
                          

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Curnow, Elinor

Title:
Modelling event history after allogeneic haematopoietic stem cell transplantation

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.   A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode  This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.



 

 

 

 

Modelling event history after allogeneic 

haematopoietic stem cell transplantation 

 

 

 

 

 

 

Elinor Curnow 

 

 

 

 

 

 

A dissertation submitted to the University of Bristol in accordance with the 

requirements for award of the degree of Doctor of Philosophy in the Faculty of 

Health Sciences 

Bristol Medical School, October 2021 

 

Word Count: 57, 166 

  



 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iii 

 

Abstract 

For patients with blood diseases, long-term remission is often only possible after 
haematopoietic stem cell transplantation (HSC).  Although transplantation can be 
life-saving, a number of post-transplant events can increase mortality.  This thesis 
provides the first insight into patient outcomes after HSC transplantation using 
cord blood donated to the UK National Health Service Cord Blood Bank (NHS-
CBB).  In the NHS-CBB dataset, event times were incompletely observed for 
some event types.  Missing event times were assumed to have occurred in a 
known, finite, time-period.  Hence, the missing event times were considered 
interval-censored.  Methods for handling interval-censored event times can be 
categorised as (i) applying multiple imputation (MI) strategies or (ii) taking a full 
maximum likelihood (FML) approach.  I focused on MI strategies, rather than 
FML methods, because of their flexibility.  Using simulation studies, I evaluated 
MI strategies in competing risks and multi-state model (MSM) analyses, 
examining the extent to which interval boundaries, the data distribution, and 
analysis model should be accounted for when data were missing at random 
(MAR) and missing not at random (MNAR). I found that MI by predictive mean 
matching (PMM), in which sampling is from a set of observed times without 
reliance on a specific parametric distribution, resulted in least biased estimates 
when event times were MAR (conditional on observed data).  Furthermore, in 
MSM analysis, I found that applying PMM separately for each sub-group of 
patients with a different pathway through the MSM tended to reduce bias and 
standard error.  Finally, I applied the best MI methodology from my simulation 
studies in an analysis of the NHS-CBB dataset.  My results suggest that 
application of MI methods to the NHS-CBB dataset reduced bias and improved 
precision in estimates, compared with complete case analysis.  My approach 
ensures that accurate information is available to inform decisions for both 
clinicians and patients. 
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CHAPTER 1.  INTRODUCTION 

1.1. Research motivation  

Understanding and improving the treatment of blood disorders is of great 

clinical importance.  Blood disorders include blood cancers, such as leukaemia, 

lymphoma, and myeloma, as well as non-malignant diseases, such as aplastic 

anaemia and some benign tumours.  On average, 110 people are diagnosed with 

blood cancers each day in the UK (1).  Blood cancer is the most common type of 

cancer in children and the third most common cause of death due to cancer in the 

UK (2).   

  

The treatment of blood disorders varies from watchful waiting to chemotherapy 

or radiotherapy, depending on the aggressiveness of the disorder (1).  Long-term 

remission is often only possible after haematopoietic stem cell (HSC) transplant.  

Once transplanted into the patient, HSCs are able to proliferate into healthy 

blood cells, curing, or limiting the progress of the underlying blood disorder.  

HSCs naturally reside in the bone marrow (BM) but are also present in cord 

blood (CB) at birth and in circulating (peripheral) blood (PB) (3).   

 

The aim of HSC transplant is either: (i) to restore the patient’s own blood cells 

after intensive chemo- or radiotherapy, known as autologous transplant, or (ii) to 

replace the patient’s abnormal blood cells using donor HSCs, known as 

allogeneic transplant.  Autologous transplant is generally used in the treatment 

of lymphomas and solid tumours, and allogeneic transplant is generally used in 

the treatment of leukaemias and non-malignant disorders (4).   

 

In 2019, 4580 HSC transplants were performed in the UK (5), of which 2854 (62%) 

were autologous transplants and 1726 (38%) were allogeneic transplants.  In 



 

2 

 

allogeneic transplants, matching human leucocyte antigen (HLA) types between 

the transplant recipient and donor is important to avoid graft rejection (4).  If no 

suitably-matched relative can be found, the transplanting hospital can search a 

worldwide database of HSC donor registries and banks (6) to identify a suitable 

unrelated donor.  The majority of allogeneic HSC transplants (67% of allogeneic 

transplants in the UK in 2019) involve unrelated donors, with the source of HSCs 

being PB, BM or CB (representing 82%, 12% and 6%, respectively, of allogeneic 

unrelated donor transplants in the UK in 2019) (5).  

 

To date, there is little information available about patient outcomes after HSC 

transplantation in the UK, due to limited access to patient data.  UK patient 

outcome data could be used to improve clinical practice, and to support 

evidence-based policymaking around HSC transplantation in the UK and 

globally.  In preparation for this thesis, I was granted access to data about patient 

outcomes after HSC transplantation using CB donated via a UK CB bank.   

 

The purpose of my research is thus to provide the first insight into patient 

outcomes after HSC transplantation using CB donated to a UK CB bank.  In the 

following sections, I will describe CB donation and transplantation in more detail 

(Section 1.2).  Here (Section 1.3), and in Chapter 4, I will describe the real dataset 

that I have used in my research and why this research is important for clinicians 

and patients.  Finally, I will summarise my research aims and objectives, and 

provide an outline of my thesis (Section 1.4).      

1.2. Cord blood donation and transplantation  

1.2.1. Cord blood donation 

Donations to public CB banks are entirely altruistic acts.  The mother is not paid 

for their donation and generally cannot direct the choice of recipient.  Briefly, the 

process for collection and storage of CB is as follows (7): 
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• Consent for collection of CB is given by the baby’s mother prior to birth.   

• The mother receives standard care during pregnancy and birth.   

• After the birth, delivery of the placenta, and clamping of the umbilical cord 

(at the point at which the placenta and umbilical cord would otherwise be 

discarded), CB is drawn from the placenta and umbilical cord.   

• After collection, CB is processed, tested for quality control purposes, and 

cryopreserved until requested for use in a transplant.   

1.2.2. Comparison of cord blood, bone marrow, and 

peripheral blood transplantation 

Compared with BM and PB transplantation, CB transplantation requires less 

stringent HLA matching (8).  Due to the large degree of polymorphism of HLA 

alleles, it can be difficult to find a well-matched related or unrelated donor (9). 

This is particularly the case for patients whose ethnicity is under-represented in 

donor registries, because distributions of HLA alleles vary between ethnic 

groups (10) (in the UK, the majority of registered adult donors are Northern 

European) (11).  In this case, CB transplantation is a viable alternative.  CB also 

has the advantage that it is immediately available, so can be used for urgent 

transplantation (8).  In addition, CB donation poses no risk to the donor.  In 

contrast, BM and PB donation carry some risk, although donor adverse events 

are usually mild and short-lived (mainly bone pain and body aches) (12).   

1.2.3. Engraftment 

The principal measure of success of an allogeneic transplant is full engraftment 

of the donor HSCs (8).  Full engraftment means that the patient’s blood cells and 

immune system are completely replaced by progeny (mature blood and immune 

cells) of the donor HSCs (10). Compared with BM and PB transplants, CB 

transplantation is associated with delayed engraftment (9, 13).  In previous 

studies, the median time to myeloid engraftment (defined as absolute neutrophil 

count > 0.5 × 109/l on three consecutive days) has been reported as between 22-
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30 days post-transplant for CB transplants, compared with 14-21 days for BM 

and PB transplants (8, 14, 15).  However, most patients (85-100%) do eventually 

achieve myeloid engraftment after CB transplantation (8).    

1.2.4. Adverse events 

After transplantation, patients can experience a number of adverse events that 

are associated with increased mortality (16), including acute and chronic graft-

versus-host disease (GvHD, described in more detail in Section 1.2.5), and 

relapse (described in more detail in Section 1.2.6).  The risks of acute GvHD, 

relapse, and mortality are similar for CB, BM, and PB transplants using unrelated 

donors (9, 13).  Furthermore, the risk of chronic GvHD (see Section 1.2.5) is lower 

for CB transplants, compared with BM and PB transplants using unrelated 

donors (9).   

1.2.5. Graft-versus-host disease 

GvHD is caused by an immune response of donor cells (the “graft”) against the 

patient’s tissues and organs (the “host”).  HLAs on the surface of body cells 

enable our immune system to distinguish between our own and “foreign” cells in 

the body.  However, after HSC transplantation (unless the donor and patient 

have very similar HLA types), donor immune cells will treat the patient’s body 

cells as foreign and will start to attack them (17).   

Acute and chronic graft-versus-host disease 

There are two types of GvHD: “acute” and “chronic”.  The standard classification 

of GvHD into these two types depends on whether GvHD occurs before (acute) 

or after (chronic) day 100 post-transplant.  More recently, it has been recognised 

that GvHD with acute-like symptoms can occur after day 100 (17).  Acute GvHD 

usually affects the skin, liver, and gastrointestinal tract.  There are four grades of 

acute GvHD: mild (grade 1), moderate (grade 2), severe (grade 3), and very 

severe (grade 4).  Grade 3-4 acute GvHD has a very poor prognosis and is the 



 

5 

 

main cause of mortality in the first 100 days post-transplant (17).  However, some 

degree of acute GvHD is desirable in patients with blood cancers in order to 

eradicate cancerous cells (the “graft-versus-leukaemia” effect, GvL) (10).  There is 

some evidence of this effect in non-malignant disorders too (10).   

 

Chronic GvHD has similar characteristics to auto-immune diseases and 

immunodeficiencies, and can affect all organs and tissues in the body (17).  There 

are three grades of chronic GvHD: mild, moderate, and severe.  Chronic GvHD is 

the main cause of non-relapse mortality after day 100 post-transplant (17).   

1.2.6. Disease relapse 

Disease relapse means that there are signs and symptoms that the patient’s 

original blood disease has returned after treatment.  If there is no evidence that 

the blood disease has returned, the patient is said to be “in remission” (18).  Most 

cases of relapse occur within two years of treatment (18).  Patients in relapse can 

still benefit from a subsequent HSC transplant, although engraftment is less 

likely and the risk of post-transplant relapse or death is increased, compared 

with patients in remission at the time of transplant (19).  Disease relapse is the 

main cause of death, unrelated to transplant, after allogeneic HSC 

transplantation (20).   

1.2.7. Covariates associated with acute graft-versus-

host disease and relapse 

In clinical studies of CB transplantation (4, 8, 10, 14, 17, 19, 21-26), the most 

frequently reported adverse events are acute GvHD and relapse.  There is 

consensus in the clinical literature about the covariates that are associated with 

acute GvHD and relapse following CB transplantation (4, 8, 10, 14, 17, 19, 21-26). 

These covariates, and the values associated with increased hazard of acute GvHD 

and relapse, are summarised in Table 1.1 overleaf.   
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Table 1.1. Summary of literature review of covariates associated with hazard of acute GvHD and relapse.   

Covariate Values associated with increased hazard of event 

Acute GvHD Relapse 

Number of CB units received Double cord  Single cord 

Disease status at time of transplant  In remission at time of transplant In relapse at time of transplant 

Pre-transplant radio- or chemotherapy 
(conditioning) regimen 

Intensive conditioning Reduced intensity conditioning 

Total nucleated cell (TNC) dose at infusion ≥ 3 (vs. < 3 × 107/kg) or  

≥ 5 (vs. < 5 × 107/kg) 

< 3 (vs. ≥ 3 × 107/kg) or  

< 5 (vs. ≥ 5 × 107/kg) 

GvHD prophylaxis (yes/no – type of prophylaxis 
varies from study to study)  

No prophylaxis  Prophylaxis 

Disease type Analyses generally performed separately for different types of blood cancers, and non-
malignant disorders 

Donor-recipient HLA mismatch 2 or more mismatches 

Patient age at transplant  Adult vs. paediatric patient; hazard generally increasing with age 

Donor-recipient sex match Female donor and male recipient  

Donor-recipient cytomegalovirus (CMV) status CMV positive patient 

 

 

 



 

7 

 

Previous studies have tended to focus on a particular type of blood cancer or 

non-malignant disorder, restricted to either an adult or paediatric patient group.  

In my research, I will be investigating adverse events after CB transplantation 

among patients with a variety of disease types, and both adult and paediatric 

patients (see Section 1.3 for a description of the real dataset).  Therefore, the 

strength and magnitude of the covariate associations in my analyses may differ 

from those reported for any one study. Hence, hazard ratios (see Chapter 2, 

Section 2.2.1) are not reported in Table 1.1.   

 

Double cord transplants (in which the patient receives CB from two different 

donors) are usually given when a single cord would provide insufficient HSCs 

for the patient’s body weight (14).  Double cord transplantation is associated 

with an increased hazard of acute GvHD, and a decreased hazard of relapse, 

compared with single cord transplantation (Table 1.1).  This may be due to HLA 

mismatches between the two CB units, inducing a “graft-versus-graft” effect (24).  

For similar reasons, a higher total nucleated cell (TNC) dose at infusion 

(described variously as at least 3 × 107/kg or at least 5 × 107/kg) (4, 14, 25, 26) is 

associated with an increased hazard of acute GvHD and a decreased hazard of 

relapse. 

 

There are several other covariates for which values associated with increased 

hazard of acute GvHD are also associated with decreased hazard of relapse 

(Table 1.1.) (4, 8, 10, 14, 17, 19, 21-24).  Specifically, acute GvHD is more likely 

among patients in remission at time of transplant, among patients receiving 

intensive pre-transplant radio- or chemotherapy (conditioning), and in 

transplants in which no GvHD prophylaxis is given.  Relapse is less likely in each 

case.  The inverse relationship between hazard of acute GvHD and relapse can be 

explained by the GvL effect, described previously: acute GvHD promotes the 

eradication of the underlying blood disease and, hence, leads to a reduction in 

risk of relapse.  In general, some degree of acute GvHD is desirable, although 
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severe GvHD is often fatal.  Achieving the balance between GvHD and relapse is 

a major challenge for clinicians (14).   

 

Other covariates are generally associated with worse outcomes: hazard of 

adverse events generally increases with the number of HLA mismatches, age, for 

a female donor and male recipient, and for a cytomegalovirus-positive (CMV+) 

patient.  

1.3. NHS Cord Blood Bank  

The National Health Service (NHS) Cord Blood Bank (CBB) (27) is one of two 

public CB banks operating in the UK, collecting and storing CB.  The NHS CBB is 

part of NHS Blood and Transplant (NHSBT), which provides services to the NHS 

related to the donation and transplantation of blood, organs, tissues and stem 

cells (28).   

 

In 2009, a meeting of senior clinicians acknowledged the lack of UK studies of 

patient outcomes after CB transplantation, and recommended regular review of 

UK CB transplant outcomes (29).  In 2015, the NHS England Clinical 

Commissioning Policy for HSC transplantation noted the lack of good quality 

evidence about HSC transplantation in the UK, which made it difficult to 

evaluate its effectiveness (30).  Furthermore, the Cambridge University Winton 

Centre for Risk and Evidence Communication (31) notes the importance of 

communicating the risks and benefits of transplantation to patients in a clear and 

understandable way.  This is exemplified by the patient infographics about 

characteristics and outcomes of organ transplants using UK donors, which are 

publicly available on the NHSBT website (32).   Despite these recommendations, 

to date, there have been no in-depth studies of patient outcomes after 

transplantation using CB donated to UK cord blood banks.  In the early 2000s, 

two preliminary studies of regional cord blood banks in the UK were conducted 

(33, 34).  More recently, a study of the HLA diversity of NHS CBB donations has 
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been performed (35).  In my research, I conduct the first study of engraftment 

and post-transplant adverse event rates among NHS CBB patients.  This 

important research will benefit NHSBT, patients and clinicians.   

 

CB supplied by the NHS CBB is subject to rigorous quality control, screening, 

and safety checks, and is compliant with Blood Safety and Quality regulations 

(27).  NHS CBB patient follow-up data are reviewed on a case-by-case basis as 

part of the Bank’s accreditation requirements (36).  In addition, regular 

monitoring of post-transplant event rates (the focus of this thesis), will enable 

NHSBT to quickly identify, and investigate, any changes.  Understanding the 

patient, donor and transplant characteristics associated with each event will help 

to identify the cause of such changes.  NHS CBB transplants are used to treat 

patients with a variety of disease types, and both adult and paediatric patients.  

Changes in event rates over time may be explained by changes in the 

characteristics of NHS CBB patients.  However, large or sudden changes in event 

rates may indicate a problem with the CB supply and should trigger a rapid 

investigation by NHSBT.  Regular monitoring will also allow NHSBT to assess 

the impact of any improvements in donation, collection, and storage processes.  

Furthermore, sharing information about post-transplant event rates will provide 

reassurance for clinicians and patients that the NHS CBB is a safe and effective 

source of CB, and will help to inform clinical practice.   

 

Outside the UK, patient outcome studies have been conducted for four CB banks 

(in Japan, Mexico, Singapore, and Italy) (37-40).  In all four studies, post-

transplant events were analysed using simple univariate methods (and only 

three used any survival analysis methods, see Chapter 2, Sections 2.2.1-3 for a 

description of survival analysis methods).  In contrast, in my research, I will 

consider the sequence of events that patients experience using multi-state model 

(MSM) analysis (see Chapter 2, Section 2.2.3).  The advantage of the MSM 

approach is that the probability of multiple events can be modelled 
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simultaneously.  This allows more effective communication of the risk of 

transplant to patients, particularly because the probability of each event at any 

given time can be illustrated graphically or summarised as the average number 

of days spent in each state.   

1.3.1. NHS Cord Blood Bank data  

NHSBT collects data about donors who donate to the NHS CBB.  In addition, an 

international registry, Eurocord, (41) supplies NHSBT with transplant and 

patient data for transplants using CB donated to the NHS CBB.  Transplant and 

patient data include baseline data (at time of transplant) and data about post-

transplant events.  Data are described in more detail below and in Chapter 4.  For 

the purposes of this research, I have been given permission by NHSBT and 

Eurocord to use patient, donor, and transplant data about transplants using CB 

donated to the NHS CBB, where transplantation occurred between 1996 and 

2015.       

1.3.2. Data availability 

In the NHS CBB dataset, data were available for all covariates listed in Table 1.1.  

In addition, year and country of transplant were reported.  Data were also 

available about the following post-transplant events: myeloid engraftment, graft 

failure (the lack of engraftment of donor cells), acute and chronic GvHD, relapse, 

and death.  Graft failure is a “competing risk” for many of the events of interest 

(see Chapter 2, Section 2.2.2).  For each event, whether the event had occurred 

during the monitoring period for each patient, and the date of onset, were 

reported.  Grades of acute and chronic GvHD were also reported.   

 

In the NHS CBB dataset, several covariates had missing values (see Chapter 4, 

Section 4.3.2).  In addition, the date of onset of an event was sometimes missing.  

Some information about missing dates of onset could be inferred from clinical 

criteria (for example, the standard clinical definition of acute GvHD (17) assumes 
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occurrence between day 0 and 100 post-transplant) or the known length of the 

monitoring period for each patient (because date of death or last follow-up was 

always reported, see Chapter 4, Section 4.4).  Since each event with a missing 

event time occurred during a known, finite interval, the missing event times are 

said to be ‘bounded’ or ‘interval-censored’.   

 

Interval censoring is defined formally as follows: for subject i, event times are 

known to lie in the interval (Li, Ri], where Li represents the last confirmed event-

free time and Ri represents the first time at which the event is known to have 

happened.  Left- and right-censoring can be considered special cases of interval-

censoring, in which the lower or upper interval boundary takes the value of 0 

and ∞, respectively.  Studies in dentistry (42) and human immunodeficiency 

virus (HIV) (43) are typical examples from the literature.  For example, Lesaffre 

and Komarek (42) studied the time to tooth emergence in children.  The time of 

emergence of a particular tooth occurs at some point between the last dental 

clinic at which no tooth is seen and the first clinic by which the tooth has 

emerged.   

 

In some HSC transplantation studies, simple strategies have been used to handle 

missing event times, such as complete case analysis (CCA) (44), or substituting 

the mean of the observed times for all missing times (45).  This can lead to bias 

and under-coverage (46, 47).  Nikolajeva et al. (48) performed a logistic regression 

instead of the usual time-to-event analysis (see Chapter 2, Section 2.2.1-3) due to 

the large amount of missing acute GvHD times in their study.  This approach 

offers unbiased estimation of the incidence if there is complete follow-up for all 

patients during the acute post-transplant period but does lead to a loss of 

information, for example, about the median event time.   

 

In later chapters, I will describe more rigorous methods for handling missing 

event times and will compare their performance using simulation studies.  

Subsequently, I will apply the best method in my analysis of the NHS CBB 
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dataset (see Section 1.4 for a full overview of my thesis).  My research represents 

the first comparison of these rigorous methods for handling missing event times 

(namely, multiple imputation (MI) and full maximum likelihood (FML) 

methods), as well as the first time that MI methods have been compared in a 

MSM analysis.  It also represents the first analysis of HSC transplantation 

outcomes using MI methods.   

1.4. Thesis Aims and Objectives  

My thesis aims and objectives are summarised below. 

1.4.1. Thesis Aims 

(i) To describe the incidence of myeloid engraftment, acute and chronic 

GvHD, and relapse, as well as overall survival, among NHS CBB patients 

after CB transplantation. 

(ii) To identify covariates associated with acute GvHD, relapse, and death 

following CB transplantation, and to describe the probability of these 

events for different patient types.  

1.4.2. Thesis Objectives 

(i) Compare methods for handling missing event times in a competing risks 

analysis, using simulation studies. 

(ii) Compare methods for handling missing event times in a MSM analysis, 

using simulation studies. 

(iii) Apply the best method(s) for handling missing covariate data and event 

times to the NHS CBB dataset. 

(iv) Calculate the incidence of each event of interest in the NHS CBB dataset, 

using methods that allow for the presence of competing risks. 
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(v) Identify covariates associated with the events of interest by conducting a 

MSM analysis of the NHS CBB dataset.  

(vi) Calculate state occupation probabilities and the expected length of stay in 

each state (transplant, acute GvHD, relapse/death) in the first-year post-

transplant, for different patient types in the NHS CBB patient cohort. 

1.4.3. Thesis Outline 

The outline of my thesis is as follows: 

In Chapter 2, I describe the statistical methods used in this thesis.  In Chapter 3, I 

review the existing methods and concepts for handling missing data in detail.  In 

Chapter 4, I give an overview of the NHS CBB dataset and outline the possible 

missingness mechanisms for event times.  In Chapters 5 and 6, I describe 

simulation studies comparing different methods for handling missing event 

times in a competing risks analysis (Chapter 5) and an illness-death MSM 

(Chapter 6).  In Chapter 7, I apply methods for handling missing data in an 

analysis of the NHS CBB dataset.  I conclude with general discussion in Chapter 

8. 
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CHAPTER 2.  STATISTICAL 

METHODS 

2.1. Introduction 

In this chapter, I describe the statistical methods used in my research.  I provide 

an overview of survival analysis, and a description of the survival models and 

associated estimands used in my analyses.  Here (and in more detail in Chapters 

5 and 6), I briefly describe my approach to simulating event time data, the 

benefits of my simulation approach, and the challenges of simulating survival 

data.   

2.2. Survival Models  

In my analysis of the events experienced by patients in the NHS CBB dataset, I 

consider two types of survival model:  

(i) A competing risks model, to estimate the cumulative incidence of each 

event of interest. 

(ii) An “illness-death” MSM, to identify covariates associated with the hazard 

of the events of interest, to calculate state occupation probabilities, and to 

calculate the expected number of days spent in each state.   

In all analyses, I assume that event time distributions are continuous and that the 

censoring distribution is independent of the event time distribution (see Section 

2.2.1).  In the following sections, I describe basic concepts of survival data 

(Section 2.2.1), as well as the two types of survival model I have used and 

methods for their analysis (Sections 2.2.2 and 2.2.3).   

2.2.1. Measuring the time to an event 

Measuring the time until an event occurs is of interest in many contexts.  The 
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classic application of time to event methods is the mortality model, measuring 

time to death.  In this case, all study subjects will experience the event of interest 

at some point, although, typically, not all subjects in the study will have died 

during the observation period.  Subjects still alive at study end are said to be 

“right-censored”.  For brevity, the term “censored” will be used hereafter to refer 

to right-censoring.  Other types of censoring are left-censoring (when the time 

origin is not observed) and interval-censoring (described previously in Section 

1.3.2).  Formally, the model for censored data is as follows (49): 

For each subject i, with an event time ti and a censoring time ci, the observed data 

are time xi = min(ti, ci) and censoring indicator δi, with δi = 1 if the event time is 

observed and 0 otherwise.  The event and censoring times are considered 

random samples from a survival distribution Ti ~ S, where S(t) = P(T > t), and a 

censoring distribution Ci ~ G. 

 

To illustrate the concept of censoring, a set of censored data are shown in Figure 

2.1, below.   

Figure 2.1.  Illustration of censored data.  

 
Solid lines and points represent the observed data.  Dotted lines represent unobserved data. 

 

In Figure 2.1, subjects 1, 3 and 5 died before the end of the observation period 

and hence, the event time is observed for these subjects: xi = ti and δi = 1 in each 
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case.  Subjects 2 and 4 died after the end of the observation period and hence, the 

event time is not observed for these subjects: xi = ci and δi = 0 in each case.  Note 

that no left- or interval-censoring occurred (the time origin, t0, is observed for all 

subjects and event times are observed exactly).  In addition, in this example, the 

end of the observation period is the same for all subjects; in reality, the censoring 

time may vary between subjects.   

 

Generally, methods that can accommodate censoring assume independent 

censoring and the absence of left- or interval-censoring.  Independent censoring 

means that the distribution of censoring times is independent of the distribution 

of event times (this may be conditional on covariates) (50-52).  In other words, at 

each time-point, the subjects who are still under observation are representative of 

the censored subjects.        

Estimands of interest 

In survival analysis, describing the survivor function S(t) (the probability of 

surviving until at least time t) and the associated hazard of the event λ(t) (the 

instantaneous probability of an event at time 𝑡 for a subject who is event-free 

until that time) is often of interest.  When all subjects will experience the event of 

interest at some point (as in the mortality model, for example), the survivor 

function and hazard are directly related, as follows: 

Given λ(t), the cumulative hazard Λ(t ) = ∫ λ(s)ⅆs
t

0
 and the survivor function  

S(t) = exp(-Λ(t)) (53).  The standard estimator of the survivor function is Kaplan 

and Meier’s non-parametric maximum likelihood estimator (NPMLE) (50).  

Kaplan-Meier estimates of the survivor function can be compared between 

independent groups using the log-rank test (54).   

Modelling the association between covariates and the hazard 

Frequently used models for exploring the association between covariates and the 

hazard of an event are Cox’s semi-parametric proportional hazards (PH) 
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regression model (51) and Aalen’s additive hazards model (52).  More recently, 

flexible parametric hazards models have been proposed (55, 56).   

 

In my MSM analyses, I use both Cox and parametric (Weibull) PH models.  The 

structure of a PH model is as follows: 

Given time-fixed covariates x, then λ(t|x) = λ0 (t) exp{β’x}.  λ0 (t) is referred to as 

the “baseline” hazard function, that is, the hazard function for a subject with 

baseline, or reference, values of all covariates (so x = 0).   

 

The appeal of the PH model is the ease of interpretation of β: consider a model 

with a single binary covariate (x = 0 or 1).  Then the ratio of the hazards for a 

subject with x = 1 compared with a subject with x = 0 is 
λ0 (t) exp{β}

λ0 (t) 
 = exp{β}.  In a 

PH model, exp{β} is usually the principal estimand.  It is referred to as the 

“hazard ratio” (HR). 

 

In a Cox model, the vector of regression coefficients β is estimated by maximising 

a partial likelihood function (51).  The advantage of Cox’s approach is that 

estimation of β does not require estimation of λ0 (t), although λ0 (t) can be 

calculated non-parametrically if desired (57).  Alternatively, a parametric model 

for λ0 (t) can be explicitly defined (in my analysis, using a Weibull model).  In this 

case, baseline model parameters and the vector of regression coefficients β are 

estimated together using full maximum likelihood estimation (58). 

2.2.2. Competing risks 

In the previous section, it was assumed that all subjects would experience the 

event of interest at some point.  However, “competing risks” can occur when the 

occurrence of a “competing” type of event precludes or changes the probability 

of the event of interest.  This could be because only one of a set of mutually 

exclusive events can be experienced, e.g. death due to cancer is a competing risk 

for transplant-related death: prior to death, a patient is at risk of both causes of 
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death, but ultimately can only experience one or the other.  Competing risks can 

also occur when only the time of the first event experienced is of interest, e.g. if 

acute GvHD is the event of interest, then death prior to acute GvHD is a 

competing risk.   

 

Consistent with the clinical literature (45, 59), I define death prior to the event of 

interest as a competing risk for myeloid engraftment, acute and chronic GvHD, 

and relapse.  In addition, I define graft failure prior to the event of interest as a 

competing risk for myeloid engraftment, acute GvHD, and chronic GvHD.  

Again, for consistency with the clinical literature (45, 59), I do not consider 

relapse a competing risk for engraftment nor GvHD.  However, engraftment and 

GvHD are unlikely after relapse (and never occurred after relapse for subjects in 

the NHS CBB dataset, see Chapter 4, Section 4.4.1).  Hence, in my MSM analysis, 

I treat both relapse and death as terminal events (see Section 2.2.3 below, Chapter 

6, Section 6.2.2, and Chapter 7, Section 7.3).        

Estimands of interest 

In the competing risks framework, the cumulative incidence function 

Ij(t) describes the probability of experiencing an event of type j by time t.   

Formally, it is defined as follows:  

For the jth of nj event types, the cumulative incidence Ij(t)= ∫ λj(s) S(s)ds
t

0
 

where λj(t) is the cause-specific hazard for the jth event type,  

S(t) = exp (- ∑ Λj(t)
nj

j=1
) represents the probability of not having experienced any 

event by time t and Λj(t)= ∫ λj(s)ds
t

0
.   
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In my analysis, I use the unbiased NPMLE proposed by Aalen and Johansen (60) 

to estimate the cumulative incidence.  This estimator is defined as follows: 

Îj(t)= ∑ λ̂j(tm) Ŝ(tm-1)m:tm≤t   

where 𝜆̂j(tm) = 
djm

𝑛m
  and Ŝ(tm)=  ∏ (1 – 

dm

𝑛m
)m:tm≤t ,  

0 < t1 < … < tM are the set of ordered event times of any event type,  

djm denotes the number of subjects experiencing an event of type j at time tm, 

dm denotes the number of subjects experiencing an event of any type at time tm, 

and nm denotes the number of subjects at risk (i.e. still in follow-up and event-

free) at time tm.  Note that the estimator Ŝ(tm) defined here is the Kaplan-Meier 

NPMLE of the survivor function.  Aalen-Johansen estimates of the cumulative 

incidence function can be compared between independent groups using Gray’s 

test (61). 

 

In an early CB transplantation study (34), the cumulative incidence of acute 

GvHD was estimated as 1 – 𝑆̂j(tm) (where 𝑆̂j(tm) denotes the “cause-specific” 

Kaplan-Meier survival estimate, treating only cases of acute GvHD as events and 

censoring any cases of graft failure or death prior to acute GvHD).  This 

approach will give a biased estimate of the cumulative incidence, because the 

independent censoring assumption of the Kaplan-Meier method no longer holds 

(49).  This is because subjects who have experienced graft failure or death prior to 

acute GvHD have zero probability of experiencing acute GvHD at any future 

time-point.  Hence, subjects still event-free at this future point are not 

representative of censored subjects (apart from in the special case when all cases 

of acute GvHD occur before any cases of graft failure or death).   

Modelling the association between covariates and the 

cumulative incidence 

The association between covariates and the cumulative incidence can be explored 

indirectly using a cause-specific hazards model (51).  An advantage of this 

approach is that standard hazards models (such as those mentioned in Section 
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2.2.1) can be applied.  In addition, estimates from hazards models for each event 

type can be combined, using a MSM approach (49) (see Section 2.2.3), to calculate 

cumulative incidence functions.  However, there is not a direct relationship 

between the cause-specific hazards and the cumulative incidence function (in 

contrast to the mortality model described in Section 2.2.1).  This is because the 

cumulative incidence of any one event type depends on all the cause-specific 

hazards functions (see definition on previous page).  Therefore, a covariate value 

associated with an increased cause-specific hazard will not necessarily be 

associated with an increased cumulative incidence (49).  This makes it difficult to 

interpret the cause-specific HRs.   

 

Alternatively, the association between covariates and the cumulative incidence 

can be explored directly using models such as the Fine and Gray proportional 

“sub-distribution hazards” model (62).  The sub-distribution hazard for an event 

of type j is defined by Fine and Gray (62) as -
d log (1 – Ij(t)) 

dt
.  A criticism of Fine 

and Gray’s model is that subjects are still included in the risk set for the event of 

interest even after they have experienced a competing event (63).  In addition, the 

Fine and Gray model is designed to estimate the cumulative incidence of only 

one event of interest (with other event types treated as nuisance factors).  Hence, 

Fine and Gray models for the cumulative incidence functions of all possible 

event types are not constrained to sum to one (64, 65).   

 

To overcome these disadvantages, Putter et al. (63) describe an approach for 

linking the cause-specific hazards and sub-distribution hazards functions using a 

“reduction factor”.  Their approach is designed to correct deficiencies in the Fine 

and Gray model, rather than in the MSM approach.  In addition, it relies on 

correct specification of the reduction factor.  In my comparison of methods for 

handling missing event times in a competing risks analysis (Chapter 5), I include 

a FML method based on the Fine and Gray model (64).  However, due to the 

limitations of the Fine and Gray approach, I focus on MSM methodology (see 
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Section 2.2.3) when exploring the association between covariates and the events 

of interest, and when predicting event probabilities for subjects with different 

sets of characteristics (using a simulation study in Chapter 6, and in analysis of 

my real data in Chapter 7).   

2.2.3. Multi-state models 

Both mortality and competing risks models consider time until the first event 

experienced.  A MSM is a generalisation of these models, allowing the sequence 

of events (the “event history”) experienced by each subject to be analysed.  In the 

MSM framework, experiencing an event can be thought of as a move 

(“transition”) from one “state” to another.  Figure 2.2 shows MSMs equivalent to 

the mortality and competing risks models described previously.  States are 

represented by rectangles and possible transitions by arrows.  The transition 

intensity, αhj(t) is shown for each transition.  Analogous to the hazard rate, 

described previously, αhj(t) is defined as the instantaneous probability of moving 

from state h to state j at time t.   

Figure 2.2.  Multi-state models for mortality and competing risks data 

 

In both models shown in Figure 2.2, there is a single initial state, and all subjects 

are in this state at the time origin, t0.  In the mortality model, there is a single 
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“terminal” or “absorbing” state, that is, a state from which further transitions 

cannot occur.  In the competing risks model, there is more than one absorbing 

state.   

 

In more complex MSMs, there are also “intermediate” states between initial and 

absorbing states.  The simplest MSM including an intermediate state is the 

unidirectional three-state “illness-death” model, shown in Figure 2.3 below.  

Klein et al. (66) advise that although intermediate events can be included as time-

varying covariates in time to first event models, interpretation of the associated 

parameter estimates and comparison of survival probabilities can be difficult.  

They argue that if the main question of clinical interest is how the probabilities of 

death or other events depend on the patient’s history, then the MSM approach is 

more useful.       

Figure 2.3.  The illness-death model 

Markov models 

The calculation of transition intensities and related probabilities is most straight-

forward for MSMs with the Markov property.  This property states that the 

transition intensity depends only on the current state occupied but not the 

amount of time spent in the current state nor the past history prior to entry into 

the current state.  The Markov property implies a “clock-forward” structure 

(time t is measured from entry into the initial state) for all transitions (49).  

Assuming there is no left-censoring, the mortality model and competing risks 

model are always Markovian, because there is no event history (67).  For 

simplicity, and ease of calculation, only Markov models are considered in my 

analyses. 

α01(t) 

α02(t) α12(t) 

0. Alive 1. Illness 

2. Death 
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I use a simple test of the Markov property in my analyses.  In this test, a term for 

the time until entry into the current state is included in the transition intensity 

model (68).  Recently, Titman and Putter (69) compared this simple test with a 

new class of tests of the Markov property.  They found that the simple test 

maintained good power in a range of situations.   

Estimands of interest 

Estimation of transition intensities is usually of interest in MSM analysis.  These 

can be estimated using standard hazards models (67).  These models can also be 

used to explore the association between covariates and the transition intensities.  

In my analyses, as described in Section 2.2.1, I use Cox and Weibull PH models to 

explore these associations. 

 

Transition probabilities are also of interest in MSM analysis.  The transition 

probability, Phj(s,t), is defined as the probability of being in state j at any time t, 

conditional on having previously been in state h at time s.  For a Markov model, 

the matrix of transition probabilities is calculated from the transition intensities 

(70) as follows: 

P(s,t) = ∏ ((s,t] I + dH(u)) where H(u) is the matrix of cumulative transition 

intensities (71).  Note that, for a competing risks model, the transition 

probabilities are equivalent to the cumulative incidence functions. 

 

Related estimands that I consider in my analyses (see Chapter 6, Section 6.2.10 

for further details) are: 

(i) the “state occupation” probability, Pj
 (t), the probability of being in state j 

at time t (72), calculated as follows: Pj
 (t) = ∑ Ph

 (0)Phj(0,t)
h

.    

If all subjects are in state 0 initially, i.e. P0
 (0) = 1, Pj

 (t) is equivalent to the 

transition probability from state 0 to state j at time t (73). 

(ii) The restricted expected length of stay (RELOS) in each state (72).  RELOS 
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from time 0 to time s for state j is defined as:  

ej(s) = ∫ Pj(t) dt
s

0
  

 

Calculation of transition probabilities becomes more difficult for semi-Markov 

(where the transition intensity depends on the time spent in the current state) 

and non-Markov models (where the transition intensity depends on the amount 

of time spent in the current state and the past history prior to entry into the 

current state) (74).  Hence, these models are out of the scope of my research.   

2.3. Simulating event time data 

When simulating event time data, valid inference is only possible when the data-

generating mechanism (DGM) is compatible with the desired analysis model 

(75).  Early methods for simulating event time data, given multiple event types, 

were based on a multivariate model (76).  In this model, also called the “latent 

failure time” model (77), each subject is assumed to have an event time for each 

possible event type.  The observed data are defined as the minimum of all 

potential event times (with all unobserved event times regarded as latent 

variables), plus an indicator of which event type happened first.  However, this 

model is not identifiable (49) because the covariance structure of the latent failure 

times cannot be determined using the observed data (77).  This model is also 

implausible, because, in a competing risks framework, a subject can only 

experience one of a set of mutually exclusive events.  In other words, in a 

competing risks framework, the event time represents a single random variable, 

rather than a set of potential random variables.  Therefore, the latent failure time 

approach is incompatible with a competing risks framework.  In my simulation 

studies, I use approaches for generating event time data that are compatible with 

my chosen analysis models.  These are summarised below. 
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2.3.1. Model 1: Non-parametric estimation of the 

cumulative incidence function 

For this simple analysis model, simulated event times were generated using two 

different methods (see Chapter 6, Section 6.2.3 for more details): 

(i)  Sampling with replacement from a full data version (i.e. a version with no 

missing event times) of the real NHS CBB dataset. 

(ii) Direct draws from parametric distributions (with the choice of distribution 

dependent on the event type experienced).  

Table 2.1 overleaf summarises the advantages and disadvantages of each of these 

DGMs.  By using two different methods, I was able to assess whether my 

simulation study results were sensitive to the choice of DGM.     
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Table 2.1. Comparison of two different sampling methods when generating data 

Characteristics of the generated 
data  

Sampling method 

Sampling from real data Sampling from parametric distributions 

Representative of real data Yes May include elements of the real data e.g. parameter 
choice guided by real data, but usually fewer 
covariates and simpler covariance structure than in 
real dataset.  May be difficult to identify a parametric 
distribution with characteristics similar to those of the 
real data e.g. observed survivor function may not be 
well fitted by any standard parametric distribution. 

Simulated datasets are 
independent samples 

Cannot be assumed, unless the real dataset is 
very large 

Yes 

Results are 
reproducible/generalisable 

Results, e.g. size and direction of bias, may be 
data-specific 

Results may be data-specific, but easy to explore the 
sensitivity of results to parameter choice   

Size of the simulated dataset  Increasing beyond the size of the real dataset 
may lead to under-estimation of sample 
variance 

Any size 

Estimands of interest May be limited by the characteristics of the real 
dataset e.g. cannot choose the median time of 
an event as an estimands if experienced by less 
than 50% of subjects in the real dataset 

Any, within reason  
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2.3.2. Model 2: MSM analysis including an 

intermediate event and covariates 

In my MSM analysis, to ensure my DGM was compatible with a MSM structure, 

I used the approach of Beyersmann et al. (77) (see Chapter 7, Section 7.2.3-8 for 

more details).  This approach is based on specification of the cause-specific 

hazards, which can have any desired structure (I used PH models including 

covariates).  Simulated event times can then be generated from the all-cause 

hazards function (the sum of the cause-specific hazards).  The associated event 

type is then generated by drawing from a binomial distribution (or multinomial 

if there are more than two competing event types), with probability of each event 

type dependent on the cause-specific hazards at the simulated event time.     

 

By applying this method in two sequential competing risks experiments, I was 

able to generate an event history for each subject that was consistent with a three-

state illness-death model (as in Figure 2.3).  An additional challenge of my model 

was that, for each subject experiencing the “illness” event, their simulated 

“death” time had to be greater than their simulated “illness” time.  To achieve 

this, I specified a conditional survival function for the “death” time.        

 

It should be noted that this DGM will generally not be compatible with a 

proportional sub-distribution hazards model (due to the indirect relationship 

between hazards and sub-distribution hazards, discussed previously).  However, 

Beyersmann et al. (77) suggest that the sub-distribution hazard ratio from this 

(misspecified) proportional sub-distribution hazards model can be interpreted as 

a time-averaged sub-distribution hazard ratio.  Alternatively, if a proportional 

sub-distribution hazards analysis is desired after generating event time data 

using Beyersmann’s method, the “reduction factor” approach suggested by 

Putter et al. (63) could be explored.  
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2.4. Summary 

In this chapter, I have described the statistical methods used in my research, my 

approach to simulating event time data, the benefits of my simulation approach, 

and the challenges of simulating survival data.  In Chapter 5, I use the methods 

described here to simulate and analyse competing risks data, in scenarios in 

which some event times are missing.  In Chapter 6, I repeat this process using a 

MSM analysis.  In Chapter 7, I apply the best MI methodology from my 

simulation studies in analysis of the NHS CBB dataset (using competing risks 

and MSM analysis models).  In the next chapter (Chapter 3), I describe missing 

data methods and concepts.  
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CHAPTER 3.  REVIEW OF 

METHODS FOR HANDLING 

MISSING DATA 

3.1. Introduction 

Missing covariate and outcome data is a common problem when conducting an 

analysis.  Many methods have been developed to address the potential bias 

caused by missing data.  Naïve methods include treating missing data as a 

separate category (if missing data are in an exposure or covariate) or replacing 

the missing value with a single value, such as the average of the observed data.  

However, these methods run a high risk of producing biased parameter 

estimates and underestimating variance (46).  This chapter comprises a review of 

more rigorous methods for handling missing data.   

 

The methods discussed in this chapter are summarised in Table 3.1, overleaf, 

including any restrictions on their use.  This is followed by a general overview of 

missing data methods and concepts in Sections 3.2-3.4, with an emphasis on the 

most widely used approach for handling missing data: multiple imputation (MI).  

MI methods most pertinent to my research, that is, those for handling missing 

event times in survival analyses, are described in more detail in Section 3.5.  In 

the NHS CBB dataset, missing event times are assumed to have occurred in a 

known, finite, time period (hence, can be considered interval-censored).  

Therefore, in Section 3.6, I give a brief overview of full maximum-likelihood 

(FML) methods for interval-censored event times.  
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Table 3.1. Methods for handling missing data 

Missing 
data method 

Analysis 
model  

Imputation model Missing data 
mechanism 

Restrictions 

Complete 
case analysis 

Any None  MCAR, MAR, 
MNAR 

Generally requires that missingness does not 
depend on the analysis outcome  

Weighting 
methods 

Any None MCAR, MAR Sensitive to the choice of weighting model; 
performs best with a single incomplete 
variable/monotone missing data, and large 
sample size  

Multiple 
imputation  

Any Any  MCAR, MAR  Missing data mechanism is ignorable; imputation 
and analysis models are compatible and correctly 
specified 

Any Joint model across all incomplete variables The joint model must be specifiable: multivariate 
linear, log-linear, general location model 

Fully conditional specification (FCS): 
univariate model for each incomplete variable  

None, given data MAR (conditional on the 
observed data) 

Non-
linear 
relation-
ship 
 

Impute then transform and, relatedly, passive 
imputation  

Analysis results tend to be biased towards the null 

Transform then impute (just another variable) Imputed values may be inconsistent with one 
another; may perform badly when analysis is 
logistic regression and/or data are MAR 

Substantive model compatible (SMC)-FCS; 
stacked FCS MI 

Computationally intensive; current software 
restricted to linear, logistic, Cox regression and 
multilevel analysis models   

Skewed 
variables 

Impute on the original scale using a 
parametric imputation model 

May lead to bias if non-linear association between 
incomplete covariate and outcome 

Impute on the original scale using predictive 
mean matching (PMM) 

Type 1 PMM generally unbiased, even with non-
linear associations; type 2 PMM leads to some bias 

Transform then impute  Analysis results tend to be biased towards the null 

Bounded 
variables  

Truncate imputed values during or post-
imputation 

MCAR, MAR Analysis results tend to be biased  
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Missing 
data method 

Analysis 
model  

Imputation model Missing data 
mechanism 

Restrictions 

Multiple 
imputation 
contd. 
 

Linear/ 
logistic 
regression 

MI then deletion with same model for 
imputation and analysis  

MCAR, MAR 
– incomplete 
outcome, 
covariates 
fully observed 

Biased if auxiliary data available and outcome 
MAR 

Survival 
analysis  

Should include the censoring indicator and a 
representation of the survivor function 

MCAR, MAR  Less biased using cumulative baseline hazard than 
survival or log-survival time to represent the 
survivor function  

SMC-FCS for a Cox regression analysis; 
stacked FCS MI 

Unclear if applicable to incomplete outcome as 
well as incomplete covariates 

Based on the survivor function – 
parametric/semi-parametric model or PMM 

For imputation of missing/censored survival 
times; generally, parametric/semi-parametric 
methods developed to-date cannot be combined 
with imputation of incomplete covariates 

Full 
maximum 
likelihood 
methods 

Survival 
analysis 

None MCAR, MAR 
 

For analysis of interval-censored survival times; 
generally cannot handle a mixture of exact and 
interval-censored times, or wide intervals relative 
to the change in hazard 

MCAR, missing completely at random; MAR, missing at random; MNAR, missing not at random – see Section 3.2 for full definitions 



 

32 

 

3.2. Complete case analysis 

The simplest solution to missing data is to exclude cases with missing values.  

This is commonly known as complete case analysis (CCA) or case deletion (46, 

78).  CCA can be inefficient (78), especially if data are missing across multiple 

variables.  If the probability that data are missing is independent of the observed 

and missing data (missing completely at random, MCAR), CCA is equivalent to 

taking a random sample of the data and hence produces unbiased estimates.  

More generally, estimates from CCA are unbiased as long as missingness is not 

related to the analysis outcome, given the covariates in the analysis model (79).  

If this is true, CCA is valid even if the probability that data are missing depends 

on the observed data (missing at random, MAR) or depends on the values of the 

missing data themselves, given the observed data (missing not at random, 

MNAR).  Bartlett et al. (80) describe certain circumstances in which CCA using a 

logistic regression model will allow unbiased estimation of the exposure odds 

ratio (even if missingness is related to the analysis outcome).  Namely, if 

missingness is related only to the analysis outcome, or only to the analysis 

outcome and covariates.  However, this does not apply if the binary outcome 

was generated from a continuous measure and missingness depends on the 

continuous measure.  Bartlett et al. note that these results are also applicable to 

Cox regression analysis, providing follow-up is the same for all subjects and the 

event rate is low.  

 

Galati and Seaton (81) argue that, regardless of the missingness mechanism, CCA 

is valid if cases are “available at random”, such that the probability that all data 

are observed is constant across all covariate values.  They give the example of 

participants in a trial who may be over-representative of the sickest patients, but 

where dropouts are also over-representative of the sickest patients.  Hence the 

combination of selection bias and dropout might result in a roughly 

representative sample in the complete cases.    
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3.3. Weighting methods 

Weighting adjustments can be used to correct suspected bias from CCA (82).  

This can be achieved by stratifying the complete case dataset into weighting 

classes, or more generally, by using inverse probability weighting (IPW), where 

weights are obtained from a model for the probability that data are complete (the 

weighting model).  IPW relies on the assumption that the weighting model is 

correctly specified, and that the probability of a complete case is non-zero (83).  

However, in contrast to multiple imputation (see Section 3.4.2), it does not 

require compatibility between the weighting model and the analysis model.  

Since weighting methods use only complete cases, they can be inefficient (82).  

They can also be sensitive to the choice of weighting model and difficult to apply 

in practice if variables relating to missingness are themselves incomplete (84).  

Therefore, weighting methods are most useful when a single variable is 

incomplete or when data are monotone missing, and the sample size is large (82).  

3.4. Multiple imputation 

MI methods (and related approaches, such as Bayesian methods) are frequently 

used to handle missing data, with potential benefits in terms of both bias-

correction and precision (85).  MI involves a three-step process.  First, missing 

data are replaced by plausible values using some specified mechanism.  To 

account for the uncertainty about missing values, multiple copies of the dataset 

are created (86).  White et al. (87) suggest as a “rule of thumb” that the number of 

copies of the dataset should at least equal the percentage of incomplete cases.  

Secondly, the desired analysis is performed separately for each imputed dataset.  

Finally, results from each separate analysis are pooled to obtain overall estimates 

of the mean and variance of analysis model parameters; Rubin’s rules (88) are the 

standard method for this.  Madley-Dowd et al. (89) found that, even with a large 

proportion of missing data, MI was beneficial in terms of reducing bias and 

improving efficiency compared with CCA.  They note that the “fraction of 
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missing information”, a parameter-specific measure of the information lost due 

to missingness, gives a better indication of the efficiency gains from using MI 

than the proportion of missing data.    

 

Van Buuren (90) describes two broad categories of multiple imputation methods: 

(i)  joint modelling (JM) and (ii) multiple imputation using fully conditional 

specification (FCS, also referred to as “chained equations”) (91).  In each method, 

missing values are replaced with realisations of the posterior distribution of a 

parametric model, known as the imputation model (92).  JM involves the explicit 

specification of a joint parametric model across all incomplete variables.  

Common choices are the multivariate linear or log-linear distributions.   

 

However, where an appropriate joint model cannot be easily specified, FCS 

offers a more flexible alternative.  In this method, rather than drawing directly 

from a joint model, a separate model is specified for each incomplete variable, 

conditioning on all other observed and imputed data.  The process uses an 

iterative algorithm (93, 94), described briefly as follows:   

 

For each incomplete variable Xj, let X-j represent the set of variables excluding Xj, 

and xj
obs and xj

mis
 represent the observed and missing data respectively for 

variable Xj.  Then, for each Xj, specify an imputation model with probability 

distribution function p(xj | x-j, θj), and prior distribution p(θj) for the (unknown) 

model parameter θj.  Assume, without loss of generality, that variables X1,….,XR 

are incomplete and XR+1,….,XJ are fully observed (R ≤ J). 

(i) Each imputation consists of T iterations.  In the first iteration, arbitrary 

starting values are assigned to all missing data.   

(ii) Iterations t = 2,…T, consist of the following draws:  

θ1
(t)

 ~ p(θ1) p(x1
obs | x2

(t-1)
, x3

(t-1)
,……, xR

(t-1)
, xR+1,……, xJ, θ1)  

x1
mis(t)

~ p(x1
mis | x2

(t-1)
, x3

(t-1)
,……, xR

(t-1)
, xR+1,……, xJ, θ1

(t)
) 

 

(continued overleaf) 
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θ2
(t)

 ~ p(θ2) p(x2
obs | x1

(t)
, x3

(t-1)
,……, xR

(t-1)
, xR+1,……, xJ, θ2)  

x2
mis(t)

~ p(x2
mis | x1

(t)
, x3

(t-1)
,……, xR

(t-1)
, xR+1,……, xJ, θ2

(t)
) 

. 

. 

. 

θR
(t)

 ~ p(θR) p(xR
obs | x1

(t), x2
(t)

,……, xR-1
(t)

, xR+1,……, xJ, θR)  

xR
mis(t)

~ p(xR
mis | x1

(t)
, x2

(t)
,……, xR-1

(t)
, xR+1,……, xJ, θR

(t)
) 

 

(iii) Values from the Tth iteration are retained as the imputed dataset.  The 

process is repeated M times to create M imputed datasets. 

 

Due to its flexibility, the FCS method is particularly useful when incomplete 

variables are a mixture of continuous, binary and categorical variables or when 

constraints are imposed on some variables.  In the special cases where the 

univariate imputation models are all linear regression models with no interaction 

terms, or all log-linear regression models with only two-way interactions, the 

FCS and JM approaches are equivalent (90).  More generally, Seaman and 

Hughes (95) argue that for a correctly specified restricted general location model 

(a loglinear model for the categorical variables and a multivariate linear 

regression model for the continuous variables, with additional restrictions that 

any conditional distribution is a univariate regression with main effects only), 

posterior distributions under the JM and FCS will be asymptotically equivalent.  

They found that although the JM approach can be more efficient in this case, it is 

also less robust to misspecification.  Valid inference using FCS is based on the 

assumption that a joint model can be defined.  A criticism of FCS is that, other 

than in the few special cases previously described, this implicit assumption 

cannot be verified (and is unlikely to be true in applications to real data).   

 

Rather than replacing missing data directly with draws from a parametric model, 

predictive mean matching (PMM) has been suggested as an alternative 

imputation method (96).  A combination of PMM and imputation using direct 

draws from parametric models can be specified within the same FCS imputation 

scheme (with one or other chosen for each incomplete variable).  In PMM, for 
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each subject i with a missing value for variable X, the following steps are 

performed:  

(i) Calculate the distance between the predicted values of X for subject i and 

for all h subjects with an observed value for X (see below for definitions of 

the predictive distance).  

(ii) Identify a donor pool of subjects (usually fixed in size) for which the 

predictive distance is minimised.  

(iii) Randomly select a subject d from the donor pool. 

(iv) Replace the missing value of subject i with the observed value of subject d.  

 

Morris et al. (92) describe three types of PMM, which differ in how the predictive 

distance in step (i) is calculated.  In type 1 PMM, the predictive distance is 

calculated as |𝜷∗𝒛𝒊 − 𝜷̂𝒛𝒉|, where 𝜷̂ denote the estimates of regression coefficients 

𝜷 from a regression of X on predictors Z, fitted to all h observed values of X; 𝜷∗ 

denotes a random draw from the posterior distribution of 𝜷 (or its Normal 

approximation) (87) and 𝒛𝒊 and 𝒛𝒉 denote the values of Z for subjects i and h, 

respectively.  In type 0 the predictive distance is |𝜷̂𝒛𝒊 − 𝜷̂𝒛𝒉| and in type 2 it is 

|𝜷∗𝒛𝒊 − 𝜷∗𝒛𝒉|.  Several studies have found that type 2 PMM leads to under-

coverage (92, 97, 98).  

 

In PMM, imputed values are always selected from the pool of observed data, 

which may be an advantage when imputing discrete data or when the analysis 

model includes non-linear terms.   A related method, “local residual draws” 

(LRD), proceeds as for PMM, but the imputed value is the sum of the residual for 

donor d (the difference between the observed and predicted value) and the 

predicted value for subject i (92).  Both PMM and LRD may protect against 

misspecification of the imputation model.  However, Morris et al. (92) suggest 

that both methods can perform badly when there is a strong association between 

the incomplete covariate and the outcome of interest.  They suggest focus should 

be on improving the specification of the imputation model rather than using 

PMM or LRD as a way of correcting for a poorly specified model.   
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3.4.1. Ignorability    

Most MI methods developed to date assume that the missing data mechanism 

(MDM) is ignorable, that is, that the parameters of the analysis model are distinct 

from the parameters of the MDM (79, 99).  Generally, ignorability holds for data 

MCAR and MAR.  If data are MNAR, the missingness mechanism is always non-

ignorable.  In contrast to CCA, for which non-ignorability can be accommodated 

under certain conditions, imputation with a non-ignorable MDM requires the 

correct specification of the missingness mechanism and this is usually unknown.  

Where a non-ignorable missingness structure is suspected, Little (79) suggests an 

approach called subsample ignorable likelihood (SIL).  This combines CCA with 

the increased efficiency of MI.  In SIL, a subsample of cases is identified in which 

all subjects have observed values of the MNAR covariates.  For this subsample, 

missingness in other variables is assumed to be ignorable and hence, MI can be 

performed without explicitly modelling the missingness mechanism.  Provided 

that the missingness mechanism for covariates MNAR is not related to the 

analysis outcome, Little shows that SIL is unbiased in scenarios where CCA or 

MI using all data may not be.  However, as in MI, the validity of the method 

relies on specific assumptions about the MDMs, which are usually unverifiable.   

 

White and Carlin suggest using subject-matter knowledge to decide whether the 

MDM is likely to be ignorable and, if in doubt, perform both CCA and MI (100).  

If inferences are different for each, they recommend careful investigation to 

determine why the differences occur.  A flaw in this advice is that if data are 

MNAR and missingness depends on the analysis outcome, then both approaches 

will give biased results.  In this case, a suitable method for handling data MNAR 

should be used instead (85).  Hence, knowledge of the likely MDM is essential 

before deciding how to handle missing data.      
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3.4.2. Compatible imputation and analysis models 

As previously described, MI requires the specification of both an imputation 

model and an analysis model.  It is important that the imputation model is 

compatible (101, 102), or, relatedly, “congenial” (103), with the analysis model.  

Von Hippel (102) describes this as ensuring: “any relationship in the analysis 

model should also be part of the imputation model”.  Von Hippel notes that this 

justifies, for example, the inclusion of the analysis outcome variable in the 

imputation model, which can appear counter-intuitive at first sight.  If the 

outcome variable is not included, covariate values will be imputed that have no 

association with the outcome, which will bias any resulting analysis towards the 

null.  More formally, compatibility requires that a model exists which has 

conditional distributions equal to the imputation and analysis models (101, 104).   

Bartlett et al. (101) note that the weaker property of semi-compatibility can be 

useful.  Semi-compatibility occurs when an imputation model can be made 

compatible by setting one or more imputation model parameters to zero in the 

analysis model.  This allows for the inclusion of auxiliary variables in the 

imputation model, that is, variables predictive of missingness and incomplete 

data, that are not included in the analysis model.   

 

Hughes et al. (105) found that Rubin’s variance estimator (88) was sensitive to 

incompatibility and use of incorrect imputation models.  They compared Rubin’s 

estimator with the estimator suggested by Robins and Wang (106); full 

mechanism bootstrapping and a robust version of Rubin’s variance estimator, 

which incorporates a sandwich estimator for within imputation variance (107).  

The estimator of Robins and Wang performed well for large samples but less so 

for small samples (since it relies on large sample properties); a further limitation 

is that it relies on specification of a joint imputation model so cannot be used 

with FCS.  Full mechanism bootstrapping also performed well but was less 

efficient; a limitation of this estimator is that it requires explicit specification of 

the MDM when data are MAR.  The sandwich estimator performed least well of 
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the three comparator estimators, although performance was comparable in the 

presence of severe non-normality.  However, it has the advantage of ease of 

implementation, without the need for a joint model or knowledge of the MDM.  

In a subsequent study of the use of MI with bootstrapping, Bartlett and Hughes 

(108) found that it is valid to use bootstrapping after MI, provided the 

imputation and analysis models are compatible, but may lead to incorrect 

coverage if they are not.  If uncongeniality is suspected, bootstrapping before MI 

is recommended. 

 

Vansteelandt et al. (109) suggest that incompatibility and model misspecification 

can be avoided by using IPW methods.  In particular, they argue that doubly 

robust IPW estimators, which have the advantage over standard IPW methods of 

incorporating information from partially observed cases, both minimise bias 

introduced by model misspecification, and maximise efficiency.  

 

An additional compatibility issue arises in FCS MI: that of compatibility between 

the univariate imputation models and a single joint model.  Liu et al. (110) show 

that achieving this form of compatibility is sufficient for convergence to the 

posterior distribution of a full Bayesian model, which in turn implies appropriate 

coverage when using FCS MI.  Hughes et al. (94) develop this idea further and 

show that, for finite samples, in addition to compatibility, a “non-informative 

margins” condition is required.  This means that, for each imputed variable, the 

joint distribution can be factorised into independent conditional distributions for 

the imputed variable and all other variables.  They demonstrate that this 

condition holds for the multivariate linear and some forms of multinomial 

distribution, but not for the general location model.  However, they suggest that 

for any models that fail to meet the non-informative margins condition, order 

effects (in which results depend on the order in which variables are imputed in 

the FCS algorithm) can occur.  These would usually be small and negligible for 

large samples.   
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3.4.3. Non-linear terms and interactions 

A common cause of incompatibility is the failure to account for non-linear or 

interaction terms in the imputation model when these are required in the 

analysis model.  For example, a quadratic form of a covariate may be specified in 

the analysis model, but a linear form is used in the imputation model.  A simple 

approach is to ‘impute then transform’, that is, to apply any required 

transformation after imputation, e.g. as in the previous example, by imputing a 

linear form of a covariate and then using the square of that value in the analysis 

model.  A related approach is “passive imputation” (111), in which values of the 

transformed variable are calculated from the (imputed or observed) 

untransformed variable during the imputation step.  Then both untransformed 

and transformed versions of the variable are used as predictors in imputation 

models for other incomplete variables. 

 

Von Hippel (102) argues that both methods lead to biased estimates and 

advocates reversing the method to ‘transform then impute’ (coined by others as 

‘just another value’, JAV).  In JAV, untransformed and transformed versions of 

the variable are imputed independently (then, as for passive imputation, both are 

used as predictors in imputation models for other incomplete variables).  The 

JAV approach may yield imputed values that are inconsistent with one another, 

e.g. it does not guarantee that imputed quadratic values are the square of 

imputed linear values.  However, Von Hippel found JAV led to unbiased 

estimates when using a JM approach to impute squared and two-way interaction 

terms in linear and probit regression models.   

   

Morris et al. (112) applied JAV to the imputation of ratios.  They found that 

imputing the ratio independently of the two covariates that represented the 

numerator and denominator, led to unbiased estimates with correct coverage.  In 

contrast, passive imputation led to biased results.  In linear regression analysis, 

Seaman et al. (113) found that JAV gave consistent estimation only when data 
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were MCAR, although bias was generally small when data were MAR.  

However, they found that JAV led to severe bias for logistic regression analysis 

and advise the use of PMM instead in this case.  Tilling et al. (114) found JAV led 

to bias in linear and logistic regression analysis models including two-way 

interaction terms.  They advise including all interactions implied by the 

interaction specified in the analysis model e.g. if the analysis is a regression of Y 

on X, Z and XZ, the imputation model for Z should include X, Y and XY.  

 

Bartlett et al. developed another approach to compatibility by modifying the FCS 

method, termed “substantive model compatible” FCS (SMC-FCS) (101).  This 

version of FCS involves specifying the imputation model as the product of two 

densities (for the analysis model and incomplete covariates, respectively).  Since 

this specification of the imputation model will not usually have a standard 

parametric form, Bartlett et al. use rejection sampling to impute suitable values 

when the analysis is a linear regression, logistic regression or Cox PH model.  In 

simulation studies with squared and two-way interaction terms in linear and Cox 

regression models, they found passive imputation led to estimates that were 

biased towards the null, while SMC-FCS gave unbiased results.  They found that 

JAV (102) and a polynomial approach suggested by van Buuren for quadratic 

terms (115, 116) also performed well, though with some bias in certain MAR 

scenarios.  Goldstein et al. (117) use a Bayesian approach to handle incomplete 

covariates, when these include interactions and non-linear terms, in multi-level 

analysis models.  Compatibility between imputation and analysis models is 

obtained by using a Metropolis-Hastings acceptance ratio.  Diaz-Ordaz et al. (118) 

also consider a multi-level MI approach for the analysis of cluster randomised 

trial data.  The clustered nature of the data is incorporated into the imputation 

model using a random-cluster effect.  

 

Morris et al. (104) suggest a different approach when fractional polynomials (FP) 

are required for the analysis model and the exact form of FP is unknown at the 

imputation stage.  Their method involves repeatedly sampling from the observed 
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data using an approximate Bayesian bootstrap, determining the best form of FP 

for each sample, drawing from the distribution for this FP, and then passively 

imputing the linear form of the missing covariate.  Morris et al. (104) apply their 

method to FP of dimension one, but note that applications to FP of dimension 

two or more could be extremely computationally intensive.  Although they 

discuss problems with using PMM, JAV and SMC-FCS for FP models of this 

type, results for these methods are not compared with their suggested method.  

Hence, it is not clear whether it performs better in practice.   

 

Recently, Beesley and Taylor (119) have suggested an alternative method for 

ensuring compatibility between the imputation and analysis models when 

covariate data are missing.  Their approach is based on imputation “stacking”, in 

which all imputed datasets are combined to create one large dataset.  The stacked 

approach is shown to be valid by Robins and Wang (106).  Contrary to the 

standard approach, Beesley and Taylor (119) suggest imputation models for the 

incomplete covariates that do not use the outcome as a predictor.  Instead, the 

analysis model is incorporated via weights.  Analysis estimates are then obtained 

by fitting a weighted version of the analysis model to the stacked dataset.  

Beesley and Taylor argue that their approach is valid when covariates are MAR, 

even when missingness depends on the outcome (although they acknowledge 

that a small degree of bias may occur in this case).         

3.4.4. Skewed and bounded variables 

Several studies have focused on imputation of skewed or bounded variables e.g. 

survival times or grouped continuous variables such as income brackets.  

Royston describes an implementation of FCS MI for skewed or bounded 

variables using Stata software (120).  An assumption of the method described is 

that the variable, if fully observed, would follow a normal distribution.  A log 

transformation is suggested for survival times and other skewed and/or strictly 

positive variables, and a truncated normal is suggested for bounded variables.  

Royston points out that the normality assumption can lead to incompatibility 
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between the imputation and analysis model which may lead to results biased 

towards the null.  Von Hippel (121) also found that attempts to normalise 

skewed variables via transformation led to biased results and remarks that: “The 

point of imputation is not that the imputed values should look like observed 

values. The point is that the imputed variable should act like the observed 

variable when used in analysis.”  He advises the use of untransformed variables 

in the imputation model when the purpose of the analysis is to estimate 

associations, but the use of transformed variables when estimating percentiles.  

He notes the best solution would be to use a flexible imputation model that can 

cope with non-normal distributions rather than forcing a skewed distribution to 

fit a linear regression model.  

 

Kwon and Park (122) adapted the LRD method to accommodate boundaries 

associated with incomplete variables by adding the residual divided by the 

distance between the predicted value and its boundary, which they call a 

“proportioned residual.”   They found that their method was less biased than 

LRD and PMM methods and was robust given skewed distributions.  In contrast 

Rodwell et al. (97) found that restricting the range of imputed values, either 

during the imputation step or post-imputation, led to substantial bias.  They 

conclude that it is best to impute on the original scale without range restrictions.   

 

Lee and Carlin (98) expanded on the work of von Hippel and Rodwell et al., 

comparing various transformations of non-normal data to imputation on the 

original scale and PMM, in linear and logistic regression analyses.  They found 

that imputation on the original scale and PMM resulted in broadly unbiased 

estimates when the relationship between the completely observed outcome and 

the incomplete covariate was linear.  When the relationship was non-linear, only 

PMM gave unbiased results.  Type 1 PMM performed better than type 2 PMM 

(type 2 PMM led to under-coverage in estimation of the mean, and bias when the 

outcome was a binary variable).  Transforming the data led to bias in all 

scenarios. 
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3.4.5. Missing outcomes 

Much of the literature on general MI methods assume that outcome data are all 

observed (90-92, 101, 123).  Little (46) asserts that if covariates are complete and 

values of the outcome variable are MAR, then cases with missing outcome 

contribute no information to the analysis model.  In a method described as 

“multiple imputation, then deletion” (MITD), Von Hippel (124) expands on 

another comment by Little, such that if covariate values are to be imputed, then 

cases with missing outcome “can provide a minor amount of information” by 

improving imputation of missing covariates in cases with observed outcomes.  

Von Hippel argues that once cases with missing outcomes have fulfilled their 

useful purpose, i.e. by improving the imputation model, they should be removed 

from the analysis model.  This approach assumes that there are no auxiliary 

variables which would improve the prediction of the missing outcome values.  

Sullivan et al. (125) used a JM MI approach to assess MITD (124) in the presence 

of auxiliary variables.  They found that MITD resulted in biased estimates when 

missingness in the outcome variable was associated with an auxiliary variable, 

with bias increasing with the proportion of missing data and the strength of the 

association between the auxiliary variable and the outcome (125).  In this 

situation, Sullivan et al. suggest the best approach is to include imputed outcome 

data in the analysis model.  They argue that to exclude these data would exclude 

the information provided by the auxiliary variable, and hence would violate the 

MAR assumption.   

3.5. Use of multiple imputation in survival 

analysis 

In survival analysis, it is well-established that both the censoring indicator and a 

representation of the survivor function should be included in the imputation 

model when imputing covariates (91, 101, 123).  In a study of Cox proportional 

hazards models with right-censored survival times, White and Royston (123) 
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found that the inclusion of the cumulative baseline hazard in linear or logistic 

regression imputation models for a single incomplete covariate led to smaller 

bias than if the survival time or log-survival time was included.  They found 

there was some bias towards the null in scenarios where there was a strong 

association between the incomplete covariate and the outcome of interest.   The 

Nelson-Aalen estimator of the cumulative hazard was found to be an 

appropriate approximation of the cumulative baseline hazard.   

 

Bartlett et al. (101)  found further improvement through application of their SMC-

FCS method, described previously.  They found SMC-FCS led to broadly 

unbiased estimates with correct coverage while White and Royston’s method led 

to some bias towards the null.  Keogh and Morris (126) extended the approaches 

of both White and Royston and Bartlett et al. to accommodate time-dependent 

covariates.  Their results agreed with those of Bartlett et al. (101). Bartlett and 

Taylor (127) also extended the SMC-FCS approach to competing risks by 

considering the cause-specific Cox model, but did not consider direct modelling 

of the cumulative incidence function e.g. by using the Fine and Gray model (62).   

3.5.1. Missing outcomes in survival analysis 

As discussed in Chapter 2, Section 2.2, it is routinely the case that some study 

subjects will not have experienced the event(s) of interest by the end of the 

observation period.  The event times for these subjects are said to be censored 

(specifically, right-censored).  Standard survival methods can accommodate 

right-censored event times, provided the censoring mechanism is independent of 

the survival time itself (possibly conditional on model covariates) (50-52).  

Typically, imputation of unobserved event times is performed to overcome two 

main departures from standard survival model assumptions: (i) dependent 

censoring and (ii) interval-censoring.  These types of censoring, and methods for 

handling them, are described in subsequent sections.   
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(i) Dependent censoring 

Dependent, or informative, censoring means that the censoring mechanism is 

related to the survival time itself.  It occurs, for example, when the sickest 

patients drop out of a clinical trial and are lost to follow-up.  Jackson et al. (128) 

used MI to explore the effect of dependent censoring in a Cox regression 

analysis.  They imputed the censored failure times (by treating them as data 

MAR) by drawing directly from the survivor function for a Cox model fitted to 

all observed failure times.  They found their method performed well with small 

bias and adequate coverage.  Since the baseline hazard function in a Cox model 

does not have a parametric form, they used bootstrap sampling to create 

multiple versions of the baseline hazard.   They note that using a parametric 

specification for the baseline hazard would remove the need to use 

bootstrapping and would allow a conventional MI approach (in which random 

draws are made from the posterior distribution of the baseline hazard function 

parameters).   

 

Hsu et al. (129) used a method analogous to PMM to handle dependent 

censoring.  They included auxiliary variables associated with censoring in the 

imputation scheme to make the MAR assumption plausible.  Here the predictive 

distance used in the PMM procedure was based on a composite risk-score rather 

than a linear regression model.  They performed a simulation study comparing 

this method to an IPW method (130).  They found that MI was more efficient and 

IPW was less biased (as is generally the conclusion when MI and IPW methods 

are compared).  Xiang et al. (131) obtained unbiased results using a similar 

approach, but with a restricted mean model to define the set of donors.  As in the 

LRD method, the imputed value is the sum of the residual from the restricted 

mean model for the donor and the predicted value for the missing failure time.     

(ii) Interval censoring 

As described in Chapter 1, Section 1.3.2, interval-censoring means that the event 

time is not observed exactly but is known to lie within a particular time interval.   
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If the censored intervals are relatively narrow, Sun (47) suggests substituting a 

single point from the interval (usually the mid-point if there is no prior 

information about the part of the interval where the event is more likely to 

occur).     

 

As a more rigorous alternative, MI can be used to handle interval-censoring (by 

treating the interval-censored times as missing data).  In several studies, 

described below, the imputation model is based on the survivor function.  Hsu et 

al. (132) extended their PMM-like method for imputation of right-censored 

observations (129), to interval-censored data, by conditioning on the censored 

interval boundaries.  Pan (133) compared two MI methods involving iterative 

draws from the survivor function for a Cox model, conditional on the censored 

interval boundaries: the Poor Man’s Data Augmentation (PMDA) and 

Asymptotic Normal Data Augmentation (ANDA) (134).   They recommend using 

ANDA because they found PMDA underestimated SE in some scenarios.  Chen 

and Sun (135) adapted Pan’s method for an additive hazards analysis model.  

Delord and Genin (136) adapted Pan’s method for a competing risks analysis, 

using both the non-parametric estimator of the cumulative incidence function 

and the Fine and Gray sub-distribution hazards regression model (62).   

 

IPW methods have also been used to address interval-censoring.  Kim et al. (137) 

proposed an additive-multiplicative hazards regression model (combining 

proportional hazards and additive hazards models) for semi-competing risks 

data, accommodating interval-censoring by the application of IPW over the 

censoring interval.  Hyun et al. (138) used IPW techniques to allow for interval-

censored times in prevalence-incidence mixture models, also accounting for 

competing risks by modelling the sub-distribution hazard function.      
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3.6. Full maximum likelihood methods for 

handling interval-censored outcomes 

As an alternative to MI, FML methods for handling interval-censored outcomes 

have been developed.  Early methods were based on the “simplified” likelihood 

function, which assumes non-informative censoring (139).  The simplified 

likelihood function takes the following form: for a cumulative distribution 

function F(t), the contribution to the simplified likelihood function by subject i, 

whose event time is known to lie in the interval (Li, Ri], is proportional to {F(Ri) – 

F(Li)}.  Hudgens et al. (140) used this approach to derive the NPMLE of the 

cumulative incidence function for competing risks data.   

 

Parametric models for interval-censored competing risks data have also been 

considered.  Such models can be particularly useful for small sample sizes and 

wide censoring intervals (47), and can be more efficient (141) than a non- or semi-

parametric approach.  Hudgens et al. (141) used a Gompertz distribution for the 

cumulative incidence function for each event type in a competing risks 

framework.  They found that their estimators had smaller bias and variance than 

the equivalent NPMLE.  Mitra et al. (142) extended the approach of Hudgens et 

al., allowing for missing event types, considering both non-proportional and 

proportional sub-distribution hazard models.   

 

An alternative FML approach uses the penalised likelihood and/or smoothing 

functions to increase computational efficiency, and to avoid the need for strong 

parametric assumptions.  Li (143) developed a penalised likelihood approach for 

a cause-specific PH model.  They also developed a spline-based estimator for the 

log baseline cumulative sub-distribution hazard (144) in a Fine and Gray (62) 

regression model.  Bakoyannis et al. (64) extended Li’s method to estimate the 

cumulative incidence function in a competing risks framework, allowing 

different models for each event type.  They argue that their approach yields more 
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semi-parametrically efficient regression model estimates than the approach of 

Delord and Genin (136).     

 

FML methods for handling interval-censored outcomes in a MSM analysis have 

also been developed.  For example, Frydman and Szarek (145) proposed an 

NPMLE of the distribution of time to first event in an illness-death Markov 

model, with interval-censored intermediate event times.  Foucher et al. (146) used 

a similar approach for semi-Markov models with parametric (Weibull) transition 

intensity models.  Beesley and Taylor (147) used an expectation-maximisation 

(EM) algorithm to fit a multistate cure model, incorporating an imputation-type 

method to handle missing values of cure status and time of disease recurrence.  

They note that their imputation approach is “improper” because a single 

estimate of the predictive distribution parameter is used throughout the 

imputation step (rather than drawing a new parameter value in each iteration as 

in MI).  

 

Time-homogeneous (i.e. assuming that the transition intensity is constant over 

time) Markov models have also been used to handle interval-censored event 

times in MSMs (148-151).  Jackson (148) notes that this implies that the censoring 

intervals are ignorable, which would be valid if, for example, the censoring 

intervals were determined by clinic visits at fixed time-points.  Healy and 

Degruttola (149) considered approaches to fitting time-homogeneous Markov 

models when the time origin and the states were known with error.  Jackson 

extended their approach to time-inhomogeneous models, by assuming the 

transition intensity was constant over each censoring interval, referred to as 

“piecewise” constant hazards (148).   

 

Assuming piecewise constant hazards, Joly et al. (150) and Machado and van den 

Hout (151) used penalised maximum likelihood estimation with spline functions 

for the baseline intensities.  Machado et al. (152) describe an improvement of the 
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smoothing parameter estimation in the method of Machado and van den Hout.  

They compared their new method with that of Joly et al. and Jackson, finding that 

the latter performed less well than the other methods.  They note that this is 

probably because Jackson’s method only allows a limited choice of models to be 

fitted, whereas the other methods are more flexible.  They found that none of the 

methods performed well when censoring intervals were wide, relative to the 

change in the hazards.    

3.7. Discussion 

This chapter has provided an overview of missing data methods.  The focus of 

this review has been on methods most relevant to my research, that is, methods 

for handling missing covariate and outcome data in competing risks and MSM 

analyses.   

 

In the NHS CBB dataset, the missingness of event times depends on the type of 

event experienced (as well as patient, donor and transplant characteristics) (see 

Chapter 4, Section 4.4).  In this case, CCA will be biased because missingness of 

event times depends on the analysis outcome.   

 

In addition to CCA, available methods can be broadly categorised as (i) applying 

weighting methods, (ii) applying MI strategies or (iii) taking a FML approach.  

Weighting methods are most useful when a single variable is incomplete or 

when data are monotone missing, and the sample size is large (82).  In the NHS 

CBB dataset, both event times and covariate data are missing, and only 432 

transplants are available for analysis (see Chapter 4, Sections 4.3-4.4).  Therefore, 

weighting methods are not considered in my analysis.   

 

In the NHS CBB dataset, event times for the events of interest are frequently not 

reported, although the times of competing events generally are (see Chapter 4, 

Section 4.4).  The interval boundaries for event times are wide and generally the 
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same for all patients: for acute GvHD, missing event times are assumed to occur 

in the acute period (between day 0 and day 100, or the time of the patient’s death, 

if this occurs before day 100) and for chronic GvHD, missing event times are 

assumed to occur in the chronic period (beyond day 100).  The upper boundary 

for missing event times for chronic GvHD and relapse will be the time of the 

patient’s death or last observation time.  Hence, the missing event times in the 

NHS CBB dataset deviate from the assumptions of the FML methods developed 

so far, in two ways: (i) event times are a mixture of exact and interval-censored 

times and (ii) interval boundaries are wide relative to the observed event times.        

 

Therefore, in my research, I focus on MI strategies for handling missing event 

times, using the FCS approach.  The appeal of FCS MI is its flexibility: the FCS 

method can accommodate a mixture of continuous, binary, and categorical 

incomplete variables, non-linear associations, and any constraints imposed on 

incomplete variables.  A mixture of observed and missing data can be 

accommodated, and additional data that are predictive of the missing times, but 

not required for the analysis model, can be used during the imputation step to 

inform the imputed times.  After imputation, any desired complete data method 

may be used.  To assess whether MI is an improvement over FML, I compare MI 

strategies with a suitable FML method in a competing risks analysis (see Chapter 

5, Section 5.2.7).  

 

FCS MI is valid if the analysis and imputation models are correctly specified, and 

each variable being imputed is not MNAR.  Based on research to date, it is clear 

how to impute missing covariate data when these are not MNAR: use FCS MI to 

impute variables using an appropriate parametric model by, for example, 

imputing continuous variables using linear regression, binary variables using 

logistic regression and categorical variables using multinomial regression.   

 

Optimal methods for imputing missing event times are less clear.  It is not 

evident that the general recommendations for imputation of missing outcomes 
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(described in Section 3.4.5) apply to imputation of missing event times in a 

survival analysis model, when both non-linear associations and censoring need 

to be accounted for.  In this thesis, I will address key questions about imputation 

of event times.  These questions are described in more detail below.   

   

The first question is whether it is necessary to constrain the imputed event times 

to lie within the censoring interval boundaries.  Additionally, event times tend to 

be right-skewed: it is not clear to what extent skewness should be accounted for 

in the imputation model.  Another challenge is that of compatibility between the 

imputation and analysis models.  It is not clear whether it is important that the 

imputation scheme incorporates the cumulative incidence function in a 

competing risks framework, or the order of the event times in a MSM.  In such 

models, estimands of interest depend on all the cause-specific hazards (see 

Chapter 2, Section 2.2.2), so the challenge of compatibility between the 

imputation and analysis models increases dramatically. The method of Delord 

and Genin (136) is currently the only compatible MI method available for non-

parametric estimation of the cumulative incidence function in the presence of 

competing risks.  Finally, to date, the use of MI methods for handling interval-

censored event times in a MSM analysis has not been assessed.  Therefore, in this 

thesis, I will compare the performance of MI methods in a MSM analysis.   

 

  



 

 53 

CHAPTER 4.  OVERVIEW OF 

THE NHS CORD BLOOD BANK 

DATASET 

4.1. Introduction 

This chapter provides an overview of patient, donor and transplant baseline 

characteristics and the types of events experienced by patients in the NHS CBB 

dataset, including the percentage of missing data for each variable.  Associations 

between missingness of event times and all other variables are explored, and 

possible missingness mechanisms for event times are described.    

4.2. Description of the NHS Cord Blood Bank 

dataset 

Between 1996 and 2015, 432 first (for the patient) transplants were performed 

using CB donated to the NHS CBB.  An additional 50 transplants were excluded.   

These were of different types from the majority of transplants, but were only 

present in small numbers.  The reasons for exclusion were as follows:   

• The transplant was the second or later transplant for a patient, where the first 

transplant was a CB transplant (N = 12) 

• The transplant was the second or later transplant for a patient, where the first 

transplant was not a CB transplant (N = 12) 

• The donor was related to the patient (N = 12) 

• The patient received a non-standard source of HSCs e.g. CB plus PB (N = 14) 
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4.3. Baseline patient, donor and transplant 

characteristics 

Baseline patient, donor and transplant characteristics of the 432 transplants in the 

NHS CBB dataset are summarised in Table 4.1 and briefly described overleaf.   

Table 4.1. Baseline patient, donor and transplant characteristics of the NHS CBB dataset.  

Characteristic Level N (%) 

Year of transplant 1996-2000 30 (  7) 

 2001-2005 66 (15) 

 2006-2010 172 (40) 

 2011-2015 164 (38) 

Country of transplant France 52 (12) 

 UK 138 (32) 

 Other European country 83 (19) 

 USA 117 (27) 

 Other non-European country 41 (  9) 

 Not reported 1(<1) 

Patient age at transplant (years) <16 195 (45) 

 16-39 84 (19) 

 40-59 103 (24) 

 60+ 50 (12) 

Disease type at transplant Acute leukaemia 217 (50) 

 Other blood cancer1 126 (29) 

 Non-malignant disorder2 89 (21) 

Disease status at transplant 
 

Partial/complete remission 158 (37) 

Relapse 23 (  5) 

 Other3 123 (28) 

 Not reported 128 (30) 

Conditioning regimen Intensive 209 (48) 

 Reduced intensity 206 (48) 

 Not reported 17 (  4) 

Number of CB units received Single cord 232 (54) 

 Double cord 200 (46) 

GvHD prophylaxis Yes 10 (  2) 

 No 0 (  0) 

 Not reported 422 (98) 
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Table 4.1 contd. 

Characteristic Level N (%) 

Donor-recipient CMV match Negative to positive 114 (26) 

 Positive to negative 81 (19) 

 Negative to negative 70 (16) 

 Based on one donor4 40 (  9) 

 Positive to positive 40 (  9) 

 Based on one donor4 35 (  8) 

 Not reported 52 (12) 

Donor-recipient sex match 
 

Male to female 89 (21) 

Female to male 136 (31) 

Male to male 68 (16) 

 Based on one donor4 55 (13) 

 Female to female 51 (12) 

 Based on one donor4 30 (  7) 

 Not reported 3 (  1) 

Number of donor-recipient HLA 
mismatches5 

 

Well-matched: 0 or 1 144 (33) 

Based on one donor4 75 (17) 

Poorly-matched: 2 or more 161 (37) 

Not reported 52 (12) 

TNC dose at infusion (×107/kg) Low: <3.0 54 (13) 

 Based on one donor4 38 (  9) 

 Medium: 3.0-5.0 61 (14) 

 Based on one donor4 69 (16) 

 High: > 5.0 74 (17) 

 Based on one donor4 31 (  7) 
 Not reported 105 (24) 
1 Other blood cancer includes lymphoproliferative and plasma cell disorders, 
myelodysplastic syndromes and myeloproliferative disorders. 
2 Non-malignant disorder includes histiocytic disorder, solid tumour, bone marrow 
failure syndrome, haemoglobinopathy, primary immune deficiency and inborn error 
of metabolism. 
3 Other disease status includes acute, chronic and accelerated phase, refractory 
disease, transformed to acute leukaemia, blastic crisis, MDS, MDP and non-malignant 
disorders. 
4 Based on data for one donor of a double cord transplant, where data for the second 
donor are not available.  For TNC dose, the dose reported here is double the dose 
reported for one donor. 
5 HLA A and B loci at antigenic level and DR-B1 at allelic level 

Most transplants were performed in the last 10 years of the study period (336, 

78% during 2006-2015 vs. 96, 22% during 1996-2005).  This reflects increasing 

adoption of CB transplant as a standard treatment (14), as well as increasing 

numbers of transplant centres providing information to the Eurocord Registry 

(36).  Approximately half (45%) of all transplant recipients were paediatric 
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patients (aged < 16 years).  The mean age of paediatric patients was 5 years and 

of adult patients was 45 years.   

 

HSC transplantation is used to treat a variety of disease types (14) and this is 

reflected in the NHS CBB cohort.   Most patients (343, 79%) were treated for a 

blood cancer, with acute leukaemia the most common disease type in both adults 

and paediatric patients (133, 56% vs. 84, 43%).  Non-malignant disorders, such as 

primary immune deficiency and inborn error of metabolism, are usually 

diagnosed and treated in childhood (153) and accounted for nearly half (80, 41%) 

of all paediatric transplants in the NHS CBB cohort.  Only 9 (4%) adult patients 

were treated for a non-malignant disorder.  Where reported, most patients (158 

of 215 patients with status reported, 73%) were in partial or complete disease 

remission at transplant.  Where reported, intensive and reduced intensity 

conditioning were each used in about half the transplants in the study cohort.  

GvHD prophylaxis was only reported for 10 (2%) patients, and all these patients 

received GvHD prophylaxis.  Therefore, using MI to impute the missing values 

of GvHD prophylaxis status is not appropriate because the observed data are not 

good predictors of the missing values (assuming that not all patients received 

GvHD prophylaxis) (85).  There was no additional information available to 

determine whether GvHD prophylaxis was or was not received by the remaining 

422 patients.  Therefore, this variable was treated as completely unobserved, and 

was excluded from subsequent analyses.  

   

Of all 432 transplants, 200 (46%) were double cord transplants.  As described in 

Chapter 1, Section 1.2.7, a double cord transplant is where the patient receives CB 

from two different donors during their transplant.  Double cord transplants are 

usually given when a single cord would provide insufficient HSCs for the 

patient’s body weight (14).  Most adult patients in the NHS CBB cohort received 

a double cord transplant (188, 79% of adults vs. 12, 6% of paediatric patients).  In 

most double cord transplants (180 out of 200, 90%), one of the two donors did not 

donate via the NHS CBB, and hence, none of this donor’s data were available.  
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Hereafter, data based on one of the two donors of a double cord transplants will 

be referred to as ‘partially observed’ donor data, to distinguish it from 

completely missing data (i.e. values for which no information was available).  

Strategies for classifying characteristics that depend on both donors’ data in 

double cord transplants, namely, sex and CMV match between donors and 

recipient, number of HLA mismatches between donors and recipient, and TNC 

dose at infusion, are described below. 

4.3.1. Strategies for handling double cord transplant 

donor data  

Donor-recipient sex and CMV status match 

In double cord transplants, a mismatch in the donor-recipient sex or CMV status 

was defined as at least one donor of the opposite sex or CMV status to the 

patient.  No distinction was made between a mismatch involving one or both 

donors and it was assumed that the effect of a mismatch would be the same 

regardless of the number of mismatched donors.  Hence, if the known donor was 

of the opposite sex or CMV status to the recipient, a mismatch could be identified 

from partially observed donor data.  However, in many transplants (85, 20% for 

sex match and 75, 17% for CMV match), a sex or CMV mismatch could not be 

determined from partially observed donor data because the known donor was 

the same sex or CMV status as the patient.  For these cases, the match based on 

the known donor is reported; such cases are identified in separate rows in Table 

4.1.    

Number of donor-recipient HLA mismatches 

For transplants with partially observed donor data, in which the patient was a 

poor HLA match for the known donor (2 or more HLA mismatches), knowledge 

of the second donor’s HLA types could only increase the number of mismatches.  

Hence, poorly-matched transplants could be identified from partially observed 

donor data.  However, in cases in which the known donor was well-matched (0 
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or 1 mismatches), the overall number of HLA mismatches could not be fully 

determined.  For these cases, the number of mismatches based on the known 

donor is reported; such cases are identified in a separate row in Table 4.1.       

TNC dose at infusion 

For transplants with partially observed donor data, in which the TNC dose at 

infusion for the known donor was reported (N=138), the mean dose was 1.99 × 

107/kg.  This was less than half the TNC dose reported for single cord 

transplants or double cord transplants where both TNC doses were reported 

(mean TNC dose: 5.98 × 107/kg, N=179 for single cord transplants and 4.46 × 

107/kg, N=10 for double cord transplants).  For the 10 double cord transplants 

with both doses reported, the mean ratio of the two TNC doses was 1.2. 

Therefore, for transplants with partially observed donor data, the reported TNC 

dose was doubled to give an estimate of the total TNC dose.  These cases are also 

identified in separate rows in Table 4.1.       

4.3.2. Missing patient, donor and transplant data 

Some baseline variables had completely missing data (i.e. not even partial donor 

information was available, see Table 4.1).  These variables were (with percentage 

missing) disease status (30%), conditioning regimen (4%), sex match (1%), CMV 

match (12%), number of HLA mismatches (12%), TNC dose at infusion (24%), 

and country of transplant (<1%).  Only 197 transplants had complete baseline 

data; this reduced to 132 transplants if partially observed donor data were 

treated as missing data.  

 

My research is focused on missing event times, not missing covariate data; in my 

simulation studies, I assume that all covariate data are observed.  Therefore, in 

my exploratory analyses of missing event times in the NHS CBB dataset, I use 

simple methods for handling missing baseline data.  I treat values inferred from 

partially observed donor data as the true values.  For each variable with 

completely missing values (as defined above), missing values were included in a 
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separate “missing” category.  My approach has the advantage of being straight-

forward to apply and uses the available data for all 432 transplants.  However, it 

has been shown that use of “missing” categories can lead to biased analysis 

results (154).  Therefore, in final analyses of the NHS CBB dataset (see Chapter 7, 

Section 7.4.2-7.4.3), missing baseline data, including values based on partially 

observed donor data, were imputed using FCS MI.     

4.4. Summary of post-transplant events and 

their missingness 

The median post-transplant follow-up of patients in the NHS CBB dataset was 3 

years (Kaplan-Meier estimate, censoring follow-up time at death).  Only seven 

patients had less than 100 days follow-up (with a range of 61-99 days follow-up).  

At least one post-transplant event was reported for each patient.  

 

Table 4.2 shows the number (percentage) of patients in the NHS CBB dataset 

who experienced each type of post-transplant event.  This table also shows the 

number (percentage) of events with a missing event time.   

Table 4.2. Events experienced, and number (percentage) missing an exact event time. 

 Event N (%) N (%) missing  
exact time of onset 

Acute GvHD  241 (56) 57 (24) 

Chronic GvHD  82 (19) 29 (35) 

Relapse 89 (21) 22 (25) 

Myeloid engraftment 373 (86) 3 (  1) 

Graft failure prior to engraftment  37 (  9) 4 (11) 

Death 196 (45) 0 (  0) 

Cases of acute GvHD, chronic GvHD and relapse were reported without an exact 

event time in at least 24% of cases.  Of the 22 cases of relapse without an exact 

event time, relapse was inferred from the cause of death in 20 cases.  In the other 

two cases, relapse was reported without an associated event time, but the patient 

was alive at last follow-up.  All times of death were reported.  
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When the number and type of missing event time per patient were examined 

(Tables 4.3a and b), it was found that, of all 432 patients, 66 (15%) patients were 

missing one event time, 23 (5%) were missing two event times (of which 18 were 

missing times of both acute and chronic GvHD), and one patient was missing 

three event times (times of acute GvHD, chronic GvHD and relapse).     

 

Table 4.3a. Events missing exact event times, for patients with only one missing event time. 

Event type Acute 
GvHD 

Chronic 
GvHD 

Relapse Graft 
failure 

Myeloid 
engraftment 

Death 

Number of 
patients 

34 10 16 3 3 0 

 

Table 4.3b. Events missing exact event times, for patients with two missing event times.   
First missing 
event time 

Second missing event time  

Acute 
GvHD 

Chronic 
GvHD  

Relapse  Graft 
failure  

Myeloid 
engraftment  

Death 

Acute GvHD  18 4 0 0 0 

Chronic GvHD   0 0 0 0 

Relapse    1 0 0 

Graft failure     0 0 

My. Engraftment      0 

Death       

Numbers represent the number of patients with each combination of missing events, regardless 
of event time order. 

4.4.1. Combinations of events experienced  

All combinations of events experienced by patients in the NHS CBB dataset are 

shown as a MSM in Figure 4.1 overleaf.  Note that, for patients with some 

missing event times (N=90), the observed event orders are consistent with the 

event orders of patients with completely observed event times (N=342).    
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Figure 4.1. Multi-state model for post-transplant events experienced by patients in the NHS CBB dataset. 
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There are 22 separate transitions between states in the MSM, some of which were 

experienced only by a small number of patients e.g. from graft failure to relapse 

or to chronic GvHD from states other than acute GvHD.  Broadly, event 

combinations experienced by patients in the NHS CBB dataset can be categorised 

into five sub-groups, depending on whether acute GvHD, chronic GvHD, 

and/or relapse were experienced (Table 4.4). The full list of events experienced 

per patient is included in the Appendices (Tables A.1a and b).   

Table 4.4. Combinations of events experienced by patients. 

Events experienced (regardless of event order) N 

Acute GvHD & chronic GvHD* 68 

Acute GvHD without chronic GvHD* 173 

Chronic GvHD without acute GvHD* 14 

Relapse without GvHD 44 

Neither GvHD nor relapse 133 

ALL PATIENTS 432 
In each sub-group, patients may also experience myeloid engraftment, graft failure and/or death. 
*Patients in these sub-groups may also experience relapse. 

For all but three of the 342 patients with completely observed event times, 

relapse was followed by only graft failure or death.   There were three clinically 

anomalous cases, in which relapse was reported to have occurred between 

transplant and transplant-related events: 

(i)  For one patient, relapse was reported to have occurred shortly after (at 

day 30 post-transplant) myeloid engraftment and acute GvHD; the patient 

was subsequently reported to have experienced chronic GvHD and was 

still alive more than five years post-transplant.  In this case, early relapse 

did not appear clinically plausible given the other events experienced.  In 

subsequent analyses, it was assumed that relapse had not occurred for this 

patient.  

(ii) For two patients, relapse was reported to have occurred at the same time 

as myeloid engraftment and acute GvHD, or shortly before myeloid 

engraftment.  In both cases, the patient died within 100 days of transplant, 

so early relapse appeared clinically plausible.  Therefore, in both cases, a 

small amount of time (0.1 days) was added to the time of relapse to ensure 
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consistency with the event order observed for all other patients.  

4.4.2. Missingness of event times by event 

combination 

To explore whether missingness of event times depended on the combination of 

events experienced, patients in the NHS CBB dataset were categorised into the 

five sub-groups described in Table 4.4 above.  This meant that patients with 

different types of missing event times tended to be in separate groups.  A 

summary of missing event times for these patient sub-groups is shown in Table 

4.5.  Note that, in survival analysis, analysing patients according to events 

experienced after time zero can lead to bias (155).  For example, patients need to 

be alive and in follow-up for long enough after transplant (at least 100 days) to 

experience chronic GvHD.  Hence, experiencing chronic GvHD could appear to 

be protective if patients are classified as such at baseline because, by definition, 

people with chronic GvHD cannot die within the first 100 days.  Appropriate 

survival analysis approaches, in this case, are to treat chronic GvHD as a time-

varying covariate in a model for time to death or to use a MSM approach (see for 

example, the approach by Glimelius et al. (156)).  However, in exploration of 

missingness mechanisms, and application of MI (where the purpose is prediction 

of missing values), it is valid to use all observed data, including values measured 

at a later time-point (157).   

 Table 4.5. Summary of missing event times, by patient sub-group.    

Events experienced N 

No. of patients (no. of missing times for each event type) 

AGvHD CGvHD Relapse Myeloid 
engraft-

ment 

Graft 
failure 

Death 

AGvHD & CGvHD* 68 68 (22) 68 (24) 11 (1) 68 (0) 0 (0) 17 (0) 

AGvHD w/o CGvHD* 173 173 (35) n/a 33 (7) 165 (2) 7 (1) 79 (0) 

CGvHD w/o AGvHD* 14 n/a 14 (5) 1 (0) 13 (0) 1 (0) 3 (0) 

Relapse w/o GvHD 44 n/a n/a 44 (14) 31 (0) 10 (1) 37 (0) 

Neither GvHD nor 
relapse 

133 n/a n/a n/a 96 (1) 19 (2) 60 (0) 

ALL PATIENTS 432 241 82 89 373 37 196 
AGvHD = acute GvHD; CGvHD = chronic GvHD; w/o = without. 
In each sub-group, patients may also experience myeloid engraftment, graft failure and/or death. 
*Patients in these sub-groups may also experience relapse. 



 

 64 

Table 4.5 shows that most missing event times occur in three sub-groups of 

patients, namely: 

(a) Patients who experience acute and chronic GvHD.  Of the 68 patients, 8 

(12%) were missing the time of either acute or chronic GvHD, and 19 

(28%) were missing both GvHD times.   

(b) Patients who experience acute without chronic GvHD.  Of the 173 

patients, 35 (20%) were missing the time of acute GvHD.   

(c) Patients who experience relapse without GvHD.  Of the 44 patients, 14 

(32%) were missing time of relapse.   

 

Numbers of patients missing both GvHD and relapse times were very small: one 

case among patients who experienced both acute and chronic GvHD; seven cases 

among patients who experienced only acute GvHD; no cases among patients 

who experienced only chronic GvHD.    

4.5. Associations of individual-level 

characteristics with missingness of event 

times 

4.5.1. Methods for describing associations with 

missingness of event times 

The association between individual-level characteristics and missingness of event 

times was investigated, to explore whether an assumption of event times MCAR 

or MAR (conditional on the observed data) was plausible (and hence, whether 

MI was a suitable method for handling missing event times).  Separate analyses 

were performed for the three sub-groups of patients with the most missing event 

times, described above, namely: patients who experienced both acute and 

chronic GvHD, patients who experienced acute without chronic GvHD, and 

patients who experienced relapse without GvHD. 
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For patients who experienced GvHD, only associations with missingness of 

GvHD times, not relapse times, were investigated.  This was due to the small 

numbers of missing relapse times in these patient sub-groups.  Again, due to 

small numbers of missing event times, the three sub-groups were not split into 

further sub-categories of event combinations in this analysis, and the analysis 

was not performed for any other patient sub-groups.   

 

All baseline variables were included in this analysis.  The post-transplant 

variables considered were grade of acute GvHD (in analyses of patients who 

experienced acute GvHD with and without chronic GvHD); grade of chronic 

GvHD (in the analysis of patients who experienced acute and chronic GvHD); 

incidence of myeloid engraftment within 100 days post-transplant (with 

competing events of graft failure or death prior to engraftment) and overall 

survival within two years post-transplant.   

Statistical methods 

Firstly, individual-level characteristics were summarised as number, percentage 

(or median, inter-quartile range (IQR) for engraftment and overall survival), for 

cases with and without exact event times.  Distributions of these characteristics 

were compared univariably (for cases with and without exact event times ) using 

Fisher’s exact test (158) (baseline variables), Gray’s test (61) (incidence of myeloid 

engraftment) and the log-rank test (54) (overall survival).  The incidence of graft 

failure and death prior to engraftment was not compared for those with observed 

and missing event times due to the small numbers of these event types.   

 

In the univariable comparisons, for each baseline variable in turn, all values were 

included in the summary but missing cases for that variable were excluded when 

calculating the test statistic.  This approach allowed identification of variables 

whose observed data was associated with missingness of event times.  A small 

number of missing event times for myeloid engraftment, or the competing event 

of graft failure prior to engraftment, were excluded from analysis (there were no 
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missing death times).  The cumulative incidence of myeloid engraftment, graft 

failure and death prior to engraftment, and overall survival function were also 

presented graphically, to illustrate any differences in the distribution of these 

events for patients with and without exact event times for GvHD and relapse.   

 

Additionally, to inform my later simulation study designs (see Chapters 5 and 6), 

multivariable logistic regression was performed for each patient sub-group (with 

a binary indicator of missingness of the event time as the outcome).  Inclusion of 

variables in the regression models was decided using forward selection based on 

the likelihood ratio test (159), selecting from the set of variables for which there 

was some evidence of an association with missingness of event times in the 

univariable comparisons (i.e. those with a p-value < 0.1).  

4.5.2. Results: univariable associations with 

missingness of event times 

Table 4.6 summarises patient characteristics, comparing those with and without 

event times, for the following sub-groups: 

(a) Comparing those with observed times of both acute and chronic GvHD, and 

those missing either or both times (among patients who experienced both events) 

(b) Comparing those with an observed time of acute GvHD, and those missing a 

time of acute GvHD (among patients experiencing acute without chronic GvHD) 

(c) Comparing those with an observed time of relapse, and those missing a time 

of relapse (among patients experiencing relapse without GvHD). 

 

In the descriptions below, these patient sub-groups are referred to as sub-groups 

(a) to (c), respectively.  For brevity, only variables for which there was some 

evidence of an association with missingness of event times (i.e. with a p-value < 

0.1) are shown in Table 4.6.     
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Table 4.6. Variables associated with missingness of event times.  

Factor Level Acute and chronic GvHD Acute without chronic GvHD Relapse without GvHD 

  Missing 
GvHD 
time(s) 
(N=27) 

Both 
GvHD 
times 

reported 
 (N=41) 

P Missing 
acute 

GvHD 
time  

(N=35) 

Acute 
GvHD 
time 

reported 
 (N=138) 

P Missing 
relapse  

time 
(N=14) 

Relapse 
time 

reported  
(N=30) 

P 

Country of transplant France 0 (  0) 10 (24) <0.001 0 (  0) 24 (17) <0.001 0 (  0) 3 (10) 0.001 

UK 3 (11) 14 (34)  12 (34) 53 (38)  1 (  7) 12 (40)  

Other Eur. country 4 (  5) 11 (27)  3 (  9) 31 (23)  1 (  7) 8 (27)  

USA 17 (63) 2 (  5)  17 (49) 15 (11)  11 (79) 4 (13)  

 Other non-Eur. country 3 (11) 4 (10)  3 (  9) 15 (11)  1 (  7) 3 (10)  

Year of transplant 1996-2000 0 (  0) 4 (10) 0.239 0 (  0) 12 (  9) <0.001 1 (  7) 2 (  7) 0.102 

2001-2005 3 (11) 4 (10)  0 (  0) 31 (23)  0 (  0) 6 (20)  

 2006-2010 13 (48) 23 (56)  14 (40) 43 (31)  4 (29) 13 (43)  

 2011-2015 11 (41) 10 (24)  21 (60) 52 (38)  9 (64) 9 (30)  

Number of CB units 
received 

Single cord 12 (44) 19 (46) >0.999 14 (40) 85 (62) 0.034 3 (21) 17 (57) 0.050 

Double cord 15 (56) 22 (54)  21 (60) 53 (38)  11 (79) 13 (43)  

Donor-recipient CMV 
match 

Negative to positive 10 (37) 4 (10) 0.014 10 (29) 42 (30) 0.587 1 (  7) 10 (33) 0.244 

Positive to negative 3 (11) 15 (37)  9 (26) 25 (18)  3 (21) 4 (13)  

Negative to negative 5 (19) 13 (32)  8 (23) 38 (28)  2 (14) 6 (20)  

 Positive to positive 7 (26) 6 (15)  2 (  6) 17 (12)  4 (29) 7 (23)  

 Not reported 2 (  7) 3 (  7)  6 (17) 16 (12)  4 (29) 3 (10)  

Myeloid engraftment  Median, IQR (days) 21 (17-30) 21 (16-27) 0.910 17 (11-27) 24 (18-31) <0.001 30 (23-51) 26 (15-na1) 0.998 
1 Upper quartile not reached 
Values are N, column % unless indicated otherwise.   
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Associations with baseline characteristics 

The distribution of country of transplant (p ≤ 0.001 in each case) was different for 

patients with missing vs. observed event times for all sub-groups (a) to (c).  Most 

missing event times occurred for transplants in the USA, accounting for 17/27 

(63%) cases with missing GvHD times in sub-group (a), 17/35 (49%) cases with 

missing acute GvHD times in sub-group (b), and 11/14 (79%) cases with missing 

relapse times in sub-group (c).    

 

The distribution of year of transplant was different for patients with missing vs. 

observed times of acute GvHD in sub-group (b) (p < 0.001).  In the early years of 

the study period (1996-2005), there were no missing acute GvHD times.  

Similarly, there were few missing event times in 1996-2005 in sub-groups (a) and 

(c).  However, there were smaller differences in the distribution of year of 

transplant for patients with missing vs. observed event times in these sub-groups 

(p > 0.10 in each case).   

 

In sub-groups (b) and (c), patients with missing event times were more likely to 

receive double cord transplants than those with observed times (60% and 79% 

received double cord transplants when event times were missing; 38% and 43% 

received double cord transplants when event times were observed; p=0.03 and 

0.05, for sub-groups (b) and (c), respectively).  In sub-group (a), there was little 

difference in the proportion of double cord transplants (56% vs. 54% double cord 

transplants, respectively, for those with missing and observed event times; p > 

0.9).   

 

In sub-group (a), there were differences in the distribution of donor-recipient 

CMV match for those with missing and observed times GvHD times (63% vs. 

25% CMV+ patients, respectively, for those with missing and observed event 

times; p=0.01).  There were smaller differences in the distribution of donor-

recipient CMV match for patients with missing and observed event times in the 



 

 69 

other two patient sub-groups (for sub-groups (b) and (c), respectively, 35% and 

36% of patients were CMV+ when event times were missing; 42% and 56% 

patients were CMV+ when event times were observed; p=0.6 and 0.2). 

Associations with post-transplant events 

In sub-group (b), the distribution of times of myeloid engraftment was different 

for patients with missing vs. observed acute GvHD times (p<0.001, Figure 4.2).  

The median time of engraftment was 17 days (IQR: 11-27 days) and 24 days (IQR: 

18-31 days), respectively.  Four patients with missing myeloid engraftment or 

graft failure times were excluded from the analysis of myeloid engraftment.   

Comparing patients with missing and observed event times in sub-group (a), 

there was little difference in the distribution of time to myeloid engraftment 

(p>0.9, median 21 days, IQR: 17-30 days vs. median 21 days, IQR: 16-27 days).  

Similarly, for those with missing and observed event times in sub-group (c), 

there was little difference in the distribution of time to myeloid engraftment 

(p>0.9, median 30 days, IQR: 23-51 days vs. median 26 days, lower quartile=15 

days, upper quartile not achieved).   

In addition, comparing patients with missing and observed event times, there 

was no evidence of a difference in the distribution of survival times for any of the 

patient sub-groups (p=0.4, survival at 2 years: 84% vs. 74% for sub-group (a); 

p>0.9, survival at 2 years: 51% vs. 51% for sub-group (b); and p=0.3, survival at 2 

years: 7% vs. 19% for sub-group (c), Figure 4.2).  In Figure 4.2, there appear to be 

some small differences in the survival curves for patients in sub-groups (a) and 

(c).  These are based on very small numbers of patients, so it is difficult to draw 

conclusions about any observed differences. 
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Figure 4.2. Comparison of patients with observed (solid line) and missing (dotted line) event 
times.   

LH plot: Cumulative incidence of myeloid engraftment and competing events*. 
RH plot: Overall survival. 

 
*  In sub-group (a) (top LH plot), all patients experienced engraftment.  

In sub-groups (b) and (c) (middle and bottom LH plot, respectively), upper pair of lines 
represent engraftment, middle pair represent graft failure prior to engraftment, and bottom pair 
represent death prior to engraftment. 
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4.5.3. Results: multivariable logistic regression of 

covariates and outcomes associated with 

missingness of event times 

Table 4.7 summarises the results of a multivariable logistic regression analysis of 

missingness of event times for patients in sub-groups (a), (b) and (c).   

Table 4.7. Variables associated with missingness of event times in a multivariable logistic 
regression analysis. 

Covariate (baseline) Total 
(N) 

Missing 
event 
time  
(N) 

Odds ratio (95% CI) P 

Acute and chronic GvHD  68 27   

Country of transplant (not USA) 49 10 1.00  (-) <0.001 

USA 19  17  33.15 (6.55 – 167.76)  

Donor-recipient CMV+ match*  
(-/-) 

18 5 1.00  (-) 0.014 

-/+ 14 10 6.50 (1.38 – 30.68)  

+/- 18 3 0.52 (0.10 –   2.61)  

+/+ 13 7  3.03 (0.68 – 13.61)  

Not reported 5 2  1.73 (0.22 – 13.67)  

      

Acute without chronic GvHD 163 35    

Country of transplant (not USA) 131 18 1.00  (-) <0.001 

USA 32 17  7.11 (3.03 – 16.71)  

Time to myeloid engraftment in 
weeks* 

163 35 0.69 (0.50 – 0.94) 0.011 

Number of CB units received* 
(single cord) 

94 14  1.00 (-) 0.025 

Double cord 69 21 2.42 (1.11 – 5.27)  

      

Relapse without GvHD 44 14    

Country of transplant (not USA) 29 3 1.00  (-) <0.001 

USA 15 11 23.83 (4.56 – 124.67)  

Number of CB units received* 
(single cord) 

20  3 1.00 (-) 0.025 

Double cord 24 11 4.79 (1.11 – 20.78)  
* In a model excluding country of transplant but including any other listed covariates. 

In multivariable analyses, country of transplant was the strongest predictor of 

missingness of event times in all three patient sub-groups (Table 4.7, p<0.001 in 

each case).  Country of transplant was included as a binary variable in regression 

models (USA or not), due to the small number of missing event times for some 



 

 72 

countries.  Transplantation in the USA was associated with increased odds of 

missingness of event times, compared with transplantation elsewhere, but 95% 

confidence intervals (CI) were wide (odds ratio (OR) 33.15, 95% CI: 6.55 – 167.76 

for patients in sub-group (a); OR 7.11, 95% CI 3.03-16.71 for patients in sub-group 

(b), and OR 23.83, 95% CI 4.56-124.67 for patients in sub-group (c), respectively).        

 

In models including country of transplant, there were no other covariates with 

strong associations with missingness of event times.  However, in models 

excluding country of transplant, results were as follows.  For patients in sub-

group (a), the odds that GvHD times were missing were greater for transplants 

with a CMV- donor(s) and CMV+ recipient compared with transplants in which 

both donor(s) and recipient were CMV- (OR 6.50, 95% CI 1.38 – 30.68).   

 

Similarly, without adjusting for country of transplant in the analysis of patients 

in sub-group (b), time to myeloid engraftment (p=0.01) and number of CB units 

received (p=0.03) were associated with missingness of acute GvHD times.  The 

odds that the acute GvHD time was missing was reduced by 30% for each 

additional week until myeloid engraftment (OR 0.69, 95% CI 0.50 – 0.94).  The 

odds that the acute GvHD time was missing was also greater for double cord 

recipients compared with single cord recipients (OR 2.42, 95% CI 1.11 – 5.27).  For 

simplicity, eight patients who did not achieve myeloid engraftment and an 

additional two patients missing time to engraftment were excluded from the 

analysis of patients in sub-group (b).  Note that in the final analysis of the NHS 

CBB dataset (Chapter 7), all missing times of engraftment are imputed.    

 

Finally, without adjusting for country of transplant in the analysis of patients in 

sub-group (c), the number of CB units received (p=0.03) was associated with 

missingness of relapse times.  The odds that the relapse time was missing was 

nearly five times greater for double cord recipients compared with single cord 

recipients (OR 4.79, 95% CI 1.11 – 20.78).   
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To check whether patterns of missing acute GvHD times were different when 

considering all patients who experienced acute GvHD (not just those without 

chronic GvHD), the multivariable logistic regression analysis (of variables 

associated with missingness of acute GvHD time) was repeated for all 251 

patients who experienced acute GvHD.  The results were very similar: 

transplants performed in the USA (OR 13.00, 95% CI 6.23 – 27.14) and, without 

adjusting for country of transplant, double cord compared with single cord 

transplants (OR 2.56, 95% CI 1.38 – 4.77) were associated with increased odds of 

missing acute GvHD times.  Longer times to myeloid engraftment (OR 0.97, 95% 

CI 0.94 – 1.01) were associated with reduced odds of missing acute GvHD times. 

4.6. Possible missingness mechanisms for 

event times in the NHS CBB dataset 

The analyses above suggest that missingness of event times is associated with the 

event type, the country of transplant, and other observed data.  Hence, it is 

unlikely that event times are MCAR.   

 

Previous clinical studies have found an association between overall survival and 

the timing of acute GvHD, chronic GvHD and relapse (160-162).  For each type of 

event, earlier onset (i.e. smaller event times) was associated with increased 

mortality.  In addition, Lee et al. (160) found that early onset acute GvHD was 

associated with more severe grades of acute GvHD than late onset acute GvHD.  

In the NHS CBB dataset, I found little difference in overall survival for those with 

missing and observed times of acute GvHD, chronic GvHD and relapse (see 

Figure 4.2, described previously).  I also found little difference in grade of acute 

GvHD (comparing patients with missing and observed times of acute GvHD, 

73% vs. 67% of patients experienced grade 2-4 acute GvHD, respectively; p=0.8).   
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The results above suggest that a MNAR mechanism is unlikely.  My argument 

for drawing this conclusion is as follows: 

 

Assume that there is an association between the event time X (for example, the 

time of acute GvHD) and another variable Y (for example, the time of death), as 

per the clinical literature.  This association is depicted in Figure 4.3, below, by the 

arrow between X and Y.  Also assume that the acute GvHD time, X, is MNAR.  In 

Figure 4.3, this is depicted by the arrow between X and D (a binary variable 

indicating whether the time of acute GvHD was observed or missing).  In this 

case, a relationship will be induced between the missingness indicator, D, and 

the time of death, Y, through a backdoor path.  In other words, X will behave like 

a confounder for the relationship between D and Y.   

Figure 4.3.  Diagram showing relationships between the incompletely observed variable X (time 
of acute GvHD), the completely observed variable Y (time of death), and D (a binary variable 
indicating whether the time of acute GvHD was observed or missing).  

 

As described previously, in my analysis of the NHS CBB dataset, I found no 

evidence of an association between time of death, Y, and the missingness 

indicator, D.  As per Figure 4.3, this implies one of the following: 

(i) The time of acute GvHD, X, is not related to the missingness indicator, D, 

i.e. X is not MNAR. 

(ii) There is a relationship between X and D, but it is exactly balanced out by 

the relationship between Y and D (or unmeasured confounders). 

(iii) There is no association between X and Y. 

 

Since reason (i) appears the most plausible, it is likely that the time of acute 

GvHD, X, is not MNAR.   

 

X Y 

D 
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Using a similar argument, the small differences in overall survival (for those with 

missing and observed times of chronic GvHD and relapse), and in grade of acute 

GvHD (for those with missing and observed times of acute GvHD), suggest that 

missingness of event times depends on observed covariates, and not the event 

times themselves.  Therefore, it is more plausible that event times in the NHS 

CBB dataset are MAR (conditional on the observed data) than MNAR.    

4.7. Discussion 

In this chapter, I have described patient, donor and transplant baseline 

characteristics and the types of events experienced by patients in the NHS CBB 

dataset, including the percentage of missing data for each variable.  In addition, I 

have explored associations between missingness of event times and other 

variables.  Finally, I have described possible missingness mechanisms for event 

times.    

 

Usually, following allogeneic HSC transplant, patients are not discharged from 

hospital until there is evidence of myeloid engraftment and acceptable platelet 

and red cell counts (163).  The results in this chapter suggest that events which 

occur while the patient is still in hospital (myeloid engraftment, graft failure) are 

well-reported.  However, GvHD and relapse can occur once the patient has been 

discharged from hospital.  These events are less well-reported in the NHS CBB 

dataset.  These events may occur outside a clinical setting, with initial 

identification of symptoms by the patient.  The time of onset of a particular 

condition may not be recorded at a subsequent GP appointment or hospital 

clinic.  In addition, the aetiology of certain symptoms such as skin rashes can be 

ambiguous, which could also make the time of onset difficult to determine.   

 

There are substantially more missing event times for transplants in the USA than 

in other countries. The Eurocord Registry, which provided the post-transplant 

events data for the NHS CBB dataset, cannot contact USA transplant centres 
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directly.  Data retrieval for USA transplant centres relies on affiliation of these 

centres with a third party (the Center for International Blood and Marrow 

Transplant Research) (36), which may limit data retrieval.  In addition, there are 

more missing event times for transplants in more recent years than in early years 

of the study period.  This suggests that as the number of transplant centres 

providing data to the Eurocord Registry has increased over the years, it has 

become more difficult to obtain complete data.    

 

Since event types, as well as individual-level characteristics, are associated with 

missingness of event times, CCA will result in biased estimates (see Chapter 3, 

Section 3.2).  These associations suggest that event times are not MCAR.  

Although it is not possible to rule out a MNAR mechanism, associations which 

would have suggested a MNAR mechanism (see Section 4.6) are not apparent in 

the NHS CBB dataset.  This suggests that a MAR mechanism (conditional on the 

observed data) is plausible.  Hence, it may be appropriate to use MI methods that 

assume MAR to handle missing event times.  In addition, only 116 transplants in 

the NHS CBB dataset have complete covariate and outcome data (see Chapter 7, 

Section 7.6).  Therefore, using MI will greatly increase the precision of estimates, 

compared with CCA.  

 

As discussed in Chapter 3, the optimal MI method for imputing missing event 

times is not clear, especially, as in my analyses, when there are competing risks 

or the analysis is a MSM.  Key questions are whether it is necessary to constrain 

the imputed event times to lie within specific boundaries; to what extent 

skewness should be accounted for in the imputation model; and whether it is 

important that the imputation scheme incorporates the cumulative incidence 

function in order to achieve unbiased estimates in a competing risks framework, 

or the order of the event times in a MSM.  In Chapters 5 and 6, I will explore 

these questions using simulation studies.   
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CHAPTER 5.  IDENTIFYING THE 

BEST METHOD FOR 

HANDLING MISSING EVENT 

TIMES IN A COMPETING 

RISKS ANALYSIS  

5.1. Introduction 

In Chapter 4, the types of events experienced by patients in the NHS CBB cohort, 

and the percentage of events missing exact event times were described.  I found 

that patients experienced various combinations of myeloid engraftment, graft 

failure, acute GvHD, chronic GvHD, relapse and death.  The percentage of 

missing event times varied by event type; the times of relapse, acute and chronic 

GvHD were missing in at least 24% of cases, but only small numbers of 

engraftment and graft failure times were missing, and all death dates were 

reported.   

 

In Chapter 3, following a review of missing data methods, I concluded that the 

optimal methods for handling missing event times have not yet been identified.  I 

described the key questions about handling missing event times that are still to 

be addressed.  In this chapter, I evaluate MI strategies for imputing event times 

in a competing risks analysis, investigating the extent to which interval 

boundaries, features of the data distribution and of the analysis model should be 

accounted for in the imputation model.  The imputation methods that I consider 

are: PMM (predictive mean matching); log-linear regression with post-

imputation back-transformation; linear regression with and without restrictions 

on the imputed values, and Delord and Genin’s method (136) based on sampling 
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from the cumulative incidence function. I also evaluate the FML method 

proposed by Bakoyannis et al. (64).  Note that I explain how these methods 

address my research questions in Section 5.2.7. 

5.2. Description of simulation studies to assess 

methods for handling missing event times 

in a competing risks analysis 

5.2.1. Aim of the simulation studies 

The aim of the simulation studies was to assess bias and precision when 

estimating the cumulative incidence function in a competing risks analysis (see 

Section 5.2.4), comparing the methods described above for handling missing 

event times.  An additional aim was to assess the sensitivity of MI methods to 

large proportions of missing data and/or misspecification of the imputation 

model.   

5.2.2. Design of the simulation studies 

Three simulation studies were performed.  The design elements of the three 

simulation studies are summarised in Table 5.1 overleaf, and described in detail 

in subsequent sections.      
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Table 5.1. Design elements of the three simulation studies 

Study design element Study 1 Study 2 Study 3 

Data-generating mechanism Sampling from real data Sampling from parametric 
distributions 

Sampling from real data 

Estimand(s) of interest – 
cumulative incidence at a single 
time point 

Cumulative incidence of acute 
GvHD at largest event time 

Cumulative incidence of acute 
GvHD at 100 days post-
transplant 

Cumulative incidence of acute 
GvHD at 100 days, chronic 
GvHD at one year, and relapse at 
one year post-transplant  

Estimand(s) of interest – 
percentile of event times 

Lower quartile time (time by 
which 25% of patients 
experienced acute GvHD) 

Median time of acute GvHD Lower quartile time of acute 
GvHD; 10th percentile time of 
chronic GvHD and relapse 

Number of simulated datasets 1000 1000 1000 
Missing data mechanisms Acute GvHD times MCAR, 

MAR, MNAR 
Acute GvHD times MCAR, 
MAR, MNAR 

Acute GvHD, chronic GvHD, 
and relapse times MAR, MNAR 

Methods for handling missing 
event times 

CCA, various MI methods, and a 
likelihood-based method 

CCA, various MI methods, and a 
likelihood-based method 

Best-performing method from 
Studies 1 and 2  

Performance measures Standardised bias and model-
based SE 

Standardised bias and model-
based SE 

Standardised bias and model-
based SE 
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5.2.3. Choice of data-generating mechanism  

Two different sampling methods were used for generating data, to assess 

whether results were sensitive to the choice of DGM.  The two sampling methods 

were: (i) sampling from the real NHS CBB data, and (ii) sampling from 

parametric distributions.  In the first two simulation studies, in which event 

times were missing for a single event type, sampling method (i) was used to 

generate data in the first simulation study and method (ii) was used in the 

second simulation study.  In the third simulation study, in which event times 

were missing for multiple event types, only method (i) was used.  Note that a 

fourth simulation study, in which event times were missing for multiple event 

types and sampling method (ii) was used, is described in the next chapter.   

DGM 1 

In the first DGM, simulated data were generated by sampling with replacement 

from a full data version of the NHS CBB dataset (FULL-CBB).  Censored patients 

i.e. those who had not experienced any of acute GvHD, graft failure or death by 

last follow-up, were included in the FULL-CBB dataset, because standard 

techniques for calculating the cumulative incidence can accommodate censored 

events (164).       

DGM1: Description of the creation of the first full data version of the 

NHS Cord Blood Bank dataset 

The FULL-CBB dataset was created to be complete with regards to time of acute 

GvHD and the competing events of graft failure or death prior to acute GvHD, as 

well as time of myeloid engraftment (because this variable was a strong predictor 

of missingness of acute GvHD).  Of all 432 transplants in the NHS CBB dataset, 

cases missing these event times were replaced by sampling from cases with 

observed event times, as described in Table 5.2.   Stratified sampling was used to 

replace cases with missing acute GvHD times.  The stratification variable was the 
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number of CB units received because this was the strongest predictor of 

missingness of acute GvHD times, apart from country of transplant (which could 

not be used in the sampling strategy because there were fewer transplants with 

observed acute GvHD times than missing in the USA).  Stratified sampling was 

not used to replace cases with missing times of graft failure or myeloid 

engraftment because there were only a small number of cases with missing times 

for these event types. 

Table 5.2. Strategy to replace incomplete cases when creating the FULL-CBB dataset. 

Event  Cases with 
missing event 
time (N) 

Cases with 
observed event 
time (N) 

Stratification variable* 

Acute GvHD 57 184 Number of CB units 
received (63% double 
cord) 

Graft failure prior to 
acute GvHD 

3 27 None** 

Myeloid engraftment 4 425 None** 
* Using random sampling without replacement. 
** Due to small number of cases with missing event time. 

DGM 2 

In the second DGM, simulated data were generated using a method similar to 

that described by Grand et al. (165).  Event times were generated by direct draws 

from a parametric function, using inverse transform sampling (166).  A separate 

function was defined for each event type j, where j = 1, 2, 3 denotes the events of 

acute GvHD, graft failure prior to acute GvHD and death prior to acute GvHD, 

respectively.  It was assumed that all patients would experience one of the three 

event types.     

Inverse transform sampling was performed as follows: 

a) For each subject i, the event type j was determined with probability 0.65, 0.25 

and 0.1, respectively, for j = 1, 2, 3.  

b) A ui drawn from a uniform (0,1) distribution was used to determine each 

event time ti such that: 

ui = pj(ti)  
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where pj(t) is the probability density function for the jth event type.  A log-normal 

distribution pj(t) = LN(µj, σj2) was used for each event type, with µ1 = log(26), σ1 = 

log(2); µ2 = log(43), σ2 = log(2); µ3 = log(77), σ3 = log(4).   

 

The choice of distribution and parameter values were guided by the distribution 

of event times, measured in days, for the NHS CBB dataset.  Each event time was 

rounded up to the nearest whole number to increase computational speed and to 

reflect the real data.  Administrative censoring at one year post-transplant was 

applied for all patients, to reflect usual practice in transplant registry studies i.e. 

follow-up until a fixed time-point of clinical interest.  One auxiliary variable was 

included for each subject, that is, whether the subject received a double cord 

transplant (rather than a single cord), by sampling from a Bernoulli distribution 

with probability 0.45.  This variable was chosen because, in the real NHS CBB 

dataset, the number of CB units received is predictive of the acute GvHD times 

themselves, as well as the missingness of acute GvHD times.  

DGM 3 

In the third DGM, simulated data were generated using the same method as 

described for DGM 1, by sampling with replacement from a full data version of 

the NHS CBB dataset (FULL-CBB2).   

DGM3: Description of the creation of the second full data version of the 

NHS Cord Blood Bank dataset 

The FULL-CBB2 dataset was created to be complete with regards to all event 

times.  Of all 432 patients in the NHS CBB dataset, 90 with any missing event 

times were replaced by sampling from patients who had experienced similar 

combinations of events and had all event times observed, as described in Table 

5.3.  As before, country of transplant and donor-recipient CMV status match 

were not used as stratification variables, even though they were the strongest 

predictors of missingness of event times, because there were fewer patients with 

observed times than missing in some categories of these variables.  
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Table 5.3. Strategy to replace incomplete cases when creating the FULL-CBB2 dataset. 

Event(s) experienced  Cases with 
missing event 
time(s) (N) 

Cases with 
observed event 
time(s) (N) 

Stratification 
variable* 

Acute and chronic 
GvHD 

27 41 None** 

Acute without chronic 
GvHD 

41 132 Number of CB units 
received (56% double 
cord) 

Chronic without acute 
GvHD 

5 9 None** 

Relapse without 
GvHD 

14 30 Number of CB units 
received (79% double 
cord) 

Graft failure without 
GvHD nor relapse 

2 17 None** 

Myeloid engraftment 
without GvHD nor 
relapse 

1 95 None** 

* Using random sampling without replacement. 
** Due to small number of cases with missing event time. 

5.2.4. Estimands of interest 

In the first and second studies, in which event times were missing for a single 

event type, acute GvHD was the event of interest.  In the third study where event 

times were missing for multiple event types, acute GvHD, chronic GvHD and 

relapse were the events of interest.  For each event of interest, the estimands of 

interest were:  

(i) Cumulative incidence at specific time points   

The specific time points chosen for each event of interest in each study 

were guided by the DGMs (see Table 5.1).  In the first simulation study, in 

which data were generated by sampling from the real NHS CBB data, the 

specific time point chosen for acute GvHD was the largest event time, i.e. 

the estimand was the percentage of patients who experienced acute GvHD 

at some point post-transplant.  Acute GvHD only occurs during 

approximately the first 100 days post-transplant, according to the standard 

clinical definition of acute GvHD (17) (observed times were within 119 

days in the NHS CBB dataset).  This clinical criterion imposes a limit on 
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the maximum event time and it seemed reasonable not to impose a further 

restriction by estimating the cumulative incidence at a particular time-

point.  However, there is potential for imputed event times to be far larger 

than 100 days, making this estimand sensitive to outlying values.  

Therefore, in the second and third simulation studies, the cumulative 

incidence was estimated only within the real clinical period in which acute 

GvHD could occur, that is, the cumulative incidence was estimated at 100 

days post-transplant.  Chronic GvHD and relapse can occur at any point 

post-transplant.  Hence, the cumulative incidence was estimated at a time-

point typically of clinical interest, namely, at one year post-transplant.   

 

I expected little bias in estimates of the cumulative incidence of acute 

GvHD because event types were not imputed (i.e. although event times 

were sometimes missing, the associated event types were always 

observed), and the cumulative incidence was estimated at the point by 

which most, if not all, events should have occurred. However, it is less 

clear that the cumulative incidence of chronic GvHD and relapse would be 

unbiased.    

 

(ii) Percentiles of event times  

As above, the percentiles of event times chosen for each event of interest in 

each study were guided by the DGMs (see Table 5.1).  Percentiles were 

chosen so that they would occur before the time point of the associated 

cumulative incidence of interest.  For example, when the cumulative 

incidence of acute GvHD at 100 days post-transplant was the estimand of 

interest, the percentile of interest occurred within 100 days.  I included 

percentiles of event times as a measure of the shape of the cumulative 

incidence function.  I wanted to assess whether incorrect imputation 

affected the shape of the cumulative incidence function more than the 

estimate at any particular time-point.     
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In clinical studies, the median event time is more commonly reported than 

other percentiles.  However, in the first and third simulation studies (in 

which data were generated by sampling from the real NHS CBB data), the 

lower quartile time of acute GvHD was used as the estimand of interest.  

This was because acute GvHD was reported for just over 50% of patients 

in the original NHS CBB cohort, so the median was unlikely to be reached 

in all the simulated datasets.  However, in the second study, the DGM was 

designed so that the median could be estimated in every simulated 

dataset.  For chronic GvHD and relapse, due to the low incidence of these 

events, the 10th percentile time was chosen as the estimand of interest.  In 

each study, the design of the DGM ensured the 10th percentile was reached 

within one year of transplant.   

Statistical methods 

The cumulative incidence function was estimated using the non-parametric 

Aalen-Johansen estimator (167, 168) (see Chapter 2, Section 2.2); its standard 

error (SE) was estimated using the Greenwood-style estimator described by 

Marubini and Valsecchi (169), as this has been shown to be more accurate than 

other proposed estimators (170, 171).  An estimator of the SE of a percentile was 

derived using the delta method (see Section 5.4.9).  Analysis was performed 

using the ‘mstate’ R package (172).    

5.2.5. Number of simulation datasets 

In each study, one thousand simulated datasets were created using the DGMs 

described above.  In Studies 1 and 3, the size of each dataset was 432, which was 

the size of the real NHS CBB dataset.  In Study 2, the size of each dataset was 500; 

this was chosen to approximately match the size of the real dataset.  Based on the 

mean estimates and empirical SE for the 1000 datasets, with complete data (i.e. 

with no missing event times, see Section 5.4), and using the formula suggested by 

Burton et al. (173) with a type 1 error of 5%, 1000 datasets allows estimation of the 
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cumulative incidence and percentiles of event times with an accuracy of 0.1% 

and 0.1 days, respectively.      

5.2.6. Methods for simulating missing data 

In Studies 1 and 2, a MCAR missing data mechanism (MDM) was considered by 

setting a random 10%, 30% or 50% of all event times to missing, regardless of 

event type.  Next, MAR and MNAR MDMs were considered in all three studies.  

In each MAR or MNAR scenario, missingness depended on event type, such that 

only times of the event of interest (acute GvHD, chronic GvHD or relapse) were 

missing, but not times of the competing events (graft failure or death prior to the 

event of interest).  Although event times MAR (conditional on the observed data) 

is the most likely MDM for the real NHS CBB cohort (see Chapter 4, Section 4.6), 

MNAR MDMs were also considered to assess the impact on bias and precision if 

MI was used in this scenario.  The MAR and MNAR scenarios are described 

below.  Scenarios with a different design for each simulation study are identified 

separately.     

   

In each scenario, j = 1, 2, 3 denotes the event experienced (j = 1: acute GvHD, j = 

2: chronic GvHD, j = 3: relapse).  For each subject i, πij denotes the probability 

that event times for the jth event are missing; x1i = 1 for a double cord transplant 

and 0 otherwise; x2i is the number of weeks from transplant to myeloid 

engraftment; 𝑡𝑖𝑗 is the event time for subject i for the jth event and 𝑡𝑗(𝑝%) is the pth 

percentile of event times for the jth event, ordered from smallest to largest.  Note 

that times of graft failure and death are always observed and hence, for brevity, 

probability statements are not included below for these event types.  The 

missingness scenarios are: 

a) MAR: The probability that event times are missing depends only on the event 

type, such that 10%, 30% or 50% of event times are missing for acute GvHD, 

and graft failure and death times are fully observed. This scenario was 

considered in Studies 1 and 2 only:  

πi1 = 0.1, 0.3 or 0.5    
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b) MAR: The probability that event times are missing depends on the event type 

and covariates, with 10%, 30% or 50% of event times missing for acute GvHD, 

and graft failure and death times are fully observed.  Note that Study 2 

included only one covariate, x1i (the number of CB units received), in the 

DGM:  

πi1 = c × logit -1 (-0.914 + 0.910x1i – 0.220x2i)  in Studies 1 and 3 

πi1 = c × logit -1 (-0.9 + 0.9x1i)  in Study 2  

In each study, the constant c was chosen so that approximately 10%, 30% or 

50% of all event times were missing. 

 

In Study 3, 10%, 30% or 50% of event times were also missing for chronic 

GvHD and relapse.  Missingness definitions were the same for acute and 

chronic GvHD.  This reflected the fact that GvHD times tended to be both 

reported or both missing in the real NHS CBB dataset (although in the 

simulation study, as in the real data, it was possible for the acute GvHD time 

to be missing and the chronic GvHD time to be observed, and vice versa): 

πi2 = c × logit -1 (-0.914 + 0.910x1i – 0.220x2i)   

πi3 = c × logit -1 (-1.735 + 1.472 x1i) 

 

As before, for each event type (j=1,2,3), the constant c was chosen so that 

approximately 10%, 30% or 50% of all event times were missing. The 

coefficients in the above formulae were the parameter estimates from logistic 

regression models applied to the original NHS CBB dataset (see Chapter 4, 

Section 4.5.3).   

 

c) MNAR: The shortest 10%, 30% or 50% of all event times are missing for acute 

GvHD, and graft failure and death times are fully observed: 

πi1 =  1 if 𝑡𝑖1 < 𝑡1(𝑝%)  in Studies 1, 2 and 3  

  0 otherwise  

 where p = 10, 30 or 50. 
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Additionally, in Study 3, the shortest 10%, 30% or 50% of all event times are 

missing for chronic GvHD and relapse, and graft failure and death times are 

fully observed: 

πij =  1 if 𝑡𝑖𝑗 < 𝑡𝑗(𝑝%)   

  0 otherwise  

 where j = 2, 3 and p = 10, 30 or 50 

 

d) MNAR: The longest 10%, 30% or 50% of all event times are missing for acute 

GvHD, and graft failure and death times are fully observed.  This scenario 

was considered in Studies 1 and 2 only: 

πi1 =  1 if 𝑡𝑖1 > 𝑡1(𝑝%)   

  0 otherwise  

 where p = 90, 70 or 50. 

 

The MNAR mechanisms described above could occur in practice if patients with 

early-onset acute GvHD tended to have milder or ambiguous symptoms.  This 

could make identification of the exact date of onset more difficult and would 

result in shorter acute GvHD times being more likely to be missing.  

Alternatively, if acute GvHD occurred after the patient was discharged from 

hospital, diagnosis may only occur at infrequent clinic visits.  This scenario 

would result in longer acute GvHD times being more likely to be missing.   

 

5.2.7. Methods for handling missing event times 

Studies 1 and 2 

In Studies 1 and 2, the following methods for handling missing event times were 

considered in all MCAR, MAR and MNAR scenarios:   

(i) Linear imputation model with no restrictions on the imputed values 

(NORM), as per Rodwell’s advice (97) to impute skewed continuous 

variables on the original scale with no range-restrictions and no post-
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imputation rounding (see Chapter 3, Section 3.4.4).  This is implemented 

in the ‘mice’ R package using the method=’norm’ option. 

 

(ii) Linear imputation model, as per (i), without auxiliary variables (i.e. any 

variable other than event type) in the imputation model (NORMNOAUX).  

The aim of this scenario was to assess whether bias and precision were 

worse if variables predictive of missing event times, and/or the 

probability that they are missing, are excluded from imputation models.  

 

(iii) Type 1 PMM imputation model with no restrictions on the imputed values 

(PMM), as per Lee and Carlin’s (98) finding that it is preferable to use type 

1 PMM than to transform non-normal data (see Chapter 3, Section 3.4.4).  

Type 1 PMM is implemented in the ‘mice’ R package using the 

method=’pmm’ option and the default of five donors.  This number of 

donors has been shown to provide adequate coverage and efficiency (92).   

 

(iv) Type 1 PMM, as per (iii), without auxiliary variables in the imputation 

model (PMMNOAUX).  This method was considered for the same reason 

as NORMNOAUX. 

 

(v) Log-linear imputation model with post-imputation back-transformation 

(LOGNORM).  I considered this method to assess whether imputation of 

percentiles was improved when the normal distribution assumption was 

made more plausible, as per von Hippel’s advice (121) (see Chapter 3, 

Section 3.4.4). The natural logarithm of acute GvHD time was imputed 

and the exponential of the imputed time was used in the analysis model.  

 

(vi) Linear regression with restrictions on the imputed values (RESNORM). I 

considered this method to test Rodwell’s comment that restricting the 

imputed values can increase rather than decrease bias (see Chapter 3, 

Section 3.4.4).  Within each imputation step, for each missing time value, a 
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value was drawn and compared with pre-specified boundaries.  If the 

drawn value was outside the boundaries, then a new value was drawn. 

This process was repeated until all imputed values were within the 

boundaries or until the process had been carried out 200 times.  The 

number of repeats was chosen to be large to minimise the number of 

imputed values outside the boundaries.   

 

In both studies, a minimum boundary of 0 was used.  In Study 1, a 

maximum boundary of 119 days or the time of the patient’s death (if this 

was observed within 119 days) was used.  A value of 119 days was used as 

the maximum because this was the largest observed time of acute GvHD 

in the NHS CBB dataset.  In the NHS CBB dataset, of the 251 patients who 

experienced acute GvHD, 45 died within 119 days of transplant.  Hence, 

for most patients, the maximum boundary was 119 days. 

     

In Study 2, a maximum boundary of 100 days was used, for consistency 

with the clinical criteria.  Times of death after acute GvHD were not 

generated in Study 2 (only the time of the first event experienced was 

generated), hence the boundary of 100 days applied for all patients in 

Study 2.  As a sensitivity analysis, in Study 2, for the first MAR scenario, 

RESNORM was also implemented with the boundary comparison 

performed up to 500 times.   

 

(vii) The MI method proposed by Delord and Genin (136) (MICI).  In this 

method, missing event times are sampled from the observed event times 

based on the current estimate of the cumulative incidence function, 

conditional on user-specified boundaries.  The sampling probability is 

determined by the current estimate of the cumulative incidence function.  

The boundaries are as specified for RESNORM. 

 



 

 91 

(viii) The semi-parametric maximum likelihood approach of Bakoyannis et al. 

(64) for interval-censored event times (INTCCR), estimating the baseline 

cumulative incidence function from a proportional sub-distribution 

hazards (Fine and Gray (3)) model fitted without covariates.  Interval 

boundaries are as specified for RESNORM.  This approach was used to 

compare a FML method with MI methods.  I did not use a strictly non-

parametric FML method because Sun (47) advises that such methods 

should be avoided when censoring intervals are wide.  In addition, I did 

not consider a parametric FML method because this would not allow a 

direct comparison with the non-parametric analysis that was performed 

when MI methods were used.  To the best of my knowledge, INTCCR is 

the only semi-parametric FML method for handling interval-censored 

competing risks data that can be applied using standard software.  It was 

of interest to assess the authors’ suggestion that their method allows better 

estimation of SE than MICI (174).  

 

In Study 1, two additional methods for handling missing event times were 

considered in MAR and MNAR scenarios, namely:   

(ix) Single imputation by replacement with the median of the observed acute 

GvHD times (MED).  

 

(x) Single imputation by replacement with the mid-point of the specified 

boundaries (MID).    

 

Naïve methods such as these have been used in HSC studies (45).  These 

methods were included to demonstrate their inferior performance compared 

with MI or FML approaches.    

 

I compare results of the above methods with those of a complete case analysis 

(CCA).  
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Study 3 

In Study 3, only the best method identified from Studies 1 and 2 was applied, to 

confirm that similar results were obtained when event times were missing for 

multiple event types.   

Variables used in imputation models 

In all three studies, for MI methods (i), (iii), (v) and (vi), imputation models 

included auxiliary variables, as well as the type of event experienced (which was 

required for compatibility with the analysis model).  Note that in MI methods (ii) 

and (iv), (NORMNOAUX and PMMNOAUX), auxiliary variables were 

deliberately excluded.  It is not possible to include auxiliary variables in Delord 

and Genin’s method (MICI) (175).  In Studies 1 and 3, the auxiliary variables 

were those predictive of event times (based on the clinical literature, Chapter 1, 

Table 1.1) or predictive of event times and their missingness (based on analysis of 

the NHS CBB dataset, Chapter 4, Section 4.5).  These were: all baseline patient, 

donor and transplant variables; the time from transplant to myeloid engraftment 

or competing event (graft failure or death prior to engraftment); indication of 

myeloid engraftment (engraftment vs. graft failure or death prior to 

engraftment); post-transplant survival time; indication of alive or dead at the 

survival time.  In Study 2, the auxiliary variable was the number of CB units 

received. 

Imputation method implementation 

MI methods (i) to (vi) were implemented using the ‘mice’ R package (19).  To 

assess the standard performance of this package, the default of five imputations 

was used in all studies.  This number of imputations generally gives estimates 

with adequate efficiency (87).  However, White et al. (87) argue that, to ensure 

adequate reproducibility (small Monte Carlo error) as well as efficiency, the 

number of imputations should equal at least the percentage of incomplete cases. 

Therefore, as a sensitivity analysis, in Study 2, for the first MAR scenario, 

methods were also implemented using 50 imputations (because the largest 
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percentage of missing event times was 50%).  In Studies 1 and 2, only one 

variable (the time of acute GvHD) was incomplete.  Therefore, no iteration was 

performed i.e. the number of cycles per imputation was one.  In Study 3, the 

default of five iterations was used.  Van Buuren found that convergence is 

generally achieved within this small number of iterations; notably, the number of 

iterations required to achieve convergence in MI is much less than in other 

applications of Markov chain Monte Carlo methods (90).    

 

MICI was implemented using an adaptation of the ‘MIICD’ R package (20).  I 

adapted the code used in the published package in order to output the set of 

imputed cumulative incidence functions.  This enabled me to correct a mistake in 

the calculation of the SE of the cumulative incidence in the published code (I 

have alerted the package authors), and to calculate the SE of the percentile times 

(see Appendices, Section A.6).  

 

INTCCR was implemented using the ‘intccr’ R package.  This package cannot 

handle exactly observed times and therefore boundaries were specified for all 

acute GvHD times.  For the exactly observed times in the simulated datasets, the 

left boundary was set to be the observed time minus one day and the right 

boundary to be the observed time.  Graft failure and death prior to acute GvHD 

were combined into one event type, because the package only allows for two 

event types.  Non-parametric bootstrap sampling is used in the package to 

estimate the SE of regression parameter estimates.  I adapted the published code 

for calculating SE so that I could apply the same method when calculating the SE 

for each of my estimands (see Appendices, Section A.6).   

 

All other methods were implemented using my own R code (see Appendices, 

Section A.6).  R version 3.5.2 and ‘mice’ version 3.3.0 was used for all results. 



 

 94 

5.2.8. Performance measures 

In all three studies, for each estimand β (following the notation of Burton et al. 

(173)), performance measures of interest were: 

(i) Standardised bias, defined as (
β̅̂-β

SE(β̂)
) , where β̅̂= ∑ β̂

k

1000

k=1
∕1000, β̂

k
 is the 

estimate for the kth simulated dataset, SE(β̂) is the standard deviation of the 

𝛽̂𝑘  and β is the true value.  I used standardised bias, rather than absolute 

bias, as a performance measure, following the advice of Burton et al. (173).  

They note that standardised bias can be more informative than bias or 

percentage bias because it accounts for the uncertainty of the estimate.  In 

addition, standardised bias allows comparison between estimands that 

vary in scale.  Hereafter, for brevity, the term “bias” will refer to the 

standardised bias.  Any reference to absolute bias will be identified as 

such.     

(ii) Average model-based SE i.e. √∑ SÊ
2
(β̂

k
)

1000

k=1
∕1000 where SÊ(β̂

k
) is the 

estimated standard error (SE) within each simulated dataset. 

 

In Studies 1 and 3, the true values of each estimand were defined as the values 

calculated using the full data versions of the NHS CBB dataset (FULL-CBB and 

FULL-CBB2, respectively).  In Study 2, since acute GvHD times were generated 

from a specific parametric distribution, I calculated the true value of each 

estimand analytically using standard results (176).   
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5.3. Description of the estimator of the 

standard error of a percentile of event 

times  

In the simulation studies, I derived an estimator of the model-based SE of a 

percentile of event times, by adapting Collett’s estimator of SE for the median all-

cause survival time (53).  I replaced the survivor function in Collett’s definition 

with the cumulative incidence function.  This estimator is based on the delta 

method.  It is defined as follows, for the pth percentile of event times for the jth 

event type (for brevity, this estimand is referred to as t̂(p) and the subscript j is 

not shown in the definitions below):  

 SÊ[t̂(p)] = 
1

f̂{t̂(p)}
 SÊ[F̂{t̂(p)}]  

The SE of the cumulative incidence function at t̂(p), SÊ[F̂{t̂(p)}], was calculated 

using the Greenwood-style estimator (167, 169) mentioned previously.   

 

I estimated the probability density function for the cumulative incidence at t̂(p), 

f̂ {t̂(p)}, by calculating a local gradient at t̂(p), such that: 

f ̂{t̂(p)} = 
F̂{û(p)} – F̂{l̂(p)} 

û(p) – l̂(p)
    

where û(p)= min {ti|F̂(ti)≥
p

100
+ ϵ} and l̂(p)= max {ti|F̂(ti)≤

p

100
 - ϵ} ,  

for all event times i for the jth event type and small 𝜖. 

 

Collett warns that his estimator of SE is only approximately correct, but that 

superior methods are much more computationally difficult (53).  Brookmeyer 

and Crowley (177) also commented that it can be difficult to obtain an accurate 

estimate of the probability density function of a percentile.         
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5.3.1. Methods: study to assess the estimator of the 

standard error of a percentile of event times  

I performed an additional simulation study to assess my estimator of SE of a 

percentile of event times, using 1000 simulated datasets.  My estimand of interest 

was the lower quartile time of acute GvHD.  Various elements of the estimator 

which may affect its performance were considered.  These were combined 

factorially in the simulation studies: 

(i) The size of 𝜖.  The effect of the size of 𝜖 on the SE estimate was explored by 

comparing performance for six different values of 𝜖 (0.005, 0.01, 0.03, 0.05, 

0.1, 0.15).     

(ii) The estimator of the probability density function.  A simple gradient 

function is used by Collett to estimate the probability density function 

f̂{t̂(25)}.  Here, as an alternative, the gradient coefficient from a univariable 

linear regression of the observed incidence over time was also considered.   

(iii) The sample size.  To investigate whether sample size affected bias and 

coverage of the estimator of SE, analysis was performed using a simulated 

dataset of the same size as the real NHS CBB dataset (DGM1, N=432), and a 

large dataset (DGM2, N=10,000).  For DGM1, data were generated using the 

same method as in Study 1 (see Section 5.2.3).  For DGM2, data were 

generated using the same method as in Study 2 (see Section 5.2.3).   

(iv) The units used to measure event times.  In DGM1, since data were 

generated by sampling from the real NHS CBB dataset, event times were 

measured in whole days.  In DGM2, I was able to vary the units used to 

measure event times: I used whole days and 0.1 day increments. 

 

Performance measures of interest were the average model-based SE and 

coverage.  Coverage was defined as the proportion of 95% CI including the true 

value of the lower quartile, where the 95% CI was defined for the kth simulated 

dataset as t̂k(25) ± 1.96 SÊk[t̂k(25)] (53).  For reference, the absolute bias of the 

estimated lower quartile time of acute GvHD, the empirical SE, and the Monte 
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Carlo 95% CI of absolute bias (178) were also calculated.  In addition, for DGM2, 

since acute GvHD times were generated from a specific parametric distribution, I 

calculated the theoretical lower quartile time of acute GvHD and its SE 

analytically using standard results (176).   

5.3.2. Results: study to assess the estimator of the 

standard error of a percentile of event times 

Results of the study to assess my estimator of SE are shown in Table 5.4.   

Table 5.4. Performance of the estimator of SE for the lower quartile time of acute GvHD.   

Sample 
size 

Estimator of the probability density function 

𝜖 Simple gradient    Linear regression 

 ModSE Coverage ModSE Coverage 

432 
(time 
measured 
in whole 
days) 

Absolute bias in lower quartile = -0.38; EmpSE = 2.04; TheorSE n/a  

0.005 1.85 0.78 2.12 0.85 
0.01 1.89 0.84 2.09 0.87 
0.03 1.85 0.88 2.01 0.90 
0.05 1.79 0.89 1.95 0.91 
0.1 1.73 0.92 1.82 0.92 

 0.15 1.81 0.92 1.81 0.92 

10,000 
(time 
measured 
in whole 
days) 

Absolute bias in lower quartile = -0.08; EmpSE = 0.29; TheorSE=0.24   

0.005 0.26 0.91 0.26 0.91 
0.01 0.26 0.91 0.26 0.91 
0.03 0.26 0.91 0.26 0.91 
0.05 0.27 0.91 0.27 0.91 
0.1 0.27 0.91 0.27 0.91 
0.15 0.28 0.91 0.28 0.91 

10,000 
(time 
measured 
in 0.1 
days) 

Absolute bias in lower quartile = -0.01; EmpSE = 0.26; TheorSE=0.24   

0.005 0.26 0.95 0.26 0.95 
0.01 0.26 0.95 0.26 0.95 
0.03 0.26 0.95 0.26 0.95 
0.05 0.26 0.95 0.26 0.95 
0.1 0.27 0.95 0.27 0.95 

 0.15 0.28 0.96 0.28 0.96 
ModSE, average model-based SE; EmpSE, empirical SE; TheorSE, theoretical SE 
Monte Carlo CI for absolute bias is (-0.50, -0.26) for N=432; (-0.10, -0.06) for N=10,000, time in 
whole days; (-0.03, 0.01) for N=10,000, time in 0.1 days  

Table 5.4 shows that the estimated lower quartile time of acute GvHD was 

slightly biased for both sample sizes when time was measured in whole days.  It 

was unbiased (i.e. the Monte Carlo interval for absolute bias contained 0) when 

the sample size was 10,000 and time was measured in 0.1 days.  In the former 

scenarios, the negative bias in the estimated lower quartile time explains the 
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under-estimation of SE using my estimator and the under-coverage (75) (when 

using a simple gradient to calculate the probability density function).  In the 

latter scenario, in which the estimated lower quartile time was unbiased, 

estimates of SE using my estimator were close to the empirical SE and theoretical 

SE.  In addition, coverage was equal to the nominal value when 𝜖 was 0.05 or 

smaller.  For very small 𝜖 in combination with a dataset of size 432, larger 

estimates of SE were obtained if linear regression was used, compared with 

using a simple gradient to calculate the probability density function.  Otherwise, 

results were very similar whether using a simple gradient or linear regression. 

   

In summary, when using this estimator of SE, these results suggest that 𝜖 

between 0.01 and 0.05 is the best choice to minimise bias and optimise coverage.  

This is particularly the case when rounding of event times cannot be avoided.   

Therefore, in the first and third simulation studies, 𝜖 of 0.03 was used.  In the 

second study, 𝜖 of 0.01 was used.  For simplicity, a simple gradient function was 

used for probability density function estimation.   

  



 

 99 

5.4. Results: simulation study to assess 

methods for handling missing event times 

in a competing risks analysis 

5.4.1. Results from Studies 1 and 2: event times 

missing for a single event type 

The true values of the estimands in Study 1 (in which simulated data were 

generated by sampling from the real NHS CBB dataset) were 55.58% for the 

cumulative incidence at the largest event time and 26.00 days for the lower 

quartile time of acute GvHD.  In Study 2 (in which simulated data were 

generated from parametric distributions), the true values were 63.11% for the 

cumulative incidence at 100 days and 44.00 days for the median time of acute 

GvHD.  In both studies, estimates of cumulative incidence based on complete 

simulated data (i.e. without any missing event times) were unbiased (given 

Monte Carlo 95% CI for absolute bias of (-0.15, 0.15) and (-0.10, 0.18) for Studies 1 

and 2, respectively).  In both studies, estimates of percentile times based on 

complete simulated data were slightly biased (given Monte Carlo 95% CI for 

absolute bias of (-0.44, -0.18) and (0.50, 0.96) for Studies 1 and 2, respectively).  

This bias may be due to measuring event times in whole days, as per the study 

results described in Section 5.3.2.    

 

Figures 5.1 and 5.2 show the (standardised) bias (
β̅̂-β

SE(β̂)
) and average model-based 

SE of the estimands of interest in each study, for MAR and MNAR MDMs, for 

various MI methods, and percentages of missing data.  In these figures, methods 

for handling missing data are ranked in preferential order (most preferred at the 

top of each plot), based on bias and precision.  For reference, the complete data 

estimates are also shown.   
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Figure 5.1. Study 1: Standardised bias and average model-based SE for cumulative incidence of 
acute GvHD at the largest event time, and lower quartile time of acute GvHD. 
   
10% (blue circle), 30% (green diamond) or 50% (yellow oval) of event times are set to missing 
using the following missing data mechanisms: MAR (depending on event type and covariates) 
and MNAR (shortest times missing). 
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Figure 5.2. Study 2: Standardised bias and average model-based SE for cumulative incidence of 
acute GvHD at 100 days and median time of acute GvHD.  
 
10% (blue circle), 30% (green diamond) or 50% (yellow oval) of event times are set to missing 
using the following missing data mechanisms: MAR (depending on event type and covariate) and 
MNAR (shortest times missing) 
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Results were generally similar for MCAR and both MAR MDMs considered; 

likewise, results were similar for both MNAR MDMs considered. Therefore, only 

results for one MAR scenario (the most likely MDM for the NHS CBB dataset, i.e. 

where the probability that event times are missing depends on the event type 

and covariates) and one MNAR scenario (shortest times missing) are illustrated 

in Figures 5.1 and 5.2.   

 

MED and MID methods were included in Study 1 for completeness but are not 

illustrated in Figure 5.1.  Results using the semi-parametric maximum likelihood 

approach (INTCCR) are also not illustrated in Figures 5.1 and 5.2.  This was 

because results for INTCCR were very similar to those for MICI, and because MI, 

not FML methods, are the focus of my studies.  Results for these three methods, 

and other key features of the results from each study, are summarised below.  

Tables of all results are included in the Appendices (Tables A.2 and A.3).   

Study 1 results 

In Study 1, when event times were MCAR (i.e. when there was an equal 

probability of any acute GvHD, graft failure or death time being missing), CCA 

estimates of the cumulative incidence were unbiased as expected.  As per the 

complete data results, CCA estimates of the lower quartile time of acute GvHD 

had a small amount of bias (given 10%, 30% and 50% missing times, bias for the 

lower quartile was: -0.14, -0.13, -0.16, respectively).  Of the MI methods, only 

PMMNOAUX and LOGNORM estimates of the cumulative incidence were 

unbiased.  For these methods, estimates of the SE of the cumulative incidence 

were smaller than CCA estimates of SE.  PMMNOAUX and LOGNORM 

estimates of the lower quartile time of acute GvHD were also least biased (given 

10%, 30% and 50% missing times, bias < 0.8 in each case) of all MI and FML 

methods.  For these methods, estimates of the SE of the lower quartile time were 

comparable to CCA estimates (except given 50% missing event times, in which 

case PMMNOAUX estimates of SE were larger than for the other two methods).  

NORM, MICI and INTCCR (the FML method) estimates of the cumulative 
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incidence were most biased.  Of all methods considered, RESNORM estimates of 

the lower quartile time of acute GvHD were most biased. Reasons for this are 

considered in Section 5.5, following these results.      

 

When event times were MAR or MNAR, CCA estimates of the cumulative 

incidence greatly underestimated the true cumulative incidence (Figure 5.1).  

This was because times for outcomes other than acute GvHD (death or graft 

failure prior to acute GvHD) were fully complete and only cases of acute GvHD 

were under-represented.  When data were MAR and missingness depended on 

event type and covariates (Figure 5.1), bias was small for all methods (including 

INTCCR, the FML method) except CCA and methods based on unrestricted 

linear imputation (NORM and NORMNOAUX).  Methods based on an 

unrestricted linear imputation model (NORM and NORMNOAUX) over-

estimated the cumulative incidence.  Reasons for this are considered in Section 

5.5, following these results.  Restricting the range of imputed values (RESNORM) 

reduced the bias of the cumulative incidence estimates compared to NORM and 

NORMNOAUX.   

 

When event times were MNAR (shortest times missing, Figure 5.1), all methods 

except LOGNORM, MICI and PMMNOAUX over-estimated the cumulative 

incidence, with performance worsening as the percentage of missing data 

increased. However, results for LOGNORM, MICI, PMMNOAUX and INTCCR 

were unbiased, even with a large percentage of missing data. As expected, SE for 

most methods increased with the volume of missing data, reflecting the 

additional uncertainty due to imputation. However, SE for MICI, LOGNORM 

and RESNORM (in the MAR scenario) was the same as the complete data SE, 

regardless of the percentage of missing data (see Section 5.5 for an explanation of 

these results).   

 

In general, bias was larger for estimates of the lower quartile than for cumulative 

incidence (Figure 5.1).  In the MAR scenario, most methods, except CCA and 
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RESNORM, under-estimated the lower quartile.  RESNORM and PMM were the 

least biased MI methods. When event times were MNAR (shortest times 

missing), all methods over-estimated the median (bias > 1 for all methods), even 

when only 10% of acute GvHD times were missing.   

 

In all scenarios, including auxiliary data in the PMM and NORM imputation 

models did not noticeably reduce bias, although it did generally reduce SE 

compared with PMMNOAUX and NORMNOAUX, respectively. 

 

Although MED and MID estimates of the cumulative incidence were unbiased, 

estimates of the lower quartile time were biased.  In addition, as expected, SE of 

the cumulative incidence was under-estimated for both methods (SE was the 

same as the complete data SE, regardless of the percentage of missing data).  SE 

of the lower quartile time was also greatly under-estimated (and decreased as the 

percentage of missing data increased) using the MED method.  Conversely, SE of 

the lower quartile time was the same or larger using the MID method, compared 

with other methods.     

Study 2 results 

In all missing data scenarios, results from Study 2 were consistent with those 

from Study 1.  As per Study 1, when event times were MCAR, CCA estimates of 

cumulative incidence were unbiased as expected.  As per the complete data 

results, CCA estimates of the median time of acute GvHD had a small amount of 

bias when event times were MCAR (given 10%, 30% and 50% missing times, bias 

for the median was: 0.20, 0.21, 0.19, respectively).  Of the MI methods, only PMM 

and PMMNOAUX estimates of the cumulative incidence were unbiased.  PMM 

and PMMNOAUX estimates of the median time of acute GvHD were also least 

biased (given 10%, 30% and 50% missing times, bias < 0.4 in each case) of all MI 

and FML methods.  In addition, PMM and PMMNOAUX estimates of the SE 

were smaller than CCA estimates of SE, for both estimands.  NORM, MICI and 

INTCCR (the FML method) estimates of the cumulative incidence were most 
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biased.  Of all methods considered, RESNORM and NORM estimates of the 

median time of acute GvHD were most biased (see Section 5.5 for an explanation 

of these results).    

 

As per Study 1, CCA estimates of the cumulative incidence greatly 

underestimated the true cumulative incidence, for event times both MAR and 

MNAR.  When event times were MAR and missingness depended on event type 

and covariates (Figure 5.2), bias was small for all methods (including INTCCR, 

the FML method) except CCA and methods based on unrestricted linear 

imputation (NORM and NORMNOAUX).  NORM and NORMNOAUX under-

estimated the cumulative incidence at 100 days because the imputed times 

tended to be larger than with other imputation methods.  PMM and 

PMMNOAUX performed particularly well, with negligible bias, even when 50% 

of event times were missing.  Restricting the range of imputed values 

(RESNORM) reduced the bias of the cumulative incidence estimates compared to 

NORM and NORMNOAUX.  As expected, SE for most methods increased with 

the volume of missing data, reflecting the additional uncertainty due to 

imputation. However, SE was under-estimated for MICI, RESNORM and, to 

some extent, INTCCR; SE was the same or smaller than the complete data SE in 

each scenario and was similar regardless of the volume of missing data.  Reasons 

for this are considered in Section 5.5, following these results.  

  

An additional analysis (to those considered in Study 1) explored the boundary 

comparison performed as part of the RESNORM imputation method.  When the 

boundary comparison was performed in RESNORM a maximum of 200 times, a 

small number of imputed values were not within the boundaries. There was no 

change in the results when the boundary comparison was performed up to 500 

times, but this did ensure that all imputed values were within the boundaries.      

When event times were MNAR (shortest times missing), all methods under-

estimated the cumulative incidence except MICI, RESNORM and INTCCR 

methods.  However, when event times were MNAR (longest times missing), the 
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cumulative incidence was over-estimated for all methods, as expected (see 

Appendices, Table A.3), including MICI, RESNORM and INTCCR methods 

(standardised bias was approximately 0.8 for each of these methods, for each 

percentage missing data).  This suggests that the lack of bias for these methods 

when shortest times were missing was specific to that particular MNAR scenario 

(see Section 5.5 for an explanation of these results).        

 

In CCA (for MAR and MNAR scenarios with 30% or 50% missing event times), 

less than 50% of patients (of those with completely observed event times) 

experienced acute GvHD.  Therefore, the median time to acute GvHD could not 

be estimated using CCA in these scenarios. When data were MAR, bias was 

smaller for the median than was observed for the lower quartile in Study 1; 

MICI, PMM and INTCCR methods gave least biased estimates.  As per Study 1, 

the size of the standardised bias was larger for estimates of the median than for 

cumulative incidence.  NORM and NORMNOAUX over-estimated the median 

and restricting the range of imputed values did not improve median estimation.  

When data were MNAR, all methods over-estimated the median, with bias 

greater than 0.5 for all methods, even when only 10% of acute GvHD times were 

missing.  For both estimation of the cumulative incidence and median, including 

the auxiliary variable (number of CB units) in the PMM and NORM imputation 

models did not reduce the bias and resulted in larger SE.  This was the case even 

when the probability that acute GvHD times were missing depended on the 

auxiliary variable.  An additional analysis in this study explored whether results 

were sensitive to the number of imputations performed; the same pattern of 

results was seen when the number of imputations was increased to 50 (see 

Appendices, Table A.3). 
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5.4.2. Results from simulation study 3: event times missing for multiple event types 

Of all the MI methods considered in Studies 1 and 2, type 1 PMM performed best, with small bias and smaller SE than CCA, when 

imputing missing times under the MAR assumption.  Therefore, Type 1 PMM was applied in Study 3, when event times were 

missing for multiple event types.  Table 5.5 shows the standardised bias and average model-based SE of estimates of cumulative 

incidence and percentiles of event times, for MAR and MNAR MDMs.  Results are consistent with those for the previous 

simulation studies (in which only acute GvHD times were imputed).  Using type 1 PMM, estimates of cumulative incidence and 

percentiles of event times for acute GvHD, chronic GvHD and relapse have small bias when event times are MAR.  In the MNAR 

scenario, bias was greater for estimates of the percentiles of event times than for cumulative incidence.   

Table 5.5. Standardised bias (StdBias) and average model-based SE (ModSE) for event times (a) MAR (dependent on event type, the number of CB units 
received and time to myeloid engraftment), (b) shortest times MNAR, after MI using type 1 PMM.    

Estimand  Cumulative incidence (%)1 Percentile of event times (days)2 

Event type  
(true result) 

Acute GvHD 
(55.56)  

Chronic GvHD 
(19.38)  

Relapse  
(16.89) 

Acute GvHD 
(26.00) 

Chronic GvHD 
(173.00)  

Relapse  
(132.00) 

Missing data mechanism Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Complete data -0.04 2.39 0.08 2.02 0.14 1.87 -0.26 1.67 0.12 17.46 0.11 36.82 

MAR (event type + covars) -0.36 2.47 0.20 2.05 0.21 1.91 -0.54 1.98 -0.46 22.73 -0.20 37.10 

MNAR (shortest times missing) -1.31 2.54 -0.57 2.02 -0.24 1.91 3.33 1.85 1.42 20.99 1.22 39.03 
1 At 100 days for acute GvHD and one year for chronic GvHD and relapse 
2 Lower quartile for acute GvHD and 10th percentile for chronic GvHD and relapse 
Monte Carlo SE for bias was <0.1 for all estimates of cumulative incidence and lower quartile time of acute GvHD, and <1.2 for all estimates of the 10th 
percentile time of chronic GvHD and relapse. 
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5.5. Discussion 

In this chapter, simulation studies to assess methods for handling missing event 

times were described, when estimating cumulative incidence and percentiles of 

event times in a competing risks framework.  The aim of the studies was to 

evaluate the extent to which data boundaries, the data distribution and the 

analysis model should be represented in the imputation model when imputing 

event times.  In addition, MI strategies were compared with a suitable FML 

method.  Methods were compared for different DGMs, different missing data 

scenarios, various percentages of missing data, and with event times missing for 

a single or multiple event types.   

 

Estimates based on complete simulated data (i.e. without any missing event 

times) were slightly biased for estimates of the percentiles of event times.  The 

distribution of percentile estimates (based on the simulated event times) was 

slightly skewed (the median estimates of percentiles of event times using 

complete data exactly matched the true value in each study).  This may be 

because event times were rounded to the nearest day (see study results in Section 

5.3.2).   

 

In the NHS CBB dataset, the missingness of event times depends on the type of 

event experienced.  Hence, CCA will be biased because missingness of event 

times depends on the analysis outcome.  However, even if event times were 

MCAR, or MAR but missingness did not depend on the analysis outcome, given 

the covariates in the analysis model (in which case, CCA estimates would be 

unbiased), my results suggest that MI can be used to improve precision. 

 

My simulation study results suggest that estimates of cumulative incidence and 

percentiles of event times are sensitive to imputation model misspecification.  

Sampling from a set of observed times without reliance on a specific parametric 
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distribution (type 1 PMM and, in the studies with event times missing for a 

single event type, the Delord and Genin method, MICI), resulted in the least 

biased estimates, on average, when event times were MAR.  In PMM, missing 

values are replaced by sampling at random from a donor pool of patients (with 

observed values) who are ‘similar’ to the subject with missing data.  In MICI, 

sampling is from the set of event times that lie within specified boundaries, 

where the sampling probability is determined by the current estimate of the 

cumulative incidence function.  However, SE was under-estimated using MICI.  

MICI also has the drawback of being a univariate imputation method i.e. other 

variables with missing data cannot be imputed in the same imputation model 

(175).   

   

Restricting the range of imputed values generally reduced the bias for estimates 

of cumulative incidence, though not for estimates of percentiles of event times. 

MICI and the restricted linear imputation model (RESNORM) both truncate 

values during the imputation step and this seems to lead to under-estimates of 

the SE for both methods.  Results from MNAR studies suggest that these 

methods tend to result in smaller imputed times, perhaps because larger times, 

which may be outside the boundaries, are discarded.  For this reason, I do not 

recommend the use of restricted range methods.  My study results do not 

completely agree with von Hippel’s advice to transform variables with a skewed 

distribution when estimating percentiles (here, via log-transformation); although 

estimates were improved in comparison with an untransformed linear regression 

imputation model, log-transformation resulted in some bias. 

 

Contrary to other publications in this field (97, 121), in my simulation studies, 

imputing on the original scale led to bias.  However, this may be due to 

imputation model misspecification, more specifically, due to the constant 

variance assumption of the linear regression imputation model (87).  In my 

DGMs, guided by the distribution of event times for each event type in the NHS 

CBB cohort, the standard deviation of simulated times of acute GvHD and graft 
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failure times was approximately 30 days in all three studies.  However, the 

standard deviation of simulated times of death was approximately 300 days in 

studies 1 and 3, and 85 days in study 2.  Including all event types in the 

imputation models resulted in a model with estimated variance of times of acute 

GvHD that was greater than desired.  This explains the tendency of the linear 

imputation method towards larger times compared with other imputation 

methods.  Correcting this by limiting the linear imputation model to the subset of 

patients who experienced acute GvHD, resulted in estimates with negligible bias 

in MAR scenarios even when 50% data were missing (Appendices, Table A.3, 

NORMSUBGP method).   

 

The difference in the distribution of simulated death times (compared with the 

distributions of acute GvHD and graft failure times) may also explain the poor 

performance of the RESNORM, MICI and INTCCR methods when event times 

were MCAR.  In the MCAR scenarios, event times were incompletely observed 

for all event types (i.e. there was an equal probability of any acute GvHD, graft 

failure or death time being missing).  For the RESNORM, MICI and INTCCR 

methods, I used the same interval boundaries, regardless of event type (in Study 

1, minimum = 0 and maximum = min(119 days, patient’s death time); in Study 2, 

minimum = 0 and maximum = 100 days).  However, in each study, the specified 

maximum boundary under-estimated the true maximum death time (based on 

the distribution of simulated death times).  Hence, the number of deaths during 

the time period of interest (approximately the first 100 days post-transplant) may 

have been over-estimated.  Since the cumulative incidence of acute GvHD 

depends on the failure rates of all event types (see Chapter 2, Section 2.2.2), this 

could lead to biased estimates.  My results suggest that MI and FML methods 

that require the specification of interval boundaries are sensitive to the choice of 

boundaries.       

 

Given these findings, I recommend exploring the distribution of event times for 

different sub-groups of patients prior to imputation.  In theory, for any sub-
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group for which the distribution of event times is substantially different, a 

separate imputation model could be fit.  However, this may not be practical in 

studies with large numbers of variables included in the imputation models or 

many incomplete variables to be imputed.  Overall, I recommend PMM, because 

it is more robust to model misspecification.  

 

In Study 2, due to the DGM design, there was no association between the 

auxiliary variable and event times.  This explains why inclusion of the auxiliary 

variable in the imputation model did not reduce bias and increased SE, even 

when missingness of the event time depended on the auxiliary variable (157).  All 

variables, including outcome variables, included in the analysis model must be 

included in the imputation model.  Only auxiliary variables that are predictive of 

the incomplete variable, or predictive of the incomplete variable and its 

missingness, should be included in the imputation model.  Variables that are 

only predictive of missingness will not reduce bias and could increase the SE.  

However, (since lack of association is difficult to verify in practice) I recommend 

including all variables that are thought to be predictive of the incomplete 

variable in the imputation model (based on a detailed exploration of the potential 

missingness mechanism for each incomplete variable in the analysis model, as 

well as subject-matter knowledge).   

 

When data were MNAR, imputation resulted in biased estimates even when only 

a small percentage of data were missing.  Generally, FCS MI methods that 

assume MAR are not recommended when data are MNAR, and my results 

support this.  

 

Performance of the FML method considered (INTCCR) was similar that for 

restricted range MI methods (RESNORM and MICI), and worse than the best 

performing MI method (PMM).  There was no evidence of any advantage in 

using a FML method rather than FCS MI to handle missing event times.  FCS MI 

offers many advantages, notably the ability to accommodate a mixture of 
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continuous, binary, and categorical incomplete variables; the option to include 

auxiliary data during imputation; flexibility when choosing the analysis model; 

and accommodation of a mixture of exactly observed and missing times.  There is 

only one standard software application of FML methods that allows calculation 

of the non-parametric estimate of the cumulative incidence function.  This is the 

package ‘MLEcens’(179) available in R.  However, it only allows for two 

competing events and does not provide standard error (SE) estimation.  In 

contrast, MI can be easily implemented in many statistical packages including 

SAS (SAS Institute Inc., Cary, NC, USA), Stata (StataCorp, College Station, TX, 

USA) and R software. 

 

In the simulation studies described here, data were generated by sampling either 

from real data, or from parametric distributions (the advantages and 

disadvantages of each type of DGM were summarised in Chapter 2, Table 2.1).  

In my simulation studies, results using each type of DGM were similar.  This 

suggests that the performance of the different methods was not related to the 

DGM used.  I recommend using DGMs based on both real data and simple 

parametric distributions, to provide reassurance that method performance is not 

sensitive to the choice of DGM. 

 

It is particularly important to handle missing times of acute GvHD, chronic 

GvHD and relapse appropriately because these events are commonly-reported 

outcomes in HSC transplant studies. Little and Rubin (82) note that CCA will 

always be biased if missingness depends on the analysis outcome.  My study 

results support this statement. However, CCA and naïve imputation methods are 

frequently used to handle missing times in HSC studies (45, 48).  I recommend 

using PMM to impute missing event times when the analysis includes estimation 

of the cumulative incidence and percentiles of event times, and event times are 

assumed to be MAR (conditional on the observed data).  It is straight-forward to 

implement PMM in many software packages although it should be noted that 
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SAS software only implements type 2 PMM (92) which has inferior performance 

to type 1 PMM (97, 98).   

 

The simulation studies described in this chapter considered a simple analysis 

model (non-parametric estimation of the cumulative incidence function). In the 

next chapter, I investigate whether results also apply to a MSM including an 

intermediate event and covariates. 
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CHAPTER 6.  IDENTIFYING THE 

BEST MULTIPLE IMPUTATION 

METHOD FOR HANDLING 

MISSING EVENT TIMES IN A 

MULTI-STATE MODEL 

6.1. Introduction 

In Chapter 5, I explored methods for handling missing event times in a 

competing risks analysis using simulation studies.  For the MI methods I applied, 

I found that sampling from a set of observed times, without reliance on a specific 

parametric distribution, resulted in the least biased estimates when event times 

were MAR.  Restricting the range of imputed values generally reduced the bias 

for estimates of cumulative incidence but led to under-estimation of SE.  Overall, 

I found the best method was type 1 PMM, because of its flexibility and its 

robustness to model misspecification.  

 

In this chapter, using an extensive simulation study, I consider missing event 

times in a multi-state setting.  I compare the best MI methods (identified using a 

competing risks analysis model, see Chapter 5), when the analysis model is a 

MSM.  In this chapter, I only consider MI strategies.  In my competing risks 

analysis, I found no evidence of an advantage in using FML methods rather than 

MI to handle missing event times.  Furthermore, in a review of FML methods for 

handling interval-censored event times in MSMs, Machado et al. (152) found that 

none of the available methods performed well when censoring intervals were 

wide, relative to the change in the hazards.  In my dataset, intervals are wide 
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relative to the observed event times.  Hence, the FML methods developed to date 

are unlikely to perform well when applied to my data.  In contrast, MI offers 

many advantages, notably the option to include auxiliary data during 

imputation, flexibility when choosing the analysis model and accommodation of 

a mixture of exactly observed and missing times.   

6.2. Description of the simulation study 

comparing imputation methods for 

handling missing event times in a multi-

state model  

6.2.1. Aim of the simulation study 

The aim of the study was to evaluate the bias and precision of estimates from an 

MSM in different missing data scenarios, comparing the best previously 

identified MI methods for handling missing event times.   

6.2.2. Multi-state model structure 

The MSM used in this study is based on the MSM suggested by Keiding et al. to 

describe the events experienced after HSC transplant (180).  My version reduces 

the MSM of Keiding et al. to the simplest three-state MSM, that is, a uni-

directional “illness-death” model (73), as described in Chapter 2, Section 2.2.3.   
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Here, transplant is the initial state for all patients, acute GvHD the single 

intermediate state and relapse/death the single absorbing state (Figure 6.1).   

Figure 6.1. The uni-directional illness-death model for events following HSC transplantation. 
 αhj(t) represents the transition intensity when moving from state h to state j 

 

Consistent with the NHS CBB data, I make the following assumptions: 

• The time of transplant is known, i.e. the time origin is observed for all 

patients. 

• Subsequent events may be unobserved, i.e. there may be right-censoring, but I 

assume that the censoring distribution is independent of the transition time 

and state occupied and hence, standard methods can be applied (see Chapter 

2, Section 2.2).  

• For patients who experience both acute GvHD and relapse or death, I assume 

that acute GvHD always occurs before relapse or death.   

 

The events included in the MSM differ from those considered in the competing 

risks model for time to acute GvHD, described in Chapter 5, in two ways: 

(i) Relapse was not included in the competing risks model because it is not 

considered a competing risk for acute GvHD, according to the clinical 

literature (45, 59).  However, events other than death are unlikely after 

relapse (for patients in the NHS CBB dataset, engraftment and GvHD 

never occurred after relapse, see Chapter 4, Section 4.4.1).  In addition, 

disease-free survival is an outcome of clinical interest in many HSC 

transplant studies (45, 181, 182).  Relapse is also of interest from a missing 

data perspective, because, like acute GvHD times, a large proportion of 

relapse times are missing.  Hence, in my MSM analysis, I treat the 

α01(t) 

α02(t) α12(t) 

0 Transplant 1 Acute GvHD 

2 Relapse/death 
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occurrence of either relapse or death as the absorbing state (see Chapter 2, 

Section 2.2.3). 

(ii) Graft failure prior to acute GvHD was included in the competing risks 

model but is not included in the MSM.  In the NHS CBB dataset, graft 

failure occurs before or after acute GvHD and/or relapse.  In the MSM 

used here, for simplicity, I only consider one intermediate state (acute 

GvHD).  Also, I assume that relapse is as an absorbing state (i.e. that a 

transition from relapse is not possible). 

 

Again, for simplicity, the Markov property was assumed, hence time t is 

measured from entry into the initial state for all transitions (see Chapter 2, 

Section 2.2.3).  I also assumed a PH structure for each transition intensity (see 

Chapter 2, Section 2.2.1).  This means that the transition intensity, αhj(t), at time t 

since transplant, when moving from state h to state j, is defined for the ith subject 

with time-fixed covariates zi as follows:  

αhj(t) = αhj
0 (t) exp(β’hj zi) for all i, h, j 

where αhj
0 (t) represents the baseline intensity at time t

6.2.3. Data-generating mechanism 

Data were generated using the method for simulating competing risks data 

described by Beyersmann et al. (77).  MSM data can be generated by applying 

this method to a sequence of competing risks experiments. The method consists 

of four steps, which are performed for each set of r transitions representing a 

competing risks experiment (r ≥ 1, with r = 1 representing the simplest model 

with only one absorbing state).  These steps are briefly summarised below; 

further details on the application of these steps in my simulation study are 

described in Section 6.2.8: 

1. The transition intensity function αhj(t) is defined for each transition as a 

function of time t.   
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2. Event times are generated from the all-cause intensity function (the sum of all 

transition intensities), ∑ αhj(t)r .  

3. A binomial experiment (or multinomial if r > 2) is performed to determine the 

transition associated with each event time, with probability 
αhj(t)

∑ αhj(t)r
 of each of 

the r transitions occurring. 

4. Censoring times are generated independently, and as desired. 

6.2.4. Description of complete case analysis of the 

NHS CBB cohort 

A CCA of the NHS CBB cohort was used to inform the choice of (a) covariates 

and covariate parameters and (b) baseline intensity functions, to be used in the 

generation of simulated data.  Here, ‘complete case’ means that patients in the 

NHS CBB cohort were included in the analysis if times of all the events of 

interest were observed, regardless of whether covariate data were observed or 

not.   

Covariates and covariate parameters 

A separate Cox model (51) was fitted for each transition intensity using the 

‘survival’ R package (183).  All clinically relevant patient, donor and transplant 

characteristics at time of transplant were included as covariates in each transition 

intensity model, namely: number of CB units transplanted (single or double); 

patient age (in years, assuming a linear association); disease type (acute 

leukaemia, other blood cancer, non-malignant disorder); disease status at time of 

transplant (in remission, in relapse, other); conditioning regimen (intensive or 

not); sex and CMV match between donor(s) and recipient; number of HLA 

mismatches between donor(s) and recipient (well-matched: 0 or 1 mismatches; or 

not: 2 or more mismatches); TNC dose at infusion (× 107/kg patient weight: low, 

<3.0; medium, 3.0-5.0; high, >5.0).  Patients in relapse at time of transplant were 

assumed to be relapse-free immediately post-transplant i.e. the transition from 
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state 0 to state 2 was assumed to occur at some time t > 0.  The covariates most 

strongly associated with each outcome were decided using forward selection, 

based on the likelihood ratio test (159). 

Baseline intensity functions 

In practice, the Cox model allows covariate effects to be estimated without 

specification of the baseline intensity function, αhj
0(t).  However, when 

simulating data using the method described by Beyersmann et al., it is necessary 

to define αhj
0(t) explicitly.  In this study, a parametric, Weibull distribution (184) 

was used to generate the baseline intensity function for each transition intensity 

model.  The intensity function for a Weibull distribution α(t;k,λ), with shape 

parameter k and scale parameter λ, is defined as: 

α(t;k,λ) = (
𝑘

𝜆
) (

𝑡

𝜆
)

𝑘−1

    

The Weibull distribution was chosen for two reasons:  

(i) It is compatible with the PH assumption. 

(ii) Its flexibility: depending on the values of the shape and scale parameters, 

transition intensities that are increasing, decreasing or constant over time 

can be fitted using a Weibull model.  Thus, it is possible to choose a 

Weibull distribution that is consistent with the real NHS CBB data.   

 

After identifying the covariates to be used in the simulation study (based on the 

CCA described above), the Weibull parameters to be used in the simulation 

study were determined as follows.  A Weibull distribution was fitted to event 

times, measured in days, for each transition, for the set of patients with reference 

values of the chosen covariates, using the ‘fitdistrplus’ R package (185).  This 

approach assumes a direct relationship between event times and the transition 

intensity and ignores the competing risks and conditional time elements (see 

Section 6.2.2) of the MSM used in my study.  Therefore, an alternative method 

was also considered.  In this method, a Weibull PH transition intensity model 

was fitted for each transition, with the chosen covariates in each model.     
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6.2.5. Results of complete case analysis of the NHS 

CBB cohort 

There were 358 patients in the NHS CBB dataset with both acute GvHD and 

relapse/death times observed (Table 6.1).   

Table 6.1. Number of patients experiencing acute GvHD and/or relapse/death, by type of missing 
event time.  

Type of missing 
event time 

Patients 
(N) 
 

Type of event experienced  

Acute 
GvHD 
 

Relapse/death 
without acute GvHD 

Relapse/death after 
acute GvHD 

None 358 181  93 85 

Acute GvHD  52 52 0 12 

Relapse  17 3 14 3 

Acute GvHD and 
relapse  

5 5 0 5 

All patients 432 241 107 105 
 

Covariates and covariate parameters 

A detailed interpretation of covariate associations with transition intensities will 

be provided as part of the full analysis of the NHS CBB dataset in Chapter 7.  

Here, to inform covariate selection in the simulation study, the covariates most 

strongly associated (i.e. with a p-value < 0.1) with each transition intensity are 

summarised in Table 6.2 overleaf. 
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Table 6.2. Predictors in the transition intensity models for the complete case NHS CBB dataset.   

Covariate (reference value) Total 
(N) 

Events 
(N) 

Hazard ratio (95% CI) P* 

Transplant to acute GvHD  358 181   

Disease status at transplant  
(partial/complete remission) 

141 86 1.00  (-) 0.016 

Relapse 23 9 0.67 (0.34-1.34)  

Other 110 55 0.80 (0.57-1.12)  

Not reported 84 31 0.53 (0.35-0.80)  

      

Transplant to relapse/death 
without acute GvHD  

358 93    

Disease status at transplant  
(partial/complete remission) 

141 31 1.00 (-) 0.004 

Relapse 23 12 3.08 (1.57-6.04)  

Other 110 21 0.72 (0.41-1.25)  

Not reported 84 29 1.08 (0.65-1.80)  

Donor-recipient CMV status 
match (-/-) 

95 21 1.00 (-) 0.035 

-/+ 95 29 1.40 (0.80-2.45)  

+/- 66 9 0.54 (0.25-1.18)  

+/+ 62 20 1.14 (0.98-4.78)  

Not reported 40 14 1.82 (0.61-2.11)  

      

Acute GvHD to relapse/death 181 85    

Disease status at transplant  
(partial/complete remission) 

86 44 1.00 (-) 0.005 

Relapse 9 8 2.24 (0.92-5.44)  

Other 55 26 1.34 (0.79-2.26)  

Not reported 31 7 0.42 (0.18-0.98)  

Number of donor-recipient HLA 
mismatches (well-matched: 0/1) 

64 21 1.00 (-) 0.027 

Poorly-matched: 2 or more 95 52 1.88 (0.99-3.58)  

Not reported 22 12 2.99 (1.32-6.77)  

TNC dose at infusion (×107/kg) 
(Low: < 3.0) 

40 25 1.00 (-) 0.028 

Medium: 3.0-5.0 54 32 1.01 (0.59-1.72)  

High: > 5.0 41 16 0.83 (0.42-1.65)  

Not reported 46 12 0.40 (0.20-0.82)  

Recipient age  
(per 10-year increase) 

181 85 1.17 (1.01-1.34) 0.035 

Number of CB units transplanted  
(single cord) 

108 51 1.00 (-) 0.095 

Double cord 73 34 0.57 (0.30-1.09)  
*P-values are for models including all other covariates shown for each transition. 

For all transitions, disease status at transplant was most strongly associated with 

the hazard rate.  After adjusting for disease status at transplant, there was no 
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evidence of an association between any other covariate and the hazard of acute 

GvHD.  However, in addition to disease status at transplant, donor-recipient 

CMV status match was associated with the hazard of relapse/death without 

acute GvHD.  The number of donor-recipient HLA mismatches, recipient age, 

dose at infusion and number of CB units transplanted were associated with the 

hazard of relapse/death after acute GvHD.   

 

In the simulation study, for simplicity, only two of the covariates identified 

above were included in the transition intensity models.  These were both 

included as binary variables (disease status at transplant was simplified to ‘in 

relapse at time of transplant or not’; assuming patients are not in relapse 

immediately post-transplant).  The covariate in models of transition from 

transplant to acute GvHD, and from transplant to relapse/death, was disease 

status at transplant.  The covariates in the model from acute GvHD to 

relapse/death were disease status at transplant and the number of CB units 

received.  These covariates were chosen because they were associated with the 

times to events (disease status at transplant) or were associated with the times to 

events and the probability that event times were missing (number of CB units 

received) (see Chapter 4, Section 4.5).  The covariates were included in both 

DGMs and the analysis model.  No unmeasured variables were considered in the 

simulation study, so that any bias in model estimates could be attributed to the 

MI method.           

Baseline intensity functions 

The baseline intensity functions used in the simulation study are defined below, 

for each transition: 

α01
0 (t) = (

1.5

36
) (

t

36
)

0.5
 α02

0 (t) = (
0.9

120
) (

t

120
)

-0.1
 α12

0 (t) = (
0.8

160
) (

t

160
)

-0.2
 

The Weibull parameters in the models above were from Weibull distributions 

fitted to event times for each transition, for patients in the complete case NHS 

CBB cohort.  The Q-Q plots in Figure 6.2 compare the distribution of event times 
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generated using the chosen Weibull models with the distribution of event times 

for patients in the complete case NHS CBB cohort.  Since the Weibull models 

represent baseline intensity functions, only NHS CBB patients who had reference 

(baseline) values of the proposed covariates were included in the plots.  That is, 

patients not in relapse at time of transplant and, for the transition from acute 

GvHD to relapse/death, patients not in relapse at time of transplant who 

received a single cord transplant.  As shown in Figure 6.2, the chosen Weibull 

distribution is a good fit for the real data for times below the median point of 

each Weibull distribution.  However, there is some lack of fit above the median 

for each transition, particularly for the two distributions of relapse/death times, 

which may be due to the small numbers of observed times above the median.    

Figure 6.2.  Q-Q plots of event time distributions, comparing NHS CBB data with theoretical 
Weibull distributions.   
 
Weibull shape parameter (k) and scale parameter (λ) shown in each case.   

 

The alternative method considered for choosing Weibull parameter estimates (i.e. 

fitting Weibull PH transition intensity models for each transition), resulted in 

very unrealistic estimates, particularly for scale parameters.  Weibull parameter 

estimates were as follows.  

• Transplant to acute GvHD: k = 0.4 and λ = 760 (equivalent to a distribution 

with median 290 days, IQR 1500 days).   

• Transplant to relapse/death: k = 0.5 and λ = 2600 (equivalent to a distribution 

with median 1300 days, IQR 4700 days).  
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• Acute GvHD to relapse/death, k = 0.06 and λ = 0.00004 (equivalent to a 

distribution with median 0 days, IQR 0.02 days).   

Again, this poor fit may be due to small numbers of patients/events in the 

complete case NHS CBB cohort.   

6.2.6. Data-generating mechanism: application of 

Beyersmann’s method 

The MSM used in the simulation study consisted of a sequence of two competing 

risks experiments.  Transitions from transplant (α01 and α02) comprised the first 

competing risks experiment and the transition from acute GvHD to 

relapse/death (α12) comprised the second experiment (in this case, there was 

only a single absorbing state).  Informed by the results of the complete case NHS 

CBB analysis, the application of Beyersmann’s method used in this study is 

described below.  For each patient i (note that, for clarity, the subscript i is 

suppressed in the definitions overleaf), values of the covariates used in the DGM 

were generated by sampling from Bernoulli distributions with probability 0.2 of 

relapse at time of transplant, and probability 0.45 of a double cord transplant.  

Values for the two covariates were generated independently i.e. assuming no 

correlation between the two covariates.  R code to generate data as per my DGM 

is included in the Appendices (Section A.6).     

First experiment 

1. The transition intensity functions α0j(t) for the two transitions from transplant 

were defined as: 

α01(t) = (
1.5

36
) (

t

36
)

0.5
exp{-0.8x1}  and α02(t) = (

0.9

120
) (

t

120
)

-0.1
exp{1.2x1}  

where t is the time in days since transplant and x1 = 1 for a patient in relapse 

at time of transplant and 0 otherwise. 

 

2. Event times were generated from the all-cause intensity function, in this case, 

α01(t) + α02(t).  Event times can be generated easily via cumulative hazard 
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inversion if the intensity function has a standard distribution (184).  However, 

here the all-cause intensity function is the sum of two Weibull distributions, 

which cannot be inverted using analytical methods.  Crowther and Lambert 

(186) adapted the cumulative hazard inversion method to accommodate such 

functions.  In this study, their methods were applied using the “simsurv” R 

package (187) to generate event times for the first competing risks 

experiment.  To distinguish between event times from the first and second 

experiment, the simulated event time for the first experiment will hereafter be 

referred to as t0j, where j denotes the state entered from transplant.    

 

3. A binomial experiment was performed to determine the state j entered from 

transplant state 0 associated with each simulated event time t0j, with the 

probability of entering the acute GvHD state (versus relapse/death) equal to 

α01(t0j)

α01(t0j) + α02(t0j)
 .  

 

4. The censoring mechanism was applied after event times had been generated 

from both experiments (because the second experiment used the uncensored 

times from the first experiment), so the censoring mechanism is not described 

here. 

 

Second experiment 

1. The transition intensity function α12(t) was defined as: 

α12(t) = (
0.8

160
) (

t

160
)

-0.2
exp{1.2x1 – x2} 

where t and x1 are defined as before and x2 = 1 for a double cord transplant 

and 0 otherwise. 

 

2. The second experiment consisted of just one possible transition; hence the all-

cause intensity was α12(t).  The time of relapse/death, t12, was required to be 

greater than the simulated time of acute GvHD, t01.  Therefore, relapse/death 
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times were generated from the conditional survival function, using 

cumulative hazard inversion.  Cumulative hazard inversion proceeds as 

follows:  

(a) The conditional survival function is defined as S(t12|t01) = 
S(t12)

S(t01)
  

where S(t) = exp[- (
t

160
)

0.8
exp{1.2x1 – x2}] with x1 and x2 defined as before, 

based on the standard result for a Weibull distribution (184).  

(b) A value of u is drawn from a Uniform(0,1) distribution.  

(c) Using the result that the conditional survival function is uniformly 

distributed across the range (0,1) gives u = 
S(t12)

S(t01)
 ; substituting the 

expression for S(t) and rearranging allows direct calculation of each t12 as: 

t12 = 160{

-log[u exp[-(
t01

160
)

0.8
exp{1.2x1 – x2}]]

exp{1.2x1 – x2}
}

1/0.8

 

 

3. There was no need to determine the transition associated with each survival 

time in the second experiment because the only possible transition from acute 

GvHD was to relapse/death. 

 

4. In this study, censoring was at random.  Censoring times between one and 

five years post-transplant were generated for each subject by drawing from a 

Uniform(365, 1826) distribution.   

 

Of the data simulated in this study, only times of relapse/death after acute 

GvHD were censored.  This was because all simulated times of acute GvHD, and 

relapse/death without acute GvHD, were within one year of transplant.  The 

simulated distribution of acute GvHD times (median 21 days, IQR 26 days) is 

consistent with both the standard clinical definition of acute GvHD (acute GvHD 
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occurs within the first 100 days post-transplant), and the distribution of observed 

times of acute GvHD in the complete case NHS CBB dataset (median 27 days, 

IQR 25 days).   

 

Comparing patients who experienced acute GvHD prior to relapse/death with 

those who did not (in all 1000 simulated datasets), the distribution of simulated 

(uncensored) relapse/death times were very different (after acute GvHD, median 

200 days, IQR 386 days; without acute GvHD, median 14 days, IQR 22 days).  A 

direct comparison with the complete case NHS CBB dataset is not possible, 

because many relapse/death times (in the real dataset) were censored.  However, 

comparing patients who experienced acute GvHD prior to relapse/death with 

those who did not (in the NHS CBB dataset), the distribution of real (censored) 

relapse/death times appear more similar (after acute GvHD, median 77 days, 

IQR 205 days; without acute GvHD, median 56 days, IQR 119 days).   

 

However, some aspects of the simulated and real relapse/death times are 

comparable.  In both cases, relapse/death times are longer for patients 

experiencing acute GvHD than for those who experience relapse/death without 

acute GvHD.  Furthermore, for patients in the complete case NHS CBB dataset 

who experienced relapse/death without acute GvHD, 86/93, 92%, were within 

one year of transplant. 

 

In addition, Cox model estimates of the cumulative baseline hazard function 

(CBH) for each transition (shown as solid lines in the plots in Figure 6.3, overleaf) 

have a similar shape for both simulated and real data (shown on the left- and 

right-hand plots, respectively), at least within the range of transition times.  

However, as mentioned previously, the distribution of transition times differs 

between the simulated and real data.  This can be seen in Figure 6.3 by 

comparing the time-point at which there is no further change in the CBH for each 

transition (the CBH becomes horizontal) e.g. for the transition from transplant to 
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acute GvHD, this occurs at ~ 200 days for the simulated data vs. 100 days for the 

real data.   

Figure 6.3.  Estimated cumulative baseline hazard function for each transition for the simulated 
and complete case NHS CBB datasets, fitting a Cox model (solid lines) and a Weibull model 
(dashed lines). 

 
State indicators: 0 = transplanted; 1 = acute GvHD; 2 = relapse/death  
Note that for the simulated data(left-hand plot), for the transition from acute GvHD to 
relapse/death, the solid line exactly overlays the dotted line.  

 

In contrast to the Cox model estimates, there are substantial differences in the fit 

of Weibull model estimates of the CBHs between the simulated and real data.  

Taking the Cox CBHs as the ‘true’ CBHs (since these are estimated non-

parametrically from the data), Figure 6.3 shows that the Weibull CBHs are a very 

good fit for the simulated data within the range of the simulated transition times.  

In addition, as expected, the parameter estimates from Weibull models fitted to 

the simulated data are the same as the Weibull parameters used to generate the 

simulated data. 

 

However, it is clear that the Weibull CBHs are not a good fit for the real data.  In 

particular, the Weibull CBHs appear to have a good fit to the real data only in 

certain time periods.  For transitions from transplant, the Weibull CBHs are a 

good fit to the true CBHs only in the very early period post-transplant (all 

observed transition times are below the median point of the Weibull CBHs).  For 
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the transition from acute GvHD to relapse/death, the shape of the Weibull CBH 

fits the shape of the true CBH only at later times post-transplant (all observed 

transition times are above the median of the Weibull CBH).  The Weibull model 

greatly over-estimates the CBH in the first few days post-transplant for this 

transition.  The lack of fit in the real data may be due to the small number of 

transitions relative to the range of observed transition times e.g. only 46 patients 

with reference values of covariates experienced relapse/death after acute GvHD, 

and the range of transition times was 14 - 1711 days post-transplant.   

 

In summary, the difference between the simulated and real distributions of 

relapse/death times may be for the reasons discussed previously.  Namely, the 

lack of fit between the Weibull models and the real data, and the assumption of a 

direct relationship between event times and the transition intensity functions.     

 

6.2.7. Methods for simulating missing data 

MDMs were chosen so that approximately 30% of event times were missing.  

This reflects the percentage of missing times in the real NHS CBB cohort.  Firstly, 

a MCAR MDM was considered by setting a random 30% of event times to 

missing, regardless of event type.  Next, MAR and MNAR MDMs were 

considered in three scenarios: (i) only times of acute GvHD missing, (ii) only 

times of relapse/death missing, (iii) times of both acute GvHD and 

relapse/death missing.  Although event times MAR is the most likely MDM for 

the NHS CBB cohort (see Chapter 4, Section 4.5), MNAR MDMs were also 

considered, to assess the impact on bias and precision if MI was used in this 

scenario.   

 

As discussed above, the DGM used in this study means that the distribution of 

simulated times to relapse/death differs substantially between patients who 

experience acute GvHD prior to relapse/death, and those who do not.  

Therefore, in scenario (ii), two different MAR MDMs were considered.  Firstly, 
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dependent on acute GvHD, such that relapse/death times were either missing 

for patients who experienced acute GvHD, or for patients who did not 

experience acute GvHD (but not both in the same MDM).  Secondly, independent 

of acute GvHD, such that relapse/death times were missing, regardless of 

whether acute GvHD was experienced or not.  This was done to assess whether 

the heterogeneity of the two distributions of times to relapse/death would affect 

the performance of the chosen MI methods.   

 

In scenario (iii), missingness of relapse/death times was not dependent on 

whether acute GvHD was experienced or not.  In this scenario, different 

combinations of acute GvHD and relapse/death event times MAR and MNAR 

were considered.  This was to assess whether the type of missingness was more 

important for transitions to an absorbing state than to an intermediate state.  In 

addition, two different MNAR MDMs were considered: smallest event times 

missing, and largest event times missing.  This was to assess how sensitive the 

results were to the choice of MNAR mechanism. 

 

Note that, missingness of an event time for one event type may lead to missing 

times for more than one transition, because the event time may be associated 

with multiple transitions (Table 6.3).   

Table 6.3. Missing transition times for each type of missing event time 

Type of missing  
event time 

Transition intensity model (transition time missing or not) 

Transplant to 
AGvHD  

Transplant to R/death 
w/o AGvHD  

AGvHD to 
R/death 

AGvHD Missing Missing* Missing 

R/death w/o AGvHD Missing* Missing n/a 

R/death after AGvHD Not missing Not missing* Missing 
AGvHD, acute GvHD; R/death, relapse/death; w/o, without 
* Censored at time of competing event 

 

Complete data MSM methods require the time of entry into both states h and j to 

be known for the transition from state h to state j.  It would be possible to 

construct MDMs such that missingness was transition-specific.  However, this 
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would not be realistic because it would mean that, for example, the time of acute 

GvHD was missing for one transition but observed for another.  Therefore, in all 

MDMs, missingness is specified for event times, rather than transition times.   

 

MAR and MNAR MDMs for each of the three scenarios discussed previously are 

described in detail overleaf.  In each scenario, j = 1, 2, 3 denotes the event 

experienced (j = 1: acute GvHD, j = 2: relapse/death without acute GvHD, j = 3: 

relapse/death after acute GvHD).  For clarity in explaining the missingness 

structure, the events of relapse/death, without or after acute GvHD, are 

identified as two separate event types.  For each subject i, πij denotes the 

probability that event times for the jth event are missing; tij is the event time for 

subject i for the jth event and x2i = 1 for a double CB transplant and 0 otherwise.   

Also, tj(p%) is the pth percentile of event times for the jth event, ordered from 

smallest to largest and tRD(p%) is the pth percentile of all times of relapse/death 

(regardless of whether acute GvHD was experienced or not), ordered from 

smallest to largest. 

(i) Missing acute GvHD times  

a) MAR: The probability that acute GvHD times are missing depends on the 

number of CB units transplanted; relapse/death times are fully observed:  

πi1 = 0.2 (1 + x2i)    and    πi2 = πi3 = 0  

b) MNAR: The shortest 30% of all acute GvHD times are missing; relapse/death 

times are fully observed: 

πi1 =  1 if ti1 < t1(30%)  and    πi2 = πi3 = 0 

0 otherwise 

(ii)    Missing relapse/death times  

a) MAR: The probability that relapse/death times are missing depends on the 

number of CB units transplanted and whether acute GvHD was experienced 

or not; acute GvHD times are fully observed:  

πi1 = πi3 = 0 and    πi2 = 0.5 (1 – 0.8 x2i)     
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b) MAR: The probability that relapse/death times are missing depends on the 

number of CB units transplanted, regardless of whether acute GvHD was 

experienced; acute GvHD times are fully observed:  

πi1 = 0 and    πi2 = πi3 = 0.5 (1 – 0.8 x2i)  

 
c) MNAR: The shortest 30% of all relapse/death times are missing, regardless of 

whether acute GvHD was experienced; acute GvHD times are fully observed: 

πi1 = 0 and πil  = 1 if til < tRD(30%)   l = 2, 3     

   0 otherwise  

(iii)   Missing acute GvHD and relapse/death times 

a) Both MAR: The probability that acute GvHD and relapse/death times are 

missing depends on the number of CB units transplanted:  

πi1 = 0.1 (1 + 4 x2i)    and    πi2 = πi3 = 0.5 (1 – 0.8 x2i)    

πij are defined such that acute GvHD times are more likely to be missing for 

patients receiving a double cord rather than a single cord transplant; the 

situation is reversed for relapse/death times.  This design means that it is 

unlikely that both acute GvHD and relapse/death times are missing for any 

given subject, reflecting the pattern of missingness observed in the NHS CBB 

dataset (see Chapter 4, Section 4.5).   

b) Acute GvHD times MNAR and relapse/death times MAR: The shortest 30% 

of all acute GvHD times are missing; the probability that relapse/death times 

are missing depends on the number of CB units transplanted: 

πi1 =  1 if ti1 < t1(30%)   and    πi2 = πi3 = 0.5 (1 – 0.8 x2i) 

  0 otherwise    

c) Acute GvHD times MNAR and relapse/death times MAR: The largest 30% of 

all acute GvHD times are missing; the probability that relapse/death times 

are missing depends on the number of CB units transplanted: 

πi1 =  1 if ti1 > t1(70%)  and    πi2 = πi3 = 0.5 (1 – 0.8 x2i)  

  0 otherwise  
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d) Acute GvHD times MAR and relapse/death times MNAR: The probability 

that acute GvHD imes are missing depends on the number of CB units 

transplanted; the shortest 30% of all relapse/death times are missing: 

πi1 = 0.1 (1 + 4 x2i) and πil  = 1 if til < tRD(30%)  l = 2, 3      

       0 otherwise   

 

e) Acute GvHD times MAR and relapse/death times MNAR: The probability 

that acute GvHD times are missing depends on the number of CB units 

transplanted; the largest 30% of all relapse/death times are missing: 

πi1 = 0.1 (1 + 4 x2i) and πil  = 1 if til > tRD(70%)  l = 2, 3     

       0 otherwise   

 

f) Acute GvHD times MNAR and relapse/death times MNAR: The shortest 

30% of all acute GvHD and relapse/death times are missing: 

πi1 =  1 if ti1 < t1(30%)   and    πil  = 1 if til < tRD(30%)  l = 2, 3           

  0 otherwise 0 otherwise 

 

I expected FCS MI methods to perform badly when event times were MNAR for 

both event types.  Therefore, (to avoid repetition) I did not consider a scenario in 

which longest times were missing for both event types. 

6.2.8. Estimands of interest 

For each analysis, the estimands of interest were:  

(i) The vector of regression parameters βhj for the clock-forward Markov 

transition intensity models αhj(t) = αhj
0(t) exp(β’hj zi) for all h and j.  For 

compatibility with the DGM, disease status at time of transplant was the 

only covariate in transitions from transplant.  Disease status at time of 

transplant and number of CB units transplanted were the covariates for 

the transition from acute GvHD to relapse/death. 
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(ii) The restricted expected length of stay (RELOS) in each state, restricted to 

the time period between transplant and two years post-transplant.  RELOS 

was used as a summary of the transition probability distributions.   

 
As described in Chapter 2, Section 2.2.3, RELOS from time 0 to time s post-

transplant for state j is defined as:  

ej(s) = ∫ Pj(t) dt
s

0
  

where Pj
 (t) is the probability of being in state j at time t (72).  Since all 

patients are in state 0 initially, Pj
 (t)  is equivalent to the transition 

probability from state 0 (transplant) to state j at time t (73).   

 

This measure was used (rather than, for example, the transition 

probability point estimates at one year post-transplant), so that the 

transition probability distributions over the entire time-period of interest 

could be taken into account (not just at discrete time-points).  RELOS was 

calculated for patients with reference values of the covariates (those 

receiving a single cord transplant who were not in relapse at time of 

transplant).  Since RELOS is, in general, a function of baseline intensities 

and regression parameters, using only these patients enabled any bias in 

estimation of the baseline intensity functions to be identified separately 

from any bias associated with regression parameter estimates.          

The estimated value of ej(2) for the jth state and kth simulation, hereafter 

referred to as êj
k(2), was calculated as the area under the transition 

probability curve, using the consistent estimator (72):  

êj
k(2) = ∑ P̂𝑗

k
(tm

k ) . (tm+1
k -tm

k )
M

m=0
  

where, for the kth simulation, P̂j
k
(t) is the estimated probability of being in 

state j at time t and t0
k< t1

k  < … < tM
k

 ≤ tM+1
k are the set of ordered event times 

up to two years post-transplant, across all transitions.  For Cox models, the 

set of event times was the set of all simulated event times for the kth 

simulation. For Weibull models, the set of event times was specified as the 
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set of all values of t between zero and two years, in increments of 0.1 days.   

 

(iii) The final estimand of interest was the regression parameter γ
12

 from a 

clock-forward semi-Markov transition intensity model for α12.  This model 

has the same form as the Markov model specified earlier, with the 

addition of an extra covariate, di, which denotes the time from transplant 

until acute GvHD:  

α12(t) = α12
0(t) exp(γ

12
 di + β’12 zi)  

The inclusion of time until entry into current state is used in practice as a 

test for the Markov assumption (49).  In this study, the regression 

parameter γ
12

 was included to test whether imputation leads to correct 

conclusions about the Markov assumption (given that, in the fully 

observed dataset, this assumption was true). 

 
Estimates were calculated by fitting a Cox PH model for each transition, using 

the censored event times.  As described in Chapter 2, Section 2.2.1, Cox models 

are often used in practice in the analysis of survival data.  An advantage of Cox 

models is that they do not require explicit definition of the baseline intensity 

function, which is usually unknown for real data.  Therefore, it was of interest to 

assess the performance of MI methods when using a Cox model.   However, 

simulated data were generated from Weibull distributions.  Therefore, it was also 

of interest to determine whether there was a difference in results when fitting a 

Cox model rather than a Weibull model, due to the disparity between the 

analysis model and DGM in the former case.  Hence, analysis was repeated, 

fitting a Weibull PH model instead of a Cox model.   

 

In the MCAR scenario, for all three main imputation methods (that is, the 

methods that were applied in all scenarios, see section 6.2.12), I performed two 

analyses: first using a Cox model and then a Weibull model.  For all other MDMs 

(to avoid repetition), for all imputation models assessed, the analysis was 

performed using a Cox model.  The analysis was repeated using a Weibull model 
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for one imputation method only.  Cox models were fitted using the ‘survival’ R 

package (183) and Weibull models were fitted using the ‘flexsurv’ R package 

(188).  Transition probabilities were calculated for both models using the ‘mstate’ 

R package (172).    

6.2.9. Number of simulation datasets 

One thousand datasets, each of size 500, were created using the DGM described 

above.  Based on the empirical SE of the estimands using complete data (i.e. with 

no missing event times) when fitting a Cox model (see Section 6.2.17), 1000 

datasets allowed estimation of the estimands of interest with acceptable precision 

(regression parameters: 0.01 in each case; RELOS: 0.1 days for the transplant 

state, and 1 day for the acute GvHD and relapse/death states; 1% for coverage 

for γ
12

).  Precision was calculated using the formula suggested by Burton et al. 

(173) with a type 1 error of 5%.        

6.2.10. Candidate methods for handling missing event 

times  

The methods identified as the best-performing when event times were missing in 

a competing risks framework (see Chapter 5, Section 5.4) were considered for 

handling missing event times in this study.  The methods are MI FCS using type 

1 PMM, and linear imputation on the original scale (with the latter method 

applied separately for each sub-group of patients with a different distribution of 

event times).  These methods, and variations, are described below:  

(i) Type 1 PMM imputation with no restrictions on the imputed values (PMM).   

 

(ii) PMM, applied separately for patients who did and did not experience acute 

GvHD before relapse/death (PMMSUBGP).  This method was used to 

assess whether imputation was improved if the heterogeneity of the two 

distributions of times to relapse/death (described in Section 6.2.8), was 

explicitly accounted for in the imputation scheme.  My hypothesis was that 
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standard PMM would tend to identify donors with the same set of 

transitions as the incomplete case and hence there would be little difference 

in results for PMM and PMMSUBGP.  After imputation by PMMSUBGP, 

analysis was performed using both Cox and Weibull models in all missing 

data scenarios.   

 

(iii) PMM, accounting for the ordered nature of the event times as specified in 

the analysis model (PMMCOMP).  In this method, PMM was applied 

separately for patients who did and did not experience acute GvHD before 

relapse/death.   This method proceeds as follows: 

 

a) Impute the first event time, i.e. impute relapse/death times for the 

subgroup of patients who did not experience acute GvHD, and acute 

GvHD event times for the subgroup who did. 

b) Impute the time from acute GvHD to relapse/death for the sub-group 

who experienced acute GvHD.  First, calculate the time from acute 

GvHD to relapse/death among those with observed times of acute 

GvHD and relapse/death.  Second, draw imputations for the time of 

acute GvHD (using an imputation model that includes the calculated 

time from acute GvHD to relapse/death but excludes the relapse/death 

time) and for the time from acute GvHD to relapse/death (using an 

imputation model that includes the time of acute GvHD but excludes 

the relapse/death time).  Post-imputation, calculate any missing 

relapse/death event time as the sum of the (observed or imputed) acute 

GvHD event time and the (observed or imputed) time from acute 

GvHD to relapse/death.   

 

This approach has the advantage of compatibility with the analysis model 

because, for patients who experience acute GvHD and relapse/death, their 

imputed relapse/death event time is always greater than the (observed or 

imputed) acute GvHD event time.  However, it has the disadvantage that 
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not all available information is used about patients with a missing acute 

GvHD time and an observed relapse/death time.  This is because the    

observed relapse/death time is not included in the imputation model.  For 

these patients, both the acute GvHD time, and the time from acute GvHD to 

relapse/death, will be imputed (and the analysed relapse/death time will 

have been calculated, post-imputation, from these imputed times).  

Therefore, SE are expected to be larger for this method than for the other 

methods.  This method was only applied in the MCAR scenario.  

 

(iv) Linear imputation on the original scale, applied separately for patients who 

did and did not experience acute GvHD before relapse/death 

(NORMSUBGP).  This method has the disadvantage that negative event 

times may be imputed and such times cannot be handled by the ‘mstate’ 

package.  As a workaround, negative imputed times were replaced by the 

value 0.0001 post-imputation.  This was expected to lead to under-

estimation of the SE, as was seen with restricted range methods in the 

competing risks simulation study (see Chapter 5, Section 5.4).  This method 

was only applied in scenarios in which event times for only one event type 

were missing.   

 

As in the competing risks analysis (Chapter 5, Section 5.2.7), each MI method was 

implemented using the ‘mice’ R package (93) with the default of five 

imputations.  To explore whether increasing the number of imputations changed 

the bias and/or SE, PMM was also implemented using 30 imputations for the 

MCAR scenario (referred to as PMM30IMP).  As in the competing risks 

simulation study (Chapter 5, Section 5.2.7), the default of five donors was used 

for each PMM method.  In scenarios (i) and (ii), only one variable (the time of 

acute GvHD and relapse/death, respectively) was incomplete.  Therefore, the 

number of cycles per imputation was one.  In scenario (iii), the default of five 

iterations was used.  R version 3.5.2 and ‘mice’ version 3.3.0 was used for all 

results.      
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Imputation models included the analysis outcome and all variables either 

predictive of event times, predictive of event times and missingness of event 

times, or included as covariates in the analysis model.  That is, imputation 

models included both covariates, event times, and indicators for whether or not 

each event (acute GvHD and relapse/death) was experienced.   

 

CCA was also performed to confirm that this would result in unbiased estimates 

when event times were MCAR and biased estimates when event times were 

MAR or MNAR.    

6.2.11. Performance measures of interest 

Performance measures of interest for regression parameters βhj and RELOS 

within two years, ej(2), were bias, standardised bias and average model-based SE 

(see Chapter 5, Section 5.4.8, for definitions of these performance measures).  

Both bias and standardised bias were reported because both the absolute size of 

the bias and the size, relative to the empirical SE, give useful information in this 

simulation study.  The impact of bias can be easier to visualise using the absolute 

bias e.g. a bias of 10 days in estimating the length of stay in the acute GvHD state 

may be easier to interpret than a standardised bias of 1.0.  On the other hand, 

standardised bias is useful for comparing bias across the estimands, as these vary 

in scale.  In addition, because standardised bias incorporates the uncertainty in 

the parameter estimate, it can be useful in evaluating the likely impact of bias on 

analysis conclusions (173).  When comparing different estimates of the same 

estimand, standardised bias must be interpreted carefully.  For example, 

estimates using two different methods may have the same absolute bias, but the 

estimate with the greater precision (smaller empirical SE) would have larger 

standardised bias.  For completeness, empirical SE was also reported. The 

performance measure of interest for the regression parameter γ
12

 was the 
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coverage of the 95% confidence interval i.e. the percentage of within-simulation 

95% confidence intervals for γ̂
12

 that included the true value.   

 

Model-based SE of the estimated regression parameters was estimated using 

standard methods for parametric and Cox PH models via the ‘flexsurv’ (188) and 

‘survival’ (183) R packages.  However, based on the current literature, there is 

not a standard method for calculating the model-based SE for RELOS.  Crowther 

and Lambert (189) used a simulation-based, bootstrap-type method, whereas 

Grand and Putter (72) used a pseudo-observations approach.  Nemes et al. (190) 

reviewed estimators of the SE of restricted mean all-cause survival time (the 

univariate equivalent of RELOS).  They described five different approaches based 

on the method of moments, bootstrapping, the delta method, estimating 

equations and pseudo-observations.   In this study, I used three of the 

approaches proposed by Nemes et al. to derive estimators of SE[êj
k(s)], where 

SE[êj
k(s)] is defined as the standard error of RELOS up to time s, for state j, for the 

kth simulation.  These estimators are described below.       

6.3. Description of estimators of the standard 

error of the restricted expected length of 

stay in state 

The three proposed estimators were based on (i) the method of moments, (ii) 

bootstrapping and (iii) the delta method.  I did not consider methods based on 

estimating equations or pseudo-observations because these methods could not be 

easily incorporated into the modelling approach used in this study.   

(i) I derived the first estimator, SÊ1[ê𝑗
k(s)], by extending Royston and  

Parmar’s method of moments approach for the restricted mean all-cause 

survival time (191).  Following the steps in Royston and Parmar’s derivation, 

my argument is as follows:   
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Define the time of transition from state j, T, with X = min(T, s) representing 

the transition time restricted to the time period 0 to s.     

The method of moments estimator is defined as Var (X) = E(X2) – [E(X)]2  

where E(X2) = E(T2|T ≤ s) P(T ≤ s) + E(T2|T > s) P(T > s)  

 

Here, P(T > t)  is the state occupation probability Pj
 (t), the probability of 

being in state j at time t, and P(T ≤ t) =  1 – Pj
 (t), the probability of being in a 

state other than j at time t.  Substituting Pj
 (t) and applying integration by 

parts for the first term in this expression gives: 

E(X2) = s2 [1 – P
j
(s)] – ∫ 2t [1 – P

j
(t)] dt

s

0
 + s2 Pj(s) 

 = s2 – ∫ 2t dt
s

0
 +∫ 2t Pj(t) dt

s

0
 

 = ∫ 2t Pj(t) dt
s

0
 

As before, E(X)  = ∫ Pj(t) dt
s

0
 

Therefore, Var (X) = E(X2) – [E(X)]2  = ∫ 2t Pj(t) dt
s

0
 – [∫ Pj(t) dt

s

0
]

2
 

 

For the kth simulation, SÊ1[êj
k(s)] = √

Var̂ (X)

n
 , where n is the sample size.   

 

Note that Royston and Parmar assume that the underlying transition 

intensity models are known, but in my study, these must be estimated.   

I adapted the expression for the estimator of êj
k(s), described in Section 5.2.10, 

to define an estimator of Var̂(X) for the kth simulation as follows:   

Var̂(X) = ∑ 2tm
k . P̂

𝑗

k
(tm

k ). (tm+1
k -tm

k )
M

m=0
 – [∑ P̂𝑗

k
(tm

k ). (tm+1
k -tm

k )
M

m=0
]

2

  

where, for the kth simulation, P̂j
k
(t) is the estimated probability of being in 

state j at time t and t0
k< t1

k  < … < tM
k

 ≤ tM+1
k  are the set of ordered event times 

up to two years post-transplant, across all transitions.   
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(ii) The second estimator SÊ2[êj
k(s)] was the non-parametric bootstrap estimator 

(192), using 50 bootstraps per simulated dataset.  As mentioned previously 

(Chapter 3, Section 3.4.2), Bartlett and Hughes (108) note that it is valid to use 

bootstrapping after MI, provided the imputation and analysis models are 

congenial, but may lead to incorrect coverage if they are not.   

 

(iii) I derived the third estimator, SÊ3[êj
k(s)], using the delta method.   

 

For the Weibull PH model, I used the fact that êj
k(s) is a function of the 

transition intensity model parameter estimates 𝜽̂, with estimated covariance 

Σ̂, in the application of the delta method.  Hence, I defined SÊ3[êj
k(s)] as:  

SÊ3[êj
k(s)] = √(

∂êj
k(s;θ)

∂(θ)
|
θ=θ̂

)
T

Σ̂ (
∂êj

k(s;θ)

∂(θ)
|
θ=θ̂

)    

I estimated the vector of partial derivatives 
∂êj

k(s;θ)

∂(θ)
 by calculating the 

difference in êj
k(s) from increasing or decreasing each parameter estimate in 

turn by a small value 𝜖, that is: 

∂êj
k(s;θ)

∂(θ)
 = 

êj
k(s;θ̂+ϵ) – êj

k(s;θ̂ - ϵ) 

2ϵ 
  

It was not possible to use the same approach for the Cox PH model because 

the baseline cumulative hazard function in a Cox model is estimated non-

parametrically (see Chapter 2, Section 2.2.1).  Instead, as for the estimator of 

the SE of a percentile of event times (Chapter 5, Section 5.3), I adapted 

Collett’s definition of SE for the median all-cause survival time (53), as 

follows:  

 SÊ3[êj
k(s)] = 

1

P’̂j
k
{êj

k(s)}
 SÊ[P̂j

k
{êj

k(s)}] 

The SE of the state probability function at êj
k(s), SÊ[P̂j

k
{êj

k(s)}], was calculated 

using the Greenwood-style estimator described by de Wreede et al. (193).  I 
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estimated the derivative P’̂j
k
{êj

k(s)} by calculating a local gradient, such that: 

 P’̂j
k
{êj

k(s)} = 
P̂j

k
{ûj

k(s)} – P̂j
k
{l̂j

k
(s)} 

ûj
k(s) – l̂j

k
(s)

    

where ûj
k(s) = min{ti

k|ti
k ≥ êj

k(s) + ϵ} and l̂j
k
(s) = max{ti

k|ti
k ≤ êj

k(s) - ϵ}  

for all event times i for the jth event type and small 𝜖.   

 

In this study, 𝜖 was chosen to be 0.00001 for Weibull models and 10 days for 

Cox models.  A large value of 𝜖 was needed for the Cox models to 

accommodate sparse event times; 𝜖 needed to be large to ensure that ûj
k(s) 

was different from l̂j
k
(s) for each simulated dataset. 

6.3.1. Methods: study to compare estimators of the 

standard error of the restricted expected length 

of stay in state 

The three proposed estimators of the model-based SE of RELOS were compared 

using a simulation study.  Using each of the three proposed estimators, SE of 

RELOS (between 0 and 2 years post-transplant) was estimated for each state j for 

patients with reference values of covariates.  The complete simulated data (i.e. 

without any missing event times) from all 1000 simulated datasets (created using 

the DGM described previously) was used to compare the estimators. Uncensored 

event times were used so that any differences in SE estimates could not be 

attributed to increased variation due to censoring.  As before, clock-forward, 

Markov transition intensity models were fitted, using, firstly, a Cox PH model 

and, secondly, a Weibull PH model.  Performance measures of interest were the 

average within-simulation model-based SE and coverage of each estimator of SE.  

For reference, bias and empirical SE for the estimates of RELOS were also 

calculated.   
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The true values of ej(2) for each state j were calculated as ∫ Pj(t) dt
2

0
, using 

numerical integration.   The transition intensity models specified in the DGM 

were substituted into standard expressions for P0(t), P1(t) and P2(t) for a 

Markovian, clock-forward, illness-death model, (49) namely:  

P0(t) = exp {- ∫ α01(s)+ α02(s) ds
t

0
}  

P1(t) = ∫ α01(s) exp {- ∫ α12(u)du
t

s
} P0(s) ds

t

0
 

P2(t)  = ∫ (α01(s) (1 – exp {- ∫ α12(u)du
t

s
})  + α02(s)) .

t

0
P0(s) ds 

In addition, the theoretical values of the extended Royston and Parmar estimator, 

SE1[êj(s)], were calculated using the same method.  
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6.3.2. Results: study to compare estimators of the standard error of the restricted 

expected length of stay in state 

The average within-simulation estimated model-based SE and coverage of the three estimators of the SE of êj(2) for each state j, 

fitting either a Cox or Weibull model, are shown in Table 6.4.  For reference, bias and empirical SE of the estimates of êj(2), and 

theoretical (analytical) values of the extended Royston and Parmar estimator, SE1[êj(2)], are also shown.   

Table 6.4. Average model-based standard error (ModSE) and coverage (Cov) of each estimator of the SE of RELOS between 0 and 2 years post-transplant. 

Model State 
Bias of 

êj(2) 
EmpSE of 

êj(2) 

Estimator of SE of êj(2) 

Royston & Parmar Bootstrap Delta  

TheorSE ModSE Cov  ModSE Cov  ModSE Cov  

Cox Tx -0.05  1.12  0.89 0.94 0.90  1.42 0.96  1.32 0.97  
 AgvHD -0.38  11.12  9.13 9.00 0.90  11.35 0.95  17.10 0.98  
 R/death -10.00  15.17  17.51 16.98 0.93  15.90 0.87  111.60 >0.99  

Weibull Tx 0.02  1.04  0.89 0.88 0.91  0.99 0.92  0.99 0.94  
 AgvHD -0.18  11.04  9.13 9.10 0.90  11.24 0.94  11.26 0.95  
 R/death 0.16  11.18  17.51 17.50 >0.99  11.37 0.95  11.40 0.95  

êj(2), RELOS between 0 and 2 years post-transplant for state j; EmpSE, empirical SE; TheorSE, theoretical SE for Royston & Parmar estimator; Tx, transplant; 

AgvHD, acute GvHD; R/death, relapse/death. 
Estimates use uncensored event times for patients with reference values of the covariates, based on 1000 simulated datasets.   
Monte Carlo SE for bias was 0.04, 0.03 for ê0(2), 0.35, 0.35 for ê1(2), and 0.48, 0.35 for ê2(2) for Cox and Weibull models, respectively. 
Monte Carlo SE for coverage was ≤ 0.01 in all cases.  

 



 

146 

 

The theoretical (analytical) values of RELOS between 0 and 2 years post-

transplant were e0(2) = 26.3 days, e1(2) = 140.6 days, and e2(2) = 563.1 days.  

Values of RELOS estimated from the simulated data were unbiased for both Cox 

and Weibull models, except for the relapse/death state when fitting a Cox model 

(given Monte Carlo 95% CI for bias of (-0.13, 0.03) for the transplant state, (-1.07, 

0.31) for the acute GvHD state, and (-10.94, -9.06) for the relapse/death state for 

Cox models; and (-0.04, 0.08) for the transplant state, (-0.87, 0.51) for the acute 

GvHD state, and (-0.53, 0.85) for the relapse/death state for Weibull models).  

The bias in this case can be explained by the large time intervals between 

individual simulated relapse/death event times.  

 

Estimates of SE using the extended Royston and Parmar (R&P) method, 

SÊ1[êj
k(s)], were very similar to the theoretical calculated values for this estimator, 

for both Cox and Weibull models.  However, the R&P estimated SEs differed 

from the empirical SEs, as follows.  For the transplant and acute GvHD states, 

R&P estimated SEs were less than empirical SE and, for the relapse/death state, 

R&P estimated SEs were greater than empirical SE.  The difference between the 

R&P estimated SEs and empirical SE here may be because the Royston and 

Parmar method treats model parameters as fixed.  Hence, the covariance 

associated with model parameter estimation (which may have a positive or 

negative effect on SE) is not accounted for.  The under-estimation of the SE could 

explain the under-coverage for transplant and acute GvHD states for both Cox 

and Weibull models (since the point estimates are unbiased) (75).  Similarly, the 

over-estimation of the SE could explain the over-coverage for the relapse/death 

state for the Weibull model.  The bias in the estimate of RELOS for the 

relapse/death state for the Cox model could explain the under-coverage in this 

case (75).  

 

Estimates of SE using the bootstrap method, SÊ2[êj
k(s)], were very similar to the 

empirical SE for all three states, for both Cox and Weibull models.  However, 
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there was under-coverage for the relapse/death state from the Cox model, and 

for the transplant state from the Weibull model.  As before, the bias in the 

estimate of RELOS for the relapse/death state from the Cox model explains the 

greater degree of under-coverage in this case.  For the Weibull model, the 

bootstrap estimated SE is slightly lower than the empirical SE for the transplant 

state, which explains the under-coverage in this case.  

 

Estimates of SE using the delta method, SÊ3[êj
k(s)], were also very similar to the 

empirical SE for all three states from Weibull models, with appropriate coverage.  

However, for the Cox models, performance of this estimator was poor, with 

over-coverage for all states.  For the transplant state, the delta estimated SE was 

similar to the empirical SE.  However, for acute GvHD and relapse/death states, 

delta estimated SEs were larger than the empirical SEs; for the relapse/death 

state, the SE estimate was nearly 10 times larger.  This can be explained by the 

large time intervals between individual simulated relapse/death event times; 

Royston and Parmar (191) comment that the delta method does not work well 

with sparse event times.  The results for the bootstrap and delta methods suggest 

that, in contrast to the R&P method, both these methods appropriately 

incorporate the covariance associated with model parameter estimation. 

 

The best-performing estimators of the SE of RELOS were used in the main 

simulation study.  The bootstrap estimator was used when fitting Cox models 

and the delta estimator was used when fitting Weibull models.   

6.4. Results: simulation study comparing 

imputation methods for handling missing 

event times in a multi-state model 

The true (theoretical) values of the regression parameters in the transition 

intensity models were β
01

1
 = -0.8, β

02

1
 = 1.2, β

12

1
 = 1.2 and β

12

2
= 1.0.  The true values 
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of RELOS between 0 and 2 years were e0(2) = 26.3 days (alive and relapse- and 

acute GvHD-free post-transplant), e1(2) = 140.6 days (alive and relapse-free 

following acute GvHD) and e2(2) = 563.1 days (in relapse/died).  Estimates based 

on complete simulated data (i.e. without any missing event times) were unbiased 

for most estimands, for both Cox and Weibull models (i.e. bias was 0, or Monte 

Carlo 95% CI for bias contained 0, see Appendices, Tables A.4a and A.4b).  There 

was slight bias (Monte Carlo 95% CI for bias was (0.01, 0.03)) in estimation of β
12

1
 

for both Cox and Weibull models.  As described in Section 6.2.16, there was 

substantial bias (Monte Carlo 95% CI for bias was (-14.44, -12.36)) for e2(2) when 

fitting a Cox model, due to sparse event times.   

 

As expected, CCA gave unbiased estimates only when event times were MCAR, 

and model-based SE was larger than when using MI methods.  Simulation study 

results are illustrated in Figures 6.3 and 6.4 using “lollipop” plots and all results 

are included in the Appendices (Tables A.4a and A.4b).  Figures 6.4 and 6.5 show 

the standardised bias of regression parameters βhj and RELOS, ej(2), for each 

transition intensity fitted using a Cox model.  Results are illustrated for the three 

main missing data methods (that is, the methods that were applied in all 

scenarios): CCA, PMM and PMMSUBGP.  Bias and model-based SE are not 

illustrated because these could not be shown on the same scale for all estimands, 

and because model-based SE was similar for all imputation methods and MDMs.  

Similarly, coverage of γ12 is not illustrated because, with one exception, discussed 

later, it was similar for all imputation methods and MDMs.  Figure 6.4 shows 

results for scenarios in which MI was expected to work well, that is, when all 

event times were either completely observed, MCAR or MAR.  Conversely, 

Figure 6.5 shows results for scenarios in which MI was not expected to work 

well, that is, when some or all event times were MNAR.  
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Figure 6.4. Standardised bias of regression parameters βlm and RELOS between 0 and 2 years, ej(2), for each transition intensity model given event times 

MCAR and MAR for imputation methods CCA (yellow oval), PMM (blue circle) and PMMSUBGP (green diamond)  
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Figure 6.5. Standardised bias of regression parameters βlm and RELOS between 0 and 2 years, ej(2), for each transition intensity model given some or all 

event times MNAR for imputation methods CCA (yellow oval), PMM (blue circle) and PMMSUBGP (green diamond)  
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When event times were either MCAR or MAR (Figure 6.4), MI by PMM gave 

small bias for all estimands (that is, the magnitude of the standardised bias was 

<0.5), except for e2(2) (RELOS for the relapse/death state) and the regression 

parameter β
12

1
 (for the covariate “in relapse or not at time of transplant” in the 

transition intensity model from acute GvHD to relapse/death).  The bias in the 

RELOS estimate, e2(2), remained for all imputation methods and MDMs when 

fitting a Cox model, so is not further discussed here.  Bias for regression 

parameter β
12

1
 was large in scenarios when event times for relapse/death after 

acute GvHD were missing and small when only event times for acute GvHD or 

relapse/death without acute GvHD were missing.  Results were very similar for 

PMM whether the number of imputations was the default of five or increased to 

30 (see Appendices, Tables A.4a and A.4b).   

 

Applying PMM separately to patients who did and did not experience acute 

GvHD before relapse/death (PMMSUBGP) or accounting for the ordered nature 

of the event times as specified in the analysis model (PMMCOMP) reduced the 

bias in regression parameter β
12

1
.  When these methods were used, bias remained 

small for all other estimands except the RELOS estimate, e2(2).  However, bias in 

the estimate of RELOS for the acute GvHD state, e1(2), was slightly larger for 

PMMSUBGP than for PMM in some scenarios.  Model-based SE was slightly 

smaller for PMMSUBGP compared with PMM, and was larger for PMMCOMP 

than for other methods with respect to regression parameters β
12

1
 and β

12

2
, as 

expected (see Appendices, Tables A.4a and A.4b).  Coverage for γ
12

 was in the 

range 0.92-0.97 for all methods, with coverage slightly closer to the nominal 

value for PMMSUBGRP compared with PMM (see Appendices, Tables A.4a and 

A.4b).  Results using PMMSUBGP were very similar for both Cox and Weibull 

models, except that the bias in the RELOS estimate, e2(2), was greatly reduced 

when fitting a Weibull model.  MI using a linear imputation model, with 

replacement of a small number of negative imputed times by the value 0.0001 

post-imputation, did not lead to under-estimation of the SE as predicted.  
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However, it did result in large bias for some estimands, particularly estimates of 

RELOS.   

 

When some or all event times were MNAR (Figure 6.5), MI using both PMM and 

PMMSUBGP led to biased estimates.  Bias was generally the same or larger than 

when using CCA.  Using MI, bias was larger when the time to the absorbing state 

(relapse/death) was MNAR than when the time to the intermediate state (acute 

GvHD) was MNAR, and when largest times were MNAR than when smallest 

times were MNAR.  As described previously, times to relapse/death tend to be 

longer for patients who experience acute GvHD than for patients who experience 

relapse/death without acute GvHD.  Therefore, MNAR mechanisms where 

longer times to relapse/death tended to be missing mainly affected patients who 

experienced acute GvHD before relapse/death.  Conversely, MNAR mechanisms 

where shorter times to relapse/death tended to be missing mainly affected 

patients who experienced relapse/death without acute GvHD.  This may explain 

why parameter estimates for the acute GvHD to relapse/death transition 

intensity model, β
12

1
 and β

12

2
, are more biased than parameter estimates for the 

models of transition from transplant, β
01

1
 and β

02

1
, when largest relapse/death 

times are MNAR and vice versa when smallest relapse/death times are MNAR.   

 

In a separate semi-Markov model analysis, the time from transplant until acute 

GvHD was added as a covariate to the transition intensity model from acute 

GvHD to relapse/death.  This variable was included as a check of the Markov 

assumption.  Coverage for the regression parameter for this covariate, γ
12

, was in 

the range 0.92-0.98 in all methods and scenarios, except one.   The coverage was 

0.66 when applying MI using the PMMSUBGP method and a Weibull analysis 

model, with acute GvHD times MAR and largest relapse/death times MNAR.  

To allow further exploration of this outlying value for coverage, performance 

measures for the regression parameter γ
12

 are shown in Table 6.5 overleaf, for all 

scenarios in which acute GvHD times were MAR, relapse/death times were 
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MNAR and the imputation method was PMMSUBGP.  As discussed above, 

MNAR mechanisms in which smallest times of relapse/death times tended to be 

missing affected mainly patients who experienced relapse/death without acute 

GvHD.  Hence, the regression parameter γ
12

 is unbiased with coverage close to 

the nominal value in this scenario (Table 6.5).  In MNAR mechanisms in which 

largest relapse/death times tended to be missing, there is little bias when fitting a 

Cox model.  However, the model-based SE is larger, which may explain the 

slight over-coverage in this case.  Bias is large when fitting a Weibull model, 

which may explain the high degree of under-coverage in this case. 

Table 6.5. Performance measures for estimates of the regression parameter γ12 in the transition 
intensity model from acute GvHD to relapse/death when event times are MNAR.   

Estimand (true result) γ
12

 (0.95) 

Missing data mechanism Imputation 
method 

Bias Mod 
SE 

Std 
Bias 

Cov 

MAR (acute GvHD) &  
MNAR (smallest relapse/death) 

PMMSUBGP -0.001 0.004 -0.29 0.94 
PMMSUBGP* <0.001 0.004 0.02 0.94 

MAR (acute GvHD) &  
MNAR (largest relapse/death) 

PMMSUBGP -0.001 0.005 -0.26 0.98 
PMMSUBGP* 0.007 0.005 1.44 0.66 

ModSE, average model-based SE; StdBias, standardised bias; Cov, coverage. 
Parameter γ12 is for the time from transplant until acute GvHD.   
Cox models were fit, except for methods indicated with a *, for which Weibull models were fit. 
PMMSUBGP, MI by Type 1 predictive mean matching with imputation models fit separately for 
patients with and without acute GvHD. 

6.5. Discussion 

In this chapter, a simulation study was described, whose aim was to evaluate the 

bias and precision of estimates from a MSM in different missing data scenarios, 

comparing the best previously identified MI methods for handling missing event 

times.  In a competing risks analysis (Chapter 5), type 1 PMM (PMM) and a 

linear imputation model applied separately for patients who did and did not 

experience acute GvHD (thus allowing for different distributions of event times, 

NORMSUBGP), gave similar results, with small bias.   

 

In PMM, missing values are replaced by sampling at random from a donor pool 

of patients (with observed values) who are ‘similar’ to the subject with missing 
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data.  In the MSM context, this means that the donor pool tends to contain 

patients who have experienced the same sequence of events as the incomplete 

case, hence preserving the original sequence of events for the incomplete case.  

This may explain the generally small bias in estimates for PMM.  In my 

simulation study, the distribution of relapse/death times was different for 

patients who did and did not experience acute GvHD.   Applying PMM 

separately for sub-groups of patients who did and did not experience acute 

GvHD (PMMSUBGP) tended to reduce bias and model-based SE when estimates 

depended on the time of relapse/death.  PMMSUBGRP also improved coverage 

in a parameter used to test the Markov assumption (by including time of acute 

GvHD in a separate semi-Markov model).  PMMSUBGRP worked well with both 

semi-parametric (Cox) and parametric (Weibull) PH models for the transition 

intensities.   

 

I also considered an alternative method for preserving the sequence of events 

experienced, by including the acute GvHD event time and time from acute 

GvHD to relapse/death in the imputation model, but not the relapse/death 

event time (PMMCOMP).   PMMCOMP gave results with comparable bias to 

PMMSUBGP, but larger model-based SE.  Due to the loss of information in this 

approach, with no advantage in terms of bias reduction, I would not recommend 

this approach.   

 

In this study, the NORMSUBGP approach led to more bias than PMM when 

estimating transition intensity model parameters and RELOS.  This may be 

because negative event times could be imputed in the NORMSUBGP method.  

Such times were replaced by the value 0.0001 post-imputation (because negative 

times cannot be handled by the ‘mstate’ package).  The NORMSUBGP approach 

could result in an imputed relapse/death time that was smaller than the 

(observed or imputed) acute GvHD time.  Hence, the NORMSUBGP approach 

was not compatible with the analysis model (in which a subject’s acute GvHD 
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time must be less than their relapse/death time).  This may explain the bias in 

estimates using this method.   

 

Overall, I recommend using type 1 PMM to impute missing event times in a 

MSM analysis.  I recommend first exploring the distribution of event times for 

each sub-group of patients with a different path through the MSM.  Then, type 1 

PMM should be applied separately for each sub-group of patients with a 

different distribution of event times.  In my simulation study, the distributions of 

time of relapse/death were very different for patients who did and did not 

experience acute GvHD.  In analysis of real data, there may be smaller 

differences between distributions of event times for different sub-groups of 

patients.  Hence, results may be similar, whether PMM is applied for all patients 

in one imputation model or applied separately for different sub-groups.  To 

assess the sensitivity of results to the imputation method, analysis could be 

performed using both PMM and PMMSUBGP.   

 

Based on the current literature, there is not a standard method for calculating the 

model-based SE for RELOS.  I proposed three different estimators (an extended 

version of the Royston and Parmar method (191), the non-parametric bootstrap, 

and the delta method).  Based on my simulation study, comparing the 

performance of these SE estimators, I recommend using the bootstrap estimator 

when fitting Cox models and the delta estimator when fitting Weibull models.  

The delta estimator is not recommended when fitting a Cox model, particularly if 

there are large time intervals between individual event times.  I do not 

recommend the extended Royston and Parmar method, because (in contrast to 

the bootstrap and delta methods) my results suggest that it does not 

appropriately incorporate the covariance associated with model parameter 

estimation.  

 

Generally, FCS MI techniques that assume MAR are not recommended when 

data are MNAR.  In this study, imputation resulted in biased estimates when 
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event times were MNAR or a mixture of MAR and MNAR.  My results suggest 

that bias is greater when the time to the absorbing state (relapse/death) is 

MNAR than when the time to the intermediate state (acute GvHD) is MNAR.  

This may be because simulated acute GvHD times were mostly between 0 and 

100 days post-transplant (consistent with the real dataset).  In contrast, 

relapse/death times were more widely distributed, with different distributions 

for patients who did and did not experience acute GvHD.  Hence, there was 

more potential for relapse/death times to be imputed incorrectly.  The direction 

and size of the bias in my results may be specific to my DGMs, missingness 

mechanisms and analysis model.  However, in general, the constrained nature of 

the time to an intermediate event (in an illness-death model, this is bounded by 0 

and the time of transition to the absorbing state) may limit the degree of bias 

even when event times are MNAR.  Conversely, the lack of constraint on the 

maximum time of transition to an absorbing state, and the different pathways 

through the MSM to that state (each potentially with a different distribution of 

event times), may increase the degree of bias.  In addition, data-generation was 

based on the Markov assumption, such that the time of relapse/death did not 

depend on the time of acute GvHD.  Violation of this assumption, as in a semi-

Markov or non-Markov model, may result in greater bias when intermediate 

state event times are MNAR.   

 

Generally, parametric analysis models performed as well as semi-parametric 

models.  Furthermore, parametric models resulted in less biased estimates of the 

expected length of stay in state (RELOS) when there were sparse event times.  

However, regression parameter estimates from parametric models were more 

biased than estimates from semi-parametric models when event times were 

MNAR.  Therefore, I recommend careful exploration of likely missingness 

mechanisms for the dataset of interest, to identify parameters likely to be affected 

by event times MNAR.  I do not recommend using FCS MI methods that assume 

MAR if any incomplete variable in the dataset is suspected to be MNAR.   
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Further studies are required to determine whether PMM is a suitable MI method 

when using more complex analysis models e.g. MSM with multiple intermediate 

states, with reversible or recurring transitions between states or with multiple 

time scales (68).  This could occur in my real data if, for example, myeloid 

engraftment was included in the MSM because myeloid engraftment can occur 

before or after onset of acute GvHD.  If both event times were missing then both 

the order of events, as well as the event times themselves, would be unknown.  It 

should be noted that the ‘mstate’ R package can only handle uni-directional 

transitions (172). 

 

Although PMM performed well in my study, there is still scope for 

improvement, by ensuring compatibility between the imputation and analysis 

model.   This could be achieved, for example, by extending the MAR stacked MI 

approach (119) or the SMC-FCS method (194) to MSM analysis.  SMC-FCS 

methods have been applied to cause-specific semi-parametric hazards models in 

a competing risks framework (127).  These methods could be extended to 

accommodate the sequential nature of the events in a MSM e.g. as in my study, to 

ensure that imputed times of relapse/death are greater than the (imputed or 

observed) times of acute GvHD.     
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CHAPTER 7.  APPLICATION OF 

METHODS TO THE NHS CORD 

BLOOD BANK COHORT 

7.1. Introduction 

The overall aim of my research is to provide the first insight into patient 

outcomes after transplantation using CB donated to the NHS CBB.  In this 

chapter, I describe the incidence of each event of interest (myeloid engraftment, 

acute and chronic GvHD, relapse, and overall survival) for patients in the NHS 

CBB cohort.  In addition, I will use MSM analysis to identify covariates 

associated with the events of interest, and to make probability predictions for 

NHS CBB patients with certain sets of characteristics.  

 

In the NHS CBB dataset, event times are often missing for the post-transplant 

events of interest.  In this case, CCA will be biased because missingness depends 

on the analysis outcome (event times are incompletely observed for some event 

types, but completely observed for others).  Biased analysis results may lead to 

incorrect conclusions about the risks of CB transplantation, which will have 

considerable consequences for both clinicians and patients.   

 

The previous three chapters of my thesis have been focused on exploring the 

potential missingness mechanisms for event times in the NHS CBB dataset 

(Chapter 4) and comparing methods for handling missing event times (Chapters 

5 and 6).  Using simulations studies, I have identified FCS MI strategies for 

handling missing event times that can be used to correct bias and improve 

precision (compared with CCA and other naïve methods) in a competing risks 

analysis (Chapter 5) and a MSM analysis (Chapter 6).  I found that FCS MI using 



 

 159 

type 1 PMM was the best available method for handling missing event times 

when times were MAR, conditional on the observed data.   

 

In this chapter, I apply FCS MI methods to impute missing event times and 

covariate data in the NHS CBB dataset.  I describe the results of competing risks 

and MSM analyses after imputation.  As a baseline, I compare results with a 

complete case analysis (CCA). 

7.2. Estimands of interest 

In analyses of the NHS CBB cohort, the estimands of interest were: 

(i) The cumulative incidence at 100 days and median time of myeloid 

engraftment (with competing risks of graft failure and death prior to 

engraftment). 

(ii) The cumulative incidence at 100 days and median time of acute GvHD 

(with competing risks of graft failure and death prior to acute GvHD). 

(iii) The cumulative incidence at one year and 10th percentile time of chronic 

GvHD (with competing risks of graft failure and death prior to chronic 

GvHD). 

(iv) The cumulative incidence at one year and 10th percentile time of relapse 

(with competing risk of death prior to relapse). 

(v) Overall survival at one year post-transplant and lower quartile time of 

death. 

 

From a MSM analysis: 

(vi) HRs of covariates for each transition intensity (for the transitions from 

transplant to acute GvHD and relapse/death; from acute GvHD to 

relapse/death). 

(vii) The expected length of stay in each state (transplant, acute GvHD, 

relapse/death) in the first year post-transplant (RELOS). 
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Differences in the state occupation probability functions will be examined by 

comparing estimates of RELOS, since RELOS is a function of the state occupation 

probabilities (see Chapter 6, Section 6.2.10).  In addition, state occupation 

probability functions in the first year post-transplant will be illustrated 

graphically.   

7.3. Statistical methods  

Estimates were obtained using the same methods as in the simulation studies 

described in Chapters 5 and 6.  Briefly, the methods are as follows (see Chapter 2, 

Section 2.2 for further details):  

• Estimands (i) to (iv) (cumulative incidence of various events) were obtained 

using the non-parametric Aalen-Johansen estimator of the cumulative 

incidence function for each event of interest. 

 

• Estimand (v) (overall survival) was obtained using the non-parametric 

Kaplan-Meier estimator. 

 

• Estimands (vi) to (viii) (HR, RELOS and state occupation probabilities) were 

obtained using Cox PH models for each transition intensity of the MSM, 

assuming a clock-forward Markov model for all transitions (see Chapter 6, 

Section 6.2.2 for a detailed description of this model).  RELOS and state 

occupation probability functions were calculated from these models for three 

different patient types, namely, a patient with reference values of all 

covariates, a low-risk, and a high-risk patient.  Characteristics of low-risk and 

high-risk patients were chosen according to the strongest covariate 

associations identified in the transition intensity analysis (and also to be 

representative of patients in the NHS CBB dataset).  State occupation 

probability functions were presented graphically, to illustrate the differences 

between the three patient types.   
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The following tests of the transition intensity modelling assumptions were 

performed: 

(i) The PH assumption was tested for each transition intensity model 

using the global test (i.e. testing for proportional hazards across all 

covariates in combination) proposed by Grambsch and Therneau (195). 

(ii) As a test of the Markov assumption, an additional semi-Markov model 

was fitted for α12, including the time from transplant until acute GvHD 

as well as all covariates (see Chapter 6, Section 6.2.10).  

 

My simulation study results (see Chapter 6, Section 6.2.17) suggested that 

estimates of RELOS were biased when event times were sparsely 

distributed, and Cox models were used for transition intensities.  Therefore, 

as a sensitivity analysis (sensitivity analysis 1), Weibull models were also 

fitted, and the results compared. 

 

In all MSM analyses, models included all baseline (at time of transplant) 

covariates shown in the literature to be clinically relevant (see Chapter 1, 

Table 1.1).  All covariates were included in all models because the purpose 

of my MSM analysis was to use the transition intensity models to make 

probability predictions for patients with certain sets of characteristics.  

Transition intensity model covariates 

The clinically relevant baseline characteristics included as covariates in each 

transition intensity model were: number of CB units transplanted (single or 

double); patient age (in years, assuming a linear association); disease type 

(acute leukaemia, other blood cancer, non-malignant disorder); disease 

status at time of transplant (in remission, relapse, other); conditioning 

regimen (intensive or not); sex and CMV+ match between donor(s) and 

recipient; number of HLA mismatches between donor(s) and recipient 

(well-matched: 0 or 1 mismatches; or not: 2 or more mismatches); TNC dose 

at infusion (low, <3.0; medium, 3.0-5.0; high, >5.0 × 107/kg). 
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7.3.1. Statistical software 

Overall survival estimates and SEs were calculated using the ‘survival’ R 

package. Estimates, SE of cumulative incidence functions were calculated using 

the ‘Cuminc’ function of the ‘mstate’ R package, or the ‘cifDMnocens’ function 

provided by Pintilie (164) if there was no censoring (this applies for myeloid 

engraftment), because the ‘Cuminc’ function requires at least one censored event 

time.  Estimates, SE from Cox transition intensity models, and transition 

probabilities were calculated using the ‘mstate’ R package.  Estimates, SE from 

Weibull transition intensity models were calculated using the ‘flexsurv’ R 

package.  I manually calculated estimates, SE of percentile times and SE of 

RELOS.   For the SE of percentile times, I used the estimator I derived in Chapter 

5, Section 5.3.  As per my simulation study assessing the performance of this 

estimator (described in Chapter 5, Section 5.3), here, I used a value of 0.01 for the 

estimator parameter, 𝜖, and a simple gradient function for probability density 

function estimation.  For the SE of RELOS, I used the estimators that I derived in 

Chapter 6, Section 6.2.14.  As per my simulation study comparing the 

performance of these SE estimators (described in Chapter 6, Section 6.2.15-16), 

here, I used the bootstrap estimator when fitting Cox models and the delta 

estimator when fitting Weibull models. 

7.4. Methods for handling missing data 

7.4.1. Missing event times 

As described in Chapter 4, Section 4.4, event times were incompletely observed 

for some event types in the NHS CBB dataset.  These were (with percentage 

missing, of patients who experienced the event): acute GvHD time (24%), chronic 

GvHD time (35%), relapse time (25%) and graft failure time (11%).  The best-

performing method for handling missing event times, identified in the 

simulation studies (see Chapters 5 and 6), was applied to the NHS CBB dataset.  

This method was FCS MI using type 1 PMM (PMM).  Results from my 
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simulation studies suggest that bias and SE may be reduced by applying PMM 

separately for each sub-group (PMMSUBGP) with a different distribution of 

event times.  Therefore, to explore whether PMM should be applied in this way 

in the NHS CBB dataset, the distribution of times for each event was compared 

for the five patient sub-groups (as defined in Chapter 4, Section 4.4.1).  The sub-

groups were patients experiencing (i) acute and chronic GvHD; (ii) acute without 

chronic GvHD; (iii) chronic without acute GvHD; (iv) relapse without GvHD; 

and (v) neither relapse nor GvHD.   

7.4.2. Missing covariate data 

Some covariates were also incomplete, in two ways: 

(i) For transplants in which the single donor or both donors (of a double CB 

transplant) donated to the NHS CBB, some baseline data and/or event 

times were not reported.  Missing values were imputed using FCS MI. 

 

(ii) For double CB transplants, where one of the two donors did not donate 

via the NHS CBB, none of this donor’s data were available.  In previous 

chapters (see Chapter 4, Section 4.3.1 for a full explanation), values based 

on the known donor’s data (for sex and CMV+ match between donor(s) 

and recipient, number of HLA mismatches between donor(s) and 

recipient, and TNC dose at infusion), were treated as fully observed 

values (i.e. as though they were based on both donors’ data).  In this 

analysis, such values are treated as missing and are imputed using FCS 

MI.   

 

To assess whether using the known donor’s data as a proxy for both 

donors’ data would change the analysis results, a sensitivity analysis 

(sensitivity analysis 2) was performed.   
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The sensitivity analysis used a similar approach to that suggested by 

Cornish et al. (196).   

The approach was as follows:  

• As in the main analysis, for double cord transplants, values based on 

one of two donors’ data (sex and CMV+ match between donor(s) and 

recipient; number of HLA mismatches between donor(s) and recipient; 

TNC dose at infusion) were treated as missing and were imputed 

using FCS MI. 

• For each of these variables in turn, the result based on the known 

donor’s data was used in the imputation models for all other variables. 

 

The incomplete covariates were (with percentage missing data for the main 

analysis and percentage missing if treating the known donor’s data as the fully 

observed result): disease status at time of transplant (30%, 30%); conditioning 

regimen (4%, 4%); sex match (20%, 1%); CMV+ match (29%, 12%); number of 

HLA mismatches (29%, 12%) between donor(s) and recipient; TNC dose at 

infusion (56%, 24%).  Covariate data were imputed using standard methods: 

binary variables (conditioning regimen and number of HLA mismatches) using 

logistic regression, and categorical variables (disease status at time of transplant, 

sex match, CMV+ match, and TNC dose at infusion) using multinomial 

regression.   

7.4.3. Imputation models   

As is standard for MI (102), imputation models included analysis outcomes, 

analysis model covariates, and all other variables predictive of missing data.  In 

survival analysis, it is well-established that both the event indicator (a binary 

variable indicating whether the event was experienced or not) and a 

representation of the distribution of event times should be included in 

imputation models (91, 101, 123).  In this analysis, both covariate data and event 

times are imputed.  Hence, the actual event times are included in the imputation 

models, rather than, for example, the baseline hazard function recommended by 
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White and Royston (123).  Since the covariates included in the MSM are also 

thought to be predictive of event times (based on the clinical literature, see 

Chapter 1, Table 1.1), the same imputation models were used for all analysis 

models.  Year and country of transplant were also included in each imputation 

model because they were highly predictive of missingness of event times (see 

Chapter 4, Section 4.5), and may be (directly or indirectly) predictive of the event 

times themselves.  Country of transplant was also missing for one patient; as 

before, this was imputed using multinomial regression.   

 

All missing data were imputed by FCS MI using the ‘mice’ R package (version 

3.3.0).  In the simulation studies, increasing the number of imputations (from the 

default number of five) did not change the bias or precision of estimates.  

However, the relationship between efficiency, reproducibility, and the number of 

imputations depends on the fraction of missing information (FMI, the ratio of 

between-imputation variance to the sum of between- and within-imputation 

variance).  It is likely that FMI is greater in the real dataset, in which there are 

many different patterns of missingness and multiple covariates, than in the 

simulated datasets (which have a relatively simple structure).  Therefore, here, I 

use a more conservative approach, letting the number of imputations equal the 

percentage of incomplete cases.  As in the competing risks simulation study 

(Chapter 5, Section 5.2.7), the default of five donors was used for each PMM 

method.  The default of five iterations was used.  To obtain final analysis 

estimates and 95% CI, I calculated the mean and SE of per-imputation estimates 

of HR and RELOS.  SE was calculated using Rubin’s rules (88).   

 

I used a different approach to calculate state occupation probability functions, 

because these rely on specification of the baseline hazard function at all time-

points (see Chapter 6, Section 6.2.10).  Since the baseline hazard function of a Cox 

model is estimated non-parametrically (see Chapter 2, Section 2.2.1), it is not 

possible to combine the baseline hazards for each imputed dataset (whereas, for 

example, combining model parameter estimates if fitting a parametric model 
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would be straight-forward).  Therefore, estimates of state occupation 

probabilities were calculated from the “stacked” imputed dataset, i.e. by 

combining all imputed datasets and performing one analysis (see Chapter 3, 

Section 3.4.3).  State occupation probability estimates are presented graphically 

(for illustration purposes), without SE.  However, SE could be calculated using 

the method suggested by Beesley and Taylor (119), if desired.  The test of the PH 

assumption (see Section 7.2) was also performed using the stacked dataset.   

 

Analysis results were compared with CCA.  Here, CCA means that each record 

was complete with respect to both event times and covariate data. 

7.5. Investigating the distribution of event 

times for the NHS CBB dataset 

The distribution of observed event times is shown in Figure 7.1, overleaf, for each 

event type and each sub-group of patients in the NHS CBB dataset who 

experienced that event.  For times of relapse, myeloid engraftment and graft 

failure, patients who experienced any type of GvHD were grouped together.  

This was because event times were similar, regardless of the type of GvHD 

experienced, and/or due to small numbers of patients experiencing the event.  

Differences in the distributions of event times are described below.  It is difficult 

to draw strong conclusions due to the small numbers in some patient sub-

groups. 
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Figure 7.1. Distribution of event times for the NHS Cord Blood Bank cohort, by event type.   

 
Bar colours represent patients experiencing different combinations of events.   
Note that colours may be overlaid. 
 

Patients who experienced both acute and chronic GvHD had slightly longer 

times to acute and chronic GvHD than patients who experienced only one of 

acute GvHD or chronic GvHD (comparing the acute GvHD time for patients 

experiencing acute and chronic GvHD vs. acute GvHD only: median 36 days, 

IQR 30 days vs. median 24 days, IQR 22 days, respectively; comparing the 
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chronic GvHD time for patients experiencing acute and chronic GvHD vs. 

chronic GvHD only: median 159 days, IQR 133 days vs. median 183 days, IQR 

103 days, respectively).   

 

Similarly, patients who experienced any type of GvHD had longer times to 

relapse than patients who experienced relapse without GvHD (comparing the 

relapse time for patients who experienced GvHD vs. neither relapse nor GvHD: 

median 213 days, IQR 346 days vs. median 76 days, IQR 145 days, respectively).   

 

There were also differences in the distribution of graft failure times (comparing 

the graft failure time for patients experiencing GvHD vs. relapse only vs. neither 

GvHD nor relapse: median 50 days, IQR 24 days vs. median 44 days, IQR 34 days 

vs. median 48 days, IQR 31 days).    

 

Times of myeloid engraftment were similar for all patient sub-groups 

(comparing the engraftment time for patients experiencing GvHD vs. relapse 

only vs. neither GvHD nor relapse: median 22 days, IQR 12 days vs. median 23 

days, IQR 12 days vs. median 22 days, IQR 15 days). 

 

In summary, there are (generally small) differences in the distributions of event 

times across the patient sub-groups.  Hence, applying PMM for each sub-group 

(PMMSUBGP) may reduce bias and SE in model estimates.  However, this must 

be balanced with the requirement for sub-groups to be of sufficient size to allow 

for random donor selection in the imputation procedure.  Therefore, in this 

analysis, MI FCS using the PMMSUBGP method was applied, using the 

following sub-groups: 

(i) Patients experiencing both acute and chronic GvHD, or chronic GvHD 

without acute GvHD (N=82).  For this group, indicators of chronic GvHD, 

graft failure and myeloid engraftment were excluded from the imputation 

model because all/nearly all patients had the same indicator values.  Time 

of graft failure was also excluded because only one patient experienced 
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graft failure. 

(ii) Patients experiencing acute GvHD without chronic GvHD (N=173).  For 

reasons as above, indicators of acute and chronic GvHD and graft failure 

were excluded from the imputation model for this group. 

(iii) Patients experiencing relapse without GvHD, or neither relapse nor 

GvHD (N=177).  For reasons as above, indicators of acute and chronic 

GvHD and graft failure were excluded from the imputation model for this 

group. 

 

For the sensitivity analyses described previously (sensitivity analysis 1 and 2, see 

Section 7.4.2), imputation was performed using the PMMSUBGP method.     

To explore whether applying PMM by patient sub-group (PMMSUBGP) changed 

the results compared with applying PMM for all patients (PMM), an additional 

sensitivity analysis (sensitivity analysis 3) was performed, in which PMM was 

applied for all patients in one imputation model.  Plots of state occupation 

probability functions are for illustration only and hence, are presented for the 

main analysis but not the sensitivity analyses.   

7.6. Results: Cumulative incidence and 

percentile times of the events of interest 

Table 7.1 overleaf shows estimates and 95% CI of: the cumulative incidence at 

100 days and median time of myeloid engraftment and acute GvHD; the 

cumulative incidence at one year and 10th percentile time of chronic GvHD and 

relapse; and the percentage of patients surviving at one year post-transplant and 

lower quartile time of death.   Results are shown for the following missing data 

methods: CCA, PMMSUBGP (PMM by patient sub-group), PMMSUBGP proxy 

method (sensitivity analysis 2: PMMSUBGP with observed donor information 

used in imputation models for all other variables) and PMM (sensitivity analysis 

3: PMM with one imputation model fit for all patients).  Note that sensitivity 
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analysis 1 (fitting Weibull rather than Cox transition intensity models) only 

applies to the MSM analysis, so is not included here. 

 

Only 116 (27%) patients in the NHS CBB dataset had complete data.  Therefore, 

80 imputations were performed for each MI analysis.  As shown in Table 7.1, 

CCA estimates of the cumulative incidence of myeloid engraftment, acute and 

chronic GvHD, and overall survival, were lower than any of the MI estimates.  

The CCA estimate of the cumulative incidence of relapse was higher than any of 

the MI estimates.  In particular, the CCA point estimate of acute GvHD was 

below the 95% CI of all the MI estimates.  The CCA estimate of the median time 

of myeloid engraftment was the same as the MI estimates, although with wider 

CI.  CCA estimates of the 10th percentile time of chronic GvHD and relapse were 

higher than any of the MI estimates.  In particular, the CCA point estimate of the 

10th percentile time of chronic GvHD was above the 95% CI for all the MI 

estimates.  The CCA estimate of the lower quartile time of death was lower than 

MI estimates.   
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Table 7.1. Estimate (Est) and 95% confidence interval (CI) of the cumulative incidence and percentile times of myeloid engraftment, acute GvHD, chronic 
GvHD, relapse and overall survival.  

Event type Estimand Missing data method 

CCA 
(N=116) 

PMMSUBGP 
(N=432) 

PMMSUBGP proxy 
method (N=432) 

PMM 
(N=432) 

Est 95% CI Est 95% CI Est 95% CI Est 95% CI 

Myeloid 
engraftment 

Cumulative incidence at 100 
days (%) 

84.5 77.9-91.1 86.3 83.1-89.6 86.3 83.1-89.6 86.3 83.1-89.6 

Median time (days) 24 22-26 24 23-25 24 23-25 24 23-25 

Acute GvHD Cumulative incidence at 100 
days (%) 

48.3 39.2-57.4 54.4 49.5-59.3 54.6 49.8-59.5 54.4 49.7-59.2 

Median time (days) n/a* n/a* 78 59-97 77 59-96 76 52-99 

Chronic GvHD Cumulative incidence at one 
year (%) 

14.3 7.8-20.8 18.5 14.3-22.7 18.4 14.3-22.4 17.2 13.4-21.0 

10th percentile time (days) 215 164-266 165 115-214 166 125-207 161 107-214 

Relapse Cumulative incidence at one 
year (%) 

19.4 12.1-26.8 17.4 13.8-21.2 17.4 13.7-21.1 17.5 13.8-21.2 

 10th percentile time (days) 96 0-241 90 46-134 88 53-123 91 49-133 

Overall 
survival 

Survival at one year (%) 54.5 46.1-64.5 59.3 54.5-64.1 59.3 54.5-64.1 59.3 54.5-64.1 

Lower quartile time of death 
(days) 

102 75-129 108 74-142 108 74-142 108 74-142 

* For this method, < 50% patients experienced acute GvHD so the median could not be estimated. 
95% CI lower bounds < 0 are truncated at 0. 
CCA, complete case analysis. 
PMMSUBGP, FCS MI by type 1 predictive mean matching with imputation models fit separately for patients experiencing both acute and chronic GvHD or 
chronic GvHD without acute GvHD, acute GvHD without chronic GvHD, relapse without GvHD, and neither GvHD nor relapse. 
PMMSUBGP proxy method, as for PMMSUBGP, with observed donor information used in imputation models for all other variables. 
PMM, FCS MI by Type 1 predictive mean matching with one imputation model fit for all patients. 
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Generally, 95% CI for CCA estimates were far wider than for any of the MI 

estimates.  However, the CI for the lower quartile time of death was the 

exception: the CI for the CCA estimate was narrower than the CI for the MI 

estimates (CCA: 75-129 days vs. MI: 74-142 days).  These CIs were estimated 

manually using my SE estimator (see Chapter 5, Section 5.3).  CCA CIs calculated 

using an alternative method (by linear interpolation using the ‘survfit’ R 

package) were wider: 82-189 days. In CCA, less than 50% patients experienced 

acute GvHD so the median time could not be estimated. 

   

For all estimates, there was little difference between results using the three 

different MI methods.  Results for myeloid engraftment and overall survival 

were identical for all three MI methods because there were very few missing 

event times (no missing times of death) for these events. Of the MI methods 

considered, CIs were widest for the PMM method and narrowest for the 

PMMSUBGP proxy method.  

 

Estimates from the main analysis (MI using PMMSUBGP) are summarised as 

follows: 

• Most patients achieved myeloid engraftment (86.3%, 95% CI 83.1-89.6%), with 

median time of engraftment of 24 days (95% CI 23-25 days) 

• 54.4% (95% CI 49.5-59.3%) of patients experienced acute GvHD by day 100 

post-transplant, with median time of acute GvHD of 78 days (95% CI 59-97 

days) 

• 18.5% (95% CI 14.3-22.7%) of patients experienced chronic GvHD by one year 

post-transplant, with 10th percentile time of chronic GvHD of 165 days (95% 

CI 115-214 days) 

• 17.4% (95% CI 13.8-21.2%) of patients experienced relapse by one year post-

transplant, with 10th percentile time of relapse of 90 days (95% CI 46-134 days) 

• 59.3% of patients were alive at one year post-transplant (95% CI 54.5-64.1%), 

with lower quartile time of death of 108 days (95% CI 74-142 days).   



 

 173 

7.7. Results: Multi-state model analysis  

7.7.1. Transition intensity models 

Tables 7.2a-c show estimated HRs for all covariates in each (Markov) transition 

intensity model.  The HR for time to acute GvHD from a separate semi-Markov 

model (included as a test of the Markov assumption) is also shown in Table 7.2c.  

Results are shown for the following missing data methods: CCA, PMMSUBGP 

(PMM by patient sub-group), PMMSUBGP Weibull (sensitivity analysis 1: 

PMMSUBGP, fitting Weibull rather than Cox transition intensity models), 

PMMSUBGP proxy method (sensitivity analysis 2: PMMSUBGP with observed 

donor information used in imputation models for all other variables), and PMM 

(sensitivity analysis 3: PMM with one imputation model fit for all patients).     

 

As per the cumulative incidence analysis described in Section 7.6, CI are widest 

for CCA estimates and overlap CI for MI estimates.  For all estimands, results 

using the four different MI methods are more similar to each other than to CCA 

estimates.  In particular, in the model for the transition from transplant to acute 

GvHD, the CCA point estimates of the HR for double cord transplantation, for 

patient age, and for TNC dose at infusion, were outside the 95% CI for 

PMMSUBGP estimates.  In the model for the transition from transplant to 

relapse/death, the CCA point estimates of the HR for disease type, and disease 

status at transplant, were also outside the 95% CI for PMMSUBGP estimates.  In 

the model for the transition from acute GvHD to relapse/death, most CCA point 

estimates of HRs were outside the 95% CI for PMMSUBGP estimates.  However, 

conclusions about the covariates most strongly associated with time of each 

transition were similar for CCA and MI.  Weibull model (PMMSUBGP Weibull) 

estimates were similar to Cox model (PMMSUBGP) estimates.  However, for the 

Weibull model for the transition from acute GvHD to relapse/death, the 

optimisation algorithm used to estimate parameters and SE failed to converge for 

29 of the 80 imputed datasets.   
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Table 7.2a. Hazard ratios (HR) and 95% confidence interval (CI) for covariates in the transition intensity model from transplant to acute GvHD.  

Covariate (reference value) Missing data method  

CCA 
(N=116) 

PMMSUBGP 
(N=432) 

PMMSUBGP 
Weibull 
(N=432) 

PMMSUBGP 
proxy method 

(N=432) 

PMM 
(N=432) 

HR 95% CI HR 95% CI HR 95% CI HR 95% CI HR 95% CI 

Double cord transplant (single) 0.26 0.06-1.11 0.90 0.56-1.46 0.82 0.51-1.34 0.87 0.54-1.40 0.65 0.39-1.08 

Patient age (10-year increments) 1.02 0.80-1.31 0.89 0.80-1.00 0.93 0.83-1.04 0.91 0.81-1.01 0.93 0.83-1.04 

Disease type (acute leukaemia)           

Other blood cancer1 0.66 0.27-1.64 0.89 0.61-1.31 0.84 0.57-1.24 0.88 0.60-1.29 0.88 0.59-1.31 

Non-malignant disorder2 0.29 0.08-1.13 0.48 0.26-0.89 0.36 0.19-0.68 0.48 0.26-0.87 0.50 0.26-0.95 

Disease status at time of transplant  
(in remission) 

          

Relapse 0.69 0.23-2.01 0.43 0.23-0.82 0.48 0.25-0.94 0.38 0.21-0.69 0.45 0.23-0.89 

Other3 1.50 0.49-4.56 1.25 0.75-2.07 1.27 0.75-2.15 1.19 0.73-1.93 1.20 0.70-2.06 

Reduced intensity conditioning regimen 
(intensive) 

1.86 0.88-3.93 1.36 0.96-1.93 1.39 0.98-1.99 1.39 0.98-1.96 1.38 0.97-1.96 

Donor-recipient CMV match (-/-)           

-/+ 1.40 0.65-3.00 1.27 0.82-1.97 1.45 0.92-2.30 1.27 0.82-1.98 1.36 0.87-2.11 

+/- 1.45 0.64-3.29 1.29 0.83-2.01 1.49 0.93-2.39 1.39 0.90-2.15 1.46 0.95-2.27 

+/+ 0.69 0.27-1.75 0.82 0.46-1.45 0.78 0.43-1.40 0.84 0.47-1.49 0.62 0.33-1.17 

Donor-recipient sex match (F/F)           

F/M 1.52 0.70-3.31 1.31 0.82-2.09 1.27 0.79-2.05 1.19 0.75-1.90 1.29 0.81-2.06 

M/F 1.22 0.49-3.00 1.18 0.72-1.93 1.09 0.67-1.79 1.14 0.70-1.87 1.26 0.77-2.05 

M/M 1.12 0.48-2.62 1.10 0.66-1.82 1.06 0.63-1.76 1.08 0.66-1.77 1.09 0.66-1.81 
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Covariate (reference value) Missing data method  

CCA 
(N=116) 

PMMSUBGP 
(N=432) 

PMMSUBGP 
Weibull 
(N=432) 

PMMSUBGP 
proxy method 

(N=432) 

PMM 
(N=432) 

HR 95% CI HR 95% CI HR 95% CI HR 95% CI HR 95% CI 

Number of donor-recipient HLA 
mismatches4 (Well-matched: 0/1) 

          

Not well-matched: 2 or more 1.42 0.76-2.66 1.11 0.75-1.63 1.20 0.79-1.82 1.10 0.74-1.63 1.33 0.88-2.01 

TNC dose at infusion ×107/kg  
(Low: <3.0) 

          

Medium: 3.0-5.0 2.61 1.22-5.57 1.02 0.69-1.53 1.24 0.82-1.88 1.18 0.75-1.87 1.25 0.78-2.01 

High: > 5.0 1.46 0.61-3.47 0.84 0.54-1.32 1.01 0.64-1.58 1.01 0.62-1.62 1.15 0.74-1.79 

CMV, cytomegalovirus; HLA, human leucocyte antigen; TNC, total nucleated cells. 
Unless otherwise stated, Cox transition intensity models were fitted. 
CCA, complete case analysis. 
PMMSUBGP, FCS MI by type 1 predictive mean matching with imputation models fit separately for patients experiencing both acute and chronic GvHD or 
chronic GvHD without acute GvHD, acute GvHD without chronic GvHD, relapse without GvHD, and neither GvHD nor relapse. 
PMMSUBGP proxy method, as for PMMSUBGP, with observed donor information used in imputation models for all other variables. 
PMM, FCS MI by Type 1 predictive mean matching with one imputation model fit for all patients. 
1 Other blood cancer includes lymphoproliferative and plasma cell disorders, myelodysplastic syndromes and myeloproliferative disorders. 
2 Non-malignant disorder includes histiocytic disorder, solid tumour, bone marrow failure syndrome, haemoglobinopathy, primary immune 
deficiency and inborn error of metabolism. 
3 Other disease status includes acute, chronic and accelerated phase, refractory disease, transformed to acute leukaemia, blastic crisis, MDS, MDP and 
non-malignant disorders. 
4 HLA A and B loci at antigenic level and DR-B1 at allelic level 
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Table 7.2b. Hazard ratios (HR) and 95% confidence interval (CI) for covariates in the transition intensity model from transplant to relapse/death.  

Covariate (reference value) Missing data method  

CCA 
(N=116) 

PMMSUBGP 
(N=432) 

PMMSUBGP 
Weibull 
(N=432) 

PMMSUBGP 
proxy method 

(N=432) 

PMM 
(N=432) 

HR 95% CI HR 95% CI HR 95% CI HR 95% CI HR 95% CI 

Double cord transplant (single) 1.24 0.20-7.81 1.61 0.79-3.28 1.44 0.70-2.98 1.61 0.79-3.25 1.97 0.89-4.40 

Patient age (10-year increments) 1.01 0.71-1.43 0.94 0.79-1.10 1.00 0.84-1.18 0.94 0.79-1.11 0.92 0.78-1.09 

Disease type (acute leukaemia)           

Other blood cancer1 0.42 0.11-1.68 0.84 0.46-1.55 0.76 0.42-1.39 0.86 0.48-1.54 0.73 0.39-1.35 

Non-malignant disorder2 0.17 0.03-1.15 0.42 0.15-1.14 0.38 0.14-1.04 0.45 0.16-1.26 0.43 0.15-1.26 

Disease status at time of transplant  
(in remission) 

          

Relapse 5.92 1.51-23.17 2.22 1.11-4.48 2.63 1.31-5.30 1.83 1.01-3.32 3.31 1.67-6.58 

Other3 3.17 0.61-16.59 1.72 0.77-3.84 1.73 0.77-3.88 1.51 0.68-3.32 1.86 0.77-4.49 

Reduced intensity conditioning regimen 
(intensive) 

0.67 0.23-2.00 0.93 0.56-1.54 0.94 0.57-1.57 0.94 0.56-1.59 0.89 0.52-1.51 

Donor-recipient CMV match (-/-)           

-/+ 1.30 0.42-4.02 1.60 0.74-3.44 1.71 0.78-3.73 1.47 0.66-3.27 1.32 0.58-3.03 

+/- 0.81 0.25-2.68 1.15 0.51-2.57 1.34 0.59-3.04 1.09 0.47-2.51 0.77 0.32-1.85 

+/+ 2.15 0.66-6.99 2.63 1.21-5.70 2.41 1.12-5.20 2.24 0.97-5.15 2.35 1.04-5.31 

Donor-recipient sex match (F/F)           

F/M 0.44 0.15-1.28 0.88 0.43-1.78 0.85 0.41-1.77 0.87 0.42-1.80 0.73 0.35-1.53 

M/F 0.52 0.16-1.71 0.97 0.47-2.01 0.90 0.43-1.90 0.99 0.48-2.08 0.86 0.41-1.80 

M/M 0.40 0.13-1.27 0.92 0.41-2.06 0.90 0.39-2.07 0.93 0.41-2.11 0.85 0.37-1.95 
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Covariate (reference value) Missing data method  

CCA 
(N=116) 

PMMSUBGP 
(N=432) 

PMMSUBGP 
Weibull 
(N=432) 

PMMSUBGP 
proxy method 

(N=432) 

PMM 
(N=432) 

HR 95% CI HR 95% CI HR 95% CI HR 95% CI HR 95% CI 

Number of donor-recipient HLA 
mismatches4 (Well-matched: 0/1) 

          

Not well-matched: 2 or more 1.50 0.61-3.67 1.49 0.80-2.76 1.63 0.87-3.04 1.42 0.74-2.71 1.65 0.87-3.13 

TNC dose at infusion ×107/kg  
(Low: <3.0) 

          

Medium: 3.0-5.0 1.88 0.63-5.63 1.06 0.55-2.06 1.18 0.61-2.31 1.10 0.57-2.09 1.14 0.56-2.31 

High: > 5.0 1.16 0.41-3.25 1.06 0.54-2.06 1.22 0.61-2.44 1.01 0.50-2.02 0.86 0.43-1.72 

CMV, cytomegalovirus; HLA, human leucocyte antigen; TNC, total nucleated cells. 
Unless otherwise stated, Cox transition intensity models were fitted. 
CCA, complete case analysis. 
PMMSUBGP, FCS MI by type 1 predictive mean matching with imputation models fit separately for patients experiencing both acute and chronic GvHD or 
chronic GvHD without acute GvHD, acute GvHD without chronic GvHD, relapse without GvHD, and neither GvHD nor relapse. 
PMMSUBGP proxy method, as for PMMSUBGP, with observed donor information used in imputation models for all other variables. 
PMM, FCS MI by Type 1 predictive mean matching with one imputation model fit for all patients. 
1 Other blood cancer includes lymphoproliferative and plasma cell disorders, myelodysplastic syndromes and myeloproliferative disorders. 
2 Non-malignant disorder includes histiocytic disorder, solid tumour, bone marrow failure syndrome, haemoglobinopathy, primary immune 
deficiency and inborn error of metabolism. 
3 Other disease status includes acute, chronic and accelerated phase, refractory disease, transformed to acute leukaemia, blastic crisis, MDS, MDP and 
non-malignant disorders. 
4 HLA A and B loci at antigenic level and DR-B1 at allelic level 
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Table 7.2c. Hazard ratios (HR) and 95% confidence interval (CI) for covariates in the transition intensity model from acute GvHD to relapse/death.  

Covariate (reference value) Missing data method  

CCA 
(N=116) 

PMMSUBGP 
(N=432) 

PMMSUBGP 
Weibull 
(N=432) 

PMMSUBGP 
proxy method 

(N=432) 

PMM 
(N=432) 

HR 95% CI HR 95% CI HR 95% CI HR 95% CI HR 95% CI 

Double cord transplant (single) 0.18 0.01-2.23 0.42 0.20-0.88 0.39 0.19-0.82 0.39 0.18-0.83 0.56 0.25-1.26 

Patient age (10-year increments) 1.61 1.03-2.50 1.10 0.92-1.31 1.11 0.94-1.32 1.16 0.98-1.37 1.15 0.95-1.38 

Disease type (acute leukaemia)           

Other blood cancer1 2.09 0.47-9.29 1.09 0.59-2.03 1.14 0.61-2.11 1.04 0.57-1.88 0.92 0.50-1.70 

Non-malignant disorder2 3.89 0.45-33.42 1.37 0.51-3.69 1.38 0.52-3.66 1.36 0.51-3.63 1.07 0.39-2.90 

Disease status at time of transplant  
(in remission) 

          

Relapse 2.40 0.54-10.63 1.03 0.38-2.81 0.92 0.36-2.37 1.43 0.57-3.59 2.39 0.86-6.65 

Other3 1.29 0.19-8.64 1.14 0.50-2.57 1.03 0.47-2.27 1.29 0.60-2.77 1.63 0.70-3.75 

Reduced intensity conditioning regimen 
(intensive) 

0.40 0.09-1.85 0.99 0.54-1.83 0.99 0.54-1.81 0.86 0.48-1.55 0.78 0.44-1.41 

Donor-recipient CMV match (-/-)           

-/+ 0.86 0.29-2.57 1.90 0.94-3.82 1.93 0.97-3.85 1.71 0.85-3.47 1.68 0.81-3.47 

+/- 1.11 0.31-3.92 1.29 0.62-2.71 1.27 0.61-2.62 1.33 0.63-2.79 1.33 0.62-2.86 

+/+ 0.52 0.11-2.46 0.80 0.29-2.24 0.84 0.31-2.26 0.74 0.26-2.09 1.01 0.36-2.87 

Donor-recipient sex match (F/F)           

F/M 3.45 0.89-13.31 1.56 0.72-3.38 1.48 0.69-3.16 1.65 0.77-3.51 1.52 0.67-3.44 

M/F 3.24 0.72-14.70 1.46 0.63-3.40 1.46 0.64-3.34 1.49 0.64-3.48 1.34 0.55-3.23 

M/M 1.67 0.31-8.90 1.49 0.62-3.55 1.43 0.60-3.45 1.36 0.57-3.27 1.49 0.61-3.59 
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Covariate (reference value) Missing data method  

CCA 
(N=116) 

PMMSUBGP 
(N=432) 

PMMSUBGP 
Weibull 
(N=432) 

PMMSUBGP 
proxy method 

(N=432) 

PMM 
(N=432) 

HR 95% CI HR 95% CI HR 95% CI HR 95% CI HR 95% CI 

Number of donor-recipient HLA 
mismatches4 (Well-matched: 0/1) 

          

Not well-matched: 2 or more 1.93 0.66-5.63 1.76 0.92-3.37 1.92 1.03-3.59 1.73 0.87-3.42 1.52 0.79-2.90 

TNC dose at infusion ×107/kg  
(Low: <3.0) 

          

Medium: 3.0-5.0 0.82 0.24-2.74 0.62 0.36-1.08 0.65 0.38-1.11 0.79 0.45-1.41 0.80 0.41-1.58 

High: > 5.0 0.60 0.08-4.52 0.32 0.15-0.70 0.35 0.17-0.72 0.41 0.19-0.90 0.49 0.22-1.09 

Model testing Markov assumption (for other covariate results, see Appendices, Table A.5) 

Time of acute GvHD 1.01 0.99-1.03 1.00 0.99-1.01 1.00 0.99-1.01 1.00 0.99-1.01 1.00 0.99-1.01 

CMV, cytomegalovirus; HLA, human leucocyte antigen; TNC, total nucleated cells. 
Unless otherwise stated, Cox transition intensity models were fitted. 
CCA, complete case analysis. 
PMMSUBGP, FCS MI by type 1 predictive mean matching with imputation models fit separately for patients experiencing both acute and chronic GvHD or 
chronic GvHD without acute GvHD, acute GvHD without chronic GvHD, relapse without GvHD, and neither GvHD nor relapse. 
PMMSUBGP proxy method, as for PMMSUBGP, with observed donor information used in imputation models for all other variables. 
PMM, FCS MI by Type 1 predictive mean matching with one imputation model fit for all patients. 
1 Other blood cancer includes lymphoproliferative and plasma cell disorders, myelodysplastic syndromes and myeloproliferative disorders. 
2 Non-malignant disorder includes histiocytic disorder, solid tumour, bone marrow failure syndrome, haemoglobinopathy, primary immune 
deficiency and inborn error of metabolism. 
3 Other disease status includes acute, chronic and accelerated phase, refractory disease, transformed to acute leukaemia, blastic crisis, MDS, MDP and 
non-malignant disorders. 
4 HLA A and B loci at antigenic level and DR-B1 at allelic level 
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Results from the main transition intensity analysis (MI using PMMSUBGP) are 

summarised below. 

Transition from transplant to acute GvHD 

The covariates most strongly associated with hazard of acute GvHD are disease 

type and disease status at time of transplant (Table 7.2a).  The hazard of acute 

GvHD is more than halved for patients with a non-malignant disease compared 

with patients with acute leukaemia (HR 0.48, 95% CI 0.26-0.89), and for patients 

in relapse at time of transplant, compared with patients in remission (HR 0.43, 

95% CI 0.23-0.82).   

Transitions to relapse/death 

The covariates most strongly associated with hazard of relapse/death without 

acute GvHD are disease status at time of transplant and donor-recipient CMV 

match (Table 7.2b).  For patients in relapse at time of transplant, the hazard of 

relapse/death is more than doubled compared with patients in remission (HR 

2.22, 95% CI 1.11-4.48).  The hazard of relapse/death when both donor and 

recipient are CMV+ is more than double that when both donor and recipient are 

CMV- (HR 2.63, 95% CI 1.21-5.70).  These associations are less apparent in the 

model for the time of transition from acute GvHD to relapse/ death (HR 1.03, 

95% CI 0.38-2.81 for a patient in relapse at time of transplant, and HR 0.80, 95% 

CI 0.29-2.24 when both donor and recipient are CMV+).     

 

The covariates most strongly associated with the hazard of relapse/death after 

acute GvHD are the number of CB units received and TNC dose at infusion.  The 

hazard of relapse/death is more than halved for patients receiving a double cord 

transplant compared with a single cord transplant (HR 0.42, 95% CI 0.20-0.88), 

and for patients receiving a high TNC dose rather than a low TNC dose (HR 0.32, 

95% CI 0.15-0.70).   

 

There was no apparent association between time of acute GvHD and the hazard 
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of relapse/death after acute GvHD (HR 1.00, 95% CI 0.99-1.01), suggesting there 

was no violation of the Markov assumption.  There was some indication of a 

violation of the PH assumption, particularly for the model for the transition from 

transplant to relapse/death (global PH test p-value = 0.14, 0.03, 0.30 for the 

transitions from transplant to acute GvHD, transplant to relapse/death and acute 

GvHD to relapse/death, respectively). 

7.7.2. Expected length of stay in each state  

The expected length of stay in state in the first year post-transplant (RELOS) was 

calculated for three different patient types.  These were: a patient with reference 

values of all covariates, a low-risk, and a high-risk patient.  Based on the 

strongest associations described above for the transition intensity models, low-

risk and high-risk patients are defined as follows: 

(i) Low-risk: A patient with a non-malignant disorder, receiving a high TNC 

dose.  Based on the NHS CBB cohort, approximately 14% of patients had 

these characteristics.  Most were children (with a mean age of 4 years), 

which is to be expected, because patients with non-malignant disorders 

tend to be treated at a young age (4).  These patients had a range of values 

of other covariates, but most received a single cord transplant and had 0 

or 1 HLA mismatches.  For simplicity, reference values of all other 

covariates and the mean age of 4 years were used when calculating 

RELOS for this patient type. 

 

(ii) High-risk: A patient in relapse at time of transplant, receiving a double 

cord transplant, with 2 or more HLA mismatches.  Although a double 

cord transplant was associated with a lower hazard of relapse/death after 

acute GvHD, most patients in relapse at time of transplant in the NHS 

CBB dataset were adults (adults tend to receive a double cord transplant, 

see Chapter 4, Section 4.3).  Most patients in relapse at time of transplant 

also had 2 or more donor-recipient HLA mismatches.  Furthermore, 

although a +/+ donor-recipient CMV match was also strongly associated 
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with the hazard of relapse/death, only one patient in the NHS CBB 

dataset (on average, based on the set of imputed datasets) had the other 

high-risk characteristics as well as a +/+ CMV match.  Therefore, the 

reference value (-/- CMV match) for this variable was used instead.  

Reference values for all other covariates and the mean age of 44 years 

were used when calculating RELOS for this patient type.  

 

Table 7.3 overleaf shows estimates and 95% CI for RELOS for the three patient 

types.  Results are shown for the following missing data methods: CCA, 

PMMSUBGP (PMM by patient sub-group), PMMSUBGP Weibull (sensitivity 

analysis 1: PMMSUBGP, fitting Weibull rather than Cox transition intensity 

models), PMMSUBGP proxy method (sensitivity analysis 2: PMMSUBGP with 

observed donor information used in imputation models for all other variables), 

and PMM (sensitivity analysis 3: PMM with one imputation model fit for all 

patients).   

 

Estimates vary across the different missing data methods.  Generally, MI 

estimates are more similar than CCA estimates.  In particular, CCA estimates of 

the time spent in relapse/death are higher than MI estimates.  For all estimates, 

CI are wide, and widest for CCA estimates.  CI are also wide when fitting a 

Weibull model (PMMSUBGP Weibull), which may be a consequence of the poor 

performance of the optimisation algorithm, described above. 
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Table 7.3. Estimate (Est) and 95% confidence interval (CI) of expected length of stay in each state in the first year post-transplant (RELOS). 

RELOS (days) 

Missing data method 

CCA (N=116) PMMSUBGP (N=432) 
PMMSUBGP Weibull 

(N=432) 

PMMSUBGP 
proxy method 

(N=432) 
PMM (N=432) 

Est 95% CI Est 95% CI Est 95% CI Est 95% CI Est 95% CI 

Reference: Patient with reference values of covariates, age 24y 

Transplant 151 35-267 158 96-220 219 106-332 158 96-220 174 111-237 

Acute GvHD 76 0-173 132 71-193 95 0-196 129 69-189 113 56-170 

Relapse/death 123 0-271 68 23-113 51 0-130 70 26-114 70 22-118 

Low-risk: Patient with non-malignant disorder, high TNC dose, age 4y* 

Transplant 273 0-365 233 160-306 291 212-370 222 147-297 229 151-307 

Acute GvHD 38 0-365 94 25-163 54 0-123 100 30-170 95 24-166 

Relapse/death 39 0-365 31 0-71 20 0-61 36 0-80 33 0-79 

High-risk: Patient in relapse at transplant, receiving a double cord transplant, with 2 or more HLA mismatches, age 44y* 

Transplant 33 0-365 139 25-253 165 0-335 152 39-265 72 0-167 

Acute GvHD 9 0-365 49 0-100 36 0-93 39 0-79 22 0-54 

Relapse/death 309 0-365 170 45-295 163 0-360 166 45-287 262 155-369 
*With reference values of all other covariates. 
CMV, cytomegalovirus; HLA, human leucocyte antigen; TNC, total nucleated cells. 
95% CI boundaries outside the range [0,365] were truncated to 0 and 365 for lower and upper bounds respectively. 
Unless otherwise stated, Cox transition intensity models were fitted. 
CCA, complete case analysis. 
PMMSUBGP, FCS MI by type 1 predictive mean matching with imputation models fit separately for patients experiencing both acute and chronic GvHD or 
chronic GvHD without acute GvHD, acute GvHD without chronic GvHD, relapse without GvHD, and neither GvHD nor relapse. 
PMMSUBGP proxy method, as for PMMSUBGP, with observed donor information used in imputation models for all other variables. 
PMM, FCS MI by Type 1 predictive mean matching with one imputation model fit for all patients. 
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Estimates of RELOS from the main analysis (MI using PMMSUBGP) are 

summarised as follows: In the first year post-transplant, low-risk patients spend 

a larger number of days (233 days, 95% CI 160-306 days) alive without acute 

GvHD nor relapse than patients with reference values of covariates (158 days, 

95% CI 96-220 days) and high-risk patients (139 days, 95% CI 25-253 days).  

Conversely, compared with the other patient types, high-risk patients spend 

fewer days alive without relapse after acute GvHD (49 days, 95% CI 0-100 days 

for high-risk patients vs. 132 days, 95% CI 71-193 days for reference patients, and 

94 days, 95% CI 25-163 days for low-risk patients) and more days in 

relapse/death (170 days, 95% CI 45-295 days for high-risk patients vs. 68, 95% CI 

23-113 days for reference patients, and 31 days, 95% CI 0-71 days for low-risk 

patients). 

7.7.3. State occupation probabilities 

State occupation probabilities during the first year post-transplant, for the three 

patient types described previously, are presented in Figure 7.2.  State occupation 

probabilities are shown for the main analysis (MI using PMMSUBGP).  Note that 

Cox models fitted using the stacked dataset give identical results (to 1 d.p.) to 

those in Tables 7.2a-c (which were calculated as the mean of the per-imputation 

results).  Therefore, the state occupation probabilities presented here are 

consistent with the previous results from per-imputation analyses.   

For a patient with reference values of all covariates, there is approximately the 

same probability of being alive without GvHD nor relapse, alive without relapse 

after acute GvHD or in relapse/death at one year post-transplant (Figure 7.2).  At 

any point in the first year post-transplant, a low-risk patient is most likely to be 

alive without GvHD nor relapse, with a small probability of being in 

relapse/death (14% or less) throughout the first year.  In contrast, beyond the 

acute period post-transplant (day 100 onwards), a high-risk patient is most likely 

to be in relapse/death.   For high-risk patients, the probability of being alive 

without relapse after acute GvHD is at most 17% during the first year.
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Figure 7.2. State occupation probabilities for each state in the first year post-transplant for three patient types in the NHS Cord Blood Bank cohort 

Vertical line separates the acute and chronic post-transplant periods.
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7.8. Discussion 

In this chapter, I applied FCS MI methods to impute missing event times and 

covariate data in the NHS CBB dataset.  Then, I analysed the imputed datasets 

using competing risks and MSM methods, to obtain estimates of the cumulative 

incidence of each event of interest (myeloid engraftment, acute and chronic 

GvHD, relapse, and overall survival), to identify covariates associated with the 

events of interest, and to make probability predictions for different patient types.  

In the sections below, I discuss the clinical and statistical implications of my 

results.  The implications of my thesis for statisticians, researchers, clinicians, and 

patients are further discussed in Chapter 8, Sections 8.2-8.4. 

7.8.1. Clinical implications  

Cumulative incidence of the events of interest 

In Table 7.4 overleaf, the estimated cumulative incidence rates for NHS CBB 

patients are compared with those reported in other CB transplantation studies (8, 

14, 23, 37-40, 197, 198).  CB donated to the NHS CBB is used to treat patients with 

both malignant and non-malignant blood diseases, as well as both adult and 

paediatric patients.  Prognoses and treatment approaches vary between these 

patient groups.  Hence, to allow a direct comparison with the NHS CBB, I have 

focused on studies of other CB banks, and general reviews of CB transplantation 

(rather than studies of a particular type of blood disease, or studies restricted to 

either an adult or paediatric patient group).   As shown in Table 7.4, cumulative 

incidence rates for NHS CBB patients are similar to those reported in other CB 

transplantation studies.  In particular, the cumulative incidence and median time 

of myeloid engraftment for the NHS CBB are very similar to those reported in 

other studies.  This result will provide reassurance to patients and clinicians that 

transplantation using CB donated to the NHS CBB is a safe and effective 

treatment.  
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It is more difficult to compare cumulative incidence rates for the other events of 

interest, either because rates vary considerably between studies in the clinical 

literature (e.g. for acute GvHD), or because the time period of interest varies 

between studies (e.g. chronic GvHD, overall survival).  Although the median 

time to engraftment was reported in all studies included in this comparison, 

percentile times of other events were rarely reported.   

Table 7.4. Comparison of cumulative incidence rates for the NHS CBB vs. other CB 
transplantation studies. 

Event type Estimand 
NHS CBB  
(95% CI) 

Other CB banks/ 
CB studies 

Myeloid 
engraftment 

Cumulative incidence 

at 100 days  
86% (83-90) 

Varies between 85 and 100%;  
68% in CML patients  

Median time (days) 24 (23-25) Varies between 22 and 30 days 

Acute 
GvHD 

Cumulative incidence 
at 100 days  

54% (50-59) 

> 75% (any grade) in double cord 
recipients with chronic GvHD;  
47% (95% CI 36-58) (grade 2-4) in 
CML1 patients;   
13% (95% CI 7-20) (grade 2-4) in 
paediatric patients;  

Median time (days) 78 (59-97) Not reported 

Chronic 
GvHD 

Cumulative incidence 

at one year  
19% (14-23) 

23% (95% CI 11–34), 
26% (95% CI 21-30) at 2 years in 
double cord recipients  
7% (95% CI 4-11) at 2 years in 
single cord recipients 

10th percentile time 
(days) 165 (115-214) 

Median of 152 days in double 
cord recipients with chronic 
GvHD; generally not reported 

Relapse Cumulative incidence 
at one year  

17% (14-21) 

<20% in AL/MDS patients 
31% (95% CI 27-35) at 2 years in 
double cord recipients  
29% (95% CI 22-36) at 2 years in 
single cord recipients 

 10th percentile time 
(days) 

90 (46-134) Not reported 

Overall 
survival 

Survival at one year  

59% (55-64) 

In paediatric patients with blood 
cancer: 73% (95% CI 63-80) (single 
cord) and 65% (95% CI 56-74) 
(double cord); 
56% (95% CI 51-60) at 2 years in 
double cord recipients  
64% (95% CI 58-69) at 2 years in 
single cord recipients 

Lower quartile time 
of death (days) 

108 (74-142) Not reported 

CML, chronic myeloid leukaemia; AL, acute leukaemia; MDS, myelodysplastic syndromes  
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Covariates associated with acute GvHD, relapse and death 

In the NHS CBB analysis, the covariates most strongly associated with the 

transition intensity in the model for the transition from transplant to acute GvHD 

are disease type and disease status at time of transplant.  The hazard of acute 

GvHD is more than halved for patients with a non-malignant disease compared 

with patients with acute leukaemia.  This may indicate a different treatment 

approach for blood cancers compared with non-malignant disease, because some 

degree of acute GvHD is desirable in patients with blood cancers in order to 

achieve a GvL effect (see Chapter 1, Section 1.2.5) (10), but this is not as apparent 

for non-malignant disorders.   

 

The hazard of acute GvHD is also more than halved for patients in relapse at 

time of transplant, compared with patients in remission.  Conversely, the hazard 

of relapse/death without acute GvHD is more than doubled for patients in 

relapse at time of transplant, compared with patients in remission.  This is to be 

expected because patients in relapse at time of transplant are less likely to 

achieve myeloid engraftment.  Hence, GvHD is less likely and the hazard of post-

transplant relapse/death is increased (19).  In addition to disease status at time of 

transplant, donor-recipient CMV status match was also strongly associated with 

the hazard of relapse/death.  The hazard of relapse/death when both donor and 

recipient are CMV+ is more than double that when both donor and recipient are 

CMV-.  This is to be expected because a CMV+ patient status is known to be 

associated with increased mortality (14).     

 

Finally, the covariates most strongly associated with the hazard of relapse/death 

after acute GvHD are the number of CB units received and TNC dose at infusion.  

The hazard of relapse/death after acute GvHD is more than halved for patients 

receiving a double cord transplant compared with a single cord transplant, and 

for patients receiving a high TNC dose rather than a low TNC dose.  It is likely 

that these variables are correlated: a double cord transplant is likely to provide a 

higher dose than a single cord transplant (8).  Myeloid engraftment, and hence 
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GvHD, are more likely and relapse is less likely when the TNC dose is at least 3 

×107/kg (4).   

 

In Table 4.5, overleaf, I compare the values associated with increased hazard (for 

each covariate and transition) in my analysis of the NHS CBB, with those 

reported in the literature (see Chapter 1, Table 1.1).  Note that in Table 4.5 (as in 

my MSM design), I have assumed that values associated with increased hazard 

of relapse (as reported in the literature) are also associated with increased hazard 

of death (because relapse is associated with increased mortality (17, 20)).  This 

assumption does not allow for different covariate associations for different 

causes of death (e.g. death from a transplant-related cause vs. death from 

relapse).  The different covariate associations for transplant-related and relapse-

related causes of death could be explored by extending the MSM used here to a 

four-state model, with two absorbing states: (i) relapse or death due to relapse, 

and (ii) death due to a transplant-related cause. 

 

For the covariates most strongly associated with the transition intensities in my 

analysis (described above), the values associated with increased hazard of each 

event are consistent with the clinical literature (Table 4.5).  However, my results 

were inconclusive for several covariate associations reported in the clinical 

literature.  This was the case for patient age at transplant, conditioning regimen, 

and donor-recipient sex match.  This may be explained by the relatively small 

size of the NHS CBB dataset combined with the relatively large number of 

covariates considered, which may have limited the power of my analysis.  In 

addition, in my analysis, the number of donor-recipient HLA mismatches was 

only weakly associated with the transition intensities.  In HSC transplantation in 

general, donor-recipient HLA matching is very important.  However, compared 

with BM and PB transplantation, CB transplantation requires less stringent HLA 

matching (Chapter 1, Section 1.2.2).  This may explain the weak association 

between HLA matching and NHS CBB patient outcomes.  As above, the 

relatively small size of the NHS CBB dataset may also be the reason.   
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Table 7.5. Comparison of covariates associated with acute GvHD, relapse, and death for the NHS CBB vs. other CB transplantation studies. 

Covariate Values associated with increased hazard of event 

Acute GvHD Relapse/death 

Other studies NHS CBB analysis in 
agreement? 

Other studies NHS CBB analysis in agreement? 

Number of CB units 
received 

Double cord  Inconclusive results Single cord Yes (transition from acute GvHD) 
No – double cord (transition from 
transplant, weak association) 

Disease status at time of 
transplant  

In remission at 
time of transplant 

Yes, compared with a 
patient in relapse at time of 
transplant 

In relapse at time of 
transplant 

Yes (transition from transplant) 
Inconclusive results (transition from 
acute GvHD) 

Conditioning regimen Intensive 
conditioning 

Inconclusive results Reduced intensity 
conditioning 

Inconclusive results 

TNC dose at infusion Higher dose Inconclusive results Lower dose Yes (transition from acute GvHD)  
Inconclusive results (transition from 
transplant) 

GvHD prophylaxis 
(yes/no)  

No prophylaxis  Not considered Prophylaxis Not considered 

Disease type Not considered Acute leukaemia, compared 
with non-malignant 
disorder 

Not considered Inconclusive results 

Donor-recipient HLA 
mismatch 

2 or more 
mismatches 

Yes (weak association) 2 or more 
mismatches 

Yes (weak association) 

Patient age at transplant  Adult patient Inconclusive results Adult patient Inconclusive results 

Donor-recipient sex match Female donor and 
male recipient 

Inconclusive results Female donor and 
male recipient 

Inconclusive results 

Donor-recipient CMV+ 
match 

CMV+ patient Inconclusive results CMV+ patient  Yes (transition from transplant)  
Yes (transition from acute GvHD, 
weak association) 
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Contrary to the findings of Lee et al. (160), for patients in the NHS CBB dataset 

there was no apparent association between the time of acute GvHD and the 

hazard of relapse/death after acute GvHD (based on a semi-Markov model).  

However, the prognosis after acute GvHD varies according to the grade 

(severity) (17).  Hence, it may be that this association would become more 

apparent if the MSM used here was extended to a model with two intermediate 

states: (i) grade 1 (mild) acute GvHD, and (ii) grade 2-4 (moderate to very severe) 

acute GvHD.  An alternative approach that avoids increasing the complexity of 

the model used here, would be to consider grade 2-4 acute GvHD as the only 

intermediate state (assuming that mild acute GvHD is unlikely to be related to 

subsequent patient outcomes).   

7.8.2. Statistical implications 

As discussed in Chapter 4, Section 4.5, in the NHS CBB dataset, the missingness 

of event times depended on the analysis outcome.  That is, missingness 

depended on the type of event experienced, as well as patient, donor and 

transplant characteristics.  In the competing risks analysis considered here, these 

characteristics were not part of the analysis model because the outcomes of 

interest were the non-parametric estimates of cumulative incidence of various 

events.  In this case, CCA is biased because event times for the competing events 

are fully observed and only cases of the events of interest are under-represented.  

In contrast, estimates based on FCS MI should be unbiased (assuming data MAR, 

conditional on the observed data, and that the imputation model is correctly 

specified).  In the NHS CBB analysis, CCA estimates of the cumulative incidence 

of myeloid engraftment, acute and chronic GvHD, and overall survival, were 

lower than any of the MI estimates.  The CCA estimate of the cumulative 

incidence of relapse was higher than any of the MI estimates.  For myeloid 

engraftment, (for which there were no missing event times, and few missing 

event times for competing events), the CCA estimate of the median time of 

myeloid engraftment was the same as the MI estimates.  However, CCA CI were 
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wider than MI CI.  These results suggest that application of FCS MI methods to 

the NHS CBB dataset has reduced bias and improved precision in estimates.   

 

In the MSM analyses, many of the patient, donor and transplant characteristics 

were also covariates in the Cox regression analysis models for the transition 

intensities.  In my analyses of the NHS CBB cohort, CCA estimates were often 

different from MI estimates.  Of particular note, in the model for the transition 

from transplant to acute GvHD, the CCA estimates of the HR for a double cord 

transplant were outside the 95% CI for MI estimates.  There was a greater 

proportion of double cord transplants for patients with missing times of acute 

GvHD than for patients with observed times of acute GvHD (Chapter 4, Section 

4.5).  This suggests that the under-representation of double cord transplants in 

the complete case cohort has led to biased results.  Note that if missingness of all 

incomplete variables in the NHS CBB dataset had depended only on the 

covariates and not the outcome, and all variables predictive of missingness were 

included as covariates in the analysis model, CCA estimates would be unbiased 

(86).     

 

Only 116 patients in the NHS CBB dataset had complete data and hence CI were 

far wider for CCA estimates than for MI estimates.  Generally, CIs for MI 

estimates were widest for the PMM and PMMSUBGP method when fitting a 

Weibull model, and narrowest for the PMMSUBGP proxy method.  For double 

CB transplants where one of the two donors did not donate via the NHS CBB 

(hence no data were available for this donor), covariate values that relied on both 

donors’ data were missing (disease status, CMV+ match, number of HLA 

mismatches between donor(s) and recipient, and dose at infusion, each with 

between 29% and 56% missing data).  In the PMMSUBGP proxy method, the 

known donor’s data was used in imputation models to improve prediction of all 

other variables (although the missing covariate values that relied on both donors’ 

data were still imputed).  This suggests that known donor data can be used 

within imputation models to improve the precision of estimates. 
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Results from my simulation studies (Chapter 6, Section 6.2.16-17) suggest that 

bias in estimates and SE of RELOS will be reduced if a parametric, rather than a 

semi-parametric, model is used.  However, a disadvantage of parametric models 

in practice is that they seem to be more prone to convergence problems than 

semi-parametric models.  Further work is required to determine if this is also the 

case for flexible parametric models.  There was some indication that the PH 

assumption did not hold for my transition intensity models, particularly for the 

model for the transition from transplant to relapse/death.  Therefore, my models 

could be improved by considering hazards that vary over time for each covariate.   
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CHAPTER 8.  DISCUSSION AND 

CONCLUSIONS 

8.1. Introduction 

The purpose of this thesis was to provide the first insight into patient outcomes 

after transplantation using CB donated to the NHS CBB.  My research aims were: 

(i) To describe the incidence of various post-transplant events (myeloid 

engraftment, acute and chronic GvHD, relapse, and death) among NHS 

CBB patients. 

(ii) To identify patient, donor, and transplant characteristics associated with 

the events of acute GvHD, relapse, and death, and to describe the 

probability of these events for different patient types.  

 

In the NHS CBB dataset, times of acute GvHD, chronic GvHD, and relapse were 

frequently missing.  Missing event times were assumed to have occurred in a 

known, finite, time period (based on clinical criteria or the known patient follow-

up period) and hence, the missing event times were considered interval-

censored.  Sun (47) suggests a simple method for handling interval-censored 

event times, substituting a single point from the time interval (usually the mid-

point if there is no prior information about the part of the interval where the 

event is more likely to occur).  However, in most circumstances it is advisable to 

use a more rigorous approach.  Methods for handling interval-censored event 

times can be broadly categorised as either (i) treating the event times as missing 

data and applying MI strategies or (ii) taking a FML approach.   

 

Based on the available literature, it was not clear which was the best method for 

handling interval-censored event times, particularly (as in my research) when the 

analysis is a competing risks model or MSM.  Therefore, a substantial element of 
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this thesis has been focused on comparing methods for handling missing event 

times. Due to the limitations of the FML methods developed to date, it was not 

possible to treat FML methods on an equal footing with MI methods.  I have 

focused on MI strategies, because the real data analysed here deviates from the 

assumptions of the FML methods developed so far, in two ways: (i) event times 

are a mixture of observed and missing times and (ii) the time interval boundaries 

are generally the same for all patients and are wide relative to the observed event 

times.  In contrast, the appeal of MI is its flexibility: after imputation, any desired 

complete data method may be used, a mixture of observed and missing data can 

be accommodated, and additional data that are predictive of the missing times, 

but not required for the substantive analysis, can be used during the imputation 

step to inform the imputed times.   

 

In my research, I have used simulation studies to compare MI and FML methods 

for handling interval-censored event times.  For a competing risks analysis 

model, I considered the following MI methods: FCS MI by type 1 PMM; FCS MI 

by log-linear regression with post-imputation back-transformation; FCS MI by 

linear regression with and without restrictions on the imputed values; and 

Delord and Genin’s method (136) based on sampling from the cumulative 

incidence function.  I compared these MI methods with CCA and the FML 

method proposed by Bakoyannis et al. (64).  I subsequently compared the best-

performing MI methods (identified in the competing risks study), when the 

analysis model was a MSM.  I found no advantage in using FML methods rather 

than MI to handle missing event times.  Through this research, I have addressed 

key questions about MI of interval-censored event times.  These questions, and 

the findings and recommendations from my research, are summarised in Table 

8.1 overleaf.   
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Table 8.1. Summary of findings from this thesis comparing MI methods.   

Research Question  Findings from my research 

Is it necessary to constrain the 
imputed times to lie within 
the interval boundaries? 

Not recommended.  Restricting the range of imputed 
values during the imputation step leads to under-
estimation of the SE. 

Should skewness be 
accounted for in the 
imputation model? 

Recommend FCS MI by type 1 PMM (sampling from 
a set of observed times) rather than transforming data 
(e.g. by imputing on the log scale) to account for 
skewness. 

Are methods sensitive to 
incompatibility between the 
imputation scheme and the 
observed data distribution? 

Violation of the constant variance assumption when 
imputing using a linear regression model led to 
biased analysis estimates.    
Recommend careful exploration of the distribution of 
event times by event type (competing risks analysis) 
or for each pathway through the MSM (MSM 
analysis). 
Recommend a separate imputation model for each 
sub-group with a different event time distribution.  

Are methods sensitive to 
incompatibility between the 
imputation scheme and the 
analysis model? 

Type 1 PMM was robust to imputation model 
misspecification.  Imputation by sampling from the 
cumulative incidence function (competing risks 
analysis), or strategies to preserve the observed 
sequence of events (MSM analysis) were no better 
than standard PMM.   

Are methods sensitive to the 
percentage of missing data? 

Type 1 PMM performed well even when 50% of event 
times were MCAR or MAR. 

Are methods sensitive to 
strength of the relationship 
between missingness and the 
observed data? 

For type 1 PMM, results were similar for: 

• different DGMs 

• event times MCAR, MAR (dependent on event 
type) and MAR (dependent on event type and 
covariates)  

• event times missing for a single or multiple event 
types   

Recommend including all variables predictive of the 
missing event time in the imputation model (as well 
as the event type indicator and all analysis model 
covariates).  Variables that are only predictive of 
missingness but not the event time itself should not 
be included.   

How do methods perform 
given event times MNAR? 

FCS MI assuming MAR is not recommended when 
event times are suspected to be MNAR.  Estimates of 
quantiles of the cumulative incidence function, and 
expected length of stay in state, were particularly 
biased. 

Note that, unless explicitly stated otherwise, these recommendations assume event times are 
MCAR or MAR, given the observed data. 
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In addition to comparing  missing data strategies, I derived estimators of SE of (i) 

percentiles of event times (e.g. the median time of acute GvHD) and (ii) RELOS 

(the restricted expected length of stay in state).  I used my simulation studies to 

assess the performance of these estimators.  SE estimator (i) was based on the 

delta method.  I identified the elements of this estimator that minimised bias and 

optimised coverage.  Namely, that it was best to estimate the probability density 

function used in my definition by a simple gradient function, using a small 

increment (0.03 or less) around the estimated percentile time.  For SE estimation 

scenario (ii) (estimators of SE of RELOS), I found that the best-performing 

estimators were the bootstrap estimator (when fitting Cox transition intensity 

models) and the delta estimator (when fitting Weibull transition intensity 

models).   

 

Finally, I applied methods for handling missing data in an analysis of patient 

outcomes following CB transplantation.  In the NHS CBB dataset, the 

missingness of event times depended on the type of event experienced, as well as 

patient, donor and transplant characteristics.  In this case, CCA is biased because 

event times for the competing events are fully observed and only cases of the 

events of interest are under-represented.  By using MI strategies to handle 

missing event times, I was able to avoid this source of bias and improve precision 

of my estimates.  I made further gains in precision by using the known donor’s 

data (for double cord transplants in which one set of donor data were missing) in 

imputation models to improve prediction of all other variables.  I found that 

event rates for NHS CBB patients were comparable to those reported in other CB 

transplantation studies, and for other CB banks (14, 35, 38, 40).  Using MSM 

analysis, I identified patient characteristics associated with low- and high-risk of 

post-transplant adverse events.  In addition, I estimated the expected number of 

days spent after acute GvHD, and relapse or death, in the first year following CB 

transplantation.  The implications of this research are explored below.   
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My research represents the first comparison of MI and FML methods for 

handling interval-censored event times, as well as the first time that MI methods 

have been compared in a MSM analysis.  It also represents the first analysis of 

HSC transplantation outcomes using MI methods. 

8.2. Implications for statisticians 

A strength of this thesis was the use of simulation studies to assess the 

performance of MI methods.  Although theoretical knowledge underpins the use 

of MI methods, this relies on correct specification of the imputation and analysis 

models.  A benefit of simulation studies is that they can be used to explore the 

performance of methods in practice, when model assumptions may not hold.  By 

changing various elements of the DGM, MDM, and imputation and analysis 

models, it is possible to gauge the performance of methods in different scenarios.  

In addition, their sensitivity to model misspecification can be assessed (75).   

 

It is essential that the simulation study is carefully planned a priori.  I recommend 

following the “ADEMP” structure (stating aims, data-generating mechanisms, 

estimands, methods, and performance measures) suggested by Morris et al. (75).  

In addition, it is vital to check that each element of the simulation design works 

as expected by first performing the simulation under well-understood, 

predictable conditions.  To ensure that the large sample properties of simulated 

data are as expected, I recommend performing analysis on all simulated datasets 

combined, before calculating per-simulation results.  For example, in my 

simulation studies, for consistency with my real data, I used medium-sized 

simulated datasets (N≈500).  However, before obtaining results for each 

simulation, I first checked that estimates from all 1000 simulated datasets 

combined matched the true values used in my DGM (or the values I had 

calculated analytically).  For simulation studies of missing data methods, I 

recommend first checking that full data estimates (i.e. without any missing data) 

are as expected.  Then, I recommend checking that estimates when data are 
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MCAR are as expected (for example, CCA should always give unbiased results 

in this case).  In my simulation study, through these checks, I realised that when 

event times were randomly missing, but this was conditional on event type (i.e. 

times were missing for one event type only), a CCA would be biased (because in 

this case, times are actually MAR because missingness depends on the analysis 

outcome). 

   

In my research, simulation studies were particularly useful for assessing the 

performance of existing MI methods with a novel analysis model (MSM 

analysis), and for comparing the performance of estimators of SE.  For example, 

knowledge of the DGM enabled me to identify causes of unexpected bias.  By 

comparing results for event times rounded to 0.1 days and whole days, I 

determined that some estimates and SEs were sensitive to rounding of simulated 

event times (because the analytical methods I considered assumed that time was 

measured on a continuous time scale).  Knowledge of the DGM also enabled me 

to identify a cause of the poor performance of a linear regression imputation 

model (due to violation of the constant variance assumption).   

 

Rounded event times, and event times distributions that differ across patient 

sub-groups, are features of my real data.  When performing simulation studies, it 

is important to achieve a balance between using DGMs and missingness 

scenarios that are representative of real data, while also ensuring that study 

results are generalisable (so that they are useful to other researchers).  The NHS 

CBB dataset is a complex dataset, containing a large number of variables.  It 

would not be easy, or practical, to generate simulated data from sufficiently 

complex distributions to re-create every element of the real data.  I recommend 

identifying key elements of the real data that should be included in the 

simulation design.  This can be achieved by careful exploration of the 

distribution of each analysis outcome and covariate, and its missingness, prior to 

performing the simulation study.  For example, my research focused on 

missingness of event times, not covariate data.  Therefore, in my simulation 
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studies, I considered various ways in which event times could be missing but 

assumed all covariate data were observed.   

 

In my simulation studies, I used DGMs based on sampling from the real data, 

and from parametric distributions.  I recommend using both types of DGMs, to 

assess the sensitivity of results to the choice of DGM.  I also recommend 

comparing results from simulation studies with those from real data analysis, 

because performance of methods may differ.  For example, in my simulation 

study, I found that use of parametric PH transition intensity models gave less 

biased estimates of RELOS than when using Cox models (Chapter 6, Section 

6.2.17).  However, when applying parametric models using the real NHS CBB 

dataset, I found that model convergence was frequently an issue, which made 

use of parametric models impractical (Chapter 7, Section 7.7.1).   

8.3. Implications for researchers  

When an analysis dataset includes variables with missing data, I recommend first 

performing a detailed exploration of the potential missingness mechanism for 

each incomplete variable in the analysis model.  This can be achieved by 

comparing the distribution of all other variables for cases with missing and 

observed values of the incomplete variable, or by using logistic regression 

analysis (where the regression outcome is a binary missingness indicator for the 

incomplete variable).  This is a similar approach to that described in the 

“TARMOS” framework (guidelines for the treatment and reporting of missing 

data in observational studies) (199).  If missingness depends on the analysis 

outcome, then in most circumstances, CCA will be biased (79).  For example, 

CCA will be biased in a competing risks or MSM analysis, if event times are 

missing only for certain event types.   

 

I also recommend consulting clinicians, and other researchers who have expert 

knowledge of the data, to identify possible missingness mechanisms (200).  
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Knowledge of the predictors of the incomplete variable can be used to explore 

the plausibility of a MAR rather than MNAR missing data scenario.  For 

example, if there is no difference in the distribution of a known predictor of 

event times (when comparing cases with missing and observed event times), a 

MNAR scenario is less likely.  This is because, if event times were MNAR, a 

relationship between the missingness indicator and predictor would be induced.  

In summary, if some event times are missing, MI methods that assume MAR can 

be used to correct bias and improve precision compared with CCA, unless data 

MNAR is suspected.   

 

When using MI, it is recommended that the number of imputations should equal 

at least the percentage of incomplete cases, to ensure adequate reproducibility 

and efficiency (87).  If there is only one incomplete variable, only one iteration is 

required per imputation.  In general, convergence is generally achieved within a 

small number of iterations (90).  Convergence can be assessed by plotting the 

estimate against the iteration number within each imputation.   

 

In general, I recommend following the guidance I have summarised in Table 8.1 

above, by using FCS MI with type 1 PMM (PMM) to handle missing event times.  

When applying PMM methods, it is recommended to use at least five donors in 

the donor pool, and possibly more if the analysis dataset is very large (92).  I 

have found that PMM can be used to handle missing event times in complex 

survival analysis models, such as competing risks and MSM analyses.  In theory, 

MI assuming MAR is valid only when the imputation model is correctly 

specified (and all incomplete variables are not MNAR).  However, I have found 

that PMM is robust to model misspecification.  It was the least biased of all 

considered methods in multiple scenarios.  PMM is also straight-forward to 

apply in many software packages.  In addition, other incomplete variables (e.g. 

incomplete covariates) can be imputed within the same imputation model. 
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I found that the performance of PMM was improved by applying it separately 

for each sub-group of patients with a different distribution of event times.  

Therefore, when using PMM to impute event times, I recommend careful 

exploration of the data and distribution of event times for each sub-group of 

patients.  In a competing risks analysis, I recommend comparing the distribution 

of event times for each event type.  In MSM analysis, I recommend comparing 

the distribution of event times for each group of patients with a different path 

through the MSM.  Applying PMM in separate imputation models for each sub-

group of patients with a different distribution of event times may reduce bias 

and SE in model estimates.  However, this must be balanced with the 

requirement for sub-groups to be of sufficient size to allow for random donor 

selection in the imputation procedure.  In analysis of real data, there may only be 

small differences between distributions of event times for different sub-groups of 

patients.  To assess the sensitivity of results to the imputation method, I 

recommend performing analysis using both a single imputation model and 

separate models for each sub-group of patients. 

 

PMM is an appropriate method for handling missing event times when some 

event times are observed.  It is particularly useful when the interval in which 

missing event times can occur is wide, relative to the distribution of observed 

times, because the FML methods developed to-date do not perform well in this 

case.  It is applicable to any study with a mixture of missing and observed event 

times.  For example, in a study of obesity and the risk of stillbirth (201), 

pregnancies that resulted in birth or stillbirth but with missing gestational age 

were excluded from analyses.  Based on study criteria, missing gestational ages 

occurred between 20 and 42 weeks.  In this scenario, PMM could be used to 

improve bias and precision of estimates.   

 

The patient outcome data used in my study come from transplant centres in 

many different countries, because CB from the NHS CBB can be used for any 

suitably-matched patient worldwide.  I have found that data completeness varies 
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between transplant centres and countries.  For similar reasons, it is likely that 

analysis of other HSC transplant registries, or any other dataset using events data 

from multiple settings, will require handling of missing event times.  Therefore, 

the MI strategies I describe are widely applicable.   

    

PMM cannot be used when all event times are interval-censored.  This may be 

due to the design of follow-up reporting.  For example, after corneal 

transplantation, hospitals were asked whether any post-transplant surgery had 

been performed since the previous follow-up report but were not asked for the 

date of surgery (202).  In this example, time of surgery was interval-censored for 

all patients.  Similarly, in a study of risk factors for self-harm with and without 

suicidal intent (203), exposure data were collected annually or bi-annually from 

birth but participants were only asked at age 16/17 years whether they had 

harmed with suicidal intent at some point during their lifetime.  Here the 

outcome of interest could have occurred at any point from birth to 16/17 years.  

Valid use of PMM would require further data collection to obtain exact event 

times for a suitable sample of patients.  A likelihood-based method, such as those 

proposed by Bakoyannis et al. (64) for competing risks analysis, and Machado 

and van den Hout (152) for MSM analysis, may be a useful alternative in this 

scenario.   

8.4. Implications for clinicians and patients 

In HSC transplantation studies, and patient outcome studies in general, simple 

methods are often used to handle missing event times. These include CCA (44), 

the replacement of all missing times with the mean of the observed times (45), or 

the substitution of the censoring interval midpoint (204).  Such methods can lead 

to bias and under-coverage (46, 47).  For the NHS CBB patient outcomes analysis, 

CCA is biased because missingness of event times depends on the analysis 

outcome and covariates.  In this scenario, my simulation study results suggest 

that CCA will tend to under-estimate the cumulative incidence and consequently 
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over-estimate the median event time (because event times for the competing 

events are generally fully observed and only cases of the events of interest are 

missing).  In addition, my results suggest that CCA will result in biased estimates 

of the probability of experiencing acute GvHD and relapse following CB 

transplantation.  Biased analysis results may lead to incorrect conclusions about 

the risks of CB transplantation, which will have considerable consequences for 

both clinicians and patients.  Through my research, I have identified MI 

strategies for handling missing event times that can be used to correct bias and 

improve precision (compared with CCA and other naïve methods).  This will 

ensure that accurate information is available to inform decision-making for both 

clinicians and patients.  

 

My analysis of the NHS CBB dataset provides the first insight into patient 

outcomes following transplantation using CB donated in the UK.  My analysis 

demonstrates that outcomes for NHS CBB patients are comparable to those for 

other CB banks worldwide, and for CB transplants in general.  My analysis 

conclusions will reassure clinicians and patients that CB donated to the NHS 

CBB is a safe and effective treatment, and can be used to inform treatment choice, 

clinical guidelines and commissioning.   

 

Currently, there is no information available for patients, from any of the main 

UK HSC transplantation organisations, about the frequency and likelihood of 

adverse events after CB transplantation (5, 11, 27).  It is vital that patients have 

access to clear and easily understandable information about the risks and 

benefits of CB transplantation.  An advantage of the MSM approach I have used 

is that it facilitates effective communication to patients, because the probability of 

adverse events at any given time can be illustrated graphically (see Chapter 7, 

Figure 7.3, for example), or summarised as the number of days spent in each 

state (Chapter 7, Table 7.3).  Hence, the analysis described in this thesis can be 

used to fill the gap in available patient information.  
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8.5. Strengths and Limitations 

A particular strength of my research has been the incorporation of robust 

methods for handling missing data alongside complex methods for modelling 

multiple events.  I have compared MI strategies using in-depth simulation 

studies, providing valuable insight into the best approach for handling missing 

event times.  In addition, I have extended previous research by describing in 

detail how to simulate MSM data.  I have also derived new estimators of SE (of 

percentiles of event times and RELOS) and examined their performance using 

simulation studies.   

 

Another strength of my research has been my use of detailed baseline and 

follow-up data, enabling me to provide the first insight into transplantation 

outcomes using CB donated to a UK CB bank.  In the NHS CBB dataset, event 

times were commonly missing for transplants performed outside Europe (for 

transplants in the USA in particular).  The standard approach in transplantation 

studies would be to exclude these transplants from analysis.  Using MI methods, 

I have been able to include these transplants, and hence, provide more 

generalisable results (i.e. my results are not specific to UK/European 

transplantation protocols).  My results are further generalisable because my 

analysis included patients with both malignant and non-malignant blood 

diseases, as well as both adult and paediatric patients.  Prognoses and treatment 

approaches vary between these patient groups.  Therefore, an additional strength 

of my research has been the application of MSMs, allowing prediction of 

transplant outcomes for specific patient types (e.g. paediatric patients treated for 

non-malignant blood disorders). 

 

A limitation of my research has been the relatively small size of the NHS CBB 

dataset (N=432).  This has limited the power of my analysis and may explain, for 
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example, why I did not detect a strong association between donor-recipient sex 

match and patient outcomes.   

 

A further limitation of the work presented here is that some data were missing in 

my real dataset.  I was not able to contact transplant centres directly, so there was 

no way to obtain the missing data.  I performed extensive investigations to 

overcome this issue.  However, the MI methods I applied are valid only if all 

incomplete variables are not MNAR, and the imputation model is correctly 

specified.  In reality, there may be some unmeasured predictors of missingness.  

In addition, MNAR cannot truly be ruled out in any real dataset with many 

incomplete variables.   

 

The MSM considered in my research represents an extremely simplified version 

of the event history for patients after HSC transplantation.  In addition to the 

events reported in the NHS CBB dataset (see Chapter 4, Figure 4.1 for illustration 

of all event combinations experienced by patients in the NHS CBB dataset), 

patients can experience repeat recurrence of infections and other adverse events 

after transplant, as well as multiple transplants and periods of disease remission 

and relapse (10).  Clinical inference would be strengthened, and important 

clinical questions could be answered, if a more detailed event history was 

modelled for each patient.  However, this does rely on the availability of 

additional post-transplant data, which will almost certaintly include some 

missing data.  A more complex analysis model will increase the complexity of 

any imputation model and the likelihood of imputation model misspecification. 

8.6. Further work 

As further work, the methods I have used in my research could be applied to 

other UK HSC transplantation registries, e.g. the British Bone Marrow registry 

(BBMR) (205).  The larger size of the BBMR patient dataset (because more 

transplants are performed using BM than CB) would be an advantage.  This 
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would provide further insight into the risks and benefit of HSC transplantation 

in a UK context.  Furthermore, my methods could be applied to the UK organ 

transplantation registry (32).  For example, MSM analysis could be used to 

determine the risks and benefits of sequential bilateral corneal transplantation 

(202), or to calculate the relative probability of death while waiting for a lung 

transplant compared with death following a lung transplant (31).  

 

The three-state, unidirectional Markov model considered in my research is the 

simplest MSM that includes an intermediate state.  Further work is needed to 

determine if the conclusions of this research still hold for more complex MSMs 

with multiple intermediate states, with reversible or recurring transitions 

between states, or with multiple time scales (68).  There was some indication that 

the proportional hazards assumption did not hold for my transition intensity 

models, particularly for the model for the transition from transplant to 

relapse/death.  Therefore, my analysis could be improved by including time-

dependent regression parameters, or by using the dynamic landmarking 

approach (206). 

 
Although I considered large datasets in some limited situations in my simulation 

studies, the main objective of my simulation studies was to inform my analysis of 

the real dataset.  Therefore, the size of my simulated datasets, and choice of 

parameters in DGMs and MDMs, were guided by the real data.  To assess the 

sensitivity of methods to these factors, a useful extension of my research would 

be to repeat my simulation studies using a range of sample sizes, covariate 

associations and event rates.   

 

Although PMM performed well in my study, there is still scope for 

improvement, for example, by development of methods that are explicitly 

compatible with a competing risks or MSM analysis.  This could be achieved, for 

example, through an extension of the MAR stacked MI approach of Beesley and 

Taylor (119) or the SMC-FCS method (194) to direct modelling of the cumulative 
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incidence function and to MSM.  Alternatively, another method proposed by 

Beesley and Taylor (147) could be extended, combining an FML approach with 

full imputation (Beesley and Taylor use “improper” imputation within their EM 

algorithm).  A particular benefit of their approach is that (unlike other FML 

methods developed so far), a mixture of exact and interval-censored event times 

can be accommodated.  Finally, in my study, I found that parametric transition 

intensity models resulted in less biased estimates of expected length of stay in 

each state than semi-parametric models.  Therefore, it would also be useful to 

extend compatible methods to parametric analysis models.      

 

As a further work, sensitivity analyses could be performed to determine the 

extent to which analysis conclusions will change if the MAR assumption does not 

hold.  This could be achieved by considering various MNAR missingness 

mechanisms.  The simplest approach would be to set all missing event times to 

the smallest or largest of the observed times for each event type (or possibly use 

the average follow-up time instead of the largest observed time for missing times 

of relapse or chronic GvHD).  A more sophisticated alternative would be the 

“pattern mixture” approach (85), in which imputation model parameters, for 

each incomplete covariate or outcome, are changed by a value δ, where δ 

represents the hypothesised difference between the distribution of observed and 

missing event times.  This can be implemented using an FCS MI approach (207).  

Other possible approaches are to use expert knowledge to inform likely 

missingness mechanisms (200), to use proxy data in the imputation model (196), 

or to use a weighting approach post-imputation to correct any bias e.g. as in the 

weighted analysis of stacked MI approach (208).    

8.7. Final conclusions 

In summary, this thesis provides the first insight into patient outcomes after HSC 

transplantation using CB donated to a UK CB bank.  This information will 

benefit NHSBT, health statisticians, patients, and clinicians.  In my thesis, I have 
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demonstrated the gains, in terms of bias and precision, in using MI strategies to 

handle missing event times in complex survival models.  The methods described 

in my thesis will be useful more generally for statisticians and researchers in a 

wide range of contexts.   
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Appendices 

Table A.1a. Combinations of events, in event time order, for patients with fully observed event 
times in the NHS CBB dataset.   

  Events experienced N 

AgvHD & CGvHD  

AgvHD engraftment CGvHD   6 

AgvHD engraftment CGvHD relapse death 2 

Engraftment AgvHD CGvHD relapse death 3 

Engraftment AgvHD CGvHD relapse  4 

Engraftment AgvHD CGvHD death  8 

Engraftment AgvHD CGvHD   19 

AgvHD w/o CGvHD  

AgvHD engraftment relapse death  9 

AgvHD engraftment relapse   2 

AgvHD engraftment death   23 

AgvHD engraftment    30 

Engraftment AgvHD relapse death  7 

Engraftment AgvHD relapse   2 

Engraftment AgvHD death   14 

Engraftment AgvHD    38 

AgvHD relapse g.failure death  1 

AgvHD g.failure death   3 

AgvHD g.failure relapse death  2 

AgvHD death    1 

CGVHD w/o AgvHD  

CGvHD g.failure relapse death  1 

Engraftment CGvHD   6 

Engraftment CGvHD death   2 

Relapse w/o GvHD  

Relapse g.failure death   3 

Relapse death    2 

Engraftment relapse death   17 

Engraftment relapse    4 

G.failure relapse death   2 

G.failure relapse    2 

Neither GvHD nor relapse  

Engraftment death    30 

Engraftment     65 

G.failure death    11 

G.failure     6 

Death only   18 

ALL PATIENTS 342 
AgvHD = acute GvHD; CGVHD = chronic GvHD; engraftment = myeloid engraftment; g.failure 
= graft failure; w/o = without. 
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Table A.1b. Combinations of events, in event time order, for cases with at least one missing event 
time. 
* indicates events with missing event times, which are listed first.   

Events experienced N 

AgvHD & CGvHD  

AgvHD* CGvHD* relapse* engraftment death 1 

AgvHD* CGvHD* engraftment  18 

AgvHD* engraftment CGvHD death  1 

AgvHD* engraftment CGvHD  2 

CGvHD* AgvHD engraftment death  1 

CGvHD* AgvHD engraftment relapse death 1 

CGvHD* engraftment AgvHD  3 

AgvHD w/o CGvHD  

AgvHD* engraftment death  9 

AgvHD* engraftment  20 

AgvHD* engraftment relapse death  2 

AgvHD* relapse* engraftment death 4 

Engraftment* AgvHD death  1 

Engraftment* AgvHD  1 

G.failure* AgvHD relapse death  1 

Relapse* AgvHD engraftment death  1 

Relapse* AgvHD engraftment  1 

Relapse* engraftment AgvHD death  1 

CGVHD w/o AgvHD  

CGvHD* engraftment  5 

Relapse w/o GvHD  

Relapse* engraftment death  10 

Relapse* g.failure* death  1 

Relapse* g.failure death  1 

Relapse* g.failure  1 

Relapse* death  1 

Neither GvHD nor relapse  

Engraftment* death  1 

G.failure*  2 

ALL PATIENTS 90 
AgvHD = acute GvHD; CGVHD = chronic GvHD; engraftment = myeloid engraftment; g.failure 
= graft failure; w/o = without. 
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Table A.2. Study 1: Standardised bias (StdBias) and average model-based SE (ModSE) of cumulative incidence at largest event time and lower quartile time 
of acute GvHD given event times (a) MCAR, (b) MAR (dependent on event type only), (c) MAR (dependent on event type, the number of cords received and 
time to myeloid engraftment), (d) shortest times MNAR, (e) longest times MNAR.   

Estimand (true result) Cumulative incidence (55.58%) Lower quartile (26.00 days) 

Proportion of missing times 10% 30% 50% 10% 30% 50% 

Missing 
data 
mechanism 

Imputation 
method 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Complete data StdBias=0.00; ModSE= 2.39% StdBias=-0.15; ModSE= 1.83 days 

MCAR PMM 0.12 2.43 0.38 2.52 0.63 2.67 0.10 1.92 0.66 2.01 0.99 2.17 

 LOGNORM 0.01 2.39 0.03 2.39 0.06 2.42 -0.29 1.98 -0.54 2.23 -0.72 2.56 

 MICI 0.43 2.41 1.37 2.44 2.33 2.46 -0.36 2.01 -0.71 2.26 -0.95 2.40 

 RESNORM 0.12 2.41 0.42 2.47 0.83 2.57 0.48 1.86 1.98 2.09 3.07 3.01 

 NORM 0.32 2.46 0.75 2.56 1.00 2.67 -0.33 2.19 -0.69 3.05 -1.05 4.45 

 PMMNOAUX 0.00 2.39 0.02 2.40 0.06 2.44 0.08 2.06 0.43 2.88 0.77 4.90 

 NORMNOAUX 0.28 2.45 0.60 2.50 0.71 2.54 -0.29 2.22 -0.56 3.13 -0.90 4.74 

 CCA 0.00 2.52 -0.01 2.86 0.00 3.38 -0.14 1.93 -0.13 2.16 -0.16 2.58 

 INTCCR 0.39 2.53 1.26 2.52 2.30 2.56 -0.46 2.09 -0.86 2.06 -1.24 2.19 

MAR 
(event type 
only) 

PMM 0.10 2.43 0.44 2.58 1.02 2.84 0.15 1.92 0.84 1.98 1.59 2.19 

LOGNORM 0.01 2.39 0.04 2.42 0.09 2.48 -0.29 1.98 -0.53 2.26 -0.73 2.60 

MICI 0.00 2.39 0.00 2.39 -0.01 2.39 -0.21 1.98 -0.37 2.16 -0.56 2.35 

RESNORM 0.04 2.41 0.23 2.49 0.64 2.69 0.33 1.90 1.46 2.09 2.32 2.74 

 NORM 0.37 2.47 1.07 2.60 1.78 2.75 -0.32 2.20 -0.72 3.02 -1.29 4.44 

 PMMNOAUX 0.00 2.39 0.03 2.41 0.08 2.47 0.08 2.03 0.49 2.86 0.87 4.93 

 NORMNOAUX 0.34 2.46 0.95 2.56 1.52 2.62 -0.27 2.21 -0.60 3.12 -0.97 4.89 

 MID 0.00 2.39 0.00 2.39 0.00 2.39 0.94 1.70 2.49 2.15 2.87 4.26 

 MED 0.00 2.39 0.00 2.39 0.00 2.39 1.05 0.86 1.28 0.14 1.07 0.09 

 CCA -1.02 2.47 -3.04 2.63 -5.11 2.76 0.41 1.83 1.67 2.05 1.70 4.90 

 INTCCR -0.07 2.56 -0.05 2.57 -0.09 2.60 -0.18 2.15 -0.50 2.26 -0.63 2.45 
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Estimand (true result) Cumulative incidence (55.58%) Lower quartile (26.00 days) 

Proportion of missing times 10% 30% 50% 10% 30% 50% 

Missing 
data 
mechanism 

Imputation 
method 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Complete data StdBias=0.00; ModSE= 2.39% StdBias=-0.15; ModSE= 1.83 days 

MAR 
(event type 
+ covars) 

PMM 0.02 2.39 0.08 2.41 0.23 2.45 -0.39 2.03 -0.97 2.23 0.06 2.58 

LOGNORM -0.01 2.39 0.00 2.39 0.01 2.39 -1.13 2.04 -4.09 1.88 -3.91 2.36 

MICI -0.01 2.39 -0.01 2.39 -0.01 2.39 -0.65 2.02 -1.90 2.02 -1.96 2.09 

 RESNORM 0.00 2.39 0.01 2.39 0.07 2.41 -0.12 1.96 -0.04 2.21 0.93 3.12 

 NORM 0.20 2.43 0.55 2.50 0.95 2.57 -1.12 2.25 -3.97 2.59 -5.02 8.01 

 PMMNOAUX 0.00 2.39 0.02 2.41 0.07 2.47 -0.39 2.10 -0.92 3.25 0.07 6.11 

 NORMNOAUX 0.33 2.46 0.94 2.56 1.52 2.62 -0.73 2.23 -2.22 2.78 -1.97 4.72 

 MID -0.01 2.39 -0.01 2.39 -0.01 2.39 0.60 1.74 1.89 2.43 2.89 4.56 

 MED -0.01 2.39 -0.01 2.39 -0.01 2.39 0.40 0.87 -0.71 0.14 -0.54 0.09 

CCA -1.02 2.47 -3.05 2.62 -5.11 2.75 -0.07 1.88 0.15 2.14 1.10 7.00 

 INTCCR -0.08 2.60 -0.13 2.67 -0.14 2.74 -0.61 2.19 -1.65 2.28 -1.28 2.87 

MNAR 
(shortest 
times 
missing) 

PMM 0.16 2.45 0.75 2.71 1.28 2.94 1.94 1.48 4.14 1.72 4.38 3.15 

LOGNORM 0.01 2.39 0.08 2.41 0.23 2.54 1.41 1.50 3.55 1.72 4.81 2.89 

MICI 0.00 2.39 0.00 2.39 0.00 2.39 1.26 1.50 3.27 1.46 5.63 1.36 

RESNORM 0.07 2.42 0.49 2.60 0.92 2.80 1.81 1.50 4.22 1.84 5.11 2.84 

 NORM 0.49 2.50 1.37 2.68 2.06 2.82 1.42 1.63 3.01 1.98 3.99 3.64 

 PMMNOAUX 0.01 2.39 0.05 2.42 0.13 2.51 1.74 1.52 3.93 2.09 3.96 4.65 

 NORMNOAUX 0.34 2.46 0.97 2.56 1.57 2.63 1.34 1.67 3.06 2.04 3.85 3.82 

 MID 0.00 2.39 0.00 2.39 0.00 2.39 2.14 1.48 4.34 2.24 4.78 2.99 

 MED 0.00 2.39 0.00 2.39 0.00 2.39 2.87 0.62 5.44 0.13 5.05 0.13 

 CCA -1.01 2.47 -3.04 2.63 -5.10 2.75 2.06 1.45 4.24 1.91 2.81 6.85 

 INTCCR -0.04 2.55 -0.03 2.52 -0.05 2.55 1.16 1.78 4.01 1.57 4.29 1.74 
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Estimand (true result) Cumulative incidence (55.58%) Lower quartile (26.00 days) 

Proportion of missing times 10% 30% 50% 10% 30% 50% 

Missing 
data 
mechanism 

Imputation 
method 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Complete data StdBias=0.00; ModSE= 2.39% StdBias=-0.15; ModSE= 1.83 days 

MNAR 
(longest 
times 
missing) 

PMM 0.31 2.62 0.83 2.90 0.87 2.87 -1.02 2.02 -3.05 1.84 -6.92 1.25 

LOGNORM 0.01 2.40 0.02 2.41 0.01 2.39 -1.44 1.97 -6.73 1.31 -10.51 1.26 

MICI -0.01 2.39 -0.01 2.39 -0.01 2.39 -1.32 1.99 -6.10 1.28 -9.06 1.08 

RESNORM 0.17 2.49 0.54 2.68 0.57 2.69 -0.72 1.98 -1.91 2.02 -4.55 1.67 

 NORM 0.47 2.54 1.27 2.73 1.44 2.75 -1.42 2.17 -5.99 1.74 -11.27 2.03 

 PMMNOAUX -0.01 2.39 0.01 2.40 0.04 2.44 -1.09 2.18 -3.20 3.20 -3.87 4.37 

 NORMNOAUX 0.33 2.46 0.93 2.56 1.48 2.62 -1.43 2.20 -6.25 1.82 -9.43 2.28 

 MID -0.01 2.39 -0.01 2.39 -0.01 2.39 -0.15 1.83 -0.16 1.81 -0.17 3.70 

MED -0.01 2.39 -0.01 2.39 -0.01 2.39 -0.40 0.89 -3.56 0.13 -7.99 0.08 

CCA -1.02 2.47 -3.05 2.62 -5.11 2.75 -0.77 1.91 -2.17 1.82 -4.97 1.40 

 INTCCR -0.13 2.74 -0.17 2.75 -0.15 2.76 -1.20 2.31 -4.19 1.75 -7.48 1.18 
PMM, MI by Type 1 predictive mean matching; PMMNOAUX, as for PMM excluding the auxiliary variable from the imputation model; LOGNORM, MI by 
log-normal imputation with post-imputation back-transformation; MICI, Delord and Genin’s MI method; RESNORM, MI by normal regression with 
restrictions on the imputed values; NORM, MI by normal regression; NORMNOAUX, as for NORM excluding the auxiliary variable from the imputation 
model; MID, replacement with interval mid-point; MED, replacement with median; CCA, complete case analysis; INTCCR, semi-parametric maximum 
likelihood method of Bakoyannis et al. 
 
In all cases, Monte Carlo SE for bias was <0.1% for cumulative incidence and <0.3 days for the lower quartile. 

  



 

228 

 

Table A.3. Study 2: Standardised bias (StdBias) and average model-based SE (ModSE) of cumulative incidence at 100 days and median time of acute GvHD 
given event times (a) MCAR, (b) MAR (dependent on event type only), (c) MAR (dependent on event type and the number of CB units transplanted, (d) 
shortest times MNAR, (e) longest times MNAR.   

Estimand (true result) Cumulative incidence (63.11%) Median (44.00 days) 

Complete data StdBias=0.02; ModSE= 2.15% StdBias=0.19; ModSE=3.60 days 

Proportion of missing times 10% 30% 50% 10% 30% 50% 

Missing data 
mechanism 

Imputation 
method 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

MCAR PMM 0.03 2.17 0.02 2.20 0.04 2.26 0.20 3.73 0.24 4.17 0.31 4.94 

 LOGNORM -0.02 2.17 -0.12 2.22 -0.23 2.27 0.28 3.78 0.41 4.24 0.52 4.87 

 MICI 0.19 2.15 0.52 2.15 0.88 2.15 -0.09 3.61 -0.09 3.60 -0.18 3.69 

 RESNORM 0.11 2.15 0.27 2.15 0.44 2.14 0.85 4.11 2.02 4.78 3.06 5.04 

 NORM -0.12 2.19 -0.40 2.26 -0.65 2.36 0.67 4.19 1.50 5.38 2.12 6.71 

 PMMNOAUX 0.02 2.16 0.03 2.18 0.07 2.21 0.19 3.71 0.19 3.97 0.21 4.26 

 NORMNOAUX -0.12 2.19 -0.38 2.26 -0.65 2.36 0.65 4.14 1.47 5.39 2.11 6.61 

 CCA 0.04 2.27 0.03 2.58 0.08 3.04 0.20 3.78 0.21 4.39 0.19 5.53 

 INTCCR 0.09 2.16 0.47 2.23 0.83 2.49 0.09 4.12 -0.15 4.25 -0.32 5.71 

MAR (event 
type only, 5 
imputations) 

PMM 0.02 2.17 0.01 2.20 -0.01 2.27 0.21 3.73 0.26 4.17 0.34 5.02 

LOGNORM -0.03 2.17 -0.16 2.22 -0.33 2.29 0.27 3.82 0.44 4.37 0.62 5.17 

MICI 0.10 2.15 0.27 2.15 0.44 2.14 0.13 3.63 0.03 3.71 0.06 3.89 

RESNORM 0.10 2.15 0.27 2.15 0.44 2.14 0.86 4.16 2.01 4.92 3.25 5.31 

 RESNORM500 0.10 2.15 0.27 2.15 0.44 2.14 0.86 4.16 2.01 4.92 3.25 5.31 

 NORM -0.14 2.19 -0.53 2.28 -1.04 2.43 0.67 4.25 1.48 5.69 2.16 7.48 

 PMMNOAUX 0.02 2.17 0.01 2.19 0.01 2.22 0.20 3.71 0.22 4.03 0.24 4.60 

 NORMNOAUX -0.14 2.19 -0.53 2.28 -1.04 2.44 0.67 4.23 1.48 5.67 2.18 7.59 

 NORMSUBGRP 0.02 2.16 0.02 2.18 0.02 2.20 0.20 3.70 0.20 3.94 0.19 4.13 

 CCA* -0.98 2.26 -2.99 2.48 -5.02 2.71 0.92 4.74 n/a n/a n/a n/a 

 INTCCR 0.05 2.15 0.25 2.17 0.41 2.20 0.17 4.10 0.05 4.16 -0.04 4.42 
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Estimand (true result) Cumulative incidence (63.11%) Median (44.00 days) 

Complete data StdBias=0.02; ModSE= 2.15% StdBias=0.19; ModSE=3.60 days 

Proportion of missing times 10% 30% 50% 10% 30% 50% 

Missing data 
mechanism 

Imputation 
method 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

MAR (event 
type only, 50 
imputations) 

PMM 0.02 2.16 0.01 2.19 -0.01 2.25 0.21 3.70 0.26 4.08 0.34 4.88 

LOGNORM -0.03 2.17 -0.17 2.21 -0.34 2.27 0.27 3.79 0.44 4.30 0.63 5.04 

MICI 0.10 2.15 0.27 2.15 0.44 2.14 0.13 3.61 0.02 3.68 0.06 3.83 

RESNORM 0.10 2.15 0.27 2.15 0.44 2.14 0.87 4.14 2.07 4.85 3.32 5.20 

 NORM -0.14 2.18 -0.54 2.26 -1.05 2.39 0.68 4.21 1.50 5.59 2.22 7.29 

 PMMNOAUX 0.02 2.16 0.02 2.18 0.02 2.21 0.18 3.72 0.20 3.94 0.23 4.38 

 NORMNOAUX -0.14 2.18 -0.54 2.26 -1.05 2.39 0.68 4.21 1.50 5.58 2.23 7.30 

 CCA* -0.98 2.26 -2.99 2.48 -5.02 2.71 0.92 4.74 n/a n/a n/a n/a 

MAR (event 
type + covar) 

PMM 0.02 2.17 -0.01 2.24 -0.19 2.50 0.19 3.78 0.30 4.77 0.68 7.12 

LOGNORM -0.02 2.17 -0.17 2.23 -0.37 2.37 0.25 3.85 0.44 4.54 0.56 6.03 

MICI 0.11 2.15 0.27 2.15 0.45 2.14 0.11 3.66 0.01 3.72 0.04 3.89 

 RESNORM 0.11 2.15 0.27 2.15 0.45 2.14 0.85 4.17 2.01 4.98 2.94 5.35 

 NORM -0.14 2.19 -0.53 2.31 -1.01 2.63 0.66 4.30 1.43 5.99 1.68 8.89 

 PMMNOAUX 0.03 2.16 0.03 2.19 0.02 2.22 0.17 3.76 0.19 4.03 0.23 4.60 

 NORMNOAUX -0.13 2.19 -0.52 2.28 -1.03 2.44 0.65 4.25 1.47 5.63 2.18 7.57 

NORMSUBGRP 0.02 2.17 0.03 2.18 0.03 2.20 0.17 3.74 0.18 3.94 0.17 4.12 

CCA* -0.98 2.26 -2.98 2.48 -5.03 2.71 0.90 4.76 n/a n/a n/a n/a 

INTCCR 0.05 2.16 0.23 2.17 0.42 2.18 0.17 4.16 0.04 4.17 -0.07 4.34 

MNAR 
(shortest 
times 
missing) 

PMM -0.07 2.17 -0.36 2.25 -0.85 2.48 0.84 3.81 2.12 4.51 3.25 5.62 

LOGNORM -0.13 2.18 -0.66 2.27 -1.68 2.51 0.95 3.92 2.43 4.90 3.54 6.92 

MICI 0.02 2.15 0.02 2.15 0.02 2.15 0.78 3.71 1.97 3.82 3.25 3.88 

RESNORM 0.02 2.15 0.02 2.15 0.02 2.15 1.41 4.14 3.43 4.75 5.56 4.66 

NORM -0.25 2.19 -1.01 2.33 -2.14 2.59 1.25 4.30 2.90 5.92 4.14 7.71 
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Estimand (true result) Cumulative incidence (63.11%) Median (44.00 days) 

Complete data StdBias=0.02; ModSE= 2.15% StdBias=0.19; ModSE=3.60 days 

Proportion of missing times 10% 30% 50% 10% 30% 50% 

Missing data 
mechanism 

Imputation 
method 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

Std 
Bias 

Mod 
SE 

MNAR 
(shortest 
times 
missing) 

PMMNOAUX -0.07 2.17 -0.34 2.23 -0.83 2.44 0.84 3.80 2.04 4.38 3.25 5.44 

NORMNOAUX -0.24 2.19 -1.01 2.33 -2.16 2.61 1.25 4.25 2.88 5.81 4.16 7.79 

CCA* -1.06 2.26 -3.19 2.48 -5.31 2.71 1.40 4.77 n/a n/a n/a n/a 

INTCCR -0.03 2.15 0.00 2.17 -0.01 2.18 0.80 4.15 2.10 4.19 3.56 4.28 

MNAR 
(largest 
times 
missing) 

PMM 0.84 2.13 0.84 2.13 0.84 2.13 -2.46 2.42 -10.31 1.35 -20.04 1.04 

LOGNORM 0.78 2.14 0.76 2.14 0.77 2.14 -2.37 2.46 -9.55 1.49 -18.54 1.17 

MICI 0.84 2.13 0.84 2.13 0.84 2.13 -2.45 2.42 -10.42 1.32 -20.35 0.82 

RESNORM 0.84 2.13 0.84 2.13 0.84 2.13 -1.48 2.68 -5.05 2.40 -0.50 6.71 

 NORM 0.69 2.15 0.44 2.20 0.12 2.26 -1.79 2.69 -7.01 1.97 -3.51 6.51 

 PMMNOAUX 0.84 2.13 0.84 2.13 0.84 2.13 -2.46 2.41 -10.41 1.31 -20.48 0.81 

 NORMNOAUX 0.69 2.15 0.44 2.20 0.12 2.27 -1.78 2.70 -7.09 1.97 -3.63 6.50 

 CCA* -0.25 2.24 -2.39 2.47 -4.54 2.72 -1.28 2.77 n/a n/a n/a n/a 

 INTCCR 0.79 2.22 0.74 2.23 0.75 2.33 -2.11 2.67 -9.07 1.52 -17.10 1.34 

*In these complete case analyses, less than 50% patients experienced acute GvHD so the median time to acute GvHD could not be estimated. 

PMM, MI by Type 1 predictive mean matching; PMMNOAUX, as for PMM excluding the auxiliary variable from the imputation model; LOGNORM, MI by 
log-normal imputation with post-imputation back-transformation; MICI, Delord and Genin’s MI method; RESNORM, MI by normal regression with 
restrictions on the imputed values and boundary comparison performed up to 200 times; RESNORM500, MI by normal regression with restrictions on the 
imputed values and boundary comparison performed up to 500 times; NORM, MI by normal regression; NORMNOAUX, as for NORM excluding the 
auxiliary variable from the imputation model; NORMSUBGRP, as for NORMNOAUX with the imputation model limited to cases of acute GvHD; CCA, 
complete case analysis; INTCCR, semi-parametric maximum likelihood method of Bakoyannis et al.     
 
In all cases, Monte Carlo SE for bias was <0.1% for cumulative incidence and <0.3 days for the median. 
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Table A.4a. Bias, average model-based SE (ModSE), empirical SE (EmpSE) and standardised bias (StdBias) of regression parameters βlm and coverage (Cov) 
for regression parameter γ12 for each transition intensity model, given various missing data mechanisms and imputation methods.   

Estimand  
(true result) 

β
01

1
  

(-0.8) 

β
02

1
  

(1.2) 

β
12

1
  

(1.2) 

β
12

2
  

(-1.0) 

γ
12

 

(0) 

Missing data 
mechanism 

Imputation 
method 

Bias Mod 
SE 

Emp 
SE 

Std 
Bias 

Bias Mod 
SE 

Emp 
SE 

Std 
Bias 

Bias Mod 
SE 

Emp 
SE 

Std 
Bias 

Bias Mod 
SE 

Emp 
SE 

Std 
Bias 

Cov 

Complete data (Cox) 0.00 0.20 0.20 0.02 0.00 0.16 0.16 -0.01 0.02 0.21 0.21 0.09 0.00 0.13 0.13 -0.01 0.94 

Complete data (Weibull) 0.00 0.20 0.20 0.01 0.00 0.16 0.16 0.02 0.02 0.21 0.21 0.11 -0.01 0.13 0.13 -0.04 0.95 

MCAR CCA -0.01 0.29 0.30 -0.02 -0.01 0.23 0.23 -0.03 0.05 0.31 0.30 0.15 -0.01 0.18 0.19 -0.07 0.95 
 CCA* -0.01 0.29 0.29 -0.02 0.01 0.23 0.22 0.05 0.06 0.30 0.31 0.20 -0.02 0.18 0.19 -0.09 0.95 
 PMM 0.00 0.25 0.21 0.02 -0.01 0.19 0.16 -0.05 -0.13 0.31 0.23 -0.57 0.01 0.16 0.15 0.09 0.95 
 PMM* 0.00 0.27 0.22 0.01 -0.03 0.23 0.17 -0.16 -0.13 0.33 0.25 -0.54 0.00 0.20 0.16 0.03 0.95 
 PMM30IMP -0.01 0.24 0.21 -0.03 -0.01 0.19 0.15 -0.09 -0.13 0.30 0.22 -0.58 0.01 0.16 0.14 0.08 0.96 
 PMMSUBGP -0.02 0.24 0.23 -0.10 -0.04 0.18 0.17 -0.23 -0.06 0.29 0.26 -0.22 0.01 0.16 0.15 0.04 0.94 
 PMMSUBGP* -0.03 0.24 0.23 -0.12 -0.03 0.18 0.16 -0.17 -0.05 0.29 0.25 -0.18 -0.02 0.16 0.15 -0.11 0.95 
 PMMCOMP 0.02 0.23 0.22 0.09 -0.01 0.17 0.17 -0.03 -0.07 0.37 0.32 -0.22 -0.01 0.20 0.20 -0.06 0.96 
 NORMSUBGP 0.00 0.26 0.21 0.02 -0.11 0.20 0.15 -0.68 -0.15 0.32 0.24 -0.64 0.05 0.17 0.15 0.31 0.95 

MAR (acute 
GvHD only) 

CCA -0.15 0.24 0.25 -0.60 -0.15 0.16 0.16 -0.95 0.03 0.25 0.25 0.13 -0.01 0.16 0.16 -0.04 0.93 
PMM 0.01 0.22 0.20 0.03 -0.01 0.16 0.16 -0.08 0.01 0.21 0.21 0.02 -0.01 0.13 0.13 -0.09 0.97 
PMMSUBGP -0.02 0.22 0.22 -0.09 -0.02 0.16 0.16 -0.13 0.01 0.21 0.21 0.03 -0.01 0.13 0.13 -0.08 0.94 
PMMSUBGP* -0.02 0.22 0.22 -0.08 -0.01 0.16 0.16 -0.08 0.01 0.21 0.21 0.05 -0.02 0.13 0.13 -0.16 0.95 
NORMSUBGP 0.06 0.22 0.19 0.32 0.01 0.16 0.15 0.04 0.01 0.22 0.21 0.06 -0.01 0.13 0.13 -0.10 0.93 

MNAR 
(smallest acute 
GvHD only) 

CCA 0.00 0.24 0.24 0.01 -0.06 0.16 0.16 -0.39 0.03 0.25 0.25 0.14 0.00 0.15 0.16 -0.01 0.94 
PMM 0.11 0.23 0.22 0.51 0.04 0.16 0.15 0.26 0.02 0.22 0.22 0.09 0.00 0.13 0.13 0.00 0.96 
PMMSUBGP 0.09 0.23 0.23 0.38 0.04 0.15 0.15 0.23 0.02 0.22 0.22 0.10 0.00 0.13 0.13 0.00 0.96 
PMMSUBGP* 0.03 0.23 0.26 0.11 0.04 0.15 0.15 0.27 0.02 0.22 0.22 0.11 0.00 0.13 0.13 -0.02 0.95 
NORMSUBGP 0.12 0.23 0.22 0.54 0.04 0.15 0.15 0.25 0.02 0.23 0.22 0.10 0.00 0.13 0.13 -0.01 0.95 

MAR (relapse/ 
death only, 0→2 
transition) 

CCA 0.17 0.20 0.20 0.77 0.16 0.19 0.20 0.80 0.02 0.21 0.21 0.09 0.00 0.13 0.13 -0.01 0.94 
PMM 0.06 0.25 0.21 0.29 0.03 0.20 0.17 0.18 0.02 0.21 0.21 0.09 0.00 0.13 0.13 -0.01 0.94 
PMMSUBGP 0.01 0.21 0.21 0.05 -0.01 0.17 0.16 -0.04 0.02 0.21 0.21 0.09 0.00 0.13 0.13 -0.01 0.94 
PMMSUBGP* 0.01 0.21 0.22 0.05 0.00 0.16 0.17 0.03 0.02 0.21 0.21 0.11 -0.01 0.13 0.13 -0.04 0.95 
NORMSUBGP 0.00 0.21 0.21 0.01 0.00 0.17  0.17 0.00 0.02 0.21 0.21 0.09 0.00 0.13 0.13 -0.01 0.94 
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Estimand  
(true result) 

β
01

1
  

(-0.8) 

β
02

1
  

(1.2) 

β
12

1
  

(1.2) 

β
12

2
  

(-1.0) 

γ
12

 

(0) 

Missing data 
mechanism 

Imputation 
method 

Bias Mod 
SE 

Emp 
SE 

Std 
Bias 

Bias Mod 
SE 

Emp 
SE 

Std 
Bias 

Bias Mod 
SE 

Emp 
SE 

Std 
Bias 

Bias Mod 
SE 

Emp 
SE 

Std 
Bias 

Cov 

MAR (relapse/ 
death only, 
both 
transitions) 

CCA -0.01 0.24 0.25 -0.03 0.02 0.19 0.19 0.12 0.06 0.26 0.27 0.21 0.05 0.15 0.16 0.30 0.94 
PMM 0.02 0.26 0.22 0.10 0.01 0.22 0.17 0.04 -0.12 0.34 0.26 -0.46 0.02 0.17 0.16 0.14 0.94 
PMMSUBGP -0.01 0.22 0.22 -0.06 -0.03 0.18 0.17 -0.18 -0.06 0.31 0.28 -0.21 0.03 0.16 0.16 0.16 0.94 
PMMSUBGP* -0.02 0.22 0.21 -0.10 -0.02 0.18 0.16 -0.13 -0.05 0.30 0.28 -0.18 0.00 0.16 0.16 -0.03 0.94 
NORMSUBGP -0.08 0.23 0.23 -0.36 -0.03 0.17 0.17 -0.16 -0.17 0.32 0.24 -0.70 0.20 0.15 0.13 1.51 0.96 

MNAR 
(smallest 
relapse/death 
only, both 
transitions) 

CCA 0.05 0.21 0.22 0.23 0.00 0.32 0.33 -0.01 0.02 0.22 0.22 0.09 0.00 0.13 0.13 -0.01 0.94 
PMM -0.37 0.26 0.22 -1.69 -0.30 0.44 0.25 -1.21 0.01 0.23 0.22 0.07 0.00 0.13 0.13 -0.02 0.95 
PMMSUBGP -0.45 0.22 0.22 -2.07 -0.58 0.23 0.22 -2.61 -0.01 0.23 0.22 -0.03 0.00 0.13 0.13 0.03 0.94 
PMMSUBGP* -0.45 0.22 0.22 -2.10 -0.57 0.25 0.29 -1.93 0.01 0.22 0.22 0.05 -0.04 0.13 0.13 -0.27 0.92 
NORMSUBGP -0.49 0.23 0.22 -2.22 -0.59 0.23 0.25 -2.38 -0.08 0.25 0.22 -0.39 0.02 0.13 0.13 0.19 0.94 

MAR (acute 
GvHD & 
relapse/death) 

CCA -0.18 0.30 0.32 -0.58 -0.15 0.19 0.19 -0.77 0.09 0.32 0.32 0.27 0.04 0.19 0.19 0.22 0.94 
PMM 0.02 0.28 0.23 0.11 0.00 0.22 0.18 0.01 -0.14 0.35 0.26 -0.54 0.01 0.16 0.15 0.08 0.92 
PMMSUBGP -0.02 0.24 0.23 -0.10 -0.04 0.18 0.16 -0.23 -0.08 0.32 0.27 -0.27 0.02 0.17 0.15 0.15 0.93 
PMMSUBGP* -0.03 0.24 0.23 -0.13 -0.03 0.18 0.16 -0.19 -0.06 0.31 0.27 -0.22 -0.02 0.17 0.16 -0.14 0.95 

MNAR 
(smallest acute 
GvHD) & MAR 
(relapse/death) 

CCA 0.00 0.29 0.29 -0.01 -0.04 0.19 0.20 -0.20 0.08 0.31 0.30 0.26 0.05 0.18 0.19 0.24 0.94 
PMM 0.12 0.30 0.24 0.51 0.05 0.22 0.17 0.28 -0.12 0.36 0.27 -0.46 0.01 0.17 0.16 0.09 0.94 
PMMSUBGP 0.10 0.26 0.24 0.40 0.03 0.17 0.16 0.17 -0.07 0.33 0.29 -0.24 0.03 0.17 0.15 0.18 0.96 
PMMSUBGP* 0.04 0.26 0.28 0.15 0.04 0.17 0.16 0.23 -0.05 0.33 0.27 -0.19 0.00 0.17 0.16 -0.03 0.95 

MNAR (largest 
acute GvHD) & 
MAR (relapse/ 
death) 

CCA -0.38 0.30 0.33 -1.17 -0.40 0.20 0.22 -1.85 0.07 0.32 0.33 0.22 0.04 0.18 0.19 0.24 0.94 
PMM -0.15 0.28 0.25 -0.59 -0.21 0.27 0.21 -1.01 -0.14 0.35 0.27 -0.51 0.00 0.17 0.15 0.01 0.97 
PMMSUBGP -0.19 0.22 0.23 -0.81 -0.31 0.19 0.20 -1.56 -0.11 0.31 0.27 -0.42 0.02 0.17 0.15 0.14 0.95 
PMMSUBGP* -0.31 0.23 0.26 -1.20 -0.21 0.18 0.17 -1.24 -0.11 0.30 0.26 -0.42 -0.03 0.17 0.16 -0.16 0.95 

MAR (acute 
GvHD) & 
MNAR 
(smallest 
relapse/death) 

CCA -0.11 0.25 0.27 -0.40 -0.14 0.32 0.33 -0.43 0.03 0.26 0.27 0.11 0.00 0.16 0.17 0.00 0.94 
PMM -0.38 0.26 0.22 -1.74 -0.31 0.43 0.26 -1.21 0.00 0.23 0.22 0.00 -0.01 0.13 0.13 -0.05 0.94 
PMMSUBGP -0.46 0.23 0.22 -2.10 0.61 0.24 0.24 -2.57 -0.02 0.23 0.22 -0.10 0.00 0.13 0.13 0.00 0.94 
PMMSUBGP* -0.47 0.23 0.22 -2.13 -0.59 0.27 0.31 -1.90 0.00 0.23 0.22 0.00 -0.04 0.13 0.14 -0.31 0.94 
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Estimand  
(true result) 

β
01

1
  

(-0.8) 

β
02

1
  

(1.2) 

β
12

1
  

(1.2) 

β
12

2
  

(-1.0) 

γ
12

 

(0) 

Missing data 
mechanism 

Imputation 
method 

Bias Mod 
SE 

Emp 
SE 

Std 
Bias 

Bias Mod 
SE 

Emp 
SE 

Std 
Bias 

Bias Mod 
SE 

Emp 
SE 

Std 
Bias 

Bias Mod 
SE 

Emp 
SE 

Std 
Bias 

Cov 

MAR (acute 
GvHD) & 
MNAR (largest 
relapse/death) 

CCA -0.16 0.27 0.27 -0.60 -0.52 0.16 0.16 -3.30 -0.37 0.28 0.30 -1.25 -0.09 0.23 0.24 -0.39 0.95 
PMM -0.01 0.23 0.21 -0.05 -0.13 0.18 0.16 -0.79 -0.57 0.25 0.20 -2.80 0.32 0.17 0.13 2.50 0.98 
PMMSUBGP -0.03 0.23 0.22 -0.12 -0.15 0.18 0.16 -0.90 -0.54 0.25 0.22 -2.52 0.31 0.18 0.13 2.36 0.98 
PMMSUBGP* -0.03 0.23 0.22 -0.12 -0.14 0.18 0.16 -0.87 -0.48 0.23 0.18 -2.73 0.08 0.16 0.15 0.53 0.66 

MNAR 
(smallest acute 
GvHD & 
smallest 
relapse/death) 

CCA 0.01 0.24 0.24 0.06 0.00 0.32 0.33 -0.01 0.03 0.25 0.26 0.13 0.00 0.15 0.16 -0.01 0.94 
PMM -0.31 0.28 0.23 -1.37 -0.22 0.39 0.24 -0.90 0.00 0.24 0.22 0.02 0.00 0.13 0.13 0.01 0.94 
PMMSUBGP -0.41 0.24 0.23 -1.74 -0.46 0.23 0.22 -2.08 -0.01 0.24 0.22 -0.05 0.01 0.13 0.13 0.05 0.95 
PMMSUBGP* -0.44 0.26 0.26 -1.67 -0.45 0.25 0.29 -1.54 0.00 0.23 0.22 -0.01 -0.01 0.13 0.13 -0.06 0.95 

State indicators: 0 = transplanted; 1 = acute GvHD; 2 = relapse/death. 

Parameters 𝛽𝑙𝑚
1 , 𝛽𝑙𝑚

2 , γ12 are for disease status at time of transplant, number of CB units transplanted and time from transplant until acute GvHD, respectively.   
Monte Carlo SE for bias/coverage ranges from 0.004 to 0.015 for all estimands.  
*Cox models were fit, except for methods indicated with a *, for which Weibull models were fit. 
CCA, complete case analysis;  
PMM, MI by Type 1 predictive mean matching;  
PMM30IMP, as for PMM, with number of imputations = 30;  
PMMSUBGP, as for PMM with imputation models fit separately for patients with and without acute GvHD;  
PMMCOMP, as for PMM, imputing acute GvHD time and time from acute GvHD to relapse/death with post-imputation calculation of relapse/death time;  
NORMSUBGP, MI by normal regression with imputation models fit separately for patients with and without acute GvHD. 
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Table A.4b. Bias, average model-based SE (ModSE), empirical SE (EmpSE) and standardised bias (StdBias) of RELOS between 0 and 2 years, em(2), for each 
transition intensity model given various missing data mechanisms and imputation methods.   

Estimand  
(true result) 

e0(2)  
(26.3) 

e1(2) 
(140.6) 

e2(2) 
(563.1) 

Missing data 
mechanism 

Imputation 
method 

Bias Mod 
SE 

Emp 
SE 

Std 
Bias 

Bias Mod 
SE 

Emp 
SE 

Std 
Bias 

Bias Mod 
SE 

Emp 
SE 

Std 
Bias 

Complete data (Cox) -0.1 1.4 1.1 -0.05 -0.5 11.4 11.3 -0.04 -13.4 17.8 16.8 -0.79 

Complete data (Weibull) 0.0 1.0 1.0 0.02 -0.2 11.4 11.3 -0.02 0.2 11.5 11.4 0.01 

MCAR CCA -0.2 2.7 1.8 -0.09 -1.4 16.3 16.6 -0.08 -26.9 29.2 28.7 -0.93 
CCA* 0.0 1.4 1.4 0.01 -0.4 16.2 16.4 -0.02 0.3 16.4 16.6 0.02 
PMM 0.4 2.1 1.5 0.27 -0.5 15.4 13.5 -0.03 -19.4 21.9 22.2 -0.87 
PMM* -0.2 3.4 2.2 -0.08 -1.4 21.9 16.4 -0.08 -9.8 66.3 38.3 -0.26 
PMM30IMP 0.4 2.2 1.4 0.28 -0.4 15.0 13.0 -0.03 -19.1 22.3 21.2 -0.90 
PMMSUBGP -0.6 2.1 1.4 -0.40 1.0 15.5 14.1 0.07 -20.1 26.3 22.2 -0.90 
PMMSUBGP* -0.5 1.7 1.3 -0.35 2.6 15.9 13.5 0.20 -2.9 24.6 15.9 -0.19 
PMMCOMP 0.0 1.8 1.4 -0.01 -2.6 19.7 18.8 -0.14 -19.5 28.9 25.8 -0.76 
NORMSUBGP 4.1 4.5 2.3 1.81 8.6 19.8 14.1 0.61 -30.3 53.3 26.4 -1.15 

MAR  
(acute GvHD 
only) 

CCA -0.7 2.4 1.4 -0.51 -13.6 11.9 12.0 -1.13 -6.7 22.7 21.4 -0.31 
PMM -0.2 1.6 1.4 -0.13 -0.1 11.5 11.3 -0.01 -13.6 17.8 16.8 -0.81 
PMMSUBGP -0.5 1.8 1.4 -0.32 0.0 11.5 11.3 0.00 -13.5 17.9 16.8 -0.80 
PMMSUBGP* -0.4 1.3 1.3 -0.27 0.8 11.4 11.3 0.07 -0.4 11.6 11.4 -0.04 
NORMSUBGP 5.5 3.8 1.9 2.83 -3.5 11.5 11.1 -0.32 -15.9 17.9 16.9 -0.95 

MNAR  
(smallest acute 
GvHD only) 

CCA 5.0 1.7 1.4 3.59 -12.1 12.5 12.6 -0.96 -11.9 22.5 20.8 -0.57 
PMM 5.6 1.4 1.4 4.11 -3.9 11.4 11.2 -0.35 -15.7 17.9 16.8 -0.93 
PMMSUBGP 5.5 1.7 1.5 3.76 -3.8 11.4 11.2 -0.34 -15.6 17.9 16.8 -0.93 
PMMSUBGP* 5.8 1.2 1.4 4.18 -3.8 11.4 11.1 -0.34 -2.0 11.6 11.4 -0.17 
NORMSUBGP 7.1 2.1 1.5 4.84 -4.8 11.4 11.1 -0.43 -16.2 17.8 16.8 -0.97 

MAR (relapse/ 
death only, 0→2 
transition) 

CCA 0.6 1.3 1.2 0.50 11.6 12.2 12.0 0.97 -26.1 18.4 17.3 -1.51 
PMM 0.4 1.8 1.2 0.29 -0.5 11.4 11.3 -0.04 -13.8 17.9 16.8 -0.82 
PMMSUBGP -0.1 1.4 1.2 -0.05 -0.5 11.4 11.3 -0.05 -13.3 17.8 16.8 -0.79 
PMMSUBGP* 0.0 1.0 1.1 0.04 -0.2 11.4 11.3 -0.02 0.2 11.5 11.4 0.02 
NORMSUBGP 0.4 1.3 1.1 0.34 1.2 11.6 11.4 0.10 -15.5 17.9 16.8 -0.92 
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Estimand  
(true result) 

e0(2)  
(26.3) 

e1(2) 
(140.6) 

e2(2) 
(563.1) 

Missing data 
mechanism 

Imputation 
method 

Bias Mod 
SE 

Emp 
SE 

Std 
Bias 

Bias Mod 
SE 

Emp 
SE 

Std 
Bias 

Bias Mod 
SE 

Emp 
SE 

Std 
Bias 

MAR  
(relapse/death 
only, both 
transitions) 

CCA 0.0 2.5 1.4 -0.01 10.7 16.9 16.4 0.65 -28.4 24.1 22.4 -1.27 
PMM 0.1 1.9 1.3 0.06 -1.2 19.6 16.9 -0.07 -16.6 25.1 22.8 -0.73 
PMMSUBGP -0.3 1.5 1.2 -0.21 1.1 19.3 17.5 0.06 -18.3 24.9 23.0 -0.79 
PMMSUBGP* -0.2 1.1 1.1 -0.19 2.0 19.6 17.5 0.11 -1.8 19.7 17.6 -0.10 
NORMSUBGP 0.2 1.6 1.2 0.20 35.8 16.1 15.1 2.38 -47.4 20.9 16.3 -2.91 

MNAR (smallest 
relapse/death 
only, both 
transitions) 

CCA 4.1 1.4 1.3 3.19 38.9 13.7 14.0 2.77 -56.9 19.0 18.3 -3.11 
PMM 12.9 7.6 4.4 2.92 5.5 11.9 12.1 0.45 -32.3 19.1 17.7 -1.82 
PMMSUBGP 5.8 2.5 1.7 3.47 6.1 11.8 12.0 0.51 -25.9 17.8 17.2 -1.50 
PMMSUBGP* 5.9 1.2 1.4 4.35 8.5 11.8 12.3 0.69 -14.4 11.7 12.5 -1.16 
NORMSUBGP 5.9 2.2 1.5 4.01 9.5 12.0 12.2 0.78 -28.5 18.1 16.5 -1.74 

MAR (acute 
GvHD & 
relapse/death) 

CCA -0.8 4.4 1.9 -0.44 -4.8 17.5 17.5 -0.27 -22.1 30.1 27.8 -0.79 
PMM 0.1 2.2 1.4 0.11 -1.5 19.6 16.2 -0.09 -16.4 25.0 22.6 -0.73 
PMMSUBGP -0.5 2.2 1.5 -0.36 2.6 20.1 16.3 0.16 -20.1 25.5 22.5 -0.89 

 PMMSUBGP* -0.4 1.4 1.3 -0.35 1.9 19.7 15.9 0.12 -1.5 19.8 16.0 -0.09 

MNAR (smallest 
acute GvHD) & 
MAR 
(relapse/death) 

CCA 5.2 2.9 1.7 2.99 -1.9 18.5 18.7 -0.10 -27.8 29.3 27.1 -1.03 
PMM 6.1 2.5 1.5 3.97 -5.4 20.5 16.3 -0.33 -18.7 25.8 22.5 -0.83 
PMMSUBGP 5.6 1.7 1.5 3.74 -1.9 20.0 16.1 -0.12 -21.5 25.4 22.6 -0.95 
PMMSUBGP* 5.8 1.3 1.4 4.16 -2.1 20.4 16.6 -0.13 -3.7 20.5 16.8 -0.22 

MNAR (largest 
acute GvHD) & 
MAR (relapse/ 
death) 

CCA -6.1 2.1 2.0 -3.11 -8.9 18.3 17.7 -0.50 -9.8 30.4 27.5 -0.36 
PMM -6.4 2.9 1.6 -4.13 1.6 21.2 16.5 0.10 -13.0 26.8 22.5 -0.58 
PMMSUBGP -6.3 2.0 1.7 -3.62 5.0 20.1 16.0 0.31 -16.7 25.6 21.9 -0.76 
PMMSUBGP* -8.3 0.9 0.9 -9.07 9.3 19.9 16.2 0.57 -1.0 20.0 16.3 -0.06 

MAR (acute 
GvHD) & MNAR 
(smallest relapse/ 
death) 

CCA 4.5 2.6 1.6 2.82 33.2 15.1 15.9 2.08 -57.4 24.1 22.4 -2.57 
PMM 13.4 7.7 4.7 2.88 5.9 11.9 12.0 0.49 -33.2 19.1 17.8 -1.87 
PMMSUBGP 5.6 3.2 1.8 3.03 6.6 11.9 11.9 0.56 -26.1 17.9 17.2 -1.52 
PMMSUBGP* 5.6 1.4 1.5 3.69 9.2 11.9 12.3 0.74 -14.8 11.8 12.5 -1.18 

MAR (acute 
GvHD) & MNAR 
(largest relapse/ 
death) 

CCA -2.9 1.4 1.3 -2.23 -104.9 3.6 5.5 -19.04 -443.5 10.9 12.6 -35.14 
PMM -0.6 1.4 1.3 -0.49 -95.1 4.7 6.1 -15.48 -454.9 5.1 11.8 -38.39 
PMMSUBGP -1.0 1.5 1.2 -0.82 -94.1 4.7 6.2 -15.27 -455.0 18.8 14.9 -30.53 
PMMSUBGP* -1.0 1.5 1.3 -0.72 -73.1 9.0 9.4 -7.82 74.1 9.2 9.7 7.66 
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Estimand  
(true result) 

e0(2)  
(26.3) 

e1(2) 
(140.6) 

e2(2) 
(563.1) 

Missing data 
mechanism 

Imputation 
method 

Bias Mod 
SE 

Emp 
SE 

Std 
Bias 

Bias Mod 
SE 

Emp 
SE 

Std 
Bias 

Bias Mod 
SE 

Emp 
SE 

Std 
Bias 

MNAR (smallest 
acute GvHD & 
smallest 
relapse/death) 

CCA 11.6 1.9 1.6 7.19 30.0 15.7 16.2 1.85 -60.5 23.9 22.5 -2.69 
PMM 19.4 7.5 4.5 4.31 0.8 11.8 11.9 0.07 -34.1 19.0 17.5 -1.94 
PMMSUBGP 11.8 3.1 1.9 6.21 1.4 11.8 11.8 0.12 -27.1 17.8 17.1 -1.58 
PMMSUBGP* 12.0 1.4 1.7 7.23 3.2 11.8 12.0 0.27 -15.2 11.9 12.3 -1.23 

State indicators: 0 = transplanted; 1 = acute GvHD; 2 = relapse/death.   
Monte Carlo SE for bias ranges from 0.03 to 0.14 for 𝑒0(2), from 0.17 to 0.59 for 𝑒1(2) and from 0.31 to 1.21 for 𝑒2(2). 
*Cox models were fit, except for methods indicated with a *, for which Weibull models were fit. 
CCA, complete case analysis;  
PMM, MI by Type 1 predictive mean matching;  
PMM30IMP, as for PMM, with number of imputations = 30;  
PMMSUBGP, as for PMM with imputation models fit separately for patients with and without acute GvHD;  
PMMCOMP, as for PMM, imputing acute GvHD time and time from acute GvHD to relapse/death with post-imputation calculation of relapse/death time;  
NORMSUBGP, MI by normal regression with imputation models fit separately for patients with and without acute GvHD. 
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Table A.5. Hazard ratios (HR) and 95% confidence interval (CI) for covariates in the transition intensity model from acute GvHD to relapse/death for the 
NHS Cord Blood Bank cohort, including time from transplant to acute GvHD.  

Covariate (reference value) Missing data method  

CCA 
(N=116) 

PMMSUBGP 
(N=432) 

PMMSUBGP 
Weibull 
(N=432) 

PMMSUBGP 
proxy method 

(N=432) 

PMM 
(N=432) 

HR 95% CI HR 95% CI HR 95% CI HR 95% CI HR 95% CI 

Double cord transplant (single) 0.21 0.02-2.55 0.42 0.20-0.88 0.39 0.19-0.83 0.39 0.18-0.84 0.56 0.24-1.26 
Patient age (10-year increments) 1.52 0.96-2.39 1.10 0.92-1.31 1.11 0.93-1.32 1.16 0.98-1.38 1.15 0.95-1.38 
Disease type (acute leukaemia)           

Other blood cancer1 1.58 0.36-7.00 1.09 0.59-2.03 1.13 0.61-2.09 1.04 0.57-1.90 0.93 0.50-1.73 
Non-malignant disorder2 2.32 0.25-21.65 1.37 0.51-3.72 1.35 0.51-3.59 1.35 0.50-3.68 1.08 0.39-3.00 

Disease status at time of transplant  
(in remission) 

          

Relapse 2.40 0.53-10.96 1.03 0.38-2.82 0.92 0.36-2.31 1.43 0.57-3.61 2.39 0.86-6.66 
Other3 2.01 0.27-15.11 1.14 0.50-2.60 1.05 0.48-2.32 1.30 0.60-2.81 1.61 0.69-3.76 

Reduced intensity conditioning regimen 
(intensive) 

0.40 0.09-1.82 0.99 0.53-1.83 1.00 0.54-1.82 0.86 0.48-1.55 0.79 0.44-1.41 

Donor-recipient CMV match (-/-)           
-/+ 1.01 0.33-3.06 1.90 0.94-3.83 1.96 0.98-3.90 1.71 0.85-3.48 1.68 0.81-3.48 
+/- 1.19 0.33-4.26 1.29 0.62-2.70 1.27 0.62-2.62 1.32 0.63-2.79 1.33 0.61-2.86 
+/+ 0.60 0.12-2.92 0.80 0.29-2.25 0.85 0.32-2.30 0.74 0.26-2.11 1.01 0.36-2.86 

Donor-recipient sex match (F/F)           
F/M 4.81 1.11-20.76 1.56 0.71-3.43 1.52 0.71-3.26 1.66 0.77-3.55 1.52 0.67-3.44 
M/F 4.53 0.92-22.16 1.46 0.63-3.42 1.49 0.65-3.39 1.49 0.64-3.50 1.33 0.55-3.22 
M/M 1.90 0.35-10.26 1.49 0.62-3.58 1.44 0.60-3.48 1.36 0.57-3.29 1.47 0.61-3.58 

Number of donor-recipient HLA 
mismatches4 (Well-matched: 0/1) 

          

Not well-matched: 2 or more 1.63 0.56-4.76 1.76 0.92-3.38 1.90 1.02-3.54 1.72 0.86-3.44 1.52 0.79-2.91 
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Covariate (reference value) Missing data method  

CCA 
(N=116) 

PMMSUBGP 
(N=432) 

PMMSUBGP 
Weibull 
(N=432) 

PMMSUBGP 
proxy method 

(N=432) 

PMM 
(N=432) 

HR 95% CI HR 95% CI HR 95% CI HR 95% CI HR 95% CI 

TNC dose at infusion ×107/kg  
(Low: <3.0) 

          

Medium: 3.0-5.0 0.88 0.25-3.01 0.63 0.36-1.09 0.64 0.37-1.09 0.80 0.45-1.43 0.80 0.40-1.58 
High: > 5.0 0.54 0.07-4.02 0.32 0.15-0.70 0.34 0.16-0.72 0.41 0.19-0.91 0.49 0.22-1.09 

Time of acute GvHD 1.01 0.99-1.03 1.00 0.99-1.01 1.00 0.99-1.01 1.00 0.99-1.01 1.00 0.99-1.01 
CMV, cytomegalovirus; HLA, human leucocyte antigen; TNC, total nucleated cells. 
Unless otherwise stated, Cox transition intensity models were fitted. 
CCA, complete case analysis. 
PMMSUBGP, FCS MI by type 1 predictive mean matching with imputation models fit separately for patients experiencing both acute and chronic GvHD or 
chronic GvHD without acute GvHD, acute GvHD without chronic GvHD, relapse without GvHD, and neither GvHD nor relapse. 
PMMSUBGP proxy method, as for PMMSUBGP, with observed donor information used in imputation models for all other variables. 
PMM, FCS MI by Type 1 predictive mean matching with one imputation model fit for all patients. 
1 Other blood cancer includes lymphoproliferative and plasma cell disorders, myelodysplastic syndromes and myeloproliferative disorders. 
2 Non-malignant disorder includes histiocytic disorder, solid tumour, bone marrow failure syndrome, haemoglobinopathy, primary immune 
deficiency and inborn error of metabolism. 
3 Other disease status includes acute, chronic and accelerated phase, refractory disease, transformed to acute leukaemia, blastic crisis, MDS, MDP and 
non-malignant disorders. 
4 HLA A and B loci at antigenic level and DR-B1 at allelic level 
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A.6. R Code to generate simulation study results  

1. Required libraries 

library(survival) 
library(mstate) 
library(MIICD) 
library(mice) 
library(intccr) 
library(doParallel) 
library(simsurv) 
library(flexsurv) 
 

2. Data Generating Mechanisms 
2.1. Generating competing risks data for a non-parametric analysis 
#Create simulation datasets based on average of 65% GvHD, 10% graft failures, 
#25% deaths  

sample500=data.frame() 
for (i in 1:1000)  
{ 
  sample=rbind(cbind.data.frame(agvhd_status_nocens=1,runif=runif(325)), 
                cbind.data.frame(agvhd_status_nocens=2,runif=runif(50)), 
                cbind.data.frame(agvhd_status_nocens=3,runif=runif(125))) 
   #define additional runif for ordering 
    sample$rorder=runif(500) 
    sample500=rbind.data.frame(sample500,sample) 
} 
#Now simulate times and round times to match observed data 
sample500$agvhd_time=ifelse(sample500$agvhd_status_nocens == 1, 
                           ceiling(exp(qnorm(p=sample500$runif,mean=3.26,sd=0.71))), 
                           ifelse(sample500$agvhd_status_nocens == 2,  
                                  
ceiling(exp(qnorm(p=sample500$runif,mean=3.76,sd=0.66))), 
                                  
ceiling(exp(qnorm(p=sample500$runif,mean=4.34,sd=1.3))))) 
#Censoring event times at greater than one year 
sample500$agvhd_status=ifelse(sample500$agvhd_time<=365,sample500$ag
vhd_status_nocens,0) 
sample500$agvhd_time[sample500$agvhd_status==0]=365 
#also add one covariate - number of cords received - with 45% double cord 
sample500$doublecord=rbinom(500000,1,0.45) 
#Indicator of agvhd 
sample500$agvhd=ifelse(sample500$agvhd_status==1,1,0) 
#Order all obs randomly before adding a sample number for each of the 1000 
datasets 
sample500=sample500[order(sample500$rorder),] 
sample500$sampno=rep(1:1000, 500) 
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2.2. Generating events data for a three-state Markov MSM 

##First competing risks experiment 
#hazard of aGvHD 
k_agvhd=1.5 
l_agvhd=36 
 
#hazard of relapse/death 
k_rel_death=0.9 
l_rel_death=120 
#also add two covariates 
#1. in relapse or not  
#2. number of cords received  
relapse=rbinom(500000,1,0.2) 
doublecord=rbinom(500000,1,0.45) 
 
# add sampno 
sampno=rep(1:1000, 500) 
 
covs_all = data.frame(id = 1:500000, relapse, doublecord, sampno) 
 
#simulate fup to 5 years for all pts (censor after all times drawn) 
#1. not in relapse 
h_all = function(t,x,betas)#function needs this structure in simsurv 
  ((k_agvhd/l_agvhd)*(t/l_agvhd)^(k_agvhd-1) 
   + 
     (k_rel_death/l_rel_death)*(t/l_rel_death)^(k_rel_death-1)) 
 
covs=data.frame(id = covs_all[covs_all$relapse==0,1]) 
simdata = simsurv(hazard = h_all,maxt=365,x=covs,seed=4752) 
 
#assume order of rows is unchanged and drop id from this dataset and merge 
back in id from covs 
simdata_1=cbind(simdata[,2:3],covs_all[covs_all$relapse==0,]) 
 
#now calculate prob of agvhd for binomial draws to determine whether event 
of interest or competing event 
simdata_1$h_all=h_all(t=simdata_1$eventtime) 
 
h_agvhd = function(t) 
  ((k_agvhd/l_agvhd)*(t/l_agvhd)^(k_agvhd-1)) 
 
simdata_1$h_agvhd=h_agvhd(t=simdata_1$eventtime) 
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#now calculate prob of agvhd at event time 
simdata_1$p_agvhd=simdata_1$h_agvhd/simdata_1$h_all 
 
#2. in relapse 
#use simsurv 
h_all2 = function(t,x,betas)#function needs this structure in simsurv 
  (exp(-0.8)*(k_agvhd/l_agvhd)*(t/l_agvhd)^(k_agvhd-1) 
   + 
     exp(1.2)*(k_rel_death/l_rel_death)*(t/l_rel_death)^(k_rel_death-1)) 
 
covs2=data.frame(id = covs_all[covs_all$relapse==1,1]) 
simdata2 = simsurv(hazard = h_all2,maxt=365,x=covs2,seed=78947) 
 
#assume order of rows is unchanged and drop id from this dataset and merge 
#back in id from covs 
simdata2_1=cbind(simdata2[,2:3],covs_all[covs_all$relapse==1,]) 
 
#now calculate prob of agvhd for binomial draws to determine whether event 
#of interest or competing event 
simdata2_1$h_all=h_all2(t=simdata2_1$eventtime) 
 
h_agvhd2 = function(t) 
  (exp(-0.8)*(k_agvhd/l_agvhd)*(t/l_agvhd)^(k_agvhd-1)) 
 
simdata2_1$h_agvhd=h_agvhd2(t=simdata2_1$eventtime) 
 
#now calculate prob of agvhd at event time 
simdata2_1$p_agvhd=simdata2_1$h_agvhd/simdata2_1$h_all 
 
##### Combine all rows ##### 
simdata_all=rbind(simdata_1,simdata2_1) 

 
###Now run binomial experiment to determine event type 
for (i in 1:500000) { 
simdata_all$agvhd_status[i]=ifelse(rbinom(1,1,simdata_all$p_agvhd[i])==1,1,
0) 
} 
 
#rename eventtime for consistency with other progs 
names(simdata_all)[names(simdata_all) == 'eventtime'] = 'agvhd_time' 
 
#Need to create relapse time and status cols 
simdata_all$relapse_or_death_time=simdata_all$agvhd_time 
simdata_all$relapse_or_death_status=ifelse(simdata_all$agvhd_status==0,1,0
) 
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#order by id 
simdata_all=simdata_all[order(simdata_all$id),] 
 
####Now calculate event times for relapse/death after aGvHD 
#Create transition 1->2 times 
#Based on conditional survival model 
###For simplicity, calculate for all cases, but discard rows for cases with 
###agvhd_status=0 
#Weibull params 
k_rel_death12=0.8 
l_rel_death12=160 
 
#First calculate S(t0) ie at time of acute GvHD 
simdata_all$S_t0=exp(-
((simdata_all$agvhd_time/l_rel_death12)^k_rel_death12)*exp(1.2*simdata_al
l$relapse - simdata_all$doublecord)) 
#Generate times using inverse transform sampling and 
#discard relapse times with agvhd_status=0 i.e. already in relapse/death 
#state 
simdata_all$runif=runif(500000) 
simdata_all$rel_death_time=ifelse(simdata_all$agvhd_status==1, 
                              160*((-log(simdata_all$runif*simdata_all$S_t0)/ 
                              exp(1.2*simdata_all$relapse - 
simdata_all$doublecord))^1.25), 
                                  simdata_all$relapse_or_death_time) 
#Set all rel_death_status to 1 as no censored times at this point 
simdata_all$rel_death_status=1 
 
###Now generate censoring times by sampling from uniform dist 
#Since all transitions from transplant occurred within the year, only 1-2 
#transitions will be censored 
simdata_all$cens_time=runif(500000, min = 365, max = 1826) 
 
#update relapse/death time and status for these cases 
simdata_all$rel_death_time_uncens=simdata_all$rel_death_time 
simdata_all$rel_death_time=ifelse(simdata_all$rel_death_time_uncens>simd
ata_all$cens_time, simdata_all$cens_time, 
simdata_all$rel_death_time_uncens) 
simdata_all$rel_death_status_uncens=simdata_all$rel_death_status 
simdata_all$rel_death_status=ifelse(simdata_all$rel_death_time_uncens>sim
data_all$cens_time, 0,simdata_all$rel_death_status_uncens) 

 
3. Functions to apply the missing data mechanisms used in the studies 
3.1. MCAR 

MCAR = function(dset,time,percent)  
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# dset = dataset, time = event time, percent = percent missing data as a 
decimal  
# e.g. 
#sample1$time.miss=MCAR(dset=sample1,time=sample1$agvhd_time,pe
#rcent=0.1) 
{ 
  time.miss=c() 
  for (j in 1: nrow(dset)) 
    {time.miss[j]=ifelse(rbinom(1,1,percent)==1,NA,time[j])} 
  return(time.miss) 
} 

3.2. MAR with missingness dependent on event type 
MAR = function(dset, time, percent, event)  

# dset = dataset, time = event time, percent = percent missing data as a 
decimal 
#event = indicator variable: 1 if event type of interest and 0 otherwise  
# e.g.  
# 
sample1$time.miss=MAR(dset=sample1,time=sample1$agvhd_time,perce
nt=0.1, 
#event=sample1$agvhd) 
{ 
  time.miss=c() 
  for (j in 1: nrow(dset)) 
    {time.miss[j]=ifelse(rbinom(1,1,percent)==1 & event[j]==1,NA,time[j])} 
  return(time.miss) 
} 

3.3. MNAR with smallest event times missing 
MNAR = function(dset, time, percent, event)  

# dset = dataset, time = event time, percent = percent missing data as a 
#decimal 
#event = indicator variable: 1 if event type of interest and 0 otherwise  
# e.g.  
#sample1$time.miss=MNAR(dset=sample1,time=sample1$agvhd_time,pe
#rcent=0.1, 
#event=sample1$agvhd) 
{ 
 dset.tmp=data.frame(cbind(event.tmp=event, 
time.tmp=time,id=c(1:nrow(dset)))) 
 dset.tmp=dset.tmp[order(-dset.tmp$event.tmp, dset.tmp$time.tmp),] 
 dset.tmp$time.miss=dset.tmp$time 
dset.tmp$time.miss[1:round(percent*nrow(dset.tmp[dset.tmp$event.tmp=
=1,]))]=NA 
 dset.tmp=dset.tmp[order(dset.tmp$id),] 
 return(dset.tmp$time.miss) 
} 
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4. Functions to apply the multiple imputation methods used in simulation 
studies 
In each function, time = event time with missing times generated as per one 
of the missing data mechanisms, type = event type indicator, var = covariate 
and nimp = number of imputations   
e.g. imp=NORM(time=sample1$time.miss, type=sample1$agvhd_status, 
var=sample1$doublecord, nimp=5) 
 

4.1. Linear imputation model with no restrictions on the imputed values  
NORM = function(time, type, var, nimp)  

{ 
midata=data.frame(time=time, type=type , var) 
 imp=mice(midata, 
m=nimp,defaultMethod=c('norm','logreg','polyreg'),print=FALSE) 
return(imp) 
} 
NORMNOAUX= function(time, type, nimp) #without covariate 
{ 
midata=data.frame(time=time, type=type) 
 imp=mice(midata, 
m=nimp,defaultMethod=c('norm','logreg','polyreg'),print=FALSE) 
return(imp) 
} 

4.2. Type 1 PMM imputation model with no restrictions on the imputed values  
PMM = function(time, type, var, nimp)  

{ 
midata=data.frame(time=time, type=type , var) 
 imp=mice(midata,m=nimp,print=FALSE) 
return(imp) 
} 
PMMNOAUX = function(time, type, nimp) #without covariate 
{ 
midata=data.frame(time=time, type=type) 
 imp=mice(midata,m=nimp,print=FALSE) 
return(imp) 
} 

4.3. Log-linear imputation model with post-imputation back-transformation  
LOGNORM = function(time, type, var, nimp)  

{ 
midata=data.frame(time=log(time), type=type , var) 
 imp=mice(midata, 
m=nimp,defaultMethod=c('norm','logreg','polyreg'),print=FALSE) 
imp[["imp"]]$time=exp(imp[["imp"]]$time) 
return(imp) 
} 
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4.4. Linear regression with restrictions on the imputed values (RESNORM).  
# Written after looking at the following page on StackExchange:  
# https://stats.stackexchange.com/questions/78632/multiple-#imputation-
for-missing-values 

 
# Adapt normal imputation method 
mice.impute.norm3 = function (y, ry, x,...)  
  { 
    valid_vals <- rep(NA, length.out = sum(!ry)) 
    # Counter to avoid endless loop 
    cntr = 0 
    repeat{ 
      vals = mice.impute.norm(y, ry, x, ...)   
      #Compare with boundaries 
      correct = vals > 0 & vals <= 100 
       if (all(!is.na(valid_vals) | correct)){ 

        valid_vals[correct] = vals[correct] 
        break  
#stop if all values within boundaries 

      } 
else if (any(is.na(valid_vals) & correct)){ 

              valid_vals[correct] = vals[correct] 
      } 
       cntr = cntr + 1 
      if (cntr > 200){ 
             if (all(is.na(valid_vals))){ 
            valid_vals = vals 
        } 
      else{ 
          valid_vals[is.na(valid_vals)] = vals[is.na(valid_vals)] 
        } 
        break 
      } 
    } 
    return(valid_vals) 
  } 
RESNORM = function(time, type, var, nimp)  
{ 
midata=data.frame(time=time, type=type , var) 
imp=mice(midata, m=nimp, method=c(time = "norm3"),print=FALSE) 
 return(imp) 
} 
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4.5. MI method proposed by Delord and Genin  
#Adaptation of the MI.ci function and associated functions from the 
#‘MIICD’ R package 

preproc.crreg_2 <- function(  data = data  , m = m  , trans = trans , status = 
status , cens.code = cens.code ){ 
    rownames(data)<-seq_len(nrow(data)) 
  I <- data[,'left'] != data[,'right' ] & data[,'right'] != Inf & data[,status] != 
cens.code 
  data2<-data[I,] 
  dim(data2) 
  dataE<-data[!rownames(data)%in%rownames(data2),] 
  or<-
order(c(as.numeric(rownames(data2)),as.numeric(rownames(dataE)))) 
  data1<-t(apply( dataE , 1 , function(x) as.numeric(rep(x['left'] , m )))) 
  dim(data1)[1]+dim(data2)[1] 
  return( list( data2 = data2 , data1 = data1 , or = or, I = I ) ) 
} 
get_z2<-function(data){ 
  s1<-sapply( 1:ncol(data) , function(y) sapply(1:nrow(data), function(x) 
length(unlist(data[x,y]))) ) 
  data[s1==0]<-0 
  s2<-sapply( 1:ncol(data) , function(y) sapply(1:nrow(data), function(x) 
unlist(data[x,y]))) 
  return(s2)} 
MI.ci1<-function( m , status ,  trans , data , conf.int = TRUE , cens.code , 
alpha = 0.05 , ntimes = NULL ){ 
    if( !is.numeric(m)  ) stop('m must be an integer') 
  if( !is.data.frame(data)  ) stop('data must be a data.frame') 
  if( !is.logical(conf.int)  ) stop('conf.int must be logical') 
  if( alpha <= 0 | alpha >= 1 ) stop('alpha must be in ] 0 , 1 [') 
    cl<-match.call()   
  #Use interval censored data and generate k sets of imputed data 
  sets<-sapply( 1:m , get.set2 , data ) 
  #Get and sort single times at wich the cumulative incidence will be 
estimated 
  times<-as.vector(sets) 
  length(times) 
  r2<-factor(r2,levels=unique(c(cens.code,unique(r2)))) 
    r1 <- as.character(  data[ , status ] )  
  r1<-factor(r1,levels=unique(c(cens.code,unique(r1)))) 
    fitCI <- survfit( Surv( time = times , event = r2 , type = "mstate"  ) ~ 1  , 
weights = rep( 1 / m , length(times) ) , 
                    conf.type = 'none' ) 
    w <- which( fitCI$states == trans ) 
  pr <- fitCI$pstate[ , w ] 
  sd <- fitCI$std.err[ , w ] 
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  t0 <- fitCI$time 
  #get estimated of cumulative incidence and confidence intervals 
    if(! is.null(ntimes) ){  
    t1 <- seq( from = range(t0)[1] , to=range(t0)[2] , length = ntimes ) 
    sd_at_times<-sapply( 1 , get_values_at_times2 , values =  list(sd) , times 
= list(t0) , at = t1 , list = T ) 
    sd_at_times <- get_z2( sd_at_times ) 
    ci_at_times<-sapply( 1 , get_values_at_times2 , values =  list(pr) , times 
= list(t0) , at = t1 , list = T ) 
    ci_at_times <- get_z2( ci_at_times ) 
      }else{ 
    t1 <- t0 
    sd_at_times <- sd 
    ci_at_times <- pr   
  } 
  if(conf.int){ 
    sap<-lapply( 1:m , get_est_mi2 , trans = trans , imp_sets = sets , data = 
data , cens.code = cens.code ,  r2 = r1 ) 
    #obtain data frame of standard errors and point estimates 
    cis <- sapply(sap,function(x) x[['est']]) 
    t3  <- sapply(sap,function(x) x[['time']]) 
    #get standard errors and point estimates at single times 
    cis_at_times<-sapply( 1:m , get_values_at_times2 , values =  cis , times = 
t3 , at = t1 , list = F ) 
    cis_at_times <- get_z2( cis_at_times ) 
    CI <- post_point_est_CI( beta = cis_at_times , sd = sd_at_times , times = 
t1 , conf.int =  conf.int , alpha = alpha ) 
    CI <- unique(replace(CI , is.na(CI) , 0 )) 
  }else{ 
    CI<-rbind(c(time = 0 ,  est = 0 ) , data.frame( time = t0 , est = pr ) ) 
    CI <- unique(replace(CI , is.na(CI) , 0 ) ) 
  } 
  ret<-list( est = CI , call = cl , data = data , cens.code = cens.code , status = 
status , conf.int = conf.int ) 
  class(ret) <- 'MI_ci'   
  return(ret) 
} 
print.MI_ci_1 <- function (x , ... ) { 
  cat('\nCumulative incidence estimation for interval censored data using 
multiple imputation\n') 
  cat( "\nCall:\n", paste( deparse(x$call) , sep = "\n" , collapse = "\n" ) , 
"\n\n" , sep = "") 
  cat('Interval-censored response for cumulative incidence estimate :\n\n') 
  n<-nrow(x$data) 
  data<-x$data     
  cens <- x$cens.code 
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  status<-x$status 
  cat('No.Observation:', n , '\n') 
  cat('Patern:\n') 
  stat<-ifelse(data[,status]==cens,'unknown (right-
censored)',as.character(data[,status])) 
  type<-ifelse(data$right==data$left , 'exact' , NA ) 
  type<-ifelse(data$right!=data$left & data$right!=Inf , 'interval-censored' , 
type ) 
  type<-ifelse(data[,status]==cens  , 'right-censored' , type ) 
  print(table('Cause'=stat, type)) 
  cat('\n')   
  cat('$est\n') 
  dimest<-paste(dim(x$est)[1] , 'x' , dim(x$est)[2]) 
  cat(paste('A',dimest,'data frame of required estimates\n')) 
  print(head(x$est)) 
} 
# plot method for MI_ci objects 
# @param x A MI_ci object 
# @inheritParams plot.MI_surv 
plot.MI_ci_1 <- function (x , xlab = 'Time' , ylab = 'Cumulative incidence' , 
... ) 
{ 
  data <- x$est 
  conf.int <- x$conf.int 
  plot( data$time , data$est , xlab = xlab , ylab = ylab , type = 's' , ylim = 
c(0,1) , bty ='l')   
  if(conf.int){ 
    lines( data$time , data$uci , lty = 2 , type = 's' ) 
    lines( data$time , data$lci , lty = 2 , type = 's' ) 
  } 
} 
get.set2 <- function( k , data){ 
  data <- data[,c('left','right')] 
  df1<-data.frame( data , r = runif(nrow(data))) 
  w <- with( df1 , left +   (right - left)  * r )  
  if1<-ifelse(w == Inf , df1$left , w) 
  return(if1) 
} 
get_est_mi2<-function( x , status , trans , imp_sets , data = data , cens.code 
= cens.code , model = c('Cox','FG') , r2 ){ 
    t1 <- imp_sets[ , x ] 
  fitCI <- survfit( Surv( time = t1 , event = r2 , type = "mstate"  ) ~ 1 ) 
  w <- which( fitCI$states == trans ) 
  pr <- fitCI$pstate[ , w ] 
  sd <- fitCI$std.err[ , w ] 
  t1 <- fitCI$time 
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  CI <- list(time = t1 , est = pr , sd = sd ) 
  return( CI ) 
} 
get_values_at_times2 <- function( j , values , times , at , list = F , unique = 
T ){ 
  if(list==F){ 
       sapply( at , function( x ) { 
      values[ , j ][ tail( which( sort( unique( times[ , j ] ) )  <= x ) , 1 ) ] 
    } 
    ) 
  }else{ 
    if(unique){       
      sapply( at , function( x ) { 
        values[[j]][ tail( which( sort( ( times[[j]] ) )  <= x ) , 1 ) ]  
      } 
      ) 
    }else{ 
      sapply( at , function( x ) { 
        values[[j]][ tail( which( sort( unique( times[[j]] ) )  <= x ) , 1 ) ]  
      } 
      ) 
    } 
  } 
} 
MI.ci_2<-function( k , m , data , status , trans , cens.code , conf.int = F , 
alpha = 0.05 ){ 
  if( !is.numeric(k)  ) stop('k must be an integer') 
  if( !is.numeric(m)  ) stop('m must be an integer') 
  if( !is.data.frame(data)  ) stop('data must be a data.frame') 
  if( !is.logical(conf.int)  ) stop('conf.int must be logical') 
  if( alpha <= 0 | alpha >= 1 ) stop('alpha must be in ] 0 , 1 [') 
  #if(k <= 1) stop('You may consider the MI.ci function')   
    cl<-match.call()     
  prep     <- preproc.crreg_2( data = data , m = m , trans = trans , status = 
status , cens.code = cens.code ) 
  data_int <- prep$data2 
  data_fix <- prep$data1 
  or       <- prep$or 
  I        <- prep$I 
  r2 <- as.character( rep( data[ , status ] , m  ) ) 
  r2 <- replace( r2 , r2 == cens.code ,  0 ) 
  r1 <- as.character(  data[ , status ]  )  
  r1 <- replace( r1 , r1 == cens.code ,  0 ) 
   #Multiple Imputation 
  CI <- MI.ci1( m = m , status = status , trans = trans , cens.code = 
cens.code, 
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                 data = data , conf.int = F , alpha = alpha , ntimes = NULL )$est 
  CI$diff <- c(0 , diff( CI$est ) ) 
  for(i in 1:k){ 
    ss1<-apply(data_int , 1 , function(x ) subset( CI , time >=  
as.numeric(x['left']) & time <= as.numeric(x['right']) ) ) 
    tk2<-lapply(seq_len(nrow(data_int)) ,function(X)  ss1[[X]]$time) 
    samples<-t( sapply( seq_len(nrow(data_int)) , function(X) { 
      pk2 <- ss1[[ X ]]$diff   
      sapply( 1:m , function(x){ 
        if( sum( pk2 ) & length( pk2 ) > 1 ) sample(  tk2[[ X ]] , size = 1 , prob = 
pk2 )  
        else   mean( tk2[[ X ]] ) } )  } ) ) 
        samples2<-rbind(samples,data_fix)[or,] 
    times<-as.vector(samples2) 
        ci<-Surv( time = times , event = r2 , type = 'mstate') 
    fitCI<-survfit( ci ~ 1 , weights = rep( 1 , length( times ) ) / m , conf.type 
= 'none')   
    w <- which( fitCI$states == trans ) 
    sd <- fitCI$std.err[ , w ] 
    pr <- fitCI$pstate[ , w ] 
    t0 <- fitCI$time 
    CI<-unique(rbind(c(time = 0 ,  est = 0 ) , data.frame( time = t0 , est = pr ) 
)) 
    CI$diff <- c(0 , diff( CI$est ) ) 
  } 
    sap<-lapply( 1:m , get_est_mi2 , trans = trans , imp_sets = samples2  , 
data = data , r2 = r1 ) 
  #obtain data frame of standard errors and point estimates 
  cis <- sapply(sap,function(x) x[['est']]) 
  t3  <- sapply(sap,function(x) x[['time']]) 
    #get standard errors and point estimates at single times 
    cis_at_times<-sapply( 1:m , get_values_at_times2 , values =  cis , times = 
t3 , at = t0 , list = is.list(cis) ) 
  cis_at_times <- get_z2( cis_at_times ) 
    #Amended E Curnow  
  #Next statement is for checking data that are input into 
post_point_est_CI function - #not required 
  #ret<-list( est = cis_at_times, sd=sd, times=t0) 
   #E Curnow: don't return results of Rubin's rules 
  #CI <- post_point_est_CI( beta = cis_at_times , sd = sd , times = t0 , 
conf.int =  #conf.int , alpha = alpha ) 
    #if(conf.int){ 
   # colnames(CI)<-c('time','prev','sd','uci','lci') 
    #CI <- unique(replace(CI , is.na(CI) , 0 )) 
  #}else{ 
   # colnames(CI)<-c('time','prev') 
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    #CI <- unique(replace(CI , is.na(CI) , 0 )) 
  #} 
  #ret<-list( est = CI , call = cl , data = data , cens.code = cens.code , status = 
status , #conf.int = conf.int ) 
  #class(ret) <- 'MI_ci'   
    #Added E Curnow 
  return(sap) 
} 
 
#Function to apply adapted version of MI.ci 
MICI = function(time, type, nimp)  
{ 
#definitions needed for left and right boundary  
left=time 
right=as.numeric(ifelse(type==0,"inf",time)) #for right-censored data 
#apply boundaries for missing times  
left=ifelse(is.na(time),0, left) 
right=ifelse(is.na(time),100, right) 
midata=data.frame(left=left, right=right, status=type) 
imp=MI.ci_2(k=5,m=nimp, data=midata, status="status", trans=1, 
cens.code=0,  
              conf.int = F, alpha = 0.05) 
return(imp)} 

 
5. Calculating estimates for each imputation in turn and applying Rubin’s 

rules – non-parametric competing risks analysis  
5.1. General function for all imputation methods except Delord and Genin’s  

Est.calc = function(imp, nimp)  
# imp = output from call of ‘mice’ using one of the functions above, nimp = 
#number of imputations e.g. ests=Est.calc(imp=imp,nimp=5) 

{ 
  agvhdcuminc_est=c() 
  agvhdcuminc_SE=c() 
  q2_est=c() 
  q2_SE=c() 
  for (j in 1:nimp) 

  { 
fit=Cuminc("time","type",data=complete(imp,j)) 

     agvhdcuminc_est[j]=head(fit[fit$time >=100,],1)$CI.1 
     agvhdcuminc_SE[j]=head(fit[fit$time >=100,],1)$seCI.1 

q2=fit[fit$CI.1>=0.5,] 
q2_l=fit[fit$CI.1<=0.49,] 
q2_u=fit[fit$CI.1>=0.51,] 
f_q2=(head(q2_u,1)$CI.1 - tail(q2_l,1)$CI.1)/ 
      (head(q2_u,1)$time - tail(q2_l,1)$time) 

     q2_est[j]=head(q2,1)$time 
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     q2_SE[j]=head(q2,1)$seCI.1/f_q2 
  }  

  q2_results=mean(q2_est) 
  q2_SE_results=sqrt(mean(q2_SE^2)+((1+1/nimp)*1/(nimp-
1)*sum((q2_est-mean(q2_est))^2))) 
  cuminc_est_results=mean(agvhdcuminc_est) 
cuminc_SE_results=sqrt(mean(agvhdcuminc_SE^2)+((1+1/nimp)*1/(nim
p-1)*sum((agvhdcuminc_est-mean(agvhdcuminc_est))^2))) 
 ests=cbind(cuminc_est_results, cuminc_SE_results, q2_results, 
q2_SE_results) 
return(ests) 
} 
 

5.2. Function to be used for Delord and Genin’s method  
Est.calc.MICI = function(imp, nimp)  
# imp = output from call of MICI function, nimp = number of imputations 
# e.g. ests=Est.calc.MICI(imp=imp,nimp=5) 

{ 
  agvhdcuminc_est=c() 
  agvhdcuminc_SE=c() 
  q2_est=c() 
  q2_SE=c() 
for (j in 1:nimp) 

  { 
    agvhdcuminc_est[j]=head(imp[[j]]$est[imp[[j]]$time>=100],1) 
    agvhdcuminc_SE[j]=head(imp[[j]]$sd[imp[[j]]$time>=100],1) 
    q2=imp[[j]]$time[imp[[j]]$est>=0.5] 
    q2_l=imp[[j]]$time[imp[[j]]$est<=0.49] 
    q2_u=imp[[j]]$time[imp[[j]]$est>=0.51] 
    q2_l_ci=imp[[j]]$est[imp[[j]]$est<=0.49] 
    q2_u_ci=imp[[j]]$est[imp[[j]]$est>=0.51] 
    f_q2=(head(q2_u_ci,1) - tail(q2_l_ci,1))/ 
      (head(q2_u,1) - tail(q2_l,1)) 
    q2_est[j]=head(q2,1) 
    q2_SE[j]=head(imp[[j]]$sd[imp[[j]]$est>=0.5],1)/f_q2  }  

q2_results=mean(q2_est) 
q2_SE_results=sqrt(mean(q2_SE^2)+((1+1/nimp)*1/(nimp-
1)*sum((q2_est-mean(q2_est))^2))) 
cuminc_est_results=mean(agvhdcuminc_est) 
cuminc_SE_results=sqrt(mean(agvhdcuminc_SE^2)+((1+1/nimp)*1/(nim
p-1)*sum((agvhdcuminc_est-mean(agvhdcuminc_est))^2))) 
ests=cbind(cuminc_est_results, cuminc_SE_results, q2_results, 
q2_SE_results) 
return(ests)}  
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6. Complete case analysis  
6.1. Non-parametric competing risks model 

CCA = function(time, type)  
{ 
dset=data.frame(time=time, type=type) 
fit=Cuminc("time","type",data=dset) 
cuminc_est_results=head(fit[fit$time >=100,],1)$CI.1 
 cuminc_SE_results=head(fit[fit$time >=100,],1)$seCI.1 
 q2=fit[fit$CI.1>=0.5,] 
 q2_l=fit[fit$CI.1<=0.49,] 
 q2_u=fit[fit$CI.1>=0.51,] 
 f_q2=(head(q2_u,1)$CI.1 - tail(q2_l,1)$CI.1)/ 
 (head(q2_u,1)$time - tail(q2_l,1)$time) 
 q2_results=head(q2,1)$time 
 q2_SE_results=head(q2,1)$seCI.1/f_q2 

ests=cbind(cuminc_est_results, cuminc_SE_results, q2_results, 
q2_SE_results) 
return(ests) 

} 
 

6.2. MSM 
#1. Cox model for each transition intensity 
#Function for RELOS SE  

 RELOS_SE_boot <- function(data,nboot,agvhdtime,reldeathtime) { 
  library(survival) 
  library(mstate) 
  #Adapting Bakoyannis bssmle_se R code 
  tmp <- data.frame() 
  for(k in 1:nboot){ 
    samp=data[sample(dim(data)[1], replace = TRUE),] 
    samp$boot=k 
    tmp <- rbind(tmp,samp) 
  } 
  m <- NULL 
  tmat <- transMat(x = list(c(2, 3), c(3), c()), names = c("Tx", "aGvHD", 
"Rel/Death")) 
  res.bt=data.frame(ELOS1=0,ELOS2=0,ELOS3=0) 
  for(m in 1:nboot){ 
     
    #prep dset in 'long' format 
    tmplong <- mstate::msprep(data = tmp[tmp$boot==m,], trans = tmat,  
                              time = c(NA, agvhdtime, reldeathtime),  
                              status = c(NA, "agvhd_status", "rel_death_status"),  
                              keep = c("doublecord","relapse")) 
    covs <- c("doublecord", "relapse") 
    tmplong_cov <- mstate::expand.covs(tmplong, covs, longnames = FALSE) 
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    #allow for errors 
    skip_to_next <- FALSE 

 tryCatch(survival::coxph(Surv(Tstart, Tstop, status) ~ relapse.1 + relapse.2 
+ relapse.3 + doublecord.3 + strata(trans), data = tmplong_cov, method = 
"breslow"), 

             error = function(e) { skip_to_next <<- TRUE}, 
             warning = function(w) {skip_to_next <<- TRUE}) 
    if(skip_to_next) { next }  
    tmpfit=NULL 

tmpfit=survival::coxph(Surv(Tstart, Tstop, status) ~ relapse.1 + relapse.2 + 
relapse.3 + doublecord.3 + strata(trans), data = tmplong_cov, method = 
"breslow") 
baseline <- 
data.frame(trans=1:3,relapse.1=c(0,0,0),relapse.2=c(0,0,0),relapse.3=c(0,0,0), 

                           doublecord.3=c(0,0,0),strata=1:3) 
    tmpmsf = mstate::msfit(tmpfit, baseline, trans = tmat) 
    #calc probs 
    tmppt=mstate::probtrans(tmpmsf, predt = 0, variance=FALSE)  
    tmpELOS=data.frame(ELOS1=0,ELOS2=0,ELOS3=0) 
    for (j in 1:(length(tmppt[[1]]$time[tmppt[[1]]$time<731])-1)) 
    { 
      
tmpELOS$ELOS1=tmpELOS$ELOS1+(tmppt[[1]]$pstate1[j]*(tmppt[[1]]$time[
j+1]-tmppt[[1]]$time[j])) 
      
tmpELOS$ELOS2=tmpELOS$ELOS2+(tmppt[[1]]$pstate2[j]*(tmppt[[1]]$time[
j+1]-tmppt[[1]]$time[j])) 
      
tmpELOS$ELOS3=tmpELOS$ELOS3+(tmppt[[1]]$pstate3[j]*(tmppt[[1]]$time[
j+1]-tmppt[[1]]$time[j])) 
    } 
         
    res.bt[m,]=tmpELOS 
     
  } 
  result <- sqrt(diag(var(res.bt[,1:3],na.rm=T))) 
   
  return(result) 
} 
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####Complete data analysis#### 
results = data.frame(relapse.1=0,relapse.2=0,relapse.3=0,doublecord.3=0,                 
relapse.1SE=0,relapse.2SE=0,relapse.3SE=0,doublecord.3SE=0, 
agvhd_time_coverage=0,  
ELOS1=0,ELOS2=0,ELOS3=0,ELOS_SE1=0,ELOS_SE2=0,ELOS_SE3=0) 
for (i in 1:1000)  
{ 
  sample1=simdata_all[simdata_all$sampno==i,] 
tmat <- transMat(x = list(c(2, 3), c(3), c()), names = c("Tx", "aGvHD", 
"Rel/Death")) 
sample1_long <- msprep(data = sample1, trans = tmat, time = c(NA,    
"agvhd_time", "rel_death_time"),  

  status = c(NA, "agvhd_status", "rel_death_status"),  
  keep = c("doublecord","relapse","sampno","agvhd_time"), id="id") 
  covs <- c("doublecord", "relapse") 
  sample1_long_cov <- expand.covs(sample1_long, covs, longnames = FALSE) 

 fit <- coxph(Surv(Tstart, Tstop, status) ~ relapse.1 + relapse.2 + relapse.3 +       
doublecord.3 + strata(trans), data = sample1_long_cov, method = 
"breslow") 

  results[i,1:4]=summary(fit)$coefficients[1:4] 
  results[i,5:8]=sqrt(diag(vcov(fit))) 
  #gamma12 

fit12 <- coxph(Surv(Tstart, Tstop, status) ~ relapse + doublecord +   
agvhd_time,  

   data = sample1_long, method = "breslow", subset=(trans=="3")) 
  results[i,9]=ifelse(summary(fit12)$coefficients[3,5]>=0.05,1,0) 
  #RELOS 

baseline <-   
data.frame(trans=1:3,relapse.1=c(0,0,0),relapse.2=c(0,0,0),relapse.3=c(0,0,0), 

              doublecord.3=c(0,0,0),strata=1:3) 
  msf0 <- msfit(fit, baseline, trans = tmat) 
  #calc trans probs 
  pt0=probtrans(msf0, predt = 0, variance=FALSE) 
  ELOS=data.frame(ELOS1=0,ELOS2=0,ELOS3=0) 
  for (j in 1:(length(pt0[[1]]$time[pt0[[1]]$time<731])-1)) 
  { 

ELOS$ELOS1=ELOS$ELOS1+(pt0[[1]]$pstate1[j]*(pt0[[1]]$time[j+1]-
pt0[[1]]$time[j])) 

ELOS$ELOS2=ELOS$ELOS2+(pt0[[1]]$pstate2[j]*(pt0[[1]]$time[j+1]-
pt0[[1]]$time[j])) 
ELOS$ELOS3=ELOS$ELOS3+(pt0[[1]]$pstate3[j]*(pt0[[1]]$time[j+1]-
pt0[[1]]$time[j])) 

   } 
  results[i,10:12]=ELOS 
  results[i,13:15]=RELOS_SE_boot(data=sample1,nboot=50,"agvhd_time", 
"rel_death_time")} 
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#2. Weibull model for each transition intensity 
#define function for ELOS SE 
ELOS_delta=function(obj){ 
msf0 <- msfit.flexsurvreg(obj, t=seq(0,730,by=0.1), trans=tmat, 
newdata=baseline,variance=FALSE) 
  #calc trans probs 
  pt0=probtrans(msf0, predt = 0, variance=FALSE) 
   
  ELOS=data.frame(ELOS1=0,ELOS2=0,ELOS3=0) 
  for (j in 1:(length(pt0[[1]]$time[pt0[[1]]$time<731])-1)) 
  { 
    ELOS$ELOS1=ELOS$ELOS1+(pt0[[1]]$pstate1[j]*(pt0[[1]]$time[j+1]-
pt0[[1]]$time[j])) 
    ELOS$ELOS2=ELOS$ELOS2+(pt0[[1]]$pstate2[j]*(pt0[[1]]$time[j+1]-
pt0[[1]]$time[j])) 
    ELOS$ELOS3=ELOS$ELOS3+(pt0[[1]]$pstate3[j]*(pt0[[1]]$time[j+1]-
pt0[[1]]$time[j])) 
  } 
  return(ELOS) 
} 
 
####Complete data analysis#### 
results = data.frame(relapse.1=0,relapse.2=0,relapse.3=0,doublecord.3=0, 
relapse.1SE=0,relapse.2SE=0,relapse.3SE=0,doublecord.3SE=0, 
agvhd_time_coverage=0,  
ELOS1=0,ELOS2=0,ELOS3=0,ELOS_SE1=0,ELOS_SE2=0,ELOS_SE3=0) 
 
for (i in 1:1000)  
{ 
  sample1=simdata_all [simdata_all$sampno==i,] 
   

tmat <- transMat(x = list(c(2, 3), c(3), c()), names = c("Tx", "aGvHD", 
"Rel/Death")) 
sample1_long <- msprep(data = sample1, trans = tmat, time = c(NA, 
"agvhd_time", "rel_death_time"),  

    status = c(NA, "agvhd_status", "rel_death_status"),  
    keep = c("doublecord","relapse","sampno","agvhd_time"), id="id") 
   fit.list <- vector(3, mode="list") 

fit.list[[1]]=flexsurvreg(Surv(Tstart, Tstop, status) ~ relapse, subset = (trans 
== 1), data = sample1_long,dist ="weibullPH", 
inits=c(shape=1.5,scale=36^(-1.5))) 

fit.list[[2]]=flexsurvreg(Surv(Tstart, Tstop, status) ~ relapse, subset = (trans 
== 2), data = sample1_long,dist = "weibullPH", 
inits=c(shape=0.9,scale=120^(-0.9))) 
fit.list[[3]]=flexsurvreg(Surv(Tstart, Tstop, status) ~ relapse + doublecord, 
subset = (trans == 3),  
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  data = sample1_long,dist = "weibullPH", inits=c(shape=0.8,scale=160^(-0.8))) 
  results[i,1]=fit.list[[1]]$res[3,1] 
  results[i,2]=fit.list[[2]]$res[3,1] 
  results[i,3:4]=fit.list[[3]]$res[3:4,1] 
  #SE 
  results[i,5]=fit.list[[1]]$res[3,4] 
  results[i,6]=fit.list[[2]]$res[3,4] 
  results[i,7:8]=fit.list[[3]]$res[3:4,4] 
  #gamma12 

fit12=flexsurvreg(Surv(Tstart, Tstop, status) ~ relapse + doublecord + 
agvhd_time, subset = (trans == 3), data = sample1_long, dist = "weibullPH", 
inits=c(shape=0.8,scale=160^(-0.8))) 

   results[i,9]=ifelse(fit12$res[5,2]<0 & fit12$res[5,3]>0,1,0) 
  #now apply msfit to obtain estimates of ELOS 
  #Define pt with baseline values of covariates  
  baseline <- data.frame(trans=1:3,relapse=c(0,0,0),doublecord=c(0,0,0)) 

msf0 <- msfit.flexsurvreg(fit.list, t=seq(0,730,by=0.1), trans=tmat, 
newdata=baseline,variance=FALSE) 

   
#calc trans probs 
  pt0=probtrans(msf0, predt = 0, variance=FALSE) 
   
  ELOS=data.frame(ELOS1=0,ELOS2=0,ELOS3=0) 
  for (j in 1:(length(pt0[[1]]$time[pt0[[1]]$time<731])-1)) 
  { 
    ELOS$ELOS1=ELOS$ELOS1+(pt0[[1]]$pstate1[j]*(pt0[[1]]$time[j+1]-
pt0[[1]]$time[j])) 
    ELOS$ELOS2=ELOS$ELOS2+(pt0[[1]]$pstate2[j]*(pt0[[1]]$time[j+1]-
pt0[[1]]$time[j])) 
    ELOS$ELOS3=ELOS$ELOS3+(pt0[[1]]$pstate3[j]*(pt0[[1]]$time[j+1]-
pt0[[1]]$time[j])) 
  } 
  results[i,10:12]=ELOS[1:3] 
   
  #SE using the delta method 
  #Obtaining sigma 
  #note using res not coef as want to keep params on original scale 
  coef=c(as.numeric(fit.list[[1]]$res[1:2,1]),as.numeric(fit.list[[2]]$res[1:2,1]), 
         as.numeric(fit.list[[3]]$res[1:2,1])) 

#need to transform each weibull param est from cov as only shown in log- 
#transformed mode 

  #using delta method 
  cov=matrix(rep(0,36),ncol=6)#assuming independence between strata 
  cov[1,1]=(coef[1])^2*(as.numeric(fit.list[[1]]$cov[1,1])) 
  cov[1,2]=coef[1]*coef[2]*(as.numeric(fit.list[[1]]$cov[1,2])) 
  cov[2,1]=cov[1,2] 
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  cov[2,2]=(coef[2])^2*(as.numeric(fit.list[[1]]$cov[2,2])) 
  cov[3,3]=(coef[3])^2*(as.numeric(fit.list[[2]]$cov[1,1])) 
  cov[3,4]=coef[3]*coef[4]*(as.numeric(fit.list[[2]]$cov[1,2])) 
  cov[4,3]=cov[3,4] 
  cov[4,4]=(coef[4])^2*(as.numeric(fit.list[[2]]$cov[2,2])) 
  cov[5,5]=(coef[5])^2*(as.numeric(fit.list[[3]]$cov[1,1])) 
  cov[5,6]=coef[5]*coef[6]*(as.numeric(fit.list[[3]]$cov[1,2])) 
  cov[6,5]=cov[5,6] 
  cov[6,6]=(coef[6])^2*(as.numeric(fit.list[[3]]$cov[2,2])) 
   
  #Calculate partial derivatives using finite differences  
  eps=0.00001 
  #Initialise dataset 
  partial=matrix(rep(0,18),ncol=3) 
   
  fit.listu1=fit.list 
  #fit.listu1[[1]]$res.t[1,1]=fit.list[[1]]$res.t[1,1]+eps 
  fit.listu1[[1]]$res.t[1,1]=log(fit.list[[1]]$res[1,1]+eps) 

#change param by eps on original scale 
  fit.listl1=fit.list 
  #fit.listl1[[1]]$res.t[1,1]=fit.list[[1]]$res.t[1,1]-eps 
  fit.listl1[[1]]$res.t[1,1]=log(fit.list[[1]]$res[1,1]-eps) 
  partial[1,1:3]=c(as.numeric((ELOS_delta(fit.listu1)-
ELOS_delta(fit.listl1))/(2*eps)))[1:3] 
   
  fit.listu2=fit.list 
  #fit.listu2[[1]]$res.t[2,1]=fit.list[[1]]$res.t[2,1]+eps 
  fit.listu2[[1]]$res.t[2,1]=log(fit.list[[1]]$res[2,1]+eps) 
  fit.listl2=fit.list 
  #fit.listl2[[1]]$res.t[2,1]=fit.list[[1]]$res.t[2,1]-eps 
  fit.listl2[[1]]$res.t[2,1]=log(fit.list[[1]]$res[2,1]-eps) 
  partial[2,1:3]=c(as.numeric((ELOS_delta(fit.listu2)-
ELOS_delta(fit.listl2))/(2*eps)))[1:3] 
   
  fit.listu3=fit.list 
  #fit.listu3[[2]]$res.t[1,1]=fit.list[[2]]$res.t[1,1]+eps 
  fit.listu3[[2]]$res.t[1,1]=log(fit.list[[2]]$res[1,1]+eps) 
  fit.listl3=fit.list 
  #fit.listl3[[2]]$res.t[1,1]=fit.list[[2]]$res.t[1,1]-eps 
  fit.listl3[[2]]$res.t[1,1]=log(fit.list[[2]]$res[1,1]-eps) 
  partial[3,1:3]=c(as.numeric((ELOS_delta(fit.listu3)-
ELOS_delta(fit.listl3))/(2*eps)))[1:3] 
   
  fit.listu4=fit.list 
  #fit.listu4[[2]]$res.t[2,1]=fit.list[[2]]$res.t[2,1]+eps 
  fit.listu4[[2]]$res.t[2,1]=log(fit.list[[2]]$res[2,1]+eps) 
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  fit.listl4=fit.list 
  #fit.listl4[[2]]$res.t[2,1]=fit.list[[2]]$res.t[2,1]-eps 
  fit.listl4[[2]]$res.t[2,1]=log(fit.list[[2]]$res[2,1]-eps) 
  partial[4,1:3]=c(as.numeric((ELOS_delta(fit.listu4)-
ELOS_delta(fit.listl4))/(2*eps)))[1:3] 
   
  fit.listu5=fit.list 
  #fit.listu5[[3]]$res.t[1,1]=fit.list[[3]]$res.t[1,1]+eps 
  fit.listu5[[3]]$res.t[1,1]=log(fit.list[[3]]$res[1,1]+eps) 
  fit.listl5=fit.list 
  #fit.listl5[[3]]$res.t[1,1]=fit.list[[3]]$res.t[1,1]-eps 
  fit.listl5[[3]]$res.t[1,1]=log(fit.list[[3]]$res[1,1]-eps) 
  partial[5,1:3]=c(as.numeric((ELOS_delta(fit.listu5)-
ELOS_delta(fit.listl5))/(2*eps)))[1:3] 
   
  fit.listu6=fit.list 
  #fit.listu6[[3]]$res.t[2,1]=fit.list[[3]]$res.t[2,1]+eps 
  fit.listu6[[3]]$res.t[2,1]=log(fit.list[[3]]$res[2,1]+eps) 
  fit.listl6=fit.list 
  #fit.listl6[[3]]$res.t[2,1]=fit.list[[3]]$res.t[2,1]-eps 
  fit.listl6[[3]]$res.t[2,1]=log(fit.list[[3]]$res[2,1]-eps) 
  partial[6,1:3]=c(as.numeric((ELOS_delta(fit.listu6)-
ELOS_delta(fit.listl6))/(2*eps)))[1:3] 
  
  results[i,13]=sqrt(t(partial[,1]) %*% cov %*% partial[,1]) 
  results[i,14]=sqrt(t(partial[,2]) %*% cov %*% partial[,2]) 
  results[i,15]=sqrt(t(partial[,3]) %*% cov %*% partial[,3]) 
  #results[i,5:10]=ELOS 
} 
 
 

7. B-spline sieve semiparametric maximum likelihood approach of 
Bakoyannis et al.  

#Adaptation of the bssmle_se function from the ‘intccr’ R package 
bssmle_se2 <- function(data,nboot) { 
  #From bssmle_se R code 
  tmp <- list() 
  for(k in 1:nboot){ 
    tmp[[k]] <- data[sample(dim(data)[1], replace = TRUE), ] 
  } 
    m <- NULL 
  no.cores <- parallel::detectCores() - 1 
  clst <- parallel::makeCluster(no.cores) 
  doParallel::registerDoParallel(clst) 
    res.bt <- foreach(m = 1:nboot, 
                    .combine = "rbind", 
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                    .packages = c("intccr", "splines", "stats", "alabama", "utils")) 
%dopar% { 
                      pb <- utils::txtProgressBar(title = "Progress bar for the 
bootstrapping", 
                                                  min = 0, max = nboot, style = 3) 
                      utils::setTxtProgressBar(pb, m) 
                      #Amended by E Curnow 
                     
tmpfit=ciregic(formula=Surv2(v,u,event=c)~1,tmp[[m]],alpha=c(0,0),nboot=0,
do.par=FALSE) 
                      tmppfit <- predict(object = tmpfit, covp=1, times = c(1:100)) 
                      
pars=c(head(tmppfit$t[tmppfit$cif1>=0.5],1),tmppfit$cif1[tmppfit$t==100]) 
                      #End of added code 
                       
                      return(pars) 
                      close(pb) 
                    } 
  parallel::stopCluster(clst) 
  rownames(res.bt) <- c() 
    
  result <- list(numboot = if(is.vector(res.bt)) 1 else nrow(na.omit(res.bt)), 
                 Sigma = if(is.vector(res.bt)) res.bt else var(na.omit(res.bt))) 
  #End of Bakoyannis code 
  return(result$Sigma) 
} 
 
#Function to calculate estimates 

INTCCR = function(time, type)  
{ 
#definitions needed for left and right boundary  
  v=as.numeric(time-1) 
  u= as.numeric(ifelse(type==0,"Inf", time)) 
 #apply boundaries for missing times  
v= as.numeric(ifelse(is.na(time),0, v)) 
u= as.numeric(ifelse(is.na(time),100, u)) 
#Only 1 competing event allowed so recode event type 3 
c= as.numeric(ifelse(type==3,2,type)) 
dset=data.frame(v=v, u=u, c=c) 
#Compute the MLE using the Fine and Gray model 
fit=ciregic(formula=Surv2(v,u,event=c)~1,data=dset,alpha=c(0,0),nboot=0,
do.par=FALSE) 
 #Calculate estimates 
  #Predict CI at 100 days 
  pfit <- predict(object = fit, covp=1, times = c(1:100)) 
  q2_results=head(pfit$t[pfit$cif1>=0.5],1) 
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  cuminc_est_results=pfit$cif1[pfit$t==100] 
  #Compute variance using non-parametric bootstrap 
  Sigma=bssmle_se2(data=dset, nboot=50) 
   q2_SE_results = sqrt(Sigma[1,1]) 
  cuminc_SE_results = sqrt(Sigma[2,2]) 
ests=cbind(cuminc_est_results, cuminc_SE_results, q2_results, 
q2_SE_results) 
return(ests)} 
 

8. Performance measures 
#Calculating theoretical values of cumulative incidence at 100 days and median 
#time 
cuminc100_T=pnorm(log(100), mean=3.26,sd=0.71)*0.65 
median_T=ceiling(exp(qnorm(p=0.5*500/325, mean=3.26,sd=0.71))) 
#Run desired missing data mechanism and missing data method for each 
simulated dataset  
#Initialise results dataset 
results = matrix(NA,1000,4) 
#colnames(results)=c("cuminc_est_results", "cuminc_SE_results", "q2_results", 
#"q2_SE_results") 
#Run simulation 
for (i in 1:1000)  
{ 
sample1=sample500[sample500$sampno==i,] 
#Specify missing data mechanism, for example: 
sample1$time.miss=MCAR(dset=sample1,time=sample1$agvhd_time,percent=0.
1) 
#Specify missing data method, for example: 
results[i,]=CCA(time=sample1$time.miss, type=sample1$agvhd_status) 
#Example using an imputation method 
#imp=MICI(time=sample1$time.miss, type=sample1$agvhd_status, nimp=5) 
# results[i,]=Est.calc.MICI(imp=imp,nimp=5)} 
# Calculate standardised bias and average model-based SE for estimands of 
interest 
bias_cuminc=mean(results[,1],na.rm=T)-cuminc100_T 
empSE_cuminc=sqrt(var(results[,1],na.rm=T)) 
stand_bias_cuminc=bias_cuminc/empSE_cuminc 
stand_bias_cuminc 
ModSE_cuminc=sqrt(mean(results[,2]^2)) 
ModSE_cuminc 
bias_q2=mean(results[,3],na.rm=T)-median_T 
empSE_q2=sqrt(var(results[,3],na.rm=T)) 
stand_bias_q2=bias_q2/empSE_q2 
stand_bias_q2 
ModSE_q2=sqrt(mean(results[,4]^2)) 
ModSE_q2 


