site comes across this set of Nx − 3

middle sites, it is not possible to swap them away in time – see Figure 5.3b. Every

time this occurs an extra d(Nx − 4)/2e layers of FSWAPs is done to bring the bath

site to the next fragment-edge site. This happens Ny − 4 times during the entire

swap network since the row of all fragment-edge sites at the beginning and end of

the fragment creates a buffer of edge sites. This leads to (Ny−4) d(Nx − 4)/2e extra

layers of two-qubit gates, as compared to the Nx ≤ 4 case.

The next thing to check is whether the bath- and fragment-only interactions can

fit within these layers, or if more will be required. Since Ni ≈ Nfrag/4, three of the
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bath swap networks can complete before they interact with the fragment sites, and

the final one after its associated bath sites have passed through the fragment.

This leaves the fragment hopping terms which require 2Nx layers to complete

(taking Nx to be even for this argument). In this time the bath sites can interact

with all the sites in the first two rows of the fragment, which means that all the

horizontal and vertical hopping terms for the third row of the fragment onwards

can be implemented before they come into contact with bath sites. However, the

vertical hopping terms between the first and second rows of the fragment will need

to be carried out after they have swapped through the bath sites, requiring an extra

Nx−2 middle fragment sites to pass through all of the bath sites. This adds Nx−2

layers to the swap network1, making the final count of layers

L = Nfrag +NE +Nx − 3 (5.3)

for Nx ≤ 4, and

L+ (Ny − 4)

⌈
Nx − 4

2

⌉
(5.4)

for Nx > 4.

At the next ansatz depth the swap network described here is reversed, allowing

us to get the same circuit complexity at every depth.

5.1.2 Measurement scheme

As discussed in Section 2.4, all of the onsite and number terms can be measured in

one circuit preparation by measuring every qubit in the computational basis. All the

hopping terms on n qubits can be measured in n circuit preparations by diagonalising

using the operator M (see equation (2.23)) and measuring non-crossing hopping

terms simultaneously. The number of circuit preparations required to measure all

of the terms of Hemb is given in Table 5.1.

Measuring the 1D model

By taking into account the structure of Hemb we can reduce the number of circuit

preparations required. Restricting to one spin-type, it is possible to measure the

hopping terms of Hemb for the 1D Hubbard model in Nfrag + 1 circuit preparations

1Despite the fragment swap network for Nx odd requiring an extra layer, this does not translate
into an extra layer for the 2D embedded swap network. This is because the JW snake ordering
can be chosen such that the vertical hopping term that requires this extra layer is between the
first two rows.
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F3 F2 F1 F0 F4 F5 B1 B3 B5 B0 B2 B4

1: X X X X X X X X

2: X X X X X X X X

3: X X X X X X X X

4: X X X X X X

5: X X X X X X

6: X X X X

7: X X X X X X

Figure 5.4: Demonstration of the measurement pattern for the 1D model using a
fragment of size six. The numbered rows are different preparations of the circuit. On
each row, Xs of the same colour represent a hopping term that has been measured,
with the different colours showing which terms can be measured simultaneously.
Note that M is applied on Xs of the same colour and then computational basis
measurements are done on all the qubits.

(rather than 2Nfrag using the rainbow scheme from Section 2.4). This is the minimum

bound possible since the two fragment-edge sites each interact with Nfrag + 1 other

sites.

Assuming the ordering in equation (5.1), in the first circuit preparation we mea-

sure the terms (F0, BNe) and (FNfrag−1, BNe−2). At subsequent preparations, we

measure the fragment-bath terms by working our way down the bath sites, i.e. at

the second preparation we measure (F0, BNe−2) and (FNfrag−1, BNe−4). It is clear to

see that in this way all of the hopping terms on the fragment-edge sites can be mea-

sured in Nfrag + 1 runs of the circuit. The measurement of the remaining fragment-

and bath-only terms can fit within these runs – considering the measurement of

the odd bath hopping terms using the general rainbow procedure described in Sec-

tion 2.4, this takes bNfrag/2c preparations and can be completed before the term

(FNfrag−1, BNo) is measured. This is best demonstrated in Figure 5.4 with fragment

size six as an example.

Measuring the 2D model

Before we discuss how to measure all of the hopping terms for the 2D model, we

turn to the situation where there are two sets A and B of NA ≤ NB qubits where

every qubit in set A shares a hopping term with every qubit in set B. Assuming

the JW ordering places A before B, then all the hopping terms can be measured in
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1:

2:

3:

4:

5:

Figure 5.5: Measurement of all hopping terms between qubits in set A (blue) and
qubits in set B (orange) in NA +NB − 1 circuit preparations.

NA+NB−1 circuit preparations, saving one layer compared to the rainbow scheme.

The measurement of the fragment-bath hopping terms is covered by this scenario.

At the first circuit preparation we measure all of the qubits in A with the furthest

NA qubits in B. At subsequent preparations we make our way down through the

qubits in B until the first qubit in A has been measured with the first qubit in B.

This requires NB circuit preparations. For the remaining NA − 1 preparations, we

switch and measure the last qubits in B with the furthest possible qubits in A (that

have not already been measured). This is shown in Figure 5.5 for NA = NB = 3.

Turning back to Hemb, we assume that the fragment- and bath-only hopping

terms can be measured within the runs required for the fragment-bath terms. Using

the procedure described above, the fragment-bath terms can be measured in Nfrag +

NE − 1 preparations where NE is the number of sites on the edge of the fragment.

It is possible to reduce the number of circuit preparations if we allow for swapping

the qubit ordering around. Let us focus on the 2D model with a 1D fragment. Using

the procedure described above, we require 2Nfrag−1 circuit preparations to measure

all of the hopping terms. By changing the JW ordering of the bath sites, it is possible

to measure all of the terms in d3Nfrag/2e preparations.

We initially keep the JW ordering fixed (all fragment sites, followed by odd

then even bath sites). All of the fragment- and bath-only hopping terms can be

measured in dNfrag/2e preparations. The fragment-only terms can be measured in

two preparations and the odd and even bath-only terms can be measured in bNfrag/2c
and dNfrag/2e preparations respectively; these can all be done in parallel. At the

next circuit preparation, we measure Nfrag fragment-bath hopping terms with one

rainbow between the first fragment site and the last bath site (in the JW ordering).

At the next preparation, we change the JW ordering of the bath sites so that they
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all occupy a different position, and then do the same large rainbow between the first

and last qubits. This continues for another Nfrag − 2 preparations. In this way, all

of the fragment-bath interactions are measured in Nfrag preparations, leading to a

total of d3Nfrag/2e for all the hopping terms in Hemb.

This change in JW ordering can be achieved by two different methods. We

could directly change the JW ordering after the ansatz circuit by using FSWAP

gates. Depending on what the order is changed to, this takes between two and Nfrag

layers of two-qubit gates. This extra requirement is not ideal for NISQ devices;

depending on the device, it may be preferable to do more runs of the quantum

computer instead. The other option is to change the JW ordering before the circuit

is implemented on a quantum computer [94]. There are no extra requirements on

the circuit depth and we also require less runs of the quantum computer. However,

numerical validation would be required to check that the ansatz performs in the

same way; much like the difference between the HV and EHV ansatz observed in

Section 3.2.1.

5.2 Numerical results

In this section we present results from the numerical simulations that were done

combining DMET with VQE. We ran numerical simulations up to a fragment size

of four (16 qubits) for a range of parameters of the 1D and 2D Hubbard models using

exact values for the expectation 〈ψ(θ)|Hemb|ψ(θ)〉, this is discussed in Section 5.2.1.

We ran simulations up to a fragment size of two using measurements to estimate

the expectation, this takes statistical noise into account; this will be covered in

Section 5.2.2. These are the first two levels of realism considered in Section 3.2.

We will describe the details of the optimiser used for the VQE algorithm in their

respective sections, but will mention the method used to find the roots of the DMET

function in equation (4.13) here. We use the secant method which can be thought

of as an approximation to Newton’s method using finite-differences. The recurrence

relation used in the secant method is

xn =
xn−2f(xn−1)− xn−1f(xn−2)

f(xn−1)− f(xn−2)
, (5.5)

where f(x) is the DMET function. Two initial values x0 and x1 are needed, and

termination criteria such as the maximum number of iterations or the accuracy

required (e.g. distance f(xn) is from 0) need to be specified. We found that the
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Term type HV-min HV-max

Onsite 1 Nfrag

Number 1 2Nfrag

Fragment-only: Nfrag − 1

Hopping Nfrag +NE − 1 Fragment-bath: NENfrag

Bath-only: I(dNfrag/2e) + I(bNfrag/2c)
Total Nfrag +NE + 1 4Nfrag +NENfrag + I(dNfrag/2e) +

I(bNfrag/2c)− 1

Table 5.2: Parameter counts for one layer of the HV-min and -max ansätze for
1D fragment shapes. When solving the 1D Hubbard model, NE = 2 and for 2D,
NE = Nfrag. I(n) = n(n − 1)/2 is the maximum number of hopping interactions
between n qubits. Note that the number of parameters for HV-min hopping is the
same as the number of circuit preparations required to measure all of the hopping
terms – see Section 5.1.2.

secant method often converged within a few iterations and was an effective root-

finding technique for our purpose.

The code was written in C++ and QuEST [56] was used to simulate the quantum

circuits. Simulations for 16 qubits were run on the Google Cloud platform using an

Nvidia Tesla P4 GPU. Smaller sizes were run on a laptop with an Intel i7-8th gen

CPU.

5.2.1 Exact simulations

We ran two variants of the HV ansatz – one with a low number of parameters per

layer (equal to the minimal number of sets of commuting terms in Hemb), and one

with a high number of parameters per layer (equal to the number of terms in Hemb,

but affixing the same parameters to identical spin-up and -down terms). We call

these ansätze HV-min and HV-max. The number of parameters per ansatz layer

for HV-min is O(Nfrag) and for HV-max is O(N2
frag). Table 5.1 gives a breakdown

of the parameter counts for a 1D shaped fragment.

Simulations were run up to an ansatz depth of 10 and 5 for HV-min and -max

respectively. At each layer of the ansatz, we ran the onsite gates followed by the

hopping gates and then number gates. Gates were implemented in the order that

they would be in the swap network, including the reversal of the circuit at every

other layer to fairly represent the behaviour of the actual quantum circuit that would

be implemented on hardware.
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Nfrag (Min params) Nfrag (Max params)

U 〈n〉 1 (3) 2 (5) 3 (6) 4 (7) 1 (4) 2 (11) 3 (18) 4 (25)

1
0.5 1 1 1 1 1 2 1 1
1 1 2 1 1 1 2 1 1

2
0.5 1 2 4 2 1 2 2 2
1 1 3 5 6 1 2 2 3

4
0.5 1 4 5 5 1 2 3 3
1 2 4 8 >10 2 3 4 >5

8
0.5 2 5 6 8 2 2 3 4
1 2 7 >10 >10 2 3 5 >5

Table 5.3: Depth of the ansatz required to achieve 1% relative error against the
ground energy per site, calculated with exact diagonalisation as the DMET solver
for the 1D model using the HV ansatz with minimum and maximum number of
parameters. The number of parameters is shown in brackets.

Nfrag (Min params) Nfrag (Max params)

U 〈n〉 1 (3) 2 (5) 3 (7) 2× 2
(8)

1 (4) 2 (11) 3 (20) 2× 2
(32)

1
0.5 1 1 1 1 1 1 1 1
1 1 2 1 2 1 1 1 1

2
0.5 1 2 1 1 1 2 2 2
1 1 2 1 3 1 2 1 2

4
0.5 1 2 1 2 1 2 2 2
1 2 3 4 5 2 2 2 4

8
0.5 2 3 1 4 2 2 2 3
1 2 5 7 9 2 3 5 >5

Table 5.4: Depth of the ansatz required to achieve 1% relative error with the ground
energy for the 2D model.

The L-BFGS optimisation algorithm provided by the nonlinear optimisation

library NLopt [126] was used for the VQE classical optimiser as it was found to

be effective in Chapter 3. For finding the root of the DMET function, we set the

secant method to terminate when |f(x)| < 0.1.

The infinite 1D and 2D Hubbard models were approximated with a 240 site and

20 × 24 site finite size model with anti-periodic boundary conditions. Simulations

were run with fragment sizes of 1, 2, 3 and 4. In the 2D case with fragment size
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Figure 5.6: Comparison of the HV-min and -max ansätze for the 2D model with
the largest fragment size of 2 × 2 for quarter- and half-filling. The relative error
is against the ground energy per site calculated with exact diagonalisation as the
DMET solver.

Nfrag = 4 we took the fragment shape to be 2 × 2 and did not consider 1 × 4.

Recall that a fragment size of Nfrag requires 4Nfrag qubits, so we simulated systems

containing up to 16 qubits.

For each fragment size we fixed t = 1 and initially ran experiments for U = 1, 2,

4 and 8 with quarter- and half-filling, which correspond to a fermion site occupancy

of 〈n〉 = 0.5 and 1. For each experiment using VQE as the DMET solver, we ran a

corresponding one using exact diagonalisation to compare the two solvers.

Tables 5.3 and 5.4 show the ansatz depths required to reach a 1% relative er-

ror with the energy per site when using exact diagonalisation as the solver. The

calculation of the energy per site at the end of the DMET algorithm is stated in

Section 4.2.1. The HV-max ansatz requires less depth to reach the same error than

HV-min. However, this comes at a cost with the classical optimiser needing extra

circuit evaluations. For Nfrag = 2, the optimiser took 5-10× more evaluations for

the same ansatz depth. For the larger fragment sizes this went up to 10-20× with

some extreme cases requiring up to 100× more circuit runs.

For Nfrag = 1, due to its small size, the behaviour of the ansatz as the depth

increases was different from the larger fragment sizes. At depth one, the error was

typically on the order of 10−1-10−3 (depending on the value of U and 〈n〉). This error
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dropped to 10−6-10−8 for depth two and plateaued for the other depths, meaning

there is no benefit to going beyond depth two for the HV ansatz with Nfrag = 1.

This is not the case for the other fragment sizes as increasing the depth almost

always resulted in a lower error – an example of this can be seen in Figure 5.6 for a

fragment size of 2× 2.

We found that the depth required increased as U increased, which is to be ex-

pected as the starting state for the HV ansatz is the ground state for the U = 0

embedded Hamiltonian. This can also be seen in Figure 5.6 for solving the 2D

model with a 2 × 2 fragment. The features of these two graphs – that depth re-

quired increases as U increases, that the depth required is higher for half-filling than

quarter-filling and that HV-max requires roughly 2-3 fewer layers to get to the same

accuracy as HV-min – are representative of all the fragment sizes larger than one.

The VQE algorithm is a nested optimisation loop providing imperfect solutions to

Hemb within the larger DMET optimisation loop. The fact that the error in the

energy per site goes down exponentially with the number of ansatz layers is an

encouraging sign that the combination of DMET and VQE is effective.

Producing observables

After running the batch of experiments discussed above, we carried out further

experiments to compute physical properties of the Hubbard model. Figure 5.7 is a

plot of energy per site against site occupancy for the 1D model for U = 1, 4, 8 and

Nfrag =1, 2, 4. The VQE ansatz used was HV-min and the depths chosen for the

graph were those required for each U at half-filling to reach 1% error (see Table 5.3).

The 1D Hubbard model is exactly solvable using the Bethe ansatz [43, 44] and has

been plotted as a reference. The lines reproduce the behaviour seen using DMET

in the original paper from Knizia and Chan [134].

A plot of double occupancy per site against U is shown in Figure 5.8 for the 1D

model for quarter- and half-filling and Nfrag =1, 2, 4. In the case of half-filling, the

double occupancy curve is not reproduced well even when using a fragment size of

four. However, this deficiency is also present when using exact diagonalisation as

the single-shot embedding solver, and is not a consequence of using VQE.

For completeness, we also plot the energy and double occupancy curves for the

2D model in Figure 5.9. These cannot be compared to exact values as these are

not available for the 2D Hubbard model, but may be compared to data from other

numerical methods [46]. The lines for the different fragment sizes are more bunched
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Figure 5.7: Plot of energy per site against site occupancy for the 1D model. The
black line is the exact solution to the 1D Hubbard model calculated using the Bethe
ansatz. The coloured lines are the values found using VQE as the DMET solver
with 20 points taken between 〈n〉 = 0.05 and 1. The ansatz used was HV-min. For
Nfrag = 1, the VQE depth used was 2, and for the other fragment sizes for each line
we used the depths required for the given U at half-filling in Table 5.3 (or depth 10
in the cases where 1% relative error was not reached).
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Figure 5.8: Plot of double occupancy per site against U for the 1D model. The
coloured lines are the values found using VQE as the DMET solver with 16 points
taken between U = 0.5 and 8. The ansatz used was HV-min. For Nfrag = 1, the
VQE depth used was 2, and for the other fragment sizes we used the depths required
for 1% relative error with the double occupancy at U = 8, which was generally the
same as the depths in Table 5.3 except for Nfrag = 4, 〈n〉 = 0.5 where it was depth
10.
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Figure 5.9: Plot of energy per site against site occupancy and double occupancy
per site against U for the 2D Hubbard model. The ansatz used was HV-min. For
Nfrag = 1, the VQE depth used was 2. For the other fragment sizes for each line we
used the depths required for the given U at half-filling in Table 5.4, while plotting
the energy curve. For the double occupancy curve, we used the depths required
for 1% relative error with the double occupancy at U = 8, which was generally the
same as the depths in Table 5.4, with the exceptions being: Nfrag = 2, 〈n〉 = 0.5
(depth 4) and Nfrag = 2, 〈n〉 = 0.5 (depth 6).

than for the 1D Hubbard model, showing less of a difference for running DMET

with small fragment sizes.

5.2.2 Incorporating measurements

We have shown that the VQE algorithm performs well as the solver for DMET when

exact values are taken for the expectation values. Using exact values is a good

test bed for trying out different ansätze and checking if the algorithm can work

in principle, but we also need to consider the more practical aspects of quantum

computers such as measurements and noise. Here we run simulations which include

sampling from the quantum computer. We do not consider any type of noise, hence

our simulations represent an ideal quantum computer.

The repeated measurement of states was simulated by storing the probability

amplitudes of the state vector and then sampling from that discrete distribution;

see Section 6.3. We picked a few representative simulations from the previous sec-

tion to re-run and used the SPSA optimisation algorithm [116, 118] in place of

L-BFGS. SPSA is a form of stochastic gradient descent where a gradient is taken

in one random direction (instead of all directions); it is designed to be robust to
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Figure 5.10: Plot of energy per site for the U = 4 1D Hubbard model solved with
Nfrag = 1 and 2 using exact diagonalisation and VQE (with measurements) as the
solver. The ansatz circuit is HV-min and the VQE depth is 2 for Nfrag = 1 and 4
for Nfrag = 2. Ten points were taken between 〈n〉 = 0.1 and 1. The solid lines show
the mean of ten DMET runs, with the shaded region being the standard deviation.

noise and require fewer function evaluations (see Section 2.5.1 for more details). In

Section 3.2.2 we showed that SPSA was effective when solving the Hubbard model

using VQE.

We picked the U = 4 1D Hubbard model and ran the HV-min ansatz up to a

fragment size of two with a range of fillings. The SPSA meta-parameters [118] were

set to be α = 0.602, γ = 0.101 (the theoretically optimal values [116]); c = 0.2 (from

Section 3.2.2); and a = 2, A = 10 (to allow for fast convergence, and justified later

on in this section). Each term in the expectation 〈Hemb〉 was estimated using 104

samples and the final state at the end of the SPSA algorithm with 105 samples.

The maximum number of SPSA iterations was set to be 2,000 for Nfrag = 1 and

10, 000 for Nfrag = 2. As before we use the secant method to find µ in the DMET

optimisation loop but loosen the termination criteria to stop if |f(x)| < 0.5.

Figure 5.10 is a plot of the energy per site against site occupancy when using

VQE with sampling as the DMET solver. Solving Hemb with fragment size one

using VQE reproduces the exact diagonalisation results with on average 0.5-1.5%

relative error. However the fragment size two VQE curve has a larger relative error

of around 2-5%. The fidelities of the ground states output from SPSA with the

(exact) ground state of Hemb were typically above 0.999 for Nfrag = 1 and around

0.985-0.995 for Nfrag = 2. It is likely that by changing the SPSA meta-parameters
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or by using a different optimisation method, the fidelity for fragment size two could

be increased.

In addition to the problem of whether the optimisation method chosen for VQE

will converge, we must also consider whether the root-finding technique used to

find µ will be able to handle the extra statistical noise. Despite the secant method

having to deal with a noisier function, we found that in practice it still performed

well most of the time and usually converged in less than 10 iterations. As a test for

this we bypassed the secant method by solving Hemb with the optimal value of µ

using SPSA and found that the plot of the energy per site was similar to Figure 5.10.

Occasionally we found that the secant method became unstable and did not

converge. This happened quite rarely (for example for one filling and one run out of

the 10 runs) and so we re-ran the simulations where this occurred. When running

on quantum hardware this could be dealt with by monitoring which values of µ the

secant method picks or by averaging multiple runs of SPSA for a certain µ. Other

possibilities include combining the secant method with a curve fitting technique

so that all of the known information about the DMET function can be effectively

used, or squaring the function and using a gradient descent algorithm to find the

minimum.

Choice of SPSA metaparameters

We finish this section with an example that demonstrates why it is important to

tailor the SPSA metaparameters for different problems. In particular, we will discuss

why the parameters governing step size were changed to a = 2, A = 10, compared

to a = 0.15, A = 100 when solving the Hubbard model in Section 3.2.2.

Consider the embedded Hamiltonian for fragment size one. This acts on 4 qubits

which we can label as follows: qubit 0 – spin-up fragment, qubit 1 – spin-up bath,

qubit 2 – spin-down fragment, qubit 3 – spin-down bath. The embedded Hamilto-

nian has the form

Hemb = H↑ +H↓ + Un0n2, (5.6)

where

H↑ = −µn0 + α(a†0a1 + a†1a0) + βn1, (5.7)

with H↓ identical to H↑ but on qubits 2 and 3. α, β ∈ R are determined by the

single-shot embedding algorithm described in Section 4.2 and µ is the chemical

potential that is found using a root-finding technique in the DMET loop.
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Figure 5.11: Sweeping through the chemical potential for 100 values between µ = 0
and 2, using different values for SPSA metaparameters. At each value of µ, the
embedded Hamiltonian is solved and the DMET function is calculated. The graph
shows the U = 4 1D Hubbard model with 〈n〉 = 0.5 (Nocc = 120) and a fragment
size of one. The VQE solver uses depth two HV-min as the ansatz circuit. Note
that although the DMET function is a straight line here, this is not always the case.

When we previously used SPSA with the Hubbard model in Chapter 3, we fixed

the Hubbard model parameters t and U and tested with different grid sizes. Here,

there are many more variables. For example, to produce the curve for fragment size

one in Figure 5.10, we fix U , but α and β change with every value of 〈n〉, and µ

changes several times for each Hemb. One way to check whether SPSA is effective

in all of these regimes is to start by fixing U and 〈n〉 (and thereby α and β), but

sweep through µ for a range of values. At each value of µ we use SPSA with VQE

to solve Hemb and calculate the DMET function (equation (4.13)). The DMET loop

terminates when the root of this function is found; if SPSA leads to wrong values

of the DMET function (beyond statistical noise), then it will not be suitable for use

in DMET.

A plot of this is shown in Figure 5.11 for the U = 4 1D Hubbard model at

quarter-filling with a fragment size of one. Each term in the expectation value was

estimated using 104 samples, and the final state at the end with 105. We set the

maximum number of SPSA iterations to 2,000 and ran standard SPSA using the

metaparameters from Section 3.2.2, and with metaparameters a = 2, A = 10 for a

higher rate of convergence. A “bump” appears in the DMET function when using

the original metaparameters. We observed that this bump reduced in size when
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the number of SPSA iterations increased. We also observed that the bump moved

position for different values of U and 〈n〉, and in fact was roughly centred on β ≈ −µ
(note that in Figure 5.11, β = −1.2005).

A possible reason for this bump is the ansatz we are using, HV-min. In this

ansatz, all of the number gates are parametrised with the same angle θ i.e. we

implement e−iµθn0/2 and eiβθn1/3 . When β = −µ, this has the effect of applying a

global phase to the state, and so the angle θ contributes nothing to the ansatz and

its gradient is zero. When β ≈ −µ, the gradient in the direction of θ is small and

this has the effect of shrinking the magnitudes of random gradient that SPSA takes.

It is possible that having a small step size combined with a small gradient means

that SPSA cannot move away from the start point effectively enough and it gets

stuck. By increasing the SPSA metaparameters which govern the step size by an

order of magnitude i.e. a = 2, A = 10, we are less likely to get stuck early on in the

optimisation routine. Note that the bump is not present when using the HV-max

ansatz, lending weight to this reasoning.

This example demonstrates that it is important to tailor the SPSA metaparam-

eters for different problems, even when using a low number of qubits. In addition,

problems which are not present when running simulations using exact values of the

expectation can appear when measurements, noise or different optimisation routines

are involved.

5.3 Summary

Over the past two chapters, we have carried out a detailed study into how single-

shot DMET could be used to solve the Hubbard model on a quantum computer

with VQE. We have used the form of the embedded Hamiltonian to construct effi-

cient swap networks for implementing the HV ansatz, and measurement schemes for

estimating expectation values. These constructions have assumed that we are using

the JW encoding and the architecture of the quantum device is fully-connected.

We also conducted numerical simulations up to a fragment size of four (16 qubits)

using exact expectation values from the VQE, and up to fragment size two (8 qubits)

involving measurements. The VQE algorithm is a nested optimisation loop pro-

viding imperfect solutions to the embedded Hamiltonian within the larger DMET

optimisation loop. There is a lot of scope for errors to propagate throughout the

algorithm, but despite this the simulations showed that DMET with VQE was ef-

fective. The errors on the observables were shown to decrease exponentially with
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the depth of the ansatz, meaning that it is possible to use a lower depth ansatz if a

high accuracy is not required.

DMET is an embedding method which can be used to drastically reduce the

number of qubits required to find the ground state properties of a given Hamiltonian.

However, in the case of the Hubbard model, applying the embedding procedure leads

to an embedded Hamiltonian with a higher complexity than would be obtained by

truncating the original one.

For example, let us consider a quantum computer with 64 qubits. We could

solve a 4× 8 Hubbard model with open boundary conditions using a two-qubit gate

depth of 9 per ansatz layer and 5 circuit preparations (see Chapter 3). However,

consider a DMET calculation with 16 sites in the fragment; taking the shape of the

fragment to be 4× 4, one layer of the ansatz would require a two-qubit gate depth

of 30, and 32 preparations of the quantum circuit would be needed to measure all

of the expectation terms.

This suggests that directly solving the Hubbard model is a more viable goal for

very near-term quantum computers, which contain qubits that are quite noisy (rul-

ing out high-depth circuits). Although there have been several small-scale demon-

strations of DMET on quantum hardware [140, 141], larger demonstrations would

likely benefit from slightly higher quality qubits, capable of running higher depth

circuits. The use of DMET in this latter regime could allow the simulation of

molecules using a greatly reduced number of qubits, compared to the thousands of

qubits that a direct simulation could require.
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Simulating quantum computing

It is important to have fast, high-performance quantum computing simulators to

be able to fully investigate NISQ algorithms. An algorithm such as the VQE can

be costly to simulate due to the large number of circuits that need to be run. For

example, in one of our VQE simulations solving the Hubbard model on 3× 4 grid,

the depth 10 EHV ansatz took almost 48 hours to run on a GPU. A single circuit run

takes around 7 seconds – which is fairly fast for a 24-qubit circuit with thousands of

gates – but the optimisation routine required us to run 24,000 different circuits [58].

This run time would only increase if we wanted to simulate measurements or noise,

thereby limiting the size of practical VQE simulations.

To code a fast quantum simulator, we must properly utilise a fast compiled

language such as C or C++ whilst also implementing the most efficient algorithms

for simulating gates and measurements. Many quantum simulators, for example

ProjectQ [148], Qiskit [149] and Cirq [150], have a backend coded in C or C++ that

is accessed through a Python interface. Although the backend is often very fast and

well optimised, the overhead of the communication between C/C++ and Python

can make simulations of VQE slow. This is one of the reasons why QuEST [56], a

simulator written in C and fully accessible through C/C++, was used in the VQE

and DMET simulations done in Chapters 3 and 51.

This chapter is the result of efforts to further speed up these simulations of VQE

by improving the performance of quantum computing simulators for small numbers

of qubits. We present a new quantum simulator coded in C++ called the Quantum

Simulation Library (QSL) [61] that we use to test out different ideas. Table 6.1

compares the current features of QSL with a selection of other quantum simulators

1An initial prototype of the VQE code written in C++ and using QuEST was almost 10,000×
faster than the prototype written in Python and using ProjectQ.
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Simulator C/C++
access

GPU
access

SSE or
AVX

Sampling Gate
fusion

Number
pres.

QSL X X X

QuEST [56] X X

ProjectQ [148] X X

Qiskit (Aer) [149] X X X X

Cirq (qsim) [150, 155] X X X X X

Qulacs [156] X X

Intel-QS [157, 158] X X X

Quantum++ [159] X

Table 6.1: A non-exhaustive list of quantum computing simulators partially or fully
coded in C/C++. The criterion for whether a simulator is accessible from C/C++
is ease of use; for example, to use Qiskit Aer from C++ its CMake file must be
modified, and although qsim has a C++ interface, it is difficult to use due to a lack
of documentation. SSE and AVX are advanced vectorised instructions that exploit
data parallelism. Sampling refers to whether the simulator can rapidly simulate
measurements by sampling from the state vector (see Section 6.3). Gate fusion is
the process of combining gates together before applying to the state vector. Opti-
misations relating to number preservation are discussed in Section 6.4.

that are partially or fully coded in C or C++; see [151] for a more exhaustive list of

simulators. Tensor network methods allow for the simulation of a larger number of

qubits (35+) with a low circuit depth [14, 15, 152, 153], but are slower for smaller

simulations due to the overhead they introduce. We therefore restrict the discussion

in this chapter to the simpler method of simulation where the entire state vector is

stored in memory; this is known as Schrödinger-style simulation [154].

We start in Section 6.1 with a description of how the state vector is stored and

its memory requirements. In Section 6.2 we discuss different methods for simulating

one- and two-qubit gates, and compare our QSL gate implementations with QuEST,

finding that our gates can be up to 8-10× faster. We then describe the important

subject of simulating measurements, in Section 6.3. In particular, we present the

details of the measurement sampling scheme mentioned in Chapters 3 and 5. In

all of our VQE and DMET simulations, the ansatz circuit conserved the fermion

occupation number. We conclude this chapter by showing how this circuit property

could be used to speed up simulations in Section 6.4. This optimisation can be

applied to other quantum chemistry problems when the quantum circuit is number-

preserving. The work in this chapter is based on unpublished work done jointly
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with John Scott whilst coding QSL [61].

6.1 Storing the state vector

To fully represent an arbitrary n-qubit state

|ψ〉 =
2n−1∑
i=0

ψi|i〉 (6.1)

on a classical computer, we must store the 2n complex amplitudes ψi. A single-

precision floating-point number requires 32 bits (4 bytes) of storage, therefore each

complex amplitude requires 8 bytes. For a double-precision floating-point number,

this goes up to 16 bytes as each individual number requires 64 bits (8 bytes) of

storage. Due to the exponential nature of the state vector, each additional qubit

doubles the amount of memory required; this quickly becomes too large to store.

Table 6.2 shows some examples of the amount of memory required to store the entire

state vector in memory.

The number of qubits that can be simulated is limited by the amount of RAM

available. Nowadays, laptops come with 8GB of RAM as standard, but not all of

this is available for use as some of it is required by the operating system and other

programs. Therefore, with a standard laptop it is possible to simulate at most 28

qubits using double-precision or 29 with single-precision (using 4GB of RAM). It

is possible to use part of the hard drive to store the state vector, but this would

drastically slow down the simulation due to slower memory read/write speeds [160].

There are many choices that can be made about how to store the state vector.

For example, in C++ we could store a std::vector of length 2n with std::complex

elements, or a length 22n std::vector where the real and imaginary amplitudes are

interleaved, or even two separate vectors each storing either the real or imaginary

amplitudes. How the state vector is stored will have an effect on the speed of

the computation. In fact, when applying simple gates such as X and CNOT it

is advantageous to have the real and imaginary amplitudes next to each other in

memory. This is because the operation of these gates requires swapping amplitudes,

meaning that the real and imaginary parts can be swapped as a pair (see Section 6.2).

However, for more complicated gates involving complex multiplication, the three

different ways of storing the state become comparable. We choose to implement the

first method in QSL as it is conceptually simple. The only change that we make is

to use a user-defined struct for the complex numbers instead of std::complex.
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Number of qubits Single-precision Double-precision

8 2 KB 4 KB
16 512 KB 1 MB
24 128 MB 256 MB
32 32 GB 64 GB

Table 6.2: Amount of memory required to store the state vector for some represen-
tative qubit numbers. Note that 1 KB = 1024 bytes.

Another choice that can be made is about the “endianness” of the vector indices.

In a big-endian system, the most significant bit represents the lowest-numbered

qubit. For example, if the state is |01〉 then qubit 0 is in state |0〉 and qubit 1 in

state |1〉. In a little-endian system, the least significant bit represents the lowest-

numbered qubit. Here qubit 0 is in state |1〉 and qubit 1 in state |0〉. The two

systems can become easily confused; big-endian is more natural for our left-to-right

writing system but little-endian is mathematically simpler. For example, the index

of the computational basis state with qubit k in state |1〉 and the other qubits in

state |0〉 is indexed by 2k in little-endian, but 2n−k−1 in big-endian. Therefore, we

make the choice of using the little-endian system in QSL, meaning that the index

of any computational basis state can be calculated as follows,

|xn−1 xn−2 . . . x1 x0〉 7→
n−1∑
k=0

2kxk, xk ∈ {0, 1}. (6.2)

We finish this section by briefly discussing a näıve way of implementing gates.

Since multi-qubit states are constructed through the use of the tensor product, gates

can also be constructed in this way. If we wanted to apply a one-qubit gate to a

specific qubit, we could pad the gate with identities on either side to create a 2n×2n

matrix and then multiply this with the state vector. An example on four qubits with

the X gate applied to qubit 1 is:

I ⊗ I ⊗X ⊗ I



ψ0000

ψ0001

...

ψ1110

ψ1111


=



ψ0010

ψ0011

...

ψ1100

ψ1101


. (6.3)

Although this 2n × 2n matrix is sparse, the number of non-zero elements scales

exponentially with the number of qubits and at best is equal to the length of the
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state vector. Since storing the state vector is already a memory intensive task, it

is best not to use any additional memory beyond what is required. This is one of

the reasons why gate operations are actually carried out through the use of in-place

matrix multiplication. For example, in the case of the X gate, this only requires the

storage of the 2× 2 matrix representing the X gate. In the next section we discuss

how this is done in practice using bitstring construction and manipulation.

6.2 Simulating one- and two-qubit gates

In this section we discuss efficient implementations of one- and two-qubit gates. We

compare our gates in QSL with QuEST to show that the simulations carried out in

this thesis could be sped up.

6.2.1 One-qubit gates

To apply an arbitrary one-qubit gate U =
(
α β
γ δ

)
to qubit k, the elements of the

state vector are modified as follows:(
ψi

ψi+2k

)
7→
(
α β

γ δ

)(
ψi

ψi+2k

)
, (6.4)

where i is every bitstring of length n with 0 in the kth position. Since there are 2n−1

such i, this corresponds to a loop that is half the length of the state vector. The body

of the loop contains four complex multiplications and two addition, corresponding

to equation (6.4). The way in which the indices i are calculated and how the

matrix multiplications are carried out within the loop are the two key components

of simulating one-qubit gates; the ultimate aim is to reduce the number of operations

done inside the loop. In this section we discuss both of these components, starting

with the indexing.

In QuEST, the index i is calculated using the formula i =
⌊
j/2k

⌋
2k+1+(j mod 2k)

for j = 0, . . . , 2n−1−1 [56]. This requires two integer divisions, a multiplication and

an addition for each value of j. Whereas multiplications and additions are extremely

fast operations on the processor, integer division is substantially slower2 [161]. An-

other way of calculating the index i is to insert a bit between the kth and (k + 1)th

bit of j. Pseudocode for how this can be achieved with bitstring manipulation is as

follows:

2For example, on the Intel Skylake-X processor, the IDIV (integer division) instruction may be
between 90-360 times slower than the ADD instruction.
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lower_mask = (1 << k) - 1

upper_mask = ~lower_mask

i = (j & lower_mask) + ((j & upper_mask) << 1)

The & is bitwise AND, ~ is bitwise NOT and << is the operator which shifts bits to

the left, i.e. 1 << k is equivalent to 2k. The masks can be calculated outside of the

loop; bit-shifting and bitwise AND are of almost comparable speed to addition [161]

making this method of calculating the indices faster than the previous one. An

example of a quantum simulator which uses this method is Qulacs [156].

In QSL we use yet another method which only requires one addition to calcu-

late i. Two nested for loops are used, one which loops through all possible bitstring

combinations below bit k, and one which loops through all bitstring combinations

for the bits above k. This is demonstrated along with the application of the gate U

in Algorithm 1. An example of a quantum simulator which also uses this method is

Intel-QS [157, 158].

Algorithm 1 Apply an arbitrary one-qubit gate to qubit k

for s← 0 to 2n − 1 in steps of 2k+1 do . Loop through upper bits
for r ← 0 to 2k − 1 do . Loop through lower bits

i0 ← s+ r . Calculate the indices with 0 and 1 in position k
i1 ← i0 + 2k

ψi0 ← αψi0 + βψi1 . Update the state vector amplitudes
ψi1 ← γψi0 + δψi1

end for
end for

We can now discuss how the matrix multiplications can be carried out within the

loop. We can optimise the updating of the state vector amplitudes for common gates

by hard-coding the specific operation. Taking the X gate as an example, we only

need to swap ψi0 and ψi1 , completely getting rid of any floating point operations.

For the Z gate and when applying a phase shift, we only need to modify ψi1 , leaving

half of the state vector untouched. Even gates such as the Hadamard and rotation

gates can be optimised; since their matrix elements are not fully complex, half of

the multiplications can be removed. For example, it is not necessary to do full

complex multiplication if some real or imaginary components are known to be zero.

The tailoring of gate operations is the approach that QuEST takes and that we

take in QSL. Many other quantum simulators such as Qiskit [149], qsim [155] and

Qulacs [156] do not tailor gate operations, but store the full complex gate matrices

to allow for “fusing” operations that combine gates.
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Figure 6.1: Timing of the X-rotation gate in QSL and QuEST, with and without
parallelisation. A random n-qubit state vector was generated and the RX(θ) gate
(with a random angle θ) was applied to each qubit in order. The application of
each round of gates was repeated 220−n times to build up an average. For OMP, 8
threads were used with QuEST and 4 with QSL.

Figure 6.1 compares the time to carries out a representative one-qubit gate,

RX(θ), using QSL and QuEST. Recall that the main difference between these two

simulators is the way in which the state vector indices are calculated. For this

specific gate, an additional difference is that QuEST carries out full complex matrix

multiplication in the inner loop, whereas in QSL we have only done the necessary

multiplications. The resulting gate in QSL is on average 7-8× faster than QuEST.

The non-parallelised version of QSL is also faster than the version of QuEST using

OpenMP (OMP) with 8 threads. Note that below around 10 qubits OMP introduces

an overhead, this is the case for all quantum simulators. Below this threshold, the

state vector is small enough that setting up threading, splitting up the loops over

the threads and then recombining is slower than just iterating over the state vector.

6.2.2 Two-qubit gates

Controlled two-qubit gates are a natural extension of one-qubit gates. For an arbi-

trary controlled-U gate, we apply U to the target qubit if the control qubit is in the

state |1〉. Only half of the amplitudes in the state vector need to be modified as op-

posed to the full state vector for general one-qubit gates. We can apply a controlled

two-qubit gate using Algorithm 1 (or any of the other indexing methods described

above), but with an additional step in the inner loop checking whether the control
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Figure 6.2: Timing of the CNOT gate in QSL and QuEST, with and without par-
allelisation. A random n-qubit state vector was generated and the CNOT gate was
applied between every pair of qubits. The application of each round of gates was
repeated 220−n times to build up an average. For OMP, 8 threads were used with
QuEST and 4 with QSL.

bit c is 1 before doing the matrix multiplication on the target qubit t. This check

requires a masking operation j & (1 << c), followed by an if statement to see if

the result is zero or not. This is the method that is implemented in QuEST [56].

A more efficient method (which also works for general two-qubit gates) is to only

loop over the indices where the state vector will need to be updated. Similarly to

how the bitstrings for the one-qubit gates were constructed in two parts and the kth

bit inserted, the bitstrings for two-qubit gates can be constructed in three parts: the

string below min(c, t), the string between c and t, and the string above max(c, t).

We can do this either by looping from j = 0, . . . , 2n−2 − 1 and breaking up this

bitstring over the three parts, or by using three nested for loops. In QSL we use

the second method.

A disadvantage of this multi-loop method is that it does not generalise well to

multi-qubit gates. For example, if we wanted to do an m-qubit gate, then we would

require m+ 1 nested for loops; it is not possible to dynamically generate for loops

so the code would become unreadable. A combination of checking bits and breaking

up bitstrings over multiple parts could be used for multi-qubit gates, but for now

QSL is restricted to one- and two-qubit gates.

Figure 6.2 compares the time to carry out a representative two-qubit gate,

CNOT, using QSL and QuEST. Here, the difference is even larger than the one-
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qubit gate as QSL is 10× faster than QuEST. The gap between parallelised QuEST

and the non-parallelised version of QSL is also much larger than for the one-qubit

gate. Note also that the time taken per gate is lower for CNOT than RX(θ). This

is to be expected since we are modifying only half of the state vector compared

to the whole state vector. This has consequences for the way in which circuits are

implemented on the simulator. Taking the combined FSWAP and Hopping gate in

equation (2.19) as an example, even though on an actual quantum computer it will

be faster to implement two one-qubit gates S† followed by the Hopping gate, for

simulation purposes it will be advantageous perform the FSWAP directly.

6.3 Simulating measurements

Information is extracted from quantum computers through the measurement of

qubits; a quantum simulator needs to be able to simulate realistic measurements

(not, for example, by just adding Gaussian noise to expectation values) to be able

to study the behaviour of quantum algorithms more accurately. Simulating the

measurement and collapse of a single qubit can be implemented by looping over

the state vector twice and generating a random number; this procedure is given in

Algorithm 2.

Algorithm 2 Measure and collapse qubit k

p←∑
x:xk=0 |ψx|2 . Calculate the probability of measuring qubit k as 0

r ← rand(0, 1)
if r < p then . Generate random measurement outcome

m← 0, f ← √p
else

m← 1, f ← √1− p
end if
ψx:xk 6=m ← 0 . Zero out amplitudes for the opposite outcome
ψx:xk=m ← ψx:xk=m/f . Re-normalise the rest of the state vector

Unless we are simulating an algorithm that involves measuring out qubits as an

intermediate step, using this procedure to simulate measurements is inefficient. For

an algorithm such as the VQE, taking an estimate of the energy requires thousands

of measurements of the state vector. Using Algorithm 2, we would have to measure

and collapse each qubit in turn (requiring 2n passes of the state vector), and then

re-prepare the state vector for the next measurement, thousands of times.
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The simulation of measurement can be sped up using two simple observations.

The first is that measuring all of the qubits at once is the same as measuring them

one by one – this means that we can write down the overall probability distribution

for all of the qubits and sample from that to generate measurement outcomes.

The second is that it is unnecessary to simulate the collapse of the state vector

when measuring all of the qubits together, as the state vector would collapse to

a computational basis state. QuEST implements measurement using the method

in Algorithm 2. To speed up our simulations that incorporated measurements,

we implemented sampling using these two observations in the C++ programs for

simulating VQE and DMET (see Sections 3.2.2 and 5.2.2). In the remainder of

this section, we will explain how this was done and compare two different sampling

methods.

To sample from the state vector, we first need to compute the vector C of

cumulative probabilities

Ci = Ci−1 + |ψi|2, (6.5)

where C−1 = 0 and i = 0, . . . , 2n − 1. To generate a measurement outcome, we

generate a random number r between 0 and 1. If r is in the range [Cm−1, Cm) then

m is the measurement outcome. Finding this range is a search problem; a näıve way

of finding it is to perform a linear search, but in the worst case scenario this would

require iterating through the whole 2n length vector C. In the VQE and DMET

code we use a binary search algorithm, which runs in logarithmic time, to determine

the range and hence the measurement outcome.

Using this method, the cumulative probability distribution is only generated

once and then used repeatedly to generate samples. The drawing of one sample

from the distribution corresponds to generating a random number and performing

a binary search. It is also possible to reduce the length of C by just storing the

outcomes that have a non-zero probability of occurring; this can be done by taking

into account problem properties such as number preservation (see Section 6.4) or

simply checking if |ψi|2 is zero.

An alternative sampling method, which is used in qsim [155], is to generate

all of the random numbers at once, sort them into ascending order and then iter-

ate through C binning the elements of the sorted random vector into the ranges

[Cm−1, Cm). If we wish to generate M samples, we must store a vector of random

numbers of length M . Unlike the binary search method, we do not need to store C

as we only need to maintain the running cumulative probability for the purpose of

binning the random numbers.
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Figure 6.3: Comparison of the binary search and sorting methods of measurement
sampling in QSL for M = 100, 000 and n = 2 to 24. A random n-qubit state vector
was generated and M measurement samples were taken. The prediction for when
the two methods crossover is at n = 16.

We can perform a comparison of the time complexities of both of the meth-

ods when taking M samples from an n-qubit state vector. Both methods have an

overhead of O(2n) for preparing or iterating through C. The binary search method

requires us to search through a vector of length 2n, M times; this has a complex-

ity of O(Mn). The sorting method requires us to sort a random vector of length

M . Using the quicksort algorithm this has a complexity of O(M logM) [162]. A

rough theoretical calculation predicts that the binary search method will be faster if

n . logM . We coded both methods in QSL to test this prediction and found that

in practice the point at which the two methods crossover is lower. For example, for

M = 1, 000 the sorting method is faster beyond n = 7 compared to the prediction

of n = 9. For M = 10, 000 the theoretical crossover is at n = 13, but we observed

it at n = 9.

Figure 6.3 demonstrates the performance of the two sampling methods for M =

100, 000. The sorting method takes an almost constant amount of time until 18

qubits, where the cost of iterating through the state vector to calculate the cumula-

tive probabilities starts to dominate the time. At 24 qubits, the sorting method is

almost an order of magnitude faster than the binary search method. However, hav-

ing both methods available for use in a quantum simulator will be advantageous as

the best sampling method can be chosen for the problem at hand. It may be possible

to achieve further speed-ups by implementing more advanced sampling techniques
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such as the alias method, which can draw a sample in constant time [163].

6.4 Number-preserving simulator

All of the circuits that have been used to produce the results in this thesis have had

the property that they conserve the fermionic occupation number. In other words,

at any point in the circuit, the state vector is a linear combination of computa-

tional basis states where the associated bitstrings have the same Hamming weight.

Many Hamiltonians relevant to quantum chemistry preserve fermion number, spin,

or demonstrate certain symmetries; these properties are routinely used in simu-

lations on classical computers to reduce the memory required to solve problems

or speed up calculations. In this section we will show how we can also use these

properties to speed up the simulation of quantum circuits, with a focus on number

preservation.

For an n-qubit state where the Hamming weight m is preserved, only
(
n
m

)
of the

amplitudes in the state vector can be non-zero. Only storing or only operating on

these non-zero amplitudes could significantly speed up circuit simulations. There are

a growing number of works taking advantage of this. Google’s fermionic quantum

emulator (FQE) [164] is tailored to quantum circuit simulations that only involve

evolutions according to fermionic operators. Number and spin preservation is used

to only store the relevant sectors of the state vector. In some cases they find that the

FQE, which is written in Python, is faster than qsim, a highly optimised simulator

written in C++. More generally, Jaques and Häner [165] present simulations where

the state vector is stored in key-value pairs (i, ψi), where ψi 6= 0, regardless of the

problem structure. When the state vector is sparse this allows for the simulation of

large numbers of qubits.

In QSL, we have coded a number-preserving (NPr) simulator where gates are

applied by modifying the
(
n
m

)
non-zero amplitudes. However, we still store the entire

2n length state vector, and unlike the FQE we only allow for preserving a single

Hamming weight m. The NPr simulator restricts the gates that can be applied.

Arbitrary one- and two-qubit NPr gates are

U1 =

(
1 0

0 eiθ

)
and U2 =


1 0 0 0

0 α β 0

0 γ δ 0

0 0 0 eiθ

 , (6.6)
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where U =
(
α β
γ δ

)
is an arbitrary one-qubit gate acting on the {|01〉, |10〉} subspace.

To apply U1 to qubit k, we cannot use the nested for loop method described

in Algorithm 1 since there is no straightforward way of looping through the desired

bitstrings. We need to apply the phase eiθ to all amplitudes in the state vector where

the index is a bitstring of length n with a Hamming weight of m, and a 1 in the

kth position. To do this, we generate base bitstrings of length n− 1 with Hamming

weight m − 1 and then insert a 1 between bits k and k + 1. The bit insertion can

be done using the pseudocode at the beginning of Section 6.2.1.

A function f(x) which takes a bitstring x with a certain Hamming weight and

returns the next (numerically ordered) bitstring y with the same Hamming weight

is as follows [166]:

t = x | (x - 1)

y = (t + 1) | (((~t & -~t) - 1) >> (ctz(x) + 1)).

The | is bitwise OR and ctz(x) counts the number of trailing zeros in x i.e. the

number of bits below the first (least significant) occurrence of 1. In the GNU C

compilers it is a built-in compiler intrinsic builtin ctz.

The simplest way to obtain the indices to implement U1 is to advance through

all base bitstrings using f(x)3, and at each stage insert a 1 between the bits k and

k + 1. However, due to the cost of computing f(x), we found that in some cases

(for example, when m was close to n/2) this on-the-fly method was slower than the

standard QSL simulator. An improved method is obtained by realising that the

base bitstrings do not depend on the index k. As as result, it is possible to pre-

compute the base bitstrings and store them in a lookup table. This method results

in a speedup because it is no longer necessary to compute f(x) multiple times inside

each gate. It allows for parallelisation, unlike the on-the-fly generation which is a

serial process. Note that in QSL our lookup table is a std::vector of length
(
n−1
m−1

)
.

Figure 6.4 demonstrates the speed of the U1 gate using the standard and NPr

(with lookup table) simulators in QSL for 16 qubits. The curves for the NPr sim-

ulator are clearly shaped like the binomial distribution, following the length of the

lookup table. The parallelised NPr simulator has an overhead for small (and large)

values of m as the loop length is small enough that setting up threading dominates

the run time. For m = n/2 (i.e. half-filling for fermionic systems) we might expect

a 215/
(

15
7

)
≈ 5.1× speedup over the standard simulator, but we find approximately

3The starting bitstring has a length of n−1 with 1 in the least significant m−1 positions. We
end at the length n− 1 bitstring with 1 in the most significant m− 1 positions.
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Figure 6.4: Comparing the standard and NPr simulators in QSL using the phase
shift gate U1. A random 16-qubit state vector was generated for Hamming weights
of 1 to 15, the phase gate (with a random angle θ) was then applied to each qubit
1000 times to build up an average. For OMP, 4 threads were used.

a 2.1× and 3.5× speedup with and without OMP respectively. Not reaching the

theoretical speedup could be due to additional memory access times.

We can extend this procedure of generating base bitstrings of a specific Hamming

weight to applying two-qubit gates on qubits k1 and k2. Base bitstrings of length

n−2 and the appropriate Hamming weight are generated, followed by bit insertions

between bits k1 and k1 + 1, and bits k2 and k2 + 1. To apply U2, we now require two

lookup tables; one to keep track of the base bitstrings required to apply U on the

{|01〉, |10〉} subspace, and one to apply the phase eiθ to the |11〉 subspace. Table 6.3

contains a list of the lookup tables required to implement all one- and two-qubit

NPr gates. Five lookup tables are needed in total and each is a std::vector of

size
(

Bitstring length
Hamming weight

)
. Although additional memory is required to store these lookup

tables, in QSL the focus is on speed for a low number of qubits. Furthermore, the

length of all the lookup tables combined does not add up to the length of the state

vector; for example for n = 16 and m = 8, the combined length of the lookup tables

is 32,175 which is approximately half the length of the state vector.

The work presented in this section could also be extended to spin preservation.

Half of the qubits could be designated as spin-up and the other half as spin-down.

The number of non-zero elements in the state vector would then be
(
n/2
m1

)(
n/2
m2

)
,

where m1 and m2 are the fermion occupation numbers/Hamming weights for the

two spin-types. Taking 16 qubits at half-filling with an even split of spins, the
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Operation type Bitstring length Hamming weight

Indexing entire state vector n m

One-qubit gate on |0〉 n− 1 m

One-qubit gate on |1〉 n− 1 m− 1

Two-qubit gate on {|01〉, |10〉} n− 2 m− 1

Two-qubit gate on |11〉 n− 2 m− 2

Table 6.3: List of lookup tables required for all one- and two-qubit NPr gates, split
by the subspace the gates act on. The lookup tables for the one-qubit gates are
also used for collapsing the state vector when a measurement is done. The lookup
table in the top row is used to generate the cumulative probability distribution
for measurement sampling. The length of each lookup table is the bitstring length
choose Hamming weight.

standard simulator could operate on all 216 = 65, 536 elements of the state vector,

whereas the NPr simulator would act on at most
(

16
8

)
= 12, 870 elements (saving

a factor of 5), and for a spin-preserving simulator this would drop to
(

8
4

)2
= 4900

elements (saving a factor of 13). The spin-preserving simulator would be slightly

more complex than the NPr one. For example, we would have to restrict the gates

that could be applied between the different spin sectors, and loops over the state

vector would need to be constructed from two lookup tables (one for spin-up and

one for spin-down).

6.5 Summary

In this chapter we have explored practical aspects relating to the simulation of

quantum computers, with a focus on the fast simulation of small numbers of qubits.

By choosing optimal algorithms we can significantly speed up simulations of quan-

tum circuits. We introduced QSL, a simulation library written in C++, based on

the ideas presented in this chapter. Our one- and two-qubit gates were found to

be around 8-10× faster than QuEST, the simulation library that was used to pro-

duce the results in this thesis. We demonstrated efficient methods for measurement

sampling, which speeds up ideal quantum computer simulations of VQE.

We also wrote an NPr simulator in QSL, which takes advantage of the structure

of the state vector to speed up circuits for quantum chemistry problems. This NPr

simulator had a further 2-3× speedup in the worst case scenario and several orders

of magnitude in the best case over standard QSL. In fact, when running the DMET
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code for Nfrag = 4 (n = 16,m = 8) with the depth two HV-min ansatz, the code on

a GPU with QuEST took 17 seconds to run, but only 13.6 seconds with the NPr

OMP simulator on a standard laptop. This shows that it is not always necessary to

use specialist or high-performance hardware to speed up simulations; simply using

the best algorithms and tailoring to the problem at hand can also have a big effect.

We conclude by stressing the importance of writing simulators, and frameworks

for NISQ algorithms, in fast compiled languages such as C and C++. The large

scale simulations done in this thesis would not have been possible without the use

of a language such as C++. Although many quantum simulators written in Python

have a fast backend coded in C/C++ [148–150], ultimately the communication

between the two programming languages slows down simulations of small numbers

of qubits by several orders of magnitude compared to pure C/C++ [56]. This Python

overhead may not be prohibitive for single circuit runs, but for an algorithm such

as the VQE which requires thousands of circuit runs, it can restrict the number or

size of simulations that can be carried out in practice. By coding purely in C/C++,

we are able to quickly prototype different ansätze and optimisation algorithms for

the VQE, thereby pushing forward research into NISQ algorithms.
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Conclusion

In this thesis, we have carried out an in-depth investigation into how the Hubbard

model could be solved using the VQE algorithm on NISQ devices. We considered

the solution of the model directly in Chapter 3, and a compressed form obtained

by DMET in Chapter 5. We took two main approaches in performing this analy-

sis; calculating the resources required to run the ansatz circuits on ideal quantum

computers, and carrying out high-performance classical simulations of these ansatz

circuits.

In the first approach, we designed efficient ansatz circuits based on fermionic

swap networks to obtain detailed estimates of circuit depths. We also introduced

the notion of non-crossing measurements to minimise the number of circuit prepa-

rations required to measure expectation values. While the Hubbard model is an

important benchmark system in its own right, its simple structure facilitates an

easier implementation of VQE than for typical electronic structure Hamiltonians.

An important direction for future work is to carry out a similarly detailed analysis

of the complexity of VQE for other practically relevant electronic systems.

For the other approach, we conducted numerical simulations of VQE up to twelve

sites (24 qubits) for the Hubbard model and four fragment sites (16 qubits) for

DMET. These are amongst the largest VQE simulations that have been carried out.

However, we are beginning to reach the limit of practical VQE simulations. For

example, for the largest Hubbard model grid sizes, simulating high-depth ansatz

circuits took days of run time; this is despite running C++ code on a GPU. Quan-

tum computing simulators which take advantage of known properties of certain

quantum chemistry problems, such as the number-preserving simulator introduced

in Section 6.4 and Google’s fermionic quantum emulator [164], could lead to much

faster simulations. Increasing the speed of the VQE simulations will mean being
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able to test more ansätze at larger grid sizes, and using a wider variety of Hubbard

model parameters. It will also mean that simulations involving measurements, that

were restricted to 18 qubits for the Hubbard model and eight qubits for DMET,

could be extended to larger numbers of qubits. We provided efficient algorithms

for the simulation of gates and measurement, that might form the basis of future

numerical experiments, in Chapter 6.

While running simulations involving realistic measurements and noise gives us

some idea of the challenges involved in running VQE, in particular relating to the

classical optimisation, it is not a replacement for performing experiments on an

actual quantum device. For example, Montanaro and Stanisic [117] ran the HV

ansatz circuit described in Chapter 3 for the 2× 1 Hubbard model (four qubits) on

a Rigetti Aspen device, and found that due to device noise, it was not possible to

find the ground state unless the problem was compressed onto two qubits. A key

direction for future work, that we have not explored in detail in this thesis, is the

development of error mitigation techniques for VQAs [20] – requiring more realistic

noise models and more experiments on quantum devices.

Research into appropriate algorithms and applications for near-term quantum

devices are crucial to furthering the field of quantum computing. The Hubbard

model is a good target for NISQ devices due to its simple structure and relevance to

important problems such as high-temperature superconductors [49]. It is likely that

solving the Hubbard model could be one of the first demonstrations of quantum

advantage. However, we are still a while away from seeing such demonstrations; for

example, running a 53-qubit computation with a two-qubit gate depth of 20 on the

Google Sycamore device has a 0.2% fidelity [1]. Gate fidelities would need to be

improved by several orders of magnitude to make the gate depth of 325 estimated

for solving the 5 × 5 Hubbard model in Chapter 3 a reality, and implementing

methods such as DMET is even further out of reach for today’s quantum computers.

Ultimately, improvements in quantum hardware will be needed to reach a quantum

advantage.

116



Appendices

117





Appendix A

The number-preserving ansatz

In this appendix we will go into some detail about the choices that can be made when

implementing the NPr ansatz introduced in Section 3.1. As with many ansätze, we

must specify properties such as starting parameters and initial states. The work

in this appendix is based on Appendix C of the paper “Strategies for solving the

Fermi-Hubbard model on near-term quantum computers” [57].

In addition to the use of the ground state of the non-interacting Hubbard model

as an initial state, the NPr ansatz also allows a computational basis initial states

(with the correct fermionic occupation number). All gates in the circuit preserve

the number of fermions, so the VQE method will find the ground state of Hhub

restricted to the chosen occupation number subspace. This allows a saving in initial

complexity compared with starting in the ground state of the non-interacting model

(although with an associated penalty in terms of the number of layers required to

find the ground state).

The sites we choose to be occupied by fermions can make a significant difference

to the complexity at a fixed depth. We ran a number of tests brute forcing all the

possible starting states on selected small grid sizes. We found that in many cases

the best states reached errors several orders of magnitude better than the worst

states, but given the small grid sizes considered, the pattern for picking these good

states remains unclear.

An intuitive approach would be to place fermions evenly across the grid, allowing

them to quickly spread out. Then the ground state can be produced from the initial

state using potentially fewer layers of the ansatz circuit, if it does indeed correspond

to a spread-out state. Empirically, we observed that the optimiser performed better

with this layout than a näıve one where fermions are placed at the top left corner

of the grid, although we note that other schemes might yield even better results.
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Figure A.1: Comparison of initial fermion placements against using the ground state
as a initial state for a 3× 3 grid occupied by six fermions. For the spread-out state
we placed fermions of both spin-types for the three sites along the main diagonal of
the grid. The spread-out placement generally performs better than the top-corner
placement that fills the first six orbitals, especially for lower depths. Only starting
in the ground state achieves fidelity 0.99, while the others reach around 0.96 in
depth five.

Figure A.1 gives a demonstration for a 3× 3 grid occupied by six fermions.

For a 3× 3 grid, the ground state of the non-interacting model can be prepared

in depth 8 (assuming a fully-connected architecture), whereas each NPr ansatz layer

requires depth 7. So, in this case, starting with a computational basis state does

not seem to be advantageous. We further remark that the NPr ansatz starting from

a computational basis state cannot find the true ground state of the non-interacting

Hubbard model in the case where the number of fermions with each spin is one.

This is because all computational basis states with Hamming weight one are in the

null space of this model, and hopping terms preserve this subspace [57].

When starting with a computational basis state, the ansatz (and therefore the

optimiser) has to do more work to produce something close to the ground state of the

full model (compared with starting in the U = 0 ground state). To reduce the work

that the optimiser needs to do, we can first find an ansatz circuit that produces a

state close to the ground state of the non-interacting model by classically simulating

the VQE procedure. Because we only need to consider a single spin, the number of

qubits in the simulation is halved. For small grid sizes feasible on near-term quantum

devices, the non-interacting problem will be tractable on a classical computer. An
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Figure A.2: Comparison of the pre-initialised NPr ansatz and the standard NPr
ansatz for 2× 3 occupied by four fermions and 3× 3 occupied by six fermions. The
initial placement of the fermions is spread out (for 2×3 two sites at opposite corners
of the grid are fully occupied, 3 × 3 is explained in Figure A.1). Pre-initialisation
improves the results for 2 × 3 depth two, but makes it worse for 3 × 3 in all cases.
The difference between the ordinary and pre-initialised ansatz reduces as the depth
increases; similar behaviour was demonstrated in Figure A.1.

advantage of classically simulating the procedure (rather than also running these

smaller instances on a quantum computer) is that we can use exact expectation

values.

Once we have performed the optimisation classically, we can pre-initialise the

parameters of the full-model ansatz by using the final parameters from the non-

interacting model. The intuition is that by allowing the optimisation procedure to

begin with a circuit that produces the ground state of the non-interacting model

(which we know is a good choice from Figure 3.7), it then ‘only’ has to optimise

this circuit to produce a ground state of the complete model, having already been

pointed in the right direction.

However, it is not clear when this procedure is beneficial, for some grid sizes and

depths it causes the ansatz to perform worse. Figure A.2 demonstrates this for 2×3

and 3× 3 grids where the initial placement of the fermions is spread-out. We note

that different placements change how effective the pre-initialised ansatz is, which

requires further investigation.
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Calculating the 1-RDM of a Slater

determinant

In this appendix we will show that the 1-RDM ρ of a Slater determinant is ρ = ΦΦ†,

where Φ is the matrix representation of a Slater determinant (each column is an

occupied orbital written as a linear combination of the original orbitals). This fact

is commonly stated but finding a derivation is difficult. The derivation presented

here was included in Appendix B of “Solving the Hubbard model using density

matrix embedding theory and the variational quantum eigensolver” [59].

Let N be the number of spin-orbitals in a system, M of which are occupied by

fermions. An arbitrary Slater determinant |Ψ〉 can be written as

|Ψ〉 =
M∏
µ=1

c†µ|vac〉, (B.1)

where {c†µ}Mµ=1 are the occupied orbitals and |vac〉 is the vacuum state. The occupied

orbitals can be written in terms of the original spin-orbitals {a†k}Nk=1,

c†µ =
N∑
k=1

a†kΦkµ (B.2)

for µ = 1, . . . ,M , where Φ is an N ×M matrix of coefficients writing the occupied

orbitals in terms of the original orbitals [142]. The {a†k} form a basis for the system,

but the {c†µ} may not since there are only M ≤ N of them. However, they can

be expanded to form a basis by adding in N −M more linearly independent c†µ so

that equation (B.2) now applies for µ = 1, . . . , N . A consequence of this is that the

original orbitals can now be written in terms of the occupied orbitals as

a†k =
N∑
µ=1

c†µΦ∗µk and ak =
N∑
µ=1

cµΦkµ. (B.3)
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Now calculating the 1-RDM becomes

ρij = 〈Ψ|a†jai|Ψ〉

= 〈Ψ|
(

N∑
µ=1

c†µΦ∗µj

)(
N∑
ν=1

cνΦiν

)
|Ψ〉

=
N∑
µν

ΦiνΦ
∗
µj〈Ψ|c†µcν |Ψ〉

=
M∑
µν

ΦiνΦ
∗
µj = ΦΦ†,

since

〈Ψ|c†µcν |Ψ〉 =

1, if µ = ν and µ = 1, . . . ,M

0, otherwise
(B.4)

from the definition of the Slater determinant in equation (B.1).
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