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ABSTRACT

The water budget equation describes the exchange of water between the land, ocean and
atmosphere. Being able to adequately close the water budget gives confidence in our
ability to model and/or observe the spatiotemporal variations in the water cycle and its

components. Due to advances in observation techniques, satellite sensors, and modelling, a
number of data products are available that represent the components of water budget both in
space and time. Despite these advances, closure of the water budget at global scale has been
elusive.

In this study, first we attempt to close the global water budget using precipitation, evapo-
transpiration, and runoff data at the catchment scale. We use a large number of state-of-the-art
datasets to estimate water storage changes. These estimates are then compared to terrestrial
water storage (TWS) changes as measured by the GRACE satellite mission. We investigated 189
river basins covering more than 90 % of the continental land area. Secondly, we developed an
optimization framework using the water balance equation to reconstruct TWS time-series from
1981 to the start of the GRACE mission. The results were then compared with state-of-the-art
TWS reconstructions.

We found that TWS changes obtained from the water balance equation were more accurate
than the long-term mean of GRACE time-series in 99 % of the basins examined, and better than
the monthly mean in 62% of the basins. By analyzing different combinations of the datasets
that make up the water balance, we identified data products that performed well in certain
regions. Although our TWS reconstruction was comparable with existing ones, we observed large
uncertainties between reconstructions. This shows that a better understanding of underlying
trends in datasets is needed, especially for the last decades, to improve our understanding of the
spatiotemporal variations in TWS.
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1
INTRODUCTION

"The most noticeable consequences of climate change will be impacts on the water cycle"

says Rodell et al. (2015). Indeed, the water cycle describes the movement of water in

space and time through the Earth system. Water reservoirs are of various size and

availability. Therefore, quantifying usable amounts of water is essential to maintain human

activities on our blue planet. Groundwater is a highly crucial fraction of water since it provides

drinking and irrigation water in many regions of the world. However, large uncertainties are

associated with our knowledge of the levels of groundwater and their evolution with time. This is

why many studies have been conducted on the observed trends in available water and how it may

be influenced by climate change.

1.1 The global water cycle

Water is present in three physical forms - ice, liquid, and vapour - on Earth and they are all crucial

to ensure livable conditions. The oceans represent around 96.5 % of all water; they allow the

circulation of heat and nutrients between continents. The remaining fraction of water is composed

of saline groundwater (1 %) and fresh water (2.5 %). However, around two thirds of global fresh

water are stored in ice sheets and glaciers that are not available for human consumption but

highly contribute to weather and temperature regulation. Although the atmosphere holds a tiny

fraction of fresh water, it is crucial in regulating surface temperature and precipitation. The

remaining third of fresh water is distributed on Earth as surface water, soil moisture, and ground

water; and is the main focus of this work.

As emphasized in Fig. 1.1, understanding the fluxes of water is perhaps even more important

than quantifying the size of the water stores. Stephens et al. (2020) classifies those fluxes into

three main categories. Firstly, precipitation and evapotranspiration represent the exchange

1



CHAPTER 1. INTRODUCTION

Figure 1.1: The main reservoirs of water on Earth with associated fluxes between them. Figure
reproduced from Oki and Kanae (2006)

between the atmosphere and the Earth surface. Although precipitation is quite-well monitored in

many regions, our observation systems are not yet able to provide consistent estimates of global

precipitation and assess how climate change is affecting their intensity and frequency. Evapotran-

spiration is a much more complex phenomenon that brings water back to the atmosphere and is

therefore difficult to quantify, as will be further explained in Chapter 2. The second category of

fluxes is ice melt contributing to sea level rise and is not developed further in this work. Finally,

large amounts of water are transferred from land to the ocean by means of runoff. Discharge

measurements from gauge stations are available for hundreds of rivers across the globe but the

availability and the quality of data is poor. Furthermore, global runoff may be underestimated

due to the neglect of submarine groundwater flows (Stephens et al., 2020).

The water cycle can be described with the terrestrial water balance equation

(1.1)
dTWS

dt
= P −ET −R.

This equation is the main focus of Chapter 2. It expresses changes in the terrestrial water storage

(TWS) as the difference between water gained by precipitation (P), water returning back to the

atmosphere through evapotranspiration (ET) and water flowing out of the catchment in the form

of runoff (R).

2



1.2. TERRESTRIAL WATER STORAGE

1.2 Terrestrial Water Storage

TWS is defined as the sum of water stored in the form of snow, in canopy, as soil moisture,

as groundwater, and as surface water (Scanlon et al., 2018). The relative contribution of each

component varies depending on the climatic conditions of the region under study. For example,

surface water (lakes, rivers, inundated foodplains, wetlands) dominates in the wet tropics like

the Amazon basin, in arid basins with large rivers such as the Nile, as well as in subpolar

regions, while soil moisture is especially critical in the tropics and mid-latitude regions. Globally,

groundwater is a crucial component since it provides water to more than 2 billion of people and

is largely used for irrigation (Famiglietti, 2014). Groundwater levels can be monitored via the

depth of wells but this is notoriously difficult (Jasechko and Perrone, 2021).

The Gravity Recovery And Climate Experiment (GRACE) was launched jointly by NASA

and the German Aerospace Center to overcome the lack of knowledge on invisible water. This

satellite mission operated from March 2002 to October 2017 and was continued from May 2018

by the GRACE Follow-on mission. GRACE consists of two satellites orbiting at around 450 km

above the Earth and measuring the distance between them. Since the velocity depends on the

Earth gravitational field, it is a way to deduce gravity variations from the position of the two

satellites. Those variations allow the detection of changes due to currents in the ocean, TWS,

ice loss on ice sheets and glaciers, as well as variations within the Earth mantle. Therefore,

GRACE led to unique assessments of the water cycle and especially evaluation of TWS. We

nevertheless recall that inverting the 3D gravitational problem does not have a unique solution.

Especially, the relatively high altitude of GRACE satellites prevents the detection of signals

with a wavelength smaller than a few hundred kilometres. This is why the processing centres of

GRACE measurements apply different techniques and advanced smoothing methods to compute

estimates of TWS. Thus, there are limitations to the spatial resolution one should expect from

GRACE measurements.

1.3 Investigating impacts of climate change

Groundwater evolves on inter-annual to decadal time scales and is therefore essential to observe

in the context of climate change. Human activities cause groundwater depletion as is the case

in the Ganges basin to sustain irrigation (Stephens et al., 2020). Dam management and the

impoundment of water in artificial lakes also impact runoff of water towards the oceans. In

addition, droughts are associated with TWS decrease in the Euphrates basin and in California

and can be detected by GRACE (Rodell et al., 2018). Extracting linear trends from GRACE

measurements allows to point out regions with severe declining trends that are likely caused by

impacts of human activities. Out of the 34 large aquifers under study, Rodell et al. (2018) found

12 aquifers with decreasing TWS trends possibly or probably caused by climate change.

However, detecting such trends is not straight-forward as natural variability is also involved

3
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in TWS variations. GRACE measurements are not yet long enough (less than 20 years with a

1-year gap between 2017 and 2018) to allow a proper distinction between natural variability and

anthropogenic forcings. As shown by Vishwakarma et al. (2021), trends largely depend on the

period used for the computation. Further, hydrological models do not help assessing linear trends

since they lead to various and sometimes opposite results compared to GRACE (Scanlon et al.,

2018). Therefore, several studies tried to extend TWS time-series prior the start of the GRACE

mission. By enhancing our understanding of TWS variations over the last decades, we will be

able to better predict the evolution of TWS under different climate change scenarios. Chapter 3 is

dedicated to reconstructing TWS for this objective.

4



C
H

A
P

T
E

R

2
ASSESSING THE WATER BUDGET CLOSURE AT THE GLOBAL SCALE

A better understanding of hydrological processes at the catchment scale has been high-

lighted as one of the key challenges for hydrologists in the 21st century (Blöschl et al.,

2019). One of the key processes is the terrestrial water cycle which can be described by

the water balance equation. This is a budget equation that follows the conservation of mass and it

is an indispensable tool for validating our understanding of the catchment scale water cycle. This

chapter firstly review the use of the water balance equation to model hydrological components

and assess the accuracy of datasets. This equation is then used to evaluate the imbalance error

from a large number of datasets. This helps describing regions suffering from large uncertainties

in the water budget components and others where the water balance equation could be used to

achieve more ambitious goals.

A substantial part of Chapter 2 has been submitted as an article entitled "How well are we

able to close the water budget on a global scale?" to Hydrology and Earth Systems Sciences and

is currently in discussion for publication. Supporting code and data can be publicly accessed at

https://github.com/lehmannfa/water_budget_closure.

2.1 Literature review on water budget closure

Several studies have used the water balance equation to explain hydro-climatic changes expe-

rienced in a river catchment (e.g., Landerer et al., 2010; Pan et al., 2012; Oliveira et al., 2014;

Saemian et al., 2020), to validate modelled estimates of one component (e.g., Bhattarai et al.,

2019; Long et al., 2015; Wan et al., 2015), or to estimate one component when others are known

(Chen et al., 2020; Gao et al., 2010; Wang et al., 2014). It should be noted however that in

these studies the accuracy of the result is limited by uncertainties associated with individual

components. For example, Sahoo et al. (2011) attempted to close the water balance equation for
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10 large catchments and found that the imbalance error amounted to up to 25% of mean annual

precipitation. Additionally, Zhang et al. (2018) highlighted the source of the imbalance error as

being predominantly from stark disagreement between evapotranspiration estimates.

2.1.1 Use of the water balance equation to estimate individual components

Obtaining high quality spatiotemporal estimates of components of the water balance is challeng-

ing due to a lack of global in situ measurement networks and political will to sustain any existing

network. Therefore, the era of satellite remote sensing offers an excellent solution to monitoring

the hydrosphere. With the help of dedicated satellite missions, we are able to measure variables

that can be used to estimate water balance components. However monitoring TWS has been

the most difficult part since it includes water on and below the surface of the Earth, and optical

remote sensing can only offer information near the surface. This issue was solved by the launch

of a satellite gravimetry mission from GFZ and NASA in 2002, also known as Gravity Recovery

And Climate Experiment (GRACE) (Wahr et al., 1998; Tapley, 2004). This mission measures the

temporal variations in the Earth’s gravity field, which can then be related to water mass change

on and below the surface of the Earth. GRACE provides the most accurate global estimations of

TWS to date, which can be used in the water balance equation 1.1.

Another challenge concerns components like ET with a high spatial variability, which requires

precise satellite estimates, not consistently available due to observational constraints (Fisher

et al., 2017). Since ET accounts for up to 60% of precipitation in some regions, it is a crucial

component of the water cycle (Oki and Kanae, 2006). It also constitutes the most significant

uncertainties of the terrestrial water cycle components (Rodell et al., 2015). The water balance

equation has been used to compensate for this lack of knowledge and increase our understanding

of ET. Water-budget studies have generally found that ET inferred from the water balance

equation agrees well with remote sensing estimates in terms of seasonal cycle but presents larger

inter-annual variability (Liu et al., 2016; Pascolini-Campbell et al., 2020; Swann and Koven,

2017) and larger magnitudes (Bhattarai et al., 2019; Long et al., 2014a; Wan et al., 2015).

Apart from ET, our knowledge of R also benefits from water budget estimations. Although

river discharge can be measured by gauges, the spatio-temporal coverage of in situ measurements

is limited due to a lack of resources in some regions and political will to share data. Uncertainties

and biases in P have been found to be the main drivers of the inaccuracy in budget inferred R

(Sheffield et al., 2009; Oliveira et al., 2014; Sneeuw et al., 2014; Wang et al., 2014; Xie et al.,

2019). Water budget studies using R as a reference variable also point out the difficulty to find

datasets able to close the water budget (Chen et al., 2020; Gao et al., 2010; Lorenz et al., 2014).

Moreover, ET and R are strongly intertwined and accurate estimates of one cannot be achieved

without a better constraint on the other (Armanios and Fisher, 2014; Lv et al., 2017; Penatti

et al., 2015).
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2.1.2 Challenges to improve the water budget closure

To improve the reliability of available data, the water budget can be used as a discriminating

tool to assess the accuracy of various datasets. For this to be achieved, there is a need to first

evaluate the water budget closure globally, including basins of all sizes, and comparing as many

state-of-the-art datasets as possible. This review is currently lacking because first, a majority

of studies have concentrated only on a few selected basins with specific climatic conditions (e.g.

the Amazon basin, Swann and Koven, 2017; Chen et al., 2020) or highly impacted by human

activities (e.g. the Yellow river basin, Lv et al., 2017; Long et al., 2015). Additionally, the studies

which look at several basins worldwide have only evaluated sparsely distributed basins, which

leaves entire zones without analysis (Sahoo et al., 2011; Pan et al., 2012; Lorenz et al., 2014;

Liu et al., 2016; Zhang et al., 2018). This has deprived hydrologists of a comprehensive global

overview of the water budget.

Returning to the requirement for basins of all sizes, basins were also generally chosen to be

quite large in the majority of studies. It is known that the accuracy of GRACE measurements

is directly proportional to the size of the basin (Rodell and Famiglietti, 1999; Wahr et al., 2006;

Vishwakarma et al., 2018), however the lower limit of ∼ 200,000 km2 established by Longuevergne

et al. (2010) and which has long been used is no longer a requirement to retrieve GRACE signals.

It has been shown that basins as small as ∼ 70,000 km2 can be precisely recovered by GRACE

measurements and that their size do not influence the closure of the water budget (Gao et al.,

2010; Lorenz et al., 2014; Vishwakarma et al., 2018). They are therefore included in the current

study.

Regarding the number of datasets to be examined, each water budget study uses different

datasets, some of which were available only over a given continent or over short time periods.

To the authors’ best knowledge, Lorenz et al. (2014) conducted the study comparing the largest

number of datasets by assessing more than 180 combinations of P, ET, and TWS datasets.

However, many datasets have since improved, especially reanalyses such as Era-Interim (Dee

et al., 2011) and MERRA Land (Reichle et al., 2011). It would be beneficial to provide an updated

evaluation of those widely used datasets.

The aim of this chapter is thus to provide a revised overview of the water budget closure

on a global scale. Section 2.2 presents the study area covering all parts of the globe (excluding

Greenland and Antarctica) and the datasets. Then, section 2.3 details the metrics used to evaluate

the water budget closure as well as the selection process for the best combinations. Moreover,

section 2.4 explains the results and discusses previous studies.
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Figure 2.1: 189 basins larger than 63,000 km2 with their corresponding climate zone

2.2 Data

2.2.1 Study area

We used the major river basins from the Global Runoff Data Centre (GRDC, 2020) to define

the study area. Since the spatial resolution of GRACE products for hydrological applications

is around 63,000 km2 (Vishwakarma et al., 2018), catchments larger than this limit have been

included in our analysis. Furthermore, these basins were assigned to a climate zone as defined by

the Köppen-Geiger classification (Kottek et al., 2006). The 189 basins under study are depicted

in Fig. 2.1 and their areas range from ∼ 65,600 km2 to ∼ 5,965,900 km2.

2.2.2 Datasets

We have used freely available global state-of-the-art datasets with a temporal resolution smaller

than or equal to one month and coverage of at least 2003 to 2014. If necessary, data have been

interpolated to

2.3 Methods

2.3.1 Water budget reconstruction

GRACE mascon fields were used to compute time-series of TWS anomalies relative to the mean

between 2004 and 2009. Since equation 1.1 involves the variation of TWS over a time period,

which is called Terrestrial Water Storage Change (TWSC). To obtain TWSC from TWS anomalies,

the time derivative was computed with centered finite difference (as in e.g., Long et al. (2014a) or

8
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Pascolini-Campbell et al. (2020))

(2.1) TWSC(t)= TWS(t+1)−TWS(t−1)
2∆t

,

where ∆t equals 1 month and t−1, t, t+1 are three consecutive months. Missing monthly values

were filled with cubic interpolation. In order to match the temporal shift induced by the central

difference, time-series of P, ET, and R also needed to be time-filtered by equation 2.2 (Landerer

et al., 2010)

(2.2) X̃ (t)= 1
4

X (t−1)+ 1
2

X (t)+ 1
4

X (t+1),

where X denotes either P, ET, or R. All variables referred to hereafter are filtered variables but

are denoted without the tilde notation for the sake of clarity.

Each triplet of datasets (dataP ,dataET ,dataR) was called a combination and led to a budget

reconstruction of TWSC computed with equation 1.1: TWSCbudget(t)= PdataP (t)−ETdataET (t)−
RdataR (t). This reconstruction was compared with the derivatives obtained from equation 2.1 and

denoted TWSCGRACE(t). Since we used 11 precipitation, 14 evapotranspiration, and 11 runoff

datasets, we finally evaluated 1694 combinations.

2.3.2 Metrics

Differences between two time-series are commonly evaluated with the Root Mean Square Devia-

tion (RMSD)

(2.3) RMSD =
√√√√ 1

T

T∑
t=1

(TWSCbudget(t)−TWSCGRACE(t))2 ,

The main drawback of the RMSD is that it is not normalized i.e. basins with large TWSC tend

to have larger RMSD. A very common normalization is the Nash-Sutcliffe Efficiency (NSE)

introduced by Nash and Sutcliffe (1970) to evaluate modeled runoff compared to observations

(2.4) NSE = 1−
1
T

∑T
t=1(TWSCbudget(t)−TWSCGRACE(t))2

1
T

∑T
t=1(TWSCGRACE(t)−TWSCGRACE)2

= 1− RMSD2

err2
cst

,

where TWSCGRACE = 1
T

∑T
t=1 TWSCGRACE(t) is the long-term mean of TWSC and errcst is the

deviation of monthly values from the long-term mean. In our case, any positive value of the

NSE means that the budget reconstruction of TWSCGRACE is a better approximation than the

long-term mean. The maximum value of 1 describes a perfect reconstruction and a negative value

denotes a poor performance. One major advantage of the NSE is that it requires both phase

agreement (usually assessed with the correlation coefficient) and a small long-term mean error

(evaluated with the bias, or percentage bias) to yield high values (Lorenz et al., 2014).

However, although several attempts have been made to associate positive NSE values to a

performance (e.g. Henriksen et al., 2003; Samuelsen et al., 2015), it is known that this index

9



CHAPTER 2. ASSESSING THE WATER BUDGET CLOSURE AT THE GLOBAL SCALE

suffers from several weaknesses, for example, a high positive NSE can be obtained with a poor

time-series if the time-series has a large variance (Jain and Sudheer, 2008). In the context of the

current study, basins with large seasonal variations of TWSC, especially tropical basins, are more

likely to exhibit a NSE close to 1 even though the budget reconstruction presents substantial

errors.

To overcome this issue, it has been proposed to compare the budget reconstruction to the

mean monthly value of TWSC instead of comparing it to the constant long-term mean. The

so-called cyclostationary NSE (Thor, 2013; Zhang, 2019) is then:

(2.5) NSEc = 1−
1
T

∑T
t=1(TWSCbudget(t)−TWSCGRACE(t))2

1
T

∑T
t=1(TWSCGRACE(t)−TWSCm

GRACE)2
= 1− RMSD2

err2
cyc

,

where TWSCm
GRACE is the mean value for month m over all years and errcyc is the deviation of

GRACE TWSC from the periodic monthly signal. Similarly to the NSE, positive values of the

cyclostationary NSE indicate a budget reconstruction better than the mean annual cycle, which

measures the ability of the reconstruction to capture anomalous events (Lorenz et al., 2015;

Tourian et al., 2017).

Moreover, one can express the cyclostationary NSE in terms of the NSE by combining

equations 2.4 and 2.5

(2.6) NSEc =
(
1− err2

cst

err2
cyc

)
+ err2

cst

err2
cyc︸ ︷︷ ︸
γ

NSE.

The γ factor describes the behaviour of the TWSC by comparison with the mean seasonal cycle.

Basins with periodic seasonal cycles (i.e., low errcyc) or large magnitudes (i.e., high errcst) have

larger γ. In those basins (e.g., the Amazon or Chad basins in Fig. ??), extremely high NSE values

are required to achieve a positive cyclostationary NSE, as can be seen in Fig. 2.2. Special attention

must then be given when examining such basins to discriminate performances depending on the

NSE or the cyclostationary NSE.

2.3.3 Selection of the most representative datasets

When estimating a water cycle component from the water balance equation 1.1, it is useful to

know beforehand which datasets are more reliable to close the water budget in the region under

study. This section aims to describe how such datasets can be selected. The NSE results were

stored in a matrix where each row corresponded to a basin and each column to a combination.

Due to the matrix dimension (189×1694), an automated computation was needed to evaluate

the combinations. This was achieved by introducing a cost function which represented the loss of

accuracy when using any combination instead of the optimal one.

Our method can be summarised as follows:

1. compute the cost matrix to describe the performance of each combination
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Figure 2.2: The cyclostationary NSE is related to the NSE through NSEc = 1−γ+γNSE where
γ= err2

cst
err2

cyc

2. cluster basins into larger zones depending on the similarities between cost vectors

3. for each zone, select the combinations satisfying a maximum cost and extract the underlying

datasets

In more details, the following steps were performed:

1. Using a cost function instead of the absolute metrics allowed us to overcome the lack of

a NSE scale. On the one hand, there are significant differences between a combination leading

to a budget reconstruction with a NSE close to 0 and another leading to an almost perfect

reconstruction (NSE close to 1). These differences can be seen for example in terms of months

where the budget reconstruction is within the confidence interval from GRACE TWSCs. Therefore,

we want to favour combinations leading to the highest NSE values. On the other hand, one cannot

determine a NSE threshold assuring a satisfying reconstruction in all basins. Figure 2.2 shows

that very high NSE values were needed in basins with large γ to outperform the monthly periodic

signal. Consequently, a cost function evaluates the performances of a combination relatively to

the largest NSE achievable in each basin. The cost function was then defined from the NSE by

(2.7) cb
i =max

comb
NSEb(comb)−NSEb(combinationi),

where the maximum was computed over all 1694 combinations. We emphasize that the cost was

evaluated independently for each basin (denoted by the superscript b), allowing the maximum

NSE to be different in each basin. For combinations leading to a cost larger than 2 (i.e. a NSE

below -1), the cost was restricted to 2. This limited the penalization of combinations with highly
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negative values but had no major influence on our results since we focused on the best performing

combinations.

2. From the cost matrix, each basin could be represented by a vector of 1694 costs. The

similarities between two basins b1 and b2 were evaluated based on the Euclidean distance

between their respective cost vector, d(b1,b2) =
√∑1694

i=1 (cb1
i − cb2

i )2 . For two basins to have a

small Euclidean distance, each combination i should lead to a similar cost in all basins: either

the combination was satisfying in both cases (cb1
i ≃ 0 and cb2

i ≃ 0), or it did not perform well in

both (cb1
i ≃ 2 and cb2

i ≃ 2). A hierarchical clustering algorithm was then applied to cluster basins

so as to minimize the variance between cost vectors inside a cluster (Mueller et al., 2011).

3. Finally, the maximal cost for combinations to be considered as satisfying the water budget

closure was chosen to be 0.1. This means that the difference between the RMSD of a suitable

combination and the lowest RMSD over all combinations is in average lower than A/10 where A

is the mean seasonal amplitude of TWSC. This threshold guarantees that selected combinations

have performances similar to the optimal combination. Then, in each cluster determined by

the algorithm, we selected the combinations with a cost lower than 0.1 for all basins in the

cluster. From the selected combinations, we extracted the underlying datasets of P, ET, and R.

By reporting the number of combinations in which each dataset appeared, we could evaluate

whether a dataset was clearly better than the others in a given region.

2.4 Results and discussion

2.4.1 Water budget closure

In order to assess the global water budget closure, we first examined the best performances across

all combinations. This means that for each basin, we reported the highest NSE among all 1694

combinations. Figure 2.3 shows the maximum NSE that can be achieved from a combination.

Please note that a positive NSE was obtained over 99% of the total study area. Only 9 basins

out of 189 did not achieve a positive NSE for any combination. They were mainly hot arid

deserts in Northern Sahara, Somalia, Australia, as well as two other basins in Papua New

Guinea (Mamberamo basin) and Hayes basin (Canada) (Fig. 2.3). The poor performances in arid

basins can be explained by limited precipitation and water storage variations that lead to a low

signal-to-noise ratio.

Figure 2.3 can be interpreted as follows: all the basins with a positive NSE offer a budget

reconstruction better than the long-term mean from GRACE TWSC. In addition, higher NSE

values correspond to a better fit between reconstructed TWSC and GRACE TWSC. Figure B.1 then

shows the distribution of the maximum NSE. Although it has been explained in Section 2.3.2 that

positive NSE should be interpreted cautiously, one can observe that 61% of the study area satisfied

a NSE larger than 0.8 which is usually considered as very good performance (e.g. Henriksen

et al. (2003), Samuelsen et al. (2015)). Being given the large number of datasets, it is likely that
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Figure 2.3: Maximum NSE per basin over all combinations. Green positive values mean that the
budget reconstruction is a better approximation of GRACE TWSC than the long-term mean.

cancellation of errors explains some of the good performances. The reader should remain cautious

about this possibility when trying to reproduce our results and may use discrepancy measures

such as the CV to examine datasets, as is explained in the following sections.

From its definition, the NSE can only be used to compare the budget reconstruction with

the long-term mean. Since predicting intra-annual variations of TWSC would be more beneficial

for hydro-meteorological studies, the cyclostationary NSE was also used to assess the quality

of reconstructed TWSC. Figure 2.4 shows that a positive maximum cyclostationary NSE was

achieved over 62% of the study area. It means that in those basins, the reconstructed TWSC

was better than the mean annual cycle obtained from GRACE TWSC. The budget reconstruction

performed especially well in the continental United States and Central America, in most of

Southern America except the Amazon and the Andes, in Southern Africa, Australia, Europe,

West Russia, and East Asia (Fig. 2.4).

When comparing Fig. 2.3 and Fig. 2.4, one can observe that despite a very high NSE, some

basins could not reach a positive cyclostationary NSE. This happened especially in tropical basins

like the Amazon, some catchments in Western Africa, India, and Myanmar. These basins illustrate

i) the limits of the NSE and ii) the need for a complementary metric to evaluate the reconstruction.

These two points corroborate the conclusions of Jain and Sudheer (2008). The Amazon basin

exemplifies why the NSE should not be used alone to assess the water budget closure. In fact,

even with the best combination, the budget reconstruction consistently underestimated the

magnitude of TWSC (Fig. B.2). TWSC was too low in the wet season (January-March) and

too high in the dry season (July-August). This indicates that the budget reconstruction was

not good enough to capture the inter-annual as well as annual variability in TWS. Due to the

large amplitude of TWSC in the Amazon basin ([−100;100 mm/month]), the NSE was still very

high (maxNSE = 0.91) and could mislead us into concluding that the budget reconstruction is
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Figure 2.4: Maximum cyclostationary NSE per basin over all combinations. Green positive values
mean that the budget reconstruction is a better approximation of GRACE TWSC than the mean
monthly values.

excellent. However, when assessing the cyclostationary NSE (maxNSEc =−1.28), it appeared

that the mean monthly values were a better fit to GRACE values than the budget reconstruction

(Fig. B.2).

The underestimation of annual variability in TWSC can be seen in the correlation plot

between GRACE TWSC and our approximation (Fig. B.3). Due to the error in approximating the

largest TWSC, the regression slope is 0.7, while 1 is the optimal value. Figure B.2 additionally

shows that the water balance error is larger than GRACE uncertainty in 21% of months, meaning

that the error is significant.

However, one should not conclude that all basins with a high NSE and negative cyclostationary

NSE exhibit the same behaviour. The Niger basin is indeed another basin with a high NSE (0.94)

and a negative cyclostationary NSE (-0.62). Contrary to the Amazon, there was no consistent

pattern in the water closure error and the error was lower than GRACE uncertainty in 94% of

months (Fig. B.4). The regression slope was also almost perfect as shown in Fig. B.5. In such a

basin with low inter-annual variability, the error between GRACE TWSC and the mean monthly

signal is very low (RMSD=6.6 mm/month). Therefore, achieving a budget reconstruction more

accurate than the monthly signal may be an unrealistic expectation.

In conclusion, while the cyclostationary NSE is useful to assess intra-annual variations in the

budget reconstruction, it is not the best assessment tool for all the tropical basins with almost

periodic TWSC. The regression slope between the reference and approximate TWSC can help in

exhibiting consistent patterns in the water balance error.
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Figure 2.5: Each basin is represented by a bar between the maximum NSE (dot) and the 10th
highest NSE

2.4.2 Variables influencing the water budget closure

Several studies have limited their budget computation to large catchments only due to the general

notion that the accuracy of budget closure increases with the size of the basin. We found that

both small and large basins can achieve a high NSE (cf. Fig. 2.3). Furthermore, Fig. 2.5 proves

that there is indeed no correlation between the maximum NSE and the basin area (R2 = 0.12,

p = 0.12). Although limiting their study to 10 large river basins worldwide, Sahoo et al. (2011)

found no relationship between budget closure error and basin size. We extend this result and

show that basins as small as 65,000 km2 can close the water budget. This result still holds

if we evaluate the correlation between the basin area and the maximum cyclostationary NSE

(R2 = 0.01, p = 0.90).

Figure 2.5 additionally indicates the consistency of our findings. Each basin was represented

by a bar between the highest and 10th highest NSE values and the length of the bar was smaller

than 0.15 in 90% of the basins. This means that several combinations were able to close the water

budget with similar imbalance errors.

Additionally, basins can be classified depending on their climate zone. Figure 2.6 shows the

distribution of the maximum NSE in each climate zone. Since the boxes (interquartile range) are

of limited length (except for ’equatorial rain forest/monsoon’ and ’hot arid deserts’), this suggests

that the imbalance error is rather consistent inside a given climate zone. In ’equatorial rain

forest/monsoon’ climate zone, basins generally reached higher NSE values (map 2.3). However,

this zone also contains small Pacific islands (Papua New Guinea and Borneo) where runoff is

much higher than evapotranspiration. Tables A.1 and A.2 indicate that runoff was more uncertain
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Figure 2.6: Boxplot of the maximum NSE per climate zone. The green line indicates the median,
the box extends from the 1st quartile (Q1) to the 3rd quartile (Q3) while whiskers go from
Q1−1.5(Q3−Q1) (or the minimum value if higher) to Q3+1.5(Q3−Q1) (or the maximum value if
lower). Circles denote basins lying out of the whiskers. Figures represent the number of basins in
each climate zone.

(around 30% disagreements between datasets) than evapotranspiration (around 18%) in those

basins. Pacific islands with large runoff thus probably suffered from the poor runoff quality which

led to low NSE values.

Hot arid deserts also have a large spread in the water budget imbalance (Fig. 2.6). Among

those basins, some were entirely desert (Arabian peninsula, Sahara, Somalia, South, and West

Australia) with a low signal-to-noise ratio, as previously mentioned. Other basins were partially

covered by steppe (Australia, Orange, around Indus) or equatorial savannah (Niger, Chad, Nile).

In those basins, precipitation occurred in the more humid subregions, thus increasing TWS

variations. As a consequence, the error in the datasets became less significant and allowed a

proper budget reconstruction.
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2.4.3 Overall combinations performances

Although a majority of basins achieved a positive cyclostationary NSE, they differed greatly in

terms of the number of combinations yielding positive values. As an example, 839 combinations

satisfied a positive NSEc in the Sao Francisco basin while only 94 did so in the neighbouring

Tocantins basin (Fig. B.6). Therefore, we wanted to evaluate the ability of a single combination to

close the water budget worldwide. To do so, we evaluated the total area of basins with a positive

cyclostationary NSE for each combination. Table 2.1 shows the 20 combinations leading to the

largest area.

It appears that choosing all three variables (P, ET, and R) from ERA5 Land yields significantly

better results than the other combinations (35.5 million km2 with a positive NSEc from the

total study area of 96.6 million km2). Figure 2.7 indicates that ERA5 Land performed well in the

Central and Eastern United States of America (USA), but it failed to provide the positive NSEc

of Fig. 2.4 in the mountainous Western basins (Columbia, Great basin). Again comparing with

the best possible results, ERA5 Land performed quite poorly in the equatorial region of South

America (Amazon basin and above), in Central Eurasia (around the Ob, Aral sea, and Indus

basins), as well as in several basins in Europe.

Knowing that there exists at least one combination giving a positive cyclostationary NSE in

62.3 million km2, Table 2.1 shows that even the best combinations were far from approaching

this number. This confirms that it is for now clearly impossible to achieve a good water budget

closure with a single combination (Gao et al., 2010; Lorenz et al., 2014).

The second best combination in terms of area satisfying a positive cyclostationary NSE was

the CLSM forced with version 2.0 of GLDAS (in particular PGF precipitation). Table 2.1 shows

that 30.8 million km2 reached a positive NSEc with this combination. Similar observations as

ERA5 Land can be made generally, with good performances in Central and Eastern USA, South

East America, and Australia. CLSM2.0 was more consistent than ERA5 Land in Europe but less

so in Africa.

When looking at the following combinations, it appeared that their performances were more

similar, compared to the differences observed between the two best combinations. Table 2.1 also

shows that each variable has a determining impact on the water budget closure. Indeed, choosing

for example CLSM2.2 for runoff instead of ERA5 Land (as shown in the left column of Fig. 2.7)

led to poorer results in Alaska, Asia, and central Africa while it improved NSE values around the

Amazon basin.

Concerning GLDAS LSMs, it is clear in Table 2.1 that CLSM was a globally better LSM than

Noah and VIC. We also noted that when using all variables from the same LSM, GLDAS 2.0

was globally better than version 2.1 for all LSMs (CLSM, Noah, and VIC). As illustrated in the

right column of Fig. 2.7, major differences are observed in Europe, Western Russia, and Alaska.

This can be explained by disagreement between precipitation from GPCP and PGF. For instance,

CLSM2.1 yielded only low NSE values in most of Eastern Europe whereas version 2.0 of the
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Table 2.1: Combinations with the largest area covered with a positive cyclostationary NSE

total area with NSEc >
0
(in million km2)

total area with NSE > 0
(in million km2)

P: ERA5 Land ; ET: ERA5 Land ; R: ERA5 Land 35.5 89.7
P: PGF ; ET: CLSM2.0 ; R: CLSM2.0 30.8 90.2
P: ERA5 Land ; ET: ERA5 Land ; R: CLSM2.2 24.5 79.7
P: PGF ; ET: NOAH2.0 ; R: CLSM2.0 23.9 90.9
P: GPCP ; ET: CLSM2.1 ; R: CLSM2.1 23.4 79.2
P: ERA5 Land ; ET: ERA5 Land ; R: GRUN 22.7 81.3
P: MSWEP ; ET: CLSM2.0 ; R: CLSM2.0 21.8 78.5
P: ERA5 Land ; ET: ERA5 Land ; R: CLSM2.0 21.7 78.6
P: ERA5 Land ; ET: ERA5 Land ; R: MERRA2 21.7 76.6
P: GPM ; ET: CLSM2.1 ; R: CLSM2.1 21.1 80.1
P: GPCP ; ET: CLSM2.1 ; R: CLSM2.0 20.8 78.4
P: GPCC ; ET: CLSM2.0 ; R: CLSM2.0 20.4 79.4
P: ERA5 Land ; ET: ERA5 Land ; R: NOAH2.0 19.8 84.4
P: GPM ; ET: CLSM2.1 ; R: CLSM2.0 19.0 79.4
P: MERRA2 ; ET: MERRA2 ; R: MERRA2 18.8 92.1
P: GPM ; ET: NOAH2.1 ; R: NOAH2.0 18.8 81.0
P: GPM ; ET: CLSM2.1 ; R: CLSM2.2 18.7 71.2
P: GPCP ; ET: CLSM2.1 ; R: CLSM2.2 18.5 74.6
P: TRMM ; ET: CLSM2.1 ; R: CLSM2.1 18.5 56.7
P: PGF ; ET: NOAH2.0 ; R: CLSM2.2 18.4 86.3
... ... ...
P: PGF ; ET: VIC2.0 ; R: VIC2.0 16.1 87.6
... ... ...
P: PGF ; ET: NOAH2.0 ; R: NOAH2.0 16.0 92.4
... ... ...
P: GPCP ; ET: NOAH2.1 ; R: NOAH2.1 13.3 82.6
... ... ...
P: ERA5 Land ; ET: CLSM2.2 ; R: CLSM2.2 10.8 57.8
... ... ...
P: JRA55 ; ET: JRA55 ; R: JRA55 8.7 72.2
... ... ...
P: GPCP ; ET: VIC2.1 ; R: VIC2.1 7.1 75.6

Combinations are ranked by decreasing area of basins with a positive cyclostationary NSE. Italics indicate
combinations where P, ET, and R are from the same model.

same model achieved a positive cyclostationary NSE. This last finding reflects the conclusion of

e.g., Mueller et al. (2011) and Zaitchik et al. (2010) that forcing variables have a considerable

influence on land surface models outputs.

We also point out that the ranking in Table 2.1 was not significantly modified by discriminating

basins on the area satisfying a NSE larger than 0.5 (usually considered as good performances)
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Figure 2.7: NSE and cyclostationary NSE with the first combinations in Table 2.1. Basins with
a positive cyclostationary NSE are represented with blue shades corresponding to the NSEc.
Remaining basins are depicted in green, according to their NSE.

instead of a positive cyclostationary NSE. This ensures the reliability of the method used to

highlight the most consistent combinations.

2.4.4 Datasets suitable in given regions

In the previous section, numerous combinations of global datasets were evaluated. This section

aims to describe regions where some datasets are more suitable than others to close the water

budget. In a given basin, we defined as suitable datasets those appearing in combinations leading

to a cost (difference between the maximum NSE and the NSE for a specific combination) lower

than 0.1. This threshold was chosen to ensure that only the highest performing combinations

were considered as suitable. For this analysis, we focus on a subset of 132 basins out of the 189,

where an excellent budget closure could be achieved (maximum NSE larger than 0.8 or maximum

NSEc larger than 0.1).

In general, many combinations were below the maximum cost: at least 112 combinations

were suitable in 50% of the basins, at least 185 combinations in 25% of the basins. For a detailed

review of suitable datasets in each basin, the reader is referred to Fig. B.12, B.13, B.14, and B.15.

Although there was a large choice of combinations to close the water budget, two basins with

similar characteristics only had a few suitable combinations in common. This makes a global and

comprehensive evaluation of datasets more complex.
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Figure 2.8: Datasets appearing in suitable combinations in the Mississippi basin (cost lower than
0.1). The discrepancy is similar to the coefficient of variation, except that the numerator is the
difference between the maximum and minimum values instead of the standard deviation.

In addition, we observed that suitable datasets in a basin could generally not be mixed,

suggesting that some cancellation bias occurred. As an example, Fig. 2.8 shows that suitable

datasets in the Mississippi basin have considerably different seasonal cycles. Combining a

precipitation dataset with high amplitude (GPCP) with low runoff (CLSM2.2) could close the

water budget if associated with a high evapotranspiration (CLSM2.1, leading to NSEc = 0.32) but

not with a low evapotranspiration (Noah2.0, NSEc =−1.8). Since there is no reason to consider a

dataset as more reliable than others in the absence of unbiased observations, care must be taken

when combining suitable datasets.

In order to provide a general overview of datasets performance, we chose to gather basins

achieving the water budget closure for similar combinations. Those regions were determined
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Figure 2.9: Datasets appearing in combinations that satisfy a cost lower than 0.1 for all basins
inside the cluster. The 13 clusters highlighted in Fig. B.7 are shown with different colors. For
each cluster, the top line of each box represents precipitation datasets. The left part of the bottom
line is evapotranspiration datasets while the right part is runoff. The limit between ET and R
is symbolized by a black line located proportionally to the portion of ET in the mean annual
water cycle of the corresponding region. Hatches show basins with a poor water budget closure
(maximum NSE lower than 0.8 and maximum NSEc lower than 0.1).

with the hierarchical clustering described in section 2.3.3. The 132 selected basins with a good

water budget closure are depicted in the dendrogram Fig. B.7 and clusters represent basins with

similar costs for the same combinations. We chose 13 such clusters comprising major basins of

the world to provide a precise but as succinct as possible overview of the datasets’ performances.

These clusters are denoted by the colored lines in Fig. B.7 and are shown with the same basin

colors on the map in Fig. 2.9.

Basins clustered together in the dendrogram Fig. B.7 were either neighbouring basins (e.g.,

Eastern Europe or Eastern Australia) or basins with similar geographical conditions. It is

therefore sensible that the same combinations performed well in those basins. Among basins with

similar characteristics, we pointed out large rivers in temperate regions (Mississippi, Parana,

and Danube basins) or cold basins with different snow conditions (Yenisei, Lena, Mackenzie,

Yukon, and Kolyma basins).

For each of the 13 clusters, we selected combinations yielding a cost lower than 0.1 in every

basin of the region. Figure 2.9 shows which datasets can be used in combination to satisfy the

water balance. It first appears that among the precipitation datasets, the rain-gauge-based GPCC
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Figure 2.10: The mean of the 10th highest NSE with combinations comprising the reference
dataset (i.e. GPCC, GPCP, PGF, or ERA5 Land) is compared to the mean of the 10th highest NSE
excluding the reference dataset. Yellow indicates basins where the reference dataset is similar to
or better than other precipitation datasets while blues show regions where it was significantly
worse. Hatches show basins with a poor water budget closure (maximum NSE lower than 0.8 and
maximum NSEc lower than 0.1).

was often found in combinations satisfying the maximum cost, along with the satellite-augmented

GPCP, reanalysis ERA5 Land, and the multi-source PGF. As a first approximation, those datasets

are suitable for global water budget analyses. However, for regional analyses, a closer look at

individual datasets is required to obtain all possibilities.

Figure 2.10 (top left) shows the decay in NSE when using GPCC as the precipitation dataset.

It confirms that GPCC was very close to the best-performing precipitation datasets. Surprisingly,

Fig. 2.10 also indicates that although GPCP added satellite measurements to GPCC observations,

it increased the water budget imbalance in Eastern Europe and western Russia, as well as in

Congo and South Africa. GPCP performed notably well in South America, along with ERA5

Land that was one of the most consistent datasets for precipitation. The only region where ERA5

Land was not suitable was around China and Saint Lawrence basin. As shown in Fig. 2.9, PGF

precipitation were able to close the water budget predominantly in Europe, as well as in Central

Africa.

For comparison, Fig. B.8 indicates that CRU which never appears in the map 2.9 performed

very poorly compared to other datasets. Harris et al. (2020) mentioned that no homogenization

of data was performed in CRU data. It also uses climatology values when measurements are

missing, making it more appropriate for global analyses. The other rain-gauge-based dataset

CPC was mainly suitable in Europe and China (see Fig. 2.9). Since MERRA2 is based on CPC
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Figure 2.11: Same as 2.10 but for evapotranspiration datasets.

observations (except in Africa where slight variations can be seen in Fig. B.8), similar conclusions

can be drawn for MERRA2. In addition, using GPM instead of TRMM (where we recall that GPM

includes and extends TRMM results) improved the water budget closure. Finally, there was no

overwhelming advantage in choosing the multi-source MSWEP dataset. It is consistent in Europe

and South America but should be avoided in snow-dominated regions of Eastern Russia and

Alaska (Fig. B.8).

Fig. 2.9 clearly shows that evapotranspiration from the land surface model VIC should be

chosen in Russian snow-dominated basins, with a preference for version 2.0 compared to 2.1.

However, this dataset should not be used in hotter regions such as South America, Africa, or

Australia (Fig. 2.11). We found that VIC produces smaller evapotranspiration than other datasets,

along with higher runoff. CLSM was also consistently found in Fig. 2.9. Version 2.0 and 2.1

performed similarly (except in Europe where version 2.0 was better as already mentioned) and

were especially suitable in equatorial (South America, Subsaharan Africa, Australia) and some

temperate regions (South-Eastern Europe and the USA). Similar to precipitation, ERA5 Land

evapotranspiration is an excellent dataset in most of the regions except the Amazon basin, China,

and Australia (Fig. 2.11).

Evapotranspiration from version 2.2 of CLSM provided a good water budget closure in most

of South America, Europe, and especially South Asia. However, it led to unrealistic low values in

snow-dominated basins (see Fig. 2.11). An example of this behaviour is given in Fig. B.10 where

highly negative values appear in autumn. Since this dataset assimilates GRACE measurements

and was validated against GRDC observations, these results are unexpected and should be

further explored by the scientific community.
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When examining specific evapotranspiration datasets (FLUXCOM, GLEAM, MOD16, and

SSEBop), it appeared that GLEAM led to almost optimal NSE values in Africa and Europe (Fig.

B.9). We also compared the newly released version 3.5 of GLEAM with the older v3.3 used in

this study and found that the new version slightly improved the budget closure in every basin

(not shown). FLUXCOM was also consistent in North and South America, Europe, western

Russia, and South Asia, though it was outperformed by CLSM and ERA5 Land. Finally, SSEBop

and MOD16 brought little improvement to the water budget closure. The poor performances

of MOD16 have already been highlighted by e.g., Pascolini-Campbell et al. (2020) in the USA,

Bhattarai et al. (2019) in India.

The evaluation of runoff datasets in Fig. 2.12 confirms the differences exhibited for evapotran-

spiration (Fig. 2.11). VIC was mainly suitable in temperate and snow regions even if it performed

quite poorly in some snow-dominated basins (Nelson, Saint Lawrence, Pechora, among others)

due to overestimation of runoff during summer. It is also clear from Fig. 2.12 that this LSM is not

well-suited for equatorial and arid basins in South America (except some temperate basins in the

extreme South), Africa, Australia, and part of Asia. In those basins, the machine-learning model

GRUN was exceptionally good, especially outperforming others in South America. In addition,

except in the Amazon basin and China where it has already been said that ERA5 Land was not

appropriate, this reanalysis yielded a good runoff estimation.

The low NSE decays on Fig. 2.12 indicate that the version 2.2 of CLSM provide accurate

runoff estimations, which is the main objective of this dataset (Li et al., 2019). However, Fig.

2.12 shows that it did not improve the water budget closure achieved by version 2.0 of this same

model. In some basins like Congo, the water budget imbalance increased.

2.5 Conclusion of Chapter 2

We assessed the ability of various precipitation, evapotranspiration, and runoff datasets to close

the water balance equation against satellite observed terrestrial water storage anomalies on a

global scale. Our analysis was comprehensive as a large number of global datasets were used

to prepare 1694 combinations for closing the water balance in 189 catchments investigated. We

found that the TWSC prediction was better than the long-term mean for 99% of the study area

and better than the monthly mean in 62% of the study area. This illustrates that we can close the

water balance equation in most of the regions if we choose certain datasets for budget components,

which is a novel finding in terms of our previous understanding (Lorenz et al., 2014; Sahoo et al.,

2011).

Based on these findings, we believe that the water balance equation can be used to reconstruct

TWS prior GRACE era. As mentioned, there is a risk of error cancellation, care should be taken

to not obtain right results for the wrong reasons. Chapter 3 will focus on methods to reach this

goal and the limitations towards its achievement.
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Figure 2.12: Same as 2.10 but for runoff datasets.
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RECONSTRUCTING TERRESTRIAL WATER STORAGE BEFORE 2002

As water scarcity becomes an increasing threat in many regions of the world, there is

a growing need for a better understanding of the temporal variations of TWS. This

knowledge requires, among others, longer time-series of TWS than what are currently

available. Although some reconstructions of TWS based on GRACE findings exist, they have

not been compared. Therefore, this chapter firstly provides an evaluation of existing TWS

reconstructions. Then, it presents a novel optimization approach that extends TWS using the

water balance equation. Even though our method has several limitations, we show that there

are still large uncertainties surrounding TWS reconstructions and further work is required to

estimate TWS variations before GRACE era.

3.1 Literature review on TWS reconstruction

Various methods have been developed to estimate TWS, ranging from hydrological models that

simulate separate components of TWS to artificial neural networks and regression methods that

design relationships between various predictors and TWS. The water budget equation has also

been used to provide an alternative estimate of TWS prior GRACE era. Among the numerous

studies elaborating on GRACE findings to extend, predict or downscale TWS measurements,

we focused on the ones reconstructing TWS prior 2002 (summarised in Tab. 3.1). Except the

following subsection that explains the concepts of land surface and water resource models, we do

not present results of studies relying on model simulations of TWS.
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3.1.1 Land surface models and hydrological models

Hydrological models can be divided in two main categories: Land Surface Models (LSMs) and

Global Hydrological and Water Resource Models (GHWRMs). The former generally use a spatial

grid to represent the Earth, assuming that all variables are constant within a grid cell. They can

be coupled with atmospheric models and are mainly designed to simulate fluxes between the

land, the ocean, and the atmosphere (Scanlon et al., 2018). The Noah and Variable Infiltration

Capacity (VIC) models are two such LSMs that are used in this study (Chen et al., 1996; Liang

et al., 1994). They do not represent all components from TWS since they only model plant canopy

surface water, snow melt and snow precipitation, and soil moisture with layers of varying depth

but only up to 10 meters (Li et al., 2020a).

In contrast, the Catchment Land Surface Model (CLSM) does not use a regular grid parame-

terisation of the Earth but instead sets cells from hydrological catchments defined by topography

(Koster et al., 2000). In addition to the components included in Noah and VIC, CLSM also models

subsurface water storage changes. However, it does not simulate rivers and streams that can have

large contributions to TWS in wet climates (Li et al., 2019), nor does it simulate groundwater.

Since they do not simulate all components of TWS, LSMs cannot be expected to accurately

simulate TWS. In addition, the fact that they focus on fluxes rather than on storage means that

even when being modelled, elements of TWS may be wrong (Milly et al., 2010).

To compensate the lack of TWS representation in LSMs, several methods have been developed

to extrapolate GRACE measurements through LSMs. Sun et al. (2019) used deep convolutional

neural networks to analyze the error between TWS simulated by Noah and GRACE measure-

ments. They showed that their method was able to significantly improve Noah TWS in India, a

region with strong water depletion due to human activities that cannot be captured by LSMs

(Chen et al., 2016). Similarly, Jing et al. (2020) used two ensemble learning methods (random for-

est and extreme gradient boost) to learn the relationship between components of TWS simulated

by the Catchment Land Model (the predecessor of CLSM) and GRACE TWS. They reconstructed

TWS from 1979 in the Nile river basin and showed coherent results with other datasets and

climate indices.

GHWRMs are conceptually different from LSMs since they try to model all components

of water storage with an emphasis on human interaction with water resources. Two common

GHWRMs are the PCR-GLOBWB (Sutanudjaja et al., 2018) and the WaterGAP models (Döll

et al., 2003). They combine physically based simulations for e.g. evaporation or water infiltration,

with models of human intervention (e.g. water withdrawal, irrigation water, return flows). Despite

their complex framework, GHWRMs have been shown to be less accurate than GRACE. For

example, Schellekens et al. (2017) suggested that GHWRMs underestimate TWS because of

lacking water stores. In addition, Scanlon et al. (2018) revealed that models generally produce

smaller linear trends than those estimated from GRACE measurements. As an example in

the Ganges basin, trends from GRACE were comprised between −12 and −17km3/yr while the
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WaterGAP model produced a smaller trend of −6.6km3/yr, PCR-GLOBWB led to an opposite

trend of 4.8km3/yr, and LSMs yielded various results from −5.3 to 7.4km3/yr.

3.1.2 Artificial Neural Networks

Since the early nineties, Artificial Neural Networks (ANNs) have been used in hydrology for

diverse purposes such as rainfall-runoff modeling or precipitation forecasting (ASCE, 2000). An

ANN is an arrangement of nodes that tries to mimic synaptic connections in the human brain.

Nodes are gathered in layers that characterize the ANN. Most ANNs are called feedforward

multilayers since they contain one input layer, one or several hidden layers, and one output

layer. The input layer collects variables used as predictors. Each node is connected to one or

several nodes in the following layer by the means of weights. The output layer corresponds to

the objective variable one wants to predict. The design of an ANN (the number of layers and

number of nodes per layer) is generally done via trial and error and the training process consists

in learning the weight associated with each node (ASCE, 2000).

Due to the complexity of TWS variations in space and time, ANNs have been widely used to

predict and reconstruct TWS from GRACE measurements. Long et al. (2014b) designed an ANN

predicting TWS at month t from precipitation, air temperature, and soil moisture at month t−1.

They applied it in Southwest China to reconstruct TWS from 1979 to 2002 and found that TWS

variations were mainly driven by soil moisture in this region. Later, Zhang et al. (2016) extended

the same framework in the Yangtze river basin to analyse hydrological droughts.

Being given the variety of networks that can be used in conjunction with GRACE, Li et al.

(2020b) proposed a unified framework to compare the performances of Multiple Linear Regression

(MLR), ANN and autoregressive exogenous method (ARX, Ljung 1987). For each method, three

predictors were chosen from a set of 17 climate indices, precipitation, air temperature, and sea

surface temperature. While the MLR imposes a simple linear relationship between TWS and

the three predictors, the ARX states that the output variable depends on its previous values in

addition to current and previous values of predictors (exogenous variables). In a more complex

setting, the ANN is able to exhibit non linear relationships between variables. Li et al. (2020b)

found that the MLR was the most robust method to reconstruct TWS in a large number of basins.

3.1.2.1 Spatial decomposition

Since variables involve (potentially long) time-series of spatially gridded data, a dimension

reduction process is necessary to compute the solution (Forootan et al., 2014). The spatial

decomposition consists in separating time-varying maps in a spatial component (assumed to

be constant in time) and temporal patterns. Li et al. (2020b) compares Principal Component

Analysis (PCA, Wold et al. 1987) and Independent Component Analysis (ICA, Comon 1994) to

perform the spatiotemporal decomposition. Contrary to the PCA that seeks orthogonal spatial

components, the ICA imposes physically independent spatial patterns by introducing a rotation
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matrix. Li et al. (2020b) showed that the PCA should be preferred to the ICA when reconstructing

TWS.

Once the temporal components have been extracted, they cannot be directly related to the

predictors as they involve processes with different time scales and each process is governed

by distinct predictors. Therefore, several studies used time-series decomposition to adapt the

methods to the temporal components (Humphrey et al., 2017; Humphrey and Gudmundsson,

2019; Li et al., 2020b, 2021).

3.1.2.2 Seasonal decomposition

Time-series of TWS are commonly decomposed into four components. A linear trend X l inear is

firstly extracted using the Theil-Sen estimator (Theil, 1950; Sen, 1968). This method is more

robust to outliers than usual linear regression (Humphrey et al., 2016). However, we point out

that determining a linear trend from GRACE measurements is very challenging since the trend

strongly depends on the period over which it is computed (Vishwakarma et al., 2021). Once

the linear part has been removed from the signal, a Seasonal Trend decomposition using Loess

(STL) is performed to extract the seasonal component Xseasonal with LOESS smoothing filters

(Cleveland et al., 1990). The remaining part is separated into high- and low-frequency signals

(resp. Xresidual and X interannual), with the low-frequency one containing only signals with a

period larger than 12 months (Humphrey et al., 2016).

Li et al. (2020b) compared the STL with least squares regression to separate the temporal

components and they found that least squares gave more robust reconstructions of TWS. Their

analysis was performed in 26 large basins and Li et al. (2021) extended it to the global scale.

They also took advantage of the GRACE-FO mission to test their prediction between 2018 and

2020, which was not possible in the previous studies. Those studies show that ANNs are reliable

methods to reconstruct TWS prior 2002, if we assume that GRACE era is long enough to avoid

overfitting in the training period. However, ANNs do not outline physical relationships between

variables that could enhance our knowledge of TWS variations. Therefore, alternative methods

based on prescribed associations between variables have been designed.

3.1.3 Statistical regression

Becker et al. (2011) built on existing methods reconstructing atmospheric or oceanic fields to

design a method able to reconstruct TWS in the Amazon basin. They used a PCA decomposition

to extract dominant spatial and temporal modes from GRACE TWS. Then, they established a

correlation between in-situ discharge measurements and GRACE TWS. Since discharge records

were available from 1980, they could extend the temporal components of TWS back to these

dates. Finally assuming stationarity in spatial patterns, they reconstructed the spatial and the

extended temporal time-series to obtain the reconstruction of TWS.
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In order to provide a global reconstruction of TWS, Humphrey et al. (2017) designed a more

general framework linking TWS to precipitation and temperature. They explicitly focused on the

inter-annual and residual components of TWS that were shown to be correlated with inter-annual

variability in precipitation (P) and temperature (T). At each grid cell (mascon), they assumed

that TWS can be written as TWSinterannual+residual =β1Pτ
interannual+residual +β2Tinterannual +ε,

with ε the error term and β1,β2 the coefficients to fit. A exponential decay τ was applied to

precipitation to account for water store recharge induced by incoming water (Humphrey et al.,

2016). Humphrey et al. (2017) showed that their reconstruction was better than four LSMs over

GRACE period.

Elaborating on these findings, Humphrey and Gudmundsson (2019) proposed an alternative

method based on the assumption of linear water storage. TWS on day t depends on its value

on the previous day, deprived from some water that left the area (residence time depending

on temperature) and augmented by precipitation, TWS(t) = e−
1
τ(t) TWS(t−1)+P(t). Although

GRACE TWS and temperature were detrended to fit the parameters, long-term changes were not

removed from the precipitation dataset and had major impacts on the results. In fact, using three

precipitation datasets, Humphrey and Gudmundsson (2019) found three significantly different

trends in the TWS reconstruction at the global scale over the common period from 1979 to 2016.

Despite these known limitations, this dataset served as a reference in sea level (Frederikse et al.,

2020) and TWS trend assessment studies (Vishwakarma et al., 2021).

Statistical regression studies have focused on inter-annual variability since this time scale is

the most likely to be influenced by climatic variations (Humphrey et al., 2017). Authors warned

that their reconstructions are not made to provide reliable long-term trends. This is also true for

the ANN reconstruction of Li et al. (2021) that propagates GRACE linear trends back in time

and predicts only interannual, seasonal, and residual components. The seasonal component is an

additional limitation of such reconstructions since it is generally assumed to be constant in time

(Becker et al., 2011; Humphrey et al., 2017; Humphrey and Gudmundsson, 2019).

3.1.4 Budget equations

Since budget equations involve variables that can be well-observed (at least in some areas),

reconstructing TWS from budget equations appears as a promising approach. If we were able

to obtain robust results, this method could especially be used to represent seasonal variations

of TWS that are often ignored by other methods. As an example of budget equations applied to

TWS estimation, the constrained Kalman filter has been used to enforce the closure of the water

balance equation (Pan et al., 2012; Zhang et al., 2018). However, this method is limited to the

reconstruction of TWSC that is involved in equation 1.1 while one would like to analyse TWS.

Integrating TWSC to get TWS is an immense challenge since errors on TWSC are adding up

during the integration process.
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Zeng et al. (2008) proposed to correct ET before the integration to impose a null integral

over the whole period to overcome this issue. This method resulted in high long-term variability

in the two basins under study (the Amazon and Mississippi basins) with questionable physical

meaning. More recently, Hirschi and Seneviratne (2017) used a 3-year running mean to remove

long-term changes. By doing so, they provided a TWS reconstruction in 341 river basins that

is quite well correlated with GRACE (mean anomalies correlation of 0.51). The impacts of the

correction before the time integration are discussed in more details in section 3.3.

Contrary to the previously mentioned budget studies that rely on single datasets for P, ET, and

R, our approach takes advantage of the large number of datasets examined in Chapter 2. To deal

with integration errors creating artificial long-term trends, we propose an optimization framework

that tries to match the GRACE trend while reducing the prediction error on TWS. Therefore, we

provide a novel approach that helps to point out regions where existing reconstructions strongly

disagree.

3.2 Data

The study area is the same in this chapter as the one described in section 2.2. 189 basins larger

than 63.000km2 were used to provide a global reconstruction of TWS. The reference value of

TWS was provided by the JPL processing center under the form of mass concentration solutions

RL06 (Watkins et al., 2015; Wiese et al., 2018). Due to the availability of datasets, TWS was

reconstructed from 1981 to 2014.

3.2.1 Datasets used for hydrological variables

We used the datasets described in section 2.2 that cover the period 1981-2014. They include CPC

(Chen and Xie, 2008), GPCC (Schneider et al., 2020), GPCP (Adler et al., 2018), MSWEP (Beck

et al., 2019), and PGF (Sheffield et al., 2006) for precipitation. Due to the poor performances

of CRU exhibited in chapter 2, CRU was not included in this chapter. To compensate from the

lack of TRMM and GPM over the reconstruction period, we added the CHIRPS dataset (Funk

et al., 2015). Similarly to TRMM and GPM, it combines satellite observations with rain-gauge

measurements and spans the latitudes 50° S to 50° N. It is available at a 0.05° resolution

from 1981 to near-present. For evapotranspiration data, we used GLEAM (Martens et al., 2017;

Miralles et al., 2011) and FLUXCOM forced by two meteorological settings (CRUNCEP and

GSWP3, (Jung et al., 2019)) while GRUN (Ghiggi et al., 2019) was used for runoff.

In addition, land surface models CLSM (Koster et al., 2000), NOAH (Chen et al., 1996),

and VIC (Liang et al., 1994) were used from the version 2.0 of GLDAS (Li et al., 2020a) for

evapotranspiration and runoff. Finally, reanalyses MERRA2 (Gelaro et al., 2017) and ERA5 Land

(Muñoz-Sabater, 2019) were included for values of precipitation, evapotranspiration, and runoff

over the reconstruction period.
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3.2.2 Comparison data

One major challenge when assessing TWS reconstructions is the lack of comparison data prior

to the GRACE launch in 2002. Therefore, alternative sources of data need to be found to assess

the accuracy of our reconstruction. One first possibility is to explore the impacts of major

climatic variations on TWS. On a global scale, El Niño/Southern oscillations (ENSO) are the

most influential phenomena that can modify climate variables for several years. El Niño events

correspond to warmer sea temperature in the Pacific ocean. By the means of ocean-atmosphere

coupling, this influences precipitation and temperature worldwide. Major El Niño events occured

in 1982-83, 1997-98, and 2014-16 (Wolter and Timlin, 1993, 1998). The strength of an ENSO

event can be measured by the Multivariate ENSO index that involves sea level pressure, surface

wind, sea surface temperature, surface air temperature, and total cloudiness fraction of the

sky (Wolter and Timlin, 1993, 1998). Monthly values of the MEI from 1981 were acquired from

https://psl.noaa.gov/enso/mei.old/table.html.

The mean sea level can also be used as an alternative way to assess TWS reconstructions

globally. Indeed, since the atmosphere holds a negligible percentage of water, terrestrial water

largely contributes to sea-level budget inter-annual variability (Stephens et al., 2020). Accurate

measurements of sea level have become available with the generalized use of altimeters in 1993.

We used monthly sea level anomaly grids from the European Space Agency as part of the Sea

Level Climate Change Initiative project (ESA Sea Level CCI project team, 2017). Weighting each

sea grid cell by its area, we computed a global time-series of sea level anomalies.

State-of-the-art TWS reconstructions were also used to compare our results. We included the

global reconstructions based on statistical regression from Humphrey et al. (2017) and Humphrey

and Gudmundsson (2019). For global results, the machine learning reconstruction of Li et al.

(2021) was added to basin-scale results from Li et al. (2020b). In specific basins with sufficient

records, we also used the budget reconstruction from Hirschi and Seneviratne (2017) (with the

drift correction).

3.3 Methods

From the analysis of datasets conducted in chapter 2, we aim at reconstructing TWS by integrat-

ing TWSC. This section describes the method used to perform the integration (section 3.3.1) and

to find the optimal time-series of TWS, firstly using integrals of TWSC from the water budget

closure (section 3.3.2) and then developing an optimisation approach (section 3.3.3).

3.3.1 Time integration

In this subsection, we assume that we have an optimal time-series of TWSC (also called accu-

mulation a(t)) in a given basin. We want to integrate it from 1981 to 2014 to obtain the TWS

reconstruction. The reference period is GRACE era, starting in January 2003 to avoid the higher

33

https://psl.noaa.gov/enso/mei.old/table.html


CHAPTER 3. RECONSTRUCTING TERRESTRIAL WATER STORAGE BEFORE 2002

uncertainties at the beginning of the mission and ending in November 2014. Therefore, we

perform a backward integration using November 2014 as the initial value. Formally, we are

solving a first-order ordinary differential equation

(3.1)


ds
dt

= a(t)

s(t0) = TWSGRACE(t0)

where the accumulation a(t) is assumed to be known over the period 1981-2014, t0 is the initial

time (November 2014), and TWSGRACE(t0) is the initial value given by GRACE measurements.

The integration is performed with the function solve_ivp from Scipy, 2020. We found that the

Radau solver was well-adapted to the stiffness of the equation (Hairer et al., 1996). Indeed,

solutions discretized with a 1-month time step can vary rapidly, therefore leading to numerical

instability for some solvers. Equation 3.1 can then be considered as a stiff equation and care

must be taken when choosing an adequate numerical solver.

To evaluate the accuracy of the integration, we define a reference TWS that is then differ-

entiated to obtain a(t). The solution s(t) of equation 3.1 can then be compared to the reference

TWS. We firstly observed that the time sampling of a(t) was influencing the error on s(t). In fact,

the accumulation a(t) is computed at a monthly time-scale and can show steep variations from

month to month. Interpolating a(t) with a cubic polynomial before performing the integration

reduced the error for all basins. Figure B.16 shows for each basin the RMSD between the ref-

erence TWSGRACE and the integral of its derivative TWSCGRACE, with and without the cubic

interpolation. Since all dots are below the diagonal, this shows that interpolating a(t) always

improved the results. The depicted results are obtained with 10 interpolation points per month;

we found that the accuracy did not improve further when increasing the number of points.

In addition, we found that the choice of the initial time may significantly influence the error

between s(t) and the reference TWS. Due to the shape of the signal, it seems that starting the

integration on a month with a large derivative (in absolute value) is more likely to lead to larger

errors. Although this was not verified in every basin, it appeared preferable that the initial time

did not correspond to an extremum of TWS. Figure B.17 exemplifies these findings in the Seine

river basin. The error was higher when t0 was maximising TWS (e.g. RMSD = 19.7mm with t0

being March 2014) compared to months with smoothest variations (e.g. RMSD = 8.0mm with t0

being November 2014). Note that the errors are small since the derivative is computed from the

reference TWS. The initial time has even more impacts when the derivative is an approximation

of the reference.

In the following, the accumulation a(t) is cubic interpolated (with 10 points per month) before

the time integration. Equation 3.1 is solved for initial times between June and November 2014,

which gives 6 solutions s. Only the solution minimising the error is saved as the optimized TWS.
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Figure 3.1: The integrated time-series s(t) in the Danube basin for 18 combinations achieving
a positive NSE over GRACE period. The darkness of the line indicates the NSE: darker colors
correspond to lower errors. Dotted lines show combinations with a trend (1981-2002) larger than
2.5 times the trend observed over GRACE period (2003-2014).

3.3.2 Integration of individual TWSC time-series

In chapter 2, we showed that the water budget closure (on TWSC) was very satisfying since a

positive NSE was achieved in 99% of the basins and 45% of them even reached a NSE larger than

0.8. These results did not change significantly when using datasets only available from 1981 (95%

of basins achieved a positive NSE, 39% a NSE larger than 0.8). Therefore, it is logical to expect

that integrating the TWSCbudget can provide reasonable estimates of TWS from 1981 to 2003.

To exemplify our approach, we chose the Danube basin that led to a small imbalance error

on TWSC: among the 384 combinations available from 1981 to 2014, 360 achieved a positive

NSE and 167 a positive cyclostationary NSE. For each combination of P, ET, and R datasets,

the accumulation a(t) was computed from the water balance equation 1.1 and integrated with

the method described in section 3.3.1. The time-series obtained (from 1981 to 2014), was then

compared with GRACE measurements of TWS (2003-2014). We found that only 18 combinations

satisfied a positive NSE over the period 2003-2014 (Fig. 3.1).

One of the main drawbacks of the time integration is the addition of errors between consecu-

tive months. This is especially crucial when the accumulation a(t) presents some constant bias to

the reference TWSCGRACE since this bias becomes a linear trend after integration. To illustrate

this point, Fig. 3.1 shows with dotted lines time-series with a trend larger than 2.5 times the

trend over GRACE period (-0.25 mm/month, 95% CI [-0.51, 0] in the Danube basin). There is no

physical reason why large trends would have occurred in the Danube basin between 1981 and
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2014 and those can very likely be considered as artificial. This proves that even combinations

with a low error over the GRACE period can deviate and exhibit unrealistic trends.

Zeng et al. (2008) and Hirschi and Seneviratne (2017) already faced this issue and proposed

different techniques to overcome it. Zeng et al. (2008) corrected ET with a constant so that the

integral of the corrected accumulation is 0 over the total integration period. However, figure

B.18 shows that this method creates an artificial long-term variability. In the Danube basin, this

correction suggests a decrease in TWS from 1981 to 1991, compensated by an increase from 1992

to 2000. Such variations do not correspond to any known modifications of TWS in the region. To

preserve more inter-annual variability, Hirschi and Seneviratne (2017) proposed to remove a

3-year running mean from the accumulation a(t) before integrating. Figure B.19 confirms that the

different time-series have similar inter-annual variability. Nevertheless, it remains impossible to

draw any conclusion on long-term variability from this approach.

3.3.3 Optimization problem

We propose an alternative approach that takes advantage of the large number of datasets

available to estimate the accuracy of each dataset. In fact, one major limitation of the three

methods presented in the previous Section 3.3.2 is that several time-series are obtained after

integration but we are not able to exhibit the most plausible ones. We believe that if models

relying on different sources of data provide similar values for P, ET, or R, then they are more

likely to be close to the truth. We then design an optimization approach that dynamically tries

to combine dataset to improve TWSC. The time integration is afterwards performed exactly as

described in Section 3.3.1.

In a given basin, each precipitation dataset provides a different time-series Pi(t) for i ∈
{1, · · · ,nP } (nP = 8 precipitation datasets, detailed in Section 3.2.1). Similarly, there are nET = 8

evapotranspiration and nR = 6 runoff datasets. From the water balance equation 1.1, we assume

that TWSC at month t can be written as

(3.2) TWSCopt(t)=
nP∑
i=1

αiPi(t)−
nET∑
j=1

β jET j(t)−
nR∑
k=1

γkRk(t)+
12∑

m=1
cm1month(t)=m +ε(t).

We showed in Chapter 2 that some basins present systematic monthly errors, such as an overesti-

mation of TWSC in the driest months (June-September) in the Amazon basin (Fig. B.2). We try to

correct these effects by allowing a monthly correction cm that is kept constant between years. Co-

efficients cm are constrained to be lower than 20% of the mean value of the corresponding month.

The random variable ε accounts for measurements errors as well as model approximations.

The weights αi, β j, and γk represent the accuracy of each dataset. Since we showed that some

datasets constantly under- (or over-) estimate hydrological variables in some parts of the world,

we should allow the algorithm to compensate these errors. Therefore, instead of constraining

the sum of weights to equal 1, some deviation is possible. The constraint on weights becomes∣∣∑nP
i=1αi −1

∣∣≤ δ, with δ= 0.05. A similar constraint is applied to β j and γk.
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The variable we are trying to optimize is x = (α1 · · ·αnP β1 · · ·βnET γ1 · · ·γnR c1 · · · c12) ∈Rn. We

denote y= (TWSCopt(tm) · · ·TWSCopt(tM)) the objective vector containing estimates of TWSC

from January 2003 (tm) to November 2014 (tM). Then, equation 3.2 becomes in notation matrix

(3.3) y= Ax+ε,

where each column of A contains values of one dataset for all months. However, the aim of this

method is not only to optimize TWSC but mainly to reconstruct TWS. Therefore, our interest lies

in the integral Y of y, satisfying for all t, Y ′(t)= y(t). By definition, Y (t) can be written

Y (t)=Y (tm)+
∫ t

tm

y(τ)dτ

=Y (tm)+
∫ t

tm

(Ax)(τ)dτ+η(t),

using equation 3.3 and denoting η the integral of ε. Involving the optimized water balance

equation 3.2 yields

Y (t)=Y (tm)+
∫ t

tm

(
nP∑
i=1

αiPi(τ)−
nET∑
j=1

β jET j(τ)−
nR∑
k=1

γkRk(τ)+
12∑

m=1
cm1month(τ)=m

)
dτ+η(t).

Then, inverting the sum and the integral gives

Y (t)=Y (tm)+
nP∑
i=1

αi

∫ t

tm

Pi(τ)dτ︸ ︷︷ ︸
P i(t)

−
nET∑
j=1

β j

∫ t

tm

ET j(τ)dτ︸ ︷︷ ︸
ET j(t)

−
nR∑
k=1

γk

∫ t

tm

Rk(τ)dτ︸ ︷︷ ︸
Rk(t)

+
12∑

m=1
cm

∫ t

tm

1month(τ)=mdτ+η(t),

where P i(t) is the accumulation of precipitation provided by the dataset i between the months

tm and t, similarly for ET j and Rk. In the algorithm, P i(t) is computed with a trapezoidal rule

for each month. This formulation leads to a new matrix A that can be deduced from A and that

allows to rewrite equation 3.3 in its integrated form

(3.4) Y (t)=Y (tm)+ Ax(t)+η(t)

The reference vector for Y is YGRACE = (TWSGRACE(tm) · · ·TWCGRACE(tM)), the time-series

of GRACE measurements. Since we are aiming at minimizing the error between Y and YGRACE,

the loss function should contain the mean squared error between those vectors ∥Y −YGRACE∥2
2 =∑tM

t=tm
(Y (t)−YGRACE(t))2. It was mentioned in the previous Section 3.3.2 that artificial long-term

trends created by the integration of biases in TWSC were a major issue. Since there is no perfect

approach to allow long-term variability while limiting unrealistic trends, we chose to constrain

the trend of our TWS reconstruction to approach GRACE trend λGRACE. This is done by adding

a regularization term to the loss function:

(3.5) L (Y )= ∥Y −YGRACE∥2
2 +ρ · (λ(Y )−λGRACE)2
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(a) The linear trend λ(Y ) converges towards
GRACE trend λGRACE

(b) λ(Y ) converges outside of GRACE trend confi-
dence interval.

Figure 3.2: RMSD between GRACE TWS and the optimized TWS (red curve) and linear trend
(dark blue curve) as a function of the regularization parameter ρ. GRACE trend λGRACE is shown
with the light blue line. 95% confidence intervals (CI) are represented with dotted lines and
derived from the Theil-Sen estimator for the linear trend.

Note that the mean squared error is summed over GRACE period [tm, tM] while the trend of

the TWS reconstruction λ(Y ) is computed over the whole integration period as the mean of y,

λ(Y )= 1
M+1

∑tM
t=t0

y(t). From equations 3.3 and 3.4, the loss function can be rewritten in terms of

coefficients x

(3.6) L (x)=
tM∑

t=tm

(
Ax(t)− (YGRACE(t)−YGRACE(tm))

)2 +ρ ·
(

1
M+1

tM∑
t=t0

Ax(t)−λGRACE

)2

The minimization problem was solved using the cvxpy library (Diamond and Boyd, 2016;

Agrawal et al., 2018). The optimal value for the regularization parameter was found by exploring

different values of ρ in {0.1,1,10,100,500,1000,5000,10000,50000,100000}. In the majority of

basins, λ(Y ) converged towards λGRACE in the sense that the 95% confidence intervals of λ(Y )

and λGRACE intersected for ρ large enough (Fig. 3.2a). We then chose the smallest value of ρ such

that they intersected. In other basins, λ(Y ) did converge but the limit was not inside λGRACE

confidence interval. The selected ρ was the smallest value to reach the convergence criterion: the

consecutive difference of λ(Y ) is smaller than 0.5mm/yr.

To summarise, our approach consists in gathering time-series of all available datasets for

P, ET, and R in a given basin. For each value of the regularization parameter ρ, we run the

optimization algorithm to find the vector of weights x that minimizes the loss function. Using the

method described above, we select the best regularization parameter and save the corresponding

x. From this vector of weights, we finally compute the time-series of monthly TWSC values using

equation 3.2 and integrate it following the method described in section 3.3.1. This yields to a

time-series of monthly TWS for each basin under study.
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3.4 Results and discussion

We firstly present some optimization results about our algorithm. In terms of performance

comparison, our reconstruction of TWS is compared with GRACE results over the training period

(2003-2014). Then, longer assessments of our reconstruction on a global scale are conducted

against the MEI index and the mean sea level. Finally, comparing our results with state-of-the-art

reconstructions provides a complementary approach to evaluate our method.

3.4.1 Optimization details

During the optimization process, the algorithm tries to minimize the loss function by weighting

the datasets with appropriate coefficients. It is interesting to note that this yields to a proper

selection of datasets since the majority of datasets are given a zero coefficient. Figure B.20

shows that only two precipitation datasets were selected in the Amazon basin (coefficient α equal

to 0.9 for PGF and 0.12 for GPCP). Similarly, only CLSM2.0 had a significant coefficient for

evapotranspiration and runoff. One can note that those datasets appeared as suitable in the

Amazon basin in the previous chapter (see maps 2.10, 2.11, and 2.12). Therefore, our method is

able to exhibit datasets bringing the most useful contribution to TWS.

However, we note that the datasets coefficients depend on several parameters including the

regularization coefficient ρ. Figure B.21 shows this parameter in each basin. The median value

of ρ is 100, showing that the constraint of approaching GRACE trend is moderate. We also point

out that there is no correlation between the regularization parameter selected with our approach

and GRACE trend.

3.4.2 Comparison with GRACE measurements

GRACE measurements of TWS are the most accurate values to assess our reconstruction. How-

ever, they are also the objective values of the optimization algorithm and therefore cannot

serve as an independent evaluation. Nevertheless, they can be used as a first assessment of

our reconstruction’s accuracy in the training period. Figure 3.3 shows excellent performances

of our reconstruction in a majority of basins since the median NSE is 0.85. One can also notice

poor performances in West-European basins, mainly caused by strong errors at the beginning of

GRACE ERA (2002-2003). This may be related to the small size of European basins that increases

leakage errors.

On a global scale, we computed the global TWS as the mean of basin-scale TWS weighted

by the basin area. To better represent intra-annual variations, we obtained deseasonalised

time-series of global TWS by removing the mean annual cycle from the full time-series. Figure

3.4 shows a good correlation between GRACE and our reconstruction (correlation coefficient

R2 = 0.85 for the deseasonalised, NSEc = 0.29 for the full time-series). On a basin scale, the

median value of correlation between deseasonalised time-series is 0.87 (0.79 and 0.93 for the
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Figure 3.3: NSE between GRACE TWS and our optimized TWS

Figure 3.4: Deseasonalised time-series of global GRACE TWS and our optimized TWS.

25th and 75th percentiles). This is higher than the results from Hirschi and Seneviratne (2017)

who obtained a mean correlation between deseasonalised time-series of 0.51.

3.4.3 Inter-annual variability

The inter-annual component of TWS corresponds to the non-linear long-term trend (see Section

3.1.2.2). It is the more likely component to be influenced by meteorological variables while the

anthropogenic impacts are assumed to be negligible at this time scale (Humphrey et al., 2016).

Since ENSO events largely drive climate variations, the MEI is an appropriate index to analyse

TWS variations. Figure 3.5 shows that TWS and the MEI generally follow opposite variations,
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Figure 3.5: Inter-annual components of global TWS from GRACE (black) and from our optimized
reconstruction (blue). Original time-series of the MEI (dotted line) and the time-series smoothed
by removing the highest Fourier coefficients (blue line).

which is the expected behaviour (Phillips et al., 2012). Indeed, the correlation coefficient between

the optimized TWS and the smoothed MEI is -0.22. One can notice on Fig. 3.5 a strong decrease

of TWS around 1998 corresponding to a major El Niño event.

On a global scale, comparing our TWS reconstruction against mean sea level also indicates

that our reconstruction is able to catch the major inter-annual variations. While Fig. 3.6 shows

seemingly opposite variations between global TWS and sea level anomalies, the correlation

coefficient is too low to conclusively argue that our reconstruction is perfect. This poor result may

come from artificial inter-annual variations induced by the water budget integration (as can be

seen in Fig. 3.8). Since anomalies only remove linear trends, long term variations may still be

present in the reconstruction that do not have a physical interpretation with respect to mean sea

level. In addition, a more sophisticated smoothing may be needed to account for high-frequency

variations of TWS that may not transmit from the land to the ocean.

3.4.4 Global comparison with state-of-the-art datasets

Deseasonalised time-series of global TWS are shown in Fig. 3.7 from three state-of-the-art

datasets. One can see that our reconstruction lies in the middle of the spread of various time-

series, suggesting the plausibility of our findings. All reconstructions agree on a decrease in

global TWS around 1998 followed by an increase until 2000. Since Li et al. (2021) extends the

linear trend of GRACE period prior 2002, their reconstruction shows the strongest linear trend.

On the contrary, Humphrey et al. (2017) rely on detrended data and therefore cannot exhibit
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Figure 3.6: Global anomalies time-series (detrended and deseasonalised) of our TWS reconstruc-
tion (green) and GRACE (black) normalized by the total land area against global mean sea level
anomalies (blue). The correlation coefficients r of TWS with sea level are shown in the legend.

any long-term trend. Similarly, trends that may be seen in Humphrey and Gudmundsson (2019)

reconstructions come from underlying trends in precipitation datasets and do not necessarily

reflect true TWS trends.

Our reconstruction does not show any linear trend but suggests a slight increase at the

beginning of the reconstruction period (1981-1991) followed by a trough in 1993, visible in all

reconstructions. The global mean of TWS variations hides the problems at the basin scale. Fig.

3.8 shows a significant difference between the reconstructions. The TWS reconstruction of Hirschi

and Seneviratne (2017) has more intra-annual variations than the others but lower amplitudes.

In terms of inter-annual variations, our reconstruction does not strongly agree with the

linear trend found by Li et al. (2021). Despite including GRACE trend in the loss function, the

Mackenzie and Parana basins show that the long-term trend of our reconstruction is not linear. A

decrease in TWS has been observed during GRACE period in the Mackenzie basin, largely due to

ice melt and surface water drying (Rodell et al., 2018). It is not very likely that the opposite trend

occurred between 1981 and 1996 as our reconstruction suggests.

Additional basins are shown in Fig. B.22, B.23, and B.24. Our reconstruction is generally

comparable with state-of-the-art datasets. Surprising peaks or troughs appear in some basins

like Congo, Indus, or Ob. As an example, the Congo basin suffers from a lack of precipitation

monitoring that creates large uncertainties in the datasets. This may suggest that our algorithm

selected poor-quality datasets to perform the reconstruction. For basins with a well-established

TWS decrease over the GRACE era (Euphrates, Ganges, and Yellow river from human extraction,

Yukon from ice melt), constraining our algorithm to approach GRACE trend leads to reasonable
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Figure 3.7: Deseasonalised global TWS from Humphrey and Gudmundsson (2019) with three
precipitation forcings (MSWEP, ERA5, and GSWP3), Humphrey et al. (2017), Li et al. (2021),
GRACE, and our reconstruction

results.

The main conclusion from this comparison with other available datasets is that our approach

provides coherent results with a strong physical constraint in the background. Since the recon-

struction depends on the quality of other products of water budget components, there are still

large uncertainties in TWS predictions prior to the GRACE era. Therefore, we can conclude that

it is hard to select one reconstruction over the others.

3.4.5 Limitations

Although the available data to evaluate our reconstruction suggest that it performs reasonably

well, several limitations remain. We firstly point out that the training period has a strong

influence on the TWS reconstruction. Figure B.25 indeed shows significantly different inter-

annual variations when the training period is modified. Although starting in 2003 or 2004 leads

to similar reconstructions, shorter training periods present larger errors. Figure B.26 indeed

confirms that basin-scale reconstructions have larger errors compared to GRACE observations

when the length of the training period is reduced.

A second limitation of our approach is that selecting the datasets that seemed more promising

in Chapter 2 (in the sense that they have the smallest NSE difference, as shown in maps 2.10, 2.11,

and 2.12) does not improve results. Although we recognize that the quality of data products varies

as we go back in time, we would assume that datasets leading to a better budget closure from

2003 to 2014 would be more accurate to reconstruct TWS before 2003. This may suggest that our
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method to identify suitable datasets in Chapter 2 is not suited to select datasets. More in depth

analysis of the quality of input data may help discriminating datasets for TWS reconstruction.

Additionally, the dependency on the training period may also mean that closing the water budget

and reconstructing TWS are two distinct goals that cannot be achieved with the same methods.

Finally, we acknowledge that the availability of datasets is a limiting factor in our analysis.

Indeed, many datasets starting before the GRACE era (at least in 1981 as we selected them) do

not provide results after 2014, as is the case for the version 2.0 of GLDAS or GRUN. Therefore, we

could not use longer records of GRACE measurements or even outputs from the GRACE-Follow

on mission to evaluate our reconstruction.

3.5 Conclusion of Chapter 3

We have presented a reconstruction of TWS based on the water balance equation. Our method

combines weighted versions of precipitation, evapotranspiration, and runoff datasets to fit GRACE

measurements during the training period (2003-2014). It also allows seasonal correction of water

variations. To avoid the accumulation of errors due to the time integration, our method adds a

regularization term that penalizes reconstructions with an unrealistic linear trend.

We demonstrated that our reconstruction is coherent with existing reconstructions that are

based on statistical regression or machine learning. It is also coherent with independent validation

data such as the Multivariate ENSO Index and mean sea level anomalies, although correlation

coefficients were low. At the basin scale, the analysis of inter-annual variations was made

difficult by the presence of non-linear trends in our reconstruction. This analysis nevertheless

shows that further work is needed to claim significant improvement in our understanding of the

spatiotemporal variations in TWS before the start of the GRACE mission.

44



3.5. CONCLUSION OF CHAPTER 3

Figure 3.8: Deseasonalised TWS in the Mackenzie, Mississippi, Parana, and Yangtze basins.
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Study Area GRACE Extension Method Results
Zeng et al.
(2008)

Amazon and
Mississippi

2002-2006 1970-2006
(Amazon),
1928-2006
(Missis-
sippi)

integrate P-ET-R over
the reconstruction pe-
riod while correcting
ET so that TWS has a
null integral over the
whole period

• good agreement with
GRACE in terms of
mean seasonal cycle
• Amazon: large
recharge (+800mm)
between 1979 and
1985 and large decline
in TWS between 1985
and 1995
• Mississippi: large
decline (-500mm) be-
tween 1928 and 1940,
general rise from 1957

Becker
et al.
(2011)

Amazon 2002-2008 1980-2008 remove seasonal cy-
cles from river dis-
charge and TWS time
series
PCA, assume station-
arity of spatial models
compute time-varying
amplitude from the re-
lationship between R
and TWS

• correlation with
ISBA-TRIP hydrolog-
ical model (smoothed
time-series) is 0.9
• no trend in recon-
structed TWS and
lower levels during
ENSO events
• high correlation
between first spatial
mode and SOI

Long et al.
(2014b)

Southwest
China

2003-2010
(train)
2011-2012
(test)

1979 - 2002 ANN between TWS at
time t and precipita-
tion, air temperature,
soil moisture storage
(GLDAS Noah) at time
t−1

• test period:
R2 = 0.91, bias∼-
21mm, RMSD∼28mm
• TWS seems to be
mainly driven by
soil moisture varia-
tions (in sub-basins,
more differences over
GRACE period than
for the reconstruction
period)

Zhang
et al.
(2016)

Yangtze river
basin

2003-2012
(60% train-
ing, 20%
valida-
tion, 20%
testing)

1979-2012 ANN same as Long
et al. (2014b)

• testing period: R2 =
0.89, NSE=0.83.
• poorer performances
in lower subbasins
• analysis of hydrolog-
ical droughts
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Hirschi
and
Senevi-
ratne
(2017)

341 basins
larger than
35000km2

not applica-
ble

1979-2015 integration of the wa-
ter balance equation
(atmospheric and ter-
restrial)
long-term changes re-
moved with a 3-year
running mean
ERA-Interim data and
discharge gauge mea-
surements

• mean anomalies cor-
relation with GRACE
is 0.51

Humphrey
et al.
(2017)

global (mas-
con scale)

2002-2015 1985-2015 daily precipitation
and temperature from
ERA-Interim
temporal decomposi-
tion and exponential
decay filter on P
model parameters β1,
β2, τ are calibrated
at each GRACE mas-
con using Markov
chain Monte-Carlo
simulations

• non-seasonal TWS
at Obidos (Amazon):
R2 = 0.61 (sees the
1998 drought)
• “at least 40% of
the total variance of
GRACE anomalies
can be reconstructed
from P and T variabil-
ity alone”
• R2 and NSE better
with the reconstruc-
tion than 4 LSMs
• R2 with detrended
GMSL is -0.88

Humphrey
and Gud-
mundsson
(2019)

global (mas-
con scale)

2003-2014 1901-
2014 with
GSWP3
1979-
2016 with
MSWEP
and ERA5

precipitation from
MSWEP, GSWP3,
and ERA5; tempera-
ture from ERA5 and
GSWP3
TWS on day t depends
on TWS on day t− 1,
the residence time of
the water store (depen-
dent on temperature)
and precipitation over
day t
model parameters
are involved in the
residence time model
and in the calibration
with GRACE (monthly
scale, linear trends
and seasonal cycles re-
moved, as Humphrey
et al. (2017))

• long-term trends
highly dependent
on (non-detrended)
precipitation datasets
• higher R2 and NSE
at mascon scale in
densely gauged re-
gions, preference for
MSWEP or ERA5
• R2 with GMSL
around -0.65 (de-
trended deseason-
alised)
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Li et al.
(2020b)

26 large
basins

2002-2011
(training)
2011-2017
(testing)

1992-2002 spatiotemporal decom-
position: ICA or PCA
seasonal decompo-
sition of temporal
modes: Least squares
or STL
prediction of each
mode from 3 variables
among precipitation,
temperature, sea
surface temperature,
and 17 climate indices:
ANN, ARX, MLR

• multiple training er-
rors are significantly
lower with MLR
• least squares should
be preferred to STL,
and PCA preferred to
ICA

Li et al.
(2021)

global 2002-2017 1979-2020
(2018-2020
used as a
test period)

extension of Li et al.
(2020b)
use GRACE linear
trend in the recon-
struction

• good correlation
with satellite laser
ranging TWS (1992-
2002)
• correlation with
global sea level (de-
seasoned) is -0.56,
-0.63, -0.59 (1992-
2001, 2002-2017,
2017-2019)

Table 3.1: abbreviations used: SOI=Southern Oscillation Index, ENSO=El Niño Southern Oscillation,
ICA=Independent Component Analysis, PCA=Principal Component Analysis, STL=Seasonal Trend decomposition
based on LOESS, ARX=Autoregressive Exogenous model, MLR=Multiple Linear Regression. Refer to section 3.1 for
explanations of these terms.
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Terrestrial Water Storage is a crucial component of the water cycle that provides water

for human needs. Severe declining trends have been observed by the GRACE satellite

mission in several regions of the world (Rodell et al., 2018). However in the absence of

longer records, it remains difficult to detect variations caused by natural variability from those

induced by human impacts on climate change. The water balance equation is a tool that describes

the fluxes of water in the forms of precipitation, evapotranspiration, runoff, and TWS variations.

Knowing the four variables of the equation, it can be used to evaluate the imbalance error and

deduce the accuracy of the datasets. Next, assuming that we selected well-purposed datasets, the

equation can serve to reconstruct the unknown variable, such as TWS prior to GRACE mission.

In chapter 2, we have presented a comprehensive overview of our ability to close the global

water balance with the help of a wide range of water budget components disseminated for

scientific studies. We demarcated river catchments where the usual metrics (NSE, cyclostationary

NSE) were of limited interest to evaluate the imbalance error. For each water budget component,

we also assessed the performance of individual datasets with respect to the other datasets

available, which helped us to infer the quality of the dataset when closing the water budget.

Although the lowest imbalance error possible was generally small, we found that none

of the 1694 combinations assessed succeeded in closing the water budget worldwide. Some

combinations performed better in some regions but underperformed in others. The combination

with all the budget components from reanalysis ERA5 Land was the best in terms of achieving a

positive cyclostationary NSE over the largest fraction of the area under investigation. Individual

components (P, ET, and R) of ERA5 Land were also close to the best performing datasets, except

for around the Amazon basin and Eastern China.

The Catchment Land Surface Model additionally appeared as a suitable dataset in many
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regions excluding snow-dominated basins. However, version 2.2 of this LSM, which assimilates

GRACE data, performed poorly compared to its previous versions. In some snow-dominated

basins, it even led to highly unrealistic ET values during the cold season. Despite being designed

for better runoff estimates, this latest version did not bring much improvement to other runoff

datasets in terms of the water imbalance error. In contrast, GRUN, a machine learning runoff

dataset, considerably reduced the imbalance error in several basins, with the best performances

being detected in South America, South Asia, and some Arctic basins in Russia and Alaska.

We also found that the water balance can close due to a cancellation of errors in budget com-

ponents, therefore, caution should be practiced when closing the water budget over a catchment

or region and a large number of datasets should be explored to avoid obtaining the right results

for wrong reasons.

In chapter 3, we developed an optimization approach to reconstruct TWS prior GRACE

era based on the water balance equation. We used a weighting method to try to avoid the

aforementioned cancellation of errors. Since the water budget equation involves derivatives of

TWS, the reconstruction approach needs to integrate estimates of the derivatives. Due to the

frequent biases in the estimates, the integration process leads to accumulation of biases that

create artificial linear trends in the TWS reconstruction. Despite these challenges, we found

that our reconstruction was coherent when compared to existing reconstructions. However, this

comparison showed large uncertainties among TWS reconstructions.

In conclusion, we hope that our analysis will help fellow researchers in finding the most

appropriate datasets for water budget analysis in different parts of the world while being aware

of the risk of error cancellation. From our comparison of existing TWS reconstructions, one cannot

claim to be able to understand the sources of TWS variations. Therefore, further work is needed

to obtain a reconstruction of TWS long enough to predict a probable evolution of TWS under

climate change scenarios. Alternative validation data are especially crucial to perform this task.
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A.1 Additional tables for Chapter 2

Table A.1: Components of the mean annual water cycle in Pacific
islands

P (mm/year) ET (mm/year) R (mm/year)
SEPIK 3390 ± 653 1404 ± 223 2116 ± 597
MAMBERAMO 3578 ± 851 1340 ± 227 2406 ± 756
MAHAKAM 3163 ± 356 1359 ± 272 1911 ± 529
KAPUAS 3666 ± 204 1366 ± 266 2339 ± 480

The first value is the mean annual cycle averaged over all datasets
while the second one is the standard deviation of mean annual values
over all datasets

Table A.2: Components of the mean annual water cycle in equato-
rial rain forest/monsoon basins in South America

P (mm/year) ET (mm/year) R (mm/year)
MAGDALENA 2339 ± 650 1157 ± 216 1373 ± 498
CUYUNI 2051 ± 269 1395 ± 223 766 ± 327
ESSEQUIBO 2121 ± 251 1314 ± 217 946 ± 405
MARONI 2312 ± 247 1406 ± 269 885 ± 364
AMAZON 2177 ± 172 1251 ± 196 958 ± 251
ORINOCO 2269 ± 289 1237 ± 200 1090 ± 315

The first value is the mean annual cycle averaged over all datasets
while the second one is the standard deviation of mean annual
values over all datasets
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B.1 Additional figures for Chapter 2

Figure B.1: Distribution of the maximum NSE over all combinations in terms of basin area
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APPENDIX B. ADDITIONAL FIGURES

Figure B.2: Components of the water budget in the Amazon basin for the combination leading to
the highest NSE

Figure B.3: Correlation between monthly values of GRACE TWSC and the budget reconstruction
in the Amazon basin, with the combination leading to the highest NSE (NSE=0.92 and cyclosta-
tionary NSE=-1.28)
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Figure B.4: Components of the water budget in the Niger basin for the combination leading to
the highest NSE

Figure B.5: Correlation between monthly values of GRACE TWSC and the budget reconstruction
in the Niger basin, with the combination leading to the highest NSE (NSE=0.94 and cyclostation-
ary NSE=-0.62)
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Figure B.6: Number of combinations yielding a positive cyclostationary NSE in each basin. Grey
means that no combination achieved a positive value.
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Figure B.7: 132 basins with a maximum NSE larger than 0.8 or a maximum NSEc larger than
0.1. The distance between basins is the Euclidean distance between the vector of costs for each
combination. The height of the U-shaped link is proportional to this distance. Basins are clustered
to minimize the intra-cluster variance and colored basins are those selected to plot Fig. 2.9
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Figure B.8: The mean of the 10th highest NSE with combinations comprising the reference
dataset is compared to the mean of the 10th highest NSE excluding the reference dataset. Yellow
indicates basins where the reference dataset is similar to or better than others while blues show
regions where it was significantly worse. Hatches show basins with a poor water budget closure
(maximum NSE lower than 0.8 and maximum NSEc lower than 0.1).
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Figure B.9: The mean of the 10th highest NSE with combinations comprising the reference
dataset is compared to the mean of the 10th highest NSE excluding the reference dataset. Yellow
indicates basins where the reference dataset is similar to or better than others while blues show
regions where it was significantly worse. Hatches show basins with a poor water budget closure
(maximum NSE lower than 0.8 and maximum NSEc lower than 0.1).

Figure B.10: Components of the water budget in the Mackenzie basin with all components from
GLDAS2.2 CLSM (assimilating GRACE TWS)
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Figure B.11: Legend of datasets represented in Fig. B.12, B.13, B.14, B.15
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Figure B.12: Datasets appearing in combinations that satisfy a cost lower than 0.1 for each basin
separately. The top line of each basin bar represents precipitations datasets. The left part of
the bottom line is evapotranspiration datasets while the right part is runoff. The limit between
ET and R is symbolized by a black line located proportionally to the portion of ET in the mean
annual water cycle of the corresponding region, explaining while the bottom line may have a
length different than 100%. Basins are ordered according to hierarchical clustering (dendrogram
in Fig. B.7). The color legend for datasets can be found in Fig. B.11
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Figure B.13: Following of Fig. B.12
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Figure B.14: Following of Fig. B.13
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Figure B.15: Following of Fig. B.14
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B.2 Additional figures for Chapter 3

Figure B.16: In each basin, a dot shows the error between TWSGRACE and the solution s(t) of
equation 3.1. All other parameters are kept constant.

65



Figure B.17: For 12 different initial times t0, the difference between TWSGRACE and the solution
s(t) of equation 3.1 is shown (with a(t) being the cubic interpolated derivative of TWSGRACE).
The RMSD between s and TWSGRACE is given for each initial time.

Figure B.18: Integration of TWSC obtained from the water balance equation and corrected by
a constant to obtain a null integral over the whole integration period (method from Zeng et al.
(2008)). Only combinations with a positive NSE on TWS are shown. The darkness of the line
corresponds to the misfit to GRACE.
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Figure B.19: Integration of TWSC obtained from the water balance equation and corrected
by subtracting a 3-year running mean (method from Hirschi and Seneviratne (2017)). Only
combinations with a positive NSE on TWS are shown. The darkness of the line corresponds to
the misfit to GRACE.
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Figure B.20: Timeseries of all datasets in the Amazon basin. Colored lines show datasets with a
regression coefficient larger than 0.05 after the optimization algorithm. Datasets with dotted
lines have a corresponding coefficient smaller than 0.05 and thus almost did not influence the
optimized TWSC.

Figure B.21: Regularization parameter ρ chosen with the method described in Section 3.3.3
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Figure B.22: Comparison of our TWS reconstruction with state-of-the-art datasets ((Humphrey
et al., 2017), (Humphrey and Gudmundsson, 2019), (Li et al., 2020b), (Li et al., 2021), (Hirschi
and Seneviratne, 2017)) in several basins. All time-series are deseasonalised69
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Figure B.23: Following of Fig. B.22
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Figure B.24: Following of Fig. B.23
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Figure B.25: Global deseasonalised time-series of our TWS reconstruction when varying the
training period.

Figure B.26: Each column represents a different training period, starting on the indicated year
and ending in 2014. The boxplot shows the NSE against GRACE observations computed from 2003
to 2014 in each basin (median in orange, the box extends from the 25th to the 75th percentile).
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