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ABSTRACT

Timeline Summarisation is a special type of automatic summarisation task, in which temporal
information is as important as summaries. It aims at generating a time-ordered event list
containing concise event summaries and their precise happened times described in source
documents like new articles. However, current approaches are neither capable of adjusting
their content according to a certain user’s interest nor being adapted to new domains without
a huge amount of reference timelines. Therefore, I propose a Reinforcement Learning-based
interactive timeline summarisation system which can interactively learn from the user’s feedback
to generate timelines that meet the user’s demands. I define a compound reward function that
can update automatically according to the received feedback to ensure topical coherence, factual
consistency and linguistic fluency of the generated summaries. The system use this reward
function to adjust its output content via Reinforcement Learning to fine-tune an abstractive
Multi-document Summarisation model. The advantage of my system is to avoid the need of using
reference summaries in training. The experiments show that my system outperforms state of the
art on the benchmark Timeline Summarisation dataset, Timeline17, and could generate accurate
and precise timelines tailored for each user.
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1
CONTEXTUAL BACKGROUND

1.1 Timeline Summarisation

1.1.1 Timeline

Timeline is a list of events in chronological order. It is widely applied in daily life to track how

the event develops from the very first beginning to the current state.

Because of its recording ability, timelines are born to present the trend and development of

events. This attribute makes timelines play important roles in knowledge delivery. For instance,

timelines are useful on investigation of historic events. A high-quality timeline from old news

articles or Wikipedia is helpful for readers to understand the outline and different stages of an

event without efforts. Another example is that when disaster happens, tons of news reports will

burst on social media like Facebook and Twitter [Imran et al., 2016, 2013], a timeline carrying

precise time tags and useful information can help the government and professionals figure out

the real situation, which may save thousands of lives. Figure 1.1 shows a part of the timeline of

the BP oil event happened in 2010. Although it has continued for more than a decade since the

first leaking, its development and relevant policy are still highly concerned today.

FIGURE 1.1. An example timeline describing the oil spill in Mexico Gulf in 2010.

1



CHAPTER 1. CONTEXTUAL BACKGROUND

1.1.2 Summarising A Timeline

In the example of BP oil spill, oceans of news articles have been published to report this disaster’s

development and other aspects since the first break out. The massive amount of relevant news

articles has become a barrier for people to distinguish and sort out those actual critical subsequent

events. Summarising timelines through such huge amounts of documents is a tricky task even to

professional writers.

Timeline Summarisation (TLS) receives a set of record documents as input and generates a

list of event summaries with corresponding time tags (usually dates) as shown in Figure 1.2. It

requires the author to capture both essential dates and key sub-events in the long term, therefore

it is more complex than normal summarisation tasks. It is not difficult to imagine that the job

is expensive because reviewing and summarising all of the relevant articles is time-consuming,

requiring the expertise of reading and writing skills.

FIGURE 1.2. A Timeline Summarisation Task.

Currently, this work in real-life industries is still dependent on human efforts. Therefore,

only highly concerning events are eligible to have authors writing up timelines for them. As a

result, there are not adequate timelines available for readers, and those high-quality ones are

even handful.

In addition, most of the timelines are still presented in a traditional way by text. It results in

the timeline in the lack of flexibility to adjust its content. Readers with different backgrounds

have different preferences over the same news event. For example, in Figure 1.3, Chinese readers

will undoubtedly show great interest to read the news about Chinese athletes in the timeline

of the Tokyo Olympics, while American readers will prefer theirs. Generating several different

versions of timelines will cause massive amounts of repetitive work, which wastes both time and

money.

Furthermore, the number of timeline versions is challenging to decide because a reader may

have multiple interests in one event, as shown in Figure 1.3. A Chinese basketball fan will pay

2



1.2. CHALLENGES

attention to Chinese athletes and the U.S. basketball team in Tokyo Olympics. So if we cannot

categorise the users easily, we cannot just produce a few different timelines and ask them to

choose. We have to get some information from the user to understand what their individual

interests are. And their interests can be delivered as guidance in automatic timeline generation.

FIGURE 1.3. An example of different timelines that users with different background
would be interested in.

1.2 Challenges

Due to the aspects mentioned above, building an automatic timeline summarisation system is

challenging.

Firstly, vast amounts of valuable information lie buried inside extensive document collections,

from social media to customer service logs, maintenance reports, and historical archives. However,

the vast number of documents makes this information inaccessible even to domain experts. Thus,

our system is expected to automatically refine and summarise important information from a

bunch of input documents.

Secondly, the system is expected to consider the requirements of a specific user – their

background knowledge, goals and information needs, which drastically affect the usefulness of a

particular summary. Therefore, we need to design an efficient mechanism to interact with users

to grasp such information.

Another challenge is that due to the difficulties of manually generating timelines, there are

only a few reference timelines that can be made use of, although it is needed in many real-

life scenarios. This situation undoubtedly limits the choices of methods that can be applied to

solve the problem. Because most effective summarisation methods rely on supervised learning

algorithms which require reference summaries. These ground-truth summaries are expensive

to create and not always available for a particular news domain. And of course, we cannot ask

3



CHAPTER 1. CONTEXTUAL BACKGROUND

individual users to provide reference timelines to adapt the system output to their needs. This

problem motivates the need for an approach that can adapt to new topics and users without

reference summaries, which makes us consider whether Reinforcement Learning can solve this

task. Reinforcement Learning can train a model using a reward signal rather than reference

summaries. This leads to a further challenge — how to design a reward function that captures

the properties of a good summary.

Last but not least, summarising a timeline is tricky. Because it has to capture accurate

time information while processing text. It does not only need the ability to summarise multiple

documents, but also requires the system being capable of split information into corresponding

groups. Therefore, it is a more complex problem comparing to common summarisation tasks, such

as multi-document summarisation and single-document summarisation which will be mentioned

in 2.2. And since the timeline summarisation is not well-solved, it motivates us to propose such a

project to explore possible methods for generating high-quality timelines for different users.

1.3 Summary of the Aims

The aims of this project are listed below:

1. Investigate prior Timeline Summarisation methods. Choose potential basic methods and

reproduce their results.

2. Investigate and choose appropriate timeline summarisation datasets.

3. Build an interactive Timeline Summarisation system, which is able to tailor the output

according to the user’s demands. This includes several sub-aims:

a) Design the interaction process and acceptable feedback types.

b) Design reward functions that can automatically update according to the user’s feed-

back.

c) Choose suitable proper Reinforcement Learning algorithm for fine-tuning an abstrac-

tive Summarisation model.

4. Use proper evaluation metrics to compare the outcomes of the system with prior works;

analyse the results both qualitatively and quantitatively.

4
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2
TECHNICAL BACKGROUND

2.1 Natural Language Processing

Natural Language Processing (NLP), as a research field, is a cross-discipline of Mathematics,

Computer Science and Linguistics. It mainly focuses on developing computer applications to

process natural language text, which is straightforward for humans to understand but confusing

for computers due to its complex structures and rules, alone with its ambiguity. The goal of NLP

is to make computers capable of processing raw text like a human, which involves the challenges

like natural language understanding, natural language generation and speech recognition.

With the speeding up of the informatisation of the society, increasing attention has been

attracted by NLP during these years. Tons of information is being generated every second, which

requires advanced tools to process it. Nowadays, a variety of applications have been developed to

finish different types of text processing tasks. For example, Google Translate provides service to

millions of users every day. And intelligent assistants, like Alexa and Siri, can help people arrange

their daily schedule through dialogue without inputting any structured data. NLP technology is

changing our lives.

2.1.1 Symbolic NLP

The history of NLP can be traced back to the 1950s. Researchers explored encoding rules on

machines to answer questions and handle other NLP tasks at this very early stage. The system

generates natural language text via analysing conditions. A series of famous experiments were

done during that time and were regarded as the foundation exploration of NLP. For instance,

ELIZA [Weizenbaum, 1966], a very famous simulation of person-centred therapy, was capable of

providing surprisingly human-like responses.

5



CHAPTER 2. TECHNICAL BACKGROUND

FIGURE 2.1. An typical conversation between a user and ELIZA. Figure reproduced
from Weizenbaum [1966]. (ELIZA’s responses are printed in uppercase.)

In general situations, rule-based systems came up with a knowledge base which empowered

the system to generate factually consistent natural language text. However, the fixed rule set

and knowledge base limited the extrapolating ability of the system. ELIZA [Weizenbaum, 1966]

used some tricks to instruct the user to raise questions covered by its rule set and knowledge

base, which was not practical in real treatment. But it won the renown of having compatibility

of processing input exceeding its knowledge base for it. However, it is apparently not realistic

to encode all the cases on a machine. Therefore, the deficiency of inference ability of symbolic

systems forced people to investigate methods that could extrapolate ground truth to uncertain

situations.

2.1.2 Statistical NLP

Following the development steps of symbolic NLP, the importance of quantitative evaluation on

NLP systems experienced a significant rising, which led to the revolution of NLP. In this period,

machine learning approaches were introduced into this field for the first time and gained massive

success on practical application compared to rule-based systems. Researchers built language

models on top of Statistical Theory using statistical models to approach the real distribution of

words. Many classic machine learning methods, such as Support Vector Machine, Naive Bayes and

Random Forest, reached or even exceeded human level on text classification, machine translation

and other NLP tasks.

In the first decade of this period, people mainly focused on supervised learning algorithms.

Therefore, parallel corpora played an essential role in accelerating the development of statis-

tical methods in NLP. A typical example is that machine translation made progress by taking

advantage of multilingual textual corpora built by prior work on translating governmental

proceedings.

In the next decade, with the rapid growth of Internet and web service, the amount of raw text

has been enlarging and easier to access. Under such a circumstance, the demand for labelled data

of supervised learning methods severely restricted the development of NLP technology. People

thus turned to exploring applying unsupervised and semi-supervised learning methods to NLP

6



2.1. NATURAL LANGUAGE PROCESSING

FIGURE 2.2. Training a machine translation system on parallel corpus.

tasks. These methods partly reduced the dependence of referenced data. However, low accuracy

and factual conflict came with the lack of supervision as well, which made it a long way to go in

applying them in real life.

2.1.3 Neural NLP

Due to the consistent escalation of computation power, the deep neural network became widespread

in all cutting-edge research fields in recent years, including Natural Language Processing. Neural

networks are renowned for their strong representation learning ability [Hornik et al., 1989].

Therefore, researchers considered utilising neural networks to represent language models [Xu

and Rudnicky, 2000, Bengio et al., 2003], which brought the first breakthrough of Neural NLP.

Many powerful neural language models have been proposed and shown their advantages on

preprocessing raw input documents. It drastically affected the methodologies and formed the

foundation of current NLP research [Gururangan et al., 2020]. Many advanced NLP researches

now apply these high-quality neural embedding directly, or sometimes with fine-tuning to their

specific datasets. So researchers can allocate more time on designing models and methods for

downstream tasks. Neural network inspired the progress of NLP.

FIGURE 2.3. The development of representation learning facilitated research on other
downstream tasks.
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CHAPTER 2. TECHNICAL BACKGROUND

Transformers and Pretrained Models At first, NLP researchers attempted to extract infor-

mation from document via Convolutional Neural Network (CNN) or Recurrent Neural Network

(RNN). CNN was not flexible enough to process text input with variable length due to the fixed

size of the convolutional kernel. And it was unable to model long-distance contextual information

and retain sequence information. Although RNN was broadly applied in processing sequence

information, which seems to naturally fit processing NLP tasks. However, the vanishing gradient

problem made the training troublesome. Researchers therefore intended to modify the hidden

unit’s structure to solve it, such as Long Short-Term Memory [Hochreiter and Schmidhuber, 1997]

and Gated Recurrent Unit [Cho et al., 2014]. They improved RNN’s performance on NLP tasks

and solved the long-distance dependency problem in some degree. But the recurrent structure of

RNN made parallel computing impossible, which brought the low efficiency problem.

Transformer [Vaswani et al., 2017], as the most famous model in NLP, was proposed by Google

in 2017. It completely removed the recurrent units and convolutional kernels in encoders. It only

relied on the attention mechanism to capture the global relationship between input and output,

as shown in Figure 2.4. The advantages of this architecture come subsequently:

1. The lack of recurrent connections means the computation can be parallelised.

2. Parallel computation means the model and dataset size can be increased.

3. Bigger models trained on more data seem to encode more aspects of language, thus allowing

Transformer to outperform previous methods.

In addition, Transformer is one of the famous pre-trained models. With increasing investment

in Artificial Intelligence and Deep Learning, giant internet companies like Google, Facebook

and Microsoft are training huge models on high-performance computing clusters. To prevent

reinventing wheels, some models are open-source with several different versions of weights.

These so-called pre-trained models can be utilised by others on similar tasks, only with minor

fine-tuning or even without any modification. Therefore, researchers could focus on their main

work rather than building a whole system from scratch.

The advent of Transformer facilitated the development of NLP by providing a strong base

model for many tasks. It can easily achieve state of the art on downstream tasks with only simple

fine-tuning on corresponding corpus. For example, in text representation, BERT [Devlin et al.,

2018] and its modified versions [Liu et al., 2019, Lan et al., 2019, Joshi et al., 2020] now rules the

field. On top of these word embedding models, researchers explored embedding sentences as well.

Sentence-BERT [Reimers and Gurevych, 2019] was proposed to solve the sentence embedding

problem, and it greatly outperformed taking the average embedding of all the tokens in the

sentence. Currently, most of the state-of-the-art works in NLP are proposed on transformer-based

models.

8



2.2. AUTOMATIC TEXT SUMMARISATION

FIGURE 2.4. The architecture of Transformer [Vaswani et al., 2017].

2.2 Automatic Text Summarisation

Text Summarisation is a Natural Language Generation task. It aims to condense long articles

into short summaries, reducing the input length while keeping the original meaning and critical

objects. Manually writing summaries is not only time-consuming but also expensive since it

requires knowledge background and writing skills. Therefore, Automatic Text Summarisation

has gained tremendous popularity in recent years and strongly motivated researchers. Generally,

summarisation task can often be categoriesd as single-document summarisation and multi-

document summarisation.

Single-document Summarisation aims to extract important information in a long document,

which can provide a brief introduction for a single article.

Multi-document Summarisation does not only simply summarise a set of documents into a

single output summary, but also considers in solving the co-reference problem brought by the

number of input documents.

9
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From another perspective, Automatic Text Summarisation methods can be classified into

abstractive methods and extractive methods.

Extractive Summarisation is designed to identify and extract important sentences in the

source documents. It retains the original sentences. Thus its output usually has an advantage

on factual consistency. However, original sentences from the source documents often contain

redundant and irrelevant information, which reduce the summaries’ quality. In addition, extrac-

tive methods only focus on informative sentences and neglect transition sentences making the

whole summary less readable than human-written text. Therefore, extractive summaries are not

directly applicable in practice without a human-in-the-loop to revise them.

Abstractive Summarisation aims at solving the defects of extractive methods mentioned

above. It rewrites the source documents to preserve critical information and discard the irrelevant

message. And it rephrases the expression in the original documents as a human does. Hence the

output is linguistically fluent as well. Some problems can not be ignored in current abstractive

summarisation methods as well. For example, generation methods sometimes produce repetitive,

irrelevant or even incorrect text. So it often needs some supervision when applying in practice.

2.2.1 Transformers in Summarisation Tasks

Transformer has improved the state of the art of most NLP tasks in recent years. Some

transformer-based universal language models, like GPT-2 [Radford et al., 2019], could reach

human-level on several different tasks via fine-tuning. Therefore, in order to make further

progress, researchers have focused on developing dedicated models and pretraining methods for

downstream tasks, including text summarisation.

BART [Lewis et al., 2019] is a generalised pretraining method, which works particularly well on

Natural Language Generation (NLG) tasks. It corrupts the text with a noising function and then

learns a model to denoise the corrupted sentences. The model learns the relationship between

tokens and the context through the destruction-reconstruction process.

PEGASUS [Zhang et al., 2019] is specifically developed for the abstractive summarisation

task. It identifies sentences with high ROUGE scores - a common metric for measuring the

n-gram overlap between generated and reference summaries - as containing key information.

And then, it masks these important sentences, providing them to the model to reconstruct the

removed text. The model learns how to condense concise and accurate abstractive summaries

from long input documents in the process. It achieved state-of-the-art performance on all the 12

common downstream summarisation datasets. Although it has strong summarisation ability, the

repetitive token is a known tricky problem in its output.

10



2.2. AUTOMATIC TEXT SUMMARISATION

FIGURE 2.5. The noising methods of BART [Lewis et al., 2019].

FIGURE 2.6. The training method of PEGASUS [Zhang et al., 2019].

2.2.2 Timeline Summarisation

The Timeline Summarisation (TLS) task is usually regarded as a special type of summarisation

task. It does not only expect to generate precise summaries from the source documents but also

needs to extract accurate dates that important sub-events happen on. Thus, it is more difficult

compared to general summarisation tasks. Prior TLS methods mainly focused on producing

extractive summaries [Yan et al., 2011b, Nguyen et al., 2014, Martschat and Markert, 2018].

Although some works received good marks on some evaluation metrics like ROUGE. They still

inevitably suffered from the same problem that irrelevant, redundant and repeated information

is also copied along with the important information.

The direct solution is applying abstractive multi-document summarisation approaches in

the TLS task [Steen and Markert, 2019, Barros et al., 2019], because timeline summarisation

has some common ground with it on the number of input documents. Recent advances in multi-

document summarisation using transformers give us the opportunity to also improve timeline

11
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summarisation. However, few neural network-based models have been proposed. Because su-

pervised learning for TLS tasks requires reference timelines as supervision, which is usually

inadequate in both academic research and practice, researchers usually crowdsource producing

reference data to solve this problem. However, labelling such a summarisation task is extremely

expensive and time-consuming, considering the necessary expertise to capture important in-

formation of both time and events from source documents. Prior works have shown that over

3000 hours were required to evaluate the summaries of Document Understanding Conferences

(DUC) [Lin, 2004]. In Multi-document Summarisation, researchers have explored resolving the

shortage of reference data by heuristic-based methods and Unsupervised Learning [Rioux et al.,

2014, Ryang and Abekawa, 2012]. However, there is a huge gap between their results and the

performance of the state-of-the-art supervised learning methods. Motivated by it, Gao et al. [2018]

applied interactive learning to improve the performance of those prior works. It leveraged users’

preferences to improve the performance of the summariser, which does not depend on reference

data and is much easier to obtain. Inspired by these prior works, an interactive learning-based

timeline summarisation method is proposed in this thesis. Details will be presented in Chapter 3.

According to Ghalandari and Ifrim [2020], prior Timeline Summarisation methods can be

classified into three categories.

Direct Method processes the timeline summarisation task as a multi-document summari-

sation task. Summaries are composed of a small subset of sentences extracted directly from

the massive corpora. Currently, the direct methods proposed by Martschat and Markert [2018]

achieved state of the art.

Date-wise Method first selects notable dates [Binh Tran et al., 2013]. And then, summaries

will be generated for each date.

Event Detection Method identifies events as the basis of the following steps [Ghalandari and

Ifrim, 2020]. Each event will be assigned a date. And summaries will be generated from relevant

source documents.

2.3 Interactive Learning

Interactive Learning (IL) enables users to interact with the machine learning algorithm. Models

utilise the help of human interaction to achieve better performance and meet users’ requirements.

In the real world, sometimes, the problem is too complex to model mathematically. Even if the

mathematical model can be built, there is no guarantee that an analytical solution exists, making

traditional machine learning approaches inapplicable or futile. Interactive Learning aims to

develop human-in-the-loop artificial intelligence pipelines to solve such complex problems under

human guidance.
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2.3.1 Interactive Learning in Natural Language Processing

The linguistic quality evaluation of given text has always been a subjective problem. Hence it is

perplexing to quantify. Current evaluation metrics, like ROUGE [Lin, 2004], perplexity and BLEU

[Papineni et al., 2002] are mainly based on the term frequency and word distribution. Although,

they have been applied to evaluate many successful works and facilitated the development of

NLP, their drawbacks are still not to be neglected. Reiter [2018] did a structured review on BLEU

and drew the conclusion that it does not support most of Natural Language Generation tasks

except Machine Translation. All the metrics above can only evaluate whether the generated text

is describing the same object compared to the references. As an abstract concept that is hard to

model, the meaning of the text cannot be evaluated or quantified well. For example, "John beat

Sam" and "Sam beat John" are contradictory to each other. Nevertheless, either sentence will

receive a high ROUGE-1 score when using another sentence as the reference.

Without a doubt, introducing human evaluation in training as supervision helps solve the

problem. The advantage of human-computer-interaction is that human is capable of evaluating

abstract concepts like text meaning. If it can be integrated into the objective function, with enough

rounds of interaction, the system is expected to learn what aspects consist of high-quality output.

Thus, the model would be tuned towards better performance. Sokolov et al. [2016] proposed an

interactive NLP paradigm in 2016, which can learn from both numeric scores and preferences

over pairs of predictions. Learning from preferences significantly decreases the cognitive burden

for human evaluators.

Another important application of Interactive Learning in NLP is to solve the reference data

shortage problem. Gao et al. [2018] proposed an interactive multi-document summarisation

framework that did not rely on reference data to train. It collected pairwise preferences over

summaries from simulated users. Thus the efficiency issue of Interactive Learning was fixed as

well. Since the timeline summarisation task is similar to multi-document summarisation, the

interactive timeline summarisation method is worth exploring.

2.4 Reinforcement Learning

Reinforcement Learning (RL) is another machine learning paradigm besides Supervised Learning

and Unsupervised Learning. In RL algorithms, agents learn a policy through maintaining the

exploration-exploitation trade-off. Apart from following the current policy to received a current

best reward, it also attempts to maximise the reward function via exploring actions that haven’t

been tried yet. The policy is learned through a series of interaction with the environment. So it

does not depend on labelled data and can be applied to many complex scenarios as long as setting

up a proper environment. In this paper, RL is used to implement interaction between users and

the summarisation system.
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2.4.1 Reinforcement Learning Algorithms

Q-Learning [Watkins, 1989] manages to record all the policies that the agent has attempted

in a table. In each step of a trajectory, the agent enquires the Q-table and choose an action with

the best value. The algorithm then uses the reward for current action and discounted estimate

of optimal future value to update the Q-table. The update equation is also known as Bellman

Equation [Bellman, 1966].

Q(st,at)=Q(st,at)+α · (r t +γ ·max
a

Q(st+1,a)−Q(st,at))

Policy Gradient [Sutton et al., 2000] models the policy with a parameterised function of θ,

πθ(a|s). It targets at directly learning the policy. The reward is defined as the expected value of

the stationary states of the policy, and its gradient can be simplified for calculation so that the

Gradient Descent algorithm can be applied to find an optimal θ.

J(θ)= ∑
s∈S

dπ(s)Vπ(s)= ∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Qπ(s,a)

Actor-Critic [Mnih et al., 2016] is an improved version of Policy Gradient. The algorithm uses

a Critic to approximate the real value function since knowing it can assist in updating the policy.

In this way, the gradient variance is greatly reduced.

2.4.2 Reinforcement Learning-based Interactive Learning in Natural
Language Processing

Research on the intersection of RL and NLP has received some success. Song et al. [2020]

and Mesgar et al. [2020b] utilised RL algorithms to fine-tune a dialogue system. The system

learned to generate a response that is consistent with the simulated user’s persona. In Automatic

Summarisation, interactive learning is often applied to learn a reward function through the

interaction with users [Gao et al., 2018, 2019, Simpson et al., 2020]. An interesting point here

is that the user cannot provide the reward directly for the many episodes required to train the

model. So instead, we need an automatic reward function to tune the system to the user’s input.

Then we can do ’offline’ RL to train the model. So that users can indirectly supervise the RL

agents to learn a corresponding summary generation policy.

2.5 Clustering

Clustering is a sort of Unsupervised Learning task that involves the grouping of data points.

Giving a dataset, a clustering algorithm can classify each data point into a specific group that

share similar properties or features. It is a common technique for data analysis in the early stage.
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In Timeline Summarisation, clustering algorithms are often applied to detect events. During

the development of the event, specific sub-events will receive a lot of attention and reports. And

source documents describing the same event will be embedded in similar locations in semantic

space. Therefore, clustering algorithms can help detect sub-events by grouping documents that

describe the same sub-events. In addition, since we do not know the number of sub-events, the

clustering algorithm should determine the number of clusters by itself, which greatly limits the

choices. The following subsections introduce two common clustering algorithms that are suitable

for Timeline Summarisation tasks. We did some experiments to evaluate their performance on

the chosen dataset and select the more suitable one empirically to apply in our system, as shown

in 4.6 and 4.7.

2.5.1 Affinity Propagation

Affinity Propagation [Frey and Dueck, 2007] is an advanced graph-based clustering algorithm.

The main concept of it is passing messages through the connected data points. Unlike those

classic unsupervised clustering algorithms such as K-means [Lloyd, 1982], Affinity Propagation

does not require the number of clusters to be manually determined. Therefore, it can be applied

to process more complex and unstructured datasets compared to K-means.

Firstly, a symmetric matrix S is initialised to quantify the similarity between each pair of

data points xi and x j. The diagonal of S controls how likely the corresponding point is to be an

exemplar (the centroid of a cluster). All the elements in the diagonal are set to be the median of

all the similarities. In each iteration step, the algorithm updates a responsibility matrix R and

an availability matrix A as follows until all cluster boundaries are stable.

r(i,k)= s(i,k)−maxk′ ̸=k{a(i,k′)+ s(i,k′)}
a(i,k)= min

(
0, r(k,k)+∑

i′∉{i,k} max0, r(i′,k)
)

, for i ̸= k

a(k,k)= ∑
i′ ̸=k max0, r(i′,k) , for i = k

2.5.2 Markov Clustering

Markov Clustering [Van Dongen, 2000] is inspired by computing the stable distribution of random

walks on a undirected graph. It can decide the number of clusters without specification in advance

as well.

The algorithm takes an adjacency matrix as input. To guarantee the convergence, the graph

is modified by adding a self-loop to each vertex, eliminating the effects of exponent parity. It

keeps calculating the power matrix of the transition matrix P, which is called Expansion.

Pe =
e∏

i=1
P

15



CHAPTER 2. TECHNICAL BACKGROUND

However, for a Markov Chain, its stable probability distribution has nothing to do with the

starting point, which does not reflect the distinction well. To strengthen the connection between

close vertex and weaken the connection between loose vertex, it adds a Inflation step.

PΓi j =
(Pi j)r∑n

k=1 (Pk j)r

Expansion ensures the information flow traverses the graph. And Inflation contributes to

each cluster distinguishing itself from other clusters. The two steps process alternately until the

matrix converges.
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METHOD

This chapter introduces the structure and implementation of the proposed Reinforcement

Learning-based Interactive Timeline Summarisation System.

3.1 Baseline

This project mainly follows the state-of-the-art event detection method’s workflow, CLUST

[Ghalandari and Ifrim, 2020], but replaces some of the major components. CLUST processed the

extractive timeline summarisation task in two stages. Its original workflow is described as below:

1. The first stage is to detect and extract the important dates and events from source docu-

ments.

a) Using an advanced tool Heideltime [Strötgen and Gertz, 2013] to tag all the dates in

raw source documents.

b) Using TF-IDF vector to represent each document and clustering them by Temporal

Markov, which is a modified version of Markov Clustering [Van Dongen, 2000] with

temporal constraints. Each cluster contains articles published in similar dates with

close contents so that sub-events are identified.

c) Assigning a date that is mentioned for the most times in the source documents for

each cluster.

d) Ranking all the clusters by its importance, which is proportion to the mentioned times

of the assigned dates in each cluster.

2. In the second stage, the system runs a state-of-the-art extractive Multi-document Summari-

sation method, CentroidOPT [Ghalandari, 2017], to generate summaries for each cluster in
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Raw Input Annotated Output
<?xml version="1.0"?>
<!DOCTYPE TimeML SYSTEM "TimeML.dtd">
<TimeML>

The firm ’s shares continued to fall
on Monday , after previous trad-
ing had seen about $ 20bn wiped
from its market value since the ac-
cident .

The firm ’s shares continued to fall on
<TIMEX3 tid="t1" type="DATE" value="2010-
05-03">Monday</TIMEX3> , after previous trading
had seen about $ 20bn wiped from its market value
since the accident .

UK markets were closed on Mon-
day , but BP ’s Frankfurt-listed
shares opened 8 % lower before
clawing back some of the losses .

UK markets were closed on <TIMEX3
tid="t4" type="DATE" value="2010-05-
03">Monday</TIMEX3> , but BP ’s Frankfurt-listed
shares opened 8 % lower before clawing back some
of the losses .
</TimeML>

Table 3.1: An example using Heideltime to annotate a news article published in 3rd May 2010.

order of its importance. All the summaries will be ordered by date to form a timeline. If two

summaries have the same assigned date, the later generated one (with less importance)

will be discarded.

The following subsections introduce some of the original tools in CLUST, which are still

preserved in my system.

3.1.1 Date Tagging

Tagging unstructured date expression in the raw text has always been a complex problem. It

does not only require the system to recognise the string including day, month and year but also

need to process the relative expression of time tags, e.g. Monday, yesterday. The advanced time

tagging tool, Heideltime [Strötgen and Gertz, 2013], can solve this problem conveniently, thus

preventing us from reinventing the wheel.

Heideltime is a multilingual temporal tagger. It can extract temporal expression and nor-

malise them into TIMEX3 [Saurí et al., 2006] format, as shown in Table 3.1. Therefore, after

all the documents are tagged, date expressions can be extracted by analysing the annotated

document via XML Tree tools.

3.1.2 Event Detection

Another pivotal step in the first stage is to extract events from a heap of news articles. Undoubt-

edly, articles describing the same event should be mapped into close points in the semantic space.

Because of this, the clustering algorithm can be applied to group these articles so that events
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can be detected. The number of events should be determined automatically instead of being

set manually. Among all the clustering algorithms, Markov Clustering [Van Dongen, 2000] and

Affinity Propagation [Frey and Dueck, 2007] are the most advanced and widely applied. So I

tested their performance on the chosen dataset to select the more proper clustering algorithm for

the task, whose result is shown in 4.4.2.

In addition, there should be some conditions on the clustering algorithm. Articles published

close to each other are more likely to describe the same event. In contrast, articles whose publish

dates are far from each other, even if they are close in semantic space, should be considered to

describe similar but different events. On top of clustering results, all the clusters will be ranked

under a specific metric that quantifies the importance of each event.

3.2 The proposed method’s workflow

In this project, the two-stage workflow is kept. However, some components are replaced by more

advanced tools to improve performance. And the interaction process is integrated with the system

as the main augmentation. The whole workflow is shown in Figure 3.1.

Figure 3.1: The workflow of the proposed Timeline Summarisation system [Ye and Simpson,
2021].

Firstly, instead of using TF-IDF, each sentence in the documents will be embedded by Distil-

RoBERTa [Reimers and Gurevych, 2019] into a 768-d dense vector. Then the average vector of all

sentences is computed to represent the corresponding document. Therefore, each document is

mapped into a 768-d dense vector as well. Dense vectors can capture more information compared

to bag-of-words models, thus improving the performance of clustering algorithms.
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To further improve the clustering results, Markov Clustering is replaced by Affinity Propaga-

tion [Frey and Dueck, 2007], which is more suitable for clustering high-dimensional data with

multiple categories.

As for the summarisation stage, to solve the defects of extractive methods, the former extrac-

tive summariser is substituted by an abstractive summariser. It works the same way as before,

running on clusters by order of their importance, producing high-quality abstractive timelines

until their length reaches a limit, which is manually set to be the same as the corresponding

reference timeline’s length. Every time the draft timeline is generated, the user can review it

and respond by providing keywords that should be focused or neglected and expressing prefer-

ences over the current and earlier version. The interaction will be used to update the reward

function. And the Reinforcement Learning algorithm will fine-tune the summariser to fit the

user’s demands.

3.3 Reinforcement Learning-based Interactive Fine-tuning

The innovative part of the proposed timeline summarisation system is introduced in this section.

The highlight of this part is that we defined an automatic reward function that can be updated

by the user’s input. Therefore, the interaction process enables the system to run a Reinforcement

Learning algorithm, which has the consistent goal with the user, to tune the summariser, so

that the output timelines can be tailored according to users demands. Furthermore, only a few

interaction rounds are required to adjust the content of the timeline, which promises the system’s

efficiency.

3.3.1 Notations

In this section, we denote the generated summary as S. Tokens in the summary S are noted

as ti, i.e., S = {t1, . . . , t|S|}. The given feedback is marked as M, N and P, representing required

keywords, undesirable keywords and the preference over the prior draft versions, respectively.

The cluster is noted as C, and all documents in the cluster are marked as D = {D1, . . . ,D|C|}. All

the vectorized text is marked with an arrow on the top of it, such as S⃗ and D⃗ i. l represents the

length of the reference timeline. The number of Interactive Learning rounds and the number of

Reinforcement Learning episodes are noted as n and m.

3.3.2 Interaction

In this project, each document collection A is regarded as an independent timeline generation

task. So every time processing a new task (a new bunch of source documents), the system will be

re-initialised and cluster the source documents. The summariser will run on the top-l important

clusters to form a timeline. The Interactive Learning process is shown in Figure 3.2 and is defined

as follows.
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1. Enumerate the top-l important clusters. Generate a summary for each cluster as an episode

of Reinforcement Learning.

2. Compute the reward, value and loss functions according to the Algorithm 1. Back propagate

the gradient and optimise the weights of the actor and the critic.

3. Present the draft timelines to the user. Receive the user’s feedback and update the reward

function. Start another round of Interactive Learning.

FIGURE 3.2. The interaction process of the system [Ye and Simpson, 2021].

In this process, users are allowed to preview draft timelines and provide different types of

feedback, such as inputting keywords that must be included or excluded. Currently, the preference

against the previous version of the timeline is acceptable to the system as well. Users can input 0

or 1 to give a preference label to two summary versions. Keywords represent the specific details

that the user expects in the final output, while the preference can guide the system to learn some

abstract and conceptual advantages which are contained in the preferred version. This feedback

enables the system to renew its evaluation system, the reward function in the reinforcement

learning phase. Then the summariser can be fine-tuned through several Reinforcement Learning

episodes and generate a new timeline summary to start another round of interactive learning.

The system does not require many rounds of interaction to generate tailored timelines for the

user because the Reinforcement Learning process inside the Interactive Learning involves many

episodes and is quite efficient.

3.3.3 Reinforcement Learning Phase

The feedback received in the interaction phase will be used to fine-tune the summarisation

model. However, this human-readable feedback cannot be utilised directly by computer programs.

Therefore, Reinforcement Learning is applied in this stage as it is capable of utilising the feedback

without complex processing.
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FIGURE 3.3. A view of the proposed Reinforcement Learning method [Ye and Simpson,
2021].

In general, a Reinforcement Learning algorithm manages to learn a policy by which intel-

ligent agents could receive the highest reward through long-term interaction with the given

environment. In my project, critical components of the Reinforcement Learning method are

defined as below.

Agent, Action and State In Reinforcement Learning, agents are responsible for perceiving

the state and properly acting to it. When applying Reinforcement Learning methods on Natural

Language Generation tasks, the language model is naturally fit to be defined as the agent because

the text generation task is usually processed as a sequential classification task. The procedure

of the model choosing the next token can be regarded as making an action. In this way, the

vocabulary size decides the dimension of the action space. And the state space is hence discrete.

Its dimension is usually manually set as 512, which is the longest length of the output. In this

project, PEGASUS [Zhang et al., 2019] is chosen because of its state-of-the-art summarisation

ability. It will run on the top-l important clusters to learn how to adjust the output probability

distribution to fit the user’s demand.

Policy In Reinforcement Learning algorithms, agents follow the learned policy to act. In NLG

tasks, the learned policy is often presented as a conditional possibility distribution over all

tokens. In this project, the policy is constructed and calculated by the neural language model,

Transformer [Vaswani et al., 2017]. The last hidden state computed by the last decoder layer is

often regarded as a contextual tensor. In order to predict the next token, there is a linear layer

on the top of the last decoder layer mapping the last hidden state to the output logits. Then

the probability distribution over all tokens can be computed by a softmax layer so that we can
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generate the next token according to the distribution. To maintain the exploration-exploitation

trade-off, we sample the next token from the distribution rather than select the highest possibility

one. Furthermore, when using Reinforcement Learning to fine-tune a transformer, instead of the

whole model, it is often the linear layer’s weights (also called the language head) that will be

tuned, which is highlighted in red in Figure 3.4. We process the fine-tuning in the same way in

the proposed system. The reason is various. First, we chose PEGASUS_Multi-News [Zhang et al.,

2019] as our basis model, which has been tune on multiple news datasets that are similar to our

corpora. Some prior works shown that the benefit of complete fine-tuning is not always large

[Peters et al., 2019]. Some other works received success on only fine-tuning the last linear layer

[Mesgar et al., 2020a]. In addition, fine-tuning the whole model is accessible but quite expensive.

Therefore, we only tune the language head of the Transformer.

FIGURE 3.4. The system learns a new policy via Reinforcement Learning.

Reward Our model is expected to generate factually consistent, topically coherent and linguis-

tically fluent timeline summaries. Thus, A compound reward function is proposed to quantify the

evaluation of these various aspects of the system output. The reward function is consists of 4

sub-reward functions.

• R1 contributes to the factual consistency of the generated timeline summaries. Consider

the agent is processing the cluster C, of which the source document set is D and the

corresponding output is S. The sentences in the system output S and will be embedded into

768-d dense vectors respectively by a sentence-transformer [Reimers and Gurevych, 2019],

paraphrase-DistilRoBERTa-v1. And the whole output will be represented by the average
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vector of these sentence vectors. Then, each source document in D will be processed in the

same way and represented by its corresponding average vector D⃗ i. The cosine similarity

is calculated between each pair of S⃗ and D⃗ i. The average cosine similarity is taken as

the reward of factual consistency. Prior works shown that cosine similarity between two

contextual vectors provided a reliable measure for factual consistency [Zhang, 2019].

R1 =
∑

D i∈D
cos(S⃗, D⃗) (3.1)

• R2 enforces the system to generate summaries that are topically coherent with the user’s

feedback. It updates when the user sends new feedback to the system. It is a weighted sum

of three terms. The first term of P is the quantified score generated from the preference

over the current output and prior versions. And score(·) is a ranking function learned

from a group of pairwise preference labels via a random utility model [Thurstone, 2017,

Mosteller, 2006]. The second and the last term are the sub-rewards of topical coherence

between the system output S and the key phrases that should be included and excluded,

marked as M and N respectively. They take the cosine similarity as rewards, the same as

R1. w1,w2,andw3 are weights which are manually chosen and sum up to 1.

R2 = w1 · score(S,P)+w2
∑

mi∈M
cos(m⃗i, S⃗)+w3

∑
ni∈M

cos(n⃗i, S⃗) (3.2)

To be more specific about the score function, Thurstone [2017] proposed a random utility

model:

p(P(s1, s2)| f (s1), f (s2))=Φ(z)

where P(·) is the preference label given by the user over two summaries s1 and s2, Φ is the

cumulative distribution function of the standard normal distribution which is also known

as a probit likelihood, f is the score function to learn from the preference label set P, and

z = f (s1)− f (s2)p
2σ2 . For brevity, we denote the score function as score(S,P) in equation 3.2.

• R3 is the linguistic fluency score. It is used to evaluate the text quality of the output as

a summary. N(·) is the negative log-likelihood loss, calculated by the original PEGASUS

without any tuning. α is the maximum of N, which is used to normalise the sub-reward.

R3 = α−N(S)
α

(3.3)

• R4 evaluates the degree of unigram repetition in the generated text. As a known fact,

Reinforcement Learning agents in NLG tasks sometimes learn to generate repeated tokens

to trick for high rewards. Therefore, this sub-reward function is necessary to penalise the

repeated unigrams.
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R4 = 1− #repeated_tokens
#tokens

(3.4)

R1 and R2 focus on the content of the output. They encourage the system to generate

summaries containing the right and important information, while R3 and R4 contribute to the

language quality of the text. Therefore, our expectation of the system is transformed into the

reward function of the Reinforcement Learning, computed as Equation 3.5.

R = γ1R1 +γ2R2 +γ3R3 +γ4R4 (3.5)

Information redundancy is not considered in the proposed reward function. Because the output

text length is limited under 256 words. Text length limits redundancy because the summary has

to use the limited number of characters well to ensure factual consistency. However, it is still to

explore the influence of the information redundancy sub-reward function.

Algorithm In Reinforcement Learning, policy approximation algorithms are widely applied.

They often quantifies the performance of the system as a scalar J(θ), where θ is the parameter

vector of the policy function π(a|s,θ). Due to that, Reinforcement Learning methods are seeking

to maximise the performance of the system, θ can be updated by optimisation methods, such as

gradient ascent:

θt+1 = θt +αà∇J(θt) (3.6)

Policy parameterization has several advantages comparing to action-value methods [Sutton

and Barto, 2018]:

1. Parameterizing policies can approach deterministic policies, whereas there is always an ϵ

probability to choose random actions in the ϵ-greedy methods.

2. Parameterizing allows the policy to be stochastic.

3. Sometimes the policy function is simpler to approximate than the action-value function.

4. Policy parameterization helps to inject prior knowledge into the system.

Actor-critic [Mnih et al., 2016], a policy method, is applied to enhance the summaries’

quality of all the aspects mentioned above in this project. Differing from the general policy

gradient methods, actor-critic learns approximations to not only the policy function, but also

the state-value function as well. It introduces the advantage function δ (Equation 3.7) to reflect

whether the value of an action is better or worse than the average level under the current state.

Optimising the parameters θ helps avoid choosing those actions with negative influence so that it

reduces the variance of the policy distribution. Although value approximation cannot come along

without bias, the algorithm can be extended to an n-step return function version to modulate its

extent. The pseudo-code of the one-step actor-critic method is shown in Algorithm 1 below.
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δ= R+γv̂(S
′
,w)− v̂(S,w) (3.7)

Algorithm 1 One-step Actor-Critic
Input: a differentiable policy parameterization π(a|s,θ)
Input: a differentiable state-value function parameterization v̂(s,w)

Parameters: Learning rate αθ > 0, αw > 0
Initialise θ and w
repeat

Initialise the first state S
I ← 1
while S is not terminal do

A ∼π(·|S,θ)
Take the action A, observe the new state S

′
and the reward R

δ← R+γv̂(S
′
,w)− v̂(S,w)

w← w+αwδ∇v̂(S,w)
θ← θ+αθ Iδ∇ lnπ(A|S,θ)
I ← γI
S ← S

′

end while
until no episode remains

In this project, I choose PEGASUS-Multi_news [Zhang et al., 2019] as the actor, because

it is pre-trained on Multi_news dataset [Fabbri et al., 2019] which is the closest version to my

experiment datasets among all the available pre-trained weight files. As for the critic, it should

receive a 512-d state vector which contains the token indexes in each position and output a scalar

as the prediction of the value function. Here we use a 3-layer fully connected neural network

with ReLU activation function as the approximation of the value function, which can be written

as below:

v̂(st)=W2a(W1st +b1)+b2

where a(·) is the ReLU funtion. Its architecture is shown in Figure 3.5. The Reinforcement

Learning algorithm has two aims:

1. To tune part of the weights of PEGASUS-Multi_news to adjust the probability distribution

to generate needed outputs.

2. To train a nueral network to approach an evaluator for the action at and the state st at the

timestep t.
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FIGURE 3.5. The architecture of the critic.

Training Now all the necessary components of a Reinforcement Learning algorithm are well

defined. The next step is to define the training process.

For each cluster, the system will sample m summaries over its document collection. Each

summary is an episode. The Reinforcement Learning algorithm traverses all episodes to learn a

better policy. Here is the specific learning process:

• The actor predicts the next token according to the input documents and the current state S

(previously predicted output). The new state S
′
is concatenated by the current state and

the predicted next token.

• The environment returns the reward of the new state R. And the critic computes the

approximate value of the new state ˆv(S′).

• The advantage of current time step can be calculated by Equation 3.7.

• The loss function and its gradient can be computed to optimise the actor and the critic. The

policy is updated.

In practice, the optimisation can be done at one time at the end of the episode to reduce

approximation bias in some degree. This completes the presentation of my TLS method, which

builds on the method of Ghalandari and Ifrim [2020] and introduces abstractive summarisation

with Pegasus. The next chapter will present the evaluation of this approach.
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4
EVALUATION

4.1 Datasets

Recall the difficulties of generating timelines mentioned in 1.1.2 and the challenges mentioned

in 1.2, it is hard to build a timeline summarisation dataset from scratch, even if considering

crowdsourcing reference timelines. After reading several related paper, I choose two benchmark

datasets built by prior works, Timeline17 [Tran et al., 2013, Binh Tran et al., 2013] and Crisis

[Tran et al., 2015] 1.

Timeline17 consists of 19 manual-created timelines and their associated news articles belong-

ing to 17 news topics. Each timeline and its news articles belong to one source news agency, such

as BBC, Guardian, CNN and FoxNews. Timelines only published by renowned news agencies

with exact dates, like 11 Feb 2011, are selected. Finally, 19 different timelines in different topics

make up this dataset.

Crisis is made up of 4 crisis topics with respect to Egypt, Libya, Yemen and Syria. It was

automatically collected by using Boilerpipe toolkit and some cleaning rules on top. Timeline

summaries are written by experts from famous news agencies.

4.1.1 Dataset Characteristics

Ghalandari and Ifrim [2020] have done some basic investigation about the statistic characteristics

of the two datasets, as Table 4.1, 4.2 and 4.3 shown.

1The two datasets can be downloaded here.
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Dataset #Topics #Timelines Ave. #Docs Avg. #PubDates Avg. Duration (days)
Timeline17 9 19 508 124 212

Crisis 4 22 2310 307 343

Table 4.1: Statistic characteristics of the two datasets (i), cited from [Ghalandari and Ifrim, 2020].

Dataset Avg. Ref. Timeline Length Avg. Comp. Ratio (dates) Ave. Comp. Ratio (sents)
Timeline17 36 0.0117 0.43

Crisis 29 0.0005 0.11

Table 4.2: Statistic characteristics of the two datasets (ii), cited from [Ghalandari and Ifrim,
2020].

Dataset Avg. Date Cov. (published) Avg. Date Cov. (mentioned)
Timeline17 81% 93%

Crisis 90% 96%

Table 4.3: Statistic characteristics of the two datasets (iii), cited from [Ghalandari and Ifrim,
2020].

In these tables, #PubDates refers to the number of days that an article was published in

collection A. The Comp. Ratio (sents) is the number of sentences in golden timelines divided by

the total number of sentences in A. And The Comp. Ratio (dates) w.r.t. the number of dates in

ground-truth timelines divided by #PubDates. Date Cov. is counted by using publication dates

in A, or by mentioned dates in articles of A. Mentioned dates have a higher cover rate than

published dates on both datasets, implying making use of these publication dates. Timeline17
has longer and more specific reference timelines comparing to CRISIS, meanwhile CRISIS has

much more source documents.

4.1.2 Experimental Settings

To better comparing the proposed system and the baseline and eliminate the influence of pre-

processing methods, I keep the main experimental settings the same as the baseline, CLUST

[Ghalandari and Ifrim, 2020].

• Each dataset is splited into multiple topics with one reference timeline. If a topic has

multiple reference timelines from different sources, it will be regarded as multiple different

tasks. The final results in the evaluation are the averages over tasks.

• Two tasks in Timeline17 are picked out as the development set to tune the hyperparameters

manually.

• Articles in the collection A are removed if their publication dates are either earlier than

the start date of the reference timeline or later than the end date.
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• Headlines of articles are not used.

• There is a constraint for the output size: The system timelines’ length are no longer than

the reference timelines’.

4.2 Metrics

4.2.1 ROUGE

ROUGE [Lin, 2004] is the most widely applied evaluation metric in Natural Language Generation

tasks, especially in the automatic summarisation field. Its basic idea is to compute the percentage

of n-grams that appear both in the system and reference summaries, i.e. the recall between the

system and reference summaries, which is calculated as Formula 4.1.

ROUGE−N =
∑

S∈Ref erenceSummaries
∑

gramn∈S Countmatch(gramn)∑
S∈Ref erenceSummaries

∑
gramn∈S Count(gramn)

(4.1)

ROUGE-1 and ROUGE-2 are the most common metrics in all types of ROUGE-like evaluation

metrics. They are concerned about how much relevant information is contained in the system

summaries without considering the rate of correct information in generated timelines. Because

many prior works focused on extractive timelines rather than abstractive timelines and all the

information was copied from input documents, the precision did not worth any concern unless

the source was unreliable. However, in this project, we manage to utilise an abstractive neural

summariser to generate timelines instead of copying sentences into output. The ideal output

will require both high recall and high precision. Thus ROUGE-N F1 becomes the most suitable

metrics to apply in the project.

4.2.2 Adapted ROUGE for Timeline Summarisation Evaluation

Although, as a special automatic summarisation task, it is natural to choose ROUGE as the

evaluation metric, the temporal information inside timelines is neglected by them, which should

definitely be not since it is as important as the content of the summaries. Therefore, some

ROUGE-like metrics, which are introduced below, are adapted to Timeline Summarisation tasks

to evaluate the rigorousness of temporal aspects and integrate it with the content evaluation

[Martschat and Markert, 2017].

Concatenation-based ROUGE applies ROUGE to timelines evaluation brutally. It discards

all the temporal information of the timelines to be evaluated [Takamura et al., 2011, Yan et al.,

2011a, Nguyen et al., 2014, Wang et al., 2016]. It still does not fix the issue of penalising different

dates of the same events.
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Date-agreement ROUGE is another brutal evaluation metric but with more principles. It

only considers the dates that appeared in the reference timelines and take the average ROUGE

score of the corresponding summaries as the result. If there is no date matching the reference

date, a 0 will be returned. It fixes the date evaluation issue in some way, but the penalisation is

too sharp. For those long-term events, the system may assign slightly different dates compared

to ground-truth dates to the sub-events. This kind of slight mistake should not receive 0 as its

evaluation. Therefore, a more flexible metric is necessary.

Alignment-based ROUGE makes efforts to compare the same and similar events based on

the idea of aligning the dates. It manages to find the best mapping that assigns each date in the

reference timeline to a date in the system output. The best mapping will lead to the minimal

error or date distance which is defined as Formula 4.2. The ROUGE score is then computed on

aligned summaries and averaged as the final result.

cdr ,ds = 1− 1
|dr −ds|+1

(4.2)

Alignment-based ROUGE strikes a balance between date accuracy and flexibility. So it is

the best evaluation metric for this project. Moreover, according to the issue I mentioned about

only applying recall as the evaluation metric in 4.2.1, it is Alignment-based ROUGE F1 that

perfectly suits to evaluate the abstractive timelines.

4.3 Simulated Experiments

The interactive timeline summarisation system can retrieve key dates and information from

source news articles and generate tailored timelines that are consistent with the user’s interests.

Although there is adapted ROUGE to evaluate the timelines’ content, the interaction effect is

still too ambiguous to quantify. Therefore, we design a simulated experiment and manage to

simulate the interaction to reflect its outcome via adapted ROUGE scores.

4.3.1 Simulated Interaction

The essential part of the interaction simulation is to provide keywords and preferences to the

system like a real user. Therefore, we applied TF-IDF on each summary. Words with top-k high

TF-IDF value will be collected as keywords that should appear in the output and fed to the

system in the interactive learning process. Meanwhile, words with top-k low TF-IDF value will

be treated as keywords that should be excluded. And these keywords are randomly fed to the

system in an interaction round.
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4.4 Results

4.4.1 Reproducing the Results of Prior Work

Due to the keywords being extracted from the reference timelines and the chosen evaluation

metric, adapted ROUGE is based on counting n-gram appeared in both source documents and

output. The generated timelines should have a higher rouge score than baselines. So the first

step is to reproduce the baseline. Since the workflow of this system mainly follows CLUST

[Ghalandari and Ifrim, 2020], and it is the most recent published state-of-the-art work of this

field, here I choose it to be the baseline as well for comparison.

We reused its code2 and tested its performance in my local environment. The baseline only

selects summary sentences from the first k sentences in each source document. Although the

system aims at generating abstract timeline summaries, it is still worth exploring the parameter’s

effects on the system performance. Because the summariser has a limited length on input, so

considering the average length of sentences in the datasets, we only test k from 4 to 10 and the

whole document.

Dataset k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 alldoc
T17 0.0692 0.0728 0.0733 0.0733 0.0742 0.0755 0.0743 0.0767

Crisis 0.0575 0.0596 0.0591 0.0616 0.0613 0.0613 0.0631 0.0548

Table 4.4: Replicated results evaluated by Alignment-based ROUGE-1 F1 score.

Dataset k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 alldoc
T17 0.0163 0.0167 0.0168 0.0176 0.0178 0.0185 0.0172 0.0172

Crisis 0.0111 0.0128 0.0119 0.0133 0.0134 0.0138 0.0149 0.0112

Table 4.5: Replicated results evaluated by Alignment-based ROUGE-2 F1 score.

From Table 4.4 and 4.5, the performance of the baseline, CLUST, shows that the first 10

sentences can draw an outline of the event. It implies that even if given long source documents,

the proposed system has the potential to generate high-quality timelines only using the first 10

sentences, which fix the issue that the input document is too long for a transformer’s tokenizer to

embed.

4.4.2 Clustering Analysis

In this project, the workflow still follows the prior state-of-the-art work, CLUST, but there are

some significant changes made to improve the performance aside from integrating the interaction

process. As mentioned in 3.2, when detecting events, I replaced the Temporal Markov with

2The code repository is here.
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Affinity Propagation along with substituting the word embedding method, DistilRoBERTa for

TF-IDF. The relevant characteristics of their performance are shown in Table 4.6 and 4.7.

Dataset Tempral Markov Affinity Propagation
Timeline17 148.059 50.897

Crisis 7997.250 3713.937

Table 4.6: The average number of clusters obtained by different methods.

Dataset Tempral Markov Affinity Propagation
Timeline17 38.684 29.171

Crisis 66.41 45.37

Table 4.7: Average timeline length generated by different approaches.

Dataset Tempral Markov Affinity Propagation
Precision Recall F1 Precision Recall F1

Timeline17 0.482 0.418 0.447 0.519 0.294 0.376
Crisis 0.275 0.275 0.275 0.378 0.286 0.326

Table 4.8: Average precision, recall and F1 for date selection.

Temporal Markov generated way more clusters than Affinity Propagation. Due to the system

only summarising the top-n important clusters, the type of summarisers does not affect the

length of the generated timelines. Therefore, comparing the average cluster size and the average

timeline length, Affinity Propagation gave the clustering results more proper granularity. Because

the number of input documents is constant, clustering results with too small granularity means

that source documents describing the same sub-event are split into several groups. According

to the workflow defined previously in 3, some of the summaries will be discarded. It will result

in loss of information for some single sub-events, i.e., those sub-events are not well detected.

And according to Table 4.8, Affinity Propagation has a higher precision on date selection, which

means that Affinity Propagation is more capable of precisely identifying important dates rather

than selecting a list of dates to cover them. Therefore, Affinity Propagation is more suitable for

detecting events in given source documents.

4.4.3 Summarising without Reinforcement Learning

Another important modification is that we introduced a neural summarisation model, PEGASUS

[Zhang et al., 2019], to generate abstractive timelines. To verify its summarisation ability, we

tested its performance of summarising different first-k sentences of source documents. The results

are shown in Table 4.9 and 4.10.

In the two tables above, M_PGSS represents running PEGASUS on the clusters of Tem-

poral Markov, and AP_PGSS means feeding the clusters of Affinity Propagation to PEGASUS.
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Dataset k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 alldoc

CLUST T17 0.0692 0.0728 0.0733 0.0733 0.0742 0.0755 0.0743 0.0767
Crisis 0.0575 0.0596 0.0591 0.0616 0.0613 0.0613 0.0631 0.0548

M_PGSS T17 0.0795 0.0784 0.0811 0.0823 0.0796 0.0794 0.0807 0.0721
Crisis 0.0422 0.0476 0.0396 0.0390 0.0383 0.0374 0.0373 0.0330

AP_PGSS T17 0.0787 0.0818 0.0829 0.0802 0.0796 0.0786 0.0731 0.0718
Crisis 0.0474 0.0512 0.0488 0.0487 0.0513 0.0500 0.0493 0.0468

Table 4.9: Replicated results evaluated by Alignment-based ROUGE-1 F1 score.

Dataset k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 alldoc

CLUST T17 0.0163 0.0167 0.0168 0.0176 0.0178 0.0185 0.0172 0.0172
Crisis 0.0111 0.0128 0.0119 0.0133 0.0134 0.0138 0.0149 0.0112

M_PGSS T17 0.0182 0.0172 0.0182 0.0194 0.0160 0.0185 0.0156 0.0137
Crisis 0.0079 0.0090 0.0092 0.0076 0.0073 0.0067 0.0071 0.0055

AP_PGSS T17 0.0162 0.0178 0.0195 0.0181 0.0176 0.0167 0.0156 0.0122
Crisis 0.0090 0.0119 0.0098 0.0095 0.0102 0.0090 0.0096 0.0087

Table 4.10: Replicated results evaluated by Alignment-based ROUGE-2 F1 score.

The highest scores are shown in boldface. On dataset Timeline17, PEGASUS with Affinity

Propagation achieved the highest score when k = 6. However, on dataset Crisis, M_PGSS and

AP_PGSS perform much worse than CLUST. And the maximums of Alignment-based ROUGE1

and ROUGE2 are both achieved by CLUST when k = 10. It’s because that Crisis has much more

documents for each task. The input vector must be truncated, and information in the back of

the document collection will be discarded. This also explains the decreasing trend of the two

PEGASUS methods.

According to the results, it can be told that when the source document collection is not

extremely large, PEGASUS is a better summariser compared to the original applied extractive

summarisation method CentroidOpt [Ghalandari, 2017].

4.4.4 Simulated Reinforcement Learning-based Interactive Timeline
Summarisation System

Simulated RL-based Interactive
Timeline Summarisation

Timeline17 Crisis
AR1 F1 AR2 F1 AR1 F1 AR2 F1

Round=1 0.0811 0.0184 0.0434 0.0088
Round=2 0.0832 0.0193 0.0460 0.0093
Round=3 0.0799 0.0212 0.0489 0.0113

Table 4.11: Results of simulated Reinforcement Learning-based interactive timeline summarisa-
tion system (k = 6). Round represents how many times that the agent sampled an episode from
each cluster. Each round means that the agent learned multiple episodes over all clusters.
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Table 4.11 tells that the Reinforcement Learning algorithm succeeds in improving the perfor-

mance of the timeline summarisation system on two benchmark datasets. It even outperformed

CLUST on Timeline17 under both metrics. Although the system still performed worse than

CLUST on Crisis, it did have improvement compared to its basis model, especially for the

Alignment-based ROUGE2 F1.

The system had a huge increase of Alignment-based ROUGE2 F1 on both datasets, which

means that keywords extracted from the reference timelines tuned the summariser’s policy. The

Reinforcement Learning algorithm was working towards the goal we set in each interaction time.

So those phrases appear more along with the episode increases.

As mentioned in 2.3.1, high ROUGE scores only mean that the system output and the

reference text contain the same information nuggets. It still needs extra efforts to judge whether

the two are supporting or contradicting each other in meaning. So here we take some samples

from the data which are shown in Figure 4.1 and 4.2.

FIGURE 4.1. Some generated timeline examples from the news topic, Haiti earthquake
(i).

Text worthy of attention is highlighted in different colours in the two figures. With episodes

increasing, the timelines pay more attention to reporting victims, relief workers and rescue teams

than celebrities in the disaster, which is more important to readers. And it can be found that the

summariser learned a certain sentence pattern, As the scope of the Haiti disaster becomes clear,

which implies this sentence may contain multiple keywords and have a high reward, thus being

generated over and over again in the output.

Another exciting finding is that some format control characters that were not filtered out

when building the dataset contaminated the first version of the output. However, with more

rounds of learning, those characters are abandoned. And the system timeline seems to be highly

fluent.
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FIGURE 4.2. Some generated timeline examples from the news topic, Haiti earthquake
(ii).

With further exploration, we found that the agent sought a high reward by various means,

which made the weights of the sub-reward functions particularly important. We tested several

settings of sub-reward weights, as shown in Table 4.12. For example, we set r2 = 1 and r1,3,4 = 0.

The system was tuned to generate a keyword sequence instead of a fluent sentence. And we

found that r3 should be pretty small, or the summariser will learn to generate repeated ’-’. The

reason is that the ’-’ sequence receives a zero-like loss in PEGASUS, which results in very a high

linguistic fluency reward R3 even if it is not a sentence.

Weights Output
[r1, r2, r3, r4]= [0,1,0,0] ’- workers workers workers workers workers workers. . . ’

[r1, r2, r3, r4]= [0.3,0.3,0.15,0.25] ’- - - - - - - - - - - - - - . . . ’

Table 4.12: Different reward weights and corresponding output.

4.4.5 Run time and Hyperparameters

CPU GPU RAM OS
Intel(R) Xeon(R) CPU @ 2.20GHz NVIDIA Tesla P100 13GB Ubuntu 18.04.5 LTS

Table 4.13: Experimental environment (Google Colab Pro).

The proposed system involves several different neural network models, such as sentence-

BERT and Transformer. So, comparing it to the baseline, our system requires a GPU to finish

the tensor computation and much more RAM to store the neuron variables. When running our

system on Google Colab Pro (Environment is shown in Table 4.13), it consumes about 2 minutes
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to generate a sample on a cluster. The total time that running the system would consume depends

on the size of input document collection and some hyperparameters.

The main hyperparameter affecting running time is the number of episodes, which is tested

in the last subsection. Other hyperparameters contribute to the system performance in different

ways, as described in previous sections. All hyperparameters are listed in Table 4.14.

Hyperparameter Value Description

state_size 512
The maximum length of a
single generated summary

episodes 2
The number of episodes that
the RL agent samples on a cluster

α 15
The normalisation factor of the
sub-reward function R3

γ 0.99
The discount factor for future
rewards in RL

lr 0.005
The learning rate of the optimisation
step

[r1, r2, r3, r4] [0.20,400,0.05,0.4]
The weight of sub-reward
functions designed by experience

Table 4.14: Hyperparameters.
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5
CONCLUSION

5.1 Contributions

The goal of the project is to refine abstractive timelines via Reinforcement Learning interactively.

The quality of summaries is subjective, which relies on different users’ distinctive demands. In

general circumstances, those informational demands are abstract and challenging to quantify.

The proposed interactive summarisation system is capable of evaluating how much these re-

quirements are satisfied by computing cosine similarities of the word embedding of generated

summaries and keywords. After each time of interaction, the Reinforcement Learning algorithm

manages to tune the policy that instructs the summariser to generate tailored timelines.

As conclusion, my contributions are listed below:

• I reviewed and reproduced the current state-of-the-art extractive timeline summarisation

method, CLUST.

• Following the workflow of CLUST, we replaced some components in its event detection

stage and built a more precise pipeline to detect events in a bunch of source documents.

• I introduced Interactive Learning into the timeline summarisation system, which enabled

the system to receive the user’s feedback and present timelines containing more appealing

contents.

• I implemented the interaction and learning process via Reinforcement Learning. And we

defined a reward function which is summed up by four sub-reward functions evaluating

topical coherence, factual consistency, language quality, and token repetition, respectively.

The topical coherence sub-reward can update itself automatically according to the user’s

feedback.
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• I implemented the policy-based Reinforcement Learning algorithm, actor-critic. It improved

the learning efficiency of the system.

• I tested the performance of the timeline summarisation system on two benchmark datasets.

The proposed system outperformed CLUST on Timeline17. On the other dataset, Crisis,

applying the abstractive summariser PEGASUS decreased the ROUGE score of the system,

but Interactive Learing pulled the performance back in some degree.

5.2 Project Status

This project aims to build an interactive timeline summarisation system that is capable of

receiving the user’s feedback and generating timelines with the user’s favourable content. Since

the system has outperformed the prior state-of-the-art method on Alignment-based ROUGE, and

Table 4.1 and 4.2 shows that the content did adjust towards simulated feedback, which means

the system achieved the goal. All the code can be found in my GitHub repository.

5.3 Implications and Future Direction

Although the proposed timeline summarisation system outperformed the prior state of the art, it

is still imperfect and has potential for further improvements.

First, we used a pre-trained word embedding model without any fine-tuning to cluster source

documents and calculate the score of generated summaries and informational requirements.

There are some possibilities that we could tune the embeddings by training a classifier to classify

events in a training set? However, the lack of training data is a big problem in the way there.

Secondly, detecting events in source documents only applied unsupervised clustering al-

gorithms in both CLUST and the proposed system. Reinforcement Learning could be utilised

regarding the date selection as the action to improve the precision of event detection or important

date identification, which can also decide the timeline’s length automatically. Then the system

performance could be improved by combing two Reinforcement Learning processes.

In addition, there are some possible improvements on designing the reward function:

• Currently, both topical coherence and factual consistency are evaluated by cosine similari-

ties. However, some metrics in Information Theory has been proven to be more effective as

the evaluation metric of some summarisation tasks. So they could be integrated into the

reward function to intensify the learning efficiency.

• For the language quality reward, I used the original pre-trained PEGASUS-Multi_news

to compute the score. However, repetitive tokens and meaningless ’-’ have been a known

problem of it. Applying a better language model to mark the generated summaries might

be a better reward function.
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5.3. IMPLICATIONS AND FUTURE DIRECTION

• Although some prior works has shown that cosine similarity performed well on evaluating

consistency of two contextual vectors, it is still worth exploring that whether there is a

better method. Recent advances in Natural Language Inference enables us to employ a

neural network to judge whether two sentences entails or conflicts to each other. It provides

some chances to improve the performance of our system.

Last, human evaluation is still worthy even though the proposed system has outperformed

state of the art on the benchmark dataset, Timeline17. Humans can evaluate text from different

angles that programs can hardly do, such as the writing style and logical rigorousness. With

human effort, the interactive timeline summarisation system could receive a more comprehensive

evaluation. Another point is that human evaluation can help us to know that whether keywords

are a good way for users to interact and how easy and quick it is for users to receive their expected

results. Therefore, human evaluation is the next pivotal step for this system to improve.
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