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ABSTRACT

Quantum machine learning is a broad term encompassing machine learning algorithms that are
either partly or entirely based on quantum information processing principles or entirely classical
machine learning algorithms used to solve quantum mechanical problems.

Here, we explore three realizations of quantum machine learning: a hybrid quantum-classical
generative adversarial network, hybrid quantum-classical variational algorithms, and finally
classical fermionic neural network Ansatz used in quantum Monte Carlo. In the first, we develop
the first implementation of a quantum-classical generative adversarial network, showing the
first, to our knowledge, known application to a hybrid quantum-classical model to a complex color
dataset. In the second, we demonstrate how classical machine learning algorithms, specifically
metalearning, can be advantageous to integrate with novel variational quantum algorithms for
optimization showing that metalearning methods have better performance than other commonly
used methods especially in the presence of parameter setting noise. Finally, in the third, we
extend existing work on variational Monte Carlo with fermionic neural network Ansatz by
improving the network design and further propagating the wave function with diffusion Monte
Carlo, achieving state-of-the-art performance on some small atomic systems (Be-Ne, C+).

i





ACKNOWLEDGEMENTS

Over the last four years I have written over 100,000 of code (to varying degrees of quality),
travelled around 50,000 kilometers, written over a thousand pages, cried 7 times, met hundreds
of talented people, burned enough compute to make me concerned for the polar bears, fell in-and-
out of love, and learned some things. Yes the error bars on these estimates are large and no I
did not do any of this alone. Well, some of it was done alone, but you get the idea. Hopefully I
can do the fabulous people in my life justice with a shout-out here. If you read this and you’re
disappointed you are not immortalised in these words, well you should have been a better friend
(jk call me I’ll fix it, but let’s be honest who is even reading this anyway).

Thanks to my family Mitz, Weathered Wolf, Fats and Alison for the constant loving support,
being great human beings, and making me laugh. You make me aspire to be a better person, for
example I hope that one day I too can declare "I have no thoughts". To my nieces Flo and Eve for
existing, if you read this and provide me the access code gr33n-flamingo you will be financially
rewarded. To Grandma Maxine for teaching me maths all those years ago.

To my friends you get some letters for all the good times, the memories and the free therapy:
AA, JB, AF, MN, ED, AS, KK, JM, SV, JF, JM, FW, JW, EM, BF, SC, RN, LP, JS, KM, MG, NG,
_lamingo. In particular, thanks to Mae, who helped me understand myself more than physics
(even though she knows a s*** tonne): lybbly. No you can’t all have named shout-outs.

To the team at Bristol and Cohort 3, something something team work makes the dream work.
Especially to Jorge whose words "there’s this f****** thing in my brain and it keeps me going",
inspired me to not follow my dreams and move to Paris to be an actor. Not sure if this one is a
thanks or not. To Colin Campbell for taking me on when no one else would and putting up with
the administrative burden of an astray student, it is only through your kindness that I was able
to do the research I wanted to do in the places I needed to be.

To the team at NASA Ames for being welcoming, full of great ideas, and always open to
discuss their expertise. Special and sincere thanks to Eleanor Rieffel whose positivity, love of
research, genuine kindness and excellent guidance I was lucky enough to experience. To the
friends I made in California who made it feel like home and provided motivation when times
were rough, in the words of Jason "I’m (now) bettin’ on me, baby".

Thanks to φφ, an exceptional collaborator, with talent up to his eye balls, who provided
feedback on some of the Chapters. That said, it is not clear to what extent Jula is the true
Markovian dynamics virtuoso in that relationship. Either way, the most important thing is who
is the current Lord of Catan (Zorro).

The world is full of fabulous people and I am very lucky to have interacted with so many over
the course my Ph.D. You rock. That’s all folks, or as we say in Polish, "Siema, jestem Adam..."...

iii





AUTHOR’S DECLARATION

I declare that the work in this dissertation was carried out in accordance with the
requirements of the University’s Regulations and Code of Practice for Research
Degree Programmes and that it has not been submitted for any other academic

award. Except where indicated by specific reference in the text, the work is the
candidate’s own work. Work done in collaboration with, or with the assistance of,
others, is indicated as such. Any views expressed in the dissertation are those of the
author.

SIGNED: DATE: 25TH MARCH 2021

v





PUBLICATIONS

R. Serban, M. Wilson, M. Benedetti, J. Realpe-Gomez, A. Perdomo-Ortiz, A. Petukov and P.
Jayakumar, Quantum annealing for mobility studies: Go/no-go maps via quantum assisted
machine learning, in Proceedings of GVSETS conference in the Modeling & Simulation,
Testing & Validation track, 2018

M. Wilson, T. Vandal, T. Hogg and E. Rieffel, Quantum-assisted associative adversarial
network: Applying quantum annealing in deep learning, arXiv:1904.10573, 2019 (Quantum
Machine Intelligence, accepted conditional on minor revisions, 2021)

M. Wilson, R. Stromswold, F. Wudarski, S. Hadfield, N. Tubman, E. Rieffel, Optimizing
quantum heuristics with meta learning, Quantum Machine Intelligence, 2020

N. Gao, M. Wilson, T. Vandal, W. Vinci, R. Nemani and E. Rieffel, High-Dimensional
Similarity Search with Quantum-Assisted Variational Autoencoder, in Proceedings of
SigKDD international conference, 2020

M. Wilson, N. Gao, F. Wudarski, E. Rieffel and N. Tubman, Simulations of state-of-the-art
fermionic neural network wave functions with diffusion Monte Carlo, arXiv:2103.12570,
2021 (Planned submission in Physical Review X)

vii





TABLE OF CONTENTS

Page

List of Tables xiii

List of Figures xv

1 Introduction 1
1.1 Challenges of quantum machine learning . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Quantum many body problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Classical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Hybrid quantum-classical models . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 11
2.1 Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 General formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Wave Mechanics Formulation of Quantum Mechanics . . . . . . . . . . . . . 17

2.1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Deep Learning and Quantum Annealing 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Generative Adversarial Networks . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Boltzmann Machines & Quantum Annealing . . . . . . . . . . . . . . . . . . 26

3.3 Quantum-assisted associative adversarial network . . . . . . . . . . . . . . . . . . . 30

3.3.1 Latent space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.3 Reparametrisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.4 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ix



TABLE OF CONTENTS

3.5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.3 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Optimizing quantum heuristics with metalearning 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Quantum Alternating Operator Ansatz . . . . . . . . . . . . . . . . . . . . . 45

4.2.2 Variational Quantum Eigensolver . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.3 Meta-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 Simulation Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.2 Optimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.2 Configuring Optimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.3 Training the meta-learner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Discussion & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5.1 General Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5.2 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5.3 Evolutionary Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5.4 Problems and algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.5 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Neural network Ansätze 61
5.1 Notation and Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 The system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.2 Atomic units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Wave function models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 The wave function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.2 Hartree product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.3 Slater Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.4 Hartree-Fock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.5 Slater-Jastrow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.6 Slater-Jastrow-backflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Quantum Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

x



TABLE OF CONTENTS

5.3.1 Variational Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.2 Solving the Schrödinger equation with Variational Monte Carlo . . . . . . 72

5.3.3 Diffusion Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.4 Stochastic reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Homogeneous Electron Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Fermionic neural networks and Kronecker Factored Approximate Curvature 83
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Solving the Schrödinger equation for fermionic systems . . . . . . . . . . . . . . . . 85

6.2.1 Fermionic Neural Network Ansatz . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.2 Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2.3 Centering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.4 This work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3.1 FermiNet* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3.2 Pretraining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3.3 Kronecker Factored Approximate Curvature . . . . . . . . . . . . . . . . . . 98

6.3.4 Variational Monte Carlo with Kronecker Factored Approximate Curvature 99

6.3.5 Diffusion Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.6 Code and Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4.1 GPU, CPU and Computational Time . . . . . . . . . . . . . . . . . . . . . . . 114

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.5.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5.3 Final comment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Concluding remarks 117
7.1 Hybrid quantum-classical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.1.1 Classical models - quantum problems . . . . . . . . . . . . . . . . . . . . . . 119

7.1.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Bibliography 121

xi





LIST OF TABLES

TABLE Page

6.1 Model hyperparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Table containing all variables used in the Variational Monte Carlo (VMC) algorithm

using Kronecker-Factored Approximate Curvature (KFAC) updates in this work. . . 100

6.3 Model hyperparameters used for the hyperparameter optimization. . . . . . . . . . . . 102

6.4 Variables used in the Diffusion Monte Carlo method here. . . . . . . . . . . . . . . . . . 107

6.5 Comparison of VMC ad Diffusion Monte Carlo (DMC) results with existing works.

FermiNet* energies are computed from 1×104 batches of size 8096 given a model after

1×105 of training. The number in the brackets indicates the error on the calculation

at the same precision as the value reported. For example, -14.66734(2) indicates a

value of -14.66734±0.00002. All errors reported in this work are the standard error on

the mean.
† result not directly reported. Computed from ionisation energy and carbon energy

result and the errors propagated via addition. . . . . . . . . . . . . . . . . . . . . . . . . 111

xiii





LIST OF FIGURES

FIGURE Page

1.1 Simple analysis of the dataset [271], indicating seasonal oscillations in temperature

and an overall upward trend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Plot showing the general trend of the computational power of GPUs since 2006 in

Giga FLOPS (GFLOPS). Green line is a by eye fit of a quadratic line. Data collated

from source [192], complete description of data and other sources [167]. . . . . . . . . 5

1.3 Log plot showing model size (as measured by the number of parameters) as a function

of year since 2012. Green line is a log fit to the data included to highlight the general

trend. Data taken from [176, 289]. AlexNet is a convolutional neural network designed

for image recognition and GPT-3 is a language model producing text for a wide range

of applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Projected development of quantum computing by Google quantum artificial intelli-

gence lab, Figure taken from [140]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Projected development of the D-Wave quantum annealing hardware in 2010. Un-

fortunately, the predictions were potentially exaggerated, and a quantum computer

‘faster than the universe’ is not available yet, though hopes remain for ‘faster than the

galaxy’. Figure taken from [248] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Electric field of a photon illustrated in Euclidean space. Photons with electric field

parallel to the polarisation of a filter can pass. . . . . . . . . . . . . . . . . . . . . . . . . 12

xv



LIST OF FIGURES

3.1 The inputs to the generator network are samples from a Boltzmann distribution. A

Boltzmann Machine (BM) trains a model of the feature space in the generator network,

indicated by the Learning. Samples from the quantum annealer, the D-Wave 2000Q,

are used in the training process for the BM, and replace the canonical uniform noise

input to the generator network. These discrete variables z are reparametrised to

continuous variables ζ before being processed by transposed convolutional layers.

Generated and real data are passed into the convolutional layers of the discriminator

which extracts a low-dimensional representation of the data. The BM learns a model of

this representation. An example flow of information through the network is highlighted

in green. In the classical version of this algorithm, MCMC sampling is used to sample

from the discrete latent space, otherwise the architectures are identical. . . . . . . . . 24

3.2 (a) Complete (b) Chimera (c) symmetric bipartite graphical models. These graphical

models are embedded into the hardware and the nodes in these graphs are not

necessarily representative of the embeddings. . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 QAAAN training algorithm. ρ represents the distribution sampled by the quantum

annealer, therefore ρ→φ represents sampling a set of vectors zi from distribution ρ.

The training samples, X, are sampled from the datasets MNIST or LSUN bedrooms.

Steps 5 and 8 are typical of Generative Adversarial Network (GAN) implementation,

G(·) and D(·) are the functions representing the generator and discriminator networks,

respectively. For clarity, we have omitted implementation details arising from the

embedding a logical graph into the quantum annealer. Further details on mapping to

the logical space for samples from the quantum annealer can be found in Section 3.3. 29

3.4 Left to right: 28x28 continuous, 6x6 continuous, 6x6 stochastically binarized example

from the MNIST dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 The probability density function, p(x), for different values of α. In this investigation

α= 4 was used, to distinguish strongly from the uniform noise case. . . . . . . . . . . . 33

3.6 Comparison of the convergence of different graphical topologies trained using samples

from a quantum annealers on a reduced stochastically binarized MNIST dataset. The

learning rate used was 0.03. This learning rate produced the fastest learning with no

loss in performance of the final model. The learning was run 5 times over different

embeddings and the results averaged. The error bars describe the variance over these

curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7 Comparison of different graphical topologies trained using MCMC sampling on a

reduced stochastically binarized MNIST dataset. The learning rate used was 0.001.

This learning rate was chosen such that the training was stable for each topology,

we found that the error diverged for certain topologies at other learning rates. The

learning was run 5 times and the results averaged. The error bars decribe the variance

over these curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xvi



LIST OF FIGURES

3.8 Example MNIST characters generated by (a) classical and (b) quantum-assisted

associative adversarial network architectures, with sparse topology latent spaces. . . 37

3.9 Bedrooms from the LSUN dataset generated with an associative adversarial network,

with a fully connected latent space sampled via MCMC sampling. . . . . . . . . . . . . 38

4.1 Meta-learner training on a Quantum Processing Unit (QPU - green). This diagram

illustrates how the meta-learner used in this work can optimize the parameters of a

quantum circuit (see Section 4.3 for a full description). Here, we outline a high level

description for each time-step, such as T −2 (shown). A model, in our case a long

short-term memory (LSTM) recurrent neural network (blue) (Section 4.2), takes in

the gradients of the cost function. The LSTM outputs parameters ~φ for the QPU to

try at the next step. This procedure takes place over several time-steps in a process

known as unrolling. The costs from each time-step are summed to compute the loss,

L (purple), at time T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 A single time-step of a general variational quantum algorithm, where the classical

processing unit (CPU - blue) outputs parameters ~φ dependent on some evaluation, in

this case the expectation value 〈H〉 by the quantum processing unit (QPU - green). The

quantum subroutine is encoded by a quantum circuit U(~φ) (Figure 4.3) parameterized

by ~φ, and it is responsible for generating a state |ψ(~φ)〉. This state is measured in

order to extract relevant information (e.g. expectation value of a Hamiltonian). The

classical subroutine suggests parameters ~φ based on the values provided by a quantum

computer, and sends new parameters back to the quantum device. This process is

repeated until the given goal is met, i.e. convergence to a problem solution (e.g. the

ground state of a Hamiltonian). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 General parameterized quantum circuit, with arbitrary unitaries U j(φ j), input state

|0〉 and classical register c, where ~φ= [φ1,φ2, ...,φn] are the parameters of the circuit.

Though the unitaries do not necessarily act on all qubits, we have arranged them

here in ‘blocks’, similar to the general architectures of Quantum Alternating Operator

Ansatz (QAOA) and Variational Quantum Eigensolver (VQE), where a block of opera-

tions may be repeated many times in a circuit, with different parameters. In the case

of VQE, a block might be a series of single qubit rotations or a set of entangling gates

(such as CNOT), and for QAOA, a block might be a phase unitary encoding the cost

function or a mixing unitary for searching the solution space. . . . . . . . . . . . . . . . 44

4.4 Effective single qubit rotation gate fidelity plotted as a function of the noise on

input parameters. Parameters are sampled from a normal distribution with standard

deviation σ and centered on the target input value. . . . . . . . . . . . . . . . . . . . . . 47

4.5 Rotation of initial state |0〉 (green) by rotation operator RZ(π/4)RY (π/3)RZ(0) to new

state (orange arrow, red point). When noise of σ = 0.1 is applied to the parameter

setting we see a distribution of final states (blue) over 100 trials. . . . . . . . . . . . . . 48

xvii



LIST OF FIGURES

4.6 Sketch of a spinless three-qubit Free Fermions model that is used for the VQE opti-

mization. Coupling strengths are not necessarily equal and take values from [−2,2].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.7 Left to right columns: Free Fermions models, Graph Bisection and MAX-2-SAT prob-

lems. Top to bottom rows: Wave Function, Sampling and Noisy simulations, defined

in Section 4.3. Optimizers: Evolutionary strategies (blue), Nelder-Mead (green), L-

BFGS-B (red), meta-learner (purple). x-axis: Shared within a column, QPU iteration

is number of calls to the QPU. y-axis: Shared within a row, G , the gain, is the value

computed by Equation (4.9), and represents the average progress toward the minimum

from the initial evaluation of 〈H〉. L-BFGS-B and the meta-learner have access to

the gradient, and make numerous calls to auxiliary quantum circuits (simulated in

the same environment as the expectation value evaluation circuits) to compute the

gradients. The number of calls to evaluate gradients of parameters is Ng = 2M, where

M is the number of parameterized gates in the circuit. The QPU iteration variable

captures this, i.e. is the total number of calls to a QPU for an optimizer. Error bars

are the standard error on the mean, σ f /
p

n where n is the number of examples and

σ f the standard deviation of the performance of the optimizers. Note that negative

values of G are observed, corresponding to on average performing worse than the

initial evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8 Bubble and bar plots of the frequency of near-optimal solutions. The size of each bubble

is dependent on the total number of times an optimizer came within 2% of the global

optima across all problem instances (computed by Equation (4.10)); the largest bubble

is L-BFGS-B in the Wave Function environment (115). Repetitions are included, i.e. if

an optimization ended in a near-optimal solution it was counted, regardless of whether

it was found in a previous optimization. We found that if one optimizer performed

well in one task, it performed well, relative to the other optimizers, in another (by

this metric), so each bubble is not divided into each problem class. The right bar plot

represents the summation across optimizers within a simulation type. The bottom

bar plot represents the summation within an optimizer across simulation types. (N -

Noisy, S - Sampling, W - Wave Function) . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.9 Gain to minimum of L-BFGS-B and meta-learner optimizers in a Wave Function

environment applied to QAOA problems Graph Bisection and MAX-2-SAT. These

problems are 12 variable problems with QAOA hyperparameter p=5. This is contrasted

with the problems explored in Figure 4.7, which are 8 qubit problems with p=3. The

meta-learner is the model trained on this previous problem set. QPU iteration is the

number of calls made to a quantum circuit. In this case, each optimization step is

Ng = 2M = 20, where M = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xviii



LIST OF FIGURES

5.1 Cartoon of a Pople diagram, showing the relationship between the cost and accuracy

of the method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Cartoon of the accuracy of the methods described in previous sections. The Hartree-

Fock limit is the energy obtained by a complete basis. Relativistic effect shows the

solution to the Schrödinger equation when including relativisitic physics into the

model and the exact solution is the energy of the exact ground-state of the time

independent Schrödinger equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1 The system of atoms (protons/neutrons red/green) and electrons (blue). The set of posi-

tion vectors of a system of atoms, Ri and electrons ri. Xorigin is the origin (black) of the

coordinate system. In all cases explored here we considered single atom systems and

the origin was set to the nucleus position. However, the choice of origin is completely

arbitrary as FermiNet is invariant to translations. . . . . . . . . . . . . . . . . . . . . . 84

6.2 Sketch of the relationship between a and z. For some layer l, zl are the pre-activations,

f (z) is an activation function, al are the activations and wl are the weights. Data

variables are in circles, functions in square and network parameters in diamond. . . . 93

6.3 Overview of FermiNet. The system description X is used to compute the single stream

and pairwise stream input feature tensors h0α
i and h0αβ

i , respectively. These are

passed to the permutation equivariant function (EQV), Figure 6.4. Linear layers are

applied to the resulting tensors with tanh activations. Outputs of the Split Stream

and Single Stream matrix multiplications are combined before a tanh activation in the

Single Stream layer. These layers are repeated 4 times. After the final permutation

equivariant function, the Split Stream and Single Stream outputs are concatenated

(++) and Pairwise Stream data discarded. The concatenated tensor is passed through

a final spin dependent linear transformation to spin-up and spin-down determinants.

The final layer is a custom computation of the determinants which involves stable

first- and second-order derivatives and the LogSumExp trick. . . . . . . . . . . . . . . . 94

6.4 Data from the single and pairwise streams are combined in this operation via Equa-

tions (6.40) & (6.41). The pairwise stream data remains unchanged. . . . . . . . . . . . 95

6.5 The blue line corresponds to the network outlined in Reference [204], the orange line

to the method of splitting the single streams, Equations (6.40) and (6.41), and the

green line the resource requirements of splitting the single stream and removing

redundant pairwise streams. The resource requirements are measured as the num-

ber of required operations, nops, Equation (6.39). The walltime comparison of these

methods is shown in (b). It is important to note that the computational time of the

framework is dominated by the determinant calculation. These improvements will

become negligible at much larger systems. . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.6 Demonstration of performance of the network dependent in the spin structure of the

Ansatz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xix



LIST OF FIGURES

6.7 Flow diagram of distributed KFAC used in this work. The blue hexagons are the

head worker, green hexagons workers. There are multiple workers, indicated by

the staggered images and ellipses. The red squares are variables computed at one

step and used at the next. θ are the parameters of the model, δ̃ are the approximate

natural gradients, ∆ log |ψ(X )| are the derivatives of the wave function wrt the electron

position vectors and EL are the local energies of the walkers X . These are tensors

with M copies, where M is the batch size on a worker. Ā and S̄ are the left and right
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INTRODUCTION

In the beginning the Universe was created.

This has made a lot of people very angry and been widely regarded as a bad move.

— Douglas Adams, The Ultimate Hitchhiker’s Guide To The Galaxy

Analysing and applying large amounts of data is a hard problem. Data is usually a

set of numerical values describing an object or objects. For example, if we measure the

temperature in Bristol (UK) every month for a 100 years and analyse the data (effectively),

we might find that the temperature increases during summer, decreases during winter, and,

though it may not be warm on average in any given year, there may be a concerning overall

upward trend, Figure 1.1. We then can apply this understanding to timing our winter clothing

purchases or deciding when to move our homes further inland. This problem of analysing and

applying data becomes increasingly difficult, roughly speaking, as the dimensionality (number of

variables) and size of the dataset increase [127].

Machine learning algorithms are tools for the analysis and application of data. A significant

proportion of machine learning algorithms can be defined, at a high level, as the optimisation

of a parameterised function, which is referred to as a model, via the processing of data. This

fundamental description spans the many manifestations of machine learning, which are usu-

ally grouped under the umbrellas of ‘supervised’, ‘unsupervised’ and ‘reinforcement’ learning

paradigms. These subfields are defined by the general characteristics of the algorithms, for

example, supervised learning typically involves a prediction or classification problem, unsu-

pervised learning attempts to discover patterns in data, and reinforcement learning creates

models that depend on a reward signal.
Deep learning is the current dominant method for solving machine learning problems. It

consists of different types of models (neural networks), optimisation routines and computational

frameworks for analysing and applying data. These methods have been remarkably successful at

solving a range of hard problems, including the protein folding problem [121], games [239] and
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Figure 1.1: Simple analysis of the dataset [271], indicating seasonal oscillations in temperature
and an overall upward trend.

physics [75], broadly resulting from the flexibility and modelling capacity of the networks [153].

These ideas have been adapted to quantum computational frameworks and applied to quantum

mechanical problems [51, 108, 204].

Quantum mechanics is a set of rules that describe the behaviour of experiments. These rules

predict, to a very high precision, the behaviour of some observable physics. There are, of course,

short-comings (usually when describing very large systems), which are not relevant to the work

in this Thesis.

Systems that behave in a quantum way, for example exhibiting wave-like nature (super-

position) and uniquely quantum correlations (entanglement), are called quantum systems. A

quantum system can be a collection of particles (atoms and electrons) and their relevant proper-

ties. Abstract models of quantum systems, for example sets of two level systems with properties of

entanglement and superposition, can be used as a framework to develop algorithms that exploit

the peculiarities of quantum mechanics to process information.

Quantum machine learning is a broad term encompassing machine learning algorithms

that are either partly or entirely based on quantum information processing principles
or entirely classical machine learning algorithms used to solve quantum mechanical
problems, where ‘classical’ is used to indicate algorithms which do not use any quantum me-

chanical principles to process information. Quantum information processing is a well-established

theoretical framework for processing information modelled by quantum mechanics. Recent and

rapid advances in quantum information processing devices have contributed to a surge of interest

in the design and application of this technology, including in the field of quantum machine
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learning. Further, developments in classical machine learning, particularly with regards to the

capacity of models and the computational power of GPU hardware, have encouraged researchers

to apply these algorithms to quantum mechanical problems.

This Thesis explores the different ways that classical neural network theory and quantum

mechanics, including quantum computation, interact. For example on the one hand, quantum

mechanical systems are remarkably hard to simulate because of their quantum properties, and

experiments conducted in this Thesis indicate that classical neural network methods may, in

some use cases, take precedence over incumbent methods for the modelling of quantum states. On

the other hand, it is these quantum properties that motivate researchers, by way of computational

promise, to explore the possibility of using quantum mechanical systems (quantum computers) in

neural network algorithms.

In the following Sections, quantum machine learning is motivated. First, the quantum many

body problem is discussed, followed by a presentation of neural networks as models for this

problem. Second, quantum machine learning is motivated and hybrid quantum-classical models

based on neural network methods are introduced.

1.1 Challenges of quantum machine learning

1.1.1 Quantum many body problem

It is important to understand quantum systems and be able to make predictions about their

behaviour, for reasons ranging from understanding fundamental physics and the limitations of

the rules to practical problems such as designing new formula for batteries. This is not a trivial

problem: The dimension of the quantum system to be modelled is exponential in the degrees of

freedom. Exact modelling of a quantum system quickly becomes impractical. This problem is

referred to as the quantum many-body problem.

Observing a phenomenon that we would like to understand, a physicist might conjure a

simplified model of the system hoping to capture most of the physics, which will then accurately

predict the phenomena. If the model accurately predicts the phenomena; it is a good model. The

model is a set of equations describing the behaviour of the system. In order to understand the

system, one must solve the equations. In the case of a quantum system, we must first create an

accurate description of the quantum state, the object that describes the quantum system.

Accurate descriptions of quantum states allow us to predict the value of physical properties

of a quantum system and to determine behaviour of the system in time. There are (effectively)

uncountable classical approximations for modelling quantum systems. These methods have been

designed, refined and specialised over decades and work in a range of problems, situations and

computational constraints. Low energy states are of particular interest because these states

frequently appear in nature.
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In general, finding good descriptions of ground states (or other low energy states) of quantum

systems is effectively impossible analytically and can be computationally demanding to find

via heuristic methods. A heuristic method is roughly defined as a method that does not have

guarantees on the quality of a solution or on the time required for a particular problem. The size

of the state space of the quantum system is exponential in the number of degrees of freedom,

where a degree of freedom might be the spin or orbital angular momentum of a particle, therefore

scaling to larger systems can be expensive. The corollary of this is the amount of information

required to describe a quantum state is also exponential in the number of degrees of freedom.

To simply highlight this problem, if a small quantum system has 50 discrete degrees of freedom

(each of which has 2 valid classical states), a complete description of the quantum state will

require 1,125,899,906,842,624 numbers (although in practical systems many of these numbers

will be effectively zero, as the state is concentrated in some smaller region of the space). Using

32-bit precision floats for these numbers results in 5 petabytes of data, for context Summit, one

of the largest supercomputers in the world, has in total around 10 petabytes of RAM [141].

The importance and difficulty of the problem, simulating quantum states, stimulates a rich

area of research. There is a smorgasbord of methods for finding ground states of quantum systems

including Quantum Monte Carlo [85], Tensor Networks [193], Density Functional Theory [17]

and Coupled-Cluster [139]. These methods work in a variety of circumstances, for example Tensor

Networks are particularly well suited to quantum systems whose ground states satisfy area law

entanglement. The less computationally demanding approaches, for example Density Functional

Theory, can require a fair amount of tuning and intuition in their application to a particular

system.

It is precisely the same properties that make quantum states difficult to simulate, notably the

exponential size of the space that they are described in, that motivates the development of quan-

tum information processing devices that can exploit these quantum properties for algorithmic

speedups. These devices and algorithms are introduced in Section 1.1.3.

1.1.2 Classical models

Neural networks are conceptually derived from observations of the central nervous system. At

a high level, they are connected nodes of a graph where the value of a node is a function of all

the inputs to that node. In some frameworks the node will ‘fire’ (output a value) in the same

way that a neuron in the central nervous system can be thought to fire after the inputs cross

some threshold (though biological neurons fire in discrete spikes, there are analogous models of

this behaviour from neural networks such as Bolzmann machines). They are used to represent

models, which can be used to analyse data. These models are non-linear parameterised functions

which can change the parameterisation to be useful for some task, or, borrowing language again

from the cognitive sciences, ‘learn’. They and associated optimisation methods form the core of

recent spectacular advances in machine learning, and are the focus of this Thesis.
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Figure 1.2: Plot showing the general trend of the computational power of GPUs since 2006 in
Giga FLOPS (GFLOPS). Green line is a by eye fit of a quadratic line. Data collated from source
[192], complete description of data and other sources [167].

The ideas powering neural networks go as far back as the 1940s [171]. In the following decades

researchers and pundits vacillated between techno-optimism and despair [186], leading to fits

and starts of progress in neural network research. A fundamental development required to usher

in the practical advances made in recent years was backpropagation, arguably outlined by Paul

Werbos in the 1970s [274]. Though much of the theory and understanding was developed before

the end of the millennium, there were two more pieces required before neural network methods

became the engine of innovation they are today. The first is the sheer quantity of accessible data,

driven by the prevalence of computers and more directed efforts for it to be collected and made

available. The second came in 2012 when AlexNet [138] completed the puzzle by increasing the

efficiency neural networks by moving the computations from Central Processing Unit (CPU)

to Graphics Processing Unit (GPU). The inherently parallel nature of these chips means they

are predisposed to the computations required for neural networks, for example batched matrix

multiplications, and the computational power of these chips is consistently rising, Figure 1.2,

allowing larger and larger models to be trained, Figure 1.3.

Since then neural networks have claimed state-of-the-art performance in a multitude of tasks:

Image classification [254], natural language processing [45], recommender systems [295] and

games [239]. They are extremely flexible parameterised functions, with demonstrably exceptional

capacity to learn from data.

It is for these reasons that they can be applied to many different problems in a range of
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Figure 1.3: Log plot showing model size (as measured by the number of parameters) as a function
of year since 2012. Green line is a log fit to the data included to highlight the general trend. Data
taken from [176, 289]. AlexNet is a convolutional neural network designed for image recognition
and GPT-3 is a language model producing text for a wide range of applications.

approaches. Naturally, neural network methods are beginning to be used as tools understand-

ing quantum systems [52], have been used in a variety of ways in conjunction with quantum

computers [7], and solving quantum mechanical problems [142].

1.1.3 Hybrid quantum-classical models

Although neural network algorithms have demonstrated good performance on a range of problems,

they have some drawbacks. Firstly, they require large amounts of data, which is usually required

to be labelled; a labour intensive process. Secondly, they are expensive to train and run, for

example low-end estimates of the cost of training one of the currently largest known models

at the time of writing, GPT-3, was $5 million [46]. Finally, it is not trivial to understand the

behaviour of a model or predict the performance a priori. The first and third problems are not

discussed here. However, there are theoretical speedups for quantum analogues of classical neural

network algorithms, which may decrease the cost of these methods or improve the performance

of hybrid quantum-classical models over their purely classical implementations.
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1.1.3.1 Quantum Computing

In the 1980s researchers pointed out that quantum systems could not be efficiently simulated by

classical Turing machines [84, 159, 256]. These works provided the motivation and foundational

building blocks of quantum computing, the offspring of information theory and quantum mechan-

ics [216]. Arguably, it was Shor’s algorithm [238], published in the twilight of the 20th century

that motivated the stunning rise of physical quantum computers. In his work, Shor presented a

polynomial time quantum algorithm for factoring integers: A problem with no known classical

polynomial time algorithm.

Other quantum algorithms with theoretical speedup (or improvements in performance),

though it is not rigorously proven that there does not exist some faster classical algorithm,

include Grover’s search [97], quantum adiabatic optimisation [80], the Harrow-Hassidim-Lloyd

algorithm [155] and quantum phase estimation [4], an algorithm providing exponential speedup

for the problem of finding the eigenvectors and eigenvalues of a Hamiltonian. There are many

other examples, explored in the reviews from References [61, 181], though often, as discussed in

Reference [181], these are based on a small set of common subroutines. These algorithms come

from the complexity class bounded error quantum polynomial time and running them requires

some device capable of performing the required operations: quantum information processing

devices or quantum computers.

There are different models of quantum computation, including quantum annealing [16],

gate-model [189] and measurement-based [211]. In this Thesis, gate-model quantum computation

and quantum annealing are explored, which represent the current most successful and well

known physical realisations of these machines.

Physical quantum computers are difficult to build, especially at the scale (thousands or

millions of qubits) required by some algorithms (reference above) due to the fragility of quantum

states (they are susceptible to decoherence). As a result these algorithms may require some form

of error correction [237] or quantum random access memory [40]. Recently developed devices,

often referred to Noisy Intermediate Scale Quantum (NISQ) devices, are not error-corrected

and suffer from large amounts of noise (decoherence, readout error, gate errors). There is much

uncertainty surrounding the scalability of these devices, and it is therefore unlikely algorithms

requiring thousands of error-corrected qubits will represent the first useful real-world use of

quantum computation. Figures 1.4 and 1.5 show some early predictions of scaling from prominent

groups in the field, for the gate-model and quantum annealing paradigms, respectively.

However, advances have been made on quantum heuristics [79, 201], algorithms with no

provable and guaranteed performance bounds, which may provide a path to useful quantum

computation in the near(er) term. Early examples of these algorithms are explored further in

Chapter 4. There are many useful sources for learning about quantum computing in general, in-

cluding References [132, 189]. Given theoretical speedups, a natural progression is the application

of quantum computation in quantum machine learning.
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Figure 1.4: Projected development of quantum computing by Google quantum artificial intelli-
gence lab, Figure taken from [140].

Figure 1.5: Projected development of the D-Wave quantum annealing hardware in 2010. Unfortu-
nately, the predictions were potentially exaggerated, and a quantum computer ‘faster than the
universe’ is not available yet, though hopes remain for ‘faster than the galaxy’. Figure taken from
[248]

.
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1.1.3.2 Quantum machine learning

There are many examples of theoretical quantum speedup over classical machine learning

algorithms: Quantum Bayesian inference [278], the quantum support vector machine [214], and

quantum reinforcement learning [77], to name a few. These algorithms often exploit well known

subroutines (for example HHL [155]), sometimes with quantum RAM (qRAM) [88], to provide

quadratic or logarithmic speedups. They require fault tolerant (error corrected) computation

with many qubits and often ignore challenging problems such as state preparation (the ‘input

problem’), which can require exponential time [3], and therefore may not be practical.

For problems that can be targeted by near-term quantum devices, and especially in the

field of neural networks, there will be no definitive proof of superiority. Instead, analysis of

performance must be done by benchmarking: The process of comparison of methods on specific

problems. Evidence motivating these cases is not strong. For example, in order to motivate

quantum Boltzmann machines trained via samples from a quantum annealer one has to show

that quantum annealers can collect better representative samples of the distribution at lower

cost than their classical counterparts, and also how quantum models may capture more useful

correlations in data than purely classical models.

Unfortunately, quantifying and verifying the performance of heuristic machine learning

algorithms is a hard problem. The same applies to quantum machine learning algorithms.

Further, the notion of performance is an contextual amalgamation of many variables: Cost,

accuracy, speed, and whatever the requirements are of the particular problem [37]. In this work

these benchmarking problems are not tackled, though some comparisons are made. Here the

focus is on developing useful hybrid quantum-classical frameworks that lay the groundwork for a

more ambitious understanding of these early stage hybrid models.

1.2 Outline

Chapter 2 is a short background on the core concepts of quantum mechanics, including in the

general formalism, the wave mechanics formalism and the abstraction to quantum computation.

In Chapter 3 we outline a quantum-assisted neural network, the quantum-assisted associative

adversarial network, which exploits sampling from a quantum annealer as a subroutine in the

framework. The work for this Chapter was done in collaboration with T. Vandal, T. Hogg, and

E. Rieffel, and was accepted conditional on minor revisions in Quantum Machine Intelligence

(Reference [283]).

After, in Chapter 4, we investigate optimisation for quantum heurisitics in the gate-model

framework of quantum computation. Meta-learning, an optimisation paradigm from neural

network methods, is shown to have better performance under parameter setting noise than

other more standard optimisers, indicating that practical quantum heurisitics might benefit from

support from neural network methods on quantum devices. The work for this Chapter was done

9
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in collaboration with R. Stromswold, F. Wudarski, S. Hadfield, N. Tubman, and E. Rieffel, and has

been accepted and is awaiting publication in Quantum Machine Intelligence (Reference [282]).

Next, in Chapters 5, we first describe the background of modelling fermionic wave functions

and the development of neural network methods in the field. Chapter 6 demonstrates a state-of-

the-art method, the Fermi Net [204], and various extensions, notably the application of Diffusion

Monte Carlo to the Ansatz. The work for Chapter 6 was done in collaboration with N. Gao, F.

Wudarski, E. Rieffel and N. Tubman, and has not begun the process of journal submission yet

(Reference [281]). Finally, Chapter 7 contains concluding remarks.

Overall, this Thesis makes progress on understanding the interplay between quantum

mechanics and neural networks. Initially, hybrid quantum-classical models are developed, in

both quantum annealing and gate-model frameworks, and one of the problems associated with

modelling quantum states with classical neural networks is tackled, achieving state-of-the-art

performance. Quantum neural networks in both these guises are exciting new paradigms for

solving problems. The trajectories for the improvements of the methods and hardware in both

cases indicate that quantum machine learning will continue to be a fruitful research direction in

the years to come.

Contributions

• Developed a hybrid quantum-classical neural network framework: the first quantum-

assisted generative adversarial network and first (known) application to a complex

color dataset (Chapter 3)

• Provided evidence to support neural networks as optimisers for heuristics in near-

term hardware (Chapter 4)

• Improved state-of-the-art neural network methods for quantum Monte Carlo on

small systems by altering the network design and extending with Diffusion Monte

Carlo (Chapters 5 and 6). This is the first, to our knowledge, demonstration of

Diffusion Monte Carlo with neural network methods.
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BACKGROUND

Where both reason and experience fall short,

there occurs a vacuum that can be filled by faith.

— Jostein Gardner, Sophie’s World

This Chapter is an introduction to fundamental concepts from quantum mechanics that will be

used in all sections of the Thesis. More specific background, for example methods from quantum

annealing and gate-model paradigms, and literature reviews will be found before the relevant

work. This description begins with the general formulation of quantum mechanics as descriptions

of systems in an abstract Hilbert space via a simple experiment concerning the polarisation of

photons, and goes on to relate this formulation first with quantum computation and second with

the description of systems of electrons in real Euclidean space.

The aim of this Section is to provide the necessary mathematical tools to model the systems

and computational frameworks used in this Thesis. Other concerns of quantum mechanics, such

as the uncertainty principle, are irrelevant and as such are disregarded. For other and more

complete introductions to quantum mechanics refer to References [43, 95], or sources specific to

quantum computing and quantum chemistry [189, 199, 216, 249].

2.1 Quantum Mechanics

Depending on who is talking, there may be between 3 and 7 postulates of quantum mechanics

[43, 72, 210]. In general, the postulates must define how to describe states of a physical system,

how to define measurements on the physical system, and how to describe the evolution of the

system in time (including measurement) [197]. A simple physical system, a photon, is introduced

to ground abstract notions of states spaces to a physical reality.
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propagation

x

y

((a)) Linearly polarised light
with electric field oscillating par-
allel to the vertical axis.

propagation

x

y

((b)) Linearly polarised light
with electric field oscillating at
an angle to the vertical axis.

propagation

x

y

((c)) Circularly polarised light
with a phase difference of π/4 be-
tween the orthogonal basis vec-
tors.

Figure 2.1: Electric field of a photon illustrated in Euclidean space. Photons with electric field
parallel to the polarisation of a filter can pass.

2.1.1 General formulation

2.1.1.1 Photon polarisation

A photon is a single quantum mechanical particle of light that can be modelled as a wave

propagating in space. A polarisation filter is a barrier that allows the passage of photons whose

electric field is oscillating parallel to its polarisation axis. Imagine a box that generates linearly

polarised single photons, Figure 2.1(a). We place a polarisation filter aligned with the vertical

axis some distance from the box and a detector behind the filter. The detector clicks every time a

photon passes the filter and reaches the detector. At the start of the experiment the polarisation

of the photons is aligned with the polarisation axis of filter and all of the photons pass through.

A second filter, whose polarisation axis parallel to the horizontal axis, is added to the experi-

ment between the detector and the first filter. Now, no photons pass through to the detector, as the

polarisation axis is orthogonal to the polarisation of the photons. Finally, a third filter is added

between the two orthogonal filters. We can vary the angle of the polarisation axis of this filter

relative to the vertical axis. Something strange now happens, a variable number of the photons

pass through to the detector, dependent on the angle of rotation of the central polarisation filter.

States

This experiment can be described by quantum mechanics. We can describe the state of the

photon polarisation with a quantum state vector, |v〉. |·〉 is called a ket from Dirac notation, a

particularly compact way of mathematically handling quantum mechanical objects, which will

become more apparent as other concepts are introduced. The initial state of the polarisation of

the photon is |v〉 = |↑〉, and, as the polarisation axis of the first filter is aligned with the vertical

axis, the photon passes the filter with unit probability. Then, the second filter ‘measures’ the
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photon, and alters the state dependent on the angle of the filter with the vertical axis. Only

photons whose electric field is aligned with the filter will pass. If we decompose the polarisation

of the photon as a linear combination of basis states aligned with (|↗〉) and orthogonal to (|↘〉)
the polarisation axis of the filter,

(2.1) |v〉 =α(θ) |↗〉+β(θ) |↘〉 ,

we see that there is some non-zero component of the state vector |v〉 aligned with the filter.

This is a geometric decomposition of a vector into its component parts. The numbers α(θ) and

β(θ) are amplitudes of the polarisation of the photon in the states |↗〉 and |↘〉, respectively.

Experimentally, we find that the photon passes through the filter with probability |α(θ)|2. In

fact, as the photon must be in either state with unit probability,

(2.2) |α(θ)|2 +|β(θ)|2 = 1.

If it passes this filter, the new state of the polarisation of the photon is |v〉 = |↗〉. At each filter

the polarisation of the photon is measured to determine whether or not it can pass through the

filter. Measurement in quantum mechanics is associated with quantum operators. In this

instance, the operator for the polarisation filter is given by the matrix

(2.3) Û =
(
cos(2θ) sin(2θ)
sin(2θ) −cos(2θ)

)

where θ is the angle with the vertical axis. This can be derived from the projectors into

the basis {|↗ (θ)〉 , |↘ (θ)〉} where explicit θ dependence is included to directly relate basis of the

measurement operator Û to the eigenvectors. The eigenvectors of this operator, also called the

measurement basis, are the possible measured polarisations of an incident photon. In general,

all quantum operators associated with measurements of dynamical variables must be Hermitian,

(2.4) Û = Û† = (ÛT )∗

where T and ∗ indicate the transpose and complex conjugate, respectively. The eigenvalues of

a Hermitian matrix are real enforcing the condition that all physical observables be real valued.

This can be derived from the conservation in time of the normalization of the wave function

(unitarity) or from simply recognising that results of measurements must be real quantities.

In the final stage, performing the same logic as previously by decomposing the new state as

a linear combination of aligned and orthogonal states, we see that there is non-zero amplitude

aligned with the final polarisation filter. The final filter also measures the photon, giving the final

state before the detector |v〉 = |→〉.

13



CHAPTER 2. BACKGROUND

Hilbert space

For this particular experiment, we reasoned about the probability the photon passed certain

filters by decomposing the state of the polarisation into a linear combination of basis states. These

basis states span the entire space, that is to say any possible state could be described by a linear

combination of these states. The system was defined as the polarisation of the photon and the

space as the possible states of that system.

A system is a set of objects in a space. A space is a set of potential states (configurations) of

the objects with some operations defined on the space. A vector space is a set of vectors in N

dimensions that can be rescaled and added together (linear). The dimensionality of the space

is defined by the number of orthonormal (orthogonal and normal) basis states, and for this

system was 2. In general, the amplitudes of a quantum state vector are complex numbers, and

exist in an inner product space called a Hilbert space. An inner product space is a vector space

with a structure called the inner product defined for the space. The inner product 〈vi|v j〉 is a

scalar quantity associated with any pair of vectors, geometrically this is interpreted as the angle

between two vectors, and in a Hilbert space with orthonormal basis vectors {|v1〉 , |v2〉 , ..., |vn〉},

(2.5) 〈vi|v j〉 =
1, if i = j (Normal)

0, otherwise (Orthogonal)

where 〈vi| is a bra: The linear functional, a covector, of the ket |vi〉. Any bra 〈z| is a linear

map of all kets |vi〉 in the Hilbert space to the complex plane 〈z|vi〉 ∈C. Overall, a Hilbert space

is a abstract mathematical space that is complete, finite or infinite, complex-valued space with

an inner product defined on the space.

In the case of the polarisation of the photon, we can use the inner product to compute the

amplitude of the state aligned with the filter,

(2.6) 〈↗ |v〉 =α(θ)

=1︷ ︸︸ ︷
〈↗ |↗〉+β(θ)

=0︷ ︸︸ ︷
〈↗ |↘〉=α(θ).

This wave-like nature of quantum objects that allows states to be decomposed into linear

combinations of basis states is called superposition.

Linearly polarised light is described in the preceding text. If we change the phase between

the basis vectors of the quantum state, without changing the probability of measuring a basis

state, for example introducing a phase difference of π/4,

(2.7) |v〉 = ei π4α(θ) |↗〉+β(θ) |↘〉

the resulting photon is circularly polarised, Figure 2.1(c). This is an example of how phase

affects the properties of a system.

14



2.1. QUANTUM MECHANICS

2.1.1.2 General systems and the Schrödinger equation

Generally, a quantum system is a collection of particles. A particle is an object with certain physi-

cal properties, which can be called dynamical variables or observables, such as spin, momentum

and position, that are associated with quantum measurement operators. More concretely, an

observable is any physical property or dynamical variable that can be measured by experiment

[72]. Given a description of the quantum system (a quantum state), one can predict the outcome

of measurements of the dynamical variable of the particles in the quantum system. The outcomes

of these measurements are probabilisitic and are dependent on the amplitudes of the quantum

state. The spectrum of eigenvalues of these operators are the potential measured values of the

physical observable and the eigenfunctions are the corresponding states.

Of particular interest for a given system might be the energy spectrum. We can find the

spectrum by solving the eigenvector equation,

(2.8) Ĥ |ψ〉 = E |ψ〉

where Ĥ is the Hamiltonian, |ψ〉 is a solution (eigenvector) of the equation and E the energy

(eigenvalue). This equation is called the Schrödinger equation. The time-dependent Schrödinger

equation,

(2.9) Ĥ(t) |ψ(t)〉 =−i~
∂ |ψ(t)〉
∂t

,

describes how a quantum system evolves in time, where in both instances the Hamiltonian is

determined by the system. This is the equation of motion in quantum mechanics, analogous to

Newtons second law (F= ma).

Both formulations of the Schrödinger equation are linear: If |ψ0〉 and |ψ1〉 are solutions then

α |ψ0〉+β |ψ1〉 is also a solution, where α and β are complex valued scalars chosen such that the

overall wave function remains normalized. It is also a homogeneous equation: Multiplication of

a solution of the Schrödinger equation, by a scalar (rescaled) is also a solution. These are the

properties of a vector space.

In this general formulation the quantum state is also referred to as the wave function. As

described, this is an abstract quantity capturing the amplitude and phase of the quantum state

in space and time, where the amplitude and phase are analogous to the quantities of the same

name of classical waves.

Quantum computing

Although quantum mechanics describes physical systems, it is possible to abstract away from

the physical concepts. This forms the basis of the framework for quantum computation. For
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example, instead of discussing the polarisation of the photon we can instead talk about an

abstract quantum system in a space with basis states |0〉 and |1〉. A unit of information in a

classical Turing machine is called a bit, a state with value 0 or 1. The quantum analogue of the

bit is the qubit, a quantum state

(2.10) |ψ〉 =α |0〉+β |1〉

in a 2-D Hilbert space |ψ〉 ∈C2. As these states are unit length

(2.11) 〈ψ|ψ〉 = 1 or |α|2 + ∣∣β∣∣2 = 1.

They are constrained to a spherical region called the Bloch sphere. Operations on single qubit

states move them around the Bloch sphere. This generalizes to systems with larger numbers of

qubits to the analogue of the Bloch sphere in higher dimensions.

Two numbers are required to describe this state: α and β. A quantum system contain-

ing two qubits will require 4 numbers as any state in the space can be described as a linear

combination of the basis states. In the 2 qubit case these are (in the computational basis)

ψ⊥ = {|00〉 , |01〉 , |10〉 , |11〉}. As long as the basis states span the space, they define a valid basis.

In general we may not use an orthonormal basis, but in the example outlined here the basis

elements are orthonormal. The information required to describe a quantum state of multiple

qubits is exponential in the number of qubits, the state |ψ〉 ∈C2n
where n is the number of qubits.

The exponential memory requirements on the description of the quantum state are the reason

why classical Turing machines cannot efficiently simulate quantum systems.

In quantum computing, operations which transform qubit states are called quantum gates.

Quantum gates are unitary operations on one or more qubits, where unitary indicates the

operation maintains the normalisation of the quantum state vector. Famous examples are the

Pauli-X,Y,Z gates

(2.12) X̂ =
(
0 1

1 0

)
Ŷ =

(
0 −i

i 0

)
Ẑ =

(
1 0

0 −1

)

we denote these as X̂ , Ŷ and Ẑ respectively for consistency with later chapters, though other

typical symbolic representations are σ̂x, σ̂y and σ̂z.

The only other gates used in this Thesis are the Hadamard gate

(2.13) ÛH = 1p
2

(
1 1

1 −1

)
,

Pauli rotation gates

16



2.1. QUANTUM MECHANICS

(2.14)

R̂X (θ)=
(

cos(θ/2) −isin(θ/2)
−isin(θ/2) cos(θ/2)

)
R̂Y (θ)=

(
cos(θ/2) −sin(θ/2)
sin(θ/2) cos(θ/2)

)
R̂Z(θ)=

(
e−iθ/2 0

0 eiθ/2

)
,

and the controlled-NOT (CNOT) gate acting on two qubits

(2.15) ÛCNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


Finally, arguably essential to the potential power of quantum computation is the entanglement

property of quantum states: non-classical correlations between objects. Given two qubits in the

initial state |ψ〉 = |00〉, performing a Hadamard operation on the first qubit, then a CNOT on the

second conditional on the first, we create the state

(2.16) |ψ〉 = 1p
2

(|00〉+ |11〉).

The outcome of the measurement on the first qubit determines the state of the second qubit,

in this instance the measurement outcomes on the qubits are perfectly correlated.

2.1.2 Wave Mechanics Formulation of Quantum Mechanics

In this Section, some aspects of the wave mechanics formulation of quantum mechanics are

described, which is useful, amongst other things, for modelling systems of atoms and electrons.

The descriptions of concepts in the previous section are repeated here within this new formalism.

Suppose we would like to understand an electron moving around a nucleus. The electron is a

particle with properties such as position and momentum. The quantum state of a this particle

can be described in a Euclidean space. In general, Euclidean space is a finite dimensional (N-D

where N <∞) inner product space over real numbers, for example vectors in 3-D Euclidean space

can be described by r ∈R3. The inner product for a Euclidean space is usually referred to as the

dot or scalar product. The wave function in position representation is a function of positions

returning amplitudes. It can be represented by inner product of |r〉 with the quantum state |ψ〉

(2.17) ψ(x)= 〈r|ψ〉 .

|ψ〉 is the quantum state written in Dirac notation, representing a vector in a Hilbert space, r
is point in Euclidean configuration space and |r〉 is the corresponding state in Hilbert space.

This equation bridges the notions of the wave function in position representation to the

general formalism described in Section 2.1.1. Both representations of the wave function are valid,
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ψ(r) and |ψ〉, and in general are used to represent the quantum state in the wave mechanics and

general formulation of quantum mechanics, respectively. Of course, the wave function can be

generalized to systems of n particles ψ(r0,r1, ...,rn, t) evolving in time t.

In position representation, the wave function of a single particle is a function of coordinates,

r= (x, y, z), in 3-D Euclidean space (sometimes called the configuration space) and time, t, ψ(r, t).

The time t and position r are the configuration. The probability the electron can be found at any

point in space must be 1,

(2.18) P(t)=
∫ ∣∣ψ(r, t)

∣∣2dr= 1,

where the integral is taken over all possible r, i.e. −∞< x, y, z <∞.

There exist decompositions of the wave function into a linear sum of orthonormal functions

(2.19) ψ(r)=∑
i
αiφi(r)

where φi(r) are orthonormal

(2.20)
∫ r2

r1

ψi(r)∗ψ j(r)dr= δi j

and the set Φ= {φ1,φ2...,φn} is called the basis. The limits in general are over some domain

[r1,r2], which can be the entire continuous space [−∞,∞]. If the set of orthogonal functions Φ(r)

can express any function in the space it is called complete. For the continuous space, this basis

set would be infinite cardinality (size).

For a particle in a continuous 1-D Euclidean space ψ(x, t) the spectrum of the position operator

x̂ is are the values x in the domain −∞< x <∞. The probabilistic nature of the wave function

indicates that any single measurement of an observable is not much use by itself. Instead, an

expectation value over the entire wave function must be computed

(2.21)
〈
Ô

〉= ∫
ψ(r, t)∗Ôψ(r, t)dr

where Ô is the quantum operator associated with the observable and these operators are

Hermitian as previously described

(2.22)
∫
ψ(r, t)∗Ôψ(r, t)dr=

∫
(Ôψ(r, t))∗ψ(r, t)dr.

The time-independent and time-dependent Schrödinger equations of this 1-D system are

written
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Ĥψ(x)= Eψ(x)(2.23)

and

(2.24) Ĥ(t)ψ(x, t)= i~
∂ψ(x, t)
∂t

where

(2.25) Ĥ =− ~2

2m
∂

∂x2 +V (x) and Ĥ(t)=− ~2

2m
∂

∂x2 +V (x, t)

in this formalism.

2.1.3 Notation

Throughout the Thesis we attempt to follow some rules on notation which should make under-

standing equations and such easier. We state them here and largely align with commonly held

practices in the literature.

Scalars are denoted by lowercase symbols, x, vectors by bold symbols x, tensors by uppercase

symbols X . Quantum operators are signified by an uppercase symbol with a hat X̂ . These rules

are not maintained zealously and hopefully it is obvious when this is the case.
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3
DEEP LEARNING AND QUANTUM ANNEALING

Wisdom comes from experience.

Experience is often a result of lack of wisdom.

— Terry Pratchett

Generative models have the capacity to model and generate new examples from a dataset

and have an increasingly diverse set of applications driven by commercial and academic

interest. In this work, we present an algorithm for learning a latent variable generative

model via generative adversarial learning where the canonical uniform noise input is replaced

by samples from a graphical model. This graphical model is learned by a Boltzmann machine

which learns low-dimensional feature representation of data extracted by the discriminator.

A quantum processor can be used to sample from the model to train the Boltzmann machine.

This novel hybrid quantum-classical algorithm joins a growing family of algorithms that use a

quantum processor sampling subroutine in deep learning, and provides a scalable framework to

test the advantages of quantum-assisted learning. For the latent space model, fully connected,

symmetric bipartite and Chimera graph topologies are compared on a reduced stochastically

binarized MNIST dataset, for both classical and quantum sampling methods. The quantum-

assisted associative adversarial network successfully learns a generative model of the MNIST

dataset for all topologies. Evaluated using the Fréchet inception distance and inception score,

the quantum and classical versions of the algorithm are found to have equivalent performance

for learning an implicit generative model of the MNIST dataset. Classical sampling is used to

demonstrate the algorithm on the LSUN bedrooms dataset, indicating scalability to larger and

color datasets. Though the quantum processor used here is a quantum annealer the algorithm is

general enough such that any quantum processor, such as gate-model quantum computers, may

be substituted as a sampler.
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3.1 Introduction

The ability to efficiently and accurately model a dataset, even without full knowledge of why a

model is the way it is, is a valuable tool for understanding complex systems. Machine Learn-

ing (ML), the field of data analysis algorithms that create models of data, is experiencing a

renaissance due to the availability of data, increased computational resources and algorithm

innovations, notably in deep neural networks [239, 240]. Of particular interest are unsupervised

algorithms that train generative models. These models are useful because they can be used to

generate new examples representative of a dataset.

A GAN is an algorithm which trains a latent variable generative model with a range of

applications including image or signal synthesis, classification and upscaling. The algorithm has

been demonstrated in a range of architectures, now well over 300 types and applications, from

the GAN zoo [115, 146, 209]. Two problems in GAN learning are non-convergence, oscillating

and unstable parameters in the model, and mode collapse, where the generator only provides a

small variety of possible samples. These problems have been addressed previously in existing

work including energy based GANs [296] and the Wasserstein GAN [19, 100]. Another proposed

solution involves replacing the canonical uniform noise prior of a GAN with a prior distribution

modelling low-dimensional feature representation of the dataset. Using this informed prior may

alleviate the learning task of the generative network, decrease mode-collapse and encourage

convergence [18].

This feature distribution is a rich and low-dimensional representation of the dataset extracted

by the discriminator in a GAN. A generative probabilistic graphical model can learn this feature

distribution. However, given the intractability of calculating the exact distribution of the model,

classical techniques often use approximate methods for sampling from restricted topologies, such

as contrastive divergence, to train and sample from these models. Novel means for sampling

efficiently and accurately from less restricted topologies could further broaden the application

and increase the effectiveness of these already powerful approaches.

Quantum computing can provide proven advantages for some sampling tasks; for example,

it is known that under reasonable complexity theory assumptions, quantum computers can

sample more efficiently from certain classical distributions [44, 156]. It is an open question in

quantum computing as to the extent to which quantum computers provide a more efficient means

of sampling from other, more practically useful, distributions. On gate model quantum computers,

quantum sampling for machine learning has been explored by a number of groups for arbitrary

distributions [31, 81, 230] and Boltzmann distributions [236, 262, 298]. In a quantum annealing

framework, there is literature on sampling from Boltzmann distributions [12, 33]. Here, we

extend this exploration to the use of quantum processors for Boltzmann sampling to the powerful

framework of adversarial learning. Specifically, we model the latent space with a Boltzmann

machine trained via samples from a quantum annealer, though any classical or quantum system

for sampling from a parameterized distribution could be used. Our experiments used the D-Wave

22



3.1. INTRODUCTION

2000Q quantum annealer, but the work is relevant for near-term quantum processors in general.

Quantum annealing has been shown to sample from a Boltzmann-like distribution on near-

term hardware [12, 33] effectively enough to train Boltzmann machines and to exhibit learning.

In the future, quantum annealing may decrease the cost of this training by decreasing the

computation time [37], energy usage [65], or improve performance as quantum models [124] may

better represent some datasets.

Here, we demonstrate the Quantum-Assisted Associative Adversarial Network (QAAAN)

algorithm, Figure 3.1, a hybrid quantum-assisted GAN in which a BM trains, using samples from

a quantum annealer, a model of a low-dimensional feature distribution of the dataset as the prior

to a generator. The model learned by the algorithm is a latent variable implicit generative model

p(x | z) and an informed prior p(z), where z are latent variables and x are data space variables.

The prior will contain useful information about the features of the data distribution and this

information will not need to be learned by the generator. Put another way, the prior will be a

model of the feature distribution containing the latent variable modes of the dataset.

Contributions

The core contribution of this work is the development of a scalable quantum-assisted GAN which

trains an implicit latent variable generative model. This algorithm fulfills the criteria for inclusion

of near-term quantum hardware in deep learning frameworks that can learn continuous variable

datasets: Resistant to noise, small number of variables, in a hybrid architecture. Additionally in

this work we explore different topologies for the latent space model. The contributions of this

work are

Contributions

• compared different topologies to appropriately choose a graphical model, restricted

by the connectivity of the quantum hardware, to integrate with the deep learning

framework

• designed a framework for using sampling from a quantum processor in generative

adversarial networks, which may lead to architectures that encourage convergence

and decrease mode collapse,

• and lastly designed a hybrid quantum-classical framework which successfully tackles

the problems of integrating a quantum processor into scalable deep learning frame-

works, whilst exploiting the strengths of classical elements (handling a large number

of continuous variables) and the quantum processor (sampling hard distributions).

These contributions extend previous work for integrating quantum processors into deep

learning frameworks [29, 30, 129, 200]. The Quantum-Assisted Helmholtz Machine (QAHM)
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Figure 3.1: The inputs to the generator network are samples from a Boltzmann distribution. A
BM trains a model of the feature space in the generator network, indicated by the Learning.
Samples from the quantum annealer, the D-Wave 2000Q, are used in the training process for
the BM, and replace the canonical uniform noise input to the generator network. These discrete
variables z are reparametrised to continuous variables ζ before being processed by transposed
convolutional layers. Generated and real data are passed into the convolutional layers of the
discriminator which extracts a low-dimensional representation of the data. The BM learns a
model of this representation. An example flow of information through the network is highlighted
in green. In the classical version of this algorithm, MCMC sampling is used to sample from the
discrete latent space, otherwise the architectures are identical.

[29, 200] was one of the first attempts to integrate quantum models into the latent space of deep

learning architectures. However, the QAHM is based on the wake-sleep algorithm, which faces

two challenges: the loss function is not well defined and the gradients do not propagate between

the inference and generative networks. The quantum variational autoencoder [129] tackles both

of these challenges. We introduce another algorithm which also handles these challenges and has

additional advantages, including high fidelity images, for which GANs are generally known to

perform well. Finally, after completing the work, a preprint was posted that covers similar ideas

on quantum-classical associative adversarial networks that was performed independently from

ours. In this work, the authors investigate a quantum-classical associative model and sample the

latent space with quantum Monte Carlo [15].

Outline

First, there is a short background section, specifically GANs, quantum annealing, and Boltzmann

machines. In Section 3.3 an algorithm is developed to learn a latent variable generative model
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using samples from a quantum processor to replace the canonical uniform noise input. We explore

different models, specifically complete, symmetric bipartite and Chimera topologies, tested on a

reduced stochastically binarized version of MNIST, for use in the latent space. In Section 3.4 the

results are detailed, including application of the QAAAN and a classical version of the algorithm

to the MNIST dataset. The architectures are evaluated using the Inception Score and the Frechét

Inception Distance. The algorithm is also implemented on the LSUN bedrooms dataset using

classical sampling methods, demonstrating the scalability.

3.2 Background

3.2.1 Generative Adversarial Networks

Implicit generative models are those which specify a stochastic procedure with which to generate

data. In the case of a GAN, the generative network maps latent variables z to images which

are likely under the real data distribution, for example x=G(z), G is the function represented

by a neural network, x is the resulting image with z ∼ q(z), and q(z) is typically the uniform

distribution between 0 and 1, U [0,1].

Training a GAN can be formulated as a minimax game where the discriminator attempts

to maximise the cross-entropy of a classifier that the generator is trying to minimise. The cost

function of this minimax game is

V (D,G)=Ex∼p(x)[log(D(x))]

+Ez∼q(z)[log(1−D(G(z)))].
(3.1)

Ex∼p(x) is the expectation over the distribution of the dataset, Ez∼q(z) is the expectation over the

latent variable distribution and D and G are functions instantiated by a discriminative and

generative neural network, respectively, and we are trying to find min
G

max
D

V (D,G). The model

learned is a latent variable generative model Pmodel(x | z).

The first term in Equation (3.1) is the log-probability of the discriminator predicting that

the real data is genuine and the second the log-probability of it predicting that the generated

data is fake. In practice, ML engineers will instead use a heuristic maximising the likelihood

that the generator network produces data that trick the discriminator instead of minimising the

probability that the discriminator label them as real. This has the effect of stronger gradients

earlier in training [93].

GANs are lauded for many reasons: The algorithm is unsupervised; the adversarial training

does not require direct replication of the real dataset resulting in samples that are sharp

[268]; and it is possible to perform the weight updates through efficient backpropagation and

stochastic gradient descent. There are also several known disadvantages. Primarily, the learned

distribution is implicit. It is not straightforward to compute the distribution of the training set

[178] unlike explicit, or prescribed, generative models which provide a parametric specification of
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((a)) ((b)) ((c))

Figure 3.2: (a) Complete (b) Chimera (c) symmetric bipartite graphical models. These graphical
models are embedded into the hardware and the nodes in these graphs are not necessarily
representative of the embeddings.

the distribution specifying a log-likelihood logP(x) that some observed variable x is from that

distribution. This means that simple GAN implementations are limited to generation.

Further, as outlined in the introduction, the training is prone to non-convergence [26], and

mode collapse [251]. This stability of GAN training is an issue and there are many hacks to

encourage convergence, discourage mode-collapse and increase sample diversity including using

spherical input space [276], adding noise to the real and generated samples [19] and minibatch

discrimination [225]. We hypothesise that using an informed prior will decrease mode-collapse

and encourage convergence.

3.2.2 Boltzmann Machines & Quantum Annealing

A BM is a energy-based graphical model composed of stochastic nodes, with weighted connec-

tions between and biases applied to the nodes. The energy of the network corresponds to the

energy function applied to the state of the system. BMs represent multimodal and intractable

distributions [143], and the internal representation of the BM, the weights and biases, can learn

a generative model of a distribution [5].

A graph G = (V ,E ) with cardinality N describing a Boltzmann machine with model parameters

λ= {ω,b} over logical variables V = {z1, z2, ...zN } connected by edges E has energy

(3.2) Eλ(z)=− ∑
zi∈V

bi zi −
∑

(zi ,z j)∈E

ωi j zi z j

where weight ωi j is assigned to the edge connecting variables zi and z j, bias bi is assigned to

variable zi and possible states of the variables are zi ∈ {−1,1} corresponding to ‘off ’ and ‘on’,

respectively. We refer to this graph as the logical graph. The distribution of the states z is

(3.3) P(z)= e−βEλ(z)

Z
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with β a parameter recognized by physicists as the inverse temperature in the function defining

the Boltzmann distribution and Z =∑
z e−βEλ(z) the partition function, where the sum is over all

possible states.

BM training requires sampling from the distribution represented by Equation (3.3). For

fully-connected variants it is an intractable problem to calculate the probability of the state

occurring exactly [134] and is computationally expensive to approximate. Exact inference of

complete graph BMs is generally intractable and approximate methods including Gibbs sampling

are slow. Generally, applications will use deep stacked Restricted Boltzmann Machine (RBM)

architectures, which can be efficiently trained with approximate methods, notably contrastive

divergence. Contrastive divergence and Gibbs sampling are examples of Markov Chain Monte

Carlo (MCMC) methods.

A Markov chain describes a sequence of stochastic states where the probability of any state

in the chain occuring is only dependent on the previous state. A Monte Carlo method is one

which uses repeated sampling to make numerical approximations. For example, Gibbs sampling

involves taking some random initial state of nodes, stochastically updating the state of a random

node zn given the current states of other nodes P(zn = 1|V \ zn) = S(2β(
∑

zi∈V \zn ωni zi + bn)),

where

(3.4) S(x)= 1
1+ e−x .

Repeating this procedure many times evolves the Markov chain to some equilibrium where

samples of states are approximately from the Boltzmann distribution, Equation (3.3).

An RBM is a symmetric bipartite BM, shown in Figure 3.2(c). It is possible to efficiently

learn the distribution of some input data spaces through approximate methods, e.g. contrastive

divergence [54]. Stacked RBMs form a Deep Belief Network (DBN) and can be greedily trained

to learn the generative model of datasets with higher-level features with applications in a wide

range of fields from image recognition to finance [70]. Training these types of models requires

sampling from the Boltzmann distribution.

Quantum Annealing (QA) has been proposed as a method for sampling from complex

Boltzmann-like distributions. It is an optimisation algorithm exploiting quantum phenomena to

find the ground state of a cost function. QA has been demonstrated for a range of optimisation

problems [39], however, defining and detecting speedup, especially in small and noisy hardware

implementations is challenging [126, 219].

QA has been proposed and in some cases demonstrated as a sampling subroutine in ML

algorithms: A quantum Boltzmann machine [12]; training a Quantum Variational Autoencoder

(QVAE) [129]; a quantum-assisted Helmholtz machine [29]; deep belief nets of stacked RBMs [6].

In order to achieve this, the framework outlined in Equation (3.2) can be mapped to an Ising
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model for a quantum system represented by the Hamiltonian

(3.5) Ĥλ =− ∑
σ̂z

i ∈V

hiσ̂
z
i −

∑
(σ̂z

i ,σ̂z
j )∈E

Ji jσ̂
z
i σ̂

z
j .

where now variables z have been replaced by the Pauli-z operators, σ̂i, which return eigenvalues

in the set {−1,1} when applied to the state of variable zi, physically corresponding to spin-up and

spin-down, respectively. Parameters bi and ωi j are replaced with the Ising model parameters hi

and Ji j which are conceptually equivalent. In the hardware, these parameters are referred to as

the flux bias and the coupling strength, respectively.

The full Hamiltonian describing the dynamics of the D-Wave 2000Q, equivalent to the time-

dependent transverse field Ising model, is

(3.6) Ĥ(t)= A(t)Ĥ⊥+B(t)Ĥλ.

The transverse field term H⊥ is

(3.7) Ĥ⊥ = ∑
σ̂x

i ∈V

σ̂x
i .

σ̂x are the Pauli-x operators in the Hilbert space C2N
. A(t) and B(t) are monotonic functions

defined by the total annealing time tmax [39]. Generally, at the start of an anneal, A(0)≈ 1 and

B(0)≈ 0. A(t) decreases and B(t) increases monotonically with t until, at the end of the anneal,

A(tmax)≈ 0 and B(tmax)≈ 1. When B(t)> 0, the Hamiltonian contains terms that are not possible

in the classical Ising model, that is those that are normalised linear combinations of classical

states.

This Hamiltonian was embedded in the D-Wave 2000Q, a system with 2048 qubits, each

with degree 6, i.e. other than qubits on the edge of the graph each qubit is connected to 6 other

qubits. Embedding is the process of mapping the logical graph, represented by Equation (3.5), to

hardware. If the logical graph has degree > 6 or a structure that is not native to the hardware,

the logical graph can still be embedded in the hardware via a 1-many mapping, that means one

variable zi is represented by more than one qubit. These qubits are arranged in a ‘chain’(this

term is used even when the set of qubits forms a small tree). A chain is formed by setting the

coupling strength Ji j between these qubits to a strong value to encourage them to take a single

value by the end, but not so strong that it overwhelms the Ji j and hi in the original problem

Hamiltonian or has a detrimental effect on the dynamics. There is a sweet spot for this value.

In our case, we used the maximum value available on the D-Wave 2000Q, namely −1. At the

end of the anneal, to determine the value of a logical variable expressed as a qubit chain in the

hardware a majority vote is performed: The logical variable takes the value corresponding to the

state of the majority of qubits. If there is no majority a coin is flipped to determine the value of

the logical variable.

Each state found after an anneal comes from a distribution, though it is not clear what distri-

bution the quantum annealer is sampling from. For example, in some cases the distribution is
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Algorithm 1 Quantum-assisted associative adversarial network training.
1: for iterations do

% Train the discriminator
2: Sample n Boltzmann distribution samples from ρ→φ= {z1,z2, ...zn} using quan-

tum annealer
3: Sample n training data examples X= {x1,x2, ...,xn} from the dataset
4: Generate XD =G(φ) where XD = {xD

1 ,xD
2 , ...,xD

n }

5: θD ← θD −∇θD

n∑
i

(
logD(xi)+ log

(
D(xD

i )
))

% Train the associative model
6: Generate φ f = D(X) where φ f = {zD

1 ,zD
2 , ...,zD

n }
7: Update weights of BM via SGD with φ f and φ via Equations (3.11) and (3.12)

% Train the generator

8: θG ← θG −∇θG

n∑
i

(
log

(
D(xD

i )
))

9: end for
10: return Network G(z;θG)

Figure 3.3: QAAAN training algorithm. ρ represents the distribution sampled by the quantum
annealer, therefore ρ → φ represents sampling a set of vectors zi from distribution ρ. The
training samples, X, are sampled from the datasets MNIST or LSUN bedrooms. Steps 5 and 8 are
typical of GAN implementation, G(·) and D(·) are the functions representing the generator and
discriminator networks, respectively. For clarity, we have omitted implementation details arising
from the embedding a logical graph into the quantum annealer. Further details on mapping to
the logical space for samples from the quantum annealer can be found in Section 3.3.

hypothesised to follow a quantum Boltzmann distribution up to the ‘freeze-out region’ - where for

some value of t the dynamics of the system slow down and diverge from the model, Equation (3.8)

[11]. If the freeze-out region is narrow then the distribution can be modelled as the classical

distribution of problem Hamiltonian, Ĥλ, at a higher unknown effective temperature β∗,

(3.8) ρtmax =
e−β

∗Ĥλ

Z

where Z =Tr
[
e−β

∗Ĥλ

]
and we have performed matrix exponentiation. ρtmax is the model for the

distribution. In the case where the dynamics of the distribution do not slowdown and Ĥ(tmax)= Ĥλ

the Hamiltonian contains no off-diagonal terms and Equation (3.8) is equivalent to the classical

Boltzmann distribution, Equation (3.3), at some temperature. β is a dimensionless parameter

which depends on the temperature of the system, the energy scale of the superconducting flux

qubits and open system quantum dynamics. However, it is an open question as to when the

freeze-out hypothesis holds [8, 161].

Other implementations of training graphical models have accounted for this instance depen-

dent effective temperature [32], in this work to get around the problem of using the unknown

effective temperature for training a probabilistic graphical model, we use a gray-box model ap-
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proach proposed in [33]. In this approach, full knowledge of the effective parameters, dependent

on β, are not needed to perform the weight updates as long as the projection of the gradient is

positive in the direction of the true gradient. The gray-box approach ties the model generated

to the specific device used to train the model, though is robust to noise and is not required to

estimate β [213]. The computation of the gradients is described further in Section 3.3.1. We find

that under this approach performance remains good enough for deep learning applications.

Though we do not have full knowledge of the distribution the quantum annealer samples

from, we have modelled it as a classical Boltzmann distribution at an unknown temperature.

This allows us to train models without the having to estimate the temperature of the system,

providing a simple approach to integrating probabilistic graphical models into deep learning

frameworks.

3.3 Quantum-assisted associative adversarial network

In this section, the QAAAN algorithm is outlined, including a novel way to learn the feature

distribution generated by the discriminator network via a BM using sampling from a quantum

annealer. The QAAAN architecture is similar to the classical Associative Adversarial Network

proposed in Ref [18], as such the minimax game played by the QAAAN is

V (D,G,ρ)=Ex∼pdata(x)[logD(x)]

+Ez∼ρ(z)[log(1−D(G(z)))]

+E f∼ρ f ( f )[logρ],

(3.9)

where the aim is now to find min
G

max
ρ

max
D

V (D,G,ρ), with equivalent terms to Equation (3.1)

plus an additional term to describe the optimisation of the model ρ, Equation (3.8). This term

conceptually represents the probability that samples generated by the model ρ are from the

feature distribution ρ f . ρ f is the feature distribution extracted from the interim layer of the

discriminator. This distribution is assumed to be Boltzmann, a common technique for modelling

a complex distribution.

The algorithm used for training ρ, a probabilistic graphical model, is a BM. Sampling from

the quantum annealer, the D-Wave 2000Q, replaces a classical sampling subroutine in the BM.

ρ is used in the latent space of the generator, Figure 3.1, and samples from this model, also

generated by the quantum annealer, replace the canonical uniform noise input to the generator

network. Samples from ρ are restricted to discrete values, as the measured values of qubits are

z ∈ {−1,+1}. These discrete variables z are reparametrised to continuous variables ζ before being

processed by the layers of the generator network, producing ‘generated’ data. Generated and real

data are then passed into the layers of the discriminator which extracts the low-dimensional

feature distribution ρ f . This is akin to a variational autoencoder, where an approximate posterior

maps the evidence distribution to latent variables which capture features of the distribution [71].

The algorithm for training the complete network is detailed in Algorithm 1.
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Below, we outline the details of the BM training in the latent space, reparametrisation

of discrete variables, and the networks used in this investigation. Additionally, we detail an

experiment to distinguish the performance of three different topologies of probabilistic graphical

models to be used in the latent space.

3.3.1 Latent space

As in Figure 3.1, samples from a intermediate layer of the discriminator network are used to

train a model for the latent space of the generator network. Here, a BM trains this model. The

cost function of this BM is the quantum relative entropy

(3.10) S(ρ||ρ f )=Tr
[
ρ lnρ

]−Tr
[
ρ lnρ f

]
equivalent to the classical Kullback-Leibler divergence when all off-diagonal elements of ρ and ρ f

are zero. This measure quantifies the divergence of distribution ρ from ρ f where ρ f is the target

feature distribution of features extracted by the discriminator network and ρ is the model trained

by the BM, from Equation (3.9). Though the distributions used here are modelled classically, this

framework can be extended to quantum models using the quantum relative entropy. Given this it

can be shown that the updates to the weights and biases of the model are

∆Ji j = ηβ[
〈
zi z j

〉
ρ f

−〈
zi z j

〉
ρ](3.11)

∆hi = ηβ[〈zi〉ρ f −〈zi〉ρ].(3.12)

η is the learning rate, β is an unknown parameter, and 〈z〉ρ is the expectation value of z in

distribution ρ. Under the gray box model, discussed in Section 3.2.2, we set β = 1 and tune

the learning rate without knowledge of the true value of β. z are the logical variables of the

graphical model and the expectation values 〈z〉ρ are estimated by averaging 1000 samples from

the quantum annealer. The quantum relative entropy is minimised by stochastic gradient descent.

3.3.2 Topologies

We explored three different topologies of probabilistic graphical models, complete, symmetric

bipartite and Chimera, for the latent space. Their performance on learning a model of a reduced

stochastically binarized version of MNIST, Figure 3.4, was compared, in both sampling via

quantum annealing and classical sampling cases. The complete topology is self-explanatory,

Figure 3.2(a), restricted refers to a symmetric bipartite graph, Figure 3.2(c), and the sparse is

the graph native to the D-Wave 2000Q, or Chimera graph, where the connectivity of the model is

determined by the available connections on the hardware, Figure 6.14(c).

The models were trained by minimising the quantum relative entropy, Equation (3.10), and

evaluated with the L1-norm,

(3.13) L1-norm= ∑
zi ,z j∈V

∣∣∣〈zi z j
〉
ρ f

−〈
zi z j

〉
ρ

∣∣∣.
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The algorithm did not include temperature estimation, or methods to adjust intra-chain coupling

strengths for the embedding, as in [32] and [33], respectively. The method used here makes a

comparison between the different topologies, though for best performance one would want to

account for the embedding and adjust algorithm parameters, such as the learning rate, to each

topology.

In addition to these requirements, there are several non-functioning, ‘dead’, qubits and

couplers in the hardware. These qubits or couplers were removed in all embeddings, which

had a negligible effect on the final performance. The complete topology embedding was found

using a heuristic embedder [48]. A better choice would be a deterministic embedder, resulting in

shorter chain lengths, though when adjusting for the dead qubits the symmetries are broken and

the embedded graph chain length increases to be comparable to that returned by the heuristic

embedder. The restricted topology was implemented using the method detailed by Adachi and

Henderson [6]. At a high level, qubits corresponding to visible nodes are mapped to vertical

chains and qubits corresponding to hidden nodes are mapped to horizontal chains . The Chimera

topology was implemented on a 2x2 grid of unit cells, avoiding dead qubits. Learning was run

over 5 different embeddings for each topology and the results averaged. For topologies requiring

chains of qubits, the couplers in the chains were set to -1.

Figure 3.4: Left to right: 28x28 continuous, 6x6 continuous, 6x6 stochastically binarized example
from the MNIST dataset.

3.3.3 Reparametrisation

Samples from the latent space come from a discrete space. These variables are reparametrised to

a continuous space, using standard techniques. There are many potential choices for reparametri-

sation functions and a simple example case is outlined below. We chose a probability density

function pdf(x) which rises exponentially and can be scaled by parameter α:

(3.14) p(x)= αexp(−α(1− x))
1−exp(−2α)

.

The cumulative distribution function of this probability density function is

(3.15) F(r)=


1 r > 1∫ r
−1 p(x)dx −1< r ≤ 1

0 otherwise,
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Figure 3.5: The probability density function, p(x), for different values of α. In this investigation
α= 4 was used, to distinguish strongly from the uniform noise case.

and

(3.16)
∫ r

−1
p(x)dx = exp(−α(1− r))−exp(−2α)

1−exp(−2α)

Discrete samples can be reparametrised by sampling F(r) from U (0,1] solving Equation (3.16) for

r. In the method implemented in this work, the continuous variables ζi, Figure 3.1, are -1 in the

case when zi =−1 and sampled from pdf(x), Equation (3.14), when zi = 1. Then the continuous

variables are input to the generator of the network.

The value of α was set to 4. The uncertainty in the evaluation of performance was not accurate

enough to determine meaningful differences in the setting of α. We chose α to intuitively set

ζi close to the discrete variables zi. Certainly, further investigation into the type of reparame-

terization, e.g. different functions and methods developed in other works [12], will be needed to

determine best practises in the field for these types of models. Here, we restrict the research to

the development of a new model.

3.3.4 Networks

The generator network consists of dense and transpose convolutional, stride 2 kernel size 4, layers

with batch normalisation and ReLU activations. A ReLU activation is a standard activation

function used to avoid vanishing gradients, where the derivative is 0 when the input is less than

0 and 1 otherwise. The output layer is implemented with a tanh activation. These components

are standard deep learning techniques found in textbooks, for example [92].

The discriminator network consists of dense, convolutional layers, stride 2 kernel size 4,

LeakyReLU activations. The dense layer corresponding to the feature distribution was chosen to

have tanh activations in order that outputs could map to the BM. The hidden layer representing

ρ f was the fourth layer of the discriminator network with 100 nodes. When sampling the training
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data for the BM from the discriminator, the variables given values from the set {−1,1} as in the

Ising model, dependent on the activation of the node being greater or less than the threshold, set

at zero, respectively.

We found the stability of the network was dependent on the structure of the model and

followed best practises [19, 93] to guide the development. Though this model worked well there

is scope to understand if there are alternate best practises for models incorporating quantum

devices into the latent space.

The networks were trained with an Adam optimiser with learning rate 0.0002. The learning

rate was set by performing two sweeps. The first over the set {0.01, 0.001, 0.0001, 0.00001} and

the second in the region around the best performing (0.001). The best performing was determined

by evaluating the Inception Score and the Fréchet Inception Distance (FID), described further

in Section 3.4, after 100 iterations. High learning rates (0.01) were unstable and the training

diverged, whereas low learning rates (0.00001) the training was stable but slow. The labels were

smoothed with noise.

For the sparse graph latent space used in learning the MNIST dataset in Section 3.4, the BM

was embedded in the D-Wave hardware using a heuristic embedder. As there is a 1-1 mapping

for the sparse graph it was expressed in hardware using 100 qubits. An annealing schedule of

1µs and a learning rate of 0.0002 were used. The classical architecture that was compared with

the QAAAN was identical other than replacing sampling via quantum annealing with MCMC

sampling techniques.

We used D-Wave Systems inc. provided Python API to interact with the device. Qubits, biases

and weights can be assigned through this API, which can be used to implement details such as

the embedding. Other experimental hyperparameters (number of samples/annealing schedule)

can be set with high-level functionality.

3.4 Results & Discussion

For this work we performed several experiments. First, we compared three topologies of graphical

models, trained using both classical and quantum annealing sampling methods. They were

evaluated for performance by measuring the L1-norm over the course of the learning a reduced

stochastically binarzied version of the MNIST dataset, Figure 3.4. Second, the QAAAN and the

classical associative adversarial network described in Section 3.3 were both used to generate

new examples of the MNIST dataset. Their performance was evaluated used the inception score

and the FID. Finally, the classical associative adversarial network was used to generate new

examples of the LSUN bedrooms dataset.

In the experiment comparing topologies, as expected, the BM trains a better model faster

with higher connectivity, Figure 3.7. When trained via sampling with the quantum annealer the

picture is less intuitive, Figure 3.6. All topologies learned a model to the same accuracy, at similar
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Figure 3.6: Comparison of the convergence of different graphical topologies trained using samples
from a quantum annealers on a reduced stochastically binarized MNIST dataset. The learning
rate used was 0.03. This learning rate produced the fastest learning with no loss in performance
of the final model. The learning was run 5 times over different embeddings and the results
averaged. The error bars describe the variance over these curves.

Figure 3.7: Comparison of different graphical topologies trained using MCMC sampling on a
reduced stochastically binarized MNIST dataset. The learning rate used was 0.001. This learning
rate was chosen such that the training was stable for each topology, we found that the error
diverged for certain topologies at other learning rates. The learning was run 5 times and the
results averaged. The error bars decribe the variance over these curves.

rates. This indicates that there is a noise floor preventing the learning of a better model in the

more complex graphical topologies. For the purposes of this investigation the performance of the

sparse graph was demonstrated to be enough to learn an informed prior for use in the QAAAN

algorithm.

Given the results of the first experiment, the classical associative adversarial network and

the quantum-assisted algorithm were evaluated with a sparse topology latent space. The gen-
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erated images are shown for both classical and quantum versions in Figures 3.8(a) and 3.8(b),

respectively.

We evaluated classical and quantum-assisted versions of the associative adversarial network

with sparse latent spaces via two metrics, the inception score and the FID. Both metrics required

an inception network, a network trained to classify images from the MNIST dataset, which

was trained to an accuracy of ∼ 95%. The Inception Score, Equation (3.17), attempts to quantify

realism of images generated by a model. For a given image, p(y|x) should be dominated by one

value of y, indicating a high probability that an image is representative of a class. Secondly,

over the whole set there should be a uniform distribution of classes, indicating diversity of the

distribution. This is expressed

(3.17) IS= exp
(
Ex∼ρD DKL(p(y|x)||p(y))

)
.

The first criterion is satisfied by requiring that image-wise class distributions should have low

entropy. The second criterion implies that the entropy of the overall distribution should be

high. The method is to calculate the KL distance between these two distributions: A high value

indicates that both the p(y|x) is distributed over one class and p(y) is distributed over many

classes. When averaged over all samples this score gives a good indication of the performance

of the network. The inception score of the classical and quantum-assisted versions (with sparse

latent spaces) were ∼ 5.7 and ∼ 5.6, respectively.

The FID measures the similarity between features extracted by an inception network from

the dataset X and the generated data G. The distribution of the features are modelled as a

multivariate Gaussian. Lower FID values mean the features extracted from the generated images

are closer those for the real images. In Equation (3.18), µ are the means of the activations of an

interim layer of the inception network and Σ are the covariance matrices of these activations.

The classical and quantum-assisted algorithms (with sparse latent spaces) scored ∼ 29 and ∼ 23,

respectively.

(3.18) FID(X ,G)= ||µX −µG ||22 +Tr
(
ΣX +ΣG −2

√
ΣXΣG

)
The classical implementation, with a sparse latent space, was also used to generate images

mimicking the LSUN bedrooms dataset, Figure 3.9. The Large Scale scene UNderstanding

(LSUN) [293] dataset are images of 10 scenes, where there are on average a million examples

of each scene. From this dataset we only took examples of one scene: Bedrooms. This image set

had around 300,000 images. This final experiment was only performed as a demonstration of

scalability, and no metrics were used to evaluate performance.

3.4.1 Discussion

Though it is trivial to demonstrate a correlation between the connectivity of a graphical model

and the quality of the learned model, Figure 3.7, it is not immediately clear that the benefits of
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((a)) ((b))

Figure 3.8: Example MNIST characters generated by (a) classical and (b) quantum-assisted
associative adversarial network architectures, with sparse topology latent spaces.

increasing the complexity of the latent space can be detected easily in deep learning frameworks,

such as the quantum-assisted Helmholtz machine [29] and those looking to exploit quantum

models [129]. The effect of the complexity of the latent space model on the quality of the final latent

variable generative model was not apparent in our investigations. Deep learning frameworks

looking to exploit quantum hardware supported training in the latent spaces need to truly benefit

from this application, and not iron out any potential gains with backpropagation. For example,

if exploiting a quantum model gives improved performance on some small test problem, it is

an open question as to whether this improvement will be detected when integrated into a deep

learning framework, such as the architecture presented here.

Here, given the nature of the demonstration and a desire to avoid chaining we use a sparse

connectivity model. Avoiding chaining allows for larger models to be embedded into near-term

quantum hardware. Given the O(n2) scaling of qubits to logical variables for a complete logical

graph [62], future applications of sampling via quantum annealing will likely exploit restricted

graphical models. Though the size of near-term quantum annealers has followed Moore’s law

trajectory, doubling in size every two years, it is not clear what size of probabilistic graphical

models will find mainstream usage in machine learning applications and exploring the uses of

different models will be an important theme of research as these devices grow in size.

There are two takeaways from the results presented here. Though these values are not

comparable to state-of-the-art GAN architectures and are on a simple MNIST implementation,

they serve the purpose of highlighting that the inclusion of a near-term quantum device is

not detrimental to the performance of this algorithm. Secondly, we have demonstrated the

framework on the larger, more complex, dataset LSUN bedrooms, Figure 3.9. This indicates that

the algorithm can be scaled.
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Figure 3.9: Bedrooms from the LSUN dataset generated with an associative adversarial network,
with a fully connected latent space sampled via MCMC sampling.

3.5 Conclusions

3.5.1 Summary

In this work we have presented a novel and scalable quantum-assisted algorithm, based on a

GAN framework, which can learn a implicit latent variable generative model of complex datasets.

This work is a step in the development of algorithms that may use quantum phenomena to

improve the learning generative models of datasets. This algorithm fulfills the requirements of

the three areas outlined by Perdomo-Ortiz et al [200]: Generative problems, data where quantum

correlations may be beneficial, and hybrid. This implementation also allows for use of sparse

topologies, removing the need for chaining, requires a relatively small number of variables

(allowing for near-term quantum hardware to be applied) and is resistant to noise.

Though the key motivation of this work is to demonstrate a functional deep learning frame-

work integrating near-term quantum hardware in the learning process, it builds on classical work

by Tarik Arici and Asli Celikyilmaz [18] exploring the effect of learning the feature space and

using this distribution as the input to the generator. No claims are made here on the improve-

ments that can be made classically, though it is possible that further research into the associative

adversarial architecture will yield improvements to GAN design.

In summary, we have successfully demonstrated a quantum-assisted GAN capable of learning

a model of a complex dataset such as LSUN, and compared performance of different topologies.

3.5.2 Limitations

Throughout the paper several limitations to quantum annealing devices and the methods of

integrating quantum annealing devices to neural network models have been mentioned. We

38



3.5. CONCLUSIONS

collect these ideas here to highlight the areas in which quantum annealers may have to improve

to increase the usefulness of these methods.

One area is being able to understand and benchmark these models against classical coun-

terparts [265], which is already a difficult task in classical machine learning. We believe better

benchmarking tools are required to begin evaluating the effectiveness of quantum models. The

difficulty of benchmarking is a known problem [219] and there are many criteria to evaluate

these devices, for example in the field of optimization the ’time-to-target’ metric [130] or number

of calls [266]. Here, we do not evaluate our model by other metrics, preferring to restrict the

research to establishing a scalable model. We leave the task of evaluating this model by other

criteria to future work.

The cost of embedding a logical graph in a quantum annealer may be large in terms of the

performance of the model [160]. Higher connectivity of quantum annealing devices will most

likely be needed to continue improving quantum-assisted model performance.

There are several assumptions built into the learning procedure of the Boltzmann machine.

We assumed samples from the quantum annealer are from a Boltzmann distribution, which

is not necessarily true due to the freeze-out hypothesis [11] (and embedding), and also did not

determine the temperature of the quantum annealer, under the gray-box assumption [29]. Better

models for the behaviour of the device and potentially heurisitics for mitigating their effects

would help further improve and understand these methods.

3.5.3 Further Work

There are many avenues to use quantum annealing for sampling in machine learning, topologies

and GAN research. Here, we have outlined a framework that works on simple (MNIST) and more

complex (LSUN) datasets. We highlight several areas of interest that build on this work.

The first is an investigation into how the inclusion of quantum hardware into models such

as this can be detected. There are two potential improvements to the model: Quantum terms

improve the model of the data distribution; or graphical models, which are classically intractable

to learn for example fully connected, integrated into the latent spaces, may improve the latent

variable generative model learned. Before investing extensive time and research into integrating

quantum models into latent spaces it will be important to note that these improvements are

reflected in the overall model of the dataset. That is, that backpropagation does not erase any

latent space performance gains.

There are still outstanding questions as to the distribution the quantum annealer samples.

The pause and reverse anneal features on the D-Wave 2000Q gives greater control over the

distribution output by the quantum annealer, and can be used to explore the relationship between

the quantum nature of that distribution and the quality of the model trained by a quantum

Boltzmann machine [162]. It is also not clear what distribution is the ‘best’ for learning a model

of a distribution. It could be that efforts to decrease the operating temperature of a quantum
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annealer to boost performance in optimisation problems will lead to decreased performance in ML

applications, as the diversity of states in a distribution decreases and probabilities accumulate

at a few low energy states. There are interesting open questions as to the optimal effective

temperature of a quantum annealer for ML applications. This question fits within a broad are for

research in ML asking which distributions are most useful for ML and why. As larger gate model

quantum processors become available, it will be interesting to evaluate a variety of quantum

algorithms beyond quantum annealing for sampling in this framework.

For this simple implementation, the quantum sampling sparse graph performance is com-

parable to the complete and restricted topologies. Though in optimised implementations we

expect divergent performance, the sparse graph serves the purpose of demonstrating the QAAAN

architecture. Additionally, we have highlighted sparse classical graphical models for use in the

architecture demonstrated on LSUN bedrooms. Though they have reduced expressive power

there are many more applications for current quantum hardware; for example a fully connected

graphical model would require in excess of 2048 qubits (the number available on the D-Wave

2000Q) to learn a model of a standard MNIST dataset, not to mention the detrimental effect of

the extensive chains. A sparse D-Wave 2000Q native graph (Chimera) conversely would only

use 784 qubits. This is a stark example of how sparse models might be used in lieu of models

with higher connectivity. Investigations finding the optimal balance between the complexity of

a model, resulting overhead required by embedding, and the affect on both on performance are

needed to understand how future quantum annealers might be used for applications in ML. More

generally, understanding how the architectural, as well as algorithmic, choices in near-term gate

model devices affect performance will enhance our understanding of quantum computings impact

on machine learning in the decades ahead.
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4
OPTIMIZING QUANTUM HEURISTICS WITH METALEARNING

You keep using that word,

I do not think it means what you think it means.

— Inigo Montoya, The Princess Bride

Variational quantum algorithms, a class of quantum heuristics, are promising candidates

for the demonstration of useful quantum computation. Finding the best way to am-

plify the performance of these methods on hardware is an important task. Here, we

evaluate the optimization of quantum heuristics with an existing class of techniques called ‘meta-

learners’. We compare the performance of a meta-learner to evolutionary strategies, L-BFGS-B

and Nelder-Mead approaches, for two quantum heuristics (quantum alternating operator ansatz

and variational quantum eigensolver), on three problems, in three simulation environments. We

show that the meta-learner comes near to the global optima more frequently than all other opti-

mizers we tested in a noisy parameter setting environment. We also find that the meta-learner is

generally more resistant to noise, for example seeing a smaller reduction in performance in Noisy

and Sampling environments and performs better on average by a ‘gain’ metric than its closest

comparable competitor L-BFGS-B. Finally, we present evidence that indicates the meta-learner

trained on small problems will generalize to larger problems. These results are an important

indication that meta-learning and associated machine learning methods will be integral to the

useful application of noisy near-term quantum computers.

4.1 Introduction

Machine learning is a powerful tool for tackling challenging computational problems [36, 152, 258].

A recent explosion in the number of machine learning applications is driven by the availability

of data, improved computational resources and deep learning innovations [119, 145, 173]. Inter-

41



CHAPTER 4. OPTIMIZING QUANTUM HEURISTICS WITH METALEARNING

estingly, machine learning has also been applied to the problem of improving machine learning

models, in a field known as meta-learning [148, 264].

In general, meta-learning is the study of models which ‘learn to learn’. A prominent example of

a meta-learner model is one that learns how to optimize parameters of a function [14, 60, 150, 212].

Traditionally, this function might be a neural network [14] or a black-box [60]. Meta-learning

and other new methods, including Auto-ML [82], are changing the way we train, use and deploy

machine learning models [183, 188, 227]. Here, we use a meta-learner to find good parameters

for quantum heuristics, and compare that approach to other parameter optimization strategies.

Figure 4.1: Meta-learner training on a Quantum Processing Unit (QPU - green). This diagram
illustrates how the meta-learner used in this work can optimize the parameters of a quantum
circuit (see Section 4.3 for a full description). Here, we outline a high level description for each
time-step, such as T−2 (shown). A model, in our case a long short-term memory (LSTM) recurrent
neural network (blue) (Section 4.2), takes in the gradients of the cost function. The LSTM outputs
parameters ~φ for the QPU to try at the next step. This procedure takes place over several time-
steps in a process known as unrolling. The costs from each time-step are summed to compute the
loss, L (purple), at time T.

Figure 4.1 shows an example of what the implementation of a meta-learner might look like,

in the context of optimizing the parameters of a parametrized quantum circuit, illustrated as

a quantum processing unit (QPU). In this work, we refer to a QPU and a quantum circuit

interchangeably.

Recent progress in quantum computing hardware has encouraged the development of quan-

tum heuristic algorithms that can be simulated on near-term devices [179, 207]. One important

heuristic approach involves a class of algorithms known as variational quantum algorithms.

Variational quantum algorithms are ‘hybrid’ quantum-classical algorithms in which a quantum

circuit is run multiple times with variable parameters, and a classical outer loop is used to

optimize those parameters (see Figure 4.2). The VQE [201], quantum approximate optimization

algorithm and its generalization QAOA [79, 104] are examples of algorithms that can be imple-

mented in this variational setting. These algorithms are effective in optimization [98, 190, 215]

and simulation of quantum systems [107, 194, 222]. The classical subroutine is an optimization
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Figure 4.2: A single time-step of a general variational quantum algorithm, where the classical
processing unit (CPU - blue) outputs parameters ~φ dependent on some evaluation, in this case the
expectation value 〈H〉 by the quantum processing unit (QPU - green). The quantum subroutine
is encoded by a quantum circuit U(~φ) (Figure 4.3) parameterized by ~φ, and it is responsible for
generating a state |ψ(~φ)〉. This state is measured in order to extract relevant information (e.g.
expectation value of a Hamiltonian). The classical subroutine suggests parameters ~φ based on
the values provided by a quantum computer, and sends new parameters back to the quantum
device. This process is repeated until the given goal is met, i.e. convergence to a problem solution
(e.g. the ground state of a Hamiltonian).

of parameters, and is an important part of the algorithm both in terms of the quality of solution

found and the speed at which it is found.

Techniques for the classical outer loop optimization are well-studied [98, 99, 185, 201, 272,

273] and several standard optimization schemes can be used. However, optimization in this

context is difficult, due to technological restrictions (e.g. hardware noise), and to theoretical

limitations such as the stochastic nature of quantum measurements [133] or the barren plateaus

problem [169]. Therefore, it is imperative to improve not only the quantum part of the hybrid

algorithms, but also to provide a better and more robust framework for classical optimization.

Here, we focus on the classical optimization subroutine, and suggest meta-learning as a viable

tool for parameter setting in quantum circuits. Moreover, we demonstrate that these methods, in

general, are resistant to noisy data, concluding that these methods may be especially useful for

algorithms implemented with noisy quantum hardware.

We compare the performance of optimizers for parameter setting in quantum heuristics,

specifically variational quantum algorithms. The optimization methods we compare are L-BFGS-

B [47], Nelder-Mead [187], evolutionary strategies [226] and a Long Short Term Memory (LSTM)

recurrent neural network model [110] - the meta-learner. Whilst in the production of this work, we

noticed similar research [261] exploring the potential of gradient-free meta-learning techniques

as initializers. Here, we use a gradient-based version of the meta-learner as a standalone

optimizer (not an initializer), and a larger set of other optimizers. Though we include a diverse

range of techniques, clearly, there are other optimizers that might be used, for example SPSA

[122, 180, 243, 244], however our analysis focuses on those described above.

This comparison is performed in three different simulation environments: Wave Function,
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Figure 4.3: General parameterized quantum circuit, with arbitrary unitaries U j(φ j), input state
|0〉 and classical register c, where ~φ= [φ1,φ2, ...,φn] are the parameters of the circuit. Though the
unitaries do not necessarily act on all qubits, we have arranged them here in ‘blocks’, similar to
the general architectures of QAOA and VQE, where a block of operations may be repeated many
times in a circuit, with different parameters. In the case of VQE, a block might be a series of
single qubit rotations or a set of entangling gates (such as CNOT), and for QAOA, a block might
be a phase unitary encoding the cost function or a mixing unitary for searching the solution
space.

Sampling and Noisy. The Noisy environment is an exact wave function simulation with parameter

setting noise. The simulation environments are defined in detail in Section 4.3.

The first heuristic we explore for this comparison is QAOA [79, 104] for the MAX-2-SAT and

Graph Bisection constraint satisfaction problems [196]. Second, VQE [201] is used for estimating

the ground-state of Free Fermions models a special subclass of Fermi-Hubbard models [114].

We show that, broadly speaking, the meta-learner performs as well or better than the other

optimizers, measured by a ‘gain’ metric defined in Section 4.4. Most notably, the meta-learner

is observed to be more robust to noise. This is highlighted through showing the number of

near-optimal solutions found in each problem by the different optimizers over all simulation

environments. The takeaway of this paper is that these methods show promise, specifically the

features of robustness and adaptability to hardware, and how meta-learning might be applied to

noisy near-term devices.

In Section 4.2 we describe the background of the heuristics and optimizers. Then in Section 4.3

we outline the general setup including problems, the optimizers, and the simulation environments.

Section 4.4 details the methods, including the metrics, optimizer configuration and meta-learner

training. In Section 4.5 we discuss our results. Finally in Section 4.6 the work is summarized and

we suggest paths forward.
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Contributions

• developed hybrid quantum-classical variational methods integrating classical met-

alearning with variational quantum algorithms

• compared multiple (L-BFGS-B, Nelder-Mead, evolutionary strategies and metalearn-

ing) optimization routines on multiple problems and algorithms

• presented evidence that metalearning may perform better than standard methods

especially in environments with parameter setting noise (which will be a feature of

near-term hardware)

4.2 Background

4.2.1 Quantum Alternating Operator Ansatz

The quantum approximate optimization algorithm [79] and its generalization the quantum

alternating operator ansatz [104] (QAOA) form families of parameterized quantum circuits

for generating solutions to combinatorial optimization problems. After initializing a suitable

quantum state, a QAOA circuit consists of a fixed number p blocks (see Figure 4.3), where

each block is composed of a phase unitary generated from the cost function we seek to optimize,

followed by a mixing unitary. The phase unitary typically yields a sequence of multiqubit Pauli-Z

rotations each with phase angle γ. In the original proposal of Farhi et al. [79], the mixing unitary

is a Pauli-X rotation of angle β on each qubit. However, extending the protocol to more general

encodings and problem constraints naturally leads to a variety of more sophisticated families

of mixing operators [104, 105]. At the end of the circuit a measurement is performed in the

computational (Pauli-Z) basis to return a candidate problem solution.

An important open research area is to develop strategies for determining good sets of algo-

rithm parameters (i.e. the γ and β values for each block) which yield good (approximate or exact)

solutions with nonnegligible probability. These parameters may be determined a priori through

analysis, or searched for as part of a classical-quantum hybrid algorithm using a variational

or other approach. Prior work on parameter setting in QAOA includes analytic solutions for

special cases [269], comparison of analytical and finite difference methods [99], a method for

learning a model for a good schedule [273], and comparison of standard approaches over problem

classes [185].

We evaluate parameter setting strategies for QAOA for MAX-2-SAT and Graph Bisection,

both NP-hard combinatorial optimization problems [21, 196]. We use standard‘[79] and gener-

alized [104] QAOA methods, respectively. The latter problem mapping is of particular interest

as it utilizes an advanced family of QAOA mixing operators from [104] that has recently been

demonstrated to give advantages over the standard mixer [270].
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4.2.2 Variational Quantum Eigensolver

The VQE [201] is a hybrid optimization scheme built on the variational principle. It aims to

estimate the ground state energy of a problem Hamiltonian through iterative improvements of a

trial wave function. The trial wave function is prepared as a quantum state using a parameterized

quantum circuit, and the expectation value of the Hamiltonian with respect to this state is

measured. This energy value is then passed to a classical device, which uses optimization

techniques (SPSA, BFGS, etc.) to update the parameters. The process is repeated for a fixed

number of iterations, or until a given accuracy achieved.

The initial demonstration of VQE used Nelder-Mead, a standard derivative-free approach,

for parameter setting after observing that gradient descent methods did not converge [201].

Since then, examples in the literature include the use of Simultaneous Perturbation Stochastic

Approximation (SPSA) in [180], where the authors argue simultaneous perturbation methods

might be particularly useful for fermionic problems, but classical problems (such as MaxCut) may

favor more standard techniques (i.e. gradient descent). Other routines used include COBLYA,

L-BFGS-B, Nelder-Mead and Powell in [218]. Finally, in [182] the authors explore the use of

Bayesian optimization for parameter setting in VQE.

4.2.3 Meta-learning

Meta-learning is the study of how to design machine learning models to learn fast, well and with

few training examples [34]. One specific case is a model, referred to here as a meta-learner [212],

which learns how to optimize other models. A model is a parameterized function. Meta-learners

are not limited to training machine learning models; they can be trained to optimize general

functions [60]. In the specific area of using models to optimize other models, early research

explored Guided Policy Search [150], which has been superceded by LSTMs [14, 28, 60, 277]. An

LSTM is a recurrent neural network, developed to mitigate vanishing or exploding gradients

prominent in other recurrent neural network architectures [35, 109]. It consists of a cell state,

a hidden state, and gates, and all three together are called an LSTM cell. At each time-step,

changes are made to the cell state dependent on the hidden state, the gates (which are models)

and the data input to the LSTM cell. The hidden state is changed dependent on the gates and the

input. The cell state and hidden state are then passed to the LSTM cell at the next time-step. A

full treatment of an LSTM is given in Reference [110]. An LSTM is good for learning long-term

(over many time-steps) dependencies, like those in optimization.

Meta-learners have been used for fast general optimization of models with few training

examples [212]: Given random initial parameters we seek to achieve a fast convergence to ‘good’

(defined by some metric) general parameters. This same problem feature appears for QAOA,

where good parameters may follow some common distribution across problems [273]. A meta-

learner could be used to find general good parameters, and fine-tuning left to some other optimizer

[260], though this approach was not explored here.
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4.3 Setup

4.3.1 Simulation Environments

We compare optimization methods in ‘Wave Function’, ‘Sampling’ and ‘Noisy’ simulation envi-

ronments. The Wave Function case is an exact wave function simulation. For Sampling, the

simulation emulates sampling from a hardware-implemented quantum circuit, where the vari-

ance of the expectation value evaluations is dependent on the number of samples taken from the

device. In these experiments, we set the number of shots (samples from the device) to 1024.

Lastly, in the Noisy case we have modelled only parameter setting noise in an exact wave

function simulation, which is a coherent imperfection resulting in a pure state.1 We assume exact,

up to numerical precision, computation of the expectation value (via some theoretical quantum

computer which can compute the expectation value of a Hamiltonian given a state up to arbitrary

precision). Then, for each single-qubit rotation gate, we added normally distributed, standard

deviation σ = 0.1, noise to the parameters at each optimization step. In order to determine σ,

we evaluated the relationship between the fidelity of an arbitrary rotation (composed of three

single-qubit Pauli rotation gates RZ(α)RY (β)RZ(γ)), around the Bloch sphere and parameter

noise; see Figure 4.5. Assuming industry standard single qubit gate rotations of 99% [136], a

value of σ= 0.1 is approximated, see Figure 4.4. All simulations were performed with Rigetti

Forest [1] simulators and circuit simulations performed on an Intel(R) Core(TM) i7-8750H CPU

with 6 cores.

1Other noise models, such as dephasing or depolarizing noise generate mixed states, which is out of scope of this
paper. Additionally, it is argued that the optimal set of circuit parameters has similar form for noisy and noiseless
cases, for more information see for example [163, 290]

Figure 4.4: Effective single qubit rotation gate fidelity plotted as a function of the noise on input
parameters. Parameters are sampled from a normal distribution with standard deviation σ and
centered on the target input value.
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4.3.2 Optimizers

4.3.2.1 Local optimizers

Nelder-Mead and L-BFGS-B are gradient-free and gradient-based approaches, respectively, which

are standard local optimizers [99, 185, 272, 273]. Local optimizers have a notion of location in

the solution space. They search for candidate solutions from this location. They are usually fast,

and are susceptible to finding local minima. L-BFGS-B is a local optimizer and has access to the

gradients. Out of all optimizers chosen it is the closest to the meta-learner in terms of information

available to the optimizer and computational burden (i.e. the cost of computing the gradients).

Nelder-Mead was chosen as it appears throughout the literature [99, 201, 218, 260] and provides

a widely recognized benchmark.

4.3.2.2 Evolutionary Strategies

Evolutionary strategies are a class of global black-box optimization techniques: A population of

candidate solutions (individuals) are maintained, which are evaluated based on some cost function.

Genetic algorithms and evolutionary strategies have been used for decades. More recent work

has shown these techniques to be competitive in problems of reinforcement learning [226, 263].

All implementations of evolutionary strategies are population-based optimizers. In the initial

iteration, the process amounts to a random search. In each iteration, solutions with lower costs

are more likely to be selected as parents (though all solutions have a nonzero probability of

selection). Different methods for selecting parents exist, but we used binary tournament selection,

in which two pairs of individuals are selected, and the individual with the lowest cost from each

Figure 4.5: Rotation of initial state |0〉 (green) by rotation operator RZ(π/4)RY (π/3)RZ(0) to new
state (orange arrow, red point). When noise of σ= 0.1 is applied to the parameter setting we see a
distribution of final states (blue) over 100 trials.
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pair is chosen to be a parent.

In more precise terms, parents are the candidate solutions selected to participate in crossover.

Crossover takes two parent solutions and produces two children solutions by randomly exchanging

the bitstring defining the first parent with the second. Each child replaces its parent in the

population of candidate solutions. The process is repeated, so costs for each child are evaluated,

and these children are used as parents for the next iteration [27]. In our case, the bitstring is

divided into n subsections, where n is the number of parameters passed to the quantum heuristic.

Each subsection is converted to an integer using Gray encoding and then interpolated into a real

value in the range [−π/2,π/2]. Gray codes are used as they avoid the Hamming walls found in

more standard binary encodings [59].

It is the bitstrings that are operated on by the genetic algorithm. When two individuals are

selected to reproduce, a random crossover point, bc is selected with probability Pc. Two children

are generated, one with bits left of bc from the first parent and bits to to the right of bc originating

from the second parent. The other child is given the opposite arrangement. Intuitively, if bc is in

the region of the bitstring allocated to parameter φk, the first child will have angles identical to

the first parent before φk and angles identical to the second parent after φk. Again, the second

child has the opposite arrangement. The effect on parameter φk is more difficult to describe.

Finally, after crossover is complete, each bit in each child’s bitstring (chromosome) is then flipped

(mutated) with probability Pm. Mutation is useful for letting the algorithm explore candidate

solutions that may not be accessible through crossover alone.

Evolutionary strategies are highly parallelizable, robust and relatively inexpensive [226]

making them a good candidate for the optimization of quantum heuristics.

4.3.2.3 Meta-learning on quantum circuits

The meta-learner used in this work is an LSTM, shown unrolled in time in Figure 4.1. Unrolling is

the process of iteratively updating the inputs, x, cell state and hidden state, referred to together as

s, of the LSTM. Inputs to the model were the gradients of the cost function w.r.t. the parameters,

preprocessed by methods outlined in the original work [14]. At each time-step they are

(4.1) xt =
( log(|∇〈H〉t|)

r ,sign(∇〈H〉t)) if
∣∣∇〈H〉t∣∣≥ e−r

(−1,exp(r)∇〈H〉t), otherwise

where r is a scaling parameter, here set to 10, following standard practice [14, 212]. The terms

∇〈H〉t are the gradients of the expectation value of the Hamiltonian at time-step t, with respect

to the parameters ~φt. This preprocessing handles potentially exponentially-large gradient values

whilst maintaining sign information. Explicitly, the meta-learner used here is a local optimizer. At

some point ~φt in the parameter-space, where t is the time-step of the optimization, the gradients

xt are computed and passed to the LSTM as input. The LSTM outputs an update ∆~φt, and the

new point in the parameter space is given by ~φt+1 =~φt+∆~φt. It is possible to use these models for
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derivative-free optimization [60], however, given that the gradient evaluations can be efficiently

performed on a quantum computer, scaling linearly with the number of gates, and that the

optimizers usually perform better with access to gradients, we use architectures here that exploit

this information. In Reference [169] the authors show that the gradients of the cost function

of parameterized quantum circuits may be exponentially small as a function of the number of

qubits, the result of a phenomena called the concentration of quantum observables. In cases

where this concentration is an issue, there may be strategies to mitigate this effect [94], though

it is not an issue in the small problem sizes used here.

Though only one model (a set of weights and biases) defines the meta-learner, it was applied in

a ‘coordinatewise’ way: For each parameter a different cell state and hidden state of the LSTM are

maintained throughout the optimization. Notably, this means that the size of the meta-learning

model is only indirectly dependent on the number of parameters in the problem. We used a

gradient-based approach, exploiting the parameter-shift rule [229] for computing the gradients of

the loss function with respect to the parameters. These were used at both training and test time.

All model training requires some loss function. We chose the summed losses,

(4.2) L (ω)= E f
[ T∑

t=0
ωt f (φt)

]
,

where E f is the expectation over all training instances f and T is a time-horizon (the number of

steps the LSTM is unrolled before losses from the time-steps t < T are accumulated, backpropa-

gated, and the model parameters updated). The hyperparameters ωt are included, though are set

to ωt = 1 for all t in these training runs. This can be adjusted to weigh finding optimal solutions

later in the optimization more favourably, a practice for balancing exploitation and exploration.

In situations where exploration is more important, other loss functions can be used, such as the

expected improvement or observed improvement [60]. However, in this instance we chose a loss

function to rapidly converge, meaning fewer calls to the QPU. This has the effect of converging to

local minima in some cases, though we found that this loss function performed better than the

other gradient-based optimizer (L-BFGS-B) for these problems.

4.3.3 Problems

4.3.3.1 Free Fermions Model

Hubbard Hamiltonians have a simple form, as follows:

H =− t
∑
〈i, j〉

∑
σ={↑,↓}

(a†
i,σa j,σ+a†

j,σai,σ)(4.3)

+U
∑

i
a†

i,↑ai,↑a†
i,↓ai,↓−µ

∑
i

∑
σ={↑,↓}

a†
i,σai,σ,

where a†
i,σ,ai,σ are creation and annihilation operators, respectively, of a particle at site i

with spin σ. In this model there is a hopping term t, a many body interaction term U and an
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onsite chemical potential term µ. This model gained importance as being a possible candidate

Hamiltonian to describe superconductivity in cuprate materials. However, recent numerical

studies have shown that there are some significant differences between the model and what is seen

in experiments, such as the periodicity of charged stripes that the model supports [112, 144, 231].

However, the model is quite interesting itself, with many different phases of interest. The model

is also quite difficult to solve, especially when going to large lattice sizes and large values of U /t.

This has lead to many studies and much method development on classical computers, and is still

widely researched today.

For VQE we look for the ground-state of the simplified spinless three-site Free Fermions model

with unequal coupling strengths ti j ∈ [−2,2] and U =µ= 0, Figure 4.6. The Hamiltonian of this

model can be mapped through the Jordan-Wigner transformation [120] to the qubit Hamiltonian

HFH = 1
2

(
t12 X̂1 X̂2 + t12Ŷ1Ŷ2 + t23 X̂2 X̂3

+ t23Ŷ2Ŷ3 + t13 X̂1Ẑ2 X̂3 + t13Ŷ1Ẑ2Ŷ3

)
(4.4)

where X̂ , Ŷ and Ẑ are the Pauli-X, Y and Z matrices, respectively. Based on the results

of [285, 286], we use a circuit composed of 3 blocks. Each block consists of three single qubit

rotations RZ(α)RY (β)RZ(γ) applied to all qubits, followed by entangling CNOT gates acting on

qubits (1,2) and (2,3), where the first entry is the control qubit and the second is the target.

Figure 4.6: Sketch of a spinless three-qubit Free Fermions model that is used for the VQE
optimization. Coupling strengths are not necessarily equal and take values from [−2,2].

4.3.3.2 MAX-2-SAT

Given a Boolean formula on n variables in conjunctive normal form (i.e. the AND of a number

of disjunctive two-variable OR clauses), MAX-SAT is the NP-hard problem of determining

the maximum number of clauses which may be simultaneously satisfied. The best classical

efficient algorithm known achieves only a constant factor approximation in the worst case, as

deciding whether a solution exists that obtains better than a particular constant factor is NP-

complete [196]. For MAX-2-SAT, where each clause consists of two literals, the number of satisfied
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clauses can be expressed as

(4.5) C = ∑
(i, j)∈E

x̃i ∨ x̃ j

where x̃i in each clause represents the binary variable xi or its negation, and E is the set of

clauses. We use an n-qubit problem encoding where the jth qubit logical states |0〉 j , |1〉 j encode

the possible values of each x j. Transforming to Ising spin variables [103] and substituting with

Pauli-Z matrices leads to the cost Hamiltonian

(4.6) Ĉ = ∑
(i, j)∈E

1
4

(1± Ẑ(i))(1± Ẑ( j))

which is minimized when the number of satisfied clauses is maximized. The sign factors +1 or −1

in Ĉ correspond to whether each clause contains xi or its negation, respectively. Note that C and

Ĉ are not equivalent; C gives a maximisation problem, while Ĉ gives a minimization problem,

with the same set of solutions.

For our QAOA implementation of MAX-2-SAT we use the original [79] initial state |s〉 =
1p
2n

∑
x |x〉, phase operator UP (Ĉ,γ)= exp

(−iγĈ
)
, and mixing operator UM(β)= exp

(
−iβ

∑n
j=1 X̂ ( j)

)
.

The instances we consider below have n = 8 qubits, 8 clauses, and QAOA circuit depth p = 3. We

further explore instances with n = 12 and p = 5, Figure 4.9.

4.3.3.3 Graph Bisection

Given a graph with an even number of nodes, the Graph Bisection problem is to partition the

nodes into two sets of equal size such that the number of edges across the two sets is minimized.

The best classical efficient algorithm known for this problem provably yields only a log-factor

worst-case approximation ratio [137]. Both this problem and its maximization variant are NP-

hard [196].

For an n-node graph with edge set E we encode the possible node partitions with n binary

variables, where x j encodes the placement of the jth vertex. In this encoding, from the problem

constraints the set of feasible solutions is encoded by strings x of Hamming weight n/2. The cost

function to minimize can be expressed as

(4.7) C = ∑
(i, j)∈E

XOR(xi,xj)

under the condition
∑n

j=1 x j = n/2. Transforming again to Ising variables gives the cost Hamilto-

nian

(4.8) Ĉ = 1
2

∑
(i, j)∈E

(1− Ẑ(i)Ẑ( j)).

A mapping to QAOA for this problem was given in [104, App. A.3.2] from which we derive our

construction. We again encode possible partitions x with the n-qubit computational basis states
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|x〉. For each problem instance we uniformly at random select a string y of Hamming weight n/2

and use the feasible initial state |y〉. The phase operator UP (Ĉ,γ)= exp
(−iγĈ

)
is constructed in

the usual way from the cost Hamiltonian. For the mixing operator we employ a special case of

the XY -mixer proposed in [104]. This class of mixers affect state transitions only between states

of the same Hamming weight, which will importantly restrict the quantum state evolution to the

feasible subspace. For each node j = 1, . . . ,n, we define the XY partial mixer

U j(β)= exp
(
−iβ

(
X̂ ( j) X̂ ( j+1) + Ŷ ( j)Ŷ ( j+1)

))
with σ(n+1) :=σ(1). We define the overall mixer to be the ordered product UM(β)=Un(β) . . .U2(β)U1(β).

Observe that as each partial mixer preserves feasibility, so does UM(β), and so QAOA will only

output feasible solution samples. We consider problem instances with n = 8 qubits, 8 edges, and

QAOA circuit depth p = 3.

4.4 Methods

4.4.1 Metrics

Here, we outline two metrics used to evaluate and compare the optimizers. The first metric used

is the gain, G , to the minimum,

(4.9) G = E f

[ fF − f I

fmin − f I

]

where E f is the expectation value over all instances f , fF is the converged cost of the optimizer,

f I is the initial cost (determined by the initial parameters) and fmin is the ground-state energy.

fmin was determined by evaluating all possible solutions in the cases of MAX-2-SAT and Graph

Bisection, and by exact diagonalization of the Hamiltonian for finding the ground-state of the

Free Fermions model. This number is the expectation over instances f of the ‘gain’ to the global

minimum from the initialized parameters. In the case of local optimizers (meta-learner, L-BFGS-

B, Nelder-Mead) we initialized to the same parameters. The metric outlines the average progress

to the global minimum from an initialization. Secondly, the quality of the final solution was also

evaluated by a distance to global minima metric, D,

(4.10) D = | fmin − fF |
| fmin − fmax|

∗100

where fmax is the maximum possible energy. This metric gives a sense of the closeness to the

global minima, as a percentage of the extent.
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Figure 4.7: Left to right columns: Free Fermions models, Graph Bisection and MAX-2-SAT
problems. Top to bottom rows: Wave Function, Sampling and Noisy simulations, defined in
Section 4.3. Optimizers: Evolutionary strategies (blue), Nelder-Mead (green), L-BFGS-B (red),
meta-learner (purple). x-axis: Shared within a column, QPU iteration is number of calls to the
QPU. y-axis: Shared within a row, G , the gain, is the value computed by Equation (4.9), and
represents the average progress toward the minimum from the initial evaluation of 〈H〉. L-
BFGS-B and the meta-learner have access to the gradient, and make numerous calls to auxiliary
quantum circuits (simulated in the same environment as the expectation value evaluation
circuits) to compute the gradients. The number of calls to evaluate gradients of parameters
is Ng = 2M, where M is the number of parameterized gates in the circuit. The QPU iteration
variable captures this, i.e. is the total number of calls to a QPU for an optimizer. Error bars are
the standard error on the mean, σ f /

p
n where n is the number of examples and σ f the standard

deviation of the performance of the optimizers. Note that negative values of G are observed,
corresponding to on average performing worse than the initial evaluation.
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4.4.2 Configuring Optimizers

We evaluated the optimizers on 20 problems from 5 random initializations each, to increase the

probability of reaching the ground-state by all optimizers. The initializations were kept the same

between the local optimizers (L-BFGF-B, Nelder-Mead and meta-learner).

Evolutionary strategies used 5 different random initializations for each problem. L-BFGS-B

and Nelder-Mead were implemented using Scipy [118], where the gradients for L-BFGS-B were

computed by analytic means and quantum circuit simulation. We implemented and configured

the evolutionary strategies methods in-house. For all tests, a small population size of 20 was

used to limit the number of calls to the simulator (sizes on the order of 100 are typical and may

improve performance). Both MAX-2-SAT and Graph Bisection problems with QAOA used m = 60

bits to represent parameters. VQE simulations had more parameters to optimize, so m = 297

bits were used for these problems. All tests used a probability of crossover of Pc = 0.9, and a

probability of mutation of Pm = 0.01. These parameters were selected by a sparse grid search.

On these small problems, the SciPy default hyperparameters of standard optimizers L-BFGS-

B and Nelder-Mead were found to give generally good performance. Any tuning did not contribute

meaningfully to the performance, though we expect at larger problem sizes more tuning will be

required as the optimization landscape increases in ruggedness. We found these hyperparameters

generalized well.

4.4.3 Training the meta-learner

For the MAX-2-SAT and Graph Bisection problems the model was trained on just 200 problems,

whereas in the case of optimizing Free Fermions models the meta-learning model quickly con-

verged and training was truncated at 100 problems. The loss function is given in Equation (4.2),

where values ωt = 1 ∀ t are used. For the preprocessing of the gradients, the hyperparameter r in

Equation (4.1) is set to 10. For all training an Adam optimizer [131] was used with a learning

rate of 0.003, β0 = 0.9, β1 = 0.999, ε= 1.0−8 and zero weight decay. These training schedules were

consistent across simulation type (Wave Function, Sampling and Noisy). We included a ‘curricu-

lum’ method, implemented in [60], whereby the time-horizon of the meta-learner is extended

slowly throughout the training cycle. This was started at 3 iterations and capped at 10, at the end

of the training cycle. Optimization was terminated if it converged, under standard convergence

criteria. Overall, 9 models were trained (3 simulation environments × 3 problem classes).

4.5 Discussion & Results

Figure 4.7 shows the performance of the optimizers measured by the gain metric in the three

simulation environments. The gain metric converges in the same sense as an optimizer converging

on one problem instance, this is as expected given it is an average over many problem instances.

A value close to 1 is desirable, indicating the ability of an optimizer to progress to the global
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Figure 4.8: Bubble and bar plots of the frequency of near-optimal solutions. The size of each
bubble is dependent on the total number of times an optimizer came within 2% of the global
optima across all problem instances (computed by Equation (4.10)); the largest bubble is L-BFGS-
B in the Wave Function environment (115). Repetitions are included, i.e. if an optimization ended
in a near-optimal solution it was counted, regardless of whether it was found in a previous
optimization. We found that if one optimizer performed well in one task, it performed well,
relative to the other optimizers, in another (by this metric), so each bubble is not divided into each
problem class. The right bar plot represents the summation across optimizers within a simulation
type. The bottom bar plot represents the summation within an optimizer across simulation types.
(N - Noisy, S - Sampling, W - Wave Function)

minima from a starting point. Figure 4.8 shows the total number of near-optimal solutions found

by each optimizer. We define near-optimal as finding a solution within 2% of the global optima

computed by Equation (4.10). The closest comparable competitor to the meta-learner in these

plots is L-BFGS-B, given both optimizers had access to the gradients. This is reflected in their

performance, particularly in Figure 4.7.

It is important to recognize that the comparison in Figure 4.7 has limited scope. Optimization

is a hard problem: There are many ways to improve application specific performance of different

algorithms and metrics to evaluate that performance. For example, the gradient-based optimizers

(meta-learner and L-BFGS-B) evaluate auxiliary quantum circuits many times in order to

compute the gradients. Recognizing there are always limitations to comparing optimization

methods, we draw conservative conclusions. Additionally, BFGS was not designed to work in

noisy evaluation environments and as such is not expected to compete with specially designed

optimisers (like the meta-learner).

4.5.1 General Performance

Additionally to meta-learning functioning as an optimizer in variational quantum algorithms,

we find competitive performance of this meta-learning algorithm, at small instance size, over a

range of problem classes, using the gain metric G defined in Equation (4.9); see Figure 4.7.

The metric G was used to evaluate and compare the optimizers, though this value can
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hide significant features. For example, an optimizer that finds good (but not optimal) solutions

frequently will perform better than an optimizer that finds bad solutions frequently and optimal

solutions infrequently. There are other cases that the reader may have in mind. This particular

example is addressed in Figure 4.8. The number of times the optimizer comes within 2% of the

ground-state (across all problems), as calculated by Equation (4.10), is counted. We observe an

expected reduction in performance as noise is increased; this is discussed further in the subsection

below.

4.5.2 Noise

As expected, there is a reduction in performance for all optimizers as ‘noise’ increases: Perfor-

mance is worse in Sampling than in Wave Function and is worse in Noisy than in Sampling.

What is notable is that the meta-learner is more resilient to this increase in noise than other

methods. For example, in Free Fermions model problems, L-BFGS-B performance reduces by

0.35 whereas the meta-learner only reduces by 0.2, from around the same starting point (Free

Fermions models column, Figure 4.7). This pattern is repeated across problem classes, to varying

degrees. We believe this is a promising sign that meta-learning will be especially useful in noisy

near-term quantum heuristics implemented on hardware. In the case of simulation, we believe

this resistance can be explained by the optimizer knowing how to find generally good parame-

ters, having learned from noisy systems already. This needs to be distinguished from another

potential benefit of these algorithms, where the models learn how to optimize in the presence of

hardware-specific traits. In the latter case, the meta-learner may learn a model that accounts

for hardware specific noise. Further, in Figure 4.8 we see a reduction in performance, measured

by the total number of near-optimal solutions, for all optimizers. However, this effect is least

apparent in the global optimizer (evolutionary strategies) and the meta-learner. Additionally, the

meta-learner finds significantly more near-optimal solutions (80) for Noisy simulation than the

next best optimizer (evolutionary strategies - 17). These are promising results on the potential

use cases of these optimizers in hybrid algorithms implemented on noisy quantum hardware.

4.5.3 Evolutionary Strategies

Evolutionary strategies exhibit an oscillatory behavior when gain to global optima versus function

call is plotted, the first generation corresponds to a random search, then the fittest individual (i.e.

best solution) found in the previous generation is evaluated first in the next generation. Hence,

we observe a spike in performance every 21 evaluations (the size of the population plus the fittest

individual). As such we only plot every 21 iterations, giving a smooth curve. We reiterate here

that given other performance/time metrics, including for example if optimizers are parallelized,

other analysis including different comparison metrics will be needed to determine the respective

use cases of meta-learners vs evolutionary strategies. Indeed, while Figure 4.7 suggests that

evolutionary strategies perform well for particularly hard problems (Graph Bisection, Noisy),
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preliminary results in Figure 4.8 indicate that the meta-learner tends to outperform evolutionary

strategies when searching for a near-optimal solution.

4.5.4 Problems and algorithms

The Free Fermions models were the simplest to solve (they are small problems confined to

parameter values [-2,2]). This is reflected in the performance of the gradient-based optimizers.

Evolutionary strategies underperforms. This is most likely a result of the size of the parameter

space: Though the problem size (in terms of the number of variables) is smaller, there are

significantly more parameters in this implementations we have considered of VQE (24) than

QAOA (6).

Of the two classical optimization problems we consider, the Graph Bisection problem is harder

than MAX-2-SAT, in the sense of worse classical approximability. While MAX-2-SAT can be

approximated up to a constant factor, the best classical efficient algorithms known for Graph

Bisection perform worse with increasing problem size [21, 196]. This contrast appears in the

performance of all optimizers: In general, every optimizer performs worse in Graph Bisection

than in MAX-2-SAT by the gain metric.

4.5.5 Scaling

Figure 4.9 provides evidence that the meta-learner model may be generalized. A model trained

on smaller QAOA problem instances (n = 8, p = 3) is extended to larger problems (n = 12, p = 5).

We chose L-BFGS-B for this comparison as it is the closest comparable competitor in terms of

information available and performance. The meta-learner is competitive with or even better than

L-BFGS-B, as evaluated by the Gain metric, in the initial optimization though appears to have

worse asymptotic behaviour. This may be because the the meta-learner encourages large steps in

the initial optimization, where the margin for error on the step is larger than when further in

the minima. At a high-level the initial and final steps can be thought of as regions with distinct

properties, it is unsurprising the meta-learner performs differently in each region.

This small demonstration is not extensive enough to make any serious conclusions regarding

the generalization of the meta-learner for optimizing quantum circuits, though it indicates similar

findings in the field that these models can extend to larger system sizes [14].

4.6 Conclusion

In this work we compared the performance of a range of optimizers (L-BFGS-B, Nelder-Mead,

evolutionary strategies and a meta-learner) across problem classes (MAX-2-SAT, Graph Bisection

and Free Fermions Models) of quantum heuristics (QAOA and VQE) in three simulation environ-

ments (Wave Function, Sampling and Noisy). We highlight three observations. The first is that

the meta-learner outperforms L-BFGS-B (the closest comparable competitor) in most cases, when
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Figure 4.9: Gain to minimum of L-BFGS-B and meta-learner optimizers in a Wave Function
environment applied to QAOA problems Graph Bisection and MAX-2-SAT. These problems are
12 variable problems with QAOA hyperparameter p=5. This is contrasted with the problems
explored in Figure 4.7, which are 8 qubit problems with p=3. The meta-learner is the model
trained on this previous problem set. QPU iteration is the number of calls made to a quantum
circuit. In this case, each optimization step is Ng = 2M = 20, where M = 10.

measured by an average percent gain metric G . Secondly, the meta-learner performs better than

all optimizers in the Noisy environment, measured by a total number of near-optimal solutions

metric D. Finally, the meta-learner generalizes to slightly larger systems for QAOA problems,

which reflects other findings in the field. We conclude that these are promising results for the

future applications of these tools to optimizing quantum heuristics, because these tools need to

be robust to noise and we are often looking for near-optimal solutions.

During the production of this work a related preprint [261] was posted online. In that preprint,

the authors consider only gradient-free implementations of meta-learners. Their training set

is orders of magnitude larger, as the meta-learner is learning to optimize from more limited

information. However, taking into account the QPU calls required to compute the gradients,

Ng = 2M where M is the number of parameterized gates, their gradient-free implementation

required significantly fewer queries to a QPU during optimization. As both architectures have

different advantages and trade-offs between resource overhead, training time and performance

should be considered for a given use case. Their conclusions are similar to ours regarding the

potential of meta-learning methods, and suggest using them as an initialization strategy.

The meta-learning methods evaluated here are relatively new and are expected to continue

to improve in design and performance [277]. There are several paths forward, we highlight some

here. Though there is no investigation into the scaling of meta-learner performance to larger

problem sizes, this in part is limited by the inability to simulate large quantum systems quickly,

and exacerbated by the further burden of computing the gradients. It is an open question as
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to how meta-learners will perform with quantum heuristics applied to larger problem sizes.

In a closely related vein, these methods will be explored on hardware implementations, for

two reasons. The first is that quantum computing will soon be beyond the realm of reasonable

simulation times, and testing these algorithms on systems with higher number of variables

will have to be done on hardware. The second is that these meta-learners may be able to learn

hardware-specific features. For example, in this work the meta-learner is a single model applied

to different parameters. This approach is called ‘coordinatewise’. If instead applied in a ‘qubitwise’

fashion, where different models are trained for parameters corresponding to each qubit in a given

hardware graph, there may be local variability in the physics of each qubit that the meta-learner

accounts for in its model and optimization.

In terms of further investigations into the specifics of the problems and quantum heuristics

considered, we emphasize that our QAOA implementation of Graph Bisection used a different

type of mixer and initial state than MAX-2-SAT. An important question to answer is to what

degree the differences in performance we observed between MAX-2-SAT and Graph Bisection

are due to the change of mixer and initial state, as opposed to the change of problem structure.

Additional possible mixer variants and initial states for Graph Bisection are suggested in [104],

which we expect to further affect QAOA performance, and hence also affect the performance

of our parameter optimization approaches. An important open area of research is to better

characterize the relative power of different QAOA mixers and the inherent tradeoffs in terms of

performance, resource requirements, and the difficulty of finding good algorithm parameters. In

this direction, recent work [270] has demonstrated that superposition states may perform better

than computational basis states as QAOA initial states.

Finally, heuristics play a prominent role in solving real-world problems: They provide prac-

tical solutions - not necessarily optimal - for complex problems (where an optimal solution is

prohibitively expensive), with reasonable amount of resources (time, memory etc.). Therefore,

we see significant potential for applications of quantum heuristics, implemented not only on

near-term quantum devices - especially for variational quantum algorithms - but also for hybrid

computing in fault-tolerant architectures. Thus it is imperative to characterize the classical

components, such as the meta-learner, that learn properties of quantum devices towards the

deployment of effective quantum heuristics for important practical applications.
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5
NEURAL NETWORK ANSÄTZE

Your assumptions are your windows on the world.

Scrub them off every once in a while, or the light won’t come in.

— Isaac Asimov

This Chapter is dedicated to a short, hopefully illuminating, trip through some methods

in quantum chemistry, specifically quantum Monte Carlo, developed to model fermionic

wave functions. Broadly, everything discussed is practically useful, and concepts that

may be historically significant may be ignored and detours into the theoretical undergrowth

are generally avoided. This trip ends in the region directly relevant to work in this Thesis: The

application of neural networks to the problem of modelling fermionic wave functions. I will argue,

beyond recent state-of-the-art results, outlined in Chapter 6, neural networks will likely become

a common if not de facto tool for modelling wave functions. The discussion is restricted to systems

of fermions (i.e. electrons) to build the core concepts required to describe the work in Chapter 6,

though these methods generalize to systems of bosons.

This section draws from many sources. Excellent summaries, discussion and reviews can be

found in the literature on the topics of quantum chemistry [85, 89, 106, 249].

5.1 Notation and Prerequisites

5.1.1 The system

The systems explored here are electrons moving in real continuous 3-D Euclidean space aorund

nuclei, alternately called fermionic systems in the wave mechanics formulation of quantum

mechanics. Electrons are fermions and a fermion is a spin-1
2 particle. Systems of fermions are

described by an antisymmetric wave function (the sign changes under the exchange of particles)

resulting in the Pauli exclusion principle: They cannot occupy the same configuration simulta-
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neously. The quantum state of the electrons and nuclei is represented by a wave function ψ(X ),

where X is the configuration of the system {r1, r2, ..., rn,R1,R2, ...,Rm}. The time-independent

Schrödinger equation

(5.1) Ĥψ(X )= Eψ(X ).

governs the spectrum of possible eigenstates. All instances of the Schrödinger equation used

in this Chapter are expressed in atomic units (see Section 5.1.2 for a full derivation). The operator

on the left-hand side of the equation is called the Hamiltonian, and for the time-independent

non-relativistic case is given by

(5.2) Ĥ = K̂e + K̂n +V (X )

where K̂e is the kinetic energy operator of the electrons, K̂n is the kinetic energy operator of

the nuclei and V (X ) is a potential energy term resulting from the Coulomb interaction of charged

particles

(5.3) V (X )=
ne,ne∑
i< j

1
r i j

+
ne,nn∑

i,I

ZI

r iI
+∑

IJ

ZI ZJ

RIJ

ne is the number of electrons, nn the number of nuclei, ZI the charge of nucleus I, r i j =∣∣ri −r j
∣∣, r iI = |ri −RI | and RIJ = |RI −RJ |, with |·| denoting the L2-norm of a vector. In general,

we take r and R to be the position vectors of electrons and nuclei, respectively.

This can be simplified via the Born-Oppenheimer approximation: nuclei in the system are

static. Given that the mass of an electron is significantly less than the mass of a nucleus

me/mn = 10−3 −10−5, the dynamics of the nuclei are ignored and they are fixed in place.

This assumption has two effects. First, the kinetic energy contributions of the nuclei are zero.

Second, the contributions to the potential energy from the nucleus-nucleus Coulomb interactions

are constant. They can then be neglected; their only effect is to shift the eigenspectrum of the

Hamiltonian, which is trivial to recover.

The kinetic energy operator of the electrons K̂e = − ∇̂2

2 and ∇̂2 is the Laplacian operator

∇̂2 =∑n
i=1

∑
j=x,y,z

∂2

∂2r i, j
. Including the potential terms from electron-electron and electron-nucleus

Coulomb interactions we can rewrite the Schrödinger equation as

(5.4) Ĥ = K̂e +V (X )=−∇̂2

2
+

ne,ne∑
i< j

1
r i j

+
ne,nn∑

i,I

ZI

r iI

As we will see, much effort has been expended in understanding how to model wave functions,

specifically of interest in this Thesis, those that represent the ground-states, efficiently and
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Figure 5.1: Cartoon of a Pople diagram, showing the relationship between the cost and accuracy
of the method.

accurately. Any function with the correct properties, for example antisymmetry, is a viable

Ansatz; it may, although it will likely not, be a good representation of the ground-state wave

function. The model must be able to capture the behaviour of the entire wave function resulting

from correlations between particles in the system, where one particle’s behaviour is correlated

with another. These correlations arise from various sources. In this Chapter, we discuss Fermi

correlations, Coulomb correlations and backflow and how models of wave functions are adapted

to be able to capture these features efficiently and accurately, Figure 5.1.

A concrete example of wave function behaviour is a cusp. A cusp in the wave function forms

when either an electron approaches the nucleus or another electron and the potential energy

term of the Hamiltonian diverges to an infinite value. When the distance is zero the phenomena

is referred to as coalescence. This divergence in the potenial is offset by oppositely diverging

kinetic energy, creating a cusp in the wave function. A cusp condition is the behaviour the wave

function must obey at these points, such as the Kato cusp [125].

As expected, the cost of finding a good Ansatz increases with the desired accuracy. Figure 5.1

is a simplified Pople diagram, outlining the relationship between the computational cost of a

method and its ability to capture the behaviour of wave functions. As we will see, a Hartee-

Product does not capture any of the electron-electron correlations and is a good starting point

for most other methods explored here. In general, chemical accuracy, 1 kcal/mol or 4 kJ/mol, is

enough to address most applications of wave function modelling, but an order of magnitude more

is needed to study other phenomena such as superconductivity.

5.1.2 Atomic units

All the derivations and equations in this Chapter are written in atomic units. Here, the transfor-

mation from SI (International System of Units) units to atomic units is outlined. In SI units the
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time-independent non-relativistic Schödinger equation is written

(5.5)
[ −~2

2me
∇̂2 − e2

4πε0|ri −r j|
]
ψ= Eψ

by letting all rn →λr′n this becomes

(5.6)
[ −~2

2meλ2 ∇̂′2 − e2

4πε0λ|r′i −r′j|
]
ψ′(X )= Eψ′(X )

the constants can be factored when

(5.7)
~2

meλ2 = e2

4πε0λ
= Ea

where Ea is a unit of energy called a Hartree. Solving for λ

(5.8) λ= 4πε0~2

mee2 = a0.

λ is the Bohr radius a0. Finally,

Ea

[−1
2

∇̂′2 − 1
|r′i −r′j|

]
ψ′(X )= Eψ′(X )(5.9)

[−1
2

∇̂′2 − 1
|r′i −r′j|

]
ψ′(X )= (E/Ea)ψ′(X )(5.10)

Energies computed via the this dimensionless Schrödinger equation are given in Hartrees.

5.2 Wave function models

5.2.1 The wave function

The time-independent wave function in position representation is a complicated function over 3-D

Euclidean space mapping configurations to amplitudes. Having access to a model wave function

called an Ansatz, which is a good approximation to the ground-state, is useful. These Ansatz are

inspired by the physics of the systems and constrained by available computational power. Some

Ansatz provide high accuracy but require a prohibitive amount of compute. Some work in certain

situations but not in others. As such, determining an easy to find, flexible and accurate Ansatz is,

without hyperbole, of paramount importance.

The structure of the Ansatz is important. For reasons that will become obvious, the Ansätze

discussed here have structures in common, such as the orbital. An orbital in position representa-

tion, denoted as a coordinate dependent function φ(r), is a wave function for a single electron.

64
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Atomic orbitals are single electronic wave functions in systems with one nucleus, and molecular

orbitals are the obvious generalization to systems with more than one nucleus. Depending on

context, ‘spatial’ and ‘molecular’ are implied throughout.

In all areas discussed in the following sections the wave functions are assumed to be real. For

a real Hermitian operator (e.g. the Hamiltonian of atomic systems in real space) the ground-state

wave function can be modelled with a real-valued function. There are cases where the wave

function will need to be modelled with a complex function, for example Hermitian operators

with complex valued eigenstates, in these cases the Ansatz will need to be complex in order to

accurately model the wave function. This design choice is limiting in the number of different

systems that can be modelled and the quantitites that may be computed from the Ansatz. However,

complex numbers are not a mature feature in most state-of-the-art deep learning frameworks. In

order to solve problems in quantum chemistry to the extent of incumbent methods, complex deep

learning practise first need to become more established.

5.2.2 Hartree product

A Hartree product is a separable state of single particle orbitals,

(5.11) ψH(r1,r2, ...,rn)=φ1(r1)φ2(r2)...φn(rn)

where ψH(r1,r2, ...,rn) is the Hartree product wave function, and φ1(r1) is the single particle

orbital of particle i. The single particle orbitals are orthonormal

(5.12)
∫
φi(r)∗φ j(r)dr= δi j

but practically finite, incomplete in continuous space for systems with more than 1 particle,

and the probability density associated with the orbital of an particle is independent of the other

particle positions

(5.13)
∣∣ψH(r1,r2, ...,rn)

∣∣2dr= ∣∣φ1(r1)
∣∣2dr1

∣∣φ2(r2)
∣∣2dr2...

∣∣φn(rn)
∣∣2drn.

Modelling the state as separable results in a mean-field approximation to the Coulomb

potential. The particles are assumed to be moving in a self-consistent field. The field is referred

to as self-consistent because the single particle wave functions are an eigenfunction of the

Hamiltonian and also generate the potential field in which they move.

The overall wave function is not antisymmetric, and therefore is not appropriate for modelling

systems of fermions. The Hartree-Fock method solves this problem by arranging these orbitals

into a Slater determinant.
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5.2.3 Slater Determinant

A determinant is a scalar quantity associated with matrix. It is by construction an antisymmetric

function; if the rows or columns are exhanged the sign on the determinant is flipped. Concretely,

(5.14) det(A)= |A| =

∣∣∣∣∣∣∣∣
A00 . . . A0n

...
...

An0 . . . Ann

∣∣∣∣∣∣∣∣=
n!∑

i=0
(−1)piP i A00...Ann

where P i is a permutation operator which permutes the column indices and the sum runs

over all combinations of the indices. pi is the number of permutations required to restore a given

permutation i0, i1, ..., in to the original order 0,1, ...,n

For clarity, an explicit 2x2 example is

(5.15) |A| =
∣∣∣∣∣A00 A01

A10 A11

∣∣∣∣∣= (−1)0 A00 A11 + (−1)1 A01 A10

A Slater determinant is a determinant of electron orbitals. These orbitals are usually but not

necessarily orthogonal.

5.2.4 Hartree-Fock

Hartree-Fock orbitals are an optimal, in the sense of quality of overall approximation to the

ground-state wave function, set of uncorrelated single electron orbitals in a given basis. The

basis determines the span of the Hilbert space available to the orbitals. The Hartree-Fock wave

function is these orbitals arranged in a Slater determinant, enforcing the antisymmetry of the

fermionic wave function and introducing Fermi correlations (exchange effects). Given some basis

of orbitals {χi(r)|i = 1,2, ...,k} spanning a subspace of Hilbert space (but the entire continuum),

we can construct an arbitrary set of eigenfunctions

(5.16) φi(r)=
k∑

j=1
αi jχi j(r)

of the Fock operators, which are single electron energy operators that only estimate the

electron-electron interations as a mean-field whose sum is an approximation to the true Hamilto-

nian,

(5.17) F̂iφi(ri)= eφi(ri)

where e is the eigenvalue of F̂ and φi(r i) are the eigenfunctions. By solving a linearly

independent set of eigenvalue equations (Roothaan equations [220]) it is possible to retrieve
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all αi j which determine the limited basis set of the eigenfunctions of the Fock operator. The

eigenvalues, energies, of these orbitals can be ordered. The lowest ne orbitals are filled with

electrons and the unfilled orbitals are referred to as virtual orbitals. These filled orbitals are

arranged in a Slater determinant

(5.18) ψ(X )= det(Φ(X ))=

∣∣∣∣∣∣∣∣
φ1(r1) . . . φn(r1)

...
...

φ1(rn) . . . φn(rn)

∣∣∣∣∣∣∣∣ ,

where the columns correspond to orbitals and the rows to electrons positions. The minimum

size of the basis set is equal to the number of electrons in the system. As the basis set increases,

the quality of the approximation improves. Configuration interaction methods use a linear

combination of Slater determinants to approximate the correlations in the system

(5.19) ψ(X )=∑
k
ωk det(Φk(X )),

where Φk(X ) are referred to as configuration state functions. This method is called Full

Configuration Interaction (Full CI), if, given a basis, all possible configuration state functions are

contained in the wave function. The number of possible Slater determinants is factorial in the

size of the basis. As a result, this method is intractable for all but the smallest systems, though

it is exact within the basis set chosen. Two n-electron Slater determinants having different

orthonormal orbitals (from the same basis set) are also orthogonal.

5.2.5 Slater-Jastrow

The Jastrow factor is a symmetric function introduced into general many-body problems to model

particle-particle correlations [116]. The first instance of this for atomic and molecular systems

was put forward by Boys and Handy [41, 228].

The general form of the Jastrow factor with 1 and 2 electron terms is

(5.20) J(X )=
ne∑
i

g(ri,R)− 1
2

∑
i> j,σµ

uσµ(ri,r j)

where σ and µ are the spin of electron i and j, respectively, g(ri,R) describes the electron-

nuclear correlations and is a function of the nuclei positions R, and u(ri,r j) describe the electron-

electron correlations.

Given the diverse range of systems it is not in general known a priori which Jastrow factor is

best in a particular circumstance. There are constraints on the structure of the functions Jσµ.

In order to maintain the anti-symmetry of the wave function they must be even (symmetric)
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under the exchange of electrons. Also, they must be twice-differentiable everywhere, other than

at r i j = 0. In periodic systems, the Jastrow factor must satisfy the boundary conditions of the cell.

Finally, Jastrow factor must obey the electron-electron cusp conditions

(5.21)
∂uσµ(ri,r j)

∂r i j

∣∣∣∣
r i j=0

=
 −1/4 if σ=µ

−1/2 if σ 6=µ

where r i j =
∣∣ri −r j

∣∣, giving spherically symmetric behaviour at short distances. A Slater-

Jastrow Ansatz is written

(5.22) ψ(X )= eJ(X ) ∑
k
ωk det(Φk(X ))

5.2.6 Slater-Jastrow-backflow

The classical notion of backflow is the the movement of a liquid from a system to a source

(flowing backwards). For example, water flows down a pipe, introducing an obstruction to the pipe

decreases the volume (of the pipe) increases the pressure and results in backflow (flow towards

the source).

The quantum analogue is a the phenomena of negative flow of probability (amplitude) in the

wave function. The effect was outlined by Feynman and Cohen [83], who derive a wave function

describing liquid Helium. The backflow arises as a factor to accommodate the conservation of

momentum (and therefore current) after introducing an excitation (phonon) into the model. For a

steady state wave function, there must be zero total current, and therefore the introduction of an

excitation must be accompanied by the negative flow of particles.

This effect has been included into Ansatz for some time, and the literature seems to capture

all momenta dependent correlations, in the case of the electron-nuceli system, between electrons.

In specific terms of this model, the movement of electrons are influenced by the movement of

other electrons [111].

Practically, introducing backflow correlations to Ansatz involves replacing particle coordinates

with quasiparticles

(5.23) r′i = ri +
∑
i 6= j

η(r i j)(ri −r j)

η(r i j) can be a parameterized function obtained via optimization, for example VMC described

in Section 5.3.1. In uniform systems, this only results in replacing the coordinates with these

quasiparticle coordinates. The nature of the sum ensures that the pseudo-coordinates are depen-

dent on electron i and all other electrons j.

68



5.3. QUANTUM MONTE CARLO METHODS

Figure 5.2: Cartoon of the accuracy of the methods described in previous sections. The Hartree-
Fock limit is the energy obtained by a complete basis. Relativistic effect shows the solution to the
Schrödinger equation when including relativisitic physics into the model and the exact solution
is the energy of the exact ground-state of the time independent Schrödinger equation.

5.2.7 Summary

Several methods for modelling wave functions were outlined in the preceding sections. There are

scores of methods, approximations and tricks for capturing the behaviour of wave functions. Here,

in order to lay the foundation for neural network Ansatz of the form outlined in Chapter 6, we

have not touched on important topics such as density functional theory [17] and coupled cluster

[195]. They are outside the scope of this work and mentioned here for the interested reader.

Figure 5.2 outlines roughly how the methods outlined in the previous sections compare on an

arbitrary scale of approximation to the ground-state energy.

5.3 Quantum Monte Carlo Methods

Quantum monte carlo methods are a broad class of tools for simulating quantum systems

effectively defined by the approximation of integrals into terms computable with Monte Carlo

methods. For example, the cost of computing the exact partition function scales exponentially

with the system size, but can be calculated with statistical uncertainty via sampling.

Take some function y= f (x) of a random variable, where the random variable is distributed

according to p(x). A single value drawn from p(x) is called a sample. We can approximate the

mean of f (x) by sampling the distribution p(x).

(5.24) ȳ=
∫

p(x) f (x)dx = Ex∼p(x)[ f (x)]≈ 1
m

∑
i

f (xi),
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where ȳ is the mean of the function. This quantity has some uncertainty associated with

it, which is dependent on the number of samples taken from p(x) (and therefore the number of

values of f (x) computed),

(5.25) Var(y)= 1
m

m∑
i=1

(yi − ȳ)2

In order to compute these quantities, we need to be able to generate samples from p(x) that

are representative of the distribution. There are methods designed to perform direct sampling, for

example in the case of univariate distributions the inverse probability transform can transform

the problem to a uniform sampling problem, which is trivial. Direct sampling methods are often

either impossible or impractical if the space is high dimensional.

Markov Chain Monte Carlo (MCMC) methods generate samples by moving walker, creating

a chain of states x0, x1, ..., xm, around a space in such a way that they eventually represent the

target distribution p(x). These samples are correlated, because the new state depends on the

previous state and so forth.

Metropolis Hastings is one such algorithm. A walker is a value of the random variable, x,

that can change. A typical Monte Carlo simulation will have 100s-1000s of walkers, which we

will call a batch in the language of deep learning, but will restrict the following discussion to a

single walker for simplicity. A move or a step is a change in the variable to a new value x′. If

we have access to a function g(x)∝ p(x) we can compute the acceptance probability of making a

move Pmove = g(x′)
g(x) . If the move is accepted, the walker changes to the new value x → x′ and the

process is repeated for some number of steps. The Algorithm is detailed in Algorithm 2.

Algorithm 2 Metropolis-Hastings algorithm used here for sampling. cl is the correlation length.
Line 7 updates variables when the condition is true.

1: for cl do
2: ξ∼ N(0,σ)
3: x′ ← x+ξ
4: α∼U[0,1]
5: Pmove ← p(x′)

p(x)
6: if Pmove >α then
7: X ← x′

8: end if
9: end for

The autocorrelation length, τA, is the number of steps needed to be taken before the samples

are independent. Increasing the step size σ and the number of steps cl decreases the amount

correlation between the samples, but in general it is not known what these values should be to

completely decorrelate the samples. Therefore given some data we must be able to compute the

autocorrelation length to accurately compute quantities such as the mean and the variance. A

method for computing the autocorrelation length from a set of samples is outlined below.
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Usually, the variance decreases with 1/m, Equation (5.25). The variance is actually computed

from the number, m′, of uncorrelated samples, expressed

(5.26) Varp(x)[ f (x)]/m′ = τAVarp(x)[ f (x)]/m

and for a stochastic process evolving in time this computed as the sum over all steps in the

process τA is computed

(5.27) τA =
∞∑

x=−∞
ρ(x)

where ρ(x) is the normalized autocorrelation function of the process. In this case the Markov

chain this can be estimated as

(5.28) τA ≈
m∑

i=1

m−i∑
n=1

1
n− i

(yn − ȳ)(yn−t − ȳ).

5.3.1 Variational Monte Carlo

VMC is a method for finding the ground state of a quantum system. Given a model of the system,

the Hamiltonian, Ĥ, the energy of some wave function ψ(X ) can be computed

(5.29) E =
〈
ψ

∣∣Ĥ∣∣ψ〉
〈ψ〉 =

∫
ψ∗(X )Ĥψ(X )dX∫ ∣∣ψ(X )

∣∣2dX
=

∫ ∣∣ψ(X )
∣∣2 Ĥψ(X )

ψ(X ) dX∫ ∣∣ψ(X )
∣∣2dX

.

The integral is taken over all configurations, X, in the space. In the numerator on the right

hand side for a given configuration we can split the term into two concepts, the probability of

observing a configuration p(X )= |ψ(X )|2∫ |ψ(X )|2dX
and the local energy, defined in Section 5.3.2.1.

Computing the integral exactly is hard, so we use approximate Monte Carlo methods to

sample configurations from the wave function and approximate the true energy

(5.30) E = EX∼|ψ(X )|2
[
EL(X i)

]≈ 1
m

m∑
i=1

EL(X i)

where EL(X i) is the local energy of configuration X i sampled with probability p(X i) =
|ψ(X i)|2∫ |ψ(X )|2dX

. An important observation to note about the expectation value in Equation (5.29)

is the local energy is constant across all configurations if ψ(X ) is an exact eigenfunction of the Ĥ,

such that during the variational optimization of the Ansatz the variance of the local energies of

walkers will decrease.

Momentarily we will switch to Dirac notation for the derivation of the variation principle,

which states that any wave function will have a higher energy than the ground-state wave
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function. Given a system with a discrete set of orthonormal, 〈ψi|ψ j〉 = δi j, states with corre-

sponding energies E = {E0,E1, ...,En}, which can be ordered E0 ≤ E1 ≤, ...,≤ En, and an arbitrary

normalized state 〈ψ̃〉 = 1, we can derive the variational principle,

〈ψ̃|Ĥ|ψ̃〉 ≥ E0

First we note

〈ψ̃〉 NORM= 1
IDEN= ∑

i j
〈ψ̃|ψi〉〈ψi|ψ j〉〈ψ j|ψ̃〉

ORTH= ∑
i j
〈ψ̃|ψi〉δi j 〈ψ j|ψ̃〉

=∑
i
〈ψ̃|ψi〉〈ψi|ψ̃〉

=∑
i

∣∣〈ψ̃|ψi〉
∣∣2,(5.31)

where NORM, IDEN and ORTH are the normalization, identity and orthogonal conditions,

respectively, and

(5.32)
〈
ψi

∣∣Ĥ∣∣ψ j
〉= E j 〈ψi|ψ j〉 = δi jE j

then we show

〈ψ̃|Ĥ|ψ̃〉 =∑
i j
〈ψ̃|ψi〉 〈ψi|Ĥ|ψ j〉〈ψ j|ψ̃〉

=∑
i

E i
∣∣〈ψ̃|ψi〉

∣∣2
≥ E0(5.33)

5.3.2 Solving the Schrödinger equation with Variational Monte Carlo

The Schrödinger Equation plays a central role in the description of quantum behavior of chemical

systems. Apart from a handful of analytically solvable models, for example the hydrogen atom

[42], one mostly needs to incorporate approximate techniques and numerical methods that scale

unfavorably with the increasing system size (e.g. number of electrons) [255]. Many techniques

and approximations have been introduced to address this problem, and in this work we have a

particular focus on real space Monte Carlo approaches.

An atomic or molecular system can be described by the time-independent Schrödinger equa-

tion
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(5.34) Ĥψ(X )= Eψ(X ).

Using the Born-Oppenheimer approximation, the position of nuclei are frozen and we have a

Hamiltonian for the electronic degrees of freedom,

(5.35) Ĥ =−1
2
∇̂2 +V (X ).

Units of energy E expressed here are Hartrees, ∇̂2 is the multidimensional (3ne where ne

is the number of electrons) Laplacian of the wave function ∇̂2 =∑ne
i=1

∑
j=x,y,z

d2

dr2
i, j

that describes

kinetic energy. r i, j and Ri, j correspond to coordinate j = x, y, z of the i-th electron and nuclei,

respectively. V (X ) is the potential energy of some (electron, nuclei) configuration

(5.36) X = (r1,x, r1,y, r1,z, . . . , rne,z;R1,x, . . . ,Rnn,z),

given by

V (X )=
ne∑
i> j

1
|ri −r j|

+
ne,nn∑

i,I

ZI

|ri −RI |

+
nn∑

I>J

ZI ZJ

|RI −RJ |
(5.37)

where nn is the number of nuclei, ZI is the atomic number of nuclei I, and ri and RI are the

position vectors of the electron i and nuclei I, respectively. Throughout the Chapter we use bold

font to denote vectors and regular font to denote vector components (scalars). Both are lower case

symbols or letters. Matrices are capitalized symbols or letters and are not written in bold font.

Though a batched vector, for example m vectors of dimension n arranged in an m×n, can be

represented as a matrix, we notationally treat it as a vector, as is typical for deep learning. There

are some caveats to these, though in general the meaning is obvious from context, for example

nuclei coordinates are capitalized.

Solving the Schrödinger equation, Equation (5.34), is a subroutine in finding the minimum

energy of the system, i.e. the ground state energy E0. Since the Hamiltonian is a bounded

operator, one may use a variational principle [249]

(5.38) E0 ≤ 〈ψ| Ĥ |ψ〉
〈ψ〉 =

∫
dXψ∗(X )Ĥψ(X )∫
dXψ∗(X )ψ(X )

,

detailing that the expectation value of the Hamiltonian Ĥ with respect to a state ψ(X ) is bounded

from below by the ground state energy E0. Finding the best approximation to the ground state

ψ0(X ) can be done with a parameterized Ansatz, a so-called trial wave function ψ(X ;θ), which

is iteratively optimized until a satisfactory accuracy (in terms of energy) is achieved. Different
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Ansätze have varying capacities to express wave functions, resulting in different possible minimal

energy wave functions. The greater the capacity of an Ansatz to model the true wave function,

the better the approximation to the ground state, in general.

A popular class of variational methods - Variational Monte Carlo (VMC) - relies on random

sampling of the configuration space in order to estimate expectation value of the Hamiltonian

(computing loss function) as

(5.39) L (θ)= 〈ψ(θ)| Ĥ |ψ(θ)〉
〈ψ(θ)〉 =

∫
dX |ψ(X ;θ)|2EL(X ;θ)∫

dX |ψ(X ;θ)|2 ,

where EL(X ;θ)=ψ−1(X ;θ)Ĥψ(X ;θ) is local energy, which for molecular/atomic Hamiltonians is

convenient to express in log-domain as

(5.40) EL(X ′;θ)=−1
2

[
∇̂2 log |ψ(X ;θ)|∣∣X ′ +

(∇̂ log |ψ(X ;θ)|∣∣X ′
)2

]
+V (X ′).

(∇̂·)2 is the inner product of the nabla operator
(

∂·
∂r1,x

, ..., ∂·
∂rne ,z

)
with itself. The integral (5.39) is

an expectation value of the sampled configurations X ,∫
dX |ψ(X ;θ)|2EL(X ;θ)= EX∼p(X ;θ)

[
EL(X ;θ)

]
.(5.41)

The expectation in Equation (5.41) is approximated by a Monte-Carlo estimate,

EX∼p(X ;θ)

[
EL(X ;θ)

]
≈ 1

N

N∑
i=1

EL(X i;θ),(5.42)

where we introduce configuration probability p(X ;θ)∝|ψ(X ;θ)|2. Samples (also referred to as

walkers and are represented by X ) are generated from the wave function distribution via the

Metropolis Hastings Monte Carlo method. In order to update the parameters θ and improve the

wave function, one needs to compute gradients of the loss function with respect to θ denoted

∆L (θ). The parameters θ of the wave function are optimized using some form of gradient descent

and computed via

(5.43) ∆L (θ)= EX

[
(EL(X ;θ)−EX [EL(X ;θ)])∇̂ log |ψ(X ;θ)|

]
and estimated through sampling of the configuration space. This procedure allows us to get

close to the ground state ψ0(X ), however it strongly relies on the parameterized Ansatz and ease

of computing the gradients ∆L (θ). From now on, we will omit θ parameters where it is clear from

the context, and introduce Fermi Net as an Ansatz that provides powerful parameterization.

5.3.2.1 Optimization of the parameterized Ansatz

Up to this point we have assumed an arbitrary general state |ψ〉. Now, we introduce an Ansatz,

or model, ψ(X ;θ) parameterized by θ following the guidelines laid out in the previous sections. In
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order to improve the Ansatz we must change the parameters in such a way that minimizes the

energy. The derivatives of the energy with respect to the parameters are

∂E
∂θ

= ∂

∂θ

∫ ∣∣ψ(X )
∣∣2 Ĥψ(X )

ψ(X ) dX∫ ∣∣ψ(X )
∣∣2dX

,(5.44)

which can be simplified by substituting ∂ψ(X )
∂θ

=ψ(X )∂ logψ(X )
∂θ

∂E
∂θ

=
∫ ∣∣ψ(X )

∣∣2 ∂ logψ
∂θ

EL(X )dX∫ ∣∣ψ(X )
∣∣2dX

+
∫ ∣∣ψ(X )

∣∣2EL(X )dX
∫ ∣∣ψ(X )

∣∣2 ∂ logψ(X )
∂θ

dX∫ ∣∣ψ(X )
∣∣2dX

= EX∼|ψ(X )2|
[
EL(X )−EX∼|ψ(X )2|[EL(X )]

∂ logψ
∂θ

]
,(5.45)

with the local energy given by

(5.46) EL(X )= Ĥψ(X )
ψ(X )

=−1
2

[
∇̂2 log |ψ(X )|∣∣X + (∇̂ log |ψ(X )|∣∣X )2

]
+V (X ).

(∇̂·)2 is the inner product of the nabla operator
(

∂·
∂r1,x

, ..., ∂·
∂rne ,z

)
with itself, ∇̂2 is the Laplacian

defined previously and V (X ) is the potential energy of the system with fixed nuclei

(5.47) V (X )=
ne,ne∑
i< j

1
r i j

+
ne,nn∑

i,I

ZI

r iI

5.3.3 Diffusion Monte Carlo

Whereas VMC relies on the optimization of the parameters of the Ansatz via the derivatives of

the expectation value of the energy, DMC is a projector method relying repeated application of a

projector operator. Practically, this involves weighting the significance of the walkers. Given a

trial function, which has some non-zero overlap with the ground-sate, repeated application of a

projector (via the power method) will evolve the wave function toward the ground-state. Green’s

function Monte Carlo is an example of a projector method. Diffusion Monte Carlo is a related but

distinct projector method that is equivalent to a Green’s function method in the limit of small

time steps [85, 158, 257].

Attempting to simulate the imaginary-time Schrödinger equation in this way naïvely one

would encounter the sign problem [101, 255], resulting from the antisymmetry constraint of

exchange of electrons. The most successful approach to avoiding the sign problem in DMC

simulations is the fixed node approximation: The nodes of the wave function are fixed [13]. Under

this assumption, the nodes (points in space where the wave function changes from positive to
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negative) are fixed in place. Practically, this is implemented by not allowing walkers to cross

nodes during the sampling process.

Green’s function Monte Carlo and DMC are essentially equivalent [147]. Though a complete

description of Green’s function Monte Carlo is outside the scope of this Thesis, I briefly mention

the exact propagator method as a small amount of context to Stochastic Reconfiguration and

DMC.

Given some parameterized Ansatz |ψ(θ)〉 that is equal to the trial state, we wish to change

the wave function such that it is equal to the projected state. We start with the imaginary-time

Schrödinger equation

(5.48) − ∂ψ(X , t)
∂t

= (Ĥ−ET )ψ(X , t)

that can be interpreted as a diffusion equation and solved in the path integral formalism [135].

ET is the trial energy or offset energy, discussed further below. In this equation, the ground-state

of the system is a stationary state; there are no time dynamics and the LHS is equal to zero. In

this case, we can recover the time-independent Schrödinger equation Ĥψ(X )= E0ψ(X ).

For some state ψn(X ) 6=ψ0(X ) with eigenvalue En > ET we can see that the derivative will

also be negative: The amplitudes of states which have higher eigenvalues than ET decay as a

function of time. It is clearer to see when the wave function is expanded as a linear combination

eigenfunctions

−∂ψ(X , t)
∂t

= (Ĥ−ET )
∑

i
αiψi(X , t)(5.49)

and the eigenfunctions of this equation are

ψ(X , t)= e−t(Ĥ−ET )
∞∑

i=0
αiψi(X )

=
∞∑

i=0
αi e−t(E i−ET )ψi(X )(5.50)

in the limit of t →∞ the behviour of the wave function is dependent on ET . There are three

cases for the behaviour in the asymptotic region:

(5.51) lim
t→∞ψ(X , t)=


∞ for ET > E0

α0ψ0 for ET = E0

0 for ET < E0

.

The trial energy is not known beforehand. It is set adaptively dependent on the behaviour the

evolution. In DMC ET is chosen to make the ground-state energy zero. In Green’s function Monte

Carlo, it is chosen to make the spectrum of the Hamiltonian positive.
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5.3.4 Stochastic reconfiguration

Stochastic reconfiguration was initially suggested as an approach to mitigate the effect of sign

problem in lattice Green’s function Monte Carlo [241]. It was subsequently developed into an

optimization routine for VMC methods [55, 242].

We can absorb the trial energy into the Hamiltonian and express the time-component of the

wave function as a Taylor series

e−τ(Ĥ−ET ) = e−τĤ′

=
∞∑

k=0

(−τ)kĤ′k

k!

= Î +
∞∑

k=1

(−τ)kĤ′k

k!

= Î −τĤ′+O (τ2)

≈ Î −τĤ′.(5.52)

This is a first order approximation (as the second order terms are dropped) dependent on τ.

The task then becomes identifying a way to apply the operator Î −τĤ′, which is described below.

The states are represented in this derivation with Dirac notation. Application of the projector in

Equation (5.52) to some trial Ansatz |ψT〉 returns the projected state |ψP〉

(5.53) |ψP〉 = (Î −τĤ) |ψT〉 .

Taking the derivatives of the trial Ansatz with respect to its parameters forms a basis that

defines the subspace around the state, where the Ansatz can vary in the directions the parameters

control. The parameter derivative operators are Ôi |ψ〉 = ∂ |ψ〉 /∂αi = |ψi〉 and Ô0 |ψ〉 = Î |ψ〉 = |ψ〉
[55, 198, 242]. The new Ansatz can be defined in terms of this basis and amplitudes δαi, steps in

the directions of the derivatives,

|ψ′
T〉 = δα0 |ψT〉+

∑
i
δαiÔi |ψT〉(5.54)

=∑
i
δαiÔi |ψT〉(5.55)

Equating the overlap of the states |ψi〉 = Ô |ψ〉 of the imaginary time evolved state and the

updated to the variational Ansatz we have

(5.56) 〈ψT |Ô†
j(Î −τĤ) |ψT〉 = 〈ψT |Ô†

j(
∑

i
δαiÔi) |ψT〉
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which can be separated into the cases where j = 0 and otherwise,

1−τ〈
ψT |Ĥ|ψT

〉= δα0 +
∑

i
δαi

〈
ψT |Ôi|ψT

〉
if j = 0(5.57)

and

〈
ψT |Ô†

j |ψT

〉
−τ

〈
ψT |Ô†

jĤ|ψT

〉
= δα0

〈
ψT |Ô†

j |ψT

〉
+∑

i
δαi

〈
ψT |Ô†

jÔi|ψT

〉
otherwise(5.58)

Substituting the expression for δα0 in Equation (5.57) into Equation (5.58) we have

〈
Ô†

j

〉
−τ

〈
Ô†

jĤ
〉
= (1−τ〈

Ĥ
〉−∑

i
δαi

〈
Ôi

〉
)
〈

Ô†
j

〉
+∑

i
δαi

〈
Ô†

jÔi

〉
(5.59)

τ
〈
Ĥ

〉〈
Ô†

j

〉
−τ

〈
Ô†

jĤ
〉
=−∑

i
δαi(

〈
Ôi

〉〈
Ô†

j

〉
+

〈
Ô†

jÔi

〉
)(5.60)

where
〈

Ô†
j

〉
=

〈
ψT |Ô†

j |ψT

〉
for compactness of notation. solving this linear system of equa-

tions to get an expression for δαi

(5.61) δαi = τ
∑

j
(
〈
Ôi

〉〈
Ô†

j

〉
+

〈
Ô†

jÔi

〉
)−1(

〈
Ĥ

〉〈
Ô†

j

〉
−

〈
Ô†

jĤ
〉

)

which is easier to see in vector notation with matrix S with elements Si j =
〈
Ôi

〉〈
Ô†

j

〉
+〈

Ô†
jÔi

〉
, ~δα= (δα1,δα2, ...,δαn) and vector ~f with elements ~f j =

〈
Ĥ

〉〈
Ô†

j

〉
−

〈
Ô†

jĤ
〉

the Equation

becomes

(5.62) ~δα= S−1~f

5.4 Literature Review

There are extensive and excellent works on the role of machine learning in quantum chemistry

[117, 154]. The aim in this Section is to connect the dots of incumbent methods for modelling

wave functions, described in previous sections, and relatively new neural network based methods.

Methods involving supervised learning are not explored, as these do not involve solving

the Schrödinger equation, at least not directly. In general, these methods attempt to predict

properties of systems given labelled data about other systems, either from experiment or data

from ab initio methods. A field in it’s own right, it is not discussed here as the techniques and

goal (predicting the behaviour of new systems given data on old systems) are distinct from our
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own (modelling the wave function of a given system). I refer to other work for information on this

field [73].

Machine learning methods, in the purest sense of algorithms that iteratively improve given

more data, have been computational chemistry tools for some time [90]. Recently, machine

learning has become almost synonymous with neural networks in ‘deep learning’, and this holds

true in computational chemistry, where these relatively novel methods are breaking ground in

diverse areas of research.

Using neural networks to solve ab initio computational chemistry problems, at a high level,

involves creating a physics-based model of a system and representing some or all of that physics

model with neural networks. Widely recognised as the first attempt, in Reference [51] the authors

use a Boltzmann machine to model ground states of spin systems. In the following years Boltz-

mann machines remained popular in this area, despite the incredible successes of feedforward

neural networks trained via backpropagation. Boltzmann machines have been applied extensively

to learn wave function of static systems [69, 191, 234, 252, 253, 294], understand the capacity of

models for modelling many-body quantum systems [149, 174, 234]. Although, they are widely

regarded in the classical machine learning community as the more expensive and less effective

method [76].

More recently, research interest has turned to state-of-the-art methods. For example, re-

searchers have developed new algorithms [224], sampling processes [291], physics-based ap-

proaches [108], applied to open quantum systems [184] and successful methods that support the

deep learning mantra ‘bigger is better’ [204]. Reviews in these areas include [117, 154].

Other models and systems explored by researchers for modelling quantum states include

feedforward neural networks [49, 128, 288, 291], variational autoencoders [217], and more

recently convolutional neural networks (specifically for frustrated systems) [64], convolutional

[63, 64, 149, 151, 177, 253], variational autoregressive [53, 287], and for the simulation of open

quantum systems [252].

The specific model we explore in this Thesis is an adaption of the Slater-Jastrow-backflow

wave function where backflow has previously been modelled by neural networks [157, 224, 275].

5.5 Homogeneous Electron Gas

In this section I outline a brief example of combining the previously discussed elements into

a workable framework for solving the time-independent Schrödinger equation for a fermionic

system.

The homogeneous electron gas [57, 74] is a system of electrons moving in a field. We wish

to find the ground state wave function of the system. They can be described as a Fermi fluid; a

Fermi fluid is a liquid of particles having Fermi-Dirac statistics. Fermi-Dirac statistics describes

the distribution of population over states of systems of many identical fermionic particles obeying
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the Pauli exclusion principle. Another way of saying this is particles with half-integer spin at

thermodynamic equilibrium.

Taking the Schrödinger equation for some parameterized Ansatz ψ(X ;θ), where we drop the

θ dependence,

(5.63) Ĥψ(X )= Eψ(X ).

The Hamiltonian of the system is

(5.64) Ĥ =− 1
r2

s

N∑
i=1

∇2
i +

2
rs

∑
i< j

1
|ri −r j|

+ c,

where rs is the density parameter and c is a constant potential factor resulting from a homo-

geneous positive field around the electrons. It is disregarded in the local energy computations,

Equation (5.46), as its only effect is to shift the entire eigenspectrum up, which is trivial to

recover. The density parameter is important for determining the ground state properties of the

free electron gas and is given by

(5.65) rs = ne/(a/a0)

where a0 is the Bohr radius and a is the mean separation of the electrons and ne is the

number of electrons. In a 3D model we can compute the volume v, given a, of the sphere occupied

by a single electron

(5.66)
4
3
πa3 = v,

which given some ne determines the total volume of the box. The length of a side of the box

l can be computed l3 = v. The size of the box and the number of electrons, which determine

the density parameter rs, are hyperparameters of the experiment. The density determines the

behaviour of the system (i.e. the phase of the electron gas), for example the Wigner crystal is the

solid crystalline phase of electrons [279], and the size of the box determines the accuracy of the

model of the system; in the limit ne →∞ and l →∞, the thermodynamic limit, the simulation

is exact. Now we can decide how to model our wave function. For this example, we choose a

Slater-Jastrow-backflow wave function of the form

(5.67) ψ(X )= eJ(X ′) ∑
i
Φi(X ′)

X ′ are the set of backflow system coordinates X ′ = r′1,r′2, ...,rnr , where the coordinates are

shifted by the backflow transform
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(5.68) r′i = ri +
∑
i 6= j

η(r i j)(ri −r j).

The Slater determinants in Equation (5.67) can be decomposed into a product of spin up and

spin down determinants,

(5.69) ψ(X )= eJ(X ′)
k∑

i=1
det

[
Φ↑

i (X
′)
]
det

[
Φ↓

i (X
′)
]
.

This representation forces off-block-diagonal elements of the full determinant matrix Φ to

zero:

Φi j = 0 if (i ∈ {1, ...,n↑}∧ j ∈ {n↑+1, ...,n})

∨ (i ∈ {n↑+1, ...,n}∧ j ∈ {1, ...,n↑})

= 0 if (i ≤ n↑∧ j > n↑)∨ (i > n↑∧ j ≤ n↑).(5.70)

The Jastrow factor and backflow functions can be modelled by a an arbitrary function,

such as a neural networks parameterized some set of parameters θ, provided the Φ(X ′;θ) are

antisymmetric and J(X ′;θ) is symmetric and satisfies the boundary conditions of the cell and

the electron-electron cusp conditions at coalescence. The final parameterized Ansatz in this

construction is

(5.71) ψ(X ;θ)= J(X ′;θ)
k∑

i=1
det

[
Φ↑

i (X
′;θ)

]
det

[
Φ↓

i (X
′;θ)

]
where gradients can be computed via Metropolis Hastings sampling, Algorithm 2, and the

parameter updates by optimization, Section 5.3.1.
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6
FERMIONIC NEURAL NETWORKS AND KRONECKER FACTORED

APPROXIMATE CURVATURE

... the farther down you go, the bigger and scalier the turtles get, with sharper beaks.

— Lev Grossman, The Magicians

Recently developed neural network-based ab-initio solutions (Pfau et. al arxiv:1909.02487v2)

for finding ground states of fermionic systems can generate state-of-the-art results on a

broad class of systems. In this work, we improve the results for this Ansatz with Diffusion

Monte Carlo. Additionally, we introduce several modifications to the network (FermiNet) and

optimization method (Kronecker Factored Approximate Curvature) that reduce the number of

required resources while maintaining or improving the modelling performance. In terms of the

model, we remove redundant computations and alter the way data is handled in the permuta-

tion equivariant function. The Diffusion Monte Carlo results exceed or match state-of-the-art

performance for all systems investigated: atomic systems Be-Ne, and the carbon cation C+.

6.1 Introduction

Neural networks, in recent years, have provided an alternative computational paradigm for

solving electronic structure problems which includes applications in directly solving the time-

independent Schrödinger equation to find approximate ground states of atoms and molecules

[267]. Standard quantum chemistry methods [249], such as coupled-cluster [139], full configu-

ration interaction [221], VMC [172], and DMC [257] have been used in conjunction with neural

network methods in different ways, such as the introduction of new Ansätze [51, 108, 204, 232,

233, 255] or providing rich datasets for the prediction of properties of previously untested systems

and their dynamics in supervised learning frameworks [25, 66, 90, 292].

83



CHAPTER 6. FERMIONIC NEURAL NETWORKS AND KRONECKER FACTORED
APPROXIMATE CURVATURE

Figure 6.1: The system of atoms (protons/neutrons red/green) and electrons (blue). The set of
position vectors of a system of atoms, Ri and electrons ri. Xorigin is the origin (black) of the
coordinate system. In all cases explored here we considered single atom systems and the origin
was set to the nucleus position. However, the choice of origin is completely arbitrary as FermiNet
is invariant to translations.

Notable examples of new Ansätze are neural networks such as PauliNet [108], Boltzmann

machines [51] and FermiNet [204]. Even though these techniques are still in the early stages of

development, neural networks for fermionic systems has been widely studied over the past few

years, and some of these techniques are capable of producing state-of-the-art results for electronic

structure simulations. We have particular interest in finding good approximations to ground

states of fermionic Hamiltonians [108] and the precision and accuracy of FermiNet [204].

In this paper we modify an existing framework, the FermiNet [204], by changing how data

is handled in the network and removing redundant elements. We apply the wave function

optimization algorithm VMC whilst altering some aspects of the KFAC optimization, and then

running the DMC algorithm to improve the wave function further. The use of DMC is standard

practice in many Quantum Monte Carlo (QMC) codes, however, the wave functions used in

virtually all packages prior to this new wave of neural network approaches are using a wave

function engine consisting of Slater/Jastrow/Multi-determinant/Backflow wave functions, which

generally are less accurate than the FermiNet Ansatz.

The QMC we described above is generally run with standard VMC and then DMC with the

fixed node approximation (nuclei are fixed in place) in the continuum. That is to say we solve the

Schrödinger equation

(6.1) Ĥψ(X )= Eψ(X ),

where X defines the system configuration, Figure 6.1, Ĥ is the Hamiltonian operator and E is

the energy of the wave function ψ(X ).
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The Chapter is organized as follows: Section 6.2 introduces the problem to be solved (i.e. the

time-independent Schrödinger equation for fermionic systems) and all the relevant background

including VMC, KFAC, DMC and a sketch of the FermiNet; Section 6.3 describes the particular

methods used in this work including detailed descriptions of the algorithms; The results are

described and discussed in Section 6.4; and finally we conclude our findings in Section 6.5.

Contributions

• Introduced changes to the FermiNet implementation, removing the diagonal ele-

ments of the pairwise terms and altering how the data is handled in the permu-

tation equivariant function, resulting in improvements in efficiency, described in

Section 6.2.1

• First known application of Diffusion Monte Carlo with a neural network Ansatz

• State-of-the-art results on all systems explored (Be-Ne, and C+)

This Ansatz is functionally identical to previous work. We refer to the model and the associated

optimization methods described as FermiNet* in order to distinguish from previous work that is

referred to as FermiNet.

At a high level, the FermiNet is a function mapping configurations (particle positions) to

amplitudes. This function needs to be anti-symmetric under the exchange of same spin electrons,

which enforces some structure to the function. The anti-symmetry is implemented with a de-

terminant operation on orbitals (exponentially decaying functions), where the determinant is

anti-symmetric under the exchange of rows/columns, and permutation equivariant functions be-

fore the determinant generating the orbitals. These orbitals are functions of all electron positions

which allows the wave function to capture correlations between particles.

6.2 Solving the Schrödinger equation for fermionic systems

6.2.1 Fermionic Neural Network Ansatz

The Fermionic Neural Network (FermiNet) is a neural network designed specifically for the task

of representing the wave function, in continuous Euclidean space, of the Schrödinger equation for

a fermionic Hamiltonian. In this section we describe the original model, found in Reference [204],

and in Section 6.3.1 we describe FermiNet*, which is functionally identical but better performing

(faster) than the original.

At a high level, the FermiNet consists of

I learnable single electron features (single streams),

II learnable electron-electron interaction features (pairwise streams),
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III permutation equivariant operations (EQV),

IV and multi-electron orbitals.

To a lesser extent the implementation and optimization details are necessary to the perfor-

mance and usage. As such they are characteristic of the FermiNet implementation:

VI KFAC optimization;

VII and stable log-domain computation of the amplitudes, first order derivatives and second

order derivatives.

Next, in this background, we give an overview of the FermiNet model, describing I-IV. Then

we detail KFAC, describing VI. Details on VII, including the LogSumExp trick and derivations of

the derivatives of the determinant, can be found in the appendix of Reference [204] or understood

from other references [38].

Ansatz

There are two sets of streams in the network referred to as the single and pairwise streams.

These streams contain the data corresponding to single, hlα
i , and pairwise, hlαβ

i j , electron input

features, respectively. These variables are indexed by l, the layer of the network, and i and j, the

electron indexes. α is the spin of electron i and β is the spin of electron j.

The inputs, computed from the system X , to the network are indexed by l = 0 and computed

as

h0α
i = (ri −R0,‖ri −R0‖,ri −R1,‖ri −R1‖, ...,ri −Rn,‖ri −Rn‖),(6.2)

h0αβ
i j = (ri −r j,

∥∥ri −r j
∥∥).(6.3)

ri and R j are the electron and atom position vectors, as shown in Figure 6.1, and ‖·‖ is the

Euclidean norm.

The data from the streams at each layer are transformed by a permutation equivariant

function. The permutation equivariant function maintains the anti-symmetry (required by

fermionic systems) of the Ansatz and generates multi-electron orbitals with demonstrably good

modelling capacity. This function outputs one streams of data flα
i :

(6.4) flα
i =

(
hlα,

1
n↑

∑
β6=↓

hlαβ
i j ,

1
n↓

∑
β6=↑

hlαβ
i j ,

1
n↑

∑
α6=↓

hlα
i ,

1
n↓

∑
α6=↑

hlα
i

)

The data at each layer l are computed
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hlα
i = tanh

(
Wlflα

i +bl)+h(l−1)α
i

hlαβ
i j = tanh

(
Vlh

lαβ
i j +cl

)+h(l−1)αβ
i j(6.5)

where in a layer l, Wl , and Vl are weights, bl and cl are the biases. Residual connections are

added to all layers where dim(hl)= dim(h(l−1)).

There are nl of these parameterized layers. The outputs fLα
i are split into spin dependent

data blocks. There is a linear transformation to map hLα
i to a scalars which are coefficients of

the exponentials in the orbitals. Multiple determinants are generated in this way, indexed by k,

which contribute to the modelling capacity of the network and the elements of the determinants

are the product of the coefficient computed by the FermiNet and the envelopes

φαk
i j = (wαk

li hlα
j +dαk

li )×∑
m
παk

im exp
(
−|Σαk

im(rαj −Rm)|
)

(6.6)

Σαk
im control the anisotropic (direction dependent) behaviour of the envelope whereas the

inverse exponential ensures the wave function decays to zero when the electrons are large

distances from the nuclei.

The determinants are constructed

(6.7) det
[
Φαk

]
=

∣∣∣∣∣∣∣∣
φαk

00 . . . φαk
0n

...
...

φαk
n0 . . . φαk

nn

∣∣∣∣∣∣∣∣ .

and the amplitudes are computed from these

(6.8) ψ(X )=∑
k
ωk det

[
Φ↑k

]
det

[
Φ↓k

]
.

Equation (6.8) is a representation of the full determinant as a product of spin up and down

determinants. This representation forces off-block-diagonal elements of the full determinant Φ to

zero, when

(i ∈ {1, ...,n↑}∧ j ∈ {n↑+1, ...,n})∨ (i ∈ {n↑+1, ...,n}∧ j ∈ {1, ...,n↑})

= (i ≤ n↑∧ j > n↑)∨ (i > n↑∧ j ≤ n↑),(6.9)

where i and j refer to the orbital index. Finally, the sign is split from the the amplitudes and

the network outputs the amplitudes in the log-domain for numerical stability
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(6.10) log |ψ(X )| = log
∣∣∣∑

k
ωk det

[
Φ↑k

]
det

[
Φ↓k

]∣∣∣
Other work [245], removes the weights ωk in Equation (6.8), as they are functionally re-

dundant, and replaces the anisotropic decay parameters Σαk
im in Equation (6.6) with a single

parameter, restricting the orbitals to isotropic decay. Surprisingly, the authors note this does not

seem to result in a decrease in modelling accuracy but does lead to significant gains in speed.

These improvements are further discussed in Section 6.4.

Kronecker Factored Approximate Curvature

Natural gradient descent [9], is an algorithm for computing the natural gradients of a parameter-

ized function. They are

(6.11) ∆= F−1vec(∆L )

where ∆ are the natural gradients, ∆L are the gradients of the function parameters and F is

the Fisher Information Matrix (FIM)

(6.12) F = EX

[d log pθ(X )
dθ

T d log pθ(X )
dθ

]
and g are the gradients computed in Riemmanian space. KFAC is an algorithm which

approximates the natural gradients of a neural network. There are a series of approximations

and methods associated with this algorithm, which are often applied in a case dependent way (as

we will see in this work). The bottleneck of Natural Gradient Descent is the cost of inverting the

FIM, which for an n×n matrix is ∼O(n3). This is prohibitive for neural networks with even a

few thousand parameters. KFAC reduces this burden whilst still accurately (enough) modelling

the Fisher such that useful approximate natural gradients can be found.

Given that the inverse of a Kronecker product is the Kronecker product of the inverses

(6.13) (A⊗B)−1 = A−1 ⊗B−1

the authors break down the FIM into blocks, extract the most important blocks, and ap-

proximate these blocks in a form that allows the identity of inverting Kronecker products,

Equation (6.13), to be used.

Expressing the FIM as blocks it is natural to use the structure of the neural network to

dictate the layout of the blocks:
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(6.14) F =


E[Dθ(0)Dθ(0)T ] · · · E[Dθ(0)Dθ(L)T ]

...
. . .

...

E[Dθ(0)Dθ(L)T ] · · · E[Dθ(L)Dθ(L)]


where

(6.15) Dθ(i) = d log pθ(X )
dθ(i)

the (i) superscript denotes the parameters in layer i of the network.

Removing all but the diagonal blocks we have

(6.16) F̃ =


E[Dθ(0)Dθ(0)T ] · · · 0

...
. . .

...

0 · · · E[Dθ(L)Dθ(L)]


Each of these blocks can be reformulated as the Kronecker product of the outer product of the

activtations and sensitivities, for example layer 0,

F (0) = EX [Dθ(0)Dθ(0)T ]

= EX [(a0 ⊗s0)(a0 ⊗s0)T ]

= EX [a0aT
0 ⊗s0sT

0 ](6.17)

and finally assuming that the expectation of Kronecker product is approximately equal to

the Kronecker product of the expectations, which has no name so we simply call the KFAC

approximation here, though technically more accurately is independence of the covariances of the

activations and covariances of the sensitivities,

F (l) KFAC≈ EX [aT
l al]⊗EX [sT

l sl]

= Al ⊗Sl .(6.18)

In practise, it is common to smooth the approximation to the Fisher in time. At any iteration

in the optimization the quality of the approximation is limited by the number of samples in a

batch. This can be unstable. Instead, the approximation is smoothed by replacing the left and

right Fisher factors with their moving averages. There are different methods for implementing

this exponentially decaying average of the history, in this work it is computed
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(6.19) Ālt = (Āl(t−1) +κAlt)/κt

where κt = κ(t−1) +κ is defined as the total weight and κ0 = 0, Āl0 is a matrix of zeros and

Alt is the instantaneous covariances computed from Equation (6.18). The right Fisher factor

is computed in the same way. It is important to be careful here that the contribution to the

exponentially decaying average of the moving covariances from the zeroth term is zero, otherwise

the following computed averages will be zero biased.

The approximate natural gradients of each Fisher block can be computed as Equation (6.11),

(6.20) δ̃l = F̃ (l)−1vec(∆Ll)

We use δ̃ to indicate approximate natural gradients throughout and vec(X ) is the vectorization

of a matrix X .

6.2.2 Damping

This form of KFAC is unstable for two reasons: The approximate natural gradients can be large

and the Fisher blocks are potentially singular (thus the inversion can’t be performed).

Damping is a tool for shifting the eigenspectrum of a matrix (such that the matrix is non-

singular) and also restricting the ‘trust region’ of the updates. The inverse Fisher described in

Equation (6.20) is adjusted, typically in Tikhonov damping,

(6.21) ∆̄l = (F̃ (l) +λ)−1vec(∆Ll)

This can no longer be decomposed as Equation (6.13). An adapted technique, Factored

Tikhonov Damping described in detail in Reference [166], is used which approximates the true

damping

(6.22) (F̃ (l) +λ)−1 FT≈ (A+
p
πλ )⊗ (S+

p
λ/π )

where

(6.23) πl =
Tr[Al]dim(Sl)
Tr[Sl]dim(Al)

This method is derived from minimizing the residual from the expansion of damped Fisher

block into Kronecker factors.
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6.2.3 Centering

All approximations to the Fisher block have thus far been computed via the derivatives of the

log-likelihood of the normalized distribution p(X ) with respect to the weights. However, we

compute O = d log |ψ(X )|
dθ which are the derivatives of the log unnormalized wave function ψ(X ).

It can be shown, for example Appendix C of Reference [204] that elements in the FIM can be

expressed

Fi j ∝ EX

[
(Oi −EX [Oi])(O j −EX [O j])

]
(6.24)

= 1
4
EX

[d log p(X )
dθi

d log p(X )
dθ j

]
(6.25)

Where the derivatives of the log wave function have been centered by EX [O ]. However, in

tests we found that the performance was more dependent on the hyperparameters used in KFAC

than on the centering. There are many approximations affecting the quality of the approximation

to the FIM and the interplay between the optimization and this approximation. We ignored the

centering to simplify the implementation but outline the method here of approximating this

centering for readers who are interested.

F ∝ EX

[
(O −EX [O ])T (O −EX [O ])

]
= EX

[
OTO −EX [O ]TO −OT EX [O ]

−EX [O ]T EX [O ]
]

LINEAR= EX [OTO ]−EX [O ]T EX [O ](6.26)

(6.27)

The second term can be approximated by assuming Independent Activations and Sensitivities

(IAD):

EX [O ]T EX [O ]= EX [a⊗s]T EX [a⊗s](6.28)
IAD≈ (EX [a]⊗EX [s])T (EX [a]⊗EX [s])(6.29)

= EX [a]T EX [a]⊗EX [s]T EX [s](6.30)

= A′⊗S′.(6.31)

Overall, the centering outlined in Equation (6.26) can be approximated by mean centering

the activations and sensitivities

ā= a−EX [a](6.32)

s̄= a−EX [s](6.33)
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or alternately maintaining a moving average of A′ and S′ and subtracting those directly

from Ā and S̄ in Equation (6.19). Both these methods result in the same residual, which can be

computed by expanding either expression for the resultant approximate FIM.

6.2.4 This work

The optimization algorithm used here is a variant approximate natural gradient descent method

known as KFAC. Roughly speaking, updates (the approximate natural gradients) δ̃l for layer l

are computed as

δ̃l = F̃−1
l vec(∆lL )

= Ā−1
l ∆lL S̄−1

l ,(6.34)

where F̃−1
l is the approximate inverse Fisher block, ∆lL are the gradients corresponding to

weights in layer l, and Āl and S̄l are the moving covariances of the left and right Fisher factors,

respectively, discussed in literature [22, 96, 165, 166]. The term Fisher block is used to indicate

the elements of the FIM corresponding to a given layer in the network. In Reference [204] the

authors use a reduced version of the full KFAC algorithm. They do not use adaptive damping or

adaptive learning rates which are somewhat characteristic of the original algorithm [203] and

considered important in the literature [166].

The KFAC variant used in this work is closer to an adaption named Kronecker Factors for

Convolution [96] because the weights in most of the layers are reused. For example, the single

stream weights are used ne times, where ne is the number of electrons in the system. There are

different approaches to approximating the effect this has on the FIM and here we use the simpler

and more efficient approximation developed in Reference [22]

(6.35) F̃l = |T|2EX
[
Ei[al i]Ei[al i]T]⊗EX

[
Ei[sl i]Ei[sl i]T]

where T indicates the transpose, al i are the activations of spatial location (the index of data

which are operated on by the same parameters) i at layer l and sl i are the sensitivities of the

pre-activations zl i of layer l

(6.36) sl i =
d log |ψ(X )|

dzl i
.

See Figure 6.2 for a sketch of how these variables are related. Ei is the expectation taken over

all spatial locations
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Figure 6.2: Sketch of the relationship between a and z. For some layer l, zl are the pre-activations,
f (z) is an activation function, al are the activations and wl are the weights. Data variables are
in circles, functions in square and network parameters in diamond.

Ei[al i]=
1
|T|

∑
i

al i(6.37)

Ei[sl i]=
1
|T|

∑
i

sl i(6.38)

where T is the set of spatial locations and |T| is its cardinality.

6.3 Methods

6.3.1 FermiNet*

Name symbol value
Single Stream hidden units ns 256
Pairwise Stream hidden units np 32
Split Stream hidden units nss 256
Determinants nk 16
Layers nl 4

Table 6.1: Model hyperparameters.

We change the network slightly, decreasing the resources (defined as the number of operations)

required by the original model. We refer to this implementation of the model (and distinct

optimization) as FermiNet* in order to distinguish from other work, Reference [204], which is

referred to as FermiNet. For both implementations of the model we compute the total number of

operations of the implementations and compare the walltime.

The number of operations nops is computed as

(6.39) nops =
∑
l

nl
uses ×dl

out × (dl
in + (dl

in −1))

where l is index running over all layers performing matrix multiplications and nl
uses, dl

out

and dl
in are the number of times those weights are used, the input dimension and the output

dimension, respectively. To clarify, dout× (din+ (din−1)) is the cost of one matrix-vector product in
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Figure 6.3: Overview of FermiNet. The system description X is used to compute the single
stream and pairwise stream input feature tensors h0α

i and h0αβ
i , respectively. These are passed

to the permutation equivariant function (EQV), Figure 6.4. Linear layers are applied to the
resulting tensors with tanh activations. Outputs of the Split Stream and Single Stream matrix
multiplications are combined before a tanh activation in the Single Stream layer. These layers are
repeated 4 times. After the final permutation equivariant function, the Split Stream and Single
Stream outputs are concatenated (++) and Pairwise Stream data discarded. The concatenated
tensor is passed through a final spin dependent linear transformation to spin-up and spin-down
determinants. The final layer is a custom computation of the determinants which involves stable
first- and second-order derivatives and the LogSumExp trick.

terms of the number of operations (multiplication or addition). This equation only computes the

contributions from the linear layers because these are the only layers where the implementations

differ and ignores other operations such as computing the determinant, which is the dominant

operation in the complexity.

It is possible to completely remove elements from the pairwise streams tensor with no effect

to the modelling capacity or performance of the network. The diagonal elements of the pairwise

tensor hlαβ
i j where i = j are redundant. The inputs computed from Equation (6.3) are zero, have

zero contribution to computation of the energy (and therefore zero contribution to the computation

of the gradients). Though this only results in a small reduction in resource, Figure 6.5(b), we find

a per iteration walltime reduction of ∼ 5−10%. The effect is more noticeable at larger system

sizes.

The permutation equivariant function is changed to decrease the number of operations,

Figure 6.4. This new function outputs two streams of data, flα
i and gl :
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Figure 6.4: Data from the single and pairwise streams are combined in this operation via
Equations (6.40) & (6.41). The pairwise stream data remains unchanged.

flα
i =

(
hlα,

1
n↑

∑
β6=↓

hlαβ
i j ,

1
n↓

∑
β6=↑

hlαβ
i j

)
(6.40)

gl =
(

1
n↑

∑
α6=↓

hlα
i ,

1
n↓

∑
α6=↑

hlα
i

)
.(6.41)

This implementation requires less resources than the original, as the mean over spin terms

in the layer, gl , are only operated on once, instead of ne times, in the case that these data are not

split and gl appears in all single electron streams.

The data at each layer l are computed

hlα
i = tanh

(
Wlflα

i +Zlgl−1 +bl)
+h(l−1)α

i(6.42)

hlαβ
i j = tanh

(
Vlh

lαβ
i j +cl

)+h(l−1)αβ
i j(6.43)

where in a layer l, Wl , Zl and Vl are weights, bl and cl are the biases. As before, residual

connections are added to all layers where dim(hl) = dim(h(l−1)). The outputs fLα
i and gL are

concatenated, hLα
i = (fLα

i ,gL), and split into two spin dependent data blocks.

This is an alternate but equivalent representation of the permutation equivariant function

outlined in Reference [204]. This representation reduces the number of operations required to

perform a forward pass in the network, Figures 6.5(a) and 6.5(b).

Using this implementation results in a worse approximation to the FIM, discussed further in

the next section, see Figure 6.8(a), though we did not observe meaningful differences in perfor-

mance between the two implementations. The reduction in computational effort (as measured
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putations of the model on 1 V100 GPU.

Figure 6.5: The blue line corresponds to the network outlined in Reference [204], the orange
line to the method of splitting the single streams, Equations (6.40) and (6.41), and the green
line the resource requirements of splitting the single stream and removing redundant pairwise
streams. The resource requirements are measured as the number of required operations, nops,
Equation (6.39). The walltime comparison of these methods is shown in (b). It is important to
note that the computational time of the framework is dominated by the determinant calculation.
These improvements will become negligible at much larger systems.

by the per iteration walltime as a proxy) was not as large as the drop in resource requirements,

though was significant enough (∼ 5−10%) to warrant the additional complication.

A complete set of the hyperparameters of the FermiNet* Ansatz used in these experiments

are given in Table 6.1.

Spin for system X should be maximized (Hund’s rule). Though it is not clear how these

multi-electron orbitals should be interpreted, arranging the system in this way is better than

other obvious methods (evenly splitting the number of electrons between spins), Figure 6.6.
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Figure 6.6: Demonstration of performance of the network dependent in the spin structure of the
Ansatz.

6.3.2 Pretraining

The pretraining was performed very similarly to as described in Reference [204]. We outline the

methods here for completeness.

The pretraining loss is

L pre =
∫ [ ∑

α∈{↑,↓}

∑
i jk

(
φkα

i j (X )−φHF
iα (rβ)

)2]
ppre(X )dX(6.44)

where

(6.45) ppre = 1
2

( ∏
α∈{↑,↓}

∏
i
φHF

iα (rβ)+|ψ(X )|2
)
,

with φHF
iα being Hartee-Fock orbitals obtained with STO-3g basis evaluated with PySCF python

package.

This quantity is approximated by splitting the samples (at random) into two equal length

sets and taking one Metropolis Hastings step with p(X )=∏
α∈{↑,↓}

∏
iφ

HF
iα (rαi) for the first set and

p(X )= |ψ(X )|2 for the second set. The sets are joined and the process repeated. This implementa-

tion is slightly different to the original work, and seems to improve the pretraining: The Ansatz

(after pretraining) has a lower energy.

As described in Reference [204], this distribution samples where the Hartree Fock (HF)

orbitals are large, and also where the wave function is poorly initialized and is incorrectly large.

This method of pretraining is a better solution to the problem of guiding the initial wave function.

An Ansatz close to the HF orbitals seems to not get stuck in local minima and drastically improves

the optimization behaviour. Other solutions include integrating the HF orbitals into the network
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throughout the whole training, for example in Reference [108]. The optimization was performed

using an Adam optimizer with default hyperparameters, notably learning rate 1×10−3.

6.3.3 Kronecker Factored Approximate Curvature

We found divergent behaviour of the damping in the asymptotic region of the training, most likely

due to the relatively large noise on the loss and small precision requirements of this particular

optimization, though more rigorous investigation will likely yield interesting and useful insight.

As such, we use a reduced version of KFAC. We decay the learning rate, norm constraint and

damping

(6.46) x = x0

1+ t×10−4

where x stands in for the damping, learning rate and norm constraint and x0 for the initial

values. t is the iteration of the optimization. The norm constraint is particularly important

at the start of training when the quadratic approximation to the local optimization space is

large, the natural gradients are large and lead to unstable optimization. In this region the

norm constraint plays a role and effectively clips the gradients. Later in the optimization the

approximate natural gradients are small and not constrained. The damping / learning rate

interplay is an essential ingredient to a functioning KFAC implementation. The algorithm has

nice convergence properties, for this problem especially, but high performance is only possible

with careful tuning of the damping and learning rate.

We bundle parameters in the envelope layers by using sparse matrix multiplications. We com-

pute the entire Fisher block for all parameters of the same symbol (i.e. the π and Σ parameters).

This is illustrated in Figure 6.8(b). Although we found this implementation was faster in practice,

it performs more operations than maintaining a separation between these layers. It does not

scale favorably for larger systems, though relative to the computational cost of the network may

be negligible.

In Figures 6.8(a) and 6.8(b) we show the changes on the left Fisher factor resulting from

using an implementation which splits data in the permutation equivariant function, versus an

implementation which does not. For atomic systems, the right Fisher factor, S̄, is the same in this

new formulation. Therefore the changes in Ā are representative of the changes to the entire FIM.

The quality of approximation to the FIM is dependent on the data distribution and the model.

In this problem and for a small model, we found that this approximation provided a better

representation of the exact FIM than other methods [96] when compared on a small model over

an initial optimization run of 1×103 iterations. It is not possible to perform the comparison to

the exact FIM as the memory requirements to compute the exact FIM scale as O (n2
w) where nw is

the number of parameters.
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6.3.4 Variational Monte Carlo with Kronecker Factored Approximate
Curvature

The goal is to create a good enough approximation of the wave function and therefore the nodal

structure of the wave function using VMC to be followed up with DMC given the FermiNet*

Ansatz.

The VMC requires cl forward passes (sampling), 1 backward pass (gradient) and 1 energy

computations. To sample the wave function we use Metropolis Hastings. The step size is adaptively

changed during training to move the acceptance toward the target sampling acceptance ratio

of 0.5. cl is the correlation length and here was set to 10. The model is pretrained for 1×103

iterations using the methods outlined in Section 6.3.2.

The gradients of the parameters are computed from Equation (5.43) and the centered energies

(EL(X )−EX [EL(X )]) in Equation (5.43) have been clipped 5x from the median value and replaced

with ẼL(X ). Walkers X are sampled via Metropolis Hastings. A walker is a point in a space

that moves around the space by taking random steps. These moves are accepted or rejected

dependent on the difference in probability density of the starting and end points. A description of

the algorithm is given in Algorithm 3.

Algorithm 3 Metropolis-Hastings algorithm used here for sampling. cl is the correlation length.
r and xi are M×ne ×3 dimensional tensors. Steps update electron positions simultaneously and
acceptance of steps are performed in parallel across all walkers. Line 7 updates walkers where
the condition is true. σ is the step size that is adaptively determined to maintain an acceptance
ratio of 0.5.

1: for cl do
2: ξ∼ N(0,σ)
3: r′ ← r+ξ
4: α∼U[0,1]
5: Pmove ← p(r′)

p(r)
6: if Pmove >α then
7: r← r′

8: end if
9: end for

The approximate natural gradients for layer l, which are the updates to the Ansatz para-

meters, are computed via Equation (6.34). The approximation to the Fisher factors, Ā and S̄,

are ‘warmed-up’ by taking 100 steps of stochastic gradient descent with small learning rate

(ν= 1×10−5) whilst accumulating statistics. This ensures a smoothed initial approximation to

the FIM and is consistent with other work in the literature [166].

For all systems, other than Beryllium, 1×105 iterations of VMC were run. The full VMC and

KFAC algorithm used in this work is outlined in Algorithm 4 and a full set of hyperparameters

and initialization values of variables are given in Table 6.2.
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Name symbol initial value
iteration k 0
number iterations kVMC

max 1×105

learning rate η 1×10−4

norm constraint c 1×10−4

covariance state decay κ 0.95
damping λ 1×10−4

damping factor π N/A
instantaneous activations a N/A
instantaneous sensitivities s N/A
energy gradients ∆L N/A
approx. natural gradients δ̃ N/A
variable decay ν 1×10−4

spatial locations i N/A
decaying average left Kronecker factor Āl 0
decaying average right Kronecker factor S̄l 0
instantaneous left Kronecker factor Al N/A
instantaneous right Kronecker factor Sl N/A
correlation length cl 10
sampling step size σ 0.022

batch size m 4096

Table 6.2: Table containing all variables used in the VMC algorithm using KFAC updates in this
work.

…

… … …

…

Figure 6.7: Flow diagram of distributed KFAC used in this work. The blue hexagons are the head
worker, green hexagons workers. There are multiple workers, indicated by the staggered images
and ellipses. The red squares are variables computed at one step and used at the next. θ are the
parameters of the model, δ̃ are the approximate natural gradients, ∆ log |ψ(X )| are the derivatives
of the wave function wrt the electron position vectors and EL are the local energies of the walkers
X . These are tensors with M copies, where M is the batch size on a worker. Ā and S̄ are the left
and right Fisher factors computed during the forward and backward passes. These variables are
averaged before being used to compute the approximate natural gradients. Note that the average
Ā and S̄ are not passed back to the workers. This results in a worse approximation to the Fisher,
but a difference in performance was not noticed during tests.
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((a)) Fisher factor A of only the layers
containing Zl , Wl and Vl parameters. W′

l
represents the variables for computing
the Fisher factor from a layer where the
parameters Wl and Zl are not split into
two layers.

((b)) Fisher factors A of the layers corre-
sponding to the παk

im, Σαk
im and ωk parame-

ters.

Figure 6.8: Two cartoons of the differences between the approximations to the ‘left Fisher factor’
A, Equation (6.34), in this work and in Reference [204]. Regions in gray are not computed in
either case. Black are computed in both cases. Red are regions lost in this work and green are
regions gained. The variable labels (e.g. παk

im) are the parameters corresponding to the Fisher
factor.

6.3.4.1 KFAC Hyperparameter Optimization

KFAC is a high performance approximate second order method optimization method. The authors

of the original work, Martens and Grosse [96], likened 2nd order methods to a race car, "As

an analogy one can think of such powerful 2nd-order optimizers as extremely fast racing cars

that need more sophisticated control systems than standard cars to prevent them from flying

off the road. Arguably one of the reasons why high-powered 2nd-order optimization methods

have historically tended to under-perform in machine learning applications, and in neural

network training in particular, is that their designers did not understand or take seriously the

issue of quadratic model approximation quality, and did not employ the more sophisticated and

effective damping techniques that are available to deal with this issue.". We experienced much

difficulty achieving reliable performance and understanding the heuristics for hyperparameter

setting. What follows is the hyperparameter tuning of KFAC for this problem and network. All

experiments, unless otherwise stated, were performed on a ‘half-model’: 2 hidden layers, 128

hidden units in the single electron streams and 16 hidden units in the pairwise electron streams.

Table 6.3 details the general hyperparameters used in all of these experiments, unless otherwise

stated in the caption of the relevant figure.

Each experiment is a single run taken over a small number of iterations. Under ideal

conditions, we would take many runs and show both the initial and asymptotic behaviours.
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Name symbol value
# Single Stream hidden units ns 128
# Pairwise Stream hidden units np 16
# Split Stream hidden units nss 128
# determinants nk 8
# layers nl 2
# learning rate η 1×10−4

Table 6.3: Model hyperparameters used for the hyperparameter optimization.

However, the realities of time and space require that we limit these experiments. Therefore, they

should be taken as rough indicators, which may or may not show true behaviours.

There will be differences in behaviour between a ‘half-model’ and the full model, Table 6.2, but

we were restricted in the available compute resources. For example, the quality of approximation

to the local curvature will be different. Understanding exactly how they are different and precise

rules for the implementation of KFAC is no simple task, with potentially no clear answer. As

such, we use the following results to guide our implementation of the full model.
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Figure 6.9: Initial comparison of KFAC and ADAM optimizers described in [204]. These experi-
ments used the full model. The (mg) label indicates the convolutional approximation described in
Reference [96].

The first step was attempting to replicate previous work in the field. Figure 6.9 shows a

comparison between KFAC and ADAM optimizer, using the exact implementation and hyperpa-

rameters detailed in Reference [204]: These results do not match. In previous work, using these

hyperparameters, KFAC outperforms ADAM, but as we can see in Figure 6.9 ADAM is clearly the

better choice. There are two possible reasons for this discrepancy. Though our implementation

was carefully validated against other implementations [164], it is possible there are differences

between our model or KFAC implementation and other work. Second, our implementation uses

PyTorch and Cuda 10.1, whereas the previous work used Tensorflow 1.4 and CUDA 9.0. As part of
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the validation we implemented a different version in Tensorflow 2.0 and CUDA 10.1. We observed

numerical differences between Tensorflow 2.0 with CUDA 10.1 and Pytorch with CUDA 10.1, it

is possible that differences in the frameworks lead to different optimization behaviours. Though

the exact reason for this was never discovered, through careful hyperparameter optimization we

managed to achieve performance equal to or beyond that in previous work.
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Figure 6.10: Three plots comparing the effect of centering on the convolutional approximations
(a) ‘mg’ Reference [96], (b) ‘ba’ Reference [22] and (c) ‘bg’, a combination of these methods. The
labels ‘mg’, ‘ba’ and ‘bg’ are convenient shorthand.

In Figure 6.10 we compare the differences in convolutional approximation and the affect of

centering, described in Section 6.2.3. In subfigures a, b and c we show three different convolutional

approximations: ‘mg’, ‘ba’ and ‘bg’, respectively. The mg label indicates methods outlined in

Reference [96], ba in Reference [22] and bg is a mix of these methods. Roughly speaking, the

mg method approximates the local curvature around all parameters by assuming uncorrelated
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activations and sensitivities and uncorrelated data streams, i.e. E[a0a1] = E[a0]E[a1]. The ba

method simplifies this and approximates the activations and sensitivities used in Equation (6.18)

by taking the average over all data streams. Finally, the bg method intuitively combines these

methods by assuming the ‘up’ and ‘down’ data streams, that is the data coming from electrons

of the same spin, are more correlated than those from different spins. In parts of the network

where parameters are involved in both streams, the mean contribution from each is taken and

the resulting averages are passed into the mg method. Though this method appears to at least

equal the performance of the ba method, it is more computationally demanding and requires

more motivation, showing or proving the correlations in the data streams.

In these experiments we also compare the affect of centering. Explicitly the centering is re-

quired, for example to match the derivation of Stochastic Reconfiguration given an unnormalized

wave function, but we find that the performance without centering is either equal to or greater

than with centering. There is no concrete description of why this should be the case. We note this

here and pose the following questions for future work: Will the uncentered versions of KFAC

generalize to larger and more complicated systems? Why is the performance of the uncentered

version at least equal to the centered version? Given the performance, computational advantages

and relative simplicity of the implementation, the ba method was chosen for this work.
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Figure 6.11: Two plots comparing the effect of changing the size of the network. In (a) the numbers
following s and p indicate the number of units in the hidden layers of single and pairwise streams,
respectively. In (b) nl is the number of hidden layers.
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Figure 6.12: Optimization of the damping, here denoted by λ.

Figure 6.11 shows the network structure optimization. These results indicate larger hidden

layers are more effective, which is in-line with general neural network intuition, and relationship

of the depth with the performance is nonlinear. Figure 6.12 explores the damping: Large damping

is stable and results in slow optimization whereas small damping can result in fast optimisation

but divergent behaviours.
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Figure 6.13: Optimization of the leanring rate, here denoted by η, over damping (a) 1×10−4 and
(b) 1×10−5, here denoted by λ

Figure 6.13 demonstrates the large dependence of the algorithm on the learning rate, following

a similar pattern to the learning rate: Large learning rates were fast but unstable.
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Figure 6.14: Three plots showing the effect of different batch sizes on the optimization. (a) shows
the raw data, (b) plots σ′, the standard deviation of the energy within a moving window of 100
iterations, and (c) the mean σ′ over the entire optimization as a function of the batch size. Larger
batch size results in more stable updates.

The performance of KFAC is strongly dependent on the batch size of the data. A small batch

size causes in a bad approximation of the Fisher, which can result in unstable updates. A larger

batch size improves both the approximation of the gradients and the Fisher. Though Figure 6.14

(a) indicates there is little difference in the final energies of tested batch sizes, Figure 6.14 (b)

shows σ′, the standard deviation of a moving window of the energies. This measure reduces as

the optimization progresses, because the size of the updates decreases, so more precise measures

are needed to assess the behaviour of the algorithm with different batch sizes in the asymptotic

region.
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Name symbol initial value
number iterations kDMC

max 5e4
Forces F N/A
Green’s function G(r,r′) 1.
trial energy ET N/A
acceptance (rejection) probability p (q) N/A
weights ω 1
batch size M 4096

Table 6.4: Variables used in the Diffusion Monte Carlo method here.
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Figure 6.15: All τ generated for each system studied in this work.

6.3.5 Diffusion Monte Carlo

We use a reduced version of the DMC algorithm outlined in Reference [257] and the full algorithm

used in this work is outlined in Algorithm 6.3.5. We make simplifying changes by removing

transformations to spherical coordinate systems and set τeff = τ. Also, we move all walkers and

electrons simultaneously with no change to how the algorithm behaves. We set τ by testing a

non-uniform range of values for τ, computing the average acceptance over 100 iterations, and

solving the equation of a line between two points to find the closest value that gives an acceptance

ratio (Acceptance) of 0.999, shown in Figure 6.16. We found this worked well in practice and all

τ acceptances were ∼ 99.9%. Figure 6.15 shows all τ generated for each system studied in this

work. A complete list of the hyperparameters needed given in Table 6.4.

The DMC implementation is parallelized over all electrons and walkers. The model weights

and walker configurations are converted to 64-bit floats for the DMC. DMC was run for a variable

number of iterations, where the minimum was 5×104, and this is discussed further in Section 6.5.
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Figure 6.16: The Acceptance ratio of Nitrogen as a function of the time-step τ. The red diamond
marker indicates the estimated value of τ at an acceptance ratio of 0.999 (99.9%).

6.3.6 Code and Hardware

Each VMC experiment used 2 V100 GPUs, the DMC runs were distributed over a variable

number of CPUs due to constraints on the availability of GPU time.

The code was written in PyTorch 1.5 using CUDA 10.1. The implementation was parallelized

such that each GPU held 2 models, or each CPU 1 model. Initial attempts at producing this model

were written in Tensorflow 2 with CUDA 10.1 but we experienced significant and sometimes

not (easily) diagnosable issues. A simplified version of this Ansatz will be released to DeepQMC

[259].

Computations of the Hartree Fock orbitals were performed using PySCF [247] and the model

was distributed using Ray [2].

6.4 Results and Discussion

Diffusion Monte Carlo

We demonstrate functionality of the introduced computational techniques on the atomic systems

from second period (Be-Ne), and the cation C+. For each system, first we optimize parameters of

the FermiNet*, in order to generate a good trial wave function, that is subsequently improved

through DMC method. As it was demonstrated in [204] FermiNet is capable of outperforming

other VMC methods. Our VMC results do not exceed the existing state-of-the-art, the DMC either

exceed or match other best results (see Table 6.4).
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Algorithm 4 KFAC for FermiNet*. CholeskyInverse indicates the Cholesky Inversion, Fac-
toredTikhonov is the technique for computing π given by Equation (6.23), and Clip indicates
clipping a batch of values to within 5x of the median value. A high level overview of the distribu-
tion of this algorithm across multiple workers is shown in Figure 6.7

1: for kVMC
max do

2: Update walker coordinates X . Metropolis Hastings
3: ẼL =Clip(EL(X )−EX [EL(X )]) . energy
4: ∆L = EX

[
ẼL∇ log |ψ(X )|

]
. backward pass

5: Compute a . forward pass
6: Compute s . backward pass

7: for all layers l do

8: āl ← Ei[al i]
9: Al ← EX [āT

l āl]
10: Āl ← κĀl + (1−κ)Al

11: s̄l ← Ei[sl i]
12: Sl ← EX [s̄T

l s̄l]
13: S̄l ← κS̄l + (1−κ)Sl

14: πl ←FactoredTikhonov(Āl , S̄l)
15: λA ← ( λ

π×|T|2 )1/2

16: λS ← (λ×π|T|2 )1/2

17: Ā−1
l ←CholeskyInverse(Āl + IλA)

18: S̄−1
l ←CholeskyInverse(S̄l + IλS)

19: δ̃l ← Ā−1
l

∆lL
|T|2 S̄−1

l

20: end for

21: ε←min
(
1,

√
c∑

l δ̃l∆lL

)
22: for all layers l do

23: θl ← θl −ε×η× δ̃l . Update the model

24: end for

25: η← η0/ν
1+k

26: λ← λ0/ν
1+k

27: c ← c0/ν
1+k

28: end for
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Algorithm 5 Diffusion Monte Carlo. r, ξ and F are M×ne ×3 dimensional tensors. Steps update
electron positions simultaneously and acceptance of steps are performed in parallel across all
walkers. Line 7 updates walkers where the condition is true.

1: Compute ψ(X ) . forward pass
2: F← d log |ψ(X )|

dr . backward pass

3: for kDMC
max do

4: G(r,r′)=G(r′,r)= 1

5: ξ∼ N(0,τ)
6: r′ ← r+τF+ξ

7: X ′ ← {R,r′}
8: Compute ψ(X ′) . forward pass
9: F′ ← d log |ψ(X ′)|

dr′ . backward pass

10: G(r,r′)←∏ne
i exp

(
(ri −r′i −τF′

i)
2/2τ

)
11: G(r′,r)←∏ne

i exp
(
(r′i −ri −τFi)2/2τ

)
12: p ←min

(
1, |ψ(X ′)|2G(r,r′)

|ψ(X )|2G(r′,r)

)
13: q ← 1− p
14: Set p = 0 where sign(ψ(X )) 6= sign(ψ(X ′)) . Fixed node approximation

15: s ← ET −EL(X )
16: s′ ← ET −EL(X ′)

17: ω←ω×exp
[
τ
[

p
2
(
s′+ s

)+ qs
]]

18: α∼U[0,1]
19: if p >α then
20: ψ(X )←ψ(X ′), r← r′, F←F′, etc . Update variables for next iteration
21: end if
22: end for
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Figure 6.17: Graphical representation of data from Table 6.4, see caption for details. A chemical
accuracy line (Chem. Acc. - pink dashed line) is plotted where it falls within the range of the
plotted data for a system.

Table 6.4 summarizes the results. All references to FermiNet* Ansatz indicate the methods

outlined in this work. The first column of this Table contains the final energies and errors of the

wave function after both VMC and DMC with the FermiNet* Ansatz and the second column are

the corresponding energies only after the VMC. The third through seventh columns (FermiNet,

VMC, DMC, HF, and Exact) contain benchmark results from the literature indicated. The HF

column are the Hartree-Fock energies obtained using the STO-3g basis, the basis used in this

work for the pretraining orbitals.

The FermiNet* VMC energies in column 2 are not directly comparable to the FermiNet

energies. We focused computational resources on the DMC and restricted all but one system (Be)

to 1×105 iterations, whereas the original FermiNet work used double this number. We extended

one Be to 2×105 iterations and found improvements to the energy, Figure 6.4, computed as

-14.66730(1). This is at the top end of the error in the original FermiNet result, indicating that

the performance may be matched with this implementation, if slightly worse. Highlighting this

result clearly does not guarantee equivalent performance on larger systems and more extensive

trials on larger systems are required. The other FermiNet* results are consistently poorer than

FermiNet, but better than the referenced benchmark VMC results.

All energies in column 1 are to within less than 0.25% of the respective correlation energies,

at best (Be) within 0.03%. Be, B, C+, and N are all accurate to the exact ground state energy

within error bars. Systems Be, B, C+ and Ne are the most accurate energies. Systems Be, C+, C

and Ne were run with around 2×105 iterations, which are explored in more depth in Figure 6.4,

and B, C, N, O with around 5×104 iterations of DMC.

The error bars are the standard error σSEM =σ/
p

m where σ is the standard deviation of the

energies of the batches and m is the number of batches evaluated. They are noticeably larger

in column 1 of Table 6.4 for the systems mentioned where less iterations of DMC are run. DMC
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Figure 6.18: DMC applied to Ansatz at different stages of VMC optimisation. The red dashed line
is the exact energy of the ground state, given in Table 6.4. The orange line is the energy of the
wave function at a particular VMC iteration. Note that Be extends to 2×105. It is demonstrated
here to show that there is still capacity for the wave function to improve, but we were restricted
by computational time for the other systems. The blue line is the resulting energy from the
application of DMC to that iteration of the wave function. The DMC converged generally after
around 5×103 iterations, and was run for between 5×104 −2×105 iterations after convergence.
The error bars are the standard error σSEM = σ/

p
m where σ is the standard deviation of the

energies of the batches evaluated and m is the number of batches. A chemical accuracy line is
added to the plots where it is within the range of the plotted data.
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consistently improved the wave function, that is the energy average was lower, but the error bars

are significantly larger in some cases, due to the autocorrelation of the data trace.

Figure 6.4 shows DMC applied to different trial wave functions. Each DMC point is evolved

from the corresponding VMC iteration. The VMC lines in general show a clear trend for improving

the energy of the wave function as the iterations increase, and this is mirrored in the energy

computed from the DMC. There are several apparent anomalies in the data. In the Neon VMC line

there is a clear decrease in the quality of the model (increase in the energy) during the training.

We believe this is a result of divergence in training and may indicate that our implementation of

KFAC becomes more unstable as the molecules become larger. We cannot extrapolate significant

conclusions without more analysis of the optimization. In both the Neon and Carbon DMC

lines there is a large kink in the energy achieved by DMC. Further investigation did not reveal

divergent behaviour in the DMC, that is large changes in energy after convergence, and repeated

runs showed more stable behaviour in line with what would be expected. It is possible on these

particular runs the walkers became trapped near the nodes and accumulated anomalous low

energy statistics. Again, further analysis and development of this DMC is required to understand

if this is a feature of the precise Ansatz or issues with the DMC implementation.

6.4.1 GPU, CPU and Computational Time

In this work we have used a combination of GPU and CPU compute resources. Typically, research

groups may not have access to state-of-the-art compute architectures and may need to exploit

alternate compute resources. The GPU methods were significantly faster than the CPU experi-

ments, especially in the cases of larger systems, for example GPU vs. CPU per iteration times

for the DMC algorithm on the system Neon were 4s and 24s, respectively, we found that in

these small systems a CPU implementation distributed over 3 nodes was enough for reasonable

experiment time (< 1 week). However, the scaling makes the CPU implementation impractical

for larger systems. CPU implementations are not standard for the machine learning community,

but are for the quantum chemistry community. We highlight here that these methods can be used

on CPU architectures, though may quickly become impractical for larger systems.

One iteration of DMC is less computationally demanding than VMC, requiring 1 forward

pass, 1 energy computation and 1 backward pass, plus some negligible functions. However, we

port the FermiNet weights to 64-bit precision for the DMC phase, finding significantly better

performance. This is increases the walltime of 1 iteration of DMC to 1-1.5x 1 iteration of VMC.

6.5 Conclusions

In this work we have changed the structure of a neural network Ansatz, the FermiNet, by

removing redundant elements (the diagonal elements of the pairwise streams) and splitting the

data in the permutation equivariant function such that it is not reused unnecessarily. These
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changes increase the performance (as measured by the walltime) of the network. Additionally,

we have improved approximations to the ground state, found with Variational Monte Carlo and

a FermiNet* Ansatz, with Diffusion Monte Carlo, matching or exceeding state-of-the-art in all

systems.

With respect to the first contribution, although this model is small compared with other

state-of-the-art neural networks [45], it contains the expensive determinant computation, which

is the dominant term in the complexity of the network scaling as O (n3
ek), where ne is the number

of electrons and k is the number of determinants. Variational Monte Carlo requires computation

of the Laplacian, which uses ne backward passes of the first order derivatives. In total, the

estimated complexity of the network is O (n4
ek). Although the changes made here improve the

performance, this improvement in speed may be negligible at larger system sizes.

6.5.1 Related work

Other more recent work [245] additionally found significant efficiency gains in altering the neural

network with no noticeable reduction in accuracy: replacing the anisotropic decay parameters with

isotropic decay parameters in the envelopes; and removing more redundant parameters in the de-

terminant sum. Further, other smaller networks employing a more traditional Jastorw/backflow

Ansatz [108] and integrated Hartree-Fock orbitals were significantly less computationally de-

manding at the cost of notably worse performance. There are clearly still gains to be made in the

efficiency of these methods, and a better understanding on the relationship between the problem

and the size of the network required will be important pieces of understanding for tuning these

methods.

6.5.2 Future Work

In this work we alternate between 32-bit and 64-bit computational precision for the Variational

Monte Carlo and Diffusion Monte Carlo methods, respectively. It may be possible to exploit this

further. One example is mixed precision algorithms and networks [175]. A suitable and easy first

step might be mixed precision schedules. Using low precision weights earlier in training and

switching to high precision in the asymptotic region of the optimization might encourage even

better results, for example improving the approximation to the Fisher Information Matrix in the

region where there are small variations in the optimization landscape. In early tests, reducing

the algorithm and model to 16-bit precision proved unstable by generating singular Fisher blocks

(that could not be inverted).

There is a lot of room to improve the optimization. KFAC is a powerful algorithm which

requires careful tuning. The methods used in this work are relatively simple, notably the schedule

of the learning rate and damping, and not representative of the suggested mode of operation.

Stable adaptive techniques will be essential to improving the optimization in this domain.

Additionally, the efficiency of KFAC can be improved further by using intuitions about the FIM.
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For example, the FIM will change less in the asymptotic region of the optimization, schedules

which exploit this fact and update the Fisher blocks and their inverses less should be used, as

outlined in the literature [166].

Finally, there are existing approximations from VMC literature which can be easily inte-

grated into these frameworks, such as pseudopotentials (for scaling to larger systems) [208], and

alternate representations of the wave function [24, 56]. Additionally, these new and highly precise

techniques can be applied to other systems including solids and other interesting Hamiltonians.

6.5.3 Final comment

We conclude that though these results are comparatively good in isolation, the prospects for

improvements in these methods and hardware paint a strong future for the application of neural

networks in modelling wave functions in the continuum.
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It’s not a silly question if you can’t answer it.

— Jostein Gardner, Sophie’s World

The work in this Thesis explored methods from quantum machine learning. Chapter 3

established a hybrid quantum-classical framework for integrating near-term quantum

devices. Chapter 4 introduced near-term heuristic quantum algorithms (VQE and QAOA),

evaluated the performance of different optimizers and metalearning is shown to have behaviours

that may motivate its usage, especially on noisy near-term hardware. Both these pieces of work

introduce and expand the ways that quantum devices can be used in conjunction with classical

machine learning frameworks. Finally, the theory underlying neural network Ansätze in quantum

Monte Carlo was established in Chapter 5 and applied in Chapter 6, finding state-of-the-art

performance on small atomic systems.

Contributions

• Developed of a hybrid quantum-classical neural network framework: the first

quantum-assisted generative adversarial network and first (known) application

to a complex color dataset (Chapter 3)

• Provided evidence to support neural networks as optimisers for heuristics in near-

term hardware (Chapter 4)

• Improved state-of-the-art neural network methods for quantum Monte Carlo on

small systems by altering the network design and extending with diffusion Monte

Carlo (Chapters 5 and 6). This is the first, to our knowledge, demonstration of

diffusion Monte Carlo with neural network methods.
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7.1 Hybrid quantum-classical models

The quantum computing community generally agree that any useful application of quantum

computers will require both improvements in algorithm design to decrease the resource require-

ments and improvements in hardware design to increase the resources available to the algorithm.

Additionally, the intersection of the lines ‘the resources required by a useful algorithm’ and ‘the

resources available on a quantum device’, is the point quantum computing becomes practically

applicable. Some predictions put this 10 years away, a cartoon, Figure 7.1, illustrates this concept.

Figure 7.1: A cartoon illustrating the intersection of the lines ‘the resources required by a useful
algorithm’ (red) and ‘the resources available on a quantum device’ (blue).

Algorithms

Problems in quantum chemistry are both part of the inspiration for quantum computers, [84, 159],

and the potential first useful application [50, 168].

It is unlikely to be algorithms run on large scale fault-tolerant quantum devices such as

quantum phase estimation [4], though attempts have been made to reduce these requirements

[246]. Variational quantum algorithms have attracted a lot of attention for two reasons: They

can be implemented in low-depth (not necessarily high performance) ways suitable for near-term

hardware; and these algorithms are hybrid, which can play to the strengths of both quantum and

classical computation.

State-of-the-art research in this area focuses on resource reduction and creating alternate

algorithms that exploit the quantum properties of these devices, such as recent work on computing

Green’s function [78], simulation of the Hubbard model [48] and hardware implementations of

imaginary time evolution [91].
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Further, proposed theoretical quantum machine learning algorithms continue to show im-

provements over their classical counterparts [113], and more heuristic hybrid methods [170] are

refining the allocation of quantum and classical resources most effectively. It is likely that the

first useful application of quantum computers will be in one such hybrid system that may use

neural networks in some way, for example in the gate-model [102], as described in Chapter 4, or

quantum annealing [284], as described in Chapter 3, paradigms.

Hardware

There are many challenges facing the quantum computing community, no subgroup more so than

those developing hardware. There are multitude companies and academic groups developing

quantum computing hardware (including Google, IBM, D-Wave, Regetti, Honeywell, PsiQuantum)

in various quantum computational frameworks, for example those studied in this Thesis, quantum

annealing and gate-model.

However, there are unsolved questions about the scaling of these devices and minimizing

errors resulting from decoherence [23], measurement, gate errors [280] and even loss (in the case

of architectures based on photons) [223]. Certainly, large scale devices will require some form of

error correction [87, 123].

Increasing the coherence time of these systems is especially important such that large depth

algorithms can be run. For example, performance of QAOA improves with increased depth [20],

where the accessible depth is related to the coherence time of the qubits in the circuit.

7.1.1 Classical models - quantum problems

Unlike quantum computers, neural networks have proven useful application. While there are

fundamental challenges to understanding and characterizing neural networks [202, 206], these

problems do not necessarily need to be solved in order to greatly improve the performance and

decrease the cost of these algorithms.

Algorithms

There are three areas highlighted here for general neural network design and implementation,

which may improve the efficiency. Firstly, it is possible to reduce the computational cost via

pruning [86, 250], which roughly involves deleting parameters that are no longer considered

useful. However realising these gains in efficiency will require innovations in GPU memory

management. Secondly, mixed precision training can greatly decrease the cost of forward and

backward passes of a neural network by replacing weights and data in parts of the network

to half-precision floating point numbers [175, 297]. Finally, continued improvements on novel

optimization methods, such as those used in this Thesis [96, 277], will promote fast and reliable

optimization of the loss function, which currently often requires intuition, luck and repetition.
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In the areas of modelling quantum states and quantum monte carlo, different theoretical

Ansätze, such as Pfaffian wave functions [24] and geminal wave functions [56] might provide a

better basis to develop neural network models. Further, neural networks are finding their place

in other more efficient (though less accurate) methods such as Density Functional Theory [67],

where the neural networks replace the electronic density functional.

Hardware

Neural networks are a more mature technology, having already experienced several false starts

and AI winters in funding. As described in the introduction, the confluence of computational

power, availability of data, model design and lots of money has launched neural networks from

an academic curiosity to a fundamental part of business and increasingly a tool for the scientific

research community to use in domain specific problems.

Transistor design, chip manufacturing and GPU architectures continue to improve, reducing

the cost and time required to train large neural network models. Second, the quality and quantity

of neural network algorithm research is forcing rapid and significant developments, both in the

fundamentals of network design and optimization but also in domain specialisation. Finally, the

infrastructure supporting neural networks is buoyed by an active and engaged community, such

as popular frameworks such as Tensorflow and Pytorch.

Further into the future, alternate approaches to holding neural networks in memory [10]

to neuromorphic chip designs, such as Loihi [68], and spiking neural networks [205] provide

potential avenues to reducing the cost of running these algorithms well past the end of Moore’s

law.

7.1.2 Conclusion

I conclude that the path forward for quantum algorithms and quantum computational devices,

specifically quantum machine learning, will be challenging and it is not clear what will be the

first useful implementation of these devices. On the other side of the coin, neural networks,

and their application to quantum mechanical problems, are already establishing state-of-the-art

baselines in different areas. This coupled with the promise of improved hardware and methods

make this a good research avenue for the advancement of classical neural network methods

applied to quantum mechanical problems.
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