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ABSTRACT 

Any composite manufacturing method requires an application of a carefully designed 

consolidation process to ensure the suppression of voids in the laminate, establish 

bonding in laminate layers and prevent dimensional or fibre-path defects. The 

optimisation of consolidation processes relies on the characterisation of the composite 

precursors’ deformability. There are multiple mechanisms occurring in consolidation 

and various experimental programmes have been suggested in the literature to describe 

these mechanisms and deduce relevant material properties. The selection of a testing 

methodology often relies on an initial hypothesis or prior knowledge regarding the 

deformation modes. This may be a source of significant errors. This research poses 

questions on the testing rationales, on subjectivity in material testing and on how data-

rich programmes should be designed. 

The proposed solution to the consolidation characterisation problem is a real-time 

adaptive testing strategy that enables a “conversation with the material” – flexible 

autonomous steering of a testing programme reacting on the obtained output. Such 

system is implemented within this research and is called adaptive consolidation sensor 

framework. The system’s algorithm is set to analyse composite precursor’s feedback to 

compression in real time and to track characteristic signatures relevant to existing 

consolidation models. Based on that feedback the framework formulates a load 

programme for the test in a reactive manner. The developed testing system focuses on 

the identification of the underlying physical mechanisms rather than material properties 

identification in a rightly or wrongly assumed resin flow mode. 

To validate the proposed testing approach, a series of characterisation experiments for 

different material systems was performed. The obtained results highlight a way forward 

in terms of rethinking experiments for materials used in manufacturing and beyond. 
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1 INTRODUCTION 

The production of composites has its own challenges including a possible negative 

impact on the environment. The manufacture of a part made of carbon fibres requires 14 

times more energy than its steel counterpart [1]. The existing methods for recycling of 

composites through the controlled pyrolysis process are energy demanding as well. To 

lower the energy consumption and make the manufacturing process more cost-efficient, 

it is important to reduce the number on unsuccessful manufacturing trials and defective 

composite parts. 

Depending on the required size, geometry, and production rate of a composite structure, 

the manufacturing methods may be different: manual lay-up, automated fiber placement 

(AFP), resin transfer moulding (RTM), autoclave molding etc. The processing 

conditions for a chosen method must be selected with care to achieve target 

characteristics of a part within the specified tolerance. All these methods have a 

potential to introduce defects to a laminate structure if the specified manufacturing 

conditions are not optimal. To avoid such scenario, it is important to have an insight 

into material’s behaviour under processing conditions. 

Composites are complex material systems consisting of high strength fibrous network 

impregnated by a polymer matrix. The deformation mechanisms of composites are non-

trivial due to mutual interactions between phases on different structural levels. To 

investigate these aspects of composites deformability, a characterisation of material 

behaviour under processing conditions must be performed. Due to the complexity of 

flow and deformation mechanisms, conventional approach requires a number of tests to 
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be conducted to gather enough data for a further material characterisation. However, 

manufacturing and testing is both expensive and time consuming.  

A typical material’s characterisation process involves a training of a chosen 

phenomenological model by fine-tuning its parameters. The goal is to achieve model’s 

output similar to a material’s actual behaviour. In order to estimate an obtained model’s 

performance there is a need for a clear criterion of an efficient characterisation. Plain 

experimental program or low number of conducted tests could be insufficient for 

material’s characterisation. Derived model might perform deceptively well within data 

provided for training but completely fail to adapt to changing processing conditions. 

The research question is how complex loading program should be and how many 

experiments is enough. 

There is a vast variety of different physical models of resin flow occurring on macro 

and micro levels of the material. Normally, it is unclear for a researcher how material 

behaves during the compaction test. For this reason, the dominant deformation 

mechanism is assumed prior to the experiment and the testing program is designed in 

accordance with that assumption. Such approach introduces bias into the testing which 

might affect the validity of characterisation outcome within a different set of processing 

conditions.  

There is no universal solution for the problem of characterisation of composites. The 

application of the machine learning techniques is more suitable for learning patterns of a 

studied system. The resulting models are not fully descriptive and do not provide an 

insight on the physics/nature of acting mechanisms. The development of analytical 

models of composites’ deformation behaviour is very challenging. The studied 

mechanisms are often interconnected with each other and involve dozens of material 

parameters. Therefore, there is a need in a predictive tool capable of designing testing 

programs based on the material’s viscoelastic behaviour, thus reducing the total number 

of experiments to a minimum. 

To address the described technical challenges for characterisation of composite 

precursors, the aims of this research are specified as follows: 

• Demonstrate the importance of sufficient experimental data for the robust 

material characterisation. Set the criteria for successful material model 

identification and the requirements for the characterisation testing approach. 
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• Develop the framework for the identification of material properties from 

experimental data. The system must be able to take advantage of the expanded 

datasets from several experiments and investigate the material models of choice 

specified by the researcher. 

• Develop the autonomous unbiased testing system for the characterisation of 

composite precursors. The idea of the proposed approach is to build such a 

testing system, which will not be bound by any predefined assumptions about 

material’s behaviour. Therefore, there will be no bias towards any supposed 

deformation mechanism. In that case a testing algorithm is not limited by a 

certain type of the material or researcher’s previous experience. 
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2 LITERATURE REVIEW 

The importance of the consolidation in composite manufacturing and its influence on 

the final quality of the composite part is discussed in the first part of this chapter. It is 

crucial to understand the underlying deformation mechanism in the laminate to avoid 

manufacturing defects and to achieve target dimensional tolerances. 

Identification and characterisation of the predominant consolidation mode is not a trivial 

task. There is a vast variety of different mechanisms acting on different structural scales 

of the laminate (micro-, meso-, macro-). These mechanisms are often interconnected 

with each other, and it is hard to isolate a single phenomenon for studying. The review 

of some of these mechanisms is presented within Section 2.2 of this chapter. 

Then, a review of conventional approaches for characterisation testing of composites is 

presented. There are a number of challenges arising on how to design an experimental 

programme. The conducted test should reveal the characteristic features of material 

behaviour for further analysis. There is no universal approach on how to perform testing 

and the choice of the test programme is often based on the experience of the researcher. 

It is also important to collect the sufficient amount of experimental data within 

minimum test trials. 

Finally, different approaches to processing the obtained experimental data are discussed. 

Upon receiving the results of the test, it is necessary to develop a comprehensive 

material model which can adequately describe the behaviour of the composite. 

Advantages and limitations of different techniques and their applicability to the material 

characterisation problem are discussed within this chapter. 

The proposed project is set to address the discussed challenges in material testing and to 

successfully characterise composite precursors under the processing conditions. 
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2.1 Consolidation of composite precursors as a central process of 

composite manufacture. 

Consolidation in composite manufacturing is the process of plies engaging into contact 

and subsequent removal of volatiles and resin excess due to the application of 

processing conditions (temperature and pressure). The end goal of this process is to 

transform a stack of prepreg layers into a monolithic laminate [2]. Consolidation 

involves complex interactions between part geometry, tooling, pressure application 

programme, temperature, and fibre network/resin properties [3]. The diversity of factors 

involved makes the characterisation of the consolidation process a challenging task. 

Consolidation of composite precursors is a quality-critical process in the manufacture of 

composites. It is essential in forming of thermoplastic components, 

debulking/autoclaving of prepregs, thermoforming of textile preforms prior to liquid 

moulding, etc. Consolidation-driven phenomena occurring during composite 

manufacture can lead to: 

• The formation of internal wrinkles (non-visible out-of-plane fibre 

misalignment), external wrinkles (visible out-of-plane fibre misalignment), or 

in-plane waviness (in-plane fibre misalignment within a ply). 

• Deviation from the target thickness of a laminate. 

• The presence of voids in the laminate’s structure. 

• Shape distortions of a composite part (spring-in, warpage, fibre misalignment). 

Understanding the underlying consolidation mechanisms is a key factor in achieving the 

designed characteristics of the laminate. The current section of the literature review 

covers the influence of the consolidation on the final quality of a composite part and the 

aspects of consolidation-driven defects formation. 

2.1.1 The influence of consolidation on defects formation 

Deformability of composite precursors defines their susceptibility to defects. Vast 

variety of composite manufacturing methods involves applying composite precursor 

layer by layer onto the surface of a tool/mould in manual or automatic manner. Then, 

the laminate is consolidated within the corresponding processing conditions (pressure 

and temperature) in order to remove entrapped air and to facilitate the required adhesion 

between neighbouring plies. As consolidation proceeds, composite layers are forced to 

comply with the geometry of a tool. In the case of component features, such as tapers, 
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corners, double curvature etc, this often leads to the generation of excess length that can 

be adapted through inter-ply shearing or, in the case of the absence of relative shear 

between plies, cause wrinkling or in-plane waviness [4]. Fibre wrinkle is a type of a 

through-thickness defect with an out-of-plane misalignment of fibres with local 

waviness [5]. If the bending-induced compressive stress resulting from the deformation 

is too high, the buckling of plies closer to the mould’s surface (with larger excess 

length) is likely to occur causing the formation of out-of-plane wrinkles. Moreover, in-

plane fibre waviness may occur due to the generated excess length of plies folding over 

each other [6]. 

The severity of this type of a defect can be characterised by its geometric parameters – 

amplitude, wavelength, and misalignment angle [7]. Depending on the geometry of the 

part, the through-thickness deformation of the laminate may lead to the formation of 

wrinkles or fibre crimp. Different research groups conducted studies to develop robust 

numerical and analytical consolidation models to predict wrinkles formation during 

composite manufacture [8], [9], [10]. 

Such defects can significantly impair the performance of the composite. Wrinkling 

disrupts the structure of fibre network, causing the build-up of extra bending stresses in 

fibres. It leads to a higher level of inter-laminar stress provoking delamination, resulting 

in premature failure of a composite part at significantly reduced loads [11]. Series of 

compression and tensile tests of flat coupons made of carbon fibre reinforced plastics 

were carried out by Nartey et al. [12] in order to estimate an impact of wrinkling of 

varying architectures (angles and amplitudes) on failure modes and overall strength 

knockdown of a composite. The results of the research indicated a significant drop in 

tensile and compressive strength of the part with the most severe wrinkling architecture 

by 21% and 37%, respectively. The impact of wrinkles on the premature failure of L 

shaped composite parts was investigated by Hu et al. [13]. It was shown that the 

introduction of wrinkles induces delamination due to the damage in the area of wrinkled 

plies. A significant strength knockdown of 30–40% was observed in both the numerical 

simulation and experimental results due to the local stress concentration in the damaged 

areas. 
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2.1.2 The influence of consolidation on achieving target thickness of a 

composite part 

Understanding of the consolidation mechanism is crucial for achieving the target 

thickness of a composite part. The tolerance on thickness within the aerospace industry 

can be as tight as ±0.25 mm. As it was demonstrated by Matveev et al. [14], different 

processing conditions can lead to different levels of prepreg compaction. It was shown 

that the absence of the robust consolidation model can lead to significant thickness 

deviations even for simple-shape flat laminates. 

The impact of ply thickness variation on mechanical properties of the laminate was 

investigated by Zhang et al. [15]. The research highlighted the influence of the ply 

thickness uncertainty on the probability of composite failure. Both fibre- and matrix-

dominated thickness uncertainties were considered. It was demonstrated that thickness 

variability can cause a detrimental effect on laminate’s failure. Additionally, it was 

noted that it is a non-trivial task to distinguish the dominating mechanism (fibre or 

matrix) as both may be present and interconnected with each other. 

In order to ensure the compliance with dimensional tolerances, it is necessary to predict 

the compaction response of the material during consolidation process for chosen loading 

and temperature conditions. There is a number of studies aiming to develop 

comprehensive compaction models for a wide range of materials and manufacturing 

methods. The simulation of an autoclave process for thermoset matrix precursors was 

performed by Li et al. [16] as a two-dimensional consolidation problem. The numerical 

model developed within this study allows to describe the change of thickness profile 

and fibre volume fraction in the centre and edge regions of the laminate. Due to 

different consolidation rates in these regions (resin is able to flow out from the edge, 

hence, compaction runs quicker), the target thickness is achieved at the edges of the 

laminate first. The compaction continues in the centre until uniform thickness is 

established in all locations of the laminate. But if full consolidation is not achieved, the 

edge effect can cause thickness deviations in the part. It was shown by Hojjati et al. [17] 

that simply increasing operational pressure does not solve the problem of incomplete 

consolidation. Therefore, a proper compaction model is needed to select optimal 

processing conditions and to ensure the uniform final thickness of the composite 

structure. 

There are different ways to estimate the achieved consolidation level of the part. It can 

be done in terms of fibre volume fraction, thickness, or void content. For instance, the 
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consolidation process in filament wound thermoplastic matrix composites was 

investigated experimentally by Roychowdhury et al. [18]. In that study the 

consolidation quality as a function of the applied load (tension in the filament) and 

winding speed was assessed in terms of the achieved void content and the average shear 

strength. It was demonstrated that the resin flow played the dominant role in 

determining consolidation quality. The results indicated that deviations from optimal 

load/temperature conditions can lead to a higher void content in the composite and 

impair part’s performance. 

2.1.3 The influence of consolidation on maintaining composite part’s 

geometry 

Composite parts with curved geometry may experience shape distortions as they are 

released from the tool. Deviations from the designed geometry results from the 

balancing of process induced residual stresses [19]. It can lead to part’s dimensions 

falling out of the specified tolerance. The lack of reliable methods for predicting shape 

distortions of composite parts leads to an increase of development and manufacturing 

expenses due to the increased number of manufacturing trial attempts. 

As shown by Wisnom et al. [20], there are four main mechanisms causing the build-up 

of residual stresses during manufacturing: thermal, chemical, tool-part interaction and 

consolidation-driven. Since the subject of this study is the characterisation of 

consolidation process, the first three mechanisms fall out of the scope of this research 

and are discussed briefly. 

• The mismatch in thermal expansion properties between matrix and fibre phases 

leads to the build-up of residual stresses at the microscale level during the 

cooling stage. The 65% reduction of angled part’s shape distortion by means of 

lowering resin’s thermal expansion coefficient  was reported by Shaker et al. 

[21]. The difference in thermal strains in fibre and transverse directions can lead 

to curvature or twisting in case of unbalanced laminates. Finally, laminates can 

experience deviations from the target curved geometry due to the difference in 

in-plane and through-thickness expansion coefficients [22]. 

• The chemical shrinkage of polymers occurs during cure stage, causing a 

substantial change in resin’s volume. Similar to the thermal contraction case, it 

results in residual stresses at the microscale level or in-plane stresses in the 

laminate [23]. 



 

   9 

• Tool-part interaction can be the source of laminate’s shape distortions. Metal 

tools are subjected to higher thermal strains than a composite due to the 

difference in thermal expansion coefficients. As the part released from the tool, 

non-uniform through-thickness in-plane stresses arise, causing the part to bend. 

• The composite part can exhibit thinning or thickening in its curved regions due 

to the consolidation and resin flow. The flow of resin in angle laminates 

manufactured with the autoclave process under wide range of processing 

conditions was investigated by Hubert et al. [24]. It was demonstrated that the 

resin flow causes either corner thinning or corner thickening depending on the 

tool (convex or concave respectively). Substantial thickness variation (13% 

deviation from the baseline value) at radii of a 32 ply unidirectional carbon-

epoxy curved beam was also reported by Wisnom et al. [25]. The corner 

thinning/thickening results in fibre volume fraction variations and resin rich 

regions which contributes to an increase of part’s curvature. The phenomenon of 

geometry distortions due to acting residual stresses is commonly referred to as 

the spring-in effect. 

Extensive experimental and analytical research has been conducted to study the spring-

in effect in parts of different shapes (L-, V-, C- and U-shaped angled laminates) and its 

impact on composite part’s geometry. The contribution of thermoelastic and non- 

thermoelastic factors to the developed spring-in for C-shaped cured preforms (Hexcel 

AS4/8552 thermosetting composite) was studied by Ersoy et al. [26]. It was shown, that 

thermoelastic effects account for only 50% of the developed spring-in angle, and the 

rest was considered to be driven by the consolidation mechanisms. Spring-in behaviour 

of L-shaped glass fibre parts during manufacturing was investigated by Causse et al. 

[27]. Due to the low processing temperature (slightly above room temperature) the 

consolidation was considered to be the main source of shape distortions. It was reported 

that consolidation stresses have a serious impact on composite part’s residual 

deformations when concave tool was used. Moreover, as shown by Hubert et al. [24], 

the flow of resin during consolidation can have a significant effect on the final 

dimensions of curved parts. The influence of laminate’s thickness and resin flow 

conditions on the resulting spring-in angle for L- and U-section geometries was studied 

by Çinar et al. [28]. The parts were manufactured of Hexcel AS4/8552 material in an 

autoclave. Both numerical and experimental results confirmed corner thickening effect 

due to the resin percolation. The resin bleeding was not uniform along the length of the 
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part and was more intense at the edges. A higher level of spring-in was reported for 

parts manufactured under bleeding conditions due to the through-thickness fibre volume 

fraction gradient. 

Another source of dimensional distortions can be perturbations in the laminate structure, 

such as a layup angle misalignment or deviations in the fibre content. As it was shown 

by Kim et al. [29], even minor deviations from the designed microstructure may result 

in dimensional instabilities of a part such as warpage. It was concluded that the 

comprehensive material characterisation routine allows to estimate the dependence of 

dimensional tolerances of a part on microstructural parameters perturbations (layup 

angle and fibre content). The occurrence of warpage due to the through-thickness 

gradient in fibre content for V-shaped laminate was reported by Jerpdal et al. [30]. 

Warpage can occur even in flat unidirectional laminates due to through-thickness fibre 

volume fraction variations as shown by Radford et al. [31]. It was reported that non-

uniform resin content is prone to arise in case when resin bleeds out during 

consolidation. It results in the difference in thermal expansion coefficient in laminate 

layers and subsequent shape distortions (convex bowing). 

Therefore, consolidation, along with other mechanisms (thermomechanical effects, 

chemical shrinkage, tool-part interaction), is one of the key drivers causing shape 

distortions of the composite part during manufacturing. Relevant material compaction 

model is required to achieve specified geometry as it provides control of material and 

process parameters. 

2.1.4 Summary 

Thus, the challenge of consolidation characterisation is relevant for a wide range of 

manufacturing methods, parts’ shapes/geometries, and materials. It is crucial to have a 

robust consolidation model for a chosen material. It allows the researcher to: 

• determine optimal processing conditions for a chosen composite manufacturing 

method. 

• achieve target fibre volume fraction and correct dimensional tolerances by 

predicting the compaction response of the material. 

• maintain the desired geometry of the part and avoid shape distortions. 

Consolidation is one of the key factors causing spring-in effects and deviations 

from the target geometry. 
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• have a clear understanding of the problem of defects formation (wrinkling, voids 

etc.) 

• The main goal of the characterisation of the consolidation process is to 

understand how material flows and deforms under processing conditions. There 

are variety of different deformation mechanisms taking place at different 

structural scales during consolidation process. An overview of these 

mechanisms is presented in the next section. 

2.2 Deformation mechanisms 

Material response in consolidation arises from a complex interaction of various 

deformation mechanisms (i.e. the internal or percolation flow of resin [32], flow of 

fibrous suspensions [33], densification of reinforcement [34], [35], relative movement 

of plies [36], and others). Different forms of these mechanisms take place at different 

structural scales and often occur in parallel or exhibit transition from one state to 

another.  

Deformability of a composite is defined by the resin flow mode and/or the deformability 

of the reinforcement [37]. Several deformation modes of a composite precursor under 

processing conditions can be identified: shear flow of resin, percolation resin flow and 

the deformation of the reinforcement. The co-existence of different deformation 

phenomena and the transition from one mode to another was reported in a number of 

studies [38], [39]. For instance, as shown in Figure 2.1, characteristic features for both 

percolation (resin bleeding) and shear (ply distortion) flows were reported by Belnoue et 

al. [40]. 

 

a 
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b 

Figure 2.1: Different resin flow mechanisms [40]; a) resin percolation, b) shear 

flow of resin. 

The purpose of this section is to demonstrate the vast variety of different deformation 

mechanisms occurring at different scale levels (micro, macro, meso) of the laminate 

during consolidation. Mathematical representations and derivations of governing 

equations for different resin flow modes are considered further in chapter 3. 

2.2.1 Shear flow 

For the shear flow in composite precursor matrix and reinforcement phases are 

considered to be moving together as a whole. For this type of resin flow the material is 

treated as a highly anisotropic viscous fluid. Key assumptions for the compaction model 

of shear resin flow include: 

• The resin flow perpendicular to the fibre direction is prevalent. This effect is due 

to the very large value of extensional viscosity in the axial direction in 

comparison to transverse shear viscosity [41]. Therefore, the apparent dominant 

flow occurs across fibre orientation as resin follows the path of least resistance. 

• The material is represented as a combination of inextensible fibres surrounded 

by incompressible viscous resin [42]. Due to that and the assumption that there 

is no resin percolation out of fibre bed (which imposes limitations on the 

viscosity of resin and entanglement of fibres [43]), the whole laminate is 

approximated as an incompressible anisotropic fluid. 

• Normally, fibre tows are not ideally aligned prior to compaction and a slight 

twisting in orientation exists. As pressure gradient arises, twisting is further 
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developed trying to make inextensible fibre increase its length. Therefore, a 

twisted fibre acts as an effective brake on transverse resin flow. This mechanism 

was proven experimentally [44] after observing a distorted fibres in a specimen 

subjected to a transverse flow. 

Shear flow is one of the key healing mechanisms at the stage of manufacturing of a 

composite part. Such an effect is achieved due to the squeeze resin flow in the direction 

perpendicular to fibres. Redistribution of matrix and reinforcement phases results in 

establishment of a bonding effect in laminate layers and elimination of voids and resin-

dry regions [45]. Any composite manufacturing method requires an application of a 

sufficient consolidation pressure to ensure the suppression of voids in the laminate. 

However, an excessive consolidation pressure may induce a significant resin flow in the 

transverse direction and cause an irregularity in the composite structure such as fibre 

misalignment [46], which in turn affects the dimensions and mechanical properties of a 

composite part [47]. A robust analytical model of a shear resin flow allows to define 

optimum conditions of manufacturing process by predicting realistic deformation of a 

composite without causing undesirable defects in the fibre network. 

Shear flow of an incompressible suspension can occur at the scale of resin bridges 

connecting isolated plies [48], of tapes deposited in automatic fibre deposition (AFP) 

processes [49], of individual yarns in dry fabric [50], of broad good prepreg plies [39], 

or even of entire component [44]. Different scales of acting deformation mechanisms 

within shear resin flow are shown in Figure 2.2. 

 

Figure 2.2: Shear flow mechanisms at different scales of the laminate. 

There are two main deformation modes of shear resin flow acting on a ply level (intra-

ply): across and along fibre direction as shown in Figure 2.2 (left and middle). Intra-ply 

shearing of individual fibres is an important mechanism in the formation of complex 
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curvature shaped composite parts. Due to the fibre inextensibility assumption, a flat 

sheet of composite precursor can only accommodate the curved shape of the tool 

through shearing, as fibres length must remain constant [51].  

As shown by Hubert et al. [52], the estimated ratio between transverse and longitudinal 

intra-ply shearing viscosities varies significantly (0.77 to 2.0) within different research 

groups. It is not a trivial task to induce pure intra-ply shear in a test specimen without 

triggering inter-ply slip, which might be the source of discrepancies in viscosity 

measurements. The experimental characterisation of intra-ply shear behaviour of carbon 

fibre thermoplastic composite (APC-2) was conducted by Stanley et al. [53]. A custom-

built apparatus for the steady-shear testing was introduced within the study to achieve 

pure intra-ply shear. The findings from this research indicate longitudinal to transverse 

viscosities ratio at 1.3. 

• Shear flow can occur on the inter-ply scale (inter-ply slip). During the 

manufacturing of a composite part a resin-rich interface is formed between 

adjacent prepreg layers to achieve full consolidation and bonding between plies 

with different orientations [44]. Such resin rich region acts as a lubricant 

between adjacent plies and can facilitate shear deformations at the inter-ply level 

of the laminate [52] (as shown in Figure 2.2 on the right). Relative motion of 

two sliding prepreg layers can be a major source of manufacturing defects, 

including geometry distortions and out-of-plane wrinkling [54]. 

• An experimental investigation of this phenomenon was conducted by 

Vanclooster et al. [55]. Within that research, a series of ply pull-out tests was 

performed to study inter-ply shear behaviour of glass/PP fabric. An increase of 

yield stress was reported for lower values of the temperature and higher load 

application rate. Authors attributed this effect to the viscous nature of the inter-

ply slip phenomenon. An increase of the applied pressure leads to the reduction 

of the resin-rich interlayer’s thickness, which explains the increase of the yield 

stress for the higher values of the applied load. Another study on the influence of 

the processing conditions on the intra-/inter-ply shear behaviour of thermoplastic 

composite (Carbon/PP) was presented by Chen et al. [56]. The numerical and 

experimental trials were aimed to investigate the cohesive properties of the resin 

interlayer within a ply-pull testing for a range of operating temperatures. The 

numerical representation of inter-ply interaction was implemented through the 

three-dimensional cohesive element as opposed to the conventional approach, 
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where this phenomenon is modelled as contact between adjacent plies. The 

proposed approach allowed to predict different stages of the shear force 

evolution (fast increase – elastic response, peak – inter-ply slip, drop – relative 

motion of plies) within different processing conditions. The numerical results 

were then validated through a series of ply pull-out experiments where both 

inter-ply and intra-ply shear mechanisms were observed. Similarly to [55], the 

dependency of the yield stress on temperature and load application rate was 

reported. 

2.2.2 Percolation flow 

Percolation flow in composite manufacturing is a flow of resin through the network of 

fibres within the laminate [57]. The composite precursor is considered to behave as a 

permeable medium impregnated with a viscous fluid, where the reinforcement phase is 

represented as a network of elastic bending beams with multiple contact points [58]. 

There is a tendency for percolation flow to occur in materials with low viscosity 

matrices. The characteristic feature of such resin flow mode is the escape of resin from 

the laminate (resin bleeding) without shifting fibre network. 

Percolation of resin under compaction pressure is one of the essential mechanisms in 

composite manufacturing. This flow mechanisms affects the degree of impregnation and 

plays an important role in bonding of adjacent plies in the laminate. By allowing resin 

to bleed through the reinforcement, a resin rich interface between the plies is formed, 

which directly contributes to the bonding of prepreg layers with different ply 

orientations [44]. 

Percolation consolidation model is described in the series of papers [59]–[61]. The 

proposed model is based on two main phenomena: resin flow through fibre network and 

elastic deformation of fibres. The detailed mathematical representation of the 

percolation resin flow is discussed in chapter 3. 

Darcy’s law is one of the most common modelling approaches to describe the flow 

through the porous medium. It describes the influence of the viscosity 𝜂 and 

permeability 𝐾 of a porous medium with the thickness ℎ on the resin’s velocity 𝑉 

induced by the pressure gradient ∆𝑃𝑟𝑒𝑠 [62], as follows: 

𝑽 = −
𝑲

𝜼

∆𝑷𝒓𝒆𝒔
𝒉

 . 2.1 
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The relation for flow motion (Darcy’s law) is coupled with the deformation of porous 

medium through one of the fundamental assumptions in percolation flow under 

consolidation. The assumption about the balance between the pressure acting in resin 

and stresses caried by fibrous network was proposed by Terzaghi [63] (initially 

introduced for soil mechanics). It states the so-called additive superposition approach in 

which the applied pressure is counteracted by the sum of total pressure in resin and in 

fibre network. According to this assumption, the balance equation can be written as 

follows: 

𝑷𝒂𝒑𝒑𝒍𝒊𝒆𝒅  =  𝑷𝒓𝒆𝒔 +  𝑷𝒑𝒓𝒆 2.2 

where 𝑃𝑎𝑝𝑝𝑙𝑖𝑒𝑑 is the applied pressure, 𝑃𝑟𝑒𝑠 is the average resin pressure, 𝑃𝑝𝑟𝑒 is the fibre 

bed response. This assumption is widely used in mechanics of composite precursors, for 

instance [52], [57], [64], [65]. 

At the initial stage of the compaction the applied pressure is carried entirely by the resin 

phase and the fibre network remains unloaded. Nonetheless, due to the build-up of a 

pressure gradient resin starts to bleed out of the laminate. Consequently, fibre network 

compresses as well causing neighbouring fibres to come into contact and to carry a 

portion of a load which concurrently reduces resin pressure as shown in Figure 2.3 (σ𝐴 

represents the material spring constant influencing the fibre bed reaction, discussed in 

chapter 3). In the extreme case, when the resin is free to escape from the laminate, the 

applied load is balanced entirely by the fibre response and the resin pressure reduces to 

zero. Thus, final achievable thickness of the laminate is solely defined by the 

deformation characteristics of the fibre network. 
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Figure 2.3: Applied pressure and resin pressure evolution during the compaction 

experiment. 

The Terzaghi’s assumption on the additive nature of the external pressure redistribution 

was originally developed for the characterisation of granular soils and is widely 

disputed within the research community. The original relation for stress formulation 

was extended by taking into account the degree of medium’s saturation, the matric 

suction of dry regions, and the spatial distribution of the liquid phase [66], [67]. It 

illustrates the complexity of the balance equation problem for the saturated porous 

medium. Further discussion on the aspects of soil mechanics falls beyond the scope of 

this research. 

Similar to other deformation mechanisms, percolation flow occurs at different scales of 

the composite precursor, including low-permeability gaps between fibres (intra-tow in 

the range of 10 µm, see Figure 2.4.a), high-permeability channels between tows (inter-

tow in the range of 0.1 mm, see Figure 2.4.b) or through the thickness bleeding flow to 

an external bleeder [68]. The percolation flow mechanisms on intra-/ inter-tow scales 

are defined by acting capillary forces on the level of single fibres in the bundle (intra-

tow) and viscous flow in the interspaces between fibre bundles (inter-tow). If the 

influence of the capillary effect is high, the inter-tow voids can appear in the space 
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between yarns. On the contrary, if the flow on the inter-tow scale is prevalent, then 

voids can be trapped in the micro-spaces between fibres [69]. 

 

a 

 

b 

Figure 2.4: a. Intra-tow percolation flow [70]. Black – fibres, blue -intra-tow gaps, 

red - resin; b. Inter-tow percolation flow [71]. 

The flow of resin on the scale of individual filaments was investigated by Inoue et al. 

[70]. The study was aimed at mathematical modelling of resin filling the gaps between 

fibres in the bundle on the microscale level. Two directions of resin flow were 

considered within the numerical simulation (as shown in Figure 2.4.a): the longitudinal-

flow (main direction of the flow) and the transverse flow when the resin percolates into 

interspaces between filaments being driven by the capillary force. It was established, 

that the timescale for the transverse flow must be sufficient to release the entrapped air 

from the gaps. Authors concluded that microscale aspects of the intra-tow percolation 

resin flow directly influence voids generation. 

An analysis of the inter-tow viscous flow of resin through the hexagonal array of fibre 

bundles was performed by Papathanasiou [72]. The dependence of the permeability of 

the medium on the inter-tow porosity and the arrangement of fibres within the bundle 
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(hex and square) was established within that study. Meso-scale percolation flow is 

relevant not only for the scale of fibre bundles but also for tapes deposition within 

automated fibre placement process. The effect of resin flowing into the gaps between 

neighbouring tapes was investigated by Li et al. [73]. Depending on the tooling (hard or 

soft), the regions of the composite with different levels of curing pressure caused resin 

to flow in the areas of gaps and overlaps. The study of this phenomenon allowed 

authors to build the robust numerical model of the process capable of predicting the 

influence of defect size on the strength knockdown of the specimen. 

It is a challenging task to isolate the flow phenomenon at a single structural scale for 

studying, as inter- and intra-tow flow are interconnected and occur concurrently. The 

evolution of percolation flow at different scales was investigated by Cender et al. [71] 

within the study on resin impregnation of woven fabrics. Initially, the resin flow started 

with filling inter-tow gaps. As 35% of the total area was filled with resin, the initiation 

of the intra-tow flow was observed. As concluded by the authors, the transition between 

flow modes depends heavily on the applied pressure and temperature. 

Percolation flow may occur on the macro scale of the laminate. If the composite 

precursor is processed under bleeding condition (bleeder is placed on top of the 

laminate), the resin pressure gradient is formed in in-plane and through-thickness 

directions. It provides the driving force for the resin to flow from the bottom to the top 

surface of the laminate, and to the bleeder. Such phenomenon results in different values 

of fibre volume fraction in the regions with different thickness, for instance in the 

tapered laminate as shown by Gu et al. [74]. The intensity of the through-thickness flow 

is significantly affected by bleeder’s thickness as established by Ganapathi et al. [75]. A 

coupled cure-compaction numerical simulation of thick laminate’s consolidation was 

performed within that study to predict resin’s content and laminate’s thickness in 

dependence of bleeder’s parameters (thickness, permeability). The coupled nature of 

percolation flow was also reported by Thomas et al. [76]. Within that study, in-situ 

monitoring of through-thickness impregnation of one-layered fabric was performed. The 

authors observed the initiation of percolation flow at intra-tow scale after ~16 minutes 

from the start of the experiment. 
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2.2.3 Deformation of the reinforcement 

Another group of material models is related to the deformation of the reinforcement. 

Many examples of reinforcement’s deformability characterisation are available in the 

literature. 

Visco-elastic model for compaction and relaxation of woven fabrics’ reinforcement was 

proposed by Breard et al. [77]. The goal of the study was to distinguish the mechanical 

properties of the reinforcement from the resin flow properties. The proposed model 

(based on the generalised Kelvin-Voigt model for soils) was set to describe the 

rearrangement of fibre bundles caused by the effect of fluid pressure. This deformation 

mechanism can be characterised through the level of the porosity at micro- and macro-

scales, as the fibre bundles were assumed to fill open spaces between the pores. 

The need of taking into account permanent deformation of the reinforcement was 

addressed by Somashekar et al. [78]. In that study, a series of compaction tests for 

different types of glass fabric was performed. The results indicated three distinctive 

stages of dry material deformation: elastic spring-back, permanent (unrecovered) 

deformation, and recovery. These factors were influenced by the fibre volume fraction, 

layup, and load application rate. 

The characterisation of reinforcement’s deformability can be done at different structural 

scales of composite precursors. The numerical and experimental study on woven 

fabric’s compaction (Hexcel G986) at the mesoscopic scale was performed by Nguyen 

et al. [79]. The object of the study was to determine the influence of the plies’ relative 

orientation and the ply nesting on the compaction behaviour of the specimen. The fibre 

bed behaviour was assumed to follow rate (hypoelastic) constitutive law. It was 

established, that for different layups the compressive rigidity of the ply-stack may vary 

significantly due to the nesting effect. Another example of hypoelastic modelling 

approach was demonstrated by Badel et al. [80]. Within that study, the deformation of 

the reinforcement unit cell during the preforming stage was approximated with the 

continuum rate constitutive model. The proposed model accounts for meso- (change of 

the yarn cross-section shape) and macroscopic factors (fibre bed compaction and 

bundles rearrangement). The results of the simulations were in a good agreement with 

the actual evolution of the yarn’s cross-section, as shown in Figure 2.5. As concluded 

by the authors, one of the possible developments of the considered approach is the 

implementation of coupling with resin flow simulation within deformed reinforcement. 
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Figure 2.5: Reinforcement deformation under tension [80]; a) initial state of the 

yarn cross section; b) deformed state of the yarn cross section. 

2.2.4 DefGen ProToCoL model of resin flow 

The phenomenological hyper-viscoelastic consolidation the DefGen ProToCoL 

(Processing Tools for Composite Laminates) model [14], [38], [40], [81]–[84], [85] was 

developed to describe toughened prepregs systems with large range of viscosities at 

different temperatures. It has characteristic features of both shear and percolation flows. 

For example, it explicitly links the thickness evolution of a prepreg stack to the initial 

width and thickness of the constitutive plies within the stack (which is typical for shear 

flows) and, at the same time, converges to a compaction limit under compression 

(which is usually related to bleeding flows). 

The results of the compaction testing (IM7/8552 and IMA/M21 prepregs) indicate 

significant variations in final thickness of specimens with different layup configurations 

[14], [39]. The plies’ aspect ratio (thickness/width ratio) plays an important role in 

thickness evolution during compaction and the compaction limit of the layup. As shown 

by Belnoue et al. [40], the DefGen model is capable to describe the compaction 

behaviour of the material for different stacking sequences of a specimen, different 

aspect ratio of thickness to width, different processing conditions and strain rates. The 

examples of the considered layups within the study [39] are shown in Figure 2.6.  
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Figure 2.6: Schematic representation of the specimen layup options (CP [90/0]8, BP 

[904/04]2, SB [902/02]4) with various thickness-to-width ratio. 

The problem of the size effect of different layup configurations is addressed within the 

DefGen model by considering consecutive layers with the same orientation as a single 

layer of a larger thickness. 

The important feature of this model is that both flow mechanisms co-exist, which agrees 

with the experimental results [38]. This is made possible through the implementation of 

a transition between flows described as an instant event. This transition from a 

squeezing to a bleeding flow is triggered when shear deformation at the ply edge 

reaches a critical value. During deformation, the upper fibre moves towards the fibre 

below, thus squeezing the resin in the transverse direction. Currently, when shear 

deformation reaches its critical value (deformation at locking) the flow direction 

changes. At this stage resin bleeds along the fibres, which is one of the key features of a 

percolation flow (mathematically described as squeezing flow along fibre direction). 

The DefGen model is implemented in a way, that for a given temperature only three 

bespoke material parameters (a, b, and k) are required to fully characterise the 

compaction behaviour of the material. More thorough discussion on the model’s 

parameters and mathematical implementation is presented in Chapter 3. In the initial 

formulation of the model, one of the limitations was that the proposed set of parameters 

was not linked with the known physical properties of the composite precursor 

(viscosity, fibre volume fraction, permeability) through an analytical expression. This 

problem was addressed in further developments of the DefGen model by Belnoue et al. 

[85]. Parameter a relates to the flow behaviour and defines whether the fluid is dilatant, 

Newtonian or shear-thinning. Parameter b represents an energy barrier controlling the 

ability of resin to flow through the fibre network. And lastly, parameter k is related to 

the size of a fibre in relation to the unit cell size (hence, can be represented as fibre 

volume fraction within one-dimensional formulation). 
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2.2.5 Summary 

Multi-material systems exhibit complex behaviour under processing conditions. This is 

due to the existence of various deformation mechanisms of composite precursors. The 

diversity of deformation mechanisms results in a number of challenges for material 

characterisation: 

• Different deformation mechanisms are based on the incompatible assumptions 

and are aimed to reflect different aspects of deformation (composite precursor is 

approximated as a reinforced fluid or resin flow through a porous medium; the 

existence of the compaction limit etc.). 

• There are various flow modes occurring on micro-, meso-, macro scales of the 

composite precursors. These flow modes are coupled and occur concurrently. It 

is a challenging task to isolate the phenomenon at one structural scale to 

estimate its influence on the overall deformation behaviour of the composite 

precursor. 

• The flow modes can co-exist within one deformation process. The transition 

from one mechanism to another was reported in a number of studies. 

Successful characterisation of a composite precursor requires a comprehensive testing 

programme to reveal acting deformation phenomenon. Existing approaches to 

characterisation testing and arising challenges are addressed in the next section of this 

chapter. 

2.3 Test methods for material characterisation 

2.3.1 Material characterisation challenges 

Material characterisation tests are drastically different depending on which mechanism 

is assumed to be prevailing. There is no standardised testing strategy that would be 

equally suitable for all the observed deformation/flow mechanisms. 

In simple cases, isolated experiments with material components (e.g. compaction of dry 

reinforcement [86], rheological experiments on pure resin [87] or resin suspension [88]) 

can provide all the required input to describe the material behaviour. However, this is 

only the case when the model can precisely capture how individual components interact 

in the system. Often, reality suggests much more complex interaction mechanisms with 

no clear route to test constituents separately. For instance, the behaviour of dry 
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reinforcement and the same reinforcement in an impregnated preform will be different 

due to lubrication [89]. The apparent response of the tape exhibiting shear flow will be 

strongly affected by its interaction with the loading plate, which is often unknown or 

require separate testing programme, and not just material properties [90]. Uncertainty in 

properties, e.g. due to the high sensitivity of resin viscosity to environmental conditions 

and thermal history, also plays an important role [14], [91]. Other examples include 

transitional behaviours where different flow processes occur at different stages of the 

processes [39]. In these cases, the testing programmes require inverse property 

calculation procedures, and depend on the model and the initial hypothesis made by the 

experimenter. 

The choice of the loading schedule and the temperature level for the characterisation 

test is defined by the researcher prior to the experimentation. Chosen processing 

parameters (load, load rate, temperature) drastically affect dominant deformation 

mechanisms and the flow of resin within a composite [92]. The main purpose of this 

section is to showcase the variety of testing approaches and the challenges arising at the 

experimentation planning stage. The testing programme’s design can be influenced by: 

• the material/specimen configuration (size effect, layup etc.); 

• the studied phenomenon of the compaction behaviour (creep/recovery, 

relaxation, elastic and viscous response etc.); 

• the pre-assumed consolidation mechanism/dominant resin flow mode; 

• the need to simulate a specific manufacturing method; 

• the previous experience in the corresponding field of study; 

The acquired experimental data is then to be described by the chosen material model. 

Material constants can then be identified based on an optimisation procedure which 

attempts to minimise the deviation of the model predictions from the measured 

experimental data. 

2.3.2 Examples of characterisation testing approaches 

There are various examples of characterisation testing approaches available in the 

literature. A viscoelastic response of glass fibre continuous filament mats through the 

compression-relaxation load cycle was studied by Kelly [93]. A phenomenological form 

of a compaction model was suggested to reconcile the experimental observations. The 
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model was represented as a multiplicative decomposition of the compaction stress into 

functions of strain and strain-rate as follows: 

𝝈(𝜺, �̇�) = 𝒇𝜶(�̇�)𝒇𝜷(𝜺) 
2.3 

where 𝜎 is the compaction stress, 휀̇ is the strain-rate, 휀 is the strain. 

A series of monotonic compression tests at various rates with the subsequent load 

relaxation were conducted as shown in Figure 2.7.a. As concluded by the author, four 

compaction-relaxation tests are enough to adequately determine material model’s 

parameters. The tests must include “very slow” and “very fast” load application rates. 

The definition of “slow” and “fast” depends on the material and the predominant 

consolidation mechanism. Therefore, the final set of test programmes is driven by the 

studied material and assumptions on how the material flows and deforms. According to 

the testing methodology employed in Kelly’s study, the completeness of the program 

(the number of tests, the explored load levels/application rates) also depends on the 

experience of the researcher. 

Depending on the studied phenomenon characterisation approach may be different. The 

application of pressure is more relevant than application of displacement for composite 

processing. When put under constant loading, the multi-material system may exhibit 

complex behaviour such as creep. Creep is the tendency of materials to showcase an 

increase in deformation when subjected to unchanging processing conditions (load and 

temperature) [94]. Studies on the creep effect in composite precursors were conducted 

by different researchers, as shown below. The idea behind the characterisation testing in 

this case is to apply a constant load in order to observe elastic (initial deformation), 

viscoelastic (non-linear deformation) and viscous (deformation plateau) stages of the 

deformation as shown in Figure 2.7.b. Creep stage of the test is then followed by the 

recovery during which the load is removed. Upon instant load removal there are elastic 

and viscoelastic components of the recovery stage, resulting in a final deformation of a 

composite [95]. 

Creep behaviour of carbon fibre prepreg (Toray T700-12K-50C) was studied by 

Almeida et al. [96]. Three different unidirectional layup sets were explored within the 

study: [0]4, [30]4, [60]4. The latch-based Weibull model [97] was employed to 

characterise the creep response of the material. To observe different strain levels, test 

programmes with two stress levels (2 and 5 MPa) at the constant temperature (30 ̊C) 

were performed. The obtained model showcased the robust performance at higher stress 
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levels. The authors concluded that the stress level of 2 MPa was too low to observe 

sufficient material’s compaction response due to the high stiffness of the specimens. A 

similar approach was taken by Monticeli et al. [95], where different levels of the applied 

pressure (1-5 MPa) and the temperature (50 ̊C – 190 ̊C) were examined to study creep 

phenomenon. In both cases, the load programmes were designed to incorporate different 

elastic and viscoelastic deformation levels (higher stresses cause higher initial elastic 

deformation), but the actual load values and creep duration were specified by the 

experimenter. 

Viscoplastic response of the carbon fibre material (Thornel T-300 12K) to short-term 

creep and load relaxation was investigated by Al-Haik et al. [98]. The material’s 

behaviour was assumed to be compliant with the elastic/viscoplastic model proposed by 

Gates [99]. According to authors, the material’s response was studied at three different 

temperatures (25 ̊C, 40 ̊C, 60 ̊C). During the tensile experiment, test specimens were 

loaded to the level of 50% of the ultimate tensile stress for a given temperature. The 

results showed discrepancies between obtained model’s prediction and experimental 

results for the higher temperature values and longer creep duration. The choice of the 

considered temperature levels was justified by the need to study the correlation of 

material parameters on the temperature in the range of room temperature to the glass 

transition temperature (Tg = 85 ̊C). The choice of the load level was based on the 

experience of the researcher and was driven by the pre-assumed material’s behaviour 

(the influence of the overstress on the creep phenomenon). There is no standard for the 

target load level within creep experimentation and the test programme may vary within 

different research groups. For instance, in the creep testing conducted by Guedes et al. 

[100] the target value of stress was chosen to be 69-72 % of the ultimate stress level (as 

opposed to 50% level in [98] case). 

The description of composite precursor’s compaction behaviour requires the 

characterisation of viscous and elastic response of the material (except for the case 

when shear flow is assumed). To study the contribution of each of these phenomena to 

the compaction response it is necessary to isolate them for characterisation. It must be 

done without modifying laminate’s structure or altering fibre network arrangement. A 

testing method for separating viscous and elastic contributions of fibrous and resin 

components directly from carbon–epoxy prepregs (AS4/3501-6) was discussed by 

Hubert et al. [101]. The idea is to design the test programme in a displacement-

controlled mode with load tracking. The applied displacement is increased 
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incrementally at each step of the test in a ramp-dwell manner. Every time the 

displacement is held at a constant value, the load starts relaxing due to the viscoelastic 

nature of the material. The duration of each displacement dwell increment is chosen to 

be sufficient for the load to relax to a stable value. Under assumption of the additive 

superposition of elastic and viscous components of stress response, the magnitude of the 

load at the relaxed state is directly related to the elastic fibre bed response for the 

corresponding strain level. The results show that the behaviour of the fibre bed response 

can be represented as a non-linear stiffening spring. The material is tested at different 

displacement levels in order to receive the data-rich compaction response of the material 

to fully characterise the elastic reaction of the prepreg. The processing conditions 

(temperature, applied displacement/displacement rate) were selected in a way to 

maximise experiment’s duration before curing starts. The resulting displacement-

controlled ramp-dwell loading programme is shown in Figure 2.7.c. The efficiency of 

the proposed approach was confirmed by validating the obtained load relaxation model 

against the load-displacement data obtained in the independent load-controlled 

compaction test. 

The study on compaction behaviour of uncured toughened prepregs (IMA/M21 and 

IM7/8552) was conducted by Nixon-Pearson et al. [39]. The aim of the research was to 

characterises the compaction response of the material under processing conditions 

consistent with different types of composite manufacturing – automated fibre placement 

(low temperature/moderate pressure), autoclave consolidation (high temperature/high 

pressure), debulking (wide range of temperatures/low pressure). A wide range of load 

levels, load rates and temperatures (30 ̊C - 90 ̊C) was explored. The experimentation 

was performed for different specimen’s layup configurations to take into account size 

effects. 

Two independent loading regimes were proposed to cover wider range of strain-rates. 

The first ramp-dwell loading programme comprised of several steps with high-rate 

incremental load increase followed by load dwell intervals. The second regime was a 

slow monotonic load raise where load was increased linearly through the whole test. 

The considered loading programmes are shown in Figure 2.7.d. The load levels/rates 

were chosen to be comparable to processing conditions seen in the abovementioned 

manufacturing methods. 

Features relevant for both percolation (compaction limit, resin flow out of the fibre bed) 

and shear (inter-ply distortion) flow modes were observed. Moreover, the studied 
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material exhibited the transition between shear and percolation flow modes at 

temperatures around 60 ̊C. It became possible to reveal these deformation mechanisms 

due to the comprehensive and extensive experimentation programme. The generated 

compaction data was then used for material characterisation by means of the hyper-

viscoelastic model proposed by Belnoue et al. [40]. The proposed testing approach was 

employed to address the observed complex material behaviour and to identify/validate 

the material model [39]. 

Another example of characterisation experimentation influenced by the considered 

manufacturing method was presented by Govignon et al. [102]. In that study the aim 

was to model processing conditions arising during resin infusion. The pressure level 

was set at 1 bar as vacuum was simulated. The considered compaction programme is 

shown in Figure 2.7.e. The loading programme was divided into three distinctive stages: 

compaction of the dry preform, unloading during resin filling, re-compaction of the wet 

preform. Due to the fact that material is normally re-compacted from non-zero stress 

state, a series of tests with different compaction levels (shown with blue lines in Figure 

2.7.e) were performed in order to acquire sufficient compaction response data. 

Then, experimental data from each compaction stage was characterised within the 

material model proposed by Robitaille et al. [103], which provides the relationship 

between current fibre volume fraction and the compaction stress. The model predictions 

proved to be in good agreement with the validation set of experimental data. 
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Figure 2.7: Test programmes for characterisation of composite precursors. a) 

compression testing at various rates [93]; b) creep/recovery test [95]; c) ramp-

dwell programme to separate viscous and elastic contributions of fibrous and resin 
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components [101]; d) ramp-dwell programme motivated by the need to cover 

wider range of strain-rates; e) compaction characterisation programme for 

modelling resin infusion process [102]; 

An overview of experimental techniques for shear flow was presented by Engmann et 

al. [104]. The commonly used methods include testing at a constant plate closure speed 

(which results in an increased strain rate), at a constant strain rate (the closure speed of 

the plate decreases exponentially with time), at stress relaxation conditions (stopping 

plates closure when target strain is reached to estimate the degree of elasticity of the 

material), at a constant stress (creep tests, discussed above). To observe various 

rheological behaviours, different test geometries can be facilitated by altering sample to 

plate size ratio (width and length): 

• Constant area geometry – specimen’s size is larger or equal than the plate’s size, 

the specimen flows out. Such approach provides more control over the applied 

pressure, as the area remains constant during the test. 

• Constant volume geometry – specimen’s size is smaller than the plate’s size, 

which results in the absence of material accumulation at the edges (as opposed 

to the constant area geometry). Therefore, there is no pressure build-up at the 

specimen’s edges. Such approach is closer to industrial practice. 

• Imperfect squeezing flow – the penetration of the compression plate into a 

volume of fluid 

• Fully submerged plates – only applicable to the material with low viscosity 

Depending on the plate’s surface treatment (lubricated or roughened surface) no-slip or 

no-friction contact conditions can be facilitated. As concluded by the authors, obtaining 

rheological parameters from the experimental data is challenging. The examples of 

rheology measurements for shear flow were provided in the series of papers by Harrison 

et al. [105], [106]. The composite test samples (1 mm thickness) were placed in-

between heated compression platens and squeezed to a gap of 0.8 mm. The 

corresponding shear rate was measured by the rheometer for a range of processing 

temperatures. The Carreau-Yasuda model for viscosity was then used to fit the obtained 

shear strain rate experimental data [105]. In another study [106] the rheometer was 

positioned in parallel within the custom built compression platens. The shear strain data 

was acquired as the shear stress and normal force were applied to the specimen. As 

concluded by the authors, using the rheometer is more effective in comparison with the 
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pull-though and pull-out testing. Nevertheless, one of the disadvantages of this approach 

is that the experimental loads are lower than the processing conditions employed within 

the industry. 

Another group of studies reflects challenges arising within permeability estimation. 

Two benchmark exercises for permeability measurements were performed within 

different research groups [107], [108] to establish guidelines for standardised 

measurement approach. The flow of resin-imitating test fluid (to exclude cure reaction) 

through fabric test sample placed in-between two mold surfaces (as for a standard Resin 

Transfer Molding setup) was analysed within the study. In the second exercise [108], 

the level of permeability data dispersion below 25% was achieved. The main source of 

results discrepancies was concluded to be human factors (experience, specimen 

preparation, raw experimental data processing). 

Characterisation of dry materials may provide relevant data about fibre network’s 

response to loading. Shear behaviour of dry woven composite material was analysed in 

a series of tests by Sharma et al. [109]. Employed test methods included uniaxial bias 

extension, biaxial, and picture frame tests. The displacement application rate for all test 

was fixed at 60 mm/min. The variety of testing approaches allowed to investigate the 

development of in-plane shear stresses, the effect on shear resistance, tows 

rearrangement, and lock-up behaviour the material. 

The lack of standard guidelines for material parameters measurements impedes 

researchers from comparing resulting data obtained within different experimental 

setups. Differences in experimental and data processing approaches, different testing 

apparatus, human factors may lead to scatter in the results. 

2.3.3 Summary 

Designing an extensive characterisation test programme is not a trivial task. To reveal 

the underlying deformation mechanism the material must be trialled against a wide 

range of loading conditions to receive sufficient compaction response. There is no 

universal approach for characterisation testing of composites. The choice of 

experiment’s loading schedule is often based on the assumed dominant consolidation 

mechanism, studied phenomenon or the need to replicate processing conditions specific 

to a certain manufacturing method. 
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The next step after characterisation testing is to use the acquired experimental data for 

building a comprehensive material model capable of capturing the compaction 

behaviour of a composite precursor. An overview of different approaches for defining 

physical models of system’s behaviour from data is provided in the next section of this 

chapter. 

2.4 Retrieving physical models from experimental data. 

There are different methods on how to approach the processing of experimental data for 

building physical models of the studied system’s behaviour. The problem of retrieving 

governing equations from data is not specific to the field of composite materials only 

and is relevant in other fields of study as well. 

There are several important factors which influence the choice of the approach for 

model identification: 

• Assumed models of the studied system’s behaviour. In this case the 

parameterised governing equation is available, and the aim is to identify the 

values of the model’s parameters. 

• Time constraints and computational resources. The requirements on algorithm’s 

promptitude and the availability of the computational power may put limitations 

on the usage of more sophisticated methods. 

• Sufficient or scarce set of experimental data. Certain methods are more sensitive 

to scarce datasets and require a diverse input to capture the studied features of 

system’s behaviour, which lead to more experimental work to obtain the 

required data. 

An overview of different approaches for building physical models from experimental 

data is presented below. 

2.4.1 Regression analysis 

If the governing equation for the selected flow mode is available (meaning that the 

assumption about the dominant deformation mechanism has been made), then the main 

objective is to find an optimum set of material parameters to match model’s prediction 

with the experimental data. It is done through conducting nonlinear regression analysis. 

The essence of the regression process is to minimise the difference between model’s 

prediction 𝑓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 and the actual experimental data 𝑓𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 by varying the 
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values of material parameters. The cumulative difference in prediction over the span of 

input data is called the residual function 𝑓𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  [110]: 

𝒇𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍 = ∑ (𝒇𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍  −  𝒇𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏)
𝟐

𝒂𝒍𝒍 𝒅𝒂𝒕𝒂
 𝒑𝒐𝒊𝒏𝒕𝒔

. 2.4 

The residual function is minimised within an optimisation method of choice such as 

Least Squares, Nelder Mead, etc. 

The general form of the governing equation describing the compressibility of the 

viscoelastic material is defined as a differential equation as follows (mathematical 

representation of various flow modes will be discussed more thoroughly in Chapter 3):    

𝒅𝒉

𝒅𝒕
= 𝑭(𝒕, 𝒉)  ∙  𝑸(𝒉) 

2.5 

where F(t, h) is a function containing the history of the evolution of the applied 

pressure, h is the thickness, 
𝑑ℎ

𝑑𝑡
 is the thickness rate, and Q(h) is a function of thickness 

which contains the material parameters. The experimental data represents a set of 

measured thickness values ℎ(𝑡)𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 evolving during the experiment. 

There are two ways to formulate a residual function when the target governing equation 

is represented in a form of ODE. 

• To solve ODE within the residual function. 

To compare the measured thickness response with the model’s prediction 

ℎ𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑡), the corresponding ODE must be solved. In this case the residual 

function is formulated as follows: 

𝒇𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍 = ∑ (𝒉(𝒕)𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍  − 𝑺𝒐𝒍𝒗𝒆𝑶𝑫𝑬(
𝒅𝒉𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏

𝒅𝒕
))

𝟐

𝒂𝒍𝒍 𝒅𝒂𝒕𝒂
 𝒑𝒐𝒊𝒏𝒕𝒔

. 2.6 

• The main advantage of this approach is that it is possible to use “raw” noisy 

experimental data ℎ(𝑡)𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 without pre-processing (denoising, filtering 

etc.). Therefore, the experimental data will not undergo any modifications and 

will be submitted in its pure form. On the other hand, the need to solve a 

differential equation every time there is a request for the residual function’s 

value significantly slows down the process of regression analysis. 
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• To differentiate the experimental data to obtain derivatives 
𝑑ℎ𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙

𝑑𝑡
. 

Composite’s thickness values are measured directly within the experiment. After 

calculating the thickness rate 
𝑑ℎ𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙

𝑑𝑡
, the residual function is represented 

as follows: 

𝒇𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍 = ∑ (
𝒅𝒉𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

𝒅𝒕
 − 

𝒅𝒉𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏

𝒅𝒕
)

𝟐

𝒂𝒍𝒍 𝒅𝒂𝒕𝒂
 𝒑𝒐𝒊𝒏𝒕𝒔

 . 2.7 

This approach is considerably faster rather than solving ODE within the residual 

function. The experimental data contains noise component. It results in the main pitfall 

of this method: the derivatives can only be found for a “smooth” data. The source of 

that noise may be different: equipment’s compliance, data acquisition algorithm’s 

imperfections, faulty sensor etc. It becomes necessary to filter the noisy thickness data 

in order to conduct differentiation on a smooth ℎ(𝑡) curve. There are various techniques 

for finding derivatives of noisy data, including polynomial regression (fitting high order 

polynomials) [111], Fourier filtering (decomposing the initial signal and excluding 

high-frequency noise components) [112] or non-parametric spline regression [113]. The 

key challenge for a noise smoothing algorithm is not to introduce any bias to the initial 

pure data. 

2.4.2 Data-driven approach for identifying governing equations. 

There are ways to identify fully parameterised system from experimental measurements 

without prior knowledge of the governing equations (hence, without prior assumptions 

on system’s behaviour). Data-driven method for extracting governing equations from 

experimental data was explored by Brunton et al. [114], Rudy et al. [115]. 

The idea of the method is to use sparse regression to determine only the fewest relevant 

terms in the governing equations to adequately describe the data. The terms are selected 

from a large pool of user defined high-dimensional nonlinear functions. The selection 

process is based on the assumption that only a few important terms define system’s 

behaviour (hence, sparse regression). 

The proposed approach was applied to the well-studied fluid dynamics problem of fluid 

flow and vortex shedding behind a cylinder. The visual representation of the problem is 

shown in Figure 2.8. In that example the studied system was represented as a system of 

differential equations �̇�(𝑡), �̇�(𝑡), �̇�(𝑡) (denoted as �̇� in a matrix form). To capture the 
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transient nature of the studied system, an additional z axis was introduced which 

represented the transition from the unstable steady state to the vortex state. The 

experimental data was modelled based on the Navier-Stokes equations at a range of 

different flow conditions. 

 

Figure 2.8: The problem of fluid flow and vortex shedding behind a cylinder [114]. 

Left – three-dimensional representation of the problem, where Z axis represents 

the transition between states of the process. Right –two-dimensional flow behind 

the cylinder at different states. 

The problem of sparse regression was formulated as follows: 

�̇� = 𝜣(𝑿) 𝜩 2.8 

where 𝛩(𝑋) is a library of candidate non- linear functions. In the considered example it 

was represented as a fifth order polynomial as follows: 

𝜣(𝑿) = [𝒙(𝒕) 𝒚(𝒕) 𝒛(𝒕) 𝒙(𝒕)𝟐 𝒙(𝒕) 𝒚(𝒕) ⋯ 𝒛(𝒕)𝟓]. 2.9 

As stated by the authors, other functions (sin, cos, log) as well as polynomials of higher 

order could also be considered. Basic knowledge of the studied system’s physics may 
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significantly simplify the regression process as non-relevant candidate functions would 

be excluded from the considered 𝛩(𝑋). 

𝛯 represents sparse vectors 𝜉𝑖 of coefficients, which determine what terms are active in 

𝛩(𝑋) for a given differential equation in �̇� as follows: 

𝜩 = [𝝃𝟏 𝝃𝟐 ⋯ 𝝃𝒏]. 
2.10 

If a term in 𝜉𝑖 is 0, the corresponding candidate function in the polynomial set 𝛩(𝑋) is 

not relevant and can be dropped. Non-zero value in 𝜉𝑖 not only activates the term in the 

governing equation, but also defines the value of a corresponding model parameter. The 

comprehensive visual representation of the considered sparse regression problem is 

provided in [114] (Figure 1). 

Thus, upon conducting sparse regression and identifying relevant terms in the governing 

equations, the fully parameterised dynamic system was discovered for a range of 

sampled parameters values. The identified model matches the Navier-Stokes equations, 

even though no initial assumptions were put forward (meaning no governing equations 

were available prior to the analysis) 

There are limitations to this approach. The method’s performance highly depends on the 

fortunate choice of candidate functions 𝛩(𝑋) and chosen coordinate system (as shown 

in Figure 2.8). Moreover, noise filtering or data-curve smoothing is required to compute 

derivates �̇� from the experimental data 𝑋. The application of the sparse regression 

method in a high-dimensional space requires considerable computational resources in 

order to converge to the optimum set of governing terms/model parameters. 

2.4.3 Data approximation with artificial neural networks 

The approximation/learning of the experimental data by means of artificial neural 

networks (ANN) is becoming more relevant in many different disciplines. The major 

advantage of this approach is that no prior knowledge or assumptions about the studied 

system’s behaviour is required. 

ANN is a mathematical representation of groups of elements called neurons which are 

organised in a layered structure. An example of neural network’s architecture [116] is 

shown in Figure 2.9. In that work the influence of the reinforcement particles on the 

compressibility of Al–SiC composite powders was investigated. The proposed neural 

network used the content of the reinforcement particles (SiC-Vol %), the particle size 
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ratio (PSR), and the compacting pressure (P) as input parameters. Based on the input 

data ANN output the predicted density of the compacted Al–SiC batches. 

 

Figure 2.9: Neural network’s architecture [116]. Input layer contains three 

neurons as three inputs are submitted. Output layer consists of one neuron since 

only one property of the system (density) is studied. The number of hidden layers 

and their size is defined by the researcher. 

Regardless of the application, different ANNs follow the same principle. The first input 

layer receives an external data from the environment as an input and passes it further to 

the next layers. The last layer outputs network’s prediction which is to be compared 

with the experimental data. The first and the last layers are connected through several 

hidden layers, where the information is processed. Every layer may contain different 

number of neurons. Basic representation of a neuron is shown in Figure 2.10. 
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Figure 2.10: The structure of a neuron. Inputs and output. 

Neurons in different layers are linked with each other (see Figure 2.9). Therefore, each 

neuron has several inputs and one output. Each link has an assigned weight coefficient 

to it. A neuron’s output 𝑦 is formed by conducting a series of mathematical operations – 

weighted inputs 𝑤𝑖𝑥𝑖 and bias 𝑏 are summed up and transformed through the user-

defined activation function f() (see Figure 2.10) as follows: 

𝒚 = 𝒇(∑(𝒘𝒊

𝒊

𝒙𝒊) + 𝒃) . 
2.11 

Thus, the neuron’s output can be adjusted by tweaking the weights of connecting links 

and neuron’s bias coefficient. Then, neuron’s output is passed further to the next neuron 

as in input. The process of adjusting weights and biases of all neurons in the network 

until the resulting output matches known experimental data is called training. The 

training continues until the errors between prediction and results are sufficiently small. 

Upon the completion of training, ANN is able to simulate the response of the studied 

system and output model’s predictions for new batches of the input data [117]. 

The ANNs are widely used to simulate the behaviour of composites under processing 

conditions by approximating the studied phenomena [118]. Such approach does not 

require computation of derivates from the experimental data, hence no data pre-

processing (noise filtering or curve-smoothing) is needed [119]. There are various 

examples of neural network’s application available in the literature. The usage of neural 

networks to predict manufacture-induced disturbances and resin flow inconsistencies 
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was explored by González et al. [120]. The non-linear response of ionic polymer-metal 

composite actuators was approximated with ANN within the study by Díaz Lantada et 

al. [121]. The compressive and impact strength of fibre reinforced concrete in 

dependence on the content and the structure of the reinforcement was approximated 

through ANN by Sangeetha et al. [122]. In all cases fully trained neural network could 

predict the target behavioural feature based on the supplied material parameters and 

processing conditions. 

The usage of ANNs has its limitations. The input data has to be diverse in order for the 

network to capture the behaviour of the studied system. Scarce input dataset is not 

sufficient to approximate system’s response to changing processing conditions. There is 

also a requirement for a powerful GPU hardware in order to train the network within 

reasonable time. 

One of the major drawbacks of ANNs is that it is not possible to implement a physical 

model of the system based on the trained network. A neural network represents a black 

box which can approximate a function (governing equation), but it will not provide an 

insight on the structure of learned relationships. Moreover, there can be two networks 

with the same topology but different weights and biases which produce the same result. 

One of the major developments in this field is the introduction of physics-driven neural 

networks [123]. A new concept of neural ordinary differential equations was described 

by Chen et al. [124]. The idea of the proposed method is to parameterise the dynamics 

within hidden layers according to a specified ordinary differential equation (ODE). In 

this case the input layer h(0) and output layer h(T) are defined to be a solution to the 

defined ODE at the corresponding time moment (0 or T). The solution of an ODE is 

done by the black-box solver within the network. More thorough mathematical 

implementation of this method can be found in [124]. This approach seems to be 

promising for tackling the abovementioned “black box implementation problem” of the 

conventional ANNs. It has found its application in different disciplines including the 

field of composite materials. For instance, the simulation of the thermochemical curing 

process within the physics-informed neural network was performed by Niaki et al. 

[125]. The network was designed to follow the solution of the system of governing 

differential equations describing exothermic heat transfer and resin reaction. As 

reported by the authors, the developed network was able to predict the resulting 

temperature field and the degree of cure in the composite-tool system. 
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2.4.4 Summary 

Processing experimental data aims to reveal physical processes undergoing during the 

test. Different methods for extracting physical models from the data were discussed 

within this section. The considered approaches include nonlinear regression of the target 

model, sparse regression using a set of candidate terms for the governing equation, 

neural network approach aimed to reveal characteristic patterns in the dataset. 

A processing method has to be chosen with care. The considered approaches may or 

may not be suitable for certain applications due to the inherent limitations (the 

availability of the assumed behaviour model, execution time constraints, required 

computational resources, sensitivity to the scarcity of the experimental dataset). 

2.5 Problem statement 

There are a number of existing gaps in the conventional methods for consolidation 

characterisation. One of the main challenges is that the available experimental data are 

often limited as material testing is both complicated and time consuming. Hence, the 

information obtained in these tests may appear to be deficient and may not reveal all the 

underlying processes. In this case, property identification may provide a seemingly 

good match with the experimental data irrespective of which mechanisms is presumed 

to happen. However, it does not mean that such model represents the physical reality, 

and it can often fail to adequately represent a wider set of experimental data. This sets a 

fundamental dilemma, as the material behaviour (i.e., the model selected) needs to be 

decided prior to conducting the tests, which introduces a strong subjective element. If 

the developed loading schedule (load values, application rates, steps duration) is based 

on the pre-assumed dominant deformation mechanism, the obtained material’s response 

might be insufficient as the material was not exposed to various processing conditions. 

Additionally, the proposed testing programme often relies on previously adopted 

practices or the experience of the researcher. Another challenge is the choice of the 

robust material model identification technique. Employing unsuitable model retrieval 

method even within the comprehensive dataset may lead to the misleading physical 

model of the consolidation (incorrectly defined set of material parameters). 

There is a need in a new testing methodology that is capable to identify the deformation 

mechanisms as well as the relevant material properties. This methodology should be 

able to check different hypothesis on the deformation mechanisms and autonomously 

design a testing program based on the measured behaviour of the material. This 
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methodology should also lead to reduced number of experiments while making sure that 

the obtained data is representative and sufficiently captures all the main features of the 

material behaviour. Another benefit of the proposed approach is that apart from the 

macro-response, the retrieved physical model of the flow is able to provide an important 

insight on what is happening inside the material – e.g. filling the AFP gaps with resin or 

fibre suspension. 

The current research is organised in a following structure: 

• The current Chapter 2 presents an overview of different aspects of the 

consolidation characterisation. The review outlines the importance of the 

consolidation process in composite manufacturing and the complexity of the 

revealing the underlying consolidation mechanisms. Different methods of 

characterisation testing and experimental data processing are discussed. Existing 

gaps in the conventional approaches are addressed and the aims of the current 

project are established. 

• Chapter 3. The concept of the consolidation library is introduced. This library 

contains the most representative models of the resin flow. The chapter includes 

mathematical representations, used assumptions and boundary conditions of the 

considered resin flow models. The importance of the robust characterisation 

method is demonstrated within two examples of flawed characterisation. 

• Chapter 4. The definition of a data-rich testing programme is discussed within 

this chapter. The main requirements for the robust material parameters definition 

are established, and the parameters extraction framework is introduced. To 

demonstrate the advantages of the diverse testing programme for material 

characterisation, the developed framework is applied to the compaction data 

received within a series of compaction tests. 

• Chapter 5. The challenges of defining unbiased (flow assumptions free) data-

rich characterisation test programme are addressed within this chapter. The 

conceptual design of the real-time adaptive consolidation sensor framework is 

introduced. The proposed framework’s functionality is estimated within the set 

of virtual exercises. 

• Chapter 6. The application of the developed adaptive testing framework within 

the real experimental setup is explored within this chapter. The framework is 

connected to the testing apparatus through the specially developed setup. Arising 
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technical challenges (processing time delay, noisy input/output data, safety 

issues, PID control etc.) and the ways of tackling them are discussed. The 

consolidation framework is then tested within the characterisation trials for a 

range of different materials. 

• The conclusions chapter presents an overview of the conducted work and the 

achieved results. The discussion of the effectiveness of the proposed approach 

and the fulfillment of the established goals is presented. Finally, the scope for 

possible developments of the proposed approach is set. 
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3 PHYSICAL MODEL OF RESIN 

FLOW IN CONSOLIDATION 

The mechanics of flow and deformation in composite precursors can solve many 

practical problems. This chapter explores a number of consolidation models which are 

relevant in application to the flow of resin in fibre-reinforced thermosetting prepregs 

containing thermoplastic tougheners. The concept of the consolidation library is 

introduced in the current chapter. The pre-coded library contains mathematical 

representations of all considered models. The library is used in conjunction with the 

developed autonomous testing framework which is described in further chapters. 

Although the models considered below do not capture all possible aspects of the 

material’s compaction behaviour, they cover arguably most dominant mechanisms of 

resin flow which was shown experimentally in various studies. The selection of models 

is limited by those than can be explicitly integrated to obtain ordinary differential 

equations (ODEs) relating pressure/load, thickness, and thickness rate. Such integration 

requires simplifying assumptions regarding the behaviour of the material and its 

interaction with loading system (e.g. the models of shear/percolation flow shown in 

[17], [89], [126]). Not all the problems can be integrated like that – some can be 

condensed to partial differential equations (PDE) (e.g. the problem of consolidation 

with the bleeder [16], [75]), some contain constitutive equation that are too complicated 

for analytical derivations (e.g. Carreau shear flow [127], [128]). Most of the problems 

that are written for large deformations cannot be integrated. The class of non-integrable 

problems is intentionally omitted at this stage (a) for simplicity of implementation and 

(b) since many relevant problems can be described using the integrable models. A 

further extension of the library is possible but at the expense of some loss in 

computational efficiency (case of PDE) or constructing phenomenological model as 

synthesis of structural models (Carreau [16], [75] or DefGen [85] case). 

Finally, this chapter illustrates the importance of a robust testing programme and data 

extraction technique for the successful material characterisation. The demonstrated 

examples pose a question on the testing rationales and on how data-rich programmes 
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should be designed. These lessons build the ground for the autonomous testing concept 

presented in the next chapters. 

3.1 Material model identification 

All composite manufacturing methods require an application of an external pressure to 

achieve the required thickness of a part and to prevent defect formation. In many cases, 

the description of these processes can be approximated by the compression of a 

composite precursor between two rigid plates. Under this simplification, the contact 

surface remains flat, and the area of pressure application is either constant or evolves 

with the flow of material. The relation between the applied pressure / pressure rate and 

the resultant thickness / thickness rate is dependent on flow mode, material properties 

and interaction with the loading plates. The resultant relationships can often facilitate 

the optimisation of manufacturing method. 

When a composite precursor is compacted between two rigid parallel plates, the 

application of external pressure leads to reactive pressure and pressure gradients build-

up within the material. This, in turns, induces a resin flow and the deformation of the 

reinforcement. Simplifying assumptions and explicit integration of the mass balance, 

the constitutive and the equilibrium equations, as shown further in section 3.2, leads to 

the general form which can be written as: 

𝒅𝒉

𝒅𝒕
= 𝑭(𝒕, 𝒉)  ∙  𝑸(𝒉) 

3.1 

where F(t, h) is a function containing the history of the evolution of applied 

compression force with time F(t), h is the thickness, 
𝑑ℎ

𝑑𝑡
 is the thickness rate, and Q(h) is 

a function of thickness which contains the material parameters. This equation form 

covers the incompressible shear flow of Newtonian and non-Newtonian suspensions 

under different (tool-material) boundary conditions and the percolation (also refer to as 

bleeding) flow of impregnated fibrous network, as well as some synthetic models. 

Figure 3.1 introduces initial dimensions of a specimen and the coordinate system used 

in the description of a resin flow process. This figure shows a general representation of 

a composite in between rigid plates and does not describe any particular flow mode. Its 

purpose is to set up a common ground for further introduction of different consolidation 

models. The current distance between plates, hence the thickness of a composite 
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precursor, is denoted by h and the initial width/length by w0/L0 correspondingly. The 

compression force applied to the top squeeze plate is specified as F. 

 

Figure 3.1: Schematic representation of a composite precursor within parallel 

squeeze plates. 

3.2 Consolidation models library 

3.2.1 Model unification. 

Various consolidation models were derived within the studies conducted by different 

researchers. All these models use different notation, variables (defined through 

strain/strain rate or thickness/thickness rate), specimen geometry representation, 

baseline reference system, etc. This Chapter unifies notations and aligns them with 

Figure 3.1. An overview of consolidation models used in this research project as well as 

models’ key assumptions, mathematical representation, and theoretical background is 

presented below. Additionally, every model’s compaction response to material 

parameters variation is explored, as it is important for further characterisation to have an 

insight into model’s behaviour. 

The models of squeezing or percolation flow are initially formulated for a point in three-

dimensional space. The corresponding governing equations are integrated under 

simplifying assumptions to get one-dimensional pressure-thickness-thickness rate 

response. The properties of the laminate are defined by the flow and deformation 

characteristics of the individual plies. The considered models are used to deduce the 
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properties of a unidirectional ply and not the effective properties of the laminate. It is 

essential to emphasize that the considered models assume a certain preferential direction 

of the resin flow. This assumption is valid as it applies to the ply and not to 

effective/average sample properties. For instance, the shear flow model suggests that the 

flow in compaction occurs only in the transverse direction, whereas the flow in the 

longitudinal direction can be neglected. The percolation model assumes that 

permeability in one direction is much greater than permeability in the other direction 

and hence the flow in the other direction can be neglected. The simplifying assumptions 

allow in some cases to condense the full 3D formulation to 2D problem without 

compromising the physical meaning of the studied flow mechanism. Once such 

response is identified all the considered models can be restored to predict full 3D state – 

including transverse deformations or amount of resin bled through the fibre network 

[40], [129]. This is fundamentally important when trying to assess the process occurring 

at local scales. All these different models not only predict the difference in how, for 

instance, an impregnated material tape would react to an applied load but also would 

indicate very different outcome in terms of the width change of the tape, fibre volume 

fraction, resin pressure distribution, and the uniformity of the deformations within the 

tape. Consequently, this may lead to very different outcomes in terms of closure of gaps 

between AFP deposited tapes with suspension or pure resin and follow-up wrinkle 

occurrence [130]. Investigating the mechanisms occurring at mm-scale would require 

deep insight on structural deformations such as high-resolution microscopy, CT 

examinations. On the other hand, it seems plausible that these features may be 

determined by the difference in mechanical response. 

The material constants used in the models’ formulation include the viscosity of resin 

and resin suspensions, the constants describing the evolution of viscosity as the 

functions of shear rate, material constants for the permeability of the fibre network and 

their dependence on fibre volume fraction, and the constants needed to describe the 

elastic fibre bed response. As a result, the differential equations contain several material 

constants that need to be determined holistically to match available experimental data. 

Shear flow models 

Governing equations. 

The relation between stress and applied pressure for an incompressible viscous fluid at 

low Reynolds numbers is described by Stokes flow constitutive equation. The extension 
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of the original formulation for an isotropic Newtonian fluid to the shear flow in a fibre 

reinforced fluid was proposed by Rogers [90]. The presence of fibres affects the 

response of the fluid. In this case the stress depends on fibre orientation. Therefore, 

according to Rogers stress - strain rate relationship in Cartesian coordinates can be 

written as follows: 

𝝈𝒊𝒋 = −𝒑𝜹𝒊𝒋 + 𝑻𝒂𝒊𝒂𝒋 + 𝟐𝜼𝑻𝒅𝒊𝒋 + 𝟐(𝜼𝑳 − 𝜼𝑻)(𝒂𝒊𝒂𝒌𝒅𝒌𝒋 + 𝒂𝒋𝒂𝒌𝒅𝒌𝒊) 

𝒅𝒊𝒊 = 𝟎,  (𝒊, 𝒋 = 𝟏, 𝟐, 𝟑) 

3.2 

where 𝜎 – stress, d – rate of strain, p – hydrostatic pressure, 𝛿𝑖𝑗 – Kronecker delta, 𝜂𝑇 – 

transverse shear viscosity of the fluid,  𝜂𝐿 – longitudinal shear viscosity of the fluid, T – 

arbitrary stress reaction in the fibre direction, a – unit vector, representing orientation of 

the fibre. 

Additionally, the condition of inextensibility in the direction of a unit vectors for the 

fibre reinforced material is: 

𝒂𝒊𝒂𝒋𝒅𝒊𝒋 = 𝟎,  𝒂𝒊𝒂𝒊 = 𝟏 3.3 

and time derivative of a is given by Spencer [131]: 

𝒂𝒊̇ = (𝜹𝒊𝒋 −  𝒂𝒊𝒂𝒋)𝒂𝒌
𝝏𝒗𝒋

𝝏𝒙𝒌
⁄ = 𝒂𝒌

𝝏𝒗𝒊
𝝏𝒙𝒌
⁄  3.4 

where 𝑣𝑖 – velocity of the material point. The constitutive equations are complemented 

with mass balance: 

Mass balance equation (incompressibility condition, assuming that no flow occurs in the 

fibre direction): 

𝒗𝒛 = 𝟎,   
𝝏𝒗𝒙

𝝏𝒙
+
𝝏𝒗𝒚

𝝏𝒚
= 𝟎  3.5 

where z axis is in the fibre direction (according to Figure 3.1), hence 𝑣𝑧 = 0 due to the 

inextensibility in the fibre direction. 

Global equilibrium equation: 

𝝏𝝈𝒚𝒙

𝝏𝒙
+
𝝏𝝈𝒚𝒚

𝝏𝒚
= 𝟎     

𝝏𝝈𝒙𝒙

𝝏𝒙
+
𝝏𝝈𝒙𝒚

𝝏𝒚
= 𝟎 . 3.6 

It was noted that boundary conditions interaction between composite and compression 

platens can radically affect the resin flow. It may represent smooth or rough tool surface 

or the presence of lubricating agent in the contact region which in turn eliminates shear 
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traction in the interface. Boundary conditions have a significant influence on a through-

thickness resin velocity distribution and an overall flow behaviour. According to [90], 

no-slip and no-friction boundary conditions were considered. 

When there is no slip between the composite and the tool, the velocity field at the 

interface equals zero. Therefore, the boundary condition can be written as: 

𝒗𝒙|𝒚=𝒉 𝟐⁄
= 𝟎 . 3.7 

For the case of no friction platens are free from shear traction, meaning: 

𝝈𝒙𝒚|𝒚=𝒉 𝟐⁄
= 𝟎 . 3.8 

Additionally, the possible change of a contact surface area was taken into account by 

considering constant L(t)=L0 and varying L(t)>L0 contact region’s length 

correspondingly. 

These equations form the set of constitutive equations for a fibre- reinforced linear 

viscous fluid. Then, these equations (together with boundary conditions, mass balance, 

and global equilibrium equations) were condensed to 2D relation between applied 

pressure and thickness for different boundary conditions at the prepreg-tool contact 

surface. To do that, two-dimensional problem of a shear flow in a fibre reinforced 

Newtonian fluid squeezed in between two rigid platens was considered. 

As described previously in section 2.3.2, different sample to compression platen size 

ratio (width and length) can be employed to facilitate various rheological behaviours of 

the material. In this regard Rogers considers cases of constant and various contact 

regions between the specimen and the tool. Once integrated, the resulting equations for 

shear flow according to [90] can be written as: 

No friction interface, constant contact region boundary condition: 

𝒅𝒉

𝒅𝒕
=
𝑷𝒂𝒑𝒑𝒍𝒊𝒆𝒅

𝟒 𝜼
𝒉. 3.9 

No friction interface, varying contact region boundary condition: 

𝒅𝒉

𝒅𝒕
=
𝑷𝒂𝒑𝒑𝒍𝒊𝒆𝒅

𝟒 𝜼 𝒉𝟎
𝒉𝟐. 3.10 

No slip interface, constant contact region boundary condition: 
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𝒅𝒉

𝒅𝒕
=

𝑷𝒂𝒑𝒑𝒍𝒊𝒆𝒅

𝜼𝒉𝟎(𝒘𝟐 + 𝟑𝒉𝟐)
𝒉𝟒 . 3.11 

No slip interface, varying contact region boundary condition: 

𝒅𝒉

𝒅𝒕
=

𝑷𝒂𝒑𝒑𝒍𝒊𝒆𝒅

𝜼 𝒉𝟎(𝒘𝟎
𝟐𝒉𝟎

𝟐 + 𝟑𝒉𝟒)
𝒉𝟔  3.12 

where h0 – initial thickness, t – time, Papplied – pressure applied to the top surface of a 

composite precursor, 𝜂 – Newtonian viscosity. 

The abovementioned governing equations are derived for the reinforced Newtonian 

fluid, where the viscosity is independent of the shear rate of the material. Which means 

that strain-rate effects are not taken into account within such models. However, there 

are a lot of evidences that the behaviour of viscous polymer suspension is often non-

Newtonian [127], [45]. In order to make model more adaptive to changing processing 

conditions, it is worth considering strain-rate effects on the fluid’s viscosity. Such study 

has been undertaken by a number of different researchers [49], [127], [132], [133]. 

For Newtonian fluid [134], the relation between shear stress and shear rate for 2D case 

(Figure 3.1) can be written as: 

𝝉𝑿𝒀 = −𝜼𝑻�̇�𝑿𝒀 3.113 

where 𝜏𝑋𝑌 is a shear stress, 𝜂𝑇 – transverse viscosity, �̇�𝑋𝑌 – shear rate.  

In this relation viscosity remains constant for a given temperature and pressure. 

After modifying Newton’s law, the viscosity becomes a function of a shear rate �̇�: 

𝝉𝑿𝒀 = −𝜼𝑻(�̇�𝑿𝒀) �̇�𝑿𝒀. 3.14 

The power-law model for viscosity function is: 

𝜼𝑻(�̇�)  = 𝒎 �̇�𝑿𝒀
𝒏−𝟏 3.15 

where m and n denote consistency index of the fluid and power-law exponent, 

respectively. 

Consistency index in turn is represented through time constant 𝜆 and zero-shear-rate 

viscosity 𝜂0: 

𝒎 = 𝜼𝟎𝝀
𝒏−𝟏. 3.16 
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Therefore, the resulting function for shear-rate dependent viscosity is defined as 

follows: 

𝜼𝑻(�̇�𝑿𝒀) = 𝜼𝟎 (𝝀�̇�𝑿𝒀)
𝒏−𝟏. 3.17 

To connect an expression for viscosity with existing governing equations for shear flow, 

shear rate term is redefined through platen closure rate 
𝑑ℎ

𝑑𝑡
 and sample thickness ℎ at the 

instant time: 

�̇�𝑿𝒀  =  

𝒅𝒉
𝒅𝒕

𝒉
⁄  . 

3.18 

Thus, the final expression for viscosity is described by an expression below: 

𝜼𝑻(�̇�𝑿𝒀) = 𝜼𝟎  (𝝀 

𝒅𝒉
𝒅𝒕

𝒉
⁄ )

𝒏−𝟏

 . 
3.19 

After examining an expression for power-law viscosity, it is evident, that the Newtonian 

model is recovered for a power law exponent n = 1, while 0 < n < 1 shows that a fluid is 

shear thinning. 

The extension of the existing models for shear flow (according to Rogers) was inspired 

by the structural approach used for the solution of Carreau fluids governing equation, 

where the obtained ODEs are not integrable (the solution is split as a combination of 

Newtonian and power-law fluids) [45], [133]. Structural approach is also used for 

problems with large deformations, where the solution is divided in a sequence of steps 

where deformations are small, hence the assumptions for small deformations problem 

are valid. After substituting shear-rate-dependent viscosity in place of Newtonian 

viscosity and isolating platen closure rate 
𝑑ℎ

𝑑𝑡
 term, the resulting governing equation for 

shear flow in the transverse direction with power law shear thinning is defined as 

following: 

No friction constant contact region boundary condition: 

𝒅𝒉

𝒅𝒕
=

𝑷𝒂𝒑𝒑𝒍𝒊𝒆𝒅

𝟒 𝜼𝟎 (
𝝀
𝒉⁄ )

𝒏−𝟏 𝒅𝒉
𝒅𝒕

𝒏−𝟏 𝒉 

𝒅𝒉

𝒅𝒕

𝒏

=
𝑷𝒂𝒑𝒑𝒍𝒊𝒆𝒅

𝟒 𝜼𝟎 𝝀𝒏−𝟏
𝒉𝒏 

3.20 
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𝒅𝒉

𝒅𝒕
= √

𝑷𝒂𝒑𝒑𝒍𝒊𝒆𝒅

𝟒 𝜼𝟎 𝝀𝒏−𝟏
𝒏

𝒉. 

The same mathematical routine is repeated for other governing equations for shear flow: 

No friction varying contact region boundary condition: 

𝒅𝒉

𝒅𝒕
=

𝑷𝒂𝒑𝒑𝒍𝒊𝒆𝒅

𝟒 𝜼𝟎 (
𝝀
𝒉⁄ )

𝒏−𝟏 𝒅𝒉
𝒅𝒕

𝒏−𝟏

 𝒉𝟎

𝒉𝟐 

𝒅𝒉

𝒅𝒕

𝒏

=
𝑷𝒂𝒑𝒑𝒍𝒊𝒆𝒅

𝟒 𝜼𝟎 𝝀
𝒏−𝟏  𝒉𝟎

𝒉𝒏+𝟏 

𝒅𝒉

𝒅𝒕
= √

𝑷𝒂𝒑𝒑𝒍𝒊𝒆𝒅

𝟒 𝜼𝟎 𝝀𝒏−𝟏  𝒉𝟎

𝒏

𝒉
𝒏+𝟏
𝒏  . 

3.21 

No slip constant contact region boundary condition: 

𝒅𝒉

𝒅𝒕
=

𝑷𝒂𝒑𝒑𝒍𝒊𝒆𝒅

𝜼𝟎 (
𝝀
𝒉⁄ )

𝒏−𝟏 𝒅𝒉
𝒅𝒕

𝒏−𝟏

 𝒉𝟎(𝒘𝟐 + 𝟑𝒉𝟐)

𝒉𝟒 

𝒅𝒉

𝒅𝒕

𝒏

=
𝑷𝒂𝒑𝒑𝒍𝒊𝒆𝒅

𝜼𝟎 𝝀𝒏−𝟏 𝒉𝟎(𝒘𝟐 + 𝟑𝒉𝟐)
𝒉𝒏+𝟑 

𝒅𝒉

𝒅𝒕
= √

𝑷𝒂𝒑𝒑𝒍𝒊𝒆𝒅

𝜼𝟎 𝝀𝒏−𝟏 𝒉𝟎(𝒘𝟐 + 𝟑𝒉𝟐)

𝒏

𝒉
𝒏+𝟑
𝒏  . 

3.22 

No slip varying contact region boundary condition: 

𝒅𝒉

𝒅𝒕
=

𝑷𝒂𝒑𝒑𝒍𝒊𝒆𝒅

𝜼𝟎 (
𝝀
𝒉⁄ )

𝒏−𝟏 𝒅𝒉
𝒅𝒕

𝒏−𝟏

 𝒉𝟎(𝒘𝟎
𝟐𝒉𝟎

𝟐 + 𝟑𝒉𝟒)

𝒉𝟔 

𝒅𝒉

𝒅𝒕

𝒏

=
𝑷𝒂𝒑𝒑𝒍𝒊𝒆𝒅

𝜼𝟎 𝝀𝒏−𝟏  𝒉𝟎(𝒘𝟎
𝟐𝒉𝟎

𝟐 + 𝟑𝒉𝟒)
𝒉𝒏+𝟓 

𝒅𝒉

𝒅𝒕
= √

𝑷𝒂𝒑𝒑𝒍𝒊𝒆𝒅

𝜼𝟎𝝀𝒏−𝟏 𝒉𝟎(𝒘𝟎
𝟐𝒉𝟎

𝟐 + 𝟑𝒉𝟒)

𝒏

𝒉
𝒏+𝟓
𝒏  . 

3.23 

The influence of material parameters on the shear models’ thickness prediction. 

Newtonian suspension and power law fluid models’ compaction response to parameter 

variation is presented in Figure 3.2 and Figure 3.3 respectively. 



 

52   

 

Figure 3.2: Incompressible shear flow of Newtonian suspension model’s 

compaction response to parameter variation. Newtonian suspension models’ 

abbreviations: zero friction with tool and constant/evolving tool-material contact – 

nfcc/nfvc; no-slip conditions and constant/evolving tool-material contact – 

nscc/nsvc. 
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Figure 3.3: Incompressible shear flow with power law shear thinning model’s 

compaction response to parameter variation. Power law shear thinning models’ 

abbreviations: zero friction with tool and constant/evolving tool-material contact – 

nfcc_pow/nfvc_pow; no-slip conditions and constant/evolving tool-material contact 

– nscc_pow/nsvc_pow. 

The point of these graphs is to showcase how the variation in material parameters 

propagates to an error in model’s thickness prediction. The scatter of parameters values 

may be the result of the uncertainty in measurements of material parameters, possible 

experimental errors, or the sensitivity to processing conditions (T). For instance, the 

range of viscosities up to 6 orders of magnitude was observed during curing process for 
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the relevant material systems [135]. The variation of time constant 𝜆 and power law 

exponent n parameters was specified according to Bird et al. [134]. 

As expected, Newtonian model for shear flow demonstrate significant increase in 

thickness rate with the decrease in viscosity value (as shown in Figure 3.2). Shear-rate 

dependant models demonstrate a similar to Newtonian model’s response to the viscosity 

variation. There are more material parameters (𝜆 and n) affecting the predicted 

thickness output, hence the model showcases more complex compaction behaviour 

(change of thickness rate, final thickness, see Figure 3.3). 

3.2.2 Percolation models 

Governing equations 

Percolation flow describes the resin’s movement through (percolation) or out (bleeding 

out from the edge of the laminate) of the composite. Generally, the resin flows relatively 

to the fibres of the laminate during the compaction and is assumed to behave as an 

incompressible Newtonian fluid (although there are non-Newtonian Darcy models, they 

are not considered here). The deformation of reinforcement and the flow of resin can 

occur in different directions and/or at different rates. Therefore, the resulting governing 

equations for the percolation flow model should cover the behaviour of both matrix and 

reinforcement phases of the composite. 

The governing relation between the applied pressure and the thickness evolution for 

percolation flow is derived for a two-dimensional problem of a composite precursor 

squeezed between two parallel plates. Different processes occurring during 

manufacturing can be represented in this way. For instance, such problem statement is 

relevant for description of the bleeding closure of the gap between two tapes within 

AFP manufacturing process. The schematic representation of the problem is shown in 

Figure 3.4.  
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Figure 3.4: Bleeding closure of the gap. Purple – bleeding resin, black dots – fibres, 

dashed line – initial contour of the tape. 

Assumptions used for the formulation of percolation flow governing equations include: 

• The assumption on load sharing between the resin and the fibrous phases 

(discussed within the literature review in section 2.2.2). 

• Resin acts as an incompressible Newtonian fluid. 

• Assumptions on the suspension velocity 𝑉𝑥 and 𝑉𝑦: 

𝑽𝒙 = 𝟎,   𝑽𝒚 = 𝑽𝒚(𝒚). 
3.24 

• Resin velocities 𝑣𝑥 and 𝑣𝑦 are functions of x and y correspondingly: 

𝒗𝒙 = 𝒗𝒙(𝒙),   𝒗𝒚 =
𝟏

𝟏 − 𝒇
𝑽𝒚(𝒚). 

3.25 

• The chosen model for permeability (Kozeny-Carman equation). 

• The model for the elastic response of the fibrous phase (model of Gutowski). 

Saturated slow motion of a fluid through yarns or fabrics can be characterised by 

Darcy’s law equation: 

𝒗𝑫⃗⃗⃗⃗  ⃗ = −
𝑲

𝜼
𝜵𝑷 3.26 

where 𝑣𝐷⃗⃗ ⃗⃗  is the phase average velocity vector, 𝑣𝐷⃗⃗ ⃗⃗ = (1 − 𝑓)𝑣 , 𝑣 , is the actual pore 

velocity vector, K is the saturated permeability, 𝜂 is the viscosity, 𝛻𝑃 is the pressure 

gradient, 𝑓 is the fibre volume fraction. 
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For the two-dimensional problem (described above) Darcy’s law can be written as 

follows: 

𝒗𝒙 = −
𝑲

𝜼(𝟏 − 𝒇)

𝝏𝑷𝒓𝒆𝒔
𝝏𝒙

 3.27 

where 𝑃𝑟𝑒𝑠 is average resin pressure, 𝜂 is the viscosity of resin, 𝐾 is the permeability in 

the flow direction, 𝑓 is the current fibre volume fraction, 𝑣𝑥 , 𝑣𝑦 – resin velocity. 

To describe the relationship for the velocity gradients of resin/suspension, the equations 

of mass balance for the incompressible resin and the compressible suspension are 

formulated as follows: 

Mass balance for incompressible resin equation: 

𝜵�⃗⃗� = 𝟎 

𝝏𝒗𝒙
𝝏𝒙

+
𝝏𝒗𝒚

𝝏𝒚
= 𝟎,   𝒗𝒛 = 𝟎.   

3.28 

Mass balance for compressible suspension equation: 

𝜵(𝝆�⃗⃗� ) = −
𝒅𝝆

𝒅𝒕
 

𝝏(𝝆𝑽𝒙)

𝝏𝒙
+
𝝏(𝝆𝑽𝒚)

𝝏𝒚
= −

𝒅𝝆

𝒅𝒕
 

3.29 

where 𝜌 is the density of the suspension, 𝑉𝑥, 𝑉𝑦 is the velocity of compressible 

suspension in the corresponding directions (𝑣𝑥, 𝑣𝑦 is the velocity of resin). 

To integrate mass balance equation, the relation for suspension’s density and boundary 

conditions are required. The assumption on the incompressibility of resin can be 

represented in terms of fibre volume fracture f: 

𝝆 = 𝝆𝒇𝒇 + 𝝆𝒓(𝟏 − 𝒇) 

𝝆 = (𝝆𝒇 − 𝝆𝒓)𝒇 + 𝝆𝒓 

3.30 

where 𝜌𝑓 , 𝜌𝑟 is the density of the fibres/resin. 

The considered boundary condition at the tool’s surface is: 

𝑽𝒚(𝒚 = −
𝒉
𝟐⁄ ) = 𝟎. 3.31 
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Integrating mass balance equation along with the boundary conditions and the relation 

for suspension’s density provides an expression for suspension’s velocity 𝑉𝑦: 

𝑽𝒚 = −(𝒚 + 𝒉 𝟐⁄ )
𝟏

𝒇

𝒅𝒇

𝒅𝒕
 . 3.32 

Using this expression together with resin’s mass balance equation and the assumption 

on resin’s velocity results in: 

𝝏𝒗𝒙
𝝏𝒙

=
𝟏

𝒇(𝟏 − 𝒇)

𝒅𝒇

𝒅𝒕
. 3.33 

Following integration with boundary condition 𝑣𝑥(𝑥 = 0) = 0 results in the expression 

for resin’s velocity: 

𝒗𝒙 = 𝒙
𝟏

𝒇(𝟏 − 𝒇)

𝒅𝒇

𝒅𝒕
 . 3.34 

After substituting the obtained equations for the resin velocity 𝑣𝑥  into Darcy’s law and 

following integration (boundary condition 𝑃𝑟𝑒𝑠(𝑥 =
𝑤
2⁄ ) = 0), an expression for resin 

pressure can be written as: 

𝑷𝒓𝒆𝒔 = (
𝜼

𝑲

𝒘𝟐

𝟑
)
𝟏

𝒇

𝒅𝒇

𝒅𝒕
 . 3.35 

Permeability of a fibrous material is inversely proportional to the resistance of a porous 

medium to the resin flow induced by pressure gradient. In general, the resistance of the 

reinforcement phase increases with the raise in fibre volume fraction within composite’s 

compaction. The time required for a full impregnation of a composite part with a higher 

fibre content becomes longer proportionally to the square of flow length as the space 

between the fibres is reduced. 

A vast variety of studies have been conducted to predict and measure the evolution of 

the composite precursor’s permeability [136]–[139] within different manufacturing 

methods. As shown in section 2.3.2, experimental estimation of the permeability is a 

challenging task [107], [108]. Normally, the relation for permeability represents a 

function connecting the evolution of fibre volume fraction and the fibre arrangement 

structure (quadratic, hexagonal etc). 

One of the most used permeability models is Kozeny-Carman equation [140] which 

takes into account the permeability of the channels between fibres. It was originally 

developed to estimate the permeability of granular solids [141]:  



 

58   

𝑲(𝒇) = 𝑲𝑨
(𝟏 − 𝒇 )𝟑

𝒇𝟐
 3.36 

where 𝐾𝐴 is a function of fibre network geometry and fibre radius, f is the current fibre 

volume fraction. 

Extensive research has been conducted to develop a permeability model specific to a 

certain fibre arrangement structure. Gebart’s model [142], [143] describes permeability 

for quadratic and hexagonal fibre arrangement for the resin flow in both transverse and 

along the fibre direction: 

𝑲𝟏  =  
𝟖 𝒓𝒇

𝟐

𝒄

(𝟏 − 𝒇 )𝟑

𝒇𝟐
;          𝑲𝟐  =  𝑪𝟏 (√

𝒇𝒍𝒊𝒎
𝒇

− 𝟏)

𝟓
𝟐⁄

𝒓𝒇
𝟐 

3.37 

where 𝐾1 is the permeability along the fibre direction, 𝐾2 is the permeability 

perpendicular to the fibre direction, 𝑟𝑓 is the fibre radius, c is the shape factor depending 

on fibre arrangement (quadratic and hexagonal), 𝐶1 – material constant, 𝑓𝑙𝑖𝑚 is the 

maximum achievable fibre volume fraction. These expressions were derived 

considering Stokes flow through an idealised unidirectional reinforcement for both 

longitudinal and transverse flows. 

As discussed previously in section 2.2.2 of the literature review, one of the major 

assumptions in percolation flow reflects the idea of sharing the pressure applied to the 

laminate by resin and fibrous phases of the composite: 

𝑷𝒂𝒑𝒑𝒍𝒊𝒆𝒅  =  𝑷𝒓𝒆𝒔 +  𝑷𝒑𝒓𝒆 3.38 

where 𝑃𝑎𝑝𝑝𝑙𝑖𝑒𝑑 is the applied pressure, 𝑃𝑝𝑟𝑒 is the fibre bed response, 𝑃𝑟𝑒𝑠 is the resin 

pressure. 

To fully define every term in the balance equation above, the model for the reaction of 

the fibrous phase has to be proposed. The rate independent fibre bed response 

component reflects the non-linear stiffness behaviour of the fibre network under 

compression. One of the most popular expressions which governs such a response was 

derived and confirmed experimentally by Gutowski [61] [144]. The proposed equation 

for the fibre bed response was developed by approximating fibres as bending beams 

between multiple points of contact. Such beam’s length is proportional to the 

composite’s thickness. As compaction of the laminate progresses, additional contacts 
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between fibres are established. By analysing the proposed equation for fibre bed 

response, it can be clearly seen, that fibre network carries only a small portion of a load 

when laminate deformation is low, due to the low fibre volume fraction value. 

Nonetheless, with the change of thickness fibre volume fraction increases causing rapid 

increase of the composite’s elastic response. The resulting relation can be written as 

follows: 

𝑷𝒑𝒓𝒆(𝒇) = 𝛔𝑨
√𝒇 𝒇𝟎⁄ − 𝟏

(√𝒇𝒍𝒊𝒎 𝒇⁄ − 𝟏)
𝟒 3.39 

where σ𝐴 is the material spring constant, 𝑓 is the current fibre volume fraction, 𝑓0 is the 

initial fibre volume fraction, 𝑓𝑙𝑖𝑚 is the maximum achievable fibre volume fraction. 

All considered flow models are represented within thickness – thickness rate terms. The 

current thickness value can be calculated through the fibre volume fraction. The total 

number of fibres is not changing during the compaction process (meaning constant areal 

density of the reinforcement). Hence, the relation between fibre volume fraction and 

thickness can be expressed as: 

𝒇 =
𝟏

𝒉

𝑨𝝆

𝝆𝒇
 3.40 

where 𝐴𝜌 is the areal density of the precursor,  𝜌𝑓 , is the density of fibres. 

Finally, after substituting an expression for resin pressure into balance equation and 

isolating thickness rate 
𝑑ℎ

𝑑𝑡
 term, the governing equation for percolation consolidation 

model (for the considered two-dimensional problem) can be written as follows: 

𝒅𝒉

𝒅𝒕
= −

𝟑𝑲(𝒉)

𝜼𝒘𝟐
(𝑷𝒂𝒑𝒑𝒍𝒊𝒆𝒅 − 𝑷𝒑𝒓𝒆(𝒉))𝒉 3.41 

The influence of material parameters on the percolation model’s thickness prediction. 

Percolation models’ compaction response to material parameters variation is presented 

in Figure 3.5. Experimental determination of the material parameters is not a trivial 

task. The lack of standardisation for the material parameters measurements leads 

researchers to investigate the required parameters within different test setups, which can 

lead to significant discrepancies in the results. For instance, an extensive research was 

carried out to determine the in-plane permeability of a carbon fabric within different 

research groups [107], [108]. The obtained permeability values were scattered up to one 
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order of magnitude between different experimental procedures. As concluded by the 

authors, the reason for such dispersion of the results could be experimental 

uncertainties, variability of the specimens and human factors. The discrepancies in 

material parameters values can greatly contribute to the propagation of error in model’s 

thickness prediction. That is why it is important to have an insight on model’s response 

to the change in parameters values. The range of values for parameters variation was 

specified according to Gutowski [61] [144], Gebart [142], [143], permeability 

benchmark exercises [107], [108]. 

The thickness rate 
𝑑ℎ

𝑑𝑡
 is inversely proportional to the viscosity 𝜂 and directly 

proportional to the permeability 𝐾𝐴. The compaction of the impregnated preform occurs 

faster if resin faces less resistance from the reinforcement phase as it flows (hence, 

higher permeability) or if the resin’s viscous response is lower (lower viscosity). 

Model’s response to the compression clearly showcases the existence of the limit for the 

maximum achievable thickness, which is explained by the presence of the elastic 

response of the fibre network. As shown in Figure 3.5, the material spring constant σ𝐴. 

affects how fast the compaction limit is reached. If the stiffness of the fibre network is 

high, the time required for the elastic reaction of the fibres to take the higher fraction of 

the external load decreases. Finally, the load is carried entirely by the fibres and the 

composite cannot be compressed any further. 

Technically, the compaction response is also affected by the values of the initial 𝑓0 and 

final 𝑓𝑙𝑖𝑚 fibre volume fractions. The current implementation of the model suggests that 

these parameters are defined by the researcher (treated as constants), as experimentally 

determined values are available in the literature (e.g. [40]). Therefore, the variation of 

these parameters is not presented within the model’s compaction response study. 

 

Figure 3.5: Percolation model’s compaction response to parameter variation. 
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An important feature of the considered flow model is its response to unloading. 

Different manufacturing methods require the application and subsequent removal of the 

external pressure (e.g. AFP). In regard to this research, the model’s ability to capture the 

material’s behaviour at the unloading stage will become relevant, when the concept of 

the autonomous testing framework is introduced (chapter 5). 

To address this effect more thoroughly, two different load cases are considered (see 

Figure 3.6). The first load case is a conventional ramp-dwell loading programme, where 

the load remains at a constant level upon reaching a defined level (0.2 MPa). The 

second load case follows the same pattern until the moment when pressure drops to a 

lower value and then dwells again. 

 

Figure 3.6: a – load case 1, pressure drop load schedule, b – load case 2, 

conventional ramp-dwell loading schedule. 

The compaction response for both load cases is presented in Figure 3.7. Graphs on the 

left illustrate thickness evolution curve as a result of the applied external pressure within 

the corresponding load case. Graph on the right depicts fibre bed response evolution 

relative to the applied external pressure (shown as black curve). The model’s feedback 

during load relaxation stage is defined by the non-linear stiffness reaction of the fibre 

network. For that reason, model’s response curves are presented for different values of 

the material spring constant σ𝐴. 

After the rapid external load relaxation, the stiffness reaction of fibres relaxes as well, 

but at a much slower pace. Therefore, the difference between the external pressure and 

the fibre bed response (𝑃𝑎𝑝𝑝𝑙𝑖𝑒𝑑 − 𝑃𝑝𝑟𝑒(ℎ)) becomes negative. Which in turn results in 

the sign change of the thickness rate 
𝑑ℎ

𝑑𝑡
 term. As a result, the thickness evolution 

changes its trend at the unloading stage from the compaction to the spring back as 

shown in Figure 3.7. 
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Figure 3.7:Percolation model’s feedback to unloading and the corresponding fibre 

bed response. 

All considered models (including the current one) suggest that there is no separation 

between the surface of the composite precursor and the top compression platen. From 

perspective of the physics of the process, non-separation condition means that the test 

specimen is under tension during unloading stage. That explains the change of the sign 

of the (𝑃𝑎𝑝𝑝𝑙𝑖𝑒𝑑 − 𝑃𝑝𝑟𝑒(ℎ)) term, as shown above: if (𝑃𝑎𝑝𝑝𝑙𝑖𝑒𝑑 − 𝑃𝑝𝑟𝑒(ℎ)) < 0, then 

𝑑ℎ

𝑑𝑡
> 0 (which corresponds to tension), otherwise 

𝑑ℎ

𝑑𝑡
< 0 (which corresponds to 

compression). 

Upon analysing the expression for the elastic reaction, it becomes clear that the fibre-

bed response can only become zero when √𝑓 𝑓0⁄ − 1 = 0, meaning that 𝑓 = 𝑓0. 

Therefore, if the external load is removed completely, the model predicts that the 

composite specimen fully restores its thickness due to the active nonlinear elastic 

response (until the moment when 𝑓 = 𝑓0). Experimental results of the compaction-

relaxation tests do not confirm such material behaviour. The compaction response of an 

actual material (e.g. e-glass preforms) showcases that only a fraction of specimen’s 

thickness is restored due to the spring-back effect of the fibre network [145], [146]. 

The explanation of such phenomenon is that the model of Gutowski for fibrous reaction 

was designed for an active load only. The actual behaviour of fabric in compaction-
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unloading cycle exhibits substantial hysteresis, as demonstrated by Lomov et al.[147]. 

Therefore, the proposed model provides controversial thickness prediction upon 

unloading. The proposed exercises demonstrate that the unloading regime requires a 

more sophisticated material model for fibre bed response and more careful 

consideration of the material/tool interaction. 

3.2.3 DefGen ProToCoL (Processing Tools for Composite Laminates) 

The discussion on the phenomenological DefGen material model and the assumptions 

behind it was presented earlier in the section 2.2.4 of the literature review. 

Governing equations 

The synthetic phenomenological DefGen ProToCoL model is represented as a 

multiplicative decomposition of a strain and a strain rate dependent term. The strain 

dependent term is in turn a product of terms accounting for deformation at ply (macro) 

and micro levels. 

𝑷𝒂𝒑𝒑𝒍𝒊𝒆𝒅 = 𝜼𝒎𝒊𝒄𝒓𝒐(𝜺)𝜼𝒑𝒍𝒚(𝜺)𝜼𝒓𝒂𝒕𝒆(�̇�)�̇� 3.42 

where 𝜂𝑚𝑖𝑐𝑟𝑜(휀) is the micro level strain dependent term, 𝜂𝑝𝑙𝑦(휀) is the ply level strain 

dependent term, 𝜂𝑟𝑎𝑡𝑒(휀̇) is the strain rate term, 휀 = 𝑙𝑛(ℎ ℎ0
⁄ ) is the Hencky measure of 

strain. Thorough description of these terms can be found in [40]. 

According to the DefGen formulation, the rate dependant term 𝜂𝑟𝑎𝑡𝑒(휀̇) is assumed to 

follow a standard power law function: 

𝜼𝒓𝒂𝒕𝒆(�̇�) = 𝒆𝒙𝒑(�̅�) ∙ (−�̇�)𝒂 3.43 

where 𝑏 = �̅� + 𝑙𝑛(𝜂𝑟𝑒𝑠), a, b, k – DefGen ProToCoL material parameters [40]. 

To join shear and percolation formulations within a single model, the bleeding flow is 

represented as the shear flow along the fibre direction. Therefore, the micro level term 

𝜂𝑚𝑖𝑐𝑟𝑜(휀) formulation is based on analytical expression for squeezing flow of a Newton 

fluid [90] of viscosity 𝜂𝑟𝑒𝑠 between two neighbouring fibres: 

𝜼𝒎𝒊𝒄𝒓𝒐(𝜺) = 𝜼𝒓𝒆𝒔 ∙ 𝟐 ∙ √𝝌𝒍 ∙ 𝒆𝒙𝒑(𝜺) ∙ 𝒌 ∙ ((
𝒌

√𝝌𝒇𝒆𝒙𝒑(𝜺) − 𝒌
)

𝟐

+ 𝟑) 3.44 

where 𝜂𝑟𝑒𝑠 – the viscosity of a resin, 𝜒𝑓, 𝜒𝑙 - the aspect ratios of a unit cell at the 

compaction limit and locking stage, respectively. 
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Initially the shear flow of resin is incompressible, meaning that deformation in the 

compaction direction is equal to the deformation in the transverse direction. After 

reaching the critical strain, the flow becomes fully compressible. It results in the 

absence of the transverse deformation due to the resin loss through bleeding flow. Prior 

and post locking transverse behaviour of the material is described by the macro 𝜂𝑝𝑙𝑦(휀) 

term given below: 

𝜼𝒑𝒍𝒚(𝜺) =

{
 
 

 
 𝟐(

𝒘𝟎

𝒉𝟎
)
𝟐

𝒆𝒙𝒑(−𝟒𝜺),                 𝜺 ≤ 𝜺𝒍

𝟐 (
𝒘𝟎

𝒉𝟎
)
𝟐

𝒆𝒙𝒑(−𝟐(𝜺 + 𝜺𝒍)),    𝜺 > 𝜺𝒍

 3.45 

where 휀𝑙 - the strain level at the moment of flow locking. 

Therefore, there are only 3 required material parameters a, b, k for a given processing 

temperature, which have to be determined experimentally. The parameters a and b 

characterise the behaviour of the resin with respect to the strain rate. The parameter a 

can be viewed as a power law exponent, while the parameter 𝑒𝑥𝑝(�̅�) serves as a 

consistency index in the power law formulation for resin’s viscosity. The parameter k 

reflects the size effect of the channels between neighbouring fibres within the unit cell 

at the micro-scale. It explicitly affects the critical deformation, as the flow transition 

occurs when fibres come into contact and lock the shear driven flow. 

Since all of the previously considered models are represented in terms of thickness rate 

instead of deformation, the previous equation is reformulated as follows: 

𝒅𝒉

𝒅𝒕
= − √

𝑷𝒂𝒑𝒑𝒍𝒊𝒆𝒅

𝜼𝒎𝒊𝒄𝒓𝒐̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝜼𝒑𝒍𝒚 ∙ 𝜼𝒓𝒂𝒕𝒆̅̅ ̅̅ ̅̅ ̅

𝒂+𝟏

∙ 𝒉 3.46 

where  𝜂𝑚𝑖𝑐𝑟𝑜̅̅ ̅̅ ̅̅ ̅̅ =
𝜂𝑚𝑖𝑐𝑟𝑜

𝜂𝑟𝑒𝑠𝑖𝑛
,     𝜂𝑟𝑎𝑡𝑒̅̅ ̅̅ ̅̅ ̅ = 𝑒𝑏. 

The influence of material parameters on the DefGen model’s thickness prediction. 

The illustration of DefGen model’s transitional behaviour is demonstrated in Figure 3.8. 

It can be clearly seen that the thickness compaction curve changes its rate upon reaching 

the critical deformation level (deformation at locking). At this moment, the transition 

between different stages of the flow occurs instantaneously. 
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Figure 3.8: DefGen ProToCoL model’s transitional behaviour. 

Figure 3.9 depicts DefGen models’ compaction response to parameter variation. The 

range of a, b, k parameters values were specified according to [14], [40], [82], where 

these values were determined experimentally for IMA/M21 and IM7/8552 prepregs. 

Parameters a and b have a similar effect on the model’s compaction response as 𝜆 and n 

in shear rate dependant models, as they are inspired by the power law. The variation of 

these parameters does not affect the transition point between flow modes. As parameter 

k reflects the stiffness of the fibre network, lower value of this parameter results in 

lesser compaction of the material. The level of critical locking deformation is affected 

by the change of parameter k only, as it is related to the fibre structure of the ply. 
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Figure 3.9: DefGen ProToCoL model’s compaction response to parameter 

variation. 

3.2.4 Consolidation library. The summary of the considered models 

All models considered in this section are stored within the consolidation library. This 

library represents a pre-coded implementation of the discussed governing ODEs and is 

used further in this research. The library is implemented in Python programming 

language environment [148]. Each model has its own input set of material parameters 

and the assigned abbreviation (id). The library is used in the following order: 

• Request the chosen consolidation model by its id. 

• Specify the values of the material parameters. 

• Input load/time history to receive thickness output. 

The summary of all considered models, assigned abbreviations and the required model 

parameters is presented in  

Table 3.1 below. The application of the consolidation library will be shown in further 

chapters. 
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Table 3.1: Summary of selected flow models for unidirectional fibre-resin 

suspensions. 

Flow mode type 

(id) 
F(t, h) Q(h) 

Material 

parameters 

Incompressible shear flow of Newtonian suspension in the transverse direction 

[90] 

Zero friction with 

tool and constant 

tool-material contact 

(nfcc) 

𝑃𝑎𝑝𝑝𝑙𝑖𝑒𝑑 
ℎ

4 𝜂 
 𝜂 

Zero friction with 

tool and evolving 

tool-material contact 

(nfvc) 

𝑃𝑎𝑝𝑝𝑙𝑖𝑒𝑑 
ℎ2

4 𝜂ℎ0
 𝜂 

No-slip conditions 

and constant tool-

material contact 

(nscc) 

𝑃𝑎𝑝𝑝𝑙𝑖𝑒𝑑 
ℎ4

𝜂ℎ0(𝑤2 + 3ℎ2)
 𝜂 

No-slip conditions, 

evolving tool-

material contact 

(nsvc) 

𝑃𝑎𝑝𝑝𝑙𝑖𝑒𝑑 
ℎ6

𝜂ℎ0(𝑤0
2ℎ0

2 + 3ℎ4)
 𝜂 

Incompressible shear flow in the transverse direction with power law shear 

thinning [127], [132], [133] 

Zero friction with 

tool and constant 

tool-material contact 

(nfcc_pow) 

√𝑃𝑎𝑝𝑝𝑙𝑖𝑒𝑑
𝑛

 √
1

4𝜂0 𝜆𝑛−1
𝑛

ℎ 

𝜂0 

𝜆 

𝑛 
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Flow mode type 

(id) 
F(t, h) Q(h) 

Material 

parameters 

Zero friction with 

tool and evolving 

tool-material contact 

(nfvc_pow) 

√𝑃𝑎𝑝𝑝𝑙𝑖𝑒𝑑
𝑛

 √
1

4 𝜂0𝜆𝑛−1  ℎ0

𝑛

ℎ
𝑛+1
𝑛  

𝜂0 

𝜆 

𝑛 

No-slip conditions 

and constant tool-

material contact 

(nscc_pow) 

√𝑃𝑎𝑝𝑝𝑙𝑖𝑒𝑑
𝑛

 √
1

 𝜆𝑛−1 𝜂0ℎ0(𝑤
2 + 3ℎ2)

𝑛

ℎ
𝑛+3
𝑛  

𝜂0 

𝜆 

𝑛 

No-slip conditions, 

evolving tool-

material contact 

(nsvc_pow) 

√𝑃𝑎𝑝𝑝𝑙𝑖𝑒𝑑
𝑛

 √
1

𝜆𝑛−1 𝜂0ℎ0(𝑤0
2ℎ0

2 + 3ℎ4)

𝑛

ℎ
𝑛+5
𝑛  

𝜂0 

𝜆 

𝑛 

Percolation flow of compressible tape under additive superposition of resin 

pressure and fibre bed response [59]–[61] 

Flow in the 

longitudinal 

direction (bgc) 

𝑃𝑎𝑝𝑝𝑙𝑖𝑒𝑑

− 𝑃𝑝𝑟𝑒(ℎ) 
−
3𝐾(ℎ)

�̃�𝑤02
ℎ 

�̃� 

𝐾𝐴 

σ𝐴 

Empirical model for transition behaviour of toughened prepreg with features of 

shear and percolation flows [40] 

DefGen model 

(defgen) 
√𝑃𝑎𝑝𝑝𝑙𝑖𝑒𝑑

𝑎+1
 − √

1

𝜂𝑚𝑖𝑐𝑟𝑜̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝜂𝑝𝑙𝑦 ∙ 𝜂𝑟𝑎𝑡𝑒̅̅ ̅̅ ̅̅ ̅

𝑎+1

∙ ℎ 

a 

b 

𝑘 

where h0 – initial thickness, t - time, Papplied – pressure applied to the top surface of a 

composite precursor, 𝜂 –viscosity of incompressible Newtonian suspension, 𝜂0 − zero-

shear-rate viscosity, �̃� − the viscosity of resin, 𝑓- current fibre volume fraction, 

𝐾(𝑓) = 𝐾𝐴
(1−𝑓 )3

𝑓2
 – permeability function [142], 𝑃𝑝𝑟𝑒(ℎ) = σ𝐴

√𝑓 𝑓0⁄ −1

(√𝑓𝑙𝑖𝑚 𝑓⁄ −1)
4 – fibre bed 

response, where σ𝐴 is the material spring constant, 𝑓0 is the initial fibre volume fraction, 
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𝑓𝑙𝑖𝑚 is the maximum achievable fibre volume fraction, w0 – width of a specimen, n – 

power-law exponent, a, b, k – DefGen material parameters [40] 

3.3 Criteria for model performance 

The property identification problem is equivalent to the data regression in the space of 

thickness rate, thickness, and pressure. The model and property identification procedure 

can be assessed by examining (a) the quality of the fit for a training set, i.e., the 

experimental data used to identify material constants and (b) the quality of the fit for an 

independent validation set of experiments. 

Low value of the regression error between model’s prediction and an experimental data 

used for training is not enough to safely assume that characterisation was carried out 

successfully [149]. The discrepancy between the fit in training and validation sets may 

point at either the deficiency of the training set, the inability of fitting procedure to find 

global maximum in the space of material parameters, or inadequacy of examined model. 

In case a validation step is omitted, it is not guaranteed that a derived model fits data 

well and is able to adapt to changing processing conditions. To illustrate it more 

thoroughly, two different cases of a flawed characterisation are provided below. 

Both considered case studies are conducted in a form of a virtual exercise. The 

“experimental data”, as referred to further in this section, is simulated based on one of 

the models from the library with an added noise. Therefore, the simulated material’s 

behaviour is characterised solely by the fully defined target flow model. The 

experimental data are calculated in response to applied pressure schedule. The main 

advantage of such approach is that the target material model and its parameters are 

known, therefore it is possible to draw a conclusion about the validity of the developed 

material models with an absolute certainty. 

A set of candidate models from the library, labelled as models A, B and C, are 

initialised for material characterisation within training “experimental data” in a training 

loading set. Upon full material properties identification, these models are trialled against 

another batch of “experimental data” within a validation set. 

As shown in Figure 3.10, there are two different load schedules considered for model’s 

training and validation. The training schedule is relatively simple and consists of one 

pressure ramp followed up by dwell at a constant pressure level. The validation test 

program is more complex and consists of several ramp-dwell stages. The parameters of 
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the validation load schedule (load rate/magnitude, number and duration of dwell stages 

etc.) were not selected to reproduce any specific set of processing conditions. The goal 

was to subject the defined candidate material models to a more complex (in comparison 

with the training stage) loading regime. The characterisation is considered successful if 

a trained model is able to adapt to a changing load input and to describe the validation 

batch of “experimental data”. 

 

a b 

Figure 3.10: a – load schedule for model training; b – load schedule for model 

validation 

In the first identification problem, two different candidate models (model A = DefGen 

ProToCoL model (defgen 1.1), model B = squeezing non-Newtonian flow (nvfs_pow)), 

drawn as green and red curves respectively in Figure 3.11.a, are fitted against a training 

data set. Both models exhibit a very similar agreement with the “experimental data”. 

The simulator of experimental data is based on the DefGen ProToCoL model with 

added noise, which is the same as one of the candidate models. 

As illustrated in Figure 3.11.b, after being exposed to a more complex validation 

loading program, the model B completely fails to output a feasible prediction of the 

material’s behaviour. However, at the training stage, this same model B (that is different 

from the model used to simulate an experiment) was able to better fit the simulated 

experimental response. This perfectly illustrates the importance of a validation check. 
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a b 

Figure 3.11: Case study 1. Model’s overfit, where RMSE is root mean square 

error. 

This is a typical example of model’s overfitting and that was reported by numbers of 

researchers in various fields [150], [151]. 

Governing equations of high-performance consolidation models may contain complex 

over-parameterised terms and are able to fit any given data set [143], which may lead to 

overfitting of the training input sets [152]. In such a case, the underlying patterns and 

relationships of the experimental data are not captured by the algorithm. Instead, 

dependencies only specific to the training case are taken into account, which are not 

relevant for the whole range of possible load cases. Consequently, a model is likely to 

provide a wrong prediction for a different history of pressure evolution [153]. 

Another possible challenge is an encounter of a local minimum of an objective function. 

If a chosen consolidation model is a strong non-convex function, it may exhibit multiple 

local minima. In this case the result of a characterisation largely depends on a starting 

vector of material parameters [154]. Several local minima of a target function result in a 

more than one set of parameter values which fit the training data equally well [155]. 

Therefore, if a starting vector is next to a local minimum of an objective function, an 

optimiser will not converge to the correct material parameters [156]. This will cause a 

disrupted model’s prediction for an input different from training data. 

An illustration of that scenario is shown in Figure 3.12. Here the exact same model C is 

used twice, but with different sets of initial values for parameters definition. The 

experimental data is an instance of the same model C. Yet again, both are shown to find 

the good match with training set (see Figure 3.12.a.). However, only the model with a 
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more appropriate set of initial parameters converges to a global optimum. Therefore, it 

is able to adapt to a changing load program and to adequately predict material’s 

response (see Figure 3.12.b.). 

 

a b 

Figure 3.12: Case study 2. Local minimum encounter. 

The variation in the defined values of material parameters and the subsequent 

implications on the candidate models’ performance are illustrated in Figure 3.13. To 

showcase all material parameters within the same scale (for the sake of comparison), the 

corresponding values are represented in the normalised form (see Figure 3.13.a). As 

stated before, the candidate model with the local set of parameters reveals its flaw only 

at the validation stage (see Figure 3.13.b, where cumulative error in prediction is much 

higher at the validation stage for one of the models). 

 

a b 

Figure 3.13: a – normalised parameters’ values; b – candidate models’ 

performance at training and validation stages. 
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Completeness of both the training and validation experiments needs to be carefully 

examined. Tests that lack structural information may lead to misleading outcomes in 

prediction of the correct flow mechanism. An optimum programme for both may appear 

to be dependent on the material behaviour. Therefore, there is a clear need in a more 

sophisticated testing algorithm or a more thorough testing programme (considered in the 

Chapter 4 of this research). 

3.4 Conclusions 

The concept of the consolidation library was introduced within this chapter. This library 

contains unified mathematical representations (in a form of ODEs) of the main flow 

mechanisms occurring in toughened prepregs during compaction. Each material model 

was accommodated for one dimensional problem of composite precursor’s compaction 

between parallel compression plates. The library can be complemented with additional 

models depending on suspected mechanisms that may occur. 

Two case studies with flawed model identification process were presented to 

demonstrate possible sources of errors during material characterisation – non-optimal 

set of retrieved material parameters and insufficient compaction data from the 

experiment. The results clearly showcased the need for the comprehensive material 

model identification mechanism. It should include the robust material parameters 

extraction routine and the identification of the data-rich testing programme. 

In the following, the data-rich testing programme means that the provided compaction 

response is sufficient to capture characteristic features of a material’s behaviour. Such 

programme may include several tests with different load levels and load application 

rates. It is beneficial for a rational testing programme to minimise the volume of tests 

without the loss of gain in obtaining information. In this regard, it is interesting to 

deduce the optimum data-rich testing programmes for the training sets. The next 

Chapter addresses this problem in application to a material that was extensively 

characterised in past and for which the models in the consolidation library were found 

to be efficient. 
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4 EXPERIMENTAL DATA-RICH 

TEST PROGRAMME 

The fourth chapter of the research addresses the testing regimes in application to well-

studied toughened prepreg IMA/M21 [14], [39], [157] known to exhibit complex 

transitional behaviour. The main purpose of this revision is to establish an optimum 

loading schedule for material characterisation. In the following, “optimum” is defined in 

the sense of minimum number of tests containing enough information to define the 

material properties accurately. This testing explores what are the most data-rich testing 

programmes for some of the characteristic flow mechanisms. 

4.1 Problem statement. 

In this section, the importance of a comprehensive test programme for robust material 

characterisation is demonstrated. A series of experiments with different loading 

programmes were carried out to explore the compaction behaviour of fibre-reinforced 

thermosetting prepregs containing thermoplastic tougheners. 

Experimental programmes were designed in a way to incorporate a wide variety of 

pressure levels, pressure rates in various loading modes – slow monotonic and ramp-

dwell regimes. Some programmes were conventional ramp-dwell schedules as used in 

the literature [39]. Another batch of programmes were inspired by the adaptive testing 

approach outcomes, which will be discussed in the next chapter of this research. In this 

case load slowly reaches an intermediate level, dwells, and then keeps raising again. 

The set of all considered load schedules is presented in Figure 4.1. 

An ideal characterisation programme should cover maximum range in the space of 

load/load rate/strain, so the material is exposed to various loading regimes at different 

stages of deformation (elastic, viscoelastic, viscous). The range of load values is 

sensible to the achieved compaction level of the test specimen. The dwell regime allows 

to recover the creep behaviour of the material but the load level at which sample dwells 

can be selected differently. 
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Figure 4.1: Load programmes for the conducted tests. 

The test programmes considered were not aimed to reproduce any particular processing 

conditions specific to existent manufacturing methods. The end goal was to showcase 

the advantage of certain loading schedules over the other ones as well as the necessity 

of multiple experiments to get a data-rich compaction response of the material. 

Several different loading regimes were considered within this study: load ramp-dwell 

(Tests 1 - 4), monotonic load raise – dwell (Tests 5 - 8), monotonic load raise only 
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(Tests 13 - 15), and the combined mode (Tests 9 - 12), which included all of the 

abovementioned regimes. 

Every loading schedule was comprised of five load steps of 240 s each. For a ramp-

dwell regime the fastest load application rate was 0.1 MPa/s and was followed by dwell 

intervals of different duration. In case of a monotonic regime load rate varied between 

1.8e-4 and 1.3e-3 MPa/s. An incremental compression force within one load step was 

specified in a range from 10 N to 70 N. It is not possible to replicate every loading 

scenario specific to different manufacturing methods within the considered set of 

loading programmes (Figure 4.1). The range of load values/rates, load steps 

numbers/duration was inspired by previously conducted work for DefGen model 

characterisation [14], [39], [40], [129]. Each specimen was tested at a constant 

temperature of 60 ̊C throughout the experiment. This temperature was chosen as it is a 

characteristic temperature at which the transition between flow mechanisms occurs 

particularly explicitly [38]. 

4.2 Test specimen. Material and geometry specification. 

The prepreg material used in this research was IMA/M21 with a nominal cured ply 

thickness of 0.184 mm and 59.2% fibre volume fraction [158]. 

It was necessary to ensure steady contact between neighbouring plies during 

compression. Material tends to spread transversely as the plies are squeezed from 

underneath the area under compression. For that reason, following test specimens were 

laid up in a cruciform configuration to allow plies to remain in contact as shown in 

Figure 4.2. The baseline area under compression is 15 mm x 15 mm. 

The test specimens were manufactured in a clean room following standard lay-up 

guidelines. All specimens were laid-up in a 16 plies cross-ply (CP) configuration [90/0]8 

with a total thickness of ~3.3 mm. During lay-up at room temperature ten-minute 

debulking routine was carried out for every four plies. Upon manufacturing, specimens’ 

dimensions were measured by digital Vernier callipers. 
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Figure 4.2: Test specimen of a crucifix shape. The area under compression is 

15 x 15 mm. 

4.3 Testing apparatus. 

The experimental testing was carried out using Instron 5969 [159], [160]. It is an 

electromechanical universal testing machine with a 50 kN load cell.  

The machine was operated in the load control mode since all test programmes were 

defined as the change of the compression force over time. It means that the test machine 

defines the position of the crosshead at every moment of time based on equilibrium 

between the defined value of the force and the value measured by the load cell. 

The value of the compression load throughout the experiment is relatively low in 

comparison with the load cell’s capacity (maximum value of the applied force does not 

exceed 200 N). The main concern was if the resolution of the load cell is sufficient to 

execute the load schedule, as the test programme operates within 0.5% of the load cell’s 

capacity. 

Due to the well-tuned PID (proportional integral derivative) controller, the resultant 

load curves do not deviate from the user-defined schedule and do not contain any 

considerable noise component (see Figure 4.1). It is important to say, that a different 

type of test sample or material might require additional tuning of the feedback controller 

due to changes in overall stiffness of the studied system. 

Prior to an experiment, a test sample covered in a release film was placed in between 

custom-built temperature-controlled compression platens as shown in Figure 4.3. A 

control thermocouple and a thick film conduction heater were attached to each platen to 
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ensure that specified temperature conditions are met. The testing apparatus allows to 

transfer controlled load to the specimen within an isothermal programme and to 

measure corresponding compaction response of the material. 

 

Figure 4.3: Temperature-controlled compression platens, test specimen in a release 

film. 

4.4 Pressure application uniformity. Contact surface mapping. 

In order to obtain consistent and reliable experimental data, it is crucial to ensure 

uniform stress distribution on a composite’s contact area throughout the whole duration 

of a test. If top and bottom platens’ surfaces are not parallel to each other, the pressure 

will be applied only to a part of a specimen at the start of the test as shown in Figure 

4.4. 

The flow models from the consolidation library require operating pressure values as an 

input. The load schedule for the compression machine is defined through the 

compression force. Given that the effective loaded area is known, the compression load 

(N) is redefined through the external pressure (Pa). Thus, inconsistent contact area 

throughout the experiment leads to the discrepancy between the computed and actually 

applied pressure. As a result, a candidate model from the library is trained on the 

mismatched input data and its prediction capability is impaired. Additionally, non-
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uniform pressure application would lead to the off-set compaction of the composite, 

which is not covered by any of the considered consolidation models. 

 

Figure 4.4: The influence of the compression platens misalignment. Red region 

represents the contact area between the specimen and the platen. 

One way to accomplish the top and bottom platens’ surfaces alignment is to use 

spherically seated compression platen [161]. It can accommodate platen’s angular 

displacement with reference to a universal testing machine’s loading axis. The current 

testing rig shown in Figure 4.3 was implemented without spherical seat, thus, it does not 

provide self-aligning action. It is mounted to the crosshead of the machine through the 

cylinder push rod and fixed by quick release clevis pins. It is not possible to level the 

platens against each other within such setup. 

Therefore, it is necessary to ensure uniform pressure application on the specimen’s 

surface. To do that a separate compression test with the pressure mat in between of the 

specimen and top platen is conducted, as shown in Figure 4.5.a. The matrix-based 

pressure sensor is composed of two thin polyester sheets with electrically conductive 

stripes. Upon force application, the electrical resistance of the sensing elements changes 

proportionately to the applied force. The sensor is connected to the data capture device 

(Tekscan T-Scan Evolution Handle [162], see Figure 4.5.b), which in turn is connected 

to the computer through USB port. Such setup allows to view the pressure map and to 

track any inconsistencies arising during the test. 
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a b 

Figure 4.5: Pressure mapping setup, a – pressure sensor on top of the specimen, b 

– Tekscan data capture device 

In order to review the evolution of the contact surface, the compression force was 

gradually increased from 30 N to 6000 N, although the maximum load within all test 

programmes (see Figure 4.1) does not exceed 200 N. Figure 4.6 shows the gradient 

pressure map for different values of the load. Green contour represents the original 

shape of the test specimen’s contact area. Each figure is represented within its own 

scale, the pink colour depicts the areas with the highest pressure applied. The effect of 

the compression platens misalignment is more evident for larger samples, especially if 

the sample is placed closer to the edge of the platen. For illustration purpose, the 

example of a non-uniform pressure application to a larger size specimen (30x30 mm as 

opposed to 15x15 mm used in this study) is shown in Figure 4.6.a. It can be clearly seen 

that the pressure is applied to the lower half (as represented in the figure) of the 

specimen first creating significant inconsistency in the loading scheme. A smaller size 

specimen placed correctly in the centre of the compression platen does not produce such 

discrepancies. The pressure map for a 15x15 mm specimen used in this research is 

shown in Figure 4.6.b. Given the absence of irregularities in the contact area’s pressure 



 

   81 

map, the pressure is applied to the surface uniformly through all stages of the 

compression force raise. Therefore, the platens provide sufficient alignment for further 

testing. 

 

a 

   

30 N 100 N 200 N 

   

400 N 4500 N 6000 N 

b 

Figure 4.6: Green contour represents the original shape of the test specimen’s 

contact area. a – The example of non-uniform pressure application for 30x30 mm 
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specimen; b - Pressure distribution on the contact surface for a range of 

compression force values. 

4.5 The compaction response of the material. 

Given the effective loaded area of the tested samples was 15 mm x 15 mm and the 

maximum compression load was 200 N (Test 13 – 14), maximum applied nominal 

pressure did not exceed 0.9 MPa.  

An insignificantly small compression force of 0.1 N was applied to a test specimen prior 

to the main loading programme in order to establish sufficient contact between the 

specimen’s top surface and the compression platen. Additional dummy tests within the 

same loading programme but without a specimen were carried out in order to take into 

account compression rig’s compliance. Then, the top platen's displacement as function 

of time was subtracted from the resulting displacement curve for each sample. 

The final thickness of the specimen was measured independently immediately after the 

experiment. In line with the previous work [13], [38], [39], it is assumed that at the 

moment the experiment is over the spring-back effect is not developed yet. To obtain a 

resulting thickness evolution curve of a specimen, the platen displacement curves were 

shifted to comply with the resulting thickness value. Such approach eliminates the 

uncertainty in the initial thickness of a sample. Each test programme was conducted for 

four samples to ensure repeatability and data consistency. The obtained compaction 

curves are shown in Figure 4.7. Each test batch showcases a significant reduction in 

thickness at the first stage of compaction followed by the approach of the compaction 

limit. Compaction curves demonstrate high consistency in terms of the intermediate and 

final thickness values with little scatter between different batches within one loading 

programme. 
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Figure 4.7: Material’s compaction response. 

4.6 Analysis of the results. Training and validation of candidate 

models. 

To identify the data-rich testing programme from which the maximum information can 

be collected whilst performing the smallest amount of experiments, compaction results 
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from different loading programmes were arbitrarily split into complementary subsets 

called training and validation sets. 

The following convention is used further to describe the characterisation process: 

• Candidate model is a flow model selected from the consolidation library. Each 

candidate model is trained on an input dataset comprised of the experimental 

compaction data. The goal of training is to find the best combination of material 

parameters that allows a candidate model to fit experimental data as accurately 

as possible. Then, a fully defined model is verified within a different validation 

dataset to estimate its overall performance. The metric for performance 

estimation is a cumulative error between the model’s prediction and the actual 

data (root mean square error, hereinafter referred to as RMSE). The process of 

training and validation of a candidate model is demonstrated previously in the 

section 3.3. Upon challenging every model from the library, all candidate 

models are ranked in accordance with its’ performance. 

• Training set is a group of tests used for the training of candidate models. These 

tests are chosen from a general pool of tests as shown in Figure 4.8 

(experimental data framed in red colour). Since one of the goals is to reduce an 

involvement of material and experimental efforts to a minimum, the size of the 

training set was capped to a maximum of three tests. 

• Training combination is an actual dataset used as an input for the training of a 

candidate model. To demonstrate the effect of a data-rich test programme, all 

possible combinations of loading schedules within a training set were explored 

at the stage of model definition as shown in Figure 4.8 (framed in green colour). 

In the presented example (Figure 4.8) training combinations are built within 

(1, 4, 7) training set (number in parentheses represents test number).  

The candidate model can be trained separately on the data from a single test (1,), 

(4,) or (7,). Another option is to expand the input datasets by joining data from 

two tests (1, 4,), (1, 7) or (4, 7). The last scenario is to use every test in the 

training set (1, 4, 7) as a single input dataset. Given the size of a training set, 

there are seven possible training combinations within a training set. A separate 

analysis for every training combination was carried out, meaning that a 

characterisation routine for each model from the consolidation library was 

performed to fit corresponding compaction curves. 
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• Validation set is used to verify candidate models’ ability to adapt to changing 

input data. The models were put to the test against each batch of data in the 

validation set and the cumulative error in prediction served as a performance 

measure. The validation set is comprised of tests which were not included in the 

training set. Given the total number of tests conducted and the maximum 

training set size, the size of the validation set was fixed at the size of twelve 

programmes. As shown in Figure 4.8, validation set remains constant for every 

training combination within the same training set, providing consistency in 

performance estimation. 

• The process of forming training sets/combinations and validation sets out of the 

experimental data is illustrated in Figure 4.8. 

 

Figure 4.8: Building training and validation sets from the experimental data. 

In order to explore more training scenarios within the limited number of experiments, 

different training / validation split options are considered. The visual representation of 

data organisation for different split options is shown in Figure 4.9. Characterisation 

routines within each split are independent of each other and are performed only to 

explore more training input options. 
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Figure 4.9: Splitting experimental data into training / validation sets. 

An overview of training and verification sets’ structure is presented in Table 4.1. 

Table 4.1: Training and verification sets. Training combinations. Numbers in 

parentheses represent test numbers. 

Training set Training combination Verification set 

(1, 2, 3) (1,) 
(4, 5, 6, 7, 8, 9, 10, 

11, 12, 13, 14, 15) 

(1, 2, 3) (2,) 
(4, 5, 6, 7, 8, 9, 10, 

11, 12, 13, 14, 15) 

(1, 2, 3) (3,) 
(4, 5, 6, 7, 8, 9, 10, 

11, 12, 13, 14, 15) 

(1, 2, 3) (1, 2) 
(4, 5, 6, 7, 8, 9, 10, 

11, 12, 13, 14, 15) 

(1, 2, 3) (1, 3) 
(4, 5, 6, 7, 8, 9, 10, 

11, 12, 13, 14, 15) 

(1, 2, 3) (2, 3) 
(4, 5, 6, 7, 8, 9, 10, 

11, 12, 13, 14, 15) 

(1, 2, 3) (1, 2, 3) 
(4, 5, 6, 7, 8, 9, 10, 

11, 12, 13, 14, 15) 
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(2, 3, 4) (2,) 
(1, 5, 6, 7, 8, 9, 10, 

11, 12, 13, 14, 15) 

(2, 3, 4) (3,) 
(1, 5, 6, 7, 8, 9, 10, 

11, 12, 13, 14, 15) 

… 

(13, 14, 15) (14, 15) 
(1, 2, 3, 4, 5, 6, 7, 

 8, 9, 10, 11, 12) 

(13, 14, 15) (13, 14, 15) 
(1, 2, 3, 4, 5, 6, 7, 

 8, 9, 10, 11, 12) 

4.7 Characterisation routine 

Processing compaction data requires the analysis of flow models from the consolidation 

library. As stated previously in Section 3.3, there are two main challenges arising at the 

characterisation stage: identifying a data-rich test programme and avoidance of the local 

minima at the stage of material parameter identification. The first problem is addressed 

at the stage of the test programme design. In order to deal with the second problem, a 

robust parameter extraction tool is required. It must retrieve true values of material 

parameters for a chosen candidate model with high confidence. The proposed tool 

consists of two main parts: 

• The parameter extraction routine. Material parameters identification is done by 

conducting a nonlinear regression analysis of a chosen candidate model. 

• Joining datasets. The proposed tool must be able to process joined batches of 

data from different tests for a chosen training combination to take advantage of a 

more diverse dataset. 

The described routines are organised as a sole standalone parameter extraction module 

for processing compaction data. The complete description of this module and the 

detailed application example are given below. 

The proposed module can be used either separately, as demonstrated further in this 

Chapter, or can be embedded into a larger-scale project as one of its functional parts. 

Such development is addressed further in Chapter 5.  
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The parameter extraction module was implemented in Python programming language 

environment [148] using nonlinear optimisation package lmfit [163]. The source code, 

created by the author of this dissertation, is available at 

https://accis.github.io/DefGenParFit (access to the repository to be granted upon 

request). It is widely used within the local research community and proven its efficiency 

in the variety of tasks. 

4.7.1 Parameter Extraction Routine 

A comprehensive parameters extraction procedure is required to retrieve true values 

(i.e., global minimum) of the identified material parameters for a chosen model. 

The essence of the nonlinear regression process is to minimise a residual function by 

varying its parameters. A residual function is the cumulative difference between 

experimental compaction data and the thickness prediction of the candidate model. 

One of the main challenges for a regression algorithm is to avoid stacking in a local 

minimum (as demonstrated in Section 3.3). Hence, it is of the utmost importance to pick 

reasonable initial values for material constants in optimisation and do it without 

sacrificing computational speed. For this reason, a two-stage optimisation procedure is 

utilised within the proposed framework. 

The flowchart of this procedure is presented in Figure 4.10. At the initial stage, the 

objective function is minimised over a given range of parameter values by an exhaustive 

search method, hereinafter referred to as a brute force method. The primary goal is to 

establish a feasible set of initial values for material constants which are then used for 

further minimisation. To achieve that, an objective function is evaluated at each point of 

a multidimensional grid of possible parameter values. 

The parameter extraction tool provides an option for the researcher to omit the first 

(brute force) stage, in case when initial values for material parameters are defined 

manually. 

 

https://accis.github.io/DefGenParFit
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Figure 4.10: Optimisation routine flow chart. 
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In general, brute force method is inefficient and takes a long time to execute. The total 

number of the objective function’s evaluations equals 𝑛𝑑, where n is the number of 

parameters and d is the density of the grid. Therefore, finding a global minimum for 

complex models with three or more material parameters would require an unreasonable 

amount of computational time and would significantly slow down the characterisation 

process. Hence, an objective function is minimised over a grid with a coarse spacing. 

The best result is then used as a starting point at the second stage of the parameter 

extraction where it is possible to select a nonlinear optimisation method of choice. The 

two main approaches used are the Nelder-Mead [164] and the nonlinear least squares 

[165] methods. Upon completion of the routine, an optimal parameter set for each 

candidate model is retrieved. 

There is a number of global optimisation approaches, which, by definition, are 

independent of parameters’ initial values and always converge to a global minimum e.g. 

Basin-hopping method [166], differential evolution [167]. However, due to the high 

computational cost they are not applicable in this project. As stated previously, the 

parameter extraction tool can be used as a functional part of a larger scale framework, 

where execution time plays an important role. For this reason, the proposed tool is 

designed to be computationally efficient. The issue of the algorithm’s promptitude and 

possible time constraints is covered in the Chapter 5. 

4.7.2 Differential equation solver 

As stated in the previous section, parameter extraction is performed through the 

minimisation of a residual function (which represented as a difference between 

experimental data and the thickness prediction of a corresponding candidate model). 

Since the consolidation models in the library are represented in a form of differential 

equations, the framework has to solve a chosen differential equation to retrieve 

thickness over time data. Solving an equation requires an input of a timespan array 

[𝑡0 𝑡1 ⋯ 𝑡𝑛] along with the corresponding array of force values [𝐹0 𝐹1 ⋯ 𝐹𝑛]. 

Additionally, a set of material parameters for a selected consolidation model must be 

provided. After successful integration on a defined time interval, a resulting thickness 

array [ℎ0 ℎ1 ⋯ ℎ𝑛] is output. 

Most of the manufacturing methods for composites deploy pressure instead of 

displacement as means of the consolidation (except for certain methods e.g. the rigid 

tool RTM, forming etc.). Hence, the model’s governing equation involves a function 
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𝐹(𝑡, ℎ), which represents an applied compression load. It is a time-dependent function. 

Such a term in ODE is called a forcing term [168]. It models external effects acting on 

the system, which can be changed or withdrawn ‘instantaneously’ at any moment of 

time. 

This term introduces additional complexity for the solver. Due to the time-dependent 

component, it is, now, not possible to integrate the whole timespan of the test using 

standard solver tools. The standard solver cannot handle sudden “jumps” or 

“discontinuities” in function’s behaviour caused by the rapid (or instant) change of the 

external forcing function. Such problem was encountered by a number of researchers 

[169], [170]. 

Hence, the framework solves the differential equation in a step-by-step mode by 

sequentially integrating data on the [𝑡𝑖−1   𝑡𝑖] intervals. A solution on an interval 

[𝑡𝑖−1   𝑡𝑖] satisfies the prescribed boundary condition ℎ(𝑡𝑖−1)  =  ℎ𝑖−1. The thickness 

value ℎ𝑖−1 is recovered from a previous interval [𝑡𝑖−2   𝑡𝑖−1] integration and updated at 

each step. The value of a forcing function on an interval [𝑡𝑖−1   𝑡𝑖] is treated as constant. 

Thus, it is possible to take into the account time-dependant force function by updating 

its value at each time interval. 

4.7.3 Joining data sets. 

If a training combination contains more than one test, the input dataset must be 

expanded by considering joined compaction data from several experiments. It allows 

more testing schedules with different load levels and load rates to be explored within a 

single parameter extraction iteration. In this case the candidate model takes into account 

experimental programmes with various loading history and is trained directly on the 

corresponding material’s feedback. 

Generally, time, load and thickness data from several experiments is structured in a 

following way: 

Timespan = [[

𝒕𝟎
𝒕𝟏
⋮
𝒕𝒏

] [

𝒕𝟎
𝒕𝟏
⋮
𝒕𝒎

] [

𝒕𝟎
𝒕𝟏
⋮
𝒕𝒌

]] 

Load = [[

𝑭𝟎
𝑭𝟏
⋮
𝑭𝒏

] [

𝑭𝟎
𝑭𝟏
⋮
𝑭𝒎

] [

𝑭𝟎
𝑭𝟏
⋮
𝑭𝒌

]] 

4.1 



 

92   

Thickness = [[

𝒉𝟎
𝒉𝟏
⋮
𝒉𝒏

] [

𝒉𝟎
𝒉𝟏
⋮
𝒉𝒎

] [

𝒉𝟎
𝒉𝟏
⋮
𝒉𝒌

]]. 

It should be noted that abovementioned data structures for the timespan, the load and 

the thickness evolution are not standard two-dimensional arrays. Each test may and 

most probably will contain different number of datapoints. For this reason, separate 

one-dimensional arrays cannot be united in a form of a matrix due to different length, 

which is reflected by different endpoint notation n, m, k. Hence, different one-

dimensional arrays are united in a form of a list. It is a standard data type in Python 

which allows different size of its elements. 

To take advantage of an increased dataset, it is necessary to flatten list data structure and 

to present it in a one-dimensional form before submitting it to the parameter extraction 

module as follows:  

Timespan = [𝒕𝟎 𝒕𝟏 ⋯ 𝒕𝒏 𝒕𝟎 𝒕𝟏 ⋯ 𝒕𝒎 𝒕𝟎 𝒕𝟏 ⋯ 𝒕𝒌]𝑻 

Load = [𝑭𝟎 𝑭𝟏 ⋯ 𝑭𝒏 𝑭𝟎 𝑭𝟏 ⋯ 𝑭𝒎 𝑭𝟎 𝑭𝟏 ⋯ 𝑭𝒌]
𝑻 

Thickness = [𝒉𝟎 𝒉𝟏 ⋯ 𝒉𝒏 𝒉𝟎 𝒉𝟏 ⋯ 𝒉𝒎 𝒉𝟎 𝒉𝟏 ⋯ 𝒉𝒌]
𝑻. 

4.2 

Upon data structure reshape, the regression is conducted for 2d flattened curve. The 

example for the (1, 4, 7) training combination (presented in Figure 4.11) demonstrates 

the transition from fitting separate compaction curves in 3D space to 2d regression. 

Every time solver comes across t0 time point in the timespan array, the initial conditions 

for thickness are reset back to h0 value. By implementing this feature, it is now possible 

to feed a joint dataset composed of several tests to the solver module for the further 

parameter extraction. 
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Figure 4.11: The transition from fitting separate curves in 3D space to 2d flattened 

curve regression. 

4.7.4 Solver’s numerical instability error handling 

A possible pitfall of the ODE’s solution process is an occurrence of the numerical 

instability. It is possible to define such set of material parameters which leads to a rapid 

variation in the solution’s output. In order to get the reliable output and to keep the 

solution curve smooth, the solver reduces integration step below the smallest value 
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allowed [171], [172]. Differential equations for which numerical methods fail to 

converge to a solution are called stiff ODEs [173]. 

In case when a governing equation for a chosen candidate model becomes stiff due to 

unacceptable initial parameters’ values, the standard ODE solver results in error (in 

Python environment the solution evaluates to NaN value, meaning that the integration 

step size is below the allowed value). To tackle this problem, the additional error 

checker is implemented within the solver module. Its sole purpose is to trace the 

solver’s output for errors (NaN values). If the checker is triggered, the solver returns to 

the initial stage of the solution, but the material parameters’ initial values are shuffled 

randomly within the defined limits. 

This functionality is especially relevant at the stage of model’s parameter extraction 

when the initial values of material parameters are unknown and may be defined 

manually. 

4.8 Results and discussion 

Because of the sheer volume of obtained data, only two characteristic examples are 

shown in this section. The parameters extraction procedure results for the training set 

comprised of tests (1, 4, 7) are presented below. 

 

Figure 4.12: Training set (1, 4, 7). Training combinations performance 

comparative bar chart 
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Figure 4.12 presents a ranking bar chart for all seven possible training combinations 

within the selected training set. Several conclusions can be made upon examination of 

the results. 

The general trend of experimental outcomes follows the theoretical predictions with 

regard to the importance of data-rich compaction response of the material. The findings 

confirm that the input sets comprised of more diverse loading programmes demonstrate 

a superior performance on a validation data set. Models trained on fully populated 

training combination (1, 4, 7) (Figure 4.13.a) are more capable of predicting material 

compaction response within the validation loading schedules as illustrated in Figure 

4.13.b. 

On the contrary, models based on the training combination (4,) demonstrate a 

significant drop in accuracy as shown in Figure 4.14.b. As expected, formulated models 

are able to fit the single input set from test 4 at the training stage with high level of 

accuracy (Figure 4.14.a). 

However, there is a substantial offset between experimental compaction curves and 

model’s output at the validation phase (Figure 4.14.b). It results in a 27.3 % error raise 

compared to the baseline value. Such outcome is a clear indication of an insufficient 

input training data. Candidate models were not exposed to a variety of loading 

schedules at the formulation phase and did not capture the material’s response to 

changing processing conditions. Consequently, they are worse at predicting thickness 

evolution for experimental programmes with different load amplitudes and load 

application rates. The resulting candidate models and parameters within both training 

combinations are presented in Table 4.2. 

  



 

96   

 

Table 4.2: Candidate models within different training combinations.  

 Model type Parameter 1 Parameter 2 Parameter 3 

Training combination (1, 4, 7) 

Candidate 

model 1 
DefGen 

a: 

-0.8283 

b: 

-13.87 

k: 

0.8124 

Candidate 

model 2 

Percolation 

(bgc) 

𝐾𝐴
�̃�⁄ : 

0.6015 

σ𝐴: 

0.0031 

 

 

Training combination (4,) 

Candidate 

model 1 
DefGen 

a: 

-0.5122 

b: 

-12.41 

k: 

0.8560 

Candidate 

model 2 

Percolation 

(bgc) 

𝐾𝐴
�̃�⁄ : 

0.6410 

σ𝐴: 

0.0036 
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a) 

 

b) 

Figure 4.13: a – two best performing candidate models fit experimental data for (1, 

4, 7) training set, b – validation of two best performing candidate models based on 

(1, 4, 7) training set. 
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a) 

 

b) 

Figure 4.14: a – two best performing candidate models fit experimental data for 

(4,) training set, b – validation of two best performing candidate models based on 

(4,) training set 
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The results shown in Figure 4.12 indicate that there is no substantial advantage of the 

full training set over the second-best training combination (1, 7). The difference in total 

error in thickness prediction between these input options is 0.4%. That is to say, 

conducting characterisation test 1 does not bring a considerable value to the training 

combination (1, 7) and can be omitted. The same accuracy can be obtained with a 

smaller number of tests, meaning lesser amount of time and material required for a 

complete experimentation. 

Additionally, for certain training sets there is a possible occurrence of an outlying 

phenomenon which stands out from the observed trend. To illustrate that, a ranking bar 

chart for the training set (1, 7, 10) is shown in Figure 4.15. The fourth-best training 

combination (10,) is advantageous in comparison to (1, 10). It means that adding test 1 

to an input training combination (1,) impairs the final result. The most likely 

explanation of such phenomenon is that the validation set is underpopulated. 

It is important to note that every candidate model from the library has its own 

limitations and might not be able to reflect the material behaviour for a certain load set 

within specified processing conditions. A more diverse validation set would require 

conducting more characterisation tests. From the outcome of these experiments, it is 

possible to conclude that the current number of tests for validation is sufficient.

 

Figure 4.15: Outliers within training set (1, 7, 10). Training combinations 

performance comparative bar chart. 
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4.9 Conclusions 

Upon review of the experimental results presented in this chapter, the question arises as 

to how to build an appropriate /rational /data-rich testing programme. It is 

fundamentally important for modelling composite manufacturing processes. It was 

clearly illustrated that deficient and insufficient testing may lead to fundamentally 

wrong predictions of material states and completely mislead the results of process 

optimisation procedure. 

The robust material parameters extraction tool for processing experimental data is 

introduced in this chapter. It is able to retrieve true values of material parameters for a 

chosen candidate from the compaction data. The tool can be used standalone or be 

embedded as a functional part of a larger scale project. 

The problem of testing rationales and subjectivity in material testing is addressed in the 

next chapter. The new adaptive consolidation sensor framework that enables flexible 

autonomous steering of a testing programme is introduced. The framework does not rely 

on any initial hypothesis or prior knowledge regarding the deformation modes. It 

focuses on the identification of the underlying physical mechanisms rather than material 

properties identification in a rightly or wrongly assumed flow mode. 
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5 ADAPTIVE CONSOLIDATION 

SENSOR FRAMEWORK 

In many cases the underlying physical mechanisms are difficult to know in advance and 

wrong subjective assumption about the flow modes will lead to conceptual mistake in 

understanding materials’ behaviour. In the current environment when materials become 

multi-functional and contain a lot of additives to enhance their performances, it 

becomes increasingly difficult to know the right flow mode in advance. Moreover, as 

has been established previously [39], [40] the same material may exhibit different 

deformation responses when temperature varies within a relatively small range. 

As demonstrated in the previous chapter and in section 3.3, the testing programme plays 

a crucial role for the robust characterisation of a composite. Insufficient experimental 

compaction data may lead to the distorted results due to the lack of information for 

candidate model training. 

To challenge this problem, the adaptive consolidation sensor framework is introduced in 

this chapter. It is designed to build a testing programme in real time in a reactive 

manner based only on the compaction response of the material. The proposed approach 

removes a subjective judgement about the material behaviour. The detailed description 

of the proposed consolidation sensor framework and its constituent modules is 

presented below. 

The main focus of this chapter is on the example of the virtual real-time 

experimentation and the examination of the framework’s overall performance. In the 

proposed virtual exercise, the suggested framework is set to identify the right 

mechanisms and extract parameters of a material model hidden in the pre-coded module 

“BlackBox”. Upon the completion of the test, the analysis of the framework’s capability 

to identify the underlying flow mechanisms is carried out. Finally, the discussion on the 

test’s initial settings/constraints and its’ influence on the framework’s outcome is 

presented within this chapter. 
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5.1 Implementation of the Framework 

5.1.1 Conceptual Design 

The adaptable testing framework suggested below aims at identifying flow mechanism 

as a result of a continuous material’s compaction response and at an analysis of the 

obtained data in real time. The primary driver for such an algorithm is not to determine 

the material properties per se (though this is also achieved as a by-product of the 

process), but to select the right flow mode.  

For a start, it is assumed that the compacted material can be adequately described by 

one of the consolidation models from a pre-defined library (described in section 3.2), 

but there is no prior knowledge about what model should be chosen. As stated 

previously, the library contains models of resin flow in the form of ordinary differential 

equations (such as shown in  

Table 3.1). 

There are several requirements for the proposed consolidation sensor framework: 

• The proposed system must enable a “conversation with the material”. It means 

that the decision about further steps of the testing programme is based on the 

real-time compaction response of the material. 

• There must be no bias towards any of the consolidation models. For that reason, 

every model from the library must be trialed against each other. Thus, the 

framework is only limited by the diversity of the candidate models in the 

consolidation library. Moreover, the library can be expanded by adding new 

compaction models in case a new material is considered. 

• The designed loading programme must be aimed towards accommodating the 

framework to distinguish between best performing candidate models most 

efficiently (here the performance is defined in the same way as in the previous 

chapters – cumulative error in thickness prediction). 

• An extra level of complexity is added due to the real-time nature of the 

experimentation. Interim results analysis takes place while a characterisation test 

is still running. For this reason, the framework’s execution time must be reduced 

to a minimum, as opposed to standard postprocessing procedures where 

computational promptness is less critical. 



 

   103 

5.1.2 Detailed algorithm of the consolidation sensor 

The detailed algorithm of the framework is illustrated in Figure 5.1. The framework was 

implemented in Python programming language environment [148]. 

 

Figure 5.1: Detailed algorithm of the consolidation sensor 

The pressure-controlled loading programme is arranged as a sequence of steps. There is 

a fixed time defined for each of these steps. At the end of each step the load can be 

ramped (faster, slower or in ramp-dwell fashion), or the material may be let to creep 

under constant load as shown in Figure 5.2.  
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Figure 5.2: Possible load schedule options in a real-time testing 

The consolidation framework allows to design a load schedule not only within the 

scheme presented in Figure 5.2, but also with respect to load relaxation (see Figure 5.3).  

As shown previously in section 2.2.2, the models in the consolidation library are not 

designed to model unloading and cannot reliably predict the laminate’s thickness 

evolution at such stage. Therefore, no unloading is considered at this stage of the 

framework’s application, though this may be an interesting development particularly 

when models with plastic response are added to the consolidation library. 

 

Figure 5.3: Possible load schedule options in a real-time testing, including load 

relaxation. 
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The decision of what needs to be done for a particular load stage is dictated by the 

framework for all the stages except the very initial step. At the start of the loading a 

predefined compression load is applied since there have not been any experimental data 

received yet. 

The output of this testing is an evolution of the sample thickness throughout all loading 

stages. At each stage of an experiment the consolidation sensor starts challenging every 

model from the library to determine its ability to characterise the material. This is done 

by conducting a two-step nonlinear regression analysis of a chosen candidate model. 

The process is automated and is implemented as the custom-built standalone parameter 

extraction tool, as described in section 4.7. In this case it is used as a functional part of 

the consolidation sensor framework. Therefore, after reviewing the consolidation 

library, a set of material parameters corresponding to a particular flow model is 

retrieved. 

The parameter extraction routine is repeated at each load step of the test. It is possible to 

use a parameter set from a previous load step as a starting point for the current one. In 

this case, the brute force stage can be omitted which speeds up the whole process. Since 

optimisation methods at the second stage are not global, there is still a possibility of 

converging to a local minimum. In that case the density of the grid used at the brute 

force stage can be increased to provide a more propitious starting parameters set. 

It is now possible to predict material’s feedback to a possible load schedule change in 

further load steps of the test in accordance with a chosen consolidation model. 

Moreover, fit quality provides some preliminary ranking of the models. After reviewing 

the results from the current stage of the test, the two most capable candidate models are 

selected. The selection is driven by the need to identify the best candidate out of two 

best performing models. Hence, two candidates are then passed to the load schedule 

definition module. Possible load schedule scenarios are selected by picking the load 

option which maximises the difference in prediction between two best candidate models 

as shown in Figure 5.4. In this example the load option 6 (highlighted in red colour) 

produces the largest difference in compaction response of candidate models.  
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Figure 5.4: Best candidates models’ predictions to different load options. Load 

option 6 (shown in red colour) is chosen for the next load step. 

Therefore, the resulting testing program is designed in a way, which allows to 

distinguish between best performing consolidation models most efficiently and to 

reduce the uncertainty on the material’s deformation mechanism. Upon completion of 

data processing, a newly designed load schedule is sent to the compression machine for 

the execution within the next load step. The whole process is then repeated until the 

testing is over. 

5.1.3 Accounting for the previously processed data 

The developed framework analyses incoming data from the testing setup in the real-time 

mode. It means, that within each load step of the test the input data from the 

compression machine comes in batches after the corresponding loading programme is 
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conducted. Upon the completion of a load step, the framework receives the new batch of 

data for further analysis. 

For this reason, there is a constant need of processing the new input with regard to the 

already received data from the previous load steps. When the solver receives the new 

data batch, it now uses the last computed thickness value from the previous iteration as 

an initial condition for the current step. Therefore, the initial condition for the current 

load step is ℎ(𝑡𝑁)  =  ℎ𝑁, where 𝑡𝑁 is the last time value of the previous load step, as 

opposed to ℎ(𝑡0)  =  ℎ0 at the start of the test. 

5.1.4 Multiprocessing 

As stated previously in section 5.1.1, the framework’s processing speed is of prime 

importance. An important factor of processing the results is that the analysis of each 

candidate model is independent of each other. On this account, it becomes possible to 

significantly speed up the overall parameters extraction routine by processing each 

candidate model from the consolidation library in a concurrent manner. By leveraging 

all available CPU cores, tasks for execution can be submitted as separate processes 

[174] as shown in Figure 5.1. The framework automatically manages a pool of 

candidates to be processed and assigns available cores to perform the parameters 

extraction. 

Therefore, if the number of CPU cores (including virtual cores) in the machine is more 

or equal to the number of models in the library, the total execution time is limited by the 

most complex and slowest candidate model. 

5.1.5 Virtual Testing 

It is essential to ensure correct functioning of the framework before conducting tests on 

a real material. To validate the predictive capacity of the suggested framework, virtual 

tests have been performed. The material behaviour is simulated by an instance of one of 

the models in the library with added noise representing uncertainty of the experiments. 

The simulated material response is produced by a virtual module hereinafter referred to 

as ‘BlackBox’. Before the start of the experiment, one target model from the library is 

selected and fully defined by specifying all required parameters. Then, it is placed 

inside the BlackBox module. The consolidation framework is unaware of what model is 

hidden inside the BlackBox. The main goal here is to investigate predefined flow 
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mechanism and its parameters by challenging candidates from the library as in a real 

experiment. The example of such virtual exercise is given in the section 5.2. 

Similarly to a universal test machine, the proposed module receives a load program as 

an input. After the load schedule input is submitted to the BlackBox, a differential 

equation corresponding to a hidden target model is solved and outputs the evolution of 

the sample’s thickness over time. Then, a noise component is added to the resulting 

thickness output to introduce an extra challenge for the framework. The BlackBox 

module’s routine is presented in Figure 5.5. 

The main advantage of virtual testing is that the correct material formulation is known; 

therefore, the framework’s performance can be directly assessed by comparing the 

target model in the BlackBox and the model defined by the testing framework. The 

success of the current batch of the models is when each of them can be properly 

detected from live interaction with the “material”. 

Moreover, it is possible to put a test on pause for debugging purposes. It is important for 

adjusting and fine-tuning consolidation models as well as improving algorithm’s overall 

promptitude. The real materials testing does not offer such flexibility. 

 

Figure 5.5: BlackBox module’s algorithm. 
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5.2 Virtual experimentation 

5.2.1 Virtual experimentation case study 

The following example of virtual testing shows a fully defined DefGen ProToCoL 

model initialised inside the BlackBox module using parameters of Table 5.1. The test 

consisted of ten load steps with a duration of 10 seconds per step. Initial ramp-dwell 

schedule with a maximum amplitude of 30 N was conducted at the start of the test. The 

maximum possible load change within one load step was set at 30 N. Every model from 

the library, including the DefGen model, was challenged to fit the BlackBox’s output at 

each load step of the test. Prior to the experiment, initial values of model parameters for 

the candidate models were set up randomly within defined limits. These were set based 

on maximum/minimum achievable values of material parameters within a chosen 

consolidation model. 

A visual representation of a virtual testing process is illustrated on Figure 5.6. Each load 

step figure consists of three separate graphs. The BlackBox’s thickness evolution curve 

and two best performing candidate models’ feedback curves are depicted on the left. 

There is also an area of the candidates’ predicted output for a chosen load within the 

next load step, which maximises the difference in thickness evolution between them. 

There is also a noisy output of the BlackBox similar to the example presented in Figure 

5.5. For the sake of clarity, it is not shown on the graph. 
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Figure 5.6: Virtual testing step by step routine. 

The current load schedule and possible options for the following load step are presented 

in the middle graph. The bar chart on the right showcases each model’s performance in 

terms of the corresponding values of root mean square error within the current load step. 

It outlines the competition between candidates and the change of a trend in dominating 

deformation mechanism as test goes on. The results of the test indicate that the 

framework successfully worked as a consolidation sensor. It correctly identified the 

target model inside the BlackBox along with its material parameters. Table 5.1 

summarises the outcome of the target and two best candidate models. 

Maximum discrepancy in the parameters values does not exceed 4.5%. This discrepancy 

was caused by the excessive noise level in the BlackBox output, which often is much 

smaller in a real compaction testing (as shown later in Chapter 4). 

Table 5.1: Virtual experimentation outcomes 
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Model 

type 

Parameter 1, 

a 

Parameter 2, 

b 

Parameter 3, 

k 

Target model 

inside 

Blackbox 

DefGen 
a: 

-0.8378 

b: 

-12.96 

k: 

0.7953 

Candidate 

model 1 
DefGen 

a: 

-0.8015 

b: 

-12.81 

k: 

0.7991 

Candidate 

model 2 

Percolation 

(bgc) 

𝐾𝐴
�̃�⁄ : 

0.9143 

σ𝐴: 

0.0080 
- 

It is interesting to examine the resultant load schedule and check whether it displays any 

characteristic pattern. Typically, these curves are rather complicated, but a few features 

can be distinguished. For example, on the curve presented in Figure 5.6, the resulting 

load schedule demonstrates that the compaction force raises up to 100 N, followed by a 

dwell stage for 50 seconds. At the last 30 seconds of the test load starts increasing again 

in a ramp-dwell manner. The resultant load comprises a very wide range of loading 

rates and a considerable dwell stage at intermediate load. 

At the early stage of the deformation, the consolidation sensor concludes that the most 

likely candidates are various forms of incompressible shear flow model along with the 

correct DefGen candidate. This shows that the initial loading does not provide sufficient 

data to make a reliable conclusion and a comprehensive test programme for the material 

characterisation is needed. 

The favourable models evolve throughout the test. Upon completion of the test, the 

second-best candidate was defined as a percolation flow model. The second-best 

ranking was not constant through the test and for the first three load steps sensor defined 

the second-best candidate as a shear flow model. As the load schedule became more 

sophisticated, the accuracy of the shear model decreased significantly, and the 

percolation model’s performance became more robust. 

The visualisation of the two-step parameters extraction of one of the candidate models 

is presented below. The process is repeated for every candidate model at each load step 

through the test. To showcase the initial brute force step, a scatter plot matrix 

visualising bivariate relationships between the model parameters is depicted in Figure 
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5.7. It allows revealing the influence of material parameters on the objective function 

and to gain an insight into possible pitfalls of an optimisation process for a chosen 

model, such as areas of local minima. There are several areas of local minima visible in 

Figure 5.7. The actual global minimum and the brute stage result for a given grid 

density are depicted with red and purple dashed lines correspondingly. 

 

Figure 5.7: Parameter extraction visualisation. Initial stage brute force 

optimisation heatmap. 

As expected, there is a gap between the outcome of the brute optimisation and the target 

value. It is to be eliminated in the secondary optimisation stage. 

Since every consolidation model from the library has three parameters to vary, the 

optimisation is carried out in four-dimensional space. To illustrate the secondary 

optimisation process, the residual function is plotted as a three-dimensional grid, where 

each axis represents one of the material parameters. The value of the residual function is 

reflected by the size and the colour of a marker. To make the areas of interest more 

visible, the lower values are depicted with larger marker size and darker colour. This 

way, local minimum “branches” are clearly seen as illustrated in Figure 5.8. The figure 

shows how the optimiser avoids getting trapped in the areas of local minimum and 

converges to the global minimum. As stated in the previous section, the starting point 

for parameters values is the end result of the initial brute force stage. 
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Figure 5.8: Parameter extraction visualisation. Secondary stage optimisation path 

within an objective function’s mesh grid. 

5.2.2 Validation of candidate models 

The obtained candidate models were then verified against a different input load 

schedule. As shown in Figure 5.6, there is no substantial advantage in terms of the 

prediction error of the first best DefGen candidate compared to the second-best 

percolation one within a single characterisation test. Despite the fact that the target 

model is predefined and the correct answer is known, the verification stage is still 

relevant. 

Figure 5.9 illustrated the validation process. A conventional ramp-dwell load 

programme used in previous studies [39] served as an input for the models. As 

expected, the best candidate selected by the framework (the DefGen model) adapts to 

the changed input successfully, whereas the second-best percolation one demonstrates a 

significant offset in prediction, despite an adequate performance at the characterisation 

stage. 
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Figure 5.9: Candidate models validation 

5.2.3 Different target models 

The framework is designed to steer the load schedule based on the material’s 

compaction feedback. As a consequence of that, the algorithm produces different 

resulting experimental programmes for different materials. In order to explore this effect 

more thoroughly, the same virtual exercise was conducted for different target models 

inside the BlackBox module, including percolation and power-law shear flow models. 

The resulting compaction curves and load schedules are presented in Figure 5.10. 

 

Figure 5.10: Framework’s outcome for different target models inside the BlackBox 

module. 

The first example illustrates the framework’s output in case the percolation flow model 

(bgc) is used as a target model. Initially, the load raises to a certain value within first 

three load steps. Then, it starts to dwell at a constant level until the experiment is over. 

On the contrary, load schedules within the examples with shear target models 
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(nfcc_pow, nfvc_pow, nscc_pow, nsvc_pow) demonstrate consistent load increase 

throughout the whole experiment. 

Whenever at least one of two best performing candidate models has no compaction limit 

and is very sensitive to the load rate change (like shear models from the library), the 

most likely scenario for the algorithm is to raise the load. Such model is more prone to 

produce higher thickness rate in response to the external pressure and is not bound by 

the compaction limit. Therefore, the difference between candidates’ prediction will be 

higher as the external load grows. As stated in the previous chapter, the framework 

designs load schedule for the next load step based on the maximum difference between 

candidates. Hence, the algorithm tends to increase the pressure within the described 

examples. 

The fifth case study with the shear target model (nsvc_pow) is particularly interesting in 

terms of the maximum achievable compression load throughout the experiment. The 

resultant load schedule is comprised of the consistent load ramps only. Such result 

means that the framework took the decision to maximise the load at every step of the 

experiment. It is particularly important in terms of the safety of the equipment when it 

comes to conducting tests on a real material. If the load value exceeds the capacity of a 

load cell on a compression machine, it may cause the irreversible damage of the 

expensive equipment. The problem of equipment’s safety is addressed more deeply in 

the Chapter 6, where the interactive testing of real materials is considered. 

In a conventional experimentation the test programme is defined explicitly by a 

researcher. It is straightforward to operate within the equipment’s safety limits. In case 

of the interactive real time testing, the compression load is not known in advance. 

Therefore, one should always be aware of the maximum achievable load prior to the 

experiment. It is simply the product of the total number of load steps and the maximum 

load amplitude allowed within each step. Depending on the initial settings of the test 

these values may vary. 

It is important to make clear, that the demonstrated loading programmes for different 

target models are not ultimate. There are two main factors that can affect the test. The 

first one is the completeness of the consolidation models library. If a library is 

complemented by a model more suitable for the studied material, the framework will 

design the test programme differently, as the pool of candidates change. 
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Moreover, the resulting programme is affected by a number of test settings and 

constraints. The final result within the same material under the test may vary depending 

on the specified options. This problem is addressed in the next section of this Chapter. 

5.2.4 The impact of test settings on the result 

There are several test settings, which have to be specified prior to the experiment: 

• The initial load step must be defined in advance because the framework does not 

have any feedback from the material to operate with at the start of the test. There 

are two settings that have to be specified – load amplitude at the end of the 

initial step and the type of the load schedule (linear or ramp-dwell load raise). 

• The maximum load amplitude specifies how far the algorithm can alter the 

current load value within one step. 

• The number of the considered load options defines the density of the design 

space for the framework (see Figure 5.2). Each schedule option is constructed by 

populating [𝐹𝑖 𝐹𝑖+1 ⋯ 𝐹𝑛] compression force array either in a linear 

(interpolation) or ramp-dwell manner (where 𝐹𝑖.and 𝐹𝑛 are the start and the end 

values respectively). Load options are equally spaced between the dwell variant 

and the option with maximum load value at the end of the step. It is possible to 

put a constraint on the load schedule by considering either linear or ramp-dwell 

options only. 

Technically, it is possible to set the maximum load amplitude at a high value and to 

specify a large number of the considered load options to increase the design space for 

the framework. But such approach would significantly increase the required 

computational time for the algorithm. The problem of the data processing speed is 

covered in the next section of this chapter. Besides, it is necessary to limit the load rate 

for the sake of equipment safety. 

The virtual exercise described in the Section 5.2.1 was conducted within various setup 

configurations to demonstrate the impact on the resulting test programme. Several test 

settings were varied within each case study – initial load step (amplitude, linear or 

ramp-dwell), load schedule (liner and ramp-dwell or linear only) and load amplitude 

within one step. The resulting compaction curves and test programme are presented in 

Figure 5.11. 
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Figure 5.11: Load schedules for different test settings configurations, where r.d. – 

ramp-dwell. 

In most cases the framework repeats the trend demonstrated within the baseline 

example. The compaction load raises up to a certain value, followed by a dwell stage 

and then starts increasing again. The set of the best candidates remains constant for 

every test. 
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5.2.5 The promptitude of data processing 

The time required for data processing and decision making is not crucial at the stage of 

virtual experimentation. The BlackBox is simply put on pause while “waiting” for the 

framework to execute tasks in the queue (candidate models analysis, load schedule 

design etc). The computational promptitude of the framework starts playing an 

important role at the stage of experimentation with a real compression machine. In this 

case the test runs without pauses including the time when the framework processes the 

data. The impact of the time delay required for data processing on the overall result and 

the way of tackling this problem is covered in more detail in the real-time 

experimentation part of this research in Chapter 6. Nevertheless, it is useful to tune 

optimiser’s settings accordingly to achieve faster processing time within the virtual 

exercise prior to the actual testing. 

As it was mentioned earlier in the section 5.1.4, all candidate models from the library 

are processed concurrently in the multiprocessing mode. To illustrate the significant 

impact of this approach on framework’s promptitude, the virtual test was conducted in 

both single- and multiprocessing modes. The comparative bar chart is presented in 

Figure 5.12. The execution time within single- and multiprocessing regimes for each 

load step of the test are represented with orange and blue bars correspondingly. 

 

Figure 5.12: Consolidation framework promptness within each step of the test in 

single- and multiprocessing modes. 
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It takes significantly more time to process the initial load step than the rest, because two 

step parameter extraction is conducted at this point only. For the following steps, the 

framework uses the parameter values for candidate models retrieved from the step 

before as a starting point. Therefore, the subsequent steps require less time as only the 

second stage of the parameter extraction is employed (no brute force stage, see Section 

4.7.1). 

Starting from the second load step there is a gradual increase of the processing time for 

every subsequent step because the data set size expands as the test goes on. In certain 

cases (e.g. load step 2) the framework struggles to find an optimum set of parameters 

and it takes longer to output the result. 

Employing the multiprocessing mode provides a large 47,5% advantage in terms of the 

computational time comparing to the sequential single processing mode (280 sec versus 

533 sec respectively). Although, these values will vary for different hardware setups 

(current setup: CPU Intel Core i7-7700HQ 2.80 GHz, RAM 16 GB 2400 MHz), the 

predominance of the concurrent data processing approach is clear. 

5.3 Conclusions 

The concept of the adaptive consolidation sensor framework is introduced in this 

chapter. The proposed tool is set to operate in conjunction with the compression testing 

machine. Its main purpose is to steer loading programme based on the incoming real-

time compaction data from the material. The framework’s efficiency was tested in a 

virtual exercise. 

The virtual trials successfully confirmed correct functioning of the framework. For the 

considered models, the framework manages to reveal a model type inside the BlackBox 

along with material parameters after two, sometimes three load steps with high fidelity. 

One characterisation test always appeared to be sufficient. The experiment’s outcomes 

showcased candidate models’ evolution in a step-by-step process and proved the 

consolidation sensor’s capability to investigate material models. 

The computational efficiency of the framework also appears to be quite promising and 

suitable for testing in a real environment. The approach presented here shows the 

potential to be implemented in real-time, in a reactive manner. 

Even though the significant noise level was added to the target model’s output, the 

framework always managed to distinguish the correct model from the library. When 
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testing actual materials, the deformation pattern may be significantly more complicated 

and show multiple deformation modes. The application of the adaptive framework to 

real materials is explored in the next Chapter. Finally, newly designed data acquisition 

system and the connection interface between the framework and the testing machine are 

introduced. 
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6 REAL-TIME 

EXPERIMENTATION 

The application of the proposed adaptive consolidation sensor framework for the 

characterisation of a real material is considered within this chapter. The chapter starts 

with the presentation of the testing setup’s conceptual design. Since the framework has 

to operate in conjunction with the standard testing equipment (such as hydraulic Instron 

testing machine), the data transfer/acquisition hardware setup is developed. To manage 

the data exchange between the framework and the testing rig, the specially developed 

controlling software is proposed. The challenges for the data input/output, processing 

time delay, safety etc. and the ways to tackle them are discussed. 

Finally, the adaptive testing framework is put to the test within several characterisation 

exercises for three different material systems. The output of the proposed testing 

method – model and materials properties for the tested materials – is compared with the 

results of more conventional characterisation tests with the predefined load schedule. 

6.1 Real-time framework’s conceptual design 

6.1.1 Technical challenges 

The experimentation with closed-loop feedback on real materials imposes a number of 

technical challenges which have to be addressed: 

• The adaptive consolidation sensor must provide a continuous data exchange 

between the framework and the compression machine. The applied loading 

programme must be defined by the framework and supplied to the compression 

machine prior to every load step. The compaction data from the experiment must 

be received by the consolidation sensor at the end of each load step for post-

processing and load programme definition. The required input for the framework 

should include time, applied load and specimen’s thickness. 

• The acquisition of the experimental data from the testing rig should not be 

interrupted at any point of the test. It means that the experiment cannot be 
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stopped or put on pause while the framework processes the compaction results, 

despite the fact that the load command for the next step is not formulated yet. 

For that reason, data processing time must be minimised to reduce the time 

delay between receiving the input and defining the load trajectory for next step.  

• Equipment safety presents a serious concern when it comes to the real-time load 

control experimentation. The load schedule is not defined explicitly by a 

researcher and is built on the go. Therefore, the maximum load value may 

exceed safety limits for the compression setup. To avoid such scenario, safety 

protocols on software and hardware levels must be implemented. 

6.1.2 An overview of the setup for the real-time experimentation 

The conceptional design of the autonomous characterisation testing setup is presented in 

Figure 6.1. There are four major parts in the system including: 

• A compression machine with the installed heater platens (similar to the setup 

described in chapter 4). The characterisation tests are to be conducted in the 

load-controlled mode. The main requirement for the machine is the presence of 

the analog input and output ports, as the machine must be able to receive 

commands from the framework and to send back the compaction data in a 

reactive manner. 

• The adaptive consolidation sensor framework – discussed in the previous 

chapter 5. The framework is located on the external host (PC/laptop). 

• A data acquisition system. The PC/laptop is connected to the compression test 

machine through the National Instruments data acquisition hardware. Its main 

purpose is to send and receive the data to/from the test rig. To do that, the 

input/output data is converted to a voltage signal (discussed below in this 

chapter). This signal is then transmitted/received through the hardware’s analog 

ports. The signal is decoded back to the actual load schedule or the experimental 

compaction data by the compression machine/external host (PC/laptop). 

• A data managing framework. The National Instruments hardware is managed by 

the custom developed framework implemented in the LabVIEW environment 

[175]. This framework is located on the same PC/laptop as the adaptive 

consolidation sensor. Data exchange between the Python and LabVIEW 

frameworks is implemented through the exchange of csv (comma separated 



 

124   

value) files. The Python framework outputs the commanding loading schedule 

for the next load step in the specially designated csv file. The LabVIEW 

framework detects the appearance of this file and reads it. The load is then 

converted to a voltage signal and transferred to the compression machine at a 

specified pace. Simultaneously, the compaction data from the machine is 

received by the LabVIEW framework and saved in another csv file by the end of 

each load step for the Python framework to process.  

The data conversion to a voltage signal is conducted by the framework. The 

maximum output voltage of the hardware is 10 Volts. Maximum voltage 

corresponds to the maximum value of the transferred parameter. For instance, if 

it is expected, that the load value will not exceed 300 N, then the conversion 

coefficient will be 30 N/V. The displacement is encoded in a similar manner. It 

is important to note, that if the actual load exceeds the specified value (300 N), 

the hardware will not be able to output more than 10 Volts. Hence, the system 

will consider the load to be 300 N (for the described example), which would 

cause an inconsistency in the test programme. To prevent it from happening, it is 

possible to either raise the maximum possible load value (higher than 300 N for 

the described example) or lower the number of load steps/possible amplitude 

change within a single load step (the discussion on test settings was given in 

section 5.2.4 of this thesis), so the final load value will not exceed the limit. 

 

Figure 6.1: Autonomous real-time testing setup overview. 
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It is important to emphasise, that only load and displacement values (encoded as 

voltage) are transmitted and received. The corresponding time values are not defined 

explicitly. The time value is calculated by specifying the update rate (e.g. load value is 

updated every 0.2 seconds, data from Instron is received every 0.2 seconds). Care 

should be taken as the minimum possible value of this parameter may vary for different 

equipment setups. Less advanced versions of universal testing machines may not be 

able to update the commands at the specified pace which would cause a disruption in 

data transfer. 

Another challenge for building a robust adaptive experimentation system is the 

occurrence of the noise in the input/output signal. Although, as described in chapter 4, 

the framework can process the noisy data, it is necessary to ensure, that there are no 

external factors causing data contamination with systematic errors. Besides equipment 

malfunction, there are two main sources of the noise in the signal within the current 

setup: 

1) Incorrectly defined conversion coefficients (mm/V for the displacement or N/V 

for the load). As stated above, the maximum output voltage of the data 

acquisition setup is 10 Volts. Improperly defined conversion coefficient may 

lead to a case when only a fraction of the voltage signal’s capacity is used. For 

instance, if the displacement conversion coefficient is defined as 100 mm/V, and 

the actual displacement of the specimen is ~1 mm, then the output voltage level 

would be less than 0.1% of the hardware’s capacity. Figure 6.2.a illustrates 

several examples of the resulting displacement curves for different values of the 

displacement conversion coefficients within the exact same experimental setup. 

It can be seen that properly performed displacement-to-voltage conversion 

drastically improves the smoothness of the compaction curves. The same 

approach applies to the transmission of the load data. 

2) Low resolution of the load cell. Based on the required pressure for the chosen 

size of the specimen (15 mm x 15 mm), the maximum compression force does 

not exceed 300 N within the current experimentation. If the load cell is designed 

for high values of acting loads, it will operate at a small fraction of its capacity 

within the current setup. In this case the compression machine’s PID control 

may not be able to operate with precision in the load control mode, as the 

controlling sensor’s (load cell) resolution is too low. As shown in Figure 6.2.b 

(the image from the LabVIEW framework), the difference between the 
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defined/applied load for 10 kN and 1 kN load cells is significant. For both cases 

the load does not exceed 100 N. In case of the 10 kN load cell, the compression 

machine struggles to adjust the applied load (represented as red curve) according 

to the submitted load schedule (represented as a white curve). For the 1kN load 

cell this problem was not observed. 

Conversion coefficient 

5 mm/V 

 

Conversion coefficient 

1 mm/V 

 

Conversion coefficient 

0.1 mm/V 

 

a 

Force(time) 

10 kN load cell 

 

Force(time) 

1 kN load cell 

 

b 

Figure 6.2: Examples of clean and noisy signals. a) compaction curves obtained for 

different values of the conversion coefficients, b) loading curves for different load 

cells (1 kN and 10 kN) setups. White curve – what was sent. Red curve – what was 

applied by the compression machine. 

6.1.3 Minimisation of time delay. 

When consolidation framework was trialled within a virtual exercise (chapter 5), the 

transition between load steps was performed instantly without any delay, as shown in 

Figure 6.3.a. In that case it was possible to put the test “on pause” while waiting for the 
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framework to process the data and to output the command for the next load step. In case 

of a real experimentation, such scenario is not possible, as the test must continue during 

the processing of information from the previous step. Therefore, there is a need for a 

adding an inter-step waiting time while the framework analyses the compaction 

response of the material and deciding what should happen with the applied load during 

this period. 

The chosen approach is to keep the load at the steady level as shown in Figure 6.3.b 

(pink “dwell” region). Changing the load level during processing stage may pose a 

safety threat, as the data analysis may take more time as expected. This scenario can 

lead to overloading above the acceptable level and possible equipment damage. 

  

a b 

Figure 6.3: a) instant transition from load step 1 to load step 2; b) dwell stage 

between load steps required for data processing 

Although the “dwell stage” compaction data is still received by the framework and used 

in further analysis, it is necessary to minimise the time delay. The reason for that is that 

the employed load schedule at this stage is not designed to distinguish between 

candidate models (as opposed to the “controlled” load schedule at the other stages of the 

test). The time delay between load steps is present purely for computational purposes. 

The excessive duration of such “dwell stages” in the resulting load schedule defeats the 

purpose of a material-driven experimental programme. In such case, the compaction 

history data used for the load step definition would contain regions which were not 

aimed for the efficient material characterisation. Moreover, introduction of dwell stages 

may affect the resulting path of the load curve, because the framework’s algorithm 

might find a different set of favourable candidate models for the provided compaction 

dataset (as demonstrated in the example in section 3.3). Therefore, measures must be 

taken to make the transition between load steps as quick as possible. 
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The duration of the time delay for the load dwell stage reflects the processing speed of 

the consolidation framework and depends on several factors: 

• The complexity of the candidate models (the number of model parameters the 

complexity of data fitting related to model’s non-linearity). 

• The number of the candidate models in the library. If the number of candidate 

models is greater than the number of CPU cores, the framework will not be able 

to process all models concurrently (as discussed in section 5.1.4). 

• The chosen methods for optimisation (the density of the brute stage grid, 

secondary optimisation method as discussed in section 4.7.1). 

• The available hardware for running the framework (PC/laptop). 

• The number of data points in the set of the experimental data. 

The first four factors were discussed in the previous chapters. The main route to 

increase the processing speed at this stage of the research is to reduce the number of 

datapoints in the experimental “raw” dataset. Depending on the model, the compression 

testing machine yields around 60000 measurements within a 20 min test. Such a 

dataset’s size is excessive for the parameter extraction framework. Before submitting 

the compaction data to the framework, the “raw” dataset is reduced in size by keeping 

only every nth point (the rest are removed). To find the feasible reduction ratio nth (the 

indication of how many points to save from the original set), a comparative parameter 

extraction study for different sizes of the dataset was performed. 

The baseline “raw” dataset (60000 entries) was reduced to the size of 70, 100, 140 and 

200 entries. Time delays for every load step were investigated for each reduced dataset. 

The comparative timeframe graphs are presented below in Figure 6.4 (the processing 

time is represented in blue). For all cases the first load step took the longest to process 

(due to the two-step optimisation, as discussed in the previous chapter). It can be seen 

from the graphs that starting from the dataset size of 140 points it takes ~30% more time 

to process the data, while there is no significant difference between 70 and 100 sizes. 
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Figure 6.4: Time delay for different dataset sizes. Blue region represents the time 

required for data processing. Black dashed line is the separation between load 

steps. 

The size of the dataset must be sufficient for the consistent parameters’ extraction. If the 

number of datapoints is too low, some of the characteristic features of the compaction 

response (which are present in the “raw” data) might be lost. For instance, the stage of 

the material’s elastic response (significant reduction in thickness at the initial stage) 

occurs within the first moments of the test. Reducing the dataset’s size may leave just a 

few datapoints in this region of the compaction curve (such effect can be seen for 70 

points dataset in Figure 6.4, where the curve is not smooth in this region). For this 

project the size of the dataset was limited to 100 points. It proved to be sufficient for the 

consistent parameter extraction within acceptable processing time. 

It must be emphasized, that the small-sized input dataset may not be the only reason for 

inconsistencies in the model identification study. As shown in the examples of flawed 

material characterisation (section 3.3), another reason for the misleading results can be a 

poorly designed testing load schedule. 
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6.1.4 Experimental data acquisition setup 

The connecting interface of the National Instruments hardware is shown in Figure 6.5. 

The main parts of the setup include: 

• A compact data acquisition chassis cDAQ-9174 which serves to create portable 

sensor measurement systems. The chassis has four slots for inserting measuring 

input/output modules. It controls the synchronisation, timing, and data transfer 

between measuring modules and an external host (PC/laptop). The chassis has 9-

30 V power supply port and USB port for connection with the PC/laptop. 

• A voltage output module NI 9263. The module is attached to the port №3 of the 

chassis. Its purpose is to transmit a voltage signal to the compression machine. 

The signal is transmitted through one channel only, as only the load value is 

sent. The connection with the testing machine is implemented through the BNC 

cable. 

• A voltage input module NI 9201. The module is attached to the port №1 of the 

chassis. This module receives a voltage signal from the compression machine. 

There are two channels employed, as both load and displacement data are 

received from the compression machine. Similar to the output module, the 

connection is performed through the BNC cable (2 cables as there are 2 

channels). 



 

   131 

 

Figure 6.5: National Instruments cDAQ-9174 chassis. Input/output modules. 

6.1.5 LabView state machine 

The LabVIEW data managing framework is implemented in the form of a state 

machine. A state machine is a type of program architecture which allows to implement a 

complex decision-making behaviour. Employing this approach allows the system to 

adequately respond to the changing input from the experiment. 

The core idea is that the framework’s operation is represented as a set of different states. 

Each state has its own designated function. For instance, it could be sending data to the 

compression machine, writing results file, finishing the test etc. The switch between 

states is performed when the trigger event happens. A trigger event could be a manual 

command (pressing the “Start” button) or a condition fulfilment (the designated time for 

load step is over, the command csv file is detected etc.). 

The principal scheme of consolidation framework (Python) – LabVIEW state machine – 

Instron universal testing machine is shown in Figure 6.6. 
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Figure 6.6: LabView state machine overview. 

The detailed explanation of each state is presented below: 

• State 1. Initialise. 

This state is executed prior to the experiment. The purpose of it is to specify the 

initial settings for the test, including: 

o The number of load steps. 

o Data update rate (discussed above). 
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o Force-to-voltage conversion coefficient, V/N. 

o Unloading time – this parameter indicates how fast the compression 

force will be reduced to zero upon the completion of the testing. 

o Specifying input/output channels on the NI data acquisition hardware. 

After all settings are initialised, the system switches to the next state. 

• State 2. File search. 

At this state the LabView framework is searching for the csv file with the 

commands for the initial load step. The file is generated by the Python 

framework. As soon as the file is detected in the designated location, the 

characterisation test is commenced. The rest of the test is conducted entirely in 

autonomous mode. The detection of the command file serves as a trigger to 

switch to the State 3. 

• State 3. Load sending. 

The load values (converted to a voltage signal) are sent to the compression 

machine with the specified update rate. Concurrently, the machine’s feedback 

with the compaction data (time/displacement/load) is received. The framework 

transfers to the next State 4 as soon as the last load command from the csv file is 

performed (meaning that the current load step is over) 

During State 3 the Python framework (not a state machine) is constantly 

searching for the csv output file with the experimental data to process. 

• State 4. Write file. 

This state is always executed in the end of each load step. The LabVIEW 

framework creates an output csv file with the experimental data at the designated 

location. This file serves as an unput for the adaptive consolidation sensor 

framework (Python). 

After creating a results file, the framework checks the condition if there are any 

more load steps left to execute. If so, the system transfers to the next “State 5 

Dwell search”. Otherwise, the system moves to “State 6 Test finish”, as the 

experiment is completed. 

• State 5. Dwell search. 

The main objective of this state is to allow the adaptive consolidation framework 

(Python) to process the incoming experimental data and output the command for 
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the next load step. While the data is processed, the load on the compression 

machine is kept steady at the last recorded load level (hence, dwell). 

When the LabVIEW framework detects the command csv file, the state machine 

is switched to “State 3 Load sending” again, as the next load step begins. 

• State 6. Test finish. 

When the last load step is performed, the system automatically unloads the 

specimen. The unload rate is specified by the researcher at the Initialise state 

(State 1). Upon the unloading completion, the software ceases its operation. 

For the sake of safety, this state can be triggered manually at any point of the 

test by pressing the “Stop” button in the framework’s interface. Additionally, the 

test can be stopped physically by activating the red “Stop” switch on the 

compression machine. 

6.2 Experimentation 

6.2.1 Testing apparatus 

The universal testing machine used in the previous experimentation for exploring data-

rich loading programmes (chapter 4) does not have a functionality to receive an input 

control signal due to the absence of an analog input port. For that reason, the 

autonomous real-time experimentation was performed on the servohydraulic Instron 

8872 machine. It imposes changes on all parts of the testing rig as the fixtures are not 

compatible between different versions of testing machines. The setup used for 

autonomous testing is discussed below (shown in Figure 6.7). 

The lower heater platen was attached to the external cantilever beam load cell (1 kN 

capacity) which was installed on the angle plate. The default 25 kN load cell does not 

provide the required resolution for the load control experimentation due to the PID 

controller’s limitations (see the example of noisy load control above in Figure 6.2.b). 

The upper platen was placed on a lower one before locking into the hydraulic grip to 

avoid platens misalignment (unlike the setup described in chapter 4 where the platens 

were mounted on extension rods). Controlling thermocouples were attached to both 

platens. The data acquisition hardware (not shown in Figure 6.7) was connected to the 

analog input/output ports of the Instron’s data logger. 
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Figure 6.7: Compression heater platens, cantilever load cell, fixture. 

Due to different actuation mechanism, the hydraulic compression machine operation 

differs from the electromechanical one. The machine can be used in low (for adjusting 

position) or high (for applying force) pressure modes. This switch between position and 

load control modes must be performed explicitly on the control pad. 

The used model of Instron (hydraulic 8872) does not allow to set the relative value of 

the crosshead’s displacement to zero (like most modern versions) and always operates 

in absolute values. For that reason, the level of Instron’s crosshead must be adjusted 

prior to the experiment to achieve the initial value of the displacement as close to zero 

as possible. This requirement is due to the displacement-to-voltage conversion. As 

shown in the example above (see the example in Figure 6.2.a), the encoded value of the 
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measured parameter should lie between 0 and 10 V. If, due to the crosshead’s position, 

the initial displacement value is high (in comparison with the specimen’s displacement), 

the encoded value of the measured displacement will take a fraction of a voltage 

signal’s amplitude. The following example illustrates this problem in more detail. For 

instance, the initial displacement of the crosshead is set to 50 mm and the specimen’s 

displacement is 1 mm. If we assume that the initial displacement corresponds to 1 V 

signal, then the combined specimen’s and initial displacement (51 mm) would 

correspond to 1.02 V signal. The whole data transfer takes 0.02 V amplitude instead of 

10 V. Therefore, to avoid the contamination of data with noise (as shown in Figure 

6.2.a), the initial displacement should be comparable (or less) with the displacement of 

a specimen. 

Since the experimentation is performed in a real-time load-controlled mode, it is 

necessary to ensure that the applied load follows the designed schedule. It is done 

through tuning of the machine’s PID controller. Depending on the specimen’s stiffness 

(hence, different reaction to compression), properties of the PID controller may vary. 

The compression machine allows to run an auto-tuning routine to find the best set of the 

required PID parameters for a given type of a tested specimen. 

6.2.2 Testing methodology 

There is a number of compulsory procedures that must be carried out prior to 

experimentation: 

• Setting the target temperature of the heater platens. In line with previous work 

(chapter 4) each specimen was tested at a constant temperature of 60 ̊C. 

Normally, the heater controller overshoots the target value of the temperature by 

~5 ̊C. For that reason, it is necessary to let the temperature balance to establish. 

• Due to the high sensitivity of the employed load cell, it is necessary to balance it 

(set to zero) to compensate the weight of the lower compression platen. 

• Launch Python and LabVIEW frameworks on the laptop/PC. 

• Specifying the required settings in the LabVIEW framework (State 1, described 

above). 

• Setting Instron’s safety limit for the compression load (500 N for the current 

experimentation). If the actual load exceeds the safety value for any reason 



 

   137 

(operator’s error, error in PID load control causing the system to lose balance 

etc.), the test will be automatically stopped. 

The abovementioned procedures are executed only once at the preparation stage. The 

step-by-step sequence of actions during experimentation is presented below: 

• Then, the test batch is covered in the release film (same as described in chapter 

4) and installed inside the compression plates. It is important to place the 

specimen in the centre of the platen. An offset in placement causes the 

appearance of an eccentric force (hence, bending moment). High sensitivity of 

the load cell may cause inconsistency in load control and trigger safety limits. 

• While in position control mode, the location of the upper platen is adjusted to be 

closer to the specimen’s surface. 

• Then, the compression machine is switched to the load control mode. A 

precompression load (0.1 N) is applied to establish the initial contact between 

the specimen’s surface and the top platen. 

• The Instron is set into “the listening mode”. In this mode the machine follows 

the commands received through the specified source (in case of the current 

project it is the analog port). 

• The adaptive consolidation sensor framework (Python) generates the csv file 

with load schedule commands for the first load step. The LabVIEW framework 

detects it, and the test continues in automatic mode after this point. 

• After the test is finished (the last load step is executed) and the unloading 

sequence is performed, the specimen is retrieved from the compression platens 

and its final thickness is measured. 

6.2.3 Studied materials 

The real-time experimentation was performed for three different material systems: 

• IMA/M21 toughened prepreg. This material was used for the identification of 

the data-rich testing programme in chapter 4. The shape and the layup of the 

cross-ply specimen remained unchanged. Manufacturing details and the 

rationale for the crucifix shape are discussed in chapter 4. The test sample is 

shown in Figure 4.2.  
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• IM7/8552 prepreg [176]. The test sample is shown in Figure 6.8.a. The prepreg 

material has a nominal cured ply thickness of 0.131 mm and 57.7% fibre volume 

fraction. Like IMA/M21 test batches, all specimens were laid-up in 16 plies 

cross-ply (CP) configuration [90/0]8 with a total thickness of ~2.17 mm. 

• Dry fibre material. This type of the material was chosen to trial the consolidation 

framework within the material which is not represented in the consolidation 

library. There were two material systems trialed: 

o  ampliTex 5040 flax fibre twill weaved fabric [177] with a ply thickness 

of 0.48 mm. The specimens were laid-up in 8 plies cross-ply (CP) 

configuration [90/0]4. The specimen is demonstrated in Figure 6.8.b.  

o Carbon fibre non-crimp fabric (NCF) with a ply thickness of 0.86 mm. 

The specimens were laid-up in 6 plies cross-ply (CP) configuration 

[90/0]3. The specimen is demonstrated in Figure 6.8.c. 

Due to the absence of resin, plies did not stick to each other. Hence, it was not 

possible to prepare samples in advance (like samples made of IMA/M21 and 

IM7/8552 materials). For that reason, dry samples were laid up right on the 

surface of the lower compression platen prior to the experiment. Such approach 

to samples preparation, as well as the absence of resin, introduced a variability 

in the specimens’ structure – the plies were not perfectly aligned. This problem 

is addressed in the experimentation section of this chapter. It is important to 

emphasise, that due to the absence of resin phase there was no particular reason 

to manufacture dry specimens in a crucifix shape (the rationale for this shape is 

discussed in chapter 4). Nevertheless, it is done for the sake of consistency with 

the previous experimentation. 

The compaction area of the crucifix specimens for all types of material was chosen to be 

15 x 15 mm to be consistent with the previous work. 
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a 

  
b c 

Figure 6.8: a - IM7 test sample; b - ampliTex 5040 flax fibre twill weaved fabric; c 

– carbon fibre NCF test sample 

6.2.4 Material testing. Results and discussion 

There are several framework settings which can affect the load routing of the resulting 

testing programme: 

• The form (monotonic or ramp-dwell), amplitude, and duration of the initial load 

step. 

• Load step parameters: the number of the considered load step options (see 

Figure 5.2), the duration of a single load step, the maximum possible load 

amplitude within one load step, the total number of load steps. 

• Optimiser’s parameters (brute optimisation grid density, secondary optimisation 

method). These settings affect the processing time, hence the duration of the 

load dwell stage (see section 6.1.4). 
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Different test settings were explored within the experimentation on three types of 

materials. The goal was to investigate the framework’s output (resulting loading 

programme) and candidate models ranking in dependence on the different load/strain 

rates and reached compaction level of the studied material. A more thorough discussion 

on the specified parameters of the tests for each case can be found below. 

In line with the previous work conducted within this research, the temperature for the 

experimentation for all specimens was set at 60 ̊C (temperature where both shear and 

percolation flows may occur explicitly). The experimental results for three different 

material systems are presented below. 

Testing of IMA/M21 material samples. 

Both monotonic and ramp-dwell initial load step options with the load amplitude 

variation between 40 N and 50 N were explored for testing of IMA/M21 material 

samples. The load amplitude within following steps was varied between 20 N and 50 N. 

The duration of a single step was specified in range 30 - 80 sec. The framework had a 

choice of 5 different load options at the end of each load step (dwell option, 2 ramp-

dwell options, 2 monotonic options – see Figure 5.2). The summary of all performed 

tests is presented in Table 6.1. The resulting real-time test programmes along with the 

corresponding compaction response of the material are presented in Figure 6.9.  

Table 6.1: Explored test settings for the real-time testing of IMA/M21 material. 

RTT stands for real-time test. 

Test id 

Initial load step Further load steps 

Load 

amplitude, N 

Loading 

regime 

Maximum 

load 

amplitude, N 

Step 

duration, 

sec 

Number of 

load options 

RTT_M21 1  40 Ramp-dwell 20 60 5 

RTT_M21 2 40 Ramp-dwell 50 30 9 

RTT_M21 3 50 Monotonic 40 80 5 

RTT_M21 4 50 Ramp-dwell 20 60 5 
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All resulting test programmes for IMA/M21 material demonstrated a similar trend. The 

load reached a certain level (~50 N for tests RTT_M21 1, 3 and ~100 N for tests 

RTT_M21 2, 4) in 1-3 steps and held steady. Within the last 3-4 load steps the load 

started to raise again. This phenomenon had an interesting implication for the candidate 

models ranking, as it will be shown below in the step-by-step parameter extraction 

breakdown. 

Closer to the end of the test RTT_M21 2 (at ~1000 sec of the test) a local spike in the 

load feedback can be observed. Such effect is the result of the instability in the load PID 

control. As it can be seen from the compaction curve (black curve), the amplitude of the 

load spike was not significant enough to affect the thickness feedback. Due to the high-

resolution of the load cell and properly adjusted load-voltage conversion (see section 

6.1.2) such phenomenon is rare and does not cause a detrimental effect on the 

experimental results (as shown in Figure 6.2.b). 

 

Figure 6.9: IMA/M21 material testing. Resulting loading programmes and 

compaction curves. 

Similarly to the characterisation exercise in a virtual space (chapter 5), the sequence of 

the parameter extraction steps for a chosen test (RTT_M21 3) is shown in Figure 6.10. 

Each graph is complemented with the preliminary candidate models ranking and the 

processing time required by the framework. 
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Upon the completion of the initial step, the framework defined the shear and the 

percolation models as top two candidates. The shear model was successfully reflecting 

the material’s compaction response up to the second stage of the load ramp within the 

last three load steps (red curve, load step 7). After the change in the load pattern, the 

shear model struggled to output a robust prediction and showed a significant deviation 

from the material’s thickness evolution curve. 

An interesting observation is that the framework defined a non-optimal set of material 

parameters for the DefGen model (purple compaction curve) after the first load step. 

The model demonstrated a significant offset from the experimental data and was ranked 

fourth. The model’s parameters set was corrected within further load steps and two best 

candidates (DefGen and percolation) were defined in the end of the test. Such effect 

shows the advantage of the employed approach, when the model definition is refined at 

each load step with regard to the previously obtained results. 
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Figure 6.10: IMA/M21 experimentation. Step by step routine. Green region – all 

previously received data. Blue region (on the right from the vertical black dashed 

line) – required processing time. 

The results of the models’ training for all four tests are presented in Figure 6.11. For the 

sake of clarity, only four candidates are shown (along with the experimental data) on the 

graphs. It can be seen that the second-best candidate (percolation, “bgc”) showcased a 

very close output in comparison with the DefGen model with a slight deviation in the 

value of the final thickness. The shear model (“nscc”) also demonstrated a good fit until 

the point of the load trend changed in the second half of the test (as discussed earlier). 
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Figure 6.11: IMA/M21 material testing. Training results. 

Previously in this thesis (see chapter 4), the IMA/M21 material was subjected to 15 

characterisation tests with predefined loading programmes. Three tests (1, 4, 7) were 

selected to train the candidate models and the rest of the tests were used for model’s 

validation. To estimate the effectiveness of the proposed adaptive testing approach, the 

derived material models within each real-time testing programme (RTT_M21 1-4) were 

trialled on a validation set of data obtained for the exploring data-rich testing 

programmes (chapter 4). The validation results of these models were compared with the 

model for the predefined training combination (1, 4, 7). Only fully populated training 

combination (1, 4, 7) was used for comparison, as it was better for predicting material’s 

response than less diverse sets (1, 4), (1, 7), (4, 7) etc. The ranking bar chart of the real-

time test programmes and predefined tests combination (1, 4, 7) is shown in Figure 

6.12. 

It is shown that the model based on fully populated training combination (1, 4, 7) 

performs better on the validation data set than models obtained within the real-time 

approach. However, the second- and the third-best real-time tests (RTT_M21 2 and 

RTT_M21 1) demonstrated better data fit than two-test (1, 4), (1, 7), (4, 7) training 

combinations (not showed in the bar chart in Figure 6.12, can be found in Figure 4.12). 
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As discussed in chapter 4, the maximum error raise for double-test combinations (1, 4), 

(1, 7), (4, 7) was 8.6% which is higher than 5.5% and 6.5% for tests RTT_M21 2 and 

RTT_M21 1 respectively. The worst result for deterministic tests ((4,) training 

combination as per Figure 4.12) was 27.3% which is more than twice higher than the 

least effective result for the real-time test RTT_M21 4 (error raise 13.3%). It is possible 

to conclude, that within the conducted experimentation for IMA/M21 material the real-

time tests were more effective than the majority of double- and single-test deterministic 

alternatives. Nevertheless, the fully populated dataset (1, 4, 7) still yielded a better result 

than the rest of the tests. 

It is important to emphasise, that for this material system the tests with predetermined 

and real-time programmes were performed on different equipment setups (as discussed 

in section 6.2.1). The change of the equipment may introduce systematic discrepancies 

in the results. For instance, as discussed in the previous chapters of this thesis, the 

permeability measurements between different research groups showcased deviations 

from each other [107], [108]. If the equipment introduces any bias (platens 

misalignment, load cell or temperature control measurement error etc.), the candidate 

model will reflect it in its behaviour upon the completion of the training process. 

Consequently, the model will not perform well on the validation dataset obtained on a 

different equipment setup. Both adaptive and deterministic testing of the next material 

system IM7/8552 was performed on the same equipment setup. The findings indicated a 

different trend in the results, which will be discussed later in this chapter. 
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Figure 6.12: IMA/M21 material testing. Candidate models’ ranking for different 

test programmes. 

The resulting thickness predictions for all derived models within the validation set are 

shown in Figure 6.13. It can be seen on the graphs that for certain validation tests the 

real-time candidate models were less effective in producing a realistic prediction (tests 

3, 6, 9, 10, 12) and produced an offset from the experimental data. The validation for 

these tests made the most contribution to the cumulative error of the real-time models 

reflected in the bar chart above. For the validation tests 5, 8, 11, 14, 15 the prediction 

capability of the real-time models was on the same level as for the fully populated 

deterministic model (1, 4, 7) – the compaction curves overlapped with the experimental 

data. For the tests 2, 11, 13 the prediction of the real-time models was more accurate 

and showed no deviations from the material’s response in comparison with the 

deterministic model. 
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Figure 6.13: IMA/M21 material testing. Candidate model’s validation. 

The resulting sets of material parameters for all models are presented in Table 6.2 

below. For all testing programmes the framework consistently identified the DefGen 

model as the most relevant model to represent the material behaviour. The material 

parameters’ values for the real-time candidate models were consistent with a maximum 

deviation of 6.6%, 1.1%, and 2.0%, for the parameters a, b, and k respectively. On the 

other hand, the maximum difference between real-time and deterministic models’ 

parameters was 34.7%, 12.2%, and 2.4% (for a, b, and k). The largest discrepancy in 
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parameters was registered for the material parameter a. The possible reason for this is 

the existence of the optimal parameter’s value for the considered model and the input 

dataset. As it was shown in the residual function’s correlation graph in Figure 5.7, the 

correlation between the value of parameter a and the residual function (the minimised 

value of the error in thickness prediction) is a flat curve (meaning that the parameter a 

does not have a significant impact on the solution). For the framework’s optimiser it 

means that there is no well-pronounced global/local minimum (in comparison with b 

and k parameters on the same graph Figure 5.7, where the global minimum is well 

established). For that reason, it becomes challenging for the framework to define the 

optimal value of this parameter. The shape of the correlation function depends on the 

employed material model (its mathematical representation) and the input dataset for the 

model’s training. Another possible reason for the difference in material parameters 

between deterministic and real-time models could be the influence of the equipment 

change (as discussed earlier). This problem is addressed in the testing of the next 

material system, where the testing rig remained the same throughout the 

experimentation. 

Table 6.2: Candidate models’ parameters for deterministic and real-time 

characterisation programmes. Studied material system – IMA/M21. 

 Model type Parameter 1 Parameter 2 Parameter 3 

Tests 

combination 

(1, 4, 7) 

DefGen 
a: 

-0.8283 

b: 

-13.87 

k: 

0.8124 

RTT_M21 2 DefGen 
a: 

-0.6026 

b: 

-12.28 

k: 

0.8211 

RTT_M21 1 DefGen 
a: 

-0.6091 

b: 

-12.42 

k: 

0.8297 

RTT_M21 3 DefGen 
a: 

-0.6277 

b: 

-12.66 

k: 

0.8329 

RTT_M21 4 DefGen 
a: 

-0.6453 

b: 

-12.39 

k: 

0.8168 
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Testing of IM7/8552 material samples 

The testing procedure of IM7/8552 material followed the same pattern as the 

characterisation of the previous material system. At first, a series of real-time tests with 

different framework’s settings were conducted, and the candidate material models were 

trained. The obtained results were then trialled against the conventional testing approach 

with predefined loading programmes. Both real-time and deterministic tests were 

performed on the same equipment setup. Similarly to the previous exercise, both 

monotonic and ramp-dwell initial load step options with the load amplitude variation 

between 40 N and 80 N were explored. For further load steps the load amplitude was 

varied between 20 N and 50 N for the duration of 70 sec and 100 sec. The number of 

possible load options remained the same (5 options) as in the previous testing for 

IMA/M21 material. The summary of all performed tests is presented in Table 6.3. Four 

resulting real-time programmes and the corresponding compaction response of the 

material samples are presented in Figure 6.14. 

Table 6.3: Explored test settings for the real-time testing of IM7/8552 material. 

RTT stands for real-time test. 

Test id 

Initial load step Further load steps 

Load 

amplitude, N 

Loading 

regime 

Maximum 

load 

amplitude, N 

Step 

duration, 

sec 

Number of 

load options 

RTT_IM7 1 60 Ramp-dwell 20 70 5 

RTT_IM7 2 40 Monotonic 40 100 5 

RTT_IM7 3 40 Monotonic 50 100 5 

RTT_IM7 4 80 Monotonic 50 100 5 

 

The shape of the resulting loading programme was shown to be consistent for all 

performed tests. Upon reaching a certain level (120 N for tests RTT_IM7 2, 4 and 

 ~160-170 N for tests RTT_IM7 1, 3), the load held steady until the end of the 

experiment. As before, the shape of the loading schedule had a direct implication for 

candidate models ranking, which will be discussed below. An interesting observation is 

that the framework proposed both monotonic and ramp-dwell load step options (for the 
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steps following the initial one) for the test RTT_IM7 3, which was not observed in the 

previous experimentation. 

 

Figure 6.14: IM7/8552 material testing. Resulting loading programmes and 

compaction curves. 

The step-by-step parameters extraction routine breakdown for the test RTT_IM7 3 for 

IM7/8552 material samples is shown in Figure 6.15. The framework identified two-best 

candidates as percolation and DefGen models. During the first four steps where the load 

level was raising, the percolation model showcased a more accurate fit and was selected 

as the first candidate (see the models ranking bar chart in Figure 6.15). Shear models 

were also able to reflect the changing compaction response for the first two load steps, 

before the test programme became too complex. But, as the programme evolved to the 

load hold (second half of the test), the DefGen model managed to output a more 

accurate prediction for the material’s behaviour. As a result, it was chosen as the first 

candidate in the end of the test. It must be emphasised, that the second-best percolation 

model candidate’s performance was close with 3.2% error raise from the best candidate. 

As it will be shown later in this section, the framework chose percolation model as the 

best candidate after processing the validation data for one of the real-time tests (test 

RTT_IM7 4). 
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Figure 6.15: IM7/8552 experimentation. Step by step routine. Green region – all 

previously received data. Blue region (on the right from the vertical black dashed 

line) – required processing time. 
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The results of the models’ training for all four tests are presented in Figure 6.16 (only 

four candidates are shown for each test). The second-best candidate was also able to 

capture the material’s behaviour (especially for tests RTT_IM7 2 and RTT_IM7 3) with 

the error raising by 3.2% and 16.5% in comparison with the best candidate DefGen. The 

resulting shear models produced a visible offset from the experimental data. 

Since the pool of candidate models remained the same for all experiments performed 

within this research, it is interesting to compare the training results between IMA/M21 

and IM7/8552 material systems. The training results for IM7/8552 were less accurate on 

average by 27%. As it can be seen from Figure 6.16, the main contribution to the 

training error was introduced from the experiment stages with monotonic load increase, 

where top candidate models failed to fit the compaction feedback accurately. For the 

IMA/M21 material such phenomenon was not observed. This is an indication of the 

material models’ limitations to reflect the considered material’s behaviour for the 

specific processing conditions (monotonic load change within the chosen temperature 

conditions). 

 

Figure 6.16: IM7/8552 material testing. Training 

To validate the obtained results and to compare the effectiveness of the proposed 

(reactive testing) and the conventional (testing within predefined programmes) 
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characterisation approaches, the set of 8 deterministic tests was performed for IM7/8552 

material. For the sake of consistency, the loading programmes were chosen in line with 

the deterministic tests conducted for IMA/M21 material (the rationale for the load 

schedules was discussed in chapter 4). 

The loading programmes and material’s compaction response is shown in Figure 6.17. 

 

Figure 6.17: IM7/8552 material testing. Deterministic tests 

The validation process followed the same pattern as for the previous material system. 

To form a fully populated training combination, three tests were selected from the 
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predefined set shown in Figure 6.17. Due to the sheer number of possible training 

combinations, one group of tests (1, 5, 7) was used as an example (in this case test 

indices (1, 5, 7) correspond to Figure 6.17 for the predefined training combinations). 

Then, the expanded compaction dataset was submitted to the parameter extraction 

framework for material model definition in the same way it had been done within 

chapter 4. The obtained deterministic models, along with the resulting models from the 

real-time testing, were trialled against the validation set, which was formed from 5 

remaining tests in the deterministic programme. The comparative ranking bar chart for 

all training tests is presented in Figure 6.18. 

The expanded deterministic dataset was ranked fourth with an error increase of 5.3% in 

comparison with the highest-ranked real-time test RTT_IM7 3. Tests RTT_IM7 2 and 

RTT_IM7 1 showcased a similar performance with an error raise of 3.4% and 3.8% 

respectively. The increase in prediction error for the last-ranked characterisation 

programme RTT_IM7 4 was registered at 7.4%. Therefore, three out of four real-time 

programmes outperformed the fully populated (hence, more labour intensive) training 

combination of deterministic tests. This is an important conclusion, as it means that less 

experimental trials were required for the successful material characterisation. 

 

Figure 6.18: IM7/8552 material testing. Candidate models’ ranking for different 

test programmes. 
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The models’ thickness predictions within each test in the validation set are presented in 

Figure 6.19. As it was concluded before, the candidate models demonstrated a higher 

value of fitting error in comparison with the previous material system. The same trend 

can be observed at the validation stage as well. All models struggled to fit the 

monotonic stages (Test 6, Test 8) of compaction. The highest level of the prediction 

offset was registered for the validation Test 4. However, the maximum deviation in the 

value of the final thickness within all validation tests did not exceed 4.4%. 

 

Figure 6.19: IM7/8552 material testing. Candidate model’s validation. 

The corresponding material parameters for the best candidate models for each 

characterisation test are presented in Table 6.4. The deviation in the values of material 

parameters a, b, and k was registered at the level 1.0%, 3.1%, 3.2% respectively.  

It should be noted, that for the real-time test RTT_IM7 4 the percolation model was 

defined as more accurate (less value of the cumulative error) during the validation. This 

model was ranked second during the training stage with a lag behind the DefGen model 

(12.5% error raise). In comparison with other characterisation programmes, test 

RTT_IM7 4 was ranked fifth during the validation stage. 
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Table 6.4: Candidate models’ parameters for deterministic and real-time 

characterisation programmes. Studied material system – IM7/8552. 

 Model type Parameter 1 Parameter 2 Parameter 3 

RTT_IM7 3 DefGen 
a: 

-0.9429 

b: 

-14.50 

k: 

0.7647 

RTT_IM7 2 DefGen 
a: 

-0.9427 

b: 

-14.75 

k: 

0.7860 

RTT_IM7 1 DefGen 
a: 

-0.9429 

b: 

-14.51 

k: 

0.7619 

Tests 

combination 

(1, 5, 7) 

DefGen 
a: 

-0.9342 

b: 

-14.95 

k: 

0.7838 

RTT_IM7 4 
Percolation 

(bgc) 

𝐾𝐴
�̃�⁄ : 

0.2580 

σ𝐴: 

0.0058 

 

 

 

Testing of dry material samples 

The purpose of this exercise was to put the autonomous testing framework in 

challenging conditions, when the candidate material models in the consolidation library 

are not designed for the studied material system specifically. The idea was to 

demonstrate the existing limitations of the proposed approach. As the definition of a 

loading programme is based on the difference between two best performing candidate 

models, there is a compulsory requirement for the presence of at least two 

comprehensive models in the library relevant to the studied material. All considered 

models (chapter 3) are formulated for two-phase materials (e.g. shear thinning flow of 

the reinforced fluid, resin’s percolation through the fibrous network, the transition 

between squeezing and bleeding flow modes). It is possible to assume why the current 

set of material models in the library could potentially reflect the behaviour of a dry fibre 

material: 

• Air represents a fluid in the material system. In this case, the range of viscosities 

would be significantly different in comparison with the conventional two-phase 
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material system (e.g. prepregs IMA/21, IM7/8552 etc.). Such development 

presents a potential challenge for the framework to derive the optimal set of 

material parameters. 

• There are certain aspects of the considered candidate models which could reflect 

characteristic features of dry material’s behaviour. For instance, the set of 

material parameters can be defined in a way, which makes resin’s contribution 

negligible. For percolation model it would mean that only elastic reaction of 

fibrous network contributes to the compaction response. For shear models it 

could be the distortion of fibre network’s structure (widening of yarns) during 

compaction. 

To explore different loading scenarios, the initial and following load steps’ amplitudes 

were varied in ranges 40 - 80N and 30 - 50N respectively. The summary of al 

performed tests is presented in Table 6.5. The resulting test programmes and samples’ 

compaction feedback for flax and NCF samples are shown in Figure 6.20.a and Figure 

6.20.b respectively. 

Table 6.5: Explored test settings for the real-time testing of dry material. RTT 

stands for real-time test. 

Test id Material 

Initial load step Further load steps 

Load 

amplitude, 

N 

Loading 

regime 

Max. load 

amplitude, 

N 

Step 

duration, 

sec 

Number 

of load 

options 

RTT_DRY 1 Flax 40 Ramp-dwell 30 100 5 

RTT_DRY 2 Flax 80 Ramp-dwell 50 100 5 

RTT_DRY 3 NCF 80 Ramp-dwell 50 100 5 

RTT_DRY 4 NCF 40 Ramp-dwell 30 100 5 

 

Both material systems demonstrated a significant drop in thickness within the first 

seconds of the test. Loading programmes for flax samples showed a trend for a constant 

increase of the load level up to 250 N with several dwell stages (RTT_DRY 2). The 

programmes for NCF samples demonstrated a different trend. The load reached a 

plateau (100 N for the test RTT_DRY 4 and 200 N for the test RTT_DRY 3) and held 
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steady up until the end of the experimentation. Similar to the real-time test RTT_IM7 3 

for IM7/8552, the framework selected both monotonic and ramp-dwell loading options 

for the test RTT_DRY 4. 

 

a 

 

b 

Figure 6.20: Dry material testing. Resulting loading programmes and compaction 

curves. a) Flax samples; b) NCF samples. 

The step-by-step parameter extraction routine breakdown for both types of dry material 

samples is shown in Figure 6.21 (due to the volume of data, only two steps for each 

material system are shown). The set of favourable candidate models evolved during the 

testing of flax samples. After the initial load step, the DefGen and percolation models 

were able to fit the data very well (the prediction curves overlapped with the 

experimental data). But in the last steps of the test the second-best candidate changed 

from the percolation to the shear model. Within this research, this was the first instance 

when the shear model was selected as one of the top two candidates upon the 

completion of a characterisation test. 
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For the NCF material the best candidates were consistent throughout the test – DefGen 

and percolation models (purple and orange curves). Both models demonstrated high 

accuracy in thickness prediction – the DefGen model showcased the perfect fit to the 

experimental data and overlapped with the actual compaction curve (the thin purple 

“DefGen” curve can be seen on top of the thick blue “experimental data” curve). The 

second-best percolation candidate was able to fit the experimental data with an offset at 

the stage of the initial load raise (orange curve). The deviation in final thickness 

prediction for both models was less than 0.1%. 

 

 
a 
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b 

Figure 6.21: Step by step experimentation: a) Flax material; b) NCF material. 

Green region – all previously received data. Blue region (on the right from the 

vertical black dashed line) – required processing time. 

The validation of the obtained models was not performed for this set of materials. The 

main reason for that is that the current pool candidates is not designed to describe the 

compaction response of dry materials. Another reason for not conducting the validation 

process is the variability of the specimens. As discussed in section 6.2.3, dry specimens 

were laid on top of each other right on the surface of the compression platen. There was 

no resin which could keep separate plies in place. Inconsistencies in experimentation (in 

the equipment, specimens’ preparation, methodology etc.) for obtaining training or 

validation compaction datasets may lead to misleading results. In such case, the 

obtained material model is trained or trialled within features of material behaviour 

which are not represented in the validation/training sets. As a result, it will perform 

poorly either due to the insufficiency or irrelevancy of the training dataset. 

As it was shown several times in the previous chapters, formidable performance of a 

candidate model at the training stage is a necessary condition. However, it alone does 

not provide sufficient cause for making a conclusion about model’s feasibility. Even 

though for certain test/materials scenarios (NCF sample, test RTT_DRY 4) the error in 

thickness prediction is next-to-zero, there is no guarantee that the derived model would 

uphold its performance for changed processing conditions. 

6.3 Conclusions. 

The application of the adaptive consolidation sensor framework to real materials was 

explored within this chapter. The aspects of performing real-time experimentation on 
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the universal testing machine, sending/receiving experimental data, possible technical 

challenges and ways of addressing them were discussed. The final implementation of 

the setup for the experimentation in the reactive manner represents the proposed 

framework operating in conjunction with the compression testing rig through the newly 

developed LabView state machine and the bespoke data acquisition system. 

The functionality of the proposed framework was tested within several experimental 

trials of three different material systems: IMA/M21 prepreg, IM7/8552 prepreg, and dry 

materials (flax and carbon fibre NCF). For each material type a trend in the shape of the 

resulting loading programme was observed (load raise-dwell-raise, load plateau, 

consistent load increase etc.). Changes in the loading programme had a direct effect on 

the intermediate candidate models’ ranking, which was demonstrated in the parameters 

extraction breakdown. As the compaction response became more complex (various 

strain rates or achieved compaction levels), the models which performed well at the 

initial stages of the experiment were moved down to the second place or were even 

disregarded from the competition. Another interesting observation is that the sequential 

candidate models update at every load step allowed to correct a non-optimal set of 

material parameters and to provide an accurate fit of the model in the following steps 

(IMA/M21 material, DefGen model in test RTT_M21 3). 

Upon the completion of each test, the framework successfully identified the most 

relevant material models and the corresponding set of material parameters. The obtained 

results for prepreg materials were trialled against the set of tests with predefined loading 

programmes. The validation process for IM7/8552 material confirmed, that the models 

trained within the adaptive experimentation showcased a superior performance in 

comparison with more labour-intensive deterministic training combination. The results 

for IMA/M21 material system indicated that the expanded set of 3 deterministic 

programmes was still preferrable, although real-time programmes were more effective 

than double and single-test combinations. 

The characterisation of dry materials was performed to explore the limitations of the 

proposed approach. The framework showcased a robust performance during training 

stage by fitting the candidate models to the material’s thickness data with no visible 

offset. The validation of the obtained models was not performed due to the 

imperfections in dry samples preparation process. 



 

162   

7 CONCLUSIONS 

7.1 Original contributions 

The main goal of this research was to develop the autonomous unbiased testing system 

for the characterisation of consolidation mechanisms in composite precursors. The 

proposed framework demonstrated a significant potential for identification of 

consolidation models based on the material’s feedback in real-time testing. It has the 

potential to remove the subjective judgement about the material behaviour. The 

identification of the pure flow modes may also be useful to decode dominant 

mechanisms at different stages of deformation such as fibre shear, resin bleeding or a 

transition from one mode to another. In the current research the proposed framework 

proved its efficiency in handling complex models and developing data-rich testing 

programmes. The framework demonstrated significant advantages in comparison with 

the conventional testing approach: 

• The designed framework is able to operate autonomously without the 

researcher’s involvement. The test is conducted without any prior assumptions 

about the material’s behaviour. The resulting loading programmes are based on 

the compaction response of the material. 

• The consolidation library can be easily expanded with new models relevant to 

the studied material. 

• The framework allows to access intermediate results. It is possible to see the 

evolution of models ranking and the influence of the changing load route on the 

best candidates. 

• The framework provides a wide functionality for postprocessing experimental 

results, such as in-depth analysis of candidate material models’ optimisation 

results, taking advantage of joined datasets from several tests, and conducting 

validation within independent set of experimental data. 

After performing the experimental part of this research, the following challenges in 

framework’s operation became evident: 
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• If the relevant material models are not represented in the library, the framework 

will not be able to operate with high level of confidence. 

• The result of the real-time experimentation depends on the available 

computational resources. The processor must have more cores than the number 

of models in the library to process all candidates concurrently. Besides, weak 

computational setup will lead to longer processing time, hence longer load dwell 

stages in the real-time loading programme. 

• Sensitivity to inconsistencies in the experimental procedures. There should be no 

significant scatter in the values of the specimens’ initial thickness when 

processing joined dataset from several experiments. If the model is trained on 

the dataset which contains systematic bias, it will inherit these features in its 

behaviour. It is fair to say, that this problem is not specific to the developed 

testing system alone and is relevant to any model identification procedure 

The proposed approach is not limited by consolidation characterisation only. Similar 

challenges in characterisation of materials can be seen in various other testing 

campaigns. This includes, for instance, testing of precursors that is required for 

simulation of AFP deposition/forming/liquid moulding, such as identifying suitable 

models for the behaviour of prepregs/preforms in in-plane or inter-ply shear, friction, 

and tack. 

The conducted research was multidisciplinary in nature and required a significant 

amount of effort in various fields of study: the consolidation mechanisms of composites 

precursors, experimental characterisation of composites, software implementation of the 

framework, real-time data acquisition and processing. The carried out experimental 

programme was very labour-intensive. There were more than 200 conducted 

characterisation tests (140 IMA/M21, 60 IM7/8552, 6 dry specimens). For every test a 

specimen was carefully manufactured (including cutting plies and performing layup in 

the clean room). More specimens were required, as every trial attempt during building, 

adjusting and testing of the real-time setup “cost” one specimen. 

The author’s main contributions are summarised below in accordance with the chapters 

of this thesis. 

The existing approaches to composites characterisation, technical challenges and the 

goals of this study were discussed in Chapter 2. 
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In order to conduct the unbiased characterisation study, a set of the most representative 

consolidation models was discussed within Chapter 3: 

• The consolidation library with candidate material models was developed. 

Mathematical formulations of all models were unified within the same notation 

for further use in this research. 

• The importance of the robust characterisation process was demonstrated within 

two characteristic exercises. Based on the outcomes of those examples, the 

criteria for material model’s performance and the requirements for the robust 

parameter identification routine were established. 

The influence of the completeness of a characterisation programme on the performance 

of the resulting material model was explored within Chapter 4: 

• The parameters extraction framework for the model definition from the 

experimental data was developed in line with the previously defined 

requirements. The proposed framework employs two-step optimisation routine 

and is capable of processing the compaction data from several experiments. 

• The study on the influence of the data-rich testing programme on the resulting 

material models was performed. It was established, that more diverse 

experimental dataset provides more reliable dataset for further model 

identification. The difference in cumulative error in thickness prediction 

between the best and the worst models was 27.3%. 

The concept of the adaptive consolidation sensor was introduced in Chapter 5: 

• A novel adaptive consolidation sensor framework was introduced within this 

chapter. The framework estimates the compaction feedback from the material in 

real time within each load step and constructs the load route for the next step 

based on the prediction of candidate models from the library. 

• The stated functionality of the framework was challenged within a virtual 

exercise, where the real material was substituted with a pre-coded module called 

“BlackBox”. The framework successfully managed to investigate hidden 

consolidation models along with the corresponding set of material parameters. 

The fidelity of the obtained results was confirmed within the validation exercise 

for a different set of processing conditions.  

The application of the proposed approach to real materials was discussed in Chapter 6: 
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• The technical requirements and the possible challenges for the real-time 

experimentation were established. The complete setup for the adaptive testing 

was introduced. The proposed implementation of the system is capable to 

continuously receive experimental data from the Instron machine and to send the 

load route commands back. 

• The research concluded with the experimentation on three different material 

systems. The framework proved its ability to operate in a reactive manner and 

successfully identified proper material models with the corresponding set of 

parameters. Overall, the real-time loading programmes proved to provide more 

reliable compaction datasets for further characterisation than their predefined 

counterparts. 

7.2 Future work 

Based on the comprehensive experience gained within this research, it is possible to 

suggest several promising improvements to the current implementation of the 

framework and new directions for the research. There are two groups of suggestions: 

• Methodological: 

o Exploring different load picking logic. As described in chapter 5, the 

decision about the load programme for further steps was based on the 

idea of a maximum difference in prediction between best candidate 

models. It would be interesting to explore a different logic for the load 

definition. For instance, to add the condition for the load route to cover 

the maximum space in the load-load rate space. Such development would 

make the resulting loading programmes more diverse, which may have a 

positive effect on the models training. 

o Exploring different temperature conditions. All characterisation tests 

were conducted at the constant temperature of 60 ̊C. Due to the volume 

of the testing programme other temperature regimes were not explored. 

For that reason, the obtained models are not guaranteed to perform on the 

same level within different thermal conditions. The benefit of exploring 

more temperature regimes, is that it is possible to specify such 

processing conditions, where the target flow mode would occur 

explicitly (for instance, resin bleeding out from a specimen). 



 

166   

The possible challenge of taking temperature effects into account is that 

it would lead to an introduction of temperature-dependent material 

parameters. Consequently, it would make the characterisation and 

properties extraction task more challenging due to the increased 

parameters space. 

o Expanding the consolidation library. It is clear that the proposed 

framework can be reinforced further by enriching the material library. As 

discussed in chapter 3, the governing equations for the considered flow 

modes are derived with respect to the specified boundary conditions. By 

changing the boundary conditions, it is possible to enrich the library with 

new models (in the same way as Rogers [90] derived the relationships 

for the shear flow). Besides, the flow models based on different 

assumptions and laws can be introduced. There is also a potential to 

include the models represented through fractional derivates [178], [179]. 

o The proposed adaptive testing approach has a potential for application to 

various problems beyond the scope of consolidation study for composite 

precursors. Potentially, it could be relevant for any multi-component 

compliant material (soils, powders, food etc) which exhibit complex 

behaviour under processing or service conditions. Applying this 

methodology to a different multi-material system would require 

populating the library with the new candidate models which can 

adequately reflect the response of the studied system. It is also envisaged 

that this methodology could be applied well beyond the scope of the 

compaction testing. 

• Technical: 

o Different approach to parameter extraction from joint datasets. As 

described in section 4.7.3, the current approach to processing several 

tests within one dataset is to reduce the three-dimensional fitting to two-

dimensional problem by stacking compaction curves one after another 

and updating the initial condition h(t=0)=h0. It allows to use a single 

residual function for further minimisation (parameter extraction). 

Instead, it is possible to consider the sum of residual functions for 

separate compaction curves. Such development will save computational 
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resources (no additional operations needed) and make the framework less 

sensitive to the variation in samples’ initial thickness (as each 

compaction curve will be processed independently). 

o Material parameters’ normalisation. For most material models the scale 

for parameters’ values is different. For instance, for the DefGen model a 

and k parameters are varied between -1-0 and 5-50 respectively. From 

the mathematical side of the problem, it may be challenging for the 

optimiser to operate within such scatter in values. For that reason, input 

material parameters should be normalised in order to operate within a 

notionally common scale. Such development has a potential to address 

the problem of the flat correlation curve, encountered for IMA/M21 

material (parameter a, the DefGen model) discussed in chapter 6. 

o Employing global optimisation algorithms. As stated before, the 

employed two-stage optimisation routine is not a global optimisation 

method. It would be interesting to compare the current results with the 

“global” solution. The implementation of the parameters extraction 

framework allows to switch between different methods with ease. Global 

methods require a lot of computational time to converge. Therefore, the 

comparative analysis is only possible after the experiment is concluded. 

The application of these ideas will be explored within the further research and, if useful, 

the corresponding changes will be implemented in the next generation of the adaptive 

testing framework. 
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