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Abstract 

Magnetic gears offer several advantages over mechanical transmissions, the root of which is 

the contactless transmission. However, across a broad range of research studies, their practical 

performance has not matched design predictions. In addition, a very small number of magnetic 

gears are employed in industrial applications. It has been reported that manufacturing error 

contributes to the discrepancy between modelled and experimentally realised performance. 

Efficient modelling techniques, which could be used to predict the expected performance range, 

would clearly be valuable.  Geometric deviations due to manufacturing error are difficult to predict 

and inherently random. This thesis assesses the effect of geometric error on the performance of a 

Coaxial Magnetic Gear (CMG) using a novel computationally efficient asymmetric analytical 

model to conduct Monte-Carlo simulations. The analytical model is validated through the very 

close agreement achieved with respect to linear FEA results. Furthermore, a hybrid stochastic 

model is proposed, which can calibrate the analytical statistical data with a few non-linear FEA 

instances. The scaling of the probability distributions derived using the analytical model are shown 

to match the equivalent, but much more computationally onerous, non-linear FEA based solutions. 

Such a statistical assessment of the effects of the modulation ring geometric deviations on the 

performance of CMGs is shown to potentially be important regarding both the stall torque and the 

torque ripple. Consideration of the effects on torque ripple becomes more important in applications 

where a fault mitigation perspective is considered, and accurate slipping torque estimation is 

essential. It is expected that as CMGs become more widely adopted, such studies will become 

increasingly valuable.   
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Asymmetric Analytical Field Solutions” is reporting on work performed by the author within the 

Electrical Energy Management Group of the University of Bristol. The principal contributions 

claimed by the author are as follows: 

• The development of an asymmetric analytical model for a CMG considering individual 

dimensional and positional asymmetries of the pole pieces in the modulation ring. 

• The establishment of a methodology capable of assessing these effects efficiently through 

statistical means. 

• The development of a hybrid modelling approach, overcoming the limitations of purely 

analytical modelling, while offering a significant increase in computational speed compared 

to FEA. 

• The determination of how key design parameters influence the CMG’s performance 

susceptibility to effects from geometric deviations, in the context of stall torque and torque 

ripple. 
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CHAPTER 1 

THE DEVELOPMENT OF MAGNETIC GEARING 

 THE DEVELOPMENT OF MAGNETIC GEARING 

1.1 Introduction 

Since the beginning of the 21st century, there has been significant advancement in technologies 

utilising electrical energy. It is widely accepted that the gradual electrification of many engineering 

sectors will lead to great long-term societal benefits, such as significantly reducing the 

environmental footprint of those sectors and consequently, the global air pollution [1]–[4]. Electric 

machines, which are an important factor in this transition, have received increased research interest 

from both the academic and industrial sectors. There has been a continued effort to increase 

specific torque and power, which has made electrification increasingly viable in mass critical 

sectors. In parallel, new technologies have arisen which complement and offer opportunities for 

further innovations. Such a technology is Magnetic Gears (MGs). 

Many engineering applications require a multiplication of either angular speed or torque, and 

there is a wide range of transmission systems which can be used for this purpose. Mechanical gears 

are a highly developed technology, which dominates the transmission sector. However, the 

mechanical contact between the gears creates some fundamental drawbacks, including friction-

induced wear and vibrations, increased maintenance requirements and reduced reliability. In the 
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past few decades, MGs have received increased attention due to their contactless nature, low 

maintenance requirements, inherent overload protection and intrinsic capacity to form a highly 

integrated solution with electric machines [5]–[7]. 

1.1.1 History of Magnetic Gearing 

The concept of contactless magnetic transmission is not a modern one, with numerous cases 

dating back more than a century. A particular example is the 1901 U.S Patent invention of Charles 

Figure 1-1 The first magnetically geared device, invented by Armstrong [8] 
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G. Armstrong [8]. The invention was based on two wheels and electromagnets (Figure 1-1). The 

driving wheel had its peripheral surface magnetically energised through a series of radial cores 

surrounded by coils, while the driven wheel was magnetically susceptible and placed in close 

proximity. The fundamental concept of this apparatus is very similar to a mechanical spur gear, 

where instead of the torque being transmitted mechanically (through shear force in the gear teeth) 

it is transmitted magnetically (through attraction forces between teeth). Harold T. Faus also 

proposed some MG topologies in his 1941 U.S Patent [9]. The first concept was again inspired by 

a mechanical spur gearbox (Figure 1-2), while the second was the equivalent of a worm gear. The 

proposed configurations featured teeth that were Permanent Magnets (PMs), however, they both 

had fundamental drawbacks. In the first instance, such designs suffer from very poor utilisation of 

their active material as, at any moment, very few magnets (or active parts) contribute to the torque 

transmission. This problem was also identified in several studies [10]–[13], where the researchers 

concluded that higher torque densities could only be achieved by engaging a larger number of 

magnetic poles. Furthermore, the available magnets at the time were very weak, with modern 

neodymium iron boron (NdFeB) magnets being around 6 times more energy dense than the 

Figure 1-2 Faus’s magnetic gear [9] 
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available ferrite ones [14]. The worm-type and an involute MG configurations were also explored 

by Kikuchi and Tsurumoto [15], [16] (Figure 1-3). However, these topologies exhibited very low 

torque density of less than 2 kNm/m3, along with high complexity.  

                                           (a)                                                                     (b) 

Figure 1-3 Kikuchi’s and Tsurumoto’s MGs: (a) Worm, (b) Involute [15], [16] 

Figure 1-4 Neuland’s magnetic gear [17] 
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Another interesting example is the 1916 U.S Patent invention from Neuland [17] (Figure 1-4). 

This was a reluctance-based MG consisting of two concentric rotors with salient steel poles. 

Coupling of the rotors was achieved without any mechanical contact using stationary 

electromagnets. Even though this configuration made much more efficient use of its active 

material, it was not developed further, nor was it used in industry. It is interesting to note however, 

that as a topology, it has similarities to modern MGs. 

Martin proposed through his 1967 US Patent [18] an MG that even to the present day is very 

frequently used. It featured two concentric PM rotors and an assembly that would modulate the 

field of each one. Ackermann and Honds [19] also presented an MG with the same operating 

principles.  

The discovery of rare-earth magnets such as NdFeB and samarium-cobalt (SmCo) led to further 

research of magnetic gearing, significantly improving and facilitating the development of several 

Figure 1-5 Martin’s magnetic gear [18] 
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novel forms. In recent years, MGs have been developed with torque densities high enough to 

potentially replace their mechanical counterparts [20]. 

1.1.2 Coaxial, Harmonic and Planetary Magnetic Gears 

A very common topology is the Coaxial Magnetic Gear (CMG). CMGs (Figure 1-7 (a)) consist 

of two concentric PM rotors with a ring of ferromagnetic pole pieces placed between them, on the 

same axis. These ferromagnetic pole pieces are what provides the gearing effect by modulating the 

magnetic field to allow coupling of the rotors with different magnetisation patterns. Atallah et al 

[21] first described its operating principles in detail and demonstrated high achievable torque 

density of 100 kNm/m3. This is comparable to torque densities of two- and three- stage helical  

Figure 1-6 Ackermann’s and Honds’s magnetic gear [19] 
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                                                                            (a)                                               

 

 

 

 

 

 

 

                               (b)                                                                          (c) 

 

Figure 1-7 Modern MG topologies: (a) Coaxial, (b) Harmonic, (c) Planetary 
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gearboxes and shows the potential utility of CMGs. Since this development, CMGs have received 

substantial research attention, with torque densities achieved summarised in Table 1.  

Another topology is the harmonic MG (Figure 1-7 (b)), first proposed in [22] and developed 

further in [23], [24]. The operating principle of a harmonic MG is very similar to the one of a 

mechanical harmonic gear, with a mechanism producing a sinusoidal time-varying air-gap. The 

advantages of this topology include higher achievable torque densities and high gear ratios [23]–

[25], however, in common with their mechanical counterparts, mechanical complexity and 

structural challenges have hindered further research towards their practical realisation.  

The planetary MG (Figure 1-7 (c)) is another topology that has received increased research 

attention in the last two decades [26]–[28]. Planetary MGs feature an almost identical 

configuration to their mechanical counterparts, consisting of a sun, ring and planetary gears. 

However, while they offer high torque densities and gearing ratios, compared to CMGs their 

mechanical challenges have been a limiting factor for further research [20].   

1.1.3 Applications of Coaxial Magnetic Gears 

The contactless nature and inherent overload protection of MGs result in some significant 

advantages when they are viewed in an application perspective. Magnetic gearing technology has 

Table 1      Torque density comparison for mechanical and magnetic gears [20] 

Gear Type Torque Density (kNm/m3) 

Mechanical spur gear 100-200 

Mechanical helical gear 50-150 

Magnetic spur gear 10-20 

Coaxial magnetic gear 70-150 

Harmonic magnetic gear 140-180 

Planetary magnetic gear 100 
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therefore been suggested for applications in the aerospace, electric automotive, marine, robotics 

and energy generation industries, where size, reliability, efficiency and low Operation and 

Maintenance (O&M) requirements are key factors. In this thesis, only the CMG topology is 

investigated, as due to its promising performance characteristics, relative maturity and simpler 

structural configuration, it is considered the most likely to be implemented in real-world 

applications.  

There are two possible approaches to using CMGs. The first is to simply replace a mechanical 

gearbox, where they are a separate component attached to the prime mover. However, the topology 

also facilitates close integration with an electric machine prime mover, forming a Magnetically 

Geared Machine (MGM). In an MGM either of the two rotors of a typical CMG has been coaxially 

integrated with a PM machine (Figure 1-8). The UK-based company Magnomatics [29] have taken 

Figure 1-8 Magnetically Geared Machine (MGM) 

Wound stator 
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Low-speed 

rotor 

High-speed 

rotor 

Machine rotor 
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this approach further by using a stationary PM array (effectively the inner rotor of a CMG) between 

the modulation ring and the wound stator [5]. 

In the aerospace sector multiple applications for CMGs have been suggested (Figure 1-9) [30]. 

In the emerging short-haul electric aircraft market, most vehicles use direct drive machines as 

mechanical gearing introduces significant penalties. These include their increased O&M 

requirements and the necessary primary and backup lubrication systems in order to mitigate 

overheating along with tooth wear and failures [31]. However, in such an application a direct drive 

orientation limits the capabilities of the propulsion system, since the propulsor and prime mover 

cannot be optimised independently. In particular, the propulsion efficiency of a propeller increases 

with decreasing tip speed, while the specific power of a PM machine increases as its rotational 

speed increases. NASA has therefore targeted the propulsion of these short-haul aircraft as a 

possible application for CMGs, as they can offer significant advantages, mainly through the 

optimisation of the overall efficiency of the propulsion system [31]. CMGs could either be used in 

electrified Vertical Take-off and Landing (eVTOL) vehicles or fixed-wing aircraft similar to the 

X-57 [31]–[35]. Apart from aircraft propulsion, CMGs have been investigated for flight control 

surface actuation. Potential jamming or failure of the electromechanical prime mover is a 

Figure 1-9 NASA’s Revolutionary Vertical Lift Technologies (RVLT) Project [30] 
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significant issue in such an application. In addition, due to the high gearing ratio between the 

actuator and the control surface, any shock loads on the control surface will be amplified on the 

actuator side. Their inherent torque limits mean CMGs can offer reliability advantages in this 

safety critical application. In [36], [37] the authors of the respective articles have suggested MGMs 

as a potential solution to this referred “shock” problem.  

CMGs are also attractive options for automotive and other traction applications [38]. Ricardo 

has developed a flywheel energy storage system that employs a CMG. It is aimed at a range of 

vehicles such as cars, trucks and buses (Figure 1-10) [39], [40]. Here, a key advantage of magnetic 

gearing is that their configuration allows the whole system to be operated in vacuum, which 

eliminates aerodynamic drag on the flywheel surface. The mechanical alternative would require, 

vacuum pumps and management systems to be introduced to maintain this vacuum for long periods 

of time, thus increasing both the cost and the complexity of the system. Electric automotive 

vehicles (EVs) are also another example of where the magnetic gearing can be advantageous. In 

[41], [42], in-wheel MGMs are employed for EVs. Similar to other applications, in this case the 

MGMs help to minimise noise and O&M cost while improving reliability and physically isolating 

the input from the output.   

Figure 1-10 Ricardo’s magnetically geared flywheel [38] 

Modulation ring 

High-speed rotor 

Flywheel 
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Apart from applications in the transportation sector, the advantages of MGs over traditional 

mechanical transmissions make them desirable for the energy generation industry as well       

(Figure 1-11) [43], [44]. Specifically, in this sector the O&M costs are among the highest concerns. 

In [7], [45] a CMG and an MGM (respectively) are proposed for wind power generation, in order 

to reduce O&M requirements and improve reliability along with minimising the acoustic noise. 

The inherent overload protection and maintenance-free aspects of MGs are even more important 

in tidal energy generation applications. Off-shore installations have significantly higher O&M 

costs while the harsh operating environment in which they exist, necessitates a high degree of 

system survivability [46]. CMGs and MGMs have been proposed as a technology to overcome 

these obstacles in tidal energy generation applications. 

 

Figure 1-11 Magnomatics’s magnetic gears in offshore wind (a) and tidal energy (b) 

generation applications [43], [44]                     

                                                      

(a)                                                                     (b)      
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1.2 Coaxial Magnetic Gear Operating Principles 

 In Section 1.1, the key advantages of CMGs are discussed, highlighting where and how this 

promising technology can be used to improve current engineering applications. This section 

provides a detailed explanation on the operating principles of a CMG. 

A CMG (Figure 1-12) consists of three main components; two coaxial PM rotors and a ring of 

ferromagnetic pole pieces, known as the modulation ring. The fundamental operation of the CMG 

lies in this area of the modulation ring. Similar to mechanical gears, which require matching tooth 

pitch to transmit torque, MGs require matching field spatial harmonics. In a CMG the 

ferromagnetic pole pieces modulate the magnetic fields produced by each rotor, resulting in a space 

harmonic flux density distribution with an appropriate number of pole pairs to allow coupling with 

the other rotor.  

Figure 1-12 CMG component identification 
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Considering the High-Speed Rotor (HSR), the magnetic flux density distribution produced by 

a PM rotor at a radial distance r has been mathematically described in [47] and can be expressed 

using polar coordinates as in (1.2.1), (1.2.2). 

where 𝑝𝐻𝑆𝑅 and 𝛺𝐻𝑆𝑅 are the number of pole pairs and rotational velocity of the HSR and 𝑏𝑟𝑚 and 

𝑏𝜃𝑚 are the Fourier coefficients for the radial and tangential component of the flux density, 

respectively. This mathematical description assumes 𝐵𝑧 is zero, i.e., three-dimensional (3D) effects 

are negligible, including end effects. 

The modulating function of the ferromagnetic pole pieces can be described as in (1.2.3), (1.2.4) 

[47]. 

where 𝑄 and 𝛺𝑀 are the number of pole pieces and the rotational velocity of the modulation ring 

and 𝜆𝑟0, 𝜆𝑟𝑗, 𝜆𝜃0, and 𝜆𝜃𝑗 are the equivalent Fourier coefficients. Combining (1.2.1) with (1.2.3) 

and (1.2.2) with (1.2.4) the equations (1.2.5), (1.2.6) can be deduced.  

𝐵𝑟(𝑟, 𝜃) =  ∑ 𝑏𝑟𝑚(𝑟) 

𝑚=1,3,5,…

cos(𝑚𝑝𝐻𝑆𝑅(𝜃 − 𝛺𝐻𝑆𝑅𝑡) + 𝑚𝑝𝐻𝑆𝑅𝜃0) (1.2.1) 

𝐵𝜃(𝑟, 𝜃) =  ∑ 𝑏𝜃𝑚(𝑟) 

𝑚=1,3,5,…

sin(𝑚𝑝𝐻𝑆𝑅(𝜃 − 𝛺𝐻𝑆𝑅𝑡) + 𝑚𝑝𝐻𝑆𝑅𝜃0) (1.2.2) 

Λ𝑟(𝑟, 𝜃) = 𝜆𝑟0(𝑟) + ∑ 𝜆𝑟𝑗(𝑟) cos(𝑗𝑄(𝜃 − 𝛺𝑀𝑡))

𝑗=1,2,3,…

 (1.2.3) 

Λ𝜃(𝑟, 𝜃) = 𝜆𝜃0(𝑟) + ∑ 𝜆𝜃𝑗(𝑟) cos(𝑗𝑄(𝜃 − 𝛺𝑀𝑡))  

𝑗=1,2,3,…

 (1.2.4) 
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Therefore, according to (1.2.5), (1.2.6), the number of pole pairs of the modulated space 

harmonic flux density is described as:  

while the rotational velocity of the flux density harmonics is given by  

𝐵𝑟(𝑟, 𝜃) =  𝜆𝑟0 ∑ 𝑏𝑟𝑚(𝑟) cos(𝑚𝑝𝐻𝑆𝑅(𝜃 − 𝛺𝐻𝑆𝑅𝑡) + 𝑚𝑝𝐻𝑆𝑅𝜃0)

𝑚=1,3,5,…

 

                    +
1

2
∑ ∑ 𝜆𝑟𝑗(𝑟) 𝑏𝑟𝑚(𝑟) 

𝑗=1,2,3,…𝑚=1,3,5,…

 

                    cos ((𝑚𝑝𝐻𝑆𝑅 + 𝑗𝑄) (𝜃 −
(𝑚𝑝𝐻𝑆𝑅𝛺𝐻𝑆𝑅 + 𝑗𝑄𝛺𝑀)

(𝑚𝑝𝐻𝑆𝑅 + 𝑗𝑄)
𝑡) + 𝑚𝑝𝐻𝑆𝑅𝜃0)   

                    +
1

2
∑ ∑ 𝜆𝑟𝑗(𝑟) 𝑏𝑟𝑚(𝑟) 

𝑗=1,2,3,…𝑚=1,3,5,…

 

                    cos ((𝑚𝑝𝐻𝑆𝑅 − 𝑗𝑄) (𝜃 −
(𝑚𝑝𝐻𝑆𝑅𝛺𝐻𝑆𝑅 − 𝑗𝑄𝛺𝑀)

(𝑚𝑝𝐻𝑆𝑅 − 𝑗𝑄)
𝑡) + 𝑚𝑝𝐻𝑆𝑅𝜃0) 

(1.2.5) 

𝐵𝜃(𝑟, 𝜃) =  𝜆𝜃0 ∑ 𝑏𝜃𝑚(𝑟) sin(𝑚𝑝𝐻𝑆𝑅(𝜃 − 𝛺𝐻𝑆𝑅𝑡) + 𝑚𝑝𝐻𝑆𝑅𝜃0)

𝑚=1,3,5,…

 

                    +
1

2
∑ ∑ 𝜆𝜃𝑗(𝑟) 𝑏𝜃𝑚(𝑟) 

𝑗=1,2,3,…𝑚=1,3,5,…

 

                    sin ((𝑚𝑝𝐻𝑆𝑅 + 𝑗𝑄)(𝜃 −
(𝑚𝑝𝐻𝑆𝑅𝛺𝐻𝑆𝑅 + 𝑗𝑄𝛺𝑀)

(𝑚𝑝𝐻𝑆𝑅 + 𝑗𝑄)
𝑡) + 𝑚𝑝𝐻𝑆𝑅𝜃0) 

                    +
1

2
∑ ∑ 𝜆𝜃𝑗(𝑟) 𝑏𝜃𝑚(𝑟) 

𝑗=1,2,3,…𝑚=1,3,5,…

 

                    sin ((𝑚𝑝𝐻𝑆𝑅 − 𝑗𝑄)(𝜃 −
(𝑚𝑝𝐻𝑆𝑅𝛺𝐻𝑆𝑅 − 𝑗𝑄𝛺𝑀)

(𝑚𝑝𝐻𝑆𝑅 − 𝑗𝑄)
𝑡) + 𝑚𝑝𝐻𝑆𝑅𝜃0) 

(1.2.6) 

𝑝𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑒𝑑 = |𝑚𝑝𝐻𝑆𝑅 + 𝑘𝑄| 
𝑚 = 1, 3, 5, … ,∞ 
𝑘 = 0,±1,±3,…±∞   

(1.2.7) 

𝛺𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑒𝑑 =
𝑚𝑝𝐻𝑆𝑅

𝑚𝑝𝐻𝑆𝑅 + 𝑘𝑄
𝛺𝐻𝑆𝑅 +

𝑘𝑄

𝑚𝑝𝐻𝑆𝑅 + 𝑘𝑄
𝛺𝑀 (1.2.8) 
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Equation (1.2.8) shows that for a gearing effect to occur, the number of pole pairs in the other rotor 

must equal those of an asynchronous space harmonic, viz. 𝑘 ≠ 0 .  

Similar to mechanical planetary gearboxes, two common operating modes exist, depending on 

which component is held stationary. The most common one is with a stationary modulation ring, 

i.e. 𝛺𝑀 = 0. With the highest asynchronous space harmonic represented by 𝑚 = 1 and 𝑘 = −1, 

the rotor poles [47] are expressed by (1.2.9) and the gear ratio by (1.2.10). 

where 𝑝𝐿𝑆𝑅 is the pole pieces of the Low-Speed Rotor (LSR), i.e. outer rotor. The second operating 

mode has a stationary outer rotor with the modulation ring being used to transmit torque. While 

this orientation offers a higher gear ratio for the same gear specifications (1.2.11), it is considered 

a more complicated solution as further mechanical development is required in the modulation ring 

for it to output torque.  

1.2.1 Harmonic Analysis 

The operating principle of a CMG can be further understood by considering a simple harmonic 

analysis performed on a gear with the specifications outlined in Table 2. Figure 1-13 shows the 

harmonic content in the radial flux density distribution in the middle for both air-gaps. The effect 

of the modulation ring is observed in the new harmonics added to the flux distribution of each;  

𝑝𝐿𝑆𝑅 = 𝑄 − 𝑝𝐻𝑆𝑅 (1.2.9) 

𝐺𝑅 =
𝑄 − 𝑝𝐻𝑆𝑅
𝑝𝐻𝑆𝑅

 (1.2.10) 

𝐺𝑅 =
𝑄

𝑝𝐻𝑆𝑅
 (1.2.11) 
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                                                          (b) 

 

Figure 1-13 Harmonic content of radial flux density distribution in the middle of the air-

gap (a) adjacent to the HSR and (b) adjacent to the LSR 
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rotor. In particular, in the air-gap adjacent to the HSR, the modulated LSR flux now has further 

spatial harmonics, the highest, asynchronous, of which is at 2 pole pairs. Similarly, in the air-gap 

adjacent to the LSR, the modulated HSR flux contains a new dominant harmonic at 3 pole pairs. 

These matching spatial harmonics are what allow the magnetic coupling to occur and therefore the 

CMG to operate and transmit torque.  

1.2.2 Key Design Measures 

A fundamental advantage of magnetic gears is their inherent overload protection, which is 

quantified by the maximum transmittable torque, i.e. the stall torque. The output torque of the gear 

depends on the relative angle between the two rotors, with respect to the modulation ring.         

Figure 1-14 presents the output torque of a sample CMG as a function of the HSR angle, with a 

stationary LSR and modulation ring. It is observed that the angular position of the stall torque is 

around 52°. If the loading torque exceeds the stall torque of the gear, the HSR and LSR will lose 

synchronism and effectively decouple, resulting in an average output torque equal to zero. The 

magnetic coupling can be recovered once the loading torque has reduced back within the gear’s 

operating range. This can prevent “shock” load damage from occurring, however the vibrations 

Table 2      CMG Parameters – Harmonics Study 

Variables CMG 1 

Number of pole pieces 5 

Inner rotor poles 4 

Outer rotor poles 6 

Inner rotor OD (mm) 100 mm 

Outer rotor OD (mm) 148 mm 

PM length (mm) 10 mm 

Pole pieces length (mm) 10 mm 

Air-gap length (mm) 2 mm 

Axial length (mm) 100 mm 
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generated during the stall can still damage the connected systems. Apart from stall prevention and 

recovery methods being employed, CMGs are typically operated at up to 70% – 80% their rated 

stall torque. 

Another important measure is the torque ripple, which will induce noise and vibrations that will 

affect the performance of the gear. This could be critical in applications where smooth output 

torque is desired. In addition, the torque pulsations effectively increase the stall torque and 

therefore minimisation and accurate estimation of the torque ripple is necessary. 

1.3 Introduction to the effects of geometric deviations 

There is a substantial body of work in the literature focusing on improving the performance 

characteristics of a CMG [47]–[56]. Such research projects typically focus on optimising the gear 

with respect to a particular performance metric, with a significant percentage working towards 

Figure 1-14 Sample CMG torque profile 
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achieving higher torque densities. Finite Element Analysis (FEA) is the most commonly used 

method for the analysis of CMGs. However, numerous examples in the literature suggest that a 

discrepancy exists between FEA and experimental outcomes. Two-dimensional (2D) FEA is 

frequently used to model CMGs as it offers accessibility and gives a reasonable indication of 

performance. In studies using 2D FEA, large discrepancies have been reported in the calculation 

of stall torque, ranging from 20% to 40% [47], [51], [52]. These are attributed to some combination 

of 3D effects (particularly end-effects) and manufacturing error. Three-dimensional FEA can be 

employed to overcome the inherent limitations of 2D planar models but, is significantly more 

computationally intensive. This can include the modelling of end effects and can also allow the 

influence of supporting structures to be assessed. Even so, 3D FEA can still give a discrepancy of 

4% to 10% [53]–[56]. In particular, in [56], 3D FEA is used with end-effects (active and structural 

parts). In this study a discrepancy of 9% is reported, which is attributed to ‘manufacturing error’. 

End effects are an important consideration in CMG analysis and have been extensively 

assessed, mainly through 3D FEA [52]–[56].Two main end effect phenomena are leakage and 

fringing and exist in all PM machines. However, the structure of a CMG is inherently prone to 

both phenomena. Specifically, the large equivalent air-gaps and the modulation ring saliency 

increases the gear’s susceptibility to leakage and fringing, respectively [52]. In addition, the torque 

production in a CMG is a result of both attractive and repulsive magnetic forces. In [52] it is 

identified that in the areas where repulsive torque is produced, additional flux is forced is the axial 

direction by the opposing magnetic poles, an effect the authors of [52] define as escaping. 

However, it is also shown that similar to PM machines, knowledge of the aspect ratio could allow 

compensation to be applied to 2D results with very good correlation to those obtained using 3D 
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FEA. Nonetheless, end effects are an important factor in CMGs and caution must be taken when 

purely 2D modelling techniques are employed.  

Any engineering product is far from being geometrically ‘perfect’. A degree of geometric 

deviation is inherently introduced during manufacturing, which will have an effect on the 

performance of the product. In spite of frequent mentions of ‘manufacturing error’ in the literature 

on magnetic gears, there is little to suggest that this has been studied in detail. In a CMG, geometric 

asymmetries will be identified in both the PM rotors as well as the modulation ring. Compared to 

the PM rotors, which are identical to those used in electric machines, the technology around the 

modulation ring is much less mature. Specifically, in order for the modulation ring to operate as 

explained in the previous section, its ferromagnetic pole pieces need to be supported by a non-

magnetic and non-conductive material, to avoid altering the magnetic behaviour of the system and 

the generation of eddy-currents, respectively. In addition, the supporting structure is also required 

to be structurally sound and rigid to withstand the magnetic and mechanical forces that will be 

exerted on the pole pieces. Since standardised and well-controlled manufacturing processes for the 

modulation ring are yet to be developed, such geometric deviations in its construction may be 

significant. Therefore, the main centre of attention of this research is a performance assessment of 

a CMG having a modulation ring with geometrical asymmetries. 

The study of those variations becomes a more significant challenge when large scale production 

is considered, where the range in expected performance is equally, if not, more important than the 

absolute value of a sample. In such an environment, statistical tools must be used to make accurate 

predictions of a sample’s performance, mainly through the use of modelling techniques. It is not 

practically feasible to conduct these studies through experimental means, as apart from the large 

number of CMG builds it would require, the effect of the errors in the modulation ring would need 
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to be isolated from the deviations in the rest of the gear. Models developed using FEA can be used 

to assess such a problem. However, due to the geometrical asymmetries, model simplifications 

cannot be used to decrease the computational time. In addition, it is necessary to use rigorous 

model meshing to properly capture the small geometric deviations. It therefore becomes apparent 

that as the computational time increases along with the large number of samples required for such 

statistical studies, the use of FEA becomes impractical. Analytical models can be a feasible 

alternative, as it is possible to achieve high accuracy with a much higher computational efficiency. 

1.4 Summary 

This chapter introduced magnetic gearing. A brief history of MGs was provided, from their 

inception over a century ago, to the modern topologies, including the CMG. CMGs, due to their 

inherent advantages over their mechanical counterparts, have been considered as promising 

alternatives in applications ranging from the aerospace to the energy generation sectors. A 

substantial body of work in the literature has investigated such devices. However, discrepancies 

between modelled and experimentally realised performance have often been reported, a degree of 

which is attributed to ‘manufacturing error’. Furthermore, calculated performance in research 

studies typically assumes exact geometry. Therefore, the effects of geometric imperfections have 

rarely been considered. Knowledge of those effects is even more important, when viewed from an 

application perspective, especially when mass production is considered. The use of statistical tools 

is necessary to accurately predict the range in expected performance. However, the use of FEA for 

these studies becomes impractical due to the high computational requirements of this method. This 

is an area in which analytical modelling could offer significant advantages.  
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1.5 Research Objectives and Thesis Structure 

This thesis sets out to develop accurate and computationally efficient models capable of 

considering geometric asymmetries in the modulation ring of a CMG. A methodology will be 

established to allow the effect of geometric deviations to be statistically assessed.  

1.5.1 Research Objectives 

The principal objectives of this work are as follows: 

• To develop an asymmetric analytical model for a CMG considering dimensional and 

positional asymmetries in the modulation ring. 

• To establish a methodology capable of assessing the effect of geometric deviations through 

statistical means. 

• To investigate how key modulation ring design parameters affect the sensitivity of gear 

performance to geometric deviations. 

1.5.2 Thesis Structure 

The remainder of the thesis is structured as follows: 

Chapter 2 presents an overview of the potential sources of error in a CMG and provides 

estimates on their expected tolerances. A review of both magnetostatic and mechanical analytical 

modelling is also included. 

Chapter 3 presents and explains the proposed asymmetric analytical model for a CMG, capable 

of assessing individual dimensional and positional deviations of the pole pieces. An assessment of 

this modelling approach is presented, with the limitations thoroughly discussed.  
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Chapter 4 details the statistical methodology. A hybrid stochastic modelling approach is also 

presented, overcoming key limitations of analytical modelling while still achieving high 

computational efficiency.  

Chapter 5 reports on simulation studies performed to assess the influence of varying air-gap 

length and pole piece number on the effects of geometric deviations on stall torque. In addition, 

an assessment and discussion regarding the effects on torque ripple is also presented.  

Chapter 6 summarises the findings and key outcomes and concludes the thesis by suggesting 

topics for future research.   
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CHAPTER 2 

LITERATURE REVIEW AND OVERVIEW OF DEVIATIONS 

 LITERATURE REVIEW AND OVERVIEW OF DEVIATIONS 

2.1 Introduction 

As outlined in Chapter 1, no engineering product is geometrically ‘perfect’. CMGs have a 

number of different sources of error, which in this thesis are classified into two categories:  

1. Errors related to the PM rotors,  

2. Errors related to the modulation ring.  

These errors will depend heavily on the particular structure of each gear as well as the 

manufacturing processes and materials that will be employed. Here, the term “manufacturing 

error” reported in the literature is expanded to the more generic, geometric deviations, which can 

include both manufacturing error and deflections of the structure under operation. This chapter 

reviews the most common CMG configurations and identifies their respective manufacturing 

processes along with the expected errors. The primary focus is on smaller CMGs similar to [31], 

rather than the larger ones typically employed in wind and marine energy generation applications.  

Furthermore, the methods available to assess the impact of these errors are also discussed and 

reviewed. Part of the work of this chapter was published in [57]. 
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2.2 Review of Errors 

A typical CMG configuration is presented in Figure 2-1. It features surface mounted PM rotors 

and a structurally simplified configuration regarding the modulation ring. In most analyses, the 

pole pieces are simply positioned correctly between the two rotors with little or no consideration 

of the necessary supporting features. In a real-world application, the complexity a CMG is 

understandably higher, a significant proportion of which is focused on the modulation ring. When 

considering PM rotors, two very mature topologies dominate the space – surface mounted and 

interior PMs. Surface mounted rotor topologies are also used in CMGs, and the technological 

maturity of PM machine rotors therefore maps well onto CMG rotors. PM rotor errors are explored 

in section 2.2.1.  By contrast, due in part to the still limited industrial use of CMGs, the design of 

the modulation ring has not yet converged to a dominant topology. The absence of well-known 

practices for their design-and-manufacture and design-for-manufacture results in higher 

uncertainties regarding the ring’s potential manufacturing processes and subsequent expected 

errors. This concern is explored in more detail in section 2.2.2.  

Figure 2-1 Simple CMG configuration 

Ferromagnetic pole 

pieces 

Low-speed 

rotor 

High-speed 

rotor 
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2.2.1 Error in the PM rotors 

Irrespective of the rotor topology of the PMs (surface mounted vs interior) there are two primary 

contributors to the total error of a rotor. The first one is the manufacturing error in the PMs and 

the second is the positioning error of the PMs. PM manufacturing error may be geometric or a 

variation of the magnetic properties of the PMs, namely the residual magnetic flux (𝐵𝑟𝑒𝑚) and the 

Direction of Magnetisation (DoM). 

High performance PMs, such as NdFeB magnets, are typically formed through a process known 

as Powder Metallurgy [58]. A simplified process diagram of this method is provided in             

Figure 2-2. Initially, suitable compositions of raw materials are melted in a vacuum induction 

furnace and the subsequent cured metal is pulverised into a fine powder with a particle diameter 

between 3 and 7 micrometres [58]. The following stage is pressing, where a solid is formed with 

a preferred magnetisation direction. There are several methods for this process with the most 

common ones being transverse, axial and isostatic pressing. In all these methods, shortly prior to 

Figure 2-2 NdFeB PM manufacturing process 
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Melting Sintering
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Raw materials 
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compaction, an external field is used to align the magnetic domains of the powder in the preferred 

magnetisation direction. The higher the homogeneity of this alignment is, the higher the 

performance of the resulting NdFeB magnet will be. The powder is then formed into a magnet in 

a sintering vacuum furnace, while having no external magnetic field and approximate dimensions. 

During this stage the volume of the magnet will also decrease by around 20% [58]. This 

preliminary magnet will then receive a shaping treatment that depends on the manufacturing 

volume. Some degree of machining is applied as the sintered magnets have rough surfaces and 

then they are typically finished through grinding or wire Electrical Discharge Machining (wire-

EDM) for low volume manufacturing. Finally, a strong external magnetic field is applied to 

permanently magnetise the magnet and complete this manufacturing process.  

Each of these stages in the manufacturing of a PM can contribute to the resulting error. The 

dimensional error of the PMs is usually low as the mentioned machining processes are highly 

accurate and precise. Further details are provided in Table 3. However, the same does not apply to 

the magnetic properties. Although the processes are well known and standardised, it is not possible 

to reduce this error to the degree of the dimensional one. The main reason is that multiple sources 

contribute to the generation of the error in the magnetic properties. For example, any discrepancies 

in the alignment during the pressing phase will result in higher error in both 𝐵𝑟𝑒𝑚 and DoM. 

Furthermore, the inherently imperfect alignment during the magnetisation phase will also 

contribute to this error. Therefore, the resulting magnetic error can be around ± 3 – 5 % and                 

± 5 – 10 % for 𝐵𝑟𝑒𝑚 and DoM, respectively [59]–[62]. It should also be mentioned that the residual 

flux depends on the temperature of the magnet and decreases by around 0.12 % per oC, for typical 

NdFeB magnets [62]. 
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Positioning errors include manufacturing error in the rotor yoke and assembly error of the PMs. 

High accuracy is usually achieved in the manufacture of rotor yokes. For small scale production 

of laminated rotors, Laser Beam Machining (LBM) and wire-EDM are used to cut the laminations 

before bonding them either with adhesives or through welding [63]. In the design where a 

laminated rotor stack is not required, more conventional processes can be used, such as milling 

and turning. In mass production, laminations are typically stamped. In all cases, high levels of 

dimensional accuracy are achievable through these manufacturing techniques. Finally, the PMs 

are normally bonded to the rotor stack using adhesives and the corresponding glue gap will also 

introduce a degree of geometric deviation. Further details are provided in Table 3. 

2.2.2 Error in the Modulation Ring 

In order to better understand the sources of modulation ring geometric deviations an overview 

on the potential structural configurations is required. A wide variety of designs have been reported 

in the literature. Most topologies can incorporate laminated pole pieces. Modulation rings without 

Table 3      Rotor Sources of Error and Expected Tolerances 

Error Description Manufacturing Processes Expected Tolerance 
D
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Rotor Yoke 

Turning 

Stamping 

Wire-EDM 

LBM 

± 0.08 – 0.06 mm [64]–[66] 

± 0.02 – 0.06 mm [64]–[66] 

± 0.01 – 0.125 mm [64]–[66] 

± 0.015 – 0.125 mm [64]–[66] 

Permanent 

Magnet 

Grinding 

Wire-EDM 

± 0.125 mm [64], [66] 

± 0.01 – 0.125 mm [64]–[66] 

Glue Gap N/A (Assembly) ± 0.05 mm [67] 
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𝐵𝑟𝑒𝑚 
External Magnetic Field  

Temperature 

± 3 – 5 % [59]–[62] 

– 0.12 % per oC  [62] 

DoM External Magnetic Field ± 5 – 10 % [59]–[62] 
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any laminations will have limited practical application as losses in the pole pieces would probably 

be excessively high. To facilitate the lamination of the pole pieces most topologies include a 

supporting structure, i.e., the ferromagnetic poles are not self-supporting. 

2.2.2.1 Manufacture of the pole pieces 

The manufacture of axially laminated pole pieces follows the same approach taken for the rotor 

yoke in section 2.2.1.  In the case of wire-EDM manufacture, it is reported in [34] that even though 

cutting a pre-bonded stack can achieve high accuracy, separation between individual lamina can 

occur. The alternative approach, assembly of individual laminations after cutting, requires tooling 

and bonding processes (adhesion, welding) to be precise and well-defined to achieve consistent 

results. The author expects that the small cross section of many of the pole pieces reported in the 

literature could make this practically challenging in a prototyping, laboratory environment. Non-

laminated pole pieces can be manufactured through more traditional processes, such as turning or 

(a)                                                                                (b) 

Figure 2-3 Modulation ring design with (a) mechanical interlocking features (b) 
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Supporting materials 
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milling and can therefore also be assembled with relative ease. Further details on the expected 

dimensional errors of the pole pieces are provided in Table 4. 

2.2.2.2 Manufacture of the supporting structure 

A common CMG configuration is shown in Figure 2-3 (developed in [31]). The pole pieces are 

supported by a plastic 3D printed structure either through mechanical interlocking features (Figure 

2-3 (a)) or by being encapsulated (Figure 2-3 (b)). A significant challenge of 3D printing the 

supporting structure is achieving a printing accuracy within the required tolerances [31]. This will 

not only depend on the precision of the 3D printing machine but also the machinability of the 

material and specifically the temperature variations the material will experience during printing. 

While in [31] a strategy was implemented to mitigate these effects, the air-gaps of 0.5 mm and 

0.71 mm were still considered too small. Moreover, even with smaller achievable tolerances, part 

interference may occur as the structure will deflect due to the magneto-mechanical forces exerted 

on it. Therefore, a 3D printed Carbon Fibre Reinforced Polymer (CFRP) reinforced nylon may be 

used instead, to increase the stiffness of the structure [34], [35]. It is apparent that as the deflection 

depends heavily on the individual characteristics of each CMG, a comprehensive structural 

analysis is required to ensure excessive deflections are avoided, even with a stiffer structure, as 

shown in [34], [35]. 

Another similar configuration is a bar-supported modulator (Figure 2-4) [34], [35], [68], [69]. 

In this case, the supporting structure is formed by a number of separate bars, fixed at both ends, 

that mechanically interlock with the pole pieces. Apart from 3D printing [34], [35]), other 
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manufacturing processes for this design include machining operations (turning) of a magnetically 

inert steel, an engineering plastic such as PEEK or pultrusions of CFRP [68], [69]. The same 

manufacturing processes can be used for a modulation ring with inset supports (Figure 2-5), where 

the supporting bars are placed through the pole pieces [70]. While the design supports in this have 

Figure 2-4 Bar-supported modulation ring 
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Figure 2-5 Modulation ring with inset supports 

Pole piece 

Inset supports 
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a minor effect on the magnetic circuit of the CMG, it could offer a robust and structurally secure 

support system.  

Another interesting configuration is presented in Figure 2-6, in the form of a bridged modulator. 

In such a design, the modulation ring is a ferromagnetic annulus, with circumferentially equidistant 

slots [56], [71], [72]. These slots act as the high reluctance areas of the modulation ring, however 

the bridges between the pole pieces alter the reluctance paths and may adversely affect the 

performance of the gear. This configuration is particularly interesting as it has the potential to be 

self-supporting, while having laminated poles. To further enhance the structure, additional features 

may be added. Rods could be used similar to inset supports and connected to the end caps, as 

demonstrated in [71]. Alternatively, the slots could be filled with magnetically inert materials to 

increase the radial and axial stiffness.  

 

 

Figure 2-6 Bridged modulator 

Modulation 

bridge 
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A notable exception to the previous configurations is the caged modulator (Figure 2-7). This, 

mechanically simpler and self-supporting design does not accommodate the use of laminations as 

the pole pieces are solid ferromagnetic bars, whose ends are supported by ends caps outside the 

active envelope of the gear [73], [74]. Such designs can be useful in a research context, however 

their applicability in industrial applications will be limited due to their high susceptibility to eddy 

current generation, and consequently higher losses. An analytical overview on the expected 

manufacturing processes and tolerances for each configuration is presented in Table 4.  

 

 

 

 

Figure 2-7 Caged modulation ring – (a) Section view of gear assembly, (b) Axial section of 

pole assembly illustrating ends caps connecting self-supporting pole pieces  

End caps 

Pole pieces 

(a)                   (b) 
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2.2.3 Summary of 2.2 

The previous two sections (2.2.1, 2.2.2) describe the potential manufacturing processes and the 

expected achievable tolerances in both the PM rotors and the modulation ring. Comparing the PM 

rotors and the modulation ring, it is evident that there is less variability in the design of surface 

mounted PM rotors. Furthermore, due to their technological maturity, PM rotor construction is 

better optimised than it is for the CMG modulation ring. It has, however, been noted that the 

manufacture of PM material, and the resultant variability in magnetic properties, is a significant 

source of error. Notwithstanding this point, this thesis will focus on the modulation ring for the 

following reasons: 

1. Errors in PM properties cannot be influenced by the designer other than through material 

selection. 

2. Errors in the modulation ring are a function of design choice. 

3. Analytical techniques to define an arbitrary magnetisation (within an ideal geometry) 

are already available. 

 

2.3 Literature Review 

In common with other complex products, the compound effect of the various sources of error 

in a magnetic gear is most meaningfully assessed using statistical methods. Therefore, it is 

necessary to have computationally efficient modelling techniques to allow such statistical studies 

to be conducted. Analytical descriptions of the magnetic flux distributions or the structural 

deflections offer the potential to be used as the primary modelling methods. Sections 2.3.1 and 

2.3.2 present a literature review on the magnetostatic and mechanical analytical modelling in a 

broad context regarding CMGs. 
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2.3.1 Magnetostatic Analytical Models 

In [75] the authors presented a new analytical approach for the analysis of CMGs. This approach 

followed equivalent analyses used in the modelling of slotted electrical machines [76]–[81] and is 

based on solutions of the magnetic scalar potential. The gear is split into concentric regions and 

solutions of either the Laplace or the Poisson equation are obtained, depending on the material 

properties of each region. These are then solved for an appropriate range of magnetic harmonics. 

The results showed very good correlation with linear FEA, while some deviation was observed 

compared to non-linear FEA. This was expected as the analytical model assumes infinite 

permeability of the ferromagnetic regions. However, the computational efficiency of the analytical 

model was apparent as the FEA required 11 times the computational time of the analytical model, 

with the pre-processing time (e.g. mesh generation) not considered for the FEA approach. Lubin 

et al [82] proposed a similar analytical model using the magnetic vector potential. The results again 

showed excellent correlation to FEA, under the same infinite permeability assumption. The model 

was reported to be highly efficient over FEA, however its time saving was not quantified. In [83] 

the authors followed the same approach as in [82], however through algebraic manipulations they 

achieved a reduction in the size of the matrix of equations to be solved, therefore providing a 

further decrease in computational cost, without a loss in accuracy.  

The computational time of an analytical model depends on the number of harmonics considered 

and this was investigated in [84]. The proposed harmonic selection methods were shown to 

considerably reduce the computational time at the expense of a small degree in accuracy. 

Depending on which harmonic selection method was employed, the error in calculated torque 

ranged from <1% to <5%, compared to the same analytical model considering a much wider range 

of harmonics. 
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Further considerations include the modelling of finite permeability. In [84] the analytical model 

was extended to consider finite permeability in the rotor yokes while retaining the infinite 

permeability assumption for the pole pieces. In addition, models have also been developed 

considering different magnetisation patterns and flux concentrating rotors, but are, in principle, 

very similar to the models described in this section [85]–[88]. 

Notwithstanding their computational advantages, the models highlighted above have certain 

limitations in common. In the first instance, there is an inherent inability to model intricate 

geometries, similar to the shape of the pole piece in [32] (Figure 2-3). In addition, it is very 

challenging to consider the non-linear permeability of the ferromagnetic pole regions and therefore 

take into account the saturation effect. Another common feature is that all these models are radially 

symmetric and cannot thus consider and assess the geometrical asymmetries that will either be 

introduced in the manufacture or during the operation of a CMG.  

The equivalent research problem has been previously identified in PM machines, with a few 

authors developing analytical models capable of considering asymmetries [67], [89]–[91]. In [67] 

particular attention is given to the asymmetries caused by the manufacturing processes and the 

importance of the respective tolerances. The developed analytical model considered slot opening 

variations along with radial and tangential asymmetries of the rotors. It is apparent that the 

complexity of the model increases with increasing number of asymmetries considered and this is 

a possible reason why radial asymmetries in the stator slots were not considered. Another model 

considering similar imperfections was developed in [92]. Here, it was confirmed that the effect of 

these geometric deviations needs to be assessed statistically, and the low computational complexity 

of their analytical model allowed the authors to perform a simple Monte-Carlo analysis with            

10,000 samples. 
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2.3.2 Mechanical Models 

The overview of the mechanical structures and their potential manufacturing processes in 

Section 2.2, provides an insight on the likely geometric deviations that will be caused by errors 

during manufacturing. However, it is both evident and also widely reported that the magnetic and 

mechanical forces exerted on the modulation ring will cause a degree of deformation in the 

structure [34], [35], [69], [73], [93]. Therefore, the position of pole pieces will not be in the 

nominal orientation, considered in the design stage, as in [21]. 

Modelling the structural behaviour of the designs shown in Section 2.2.2 is very challenging, 

particularly for designs with laminated pole pieces. In those cases, multiple factors need to be 

taken into account for a comprehensive analysis. These range from the adhesion properties 

between individual lamina and the directional stiffness of the lamination stack, to the 

adhesion/interlocking mechanical properties between the pole pieces and the supporting structures. 

It is apparent, that even with FEA where geometric subtleties can be feasibly modelled, their 

quantification and incorporation is a significant challenge. Therefore, the models that have been 

presented in the literature feature a very large set of assumptions.  

Furthermore, the quantification of the deflections is not a single calculation but rather an 

iterative process. As the structure deflects, and the relative position of the pole pieces changes, the 

forces exerted on them will also be different. Therefore, these new forces will cause different 

deflections and this process will continue until the structure has converged to its ‘true’ deflected 

shape. An iterative magnetomechanical model was developed in [73], using a 3D 

magnetomechanical FEA. This model considered the simple CMG structure of a caged modulation 

ring, however the deflections were studied in detail, with the load applied non-uniformly to the 

pole pieces. The iterative analysis allowed high accuracy to be achieved in the calculation of the 
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deflections compared to experimental results. However, the complexity and significant 

computational cost of a 3D multiphysics FE tool, makes such a method impractical for use in 

statistical studies. 

In [69], [93] a multibody model is created for the bar-supported modulation ring. The support 

bars are assumed equivalent to fixed-end beams, while negligible stiffness is assumed for the pole 

pieces. This assumption stems from the likely higher stiffness of the supporting bars compared to 

the laminated pole pieces, however it does not accurately model the case where the pole pieces are 

circumferentially compressed. Notably, tangential deflections larger than the span angle of the 

pole pieces are reported, which would only happen if a complete failure of the pole piece assembly 

occurs. This multibody model showed that large deflections may occur (up to 0.5 mm), while 

offering a significant computational advantage over the combination of 2D magnetics and a 3D 

mechanical FEA. However, its accuracy compared to FEA is not shown. Furthermore, for a robust 

comparison to be made, the complete set of assumptions in the FE model would be needed and 

this was not provided. Another, more simplified model, was considered in [35], using the Euler-

Bernoulli beam theory. The electromagnetic forces exerted on the pole pieces were calculated and 

then assumed as a distributed load on the support posts. They in turn, were modelled as fixed-end 

beams with trapezoidal cross section. This allowed the stress on the supporting structure to be 

determined. However, the support posts are analysed considering only the forces from the adjacent 

pole pieces. This means, the mechanical link between the pole pieces, and subsequent higher 

stiffness, provided by the ring was considered negligible, which is arguably overly conservative. 
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An improved model based on the one reported in [35] could be developed by considering a 

system of linked springs as shown in Figure 2-8. Similar to [35] the support posts are considered 

as uniformly loaded fixed end beams, where the maximum deflection is at the midpoint of the 

beam and can be determined by (2.3.1), (2.3.2): 

where L is the beam’s length, A is the cross-sectional area, κ is the Timoshenko shear coefficient, 

q is the distributed load and E and G are the elastic and shear moduli, respectively.   

The linearity of equation (2.3.2) leads to the development of the equivalent system, shown in 

Figure 2-8, which consists of a point mass and two springs. The elongation in each spring 

represents the deflection in each Degree of Freedom (DoF). Therefore, using the principle of 

𝑢(𝑥) =
𝑞

24𝐸𝐼
(𝑥4 − 2𝐿𝑥3 + 𝐿2𝑥2) +

𝑞

2𝜅𝐺𝐴
(𝐿𝑥 − 𝑥2) (2.3.1) 

𝑢𝑚𝑎𝑥 =
𝑞𝐿4

384𝐸𝐼
−

𝑞𝐿2

4𝜅𝐺𝐴
 (2.3.2) 

Figure 2-8 Spring system equivalent deflection model  
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superposition, the resultant deflected position of the point mass, and hence the maximum 

deflection of the fixed-end support post can be determined.  

As already outlined, due to the complexity of the problem, further assumptions are required to 

enable the use of such analytical structural models. In this case, the following assumptions have 

been adopted: 

1. The Timoshenko beam theory is applied. 

2. The laminated pole pieces are assumed incompressible but the torsional and bending 

stiffness of the laminations is considered negligible. 

3. At the interface between the pole pieces and the supporting posts a rigid attachment is 

considered. 

4. Both radial and tangential forces of each pole piece are split equally between the two 

supporting bars and act as Uniformly Distributed Loads (UDLs). 

Expanding on assumption (1), the Timoshenko beam theory considers the deformations due to 

both bending and shearing and a special case of which is the classical (Euler-Bernoulli) beam 

theory, where the shear effects are negligible. Similar to [84] laminated pole pieces will have a 

negligible stiffness compared to their supporting structure, as outlined in assumption (2). However, 

their existence cannot be disregarded as they do form deflection limits between the supporting 

posts. More specifically, the minimum tangential distance between consecutive support posts 

cannot be less than the span angle of the pole pieces, as otherwise this would result in failure in 

the laminations. Consequently, the pole pieces are considered incompressible.  Furthermore, an 

assumption is required to simplify the transmission of the forces from the pole pieces to the 

supporting posts. The main difficulty to consider is the adhesion properties at the interface between 

them, where usually adhesives and mechanical interlocking features would be present. The 
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complexity in considering those factors leads to the conservative assumptions that there is a rigid 

attachment at the interface, with the forces split equally between the supporting posts, as 

summarised in assumptions (3) and (4). This model can then be solved by determining the global 

stiffness matrix and calculating the individual deflections, and can have good correlation with 

FEA, if the FEA incorporates the same large set of assumptions.  

This literature review shows that efficient analytical structural models can be developed. 

However, it is necessary to significantly simplify the problem through a large set of assumptions. 

Compared to the equivalent magnetic models, these simplified mechanical models are expected to 

have a lower correlation to a real case scenario. As such, at this stage their use in statistical studies 

assessing small geometric deviations would not yield meaningful results. This thesis will not 

directly calculate the deflections under load of each CMG. Instead, a framework is developed 

which can define distributions of static geometric deviations. Given these distributions, the effects 

on the performance of the CMG can be assessed.  

2.4 Summary 

This chapter presented an overview of the sources of error in a CMG and provided estimates 

on the expected variation for each one. It was identified that due to the standardised and well 

understood processes regarding the PM and rotor manufacture, there is much less need and 

opportunity to mitigate their associated effects compared to those of the modulation ring. 

Therefore, the modulation ring will be the focus of the thesis. The assessment of stochastic 

geometric deviations requires computationally efficient and accurate models. Radially symmetric 

analytical subdomain models using solutions of either the magnetic scalar or vector potential have 

been published. However, even though they show significant potential in terms of their 

computational efficiency, their modelling definitions do not allow the considerations of geometric 
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asymmetries. Asymmetric analytical models exist for PM machines but to the authors knowledge, 

none have yet been developed for CMGs. Mechanical models have also been published that could 

theoretically achieve the necessary computational efficiency, however, in each the underlying 

problem is significantly simplified through a very large set of assumptions. This will considerably 

decrease the correlation of such models to a realistic case and are therefore not yet suitable for this 

statistical analysis. 
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CHAPTER 3 

ASYMMETRIC ANALYTICAL MODEL OF A COAXIAL 

MAGNETIC GEAR 

  

ASYMMETRIC ANALYTICAL MODEL OF A COAXIAL MAGNETIC GEAR 

3.1 Introduction 

Analytical techniques can be used to develop accurate and highly computationally efficient 

models, which lend themselves to statistical analyses. This chapter presents a novel asymmetric 

model for a CMG, capable of assessing both radial and tangential deviations of individual pole 

pieces. The proposed model is validated with FEA, and a thorough exploration of its limitations is 

also presented. All the analytical simulations in this and subsequent chapters have been built and 

performed in Matlab, and the work of this chapter was published in [94]. 

3.2 Fundamental Principles of Analytical Modelling 

An ideal CMG consists of the two radially symmetric and concentric PM rotors and a central 

modulation ring of equispaced and identical ferromagnetic pole pieces. The magnetic air-gap 

region of the CMG is formed by the area surrounding the modulation pole pieces and is enclosed 

by the PM rotors. Unlike FEA, a limitation of analytical modelling is that it is challenging to 

consider the air-gap as one region due to its complex shape. Therefore, the principle of this model 
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is the separation of the CMG into individual, nominally concentric regions. Each of the rotors 

constitute a PM region (I, V) while the air-gap exists in three regions: 

• Region II is the area between the modulation ring and the inner PM rotor. 

• Region III is the air between the pole pieces.  

• Region IV is the area between the modulation ring and the outer PM rotor. 

The five regions are shown in Figure 3-1.  

3.2.1 Modelling assumptions 

In this model, the following assumptions, typical of analytical radial machine analyses are 

incorporated: 

1. End effects are neglected. 

2. In the PM regions, 𝜇𝑟 is equal to 1. 

3. In the ferromagnetic regions, 𝜇𝑟 is equal to infinity. 

Region V
Region III

Region IV

Region II

Region I

Figure 3-1 Region definition 
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 A fundamental compromise with 2D radial flux analysis is that end-effects cannot be directly 

included in the model. However, in Chapter 1, literature was highlighted which provided an 

approach using aspect ratio to scale the 2D results to match the equivalent 3D. In addition, in ‘long’ 

machines the end effects are less dominant, and can therefore be assumed negligible. The recoil 

permeability (𝜇𝑟) of NdFeB PMs is very close to unity. It is therefore assumed equal to 1, due to 

the mathematical simplification it provides. Infinite permeability in the ferromagnetic regions is 

typically assumed in the analytical modelling of either CMGs or PM electric machines. In the 

CMG model, in addition to simplifying the mathematics, the effect of this assumption is that the 

magnetic vector potential in the ferromagnetic materials is not directly calculated. Instead, these 

materials are simulated using boundary conditions with the surrounding areas [82], [94]. For 

example, the pole piece highlighted in Figure 3-2 is emulated by considering the tangential 

component of the flux density to be zero (𝐵𝜃 = 0) at the boundaries with the surrounding Region 

III slots and Region II and IV air-gaps. To facilitate this approximation, Region III is divided into 

Figure 3-2 Pole piece emulation  

i+1

i

Bθ= 0
II

Bθ,i = 0
III

Bθ,i+1= 0
III

Bθ= 0
IV

I

II

III
IV
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a number of subdomains, equal to that of pole pieces. Each subdomain therefore corresponds to an 

air-gap slot between consecutive pole pieces.   

3.3 Asymmetric Analytical Model – Definition 

In common with conventional analytical models, this asymmetric model is based on solutions 

of the magnetic vector potential (𝐴) in each region. Here a vector potential solution was adopted 

to follow the approach in [82], which focused on a radially symmetric model for a CMG. These 

solutions are developed using the definition of the magnetic vector potential (3.3.1) and Maxwell’s 

Ampere law equation (3.3.2). 

Considering equation (3.3.2), as a magnetostatic solution is required, the partial derivative of 

the electric flux density (�⃗⃗�) with respect to time disappears. Furthermore, as there is no applied 

current, the current density (𝐽) reduces to the curl of the magnetisation (�⃗⃗⃗�) in the PM regions and 

zero elsewhere. Therefore, the equations (3.3.1) and (3.3.2) lead to (3.3.3) in the PM regions and 

(3.3.4) in all other regions. These take the form of the Poisson’s  (3.3.3) and Laplace’s equations 

(3.3.4): 

 

�⃗⃗� = 𝛻 × 𝐴 (3.3.1)  

𝛻 × �⃗⃗� = µ0 𝐽 + µ0휀0
𝜕�⃗⃗�

𝜕𝑡
 (3.3.2)  

𝛻2𝐴 = −µ0𝛻 × �⃗⃗⃗� (3.3.3)  

𝛻2𝐴 = 0 (3.3.4)  
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3.3.1 Region III – Modulation Ring Slots 

The asymmetries considered in Region III are a combination of the dimensional and positional 

error of the pole pieces. Specifically, the geometric deviations considered are the length and span 

angle along with the radial and tangential position of each pole piece. The modelling of 

asymmetries in the modulation ring increases the complexity of the problem definition. As the 

magnetic vector potential is not directly calculated in the deviated materials, i.e., the pole pieces, 

their position will need to be emulated using the subdomains of Region III. However, any 

deviations will lead to an asymmetric air-gap slot, whose shape cannot be exactly replicated, as 

would be the case with the nominal, radially symmetric CMG. This additional challenge in the 

definition of Region III is not present when assessing PM rotor deviations, as the deviated 

component is directly defined as a modelling region. 

Therefore, in this asymmetric analytical model three options are considered to define each 

Region III subdomain. The radial boundaries of each slot can be defined as follows: 

Figure 3-3 Definition of region III air-gap slot considering preceding pole piece  

βi 

θi 

R3,i 

R4,i 

I

II
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IV

V
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1. Using the inner (𝑅3,i) and outer (𝑅4,i) radii of preceding (clockwise) pole piece (Figure 

3-3). 

2. Using the inner (𝑅3,i+1) and outer (𝑅4,i+1) radii of proceeding (anticlockwise) pole piece 

(Figure 3-4). 

3. Using the mean inner (𝑅3,i + 𝑅3,i+1) 2⁄  and mean outer (𝑅4,i + 𝑅4,i+1) 2⁄  radii of the 

preceding and proceeding pole pieces (Figure 3-5). 

The slot opening angle (𝛽𝑖) and the initial angle of the subdomain with respect to a datum (𝜃𝑖) 

are defined as shown in the figures (Figure 3-3 – Figure 3-5). In this chapter the subdomains are 

defined with respect to the preceding pole piece (Figure 3-3) [94]. The differentiating factors 

between each definition are expanded further in Chapter 4. The general solution of 𝐴 in each 

subdomain can now be derived from (3.3.4). The following notation in (3.3.5), (3.3.6) has been 

adopted for simplification:  

βi 

θi 

R3,i+1 

R4,i+1 

I

II

III
IV

V

Figure 3-4 Definition of region III air-gap slot considering proceeding pole piece  
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Using the separation of variables method, the general solution of the ith
 subdomain can be 

described by Fourier series and is provided in (3.3.7). 

with 

𝑈𝑧(𝑎, 𝑏) = (
𝑎

𝑏
)
𝑧

+ (
𝑏

𝑎
)
𝑧

 (3.3.5)  

𝑋𝑧(𝑎, 𝑏) = (
𝑎

𝑏
)
𝑧

− (
𝑏

𝑎
)
𝑧

 (3.3.6)  

𝐴𝑖
(𝐼𝐼𝐼)(𝑟, 𝜃)  = 𝐶𝐼𝐼𝐼,𝑖 +𝐷𝐼𝐼𝐼,𝑖 ln(𝑟) 

 𝐴𝑖
(𝐼𝐼𝐼)(𝑟, 𝜃)  + ∑ (𝐸𝐼𝐼𝐼,𝑖,𝑚

𝑋𝑓𝑚,𝑖(𝑟, 𝑅4,𝑠)

𝑋𝑓𝑚,𝑖(𝑅3,𝑠, 𝑅4,𝑠)
− 𝐹𝐼𝐼𝐼,𝑖,𝑚

𝑋𝑓𝑚,𝑖(𝑟, 𝑅3,𝑠)

𝑋𝑓𝑚,𝑖(𝑅3,𝑠, 𝑅4,𝑠)
)

𝑀

𝑚=1

 

 𝐴𝑖
(𝐼𝐼𝐼)(𝑟, 𝜃)  =          ∙ cos (𝑓𝑚,𝑖(𝜃 − 𝜃𝑖)) 

(3.3.7)  

Figure 3-5 Definition of region III air-gap slot considering average radii  
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where 𝐶𝐼𝐼𝐼,𝑖, 𝐷𝐼𝐼𝐼,𝑖, 𝐸𝐼𝐼𝐼,𝑖,𝑚 and 𝐹𝐼𝐼𝐼,𝑖,𝑚 are the Fourier coefficients and 𝑀 denotes largest harmonic 

order considered. 

3.3.2 Regions II, IV – Inner, Outer Airgaps 

The geometric deviations considered in the modulation ring will also affect the definitions of 

the inner and outer air-gap regions, which are now asymmetric, similar to the Region III. To 

account for this asymmetry, Region II and IV variants are created, which are defined in the                

[0 – 2π] angular domain and are equal in number to the Region III subdomains [94]. This approach 

is similar to the one followed in [67], which modelled asymmetries in PM machine slots.   

Each variant is associated with a Region III subdomain, which defines one of its radial 

boundaries. For example, the ith Region II variant is associated with the ith Region III subdomain. 

Therefore, its outer radial boundary will be 𝑅3,s, with the inner boundary defined from Region I, 

i.e., 𝑅2. The asymmetric solution of the magnetic field in the physical air-gap can then be 

synthesised by using the appropriate variant for the angular region it occupies (Figure 3-6).  

𝑓𝑚,𝑖 =
𝑚𝜋

𝛽𝑖
 (3.3.8)  

                     𝑠 = 𝑖 (3.3.9) 
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Similarly, each Region IV variant is associated with a Region III subdomain. In this case, the 

subdomain defines the inner radial boundary of the variant, e.g., 𝑅4,s, with the outer boundary 

defined by Region V, i.e., 𝑅5. 

In common with section 3.3.1, using the separation of variables method and the Laplace 

equation (3.3.4), the general solution for each air-gap variant of Region II and IV can be derived. 

These solutions described by Fourier series are provided in (3.3.10), (3.3.11). 

Figure 3-6 Region II / IV variant definitions considering the preceding definition  
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where 𝐶𝐼𝐼/𝐼𝑉,𝑖, 𝐷𝐼𝐼/𝐼𝑉,𝑖, 𝐸𝐼𝐼/𝐼𝑉,𝑖 and 𝐹𝐼𝐼/𝐼𝑉,𝑖 are the Fourier coefficients and 𝐾 denotes largest 

harmonic order considered. 

3.3.3 Regions I, V – Inner, Outer PM Rotors 

In this analysis, the inner and outer rotor PM regions are radially symmetric since geometric 

deviations of the rotors are assumed negligible and are thus not considered. N.B. – the inclusion 

of magnetisation errors can be modelled via the definition of the magnetisation function, building 

on the methods outlined in [67] and [95]. This model considers radial magnetisation of the PMs. 

Furthermore, infinite permeability is considered in the rotor yokes, leading to the following 

boundary conditions (3.3.12), (3.3.13):  

𝐴𝑖
(𝐼𝐼)(𝑟, 𝜃) = ∑(𝐶𝐼𝐼,𝑖

𝑅2
𝑘

𝑈𝑘(𝑟, 𝑅3,𝑠)

𝑋𝑘(𝑅2, 𝑅3,𝑠)
+ 𝐷𝐼𝐼,𝑖

𝑅3,𝑠
𝑘

𝑈𝑘(𝑟, 𝑅2)

𝑋𝑘(𝑅3,𝑠, 𝑅2)
)

𝐾

𝑘=1

cos(𝑘𝜃) 

𝐴𝑖
(𝐼𝐼)(𝑟, 𝜃) +∑(𝐸𝐼𝐼,𝑖

𝑅2
𝑘

𝑈𝑘(𝑟, 𝑅3,𝑠)

𝑋𝑘(𝑅2, 𝑅3,𝑠)
+ 𝐹𝐼𝐼,𝑖

𝑅3,𝑠
𝑘

𝑈𝑘(𝑟, 𝑅2)

𝑋𝑘(𝑅3,𝑠, 𝑅2)
)

𝐾

𝑘=1

sin(𝑘𝜃) 

(3.3.10) 

𝐴𝑖
(𝐼𝑉)(𝑟, 𝜃) = ∑(𝐶𝐼𝑉,𝑖

𝑅4,𝑠
𝑘

𝑈𝑘(𝑟, 𝑅5)

𝑋𝑘(𝑅4,𝑠, 𝑅5)
+ 𝐷𝐼𝑉,𝑖

𝑅5
𝑘

𝑈𝑘(𝑟, 𝑅4,𝑠)

𝑋𝑘(𝑅5, 𝑅4,𝑠)
)

𝐾

𝑘=1

cos(𝑘𝜃) 

𝐴𝑖
(𝐼𝑉)(𝑟, 𝜃) +∑(𝐸𝐼𝑉,𝑖

𝑅4,𝑠
𝑘

𝑈𝑘(𝑟, 𝑅5)

𝑋𝑘(𝑅4,𝑠, 𝑅5)
+ 𝐹𝐼𝑉,𝑖

𝑅5
𝑘

𝑈𝑘(𝑟, 𝑅4,𝑠)

𝑋𝑘(𝑅5, 𝑅4,𝑠)
)

𝐾

𝑘=1

sin(𝑘𝜃) 

(3.3.11) 

𝐵𝜃
(𝐼)
|
𝑟=𝑅1

= 0 (3.3.12) 

𝐵𝜃
(𝑉)
|
𝑟=𝑅6

= 0 (3.3.13) 
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Here, as the current density vector is non-zero due to the PM magnetisation, the general 

solutions are derived by solving the Poisson’s equation (3.3.3) with the boundary conditions 

(3.3.12), (3.3.13), and are as follows: 

where  

 

and  

𝐴(𝐼)(𝑟, 𝜃) = ∑(𝑊1𝑘𝐶𝐼 +𝑊2𝑘𝑀𝑟𝑐𝑘
(𝐼) ) cos(𝑘𝜃)

𝐾

𝑘=1

 

𝐴(𝐼)(𝑟, 𝜃) +∑(𝑊1𝑘𝐸𝐼 +𝑊2𝑘𝑀𝑟𝑠𝑘
(𝐼) ) sin(𝑘𝜃)

𝐾

𝑘=1

 

(3.3.14) 

𝐴(𝑉)(𝑟, 𝜃) = ∑(𝑊3𝑘𝐶𝑉 +𝑊4𝑘𝑀𝑟𝑐𝑘
(𝑉)) cos(𝑘𝜃)

𝐾

𝑘=1

 

𝐴(𝑉)(𝑟, 𝜃) +∑(𝑊3𝑘𝐸𝑉 +𝑊4𝑘𝑀𝑟𝑠𝑘
(𝑉)) sin(𝑘𝜃)

𝐾

𝑘=1

 

(3.3.15) 

𝑊1𝑘 =
𝑈𝑘(𝑟, 𝑅1)

𝑈𝑘(𝑅2, 𝑅1)
 (3.3.16) 

𝑊2𝑘 = [1 +
1

𝑘
(
𝑅1
𝑟
)
𝑘+1

] ∙ 𝑟 −
𝑈𝑘(𝑟, 𝑅1)

𝑈𝑘(𝑅2, 𝑅1)
[1 +

1

𝑘
(
𝑅1
𝑅2
)
𝑘+1

] ∙ 𝑅2 (3.3.17) 

𝑊3𝑘 =
𝑈𝑘(𝑟, 𝑅6)

𝑈𝑘(𝑅5, 𝑅6)
 (3.3.18) 

𝑊4𝑘 = [1 +
1

𝑘
(
𝑅6
𝑟
)
𝑘+1

] ∙ 𝑟 −
𝑈𝑘(𝑟, 𝑅6)

𝑈𝑘(𝑅5, 𝑅6)
[1 +

1

𝑘
(
𝑅6
𝑅5
)
𝑘+1

] ∙ 𝑅5 (3.3.19) 
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for  𝑘 𝑃⁄  = 1, 3, 5, … 

Each general solution is bounded by the inner (R1, R5) and outer (R2, R6) radii of each PM 

region. The parameter k denotes the order of harmonics in each region, with 𝐵𝑟𝑒𝑚 being the 

residual flux and P, µo, and αp are the number of poles, the permeability of free space and the 

magnet arc to pole pitch ratio, respectively. The initial angular position of the rotor is defined by 

φo. 

3.4 Asymmetric Analytical Model – Solution 

The general solutions in (3.3.7), (3.3.10) – (3.3.15) can be solved as a system of equations by 

applying the necessary boundary conditions at the interfaces between regions. Considering the 

continuity of the radial component of the flux density and the tangential component of the field 

intensity, the following expressions can be defined at each interface. 

3.4.1 Interface I – II  

At the interface between the inner rotor (I) and the inner air-gap (II), the following boundary 

equations apply. 

𝑀𝑟𝑐𝑘
(𝐼,𝑉) =

2𝑃𝐵𝑟𝑒𝑚
𝑘𝜋𝜇0

𝑠𝑖𝑛 (
𝑘𝜋𝛼𝑝

𝑃
) cos(𝑘𝜑0) (3.3.20) 

𝑀𝑟𝑠𝑘
(𝐼,𝑉) =

2𝑃𝐵𝑟𝑒𝑚
𝑘𝜋𝜇0

𝑠𝑖𝑛 (
𝑘𝜋𝛼𝑝

𝑃
) sin(𝑘𝜑0) (3.3.21) 

𝐵𝑟
(𝐼)
|
𝑟=𝑅2

= 𝐵𝑟,𝑖
(𝐼𝐼)
|
𝑟=𝑅2

 (3.4.1) 

𝐻𝜃,𝑖
(𝐼𝐼)
|
𝑟=𝑅2

= 𝐻𝜃
(𝐼)
|
𝑟=𝑅2

 (3.4.2) 
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 As each air-gap variant of Region II is defined in the whole annulus [0 – 2π], at this interface 

each variant exhibits the same continuity of Hθ and Br with the PM region, as seen in (3.4.1), 

(3.4.2). Applying these boundary equations to (3.3.10) and (3.3.14) and using the respective 

Fourier series expansions the following equations are obtained. 

Development of (3.4.3), (3.4.4) and (3.4.5), (3.4.6), results in equations (3.4.7) – (3.4.10), 

expressed in matrix form. The Fourier coefficients 𝑪𝑰, 𝑬𝑰, 𝑪𝑰𝑰, 𝑫𝑰𝑰, 𝑬𝑰𝑰 and 𝑭𝑰𝑰 are all column 

vector of length equal to 𝑄 ∙ 𝐾, where 𝑄 is the number of pole pieces and 𝐾 the maximum number 

of harmonics of Region II. All constant terms are defined similarly and therefore the definition of 

only 𝑮𝟏 is provided below. The same applies for the magnetisation column vectors that are defined 

as 𝑴𝒓𝒄𝒌
(𝑰)

 (3.4.17). 

𝐶𝐼 =
1

𝜋
∫ 𝐵𝑟,𝑖

(𝐼𝐼)
|
𝑟=𝑅2

∙ cos(𝑘𝜃) 𝑑𝜃

2𝜋

0

 (3.4.3) 

𝐸𝐼 =
1

𝜋
∫ 𝐵𝑟,𝑖

(𝐼𝐼)
|
𝑟=𝑅2

∙ sin(𝑘𝜃) 𝑑𝜃

2𝜋

0

 (3.4.4) 

𝐶𝐼𝐼,𝑖,𝑘 =
1

𝜋
∫ 𝐻𝜃

(𝐼)
|
𝑟=𝑅2

∙ cos(𝑘𝜃) 𝑑𝜃

2𝜋

0

 (3.4.5) 

𝐸𝐼𝐼,𝑖,𝑘 =
1

𝜋
∫ 𝐻𝜃

(𝐼)
|
𝑟=𝑅2

∙ sin(𝑘𝜃) 𝑑𝜃

2𝜋

0

 (3.4.6) 
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where 

 

𝑰𝑲𝑸𝑪𝑰 + 𝑮𝟏𝑪𝑰𝑰 + 𝑮𝟐𝑫𝑰𝑰 = 0 (3.4.7) 

𝑰𝑲𝑸𝑬𝑰 + 𝑮𝟏𝑬𝑰𝑰 + 𝑮𝟐𝑭𝑰𝑰 = 0 (3.4.8) 

𝑮𝟑𝑪𝑰 + 𝑰𝑲𝑸𝑪𝑰𝑰 = 𝑮𝟏𝟑 ∙ 𝑴𝒓𝒄𝒌
(𝑰)  (3.4.9) 

𝑮𝟑𝑬𝑰 + 𝑰𝑲𝑸𝑬𝑰𝑰 = 𝑮𝟏𝟑 ∙ 𝑴𝒓𝒔𝒌
(𝑰)  (3.4.10) 

𝑰𝑲𝑸 = diag(𝟏, 𝟏, … , 𝟏)𝑲𝑸×𝑲𝑸 (3.4.11) 

𝑮𝟏 = diag(𝒈𝟏(𝟏), 𝒈𝟏(𝟐),… , 𝒈𝟏(𝑸))𝑸𝑲×𝑸𝑲 (3.4.12) 

𝒈𝟏(𝒊) = 𝑰𝑲 ∙ (−
𝑅2
𝑘

𝑈𝑘(𝑅2, 𝑅3,𝑠)

𝑋𝑘(𝑅2, 𝑅3,𝑠)
) (3.4.13) 

𝒈𝟐(𝒊) = 𝑰𝑲 ∙ (−
𝑅3,𝑠
𝑘

2

𝑋𝑘(𝑅3,𝑠, 𝑅2)
) (3.4.14) 

𝒈𝟑(𝒊) = 𝑰𝑲 ∙ (−
𝑘

𝑅2

𝑋𝑘(𝑅2, 𝑅1)

𝑈𝑘(𝑅2, 𝑅1)
) (3.4.15) 

𝒈𝟏𝟑(𝒊) = 𝑰𝑲 (1 − (
𝑅1
𝑅2
)
𝑘+1

−
𝑘

𝑅2

𝑋𝑘(𝑅2, 𝑅1)

𝑈𝑘(𝑅2, 𝑅1)
· (1 +

1

𝑘
(
𝑅1
𝑅2
)
𝑘+1

)𝑅2) (3.4.16) 

𝑴𝒓𝒄𝒌
(𝑰) = [𝒎𝒓𝒄𝒌

(𝑰) (𝟏),𝒎𝒓𝒄𝒌
(𝑰) (𝟐),… ,𝒎𝒓𝒄𝒌

(𝑰) (𝑸) ]
𝑻

 (3.4.17) 

𝒎𝒓𝒄𝒌
(𝑰) (𝒊) = [𝒎𝒓𝒄𝒌

(𝑰) (𝟏),𝒎𝒓𝒄𝒌
(𝑰) (𝟐),… ,𝒎𝒓𝒄𝒌

(𝑰) (𝑲) ] (3.4.18) 
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3.4.2 Interface II – III 

Equations (3.3.7) and (3.3.10) can be developed further to obtain expressions for the interface 

between each inner air-gap variant of Region II and the modulation ring subdomains of            

Region III. The following boundary equations are be applied. 

The geometric deviations create an asymmetric boundary between Regions II and III. However, 

mathematically, a continuity of 𝐻𝜃 and 𝐵𝑟 must be defined at this interface. The boundary 

condition (3.4.19) maps the total field intensity of Region III (𝐻𝜃
(𝐼𝐼𝐼)

), at its asymmetric inner 

radial boundary (𝑅3,𝑖=1 → 𝑅3,𝑖=𝑄), to the field intensity of each Region II variant (𝐻𝜃,𝑖
(𝐼𝐼)
), at its 

radially symmetric outer boundary (𝑅3,𝑠). Furthermore, as at this interface there is no change of 

medium the continuity of the radial component of the flux density can be expressed as the 

continuity of the vector potential at the boundaries between each Region II variant and its 

associated Region III subdomain (3.4.20). Development of (3.3.7) and (3.3.10) along with these 

boundary conditions results in the following equations. 

                  𝐻𝜃,𝑖
(𝐼𝐼)
|
𝑟=𝑅3,𝑠

= 𝐻𝜃
(𝐼𝐼𝐼)

|
𝑟=𝑅3,𝑖=1→𝑅3,𝑖=𝑄

 (3.4.19) 

𝐴𝑖
(𝐼𝐼𝐼)

|
𝑟=𝑅3,𝑠

= 𝐴𝑖
(𝐼𝐼)
|
𝑟=𝑅3,𝑠

 (3.4.20) 

𝐷𝐼𝐼,𝑖,𝑘 =
1

𝜋
∫ 𝐻𝜃,𝑖

(𝐼𝐼𝐼)
|
𝑟=𝑅3,𝑠

∙ cos(𝑘𝜃) 𝑑𝜃

2𝜋

0

 (3.4.21) 

𝐹𝐼𝐼,𝑖,𝑘 =
1

𝜋
∫ 𝐻𝜃,𝑖

(𝐼𝐼𝐼)
|
𝑟=𝑅3,𝑠

∙ sin(𝑘𝜃) 𝑑𝜃

2𝜋

0

 (3.4.22) 
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Equations (3.4.21) – (3.4.24) can be expanded and expressed in matrix form (3.4.25) – (3.4.28). 

The Fourier coefficients 𝑬𝑰𝑰𝑰 and 𝑭𝑰𝑰𝑰 are column vectors of length 𝑀 ∙ 𝑄, with 𝑀 representing the 

maximum number of harmonics in Region III. The coefficients 𝑪𝑰𝑰𝑰 and 𝑫𝑰𝑰𝑰 are column vectors 

of length equal to 𝑄. 

where 

 

𝐶𝐼𝐼𝐼,𝑖 + 𝐷𝐼𝐼𝐼,𝑖 ln(𝑅3,𝑖) =  
1

𝛽𝑖
∫ 𝛢𝑖

(𝐼𝐼)
|
𝑟=𝑅3,𝑠

𝑑𝜃

𝜃𝑖+𝛽𝑖

𝜃𝑖

 (3.4.23) 

𝛦𝐼𝐼𝐼,𝑖 =
2

𝛽𝑖
∫ 𝛢𝑖

(𝐼𝐼)
|
𝑟=𝑅3,𝑠

∙ cos(𝑓𝑚,𝑖(𝜃 − 𝜃𝑖)) 𝑑𝜃

𝜃𝑖+𝛽𝑖

𝜃𝑖

 (3.4.24) 

−𝑰𝑲𝒊 𝑹𝟑𝑫𝑰𝑰 + 𝜹𝒊
𝑻𝑫𝑰𝑰𝑰 + 𝜼𝒊

𝑻𝒇𝒎𝑮𝟒𝑬𝑰𝑰𝑰 − 𝜼𝒊
𝑻𝒇𝒎𝑮𝟓𝑭𝑰𝑰𝑰 = 0 (3.4.25) 

−𝑰𝑲𝒊 𝑹𝟑𝑭𝑰𝑰 + 𝝈𝒊
𝑻𝑫𝑰𝑰𝑰 + 𝝃𝒊

𝑻𝒇𝒎𝑮𝟒𝑬𝑰𝑰𝑰 − 𝝃𝒊
𝑻𝒇𝒎𝑮𝟓𝑭𝑰𝑰𝑰 = 0 (3.4.26) 

𝜹𝒊,𝝅𝑮𝟔𝑪𝑰𝑰 + 𝜹𝒊,𝝅𝑮𝟕𝑫𝑰𝑰 + 𝝈𝒊,𝝅𝑮𝟔𝑬𝑰𝑰 + 𝝈𝒊,𝝅𝑮𝟕𝑭𝑰𝑰 − 𝑰𝑸𝑪𝑰𝑰𝑰 − 𝑰𝑸 ln(𝑅3,𝑠)𝑫𝑰𝑰𝑰 = 0 (3.4.27) 

𝜼𝒊,𝝅𝑮𝟔𝑪𝑰𝑰 + 𝜼𝒊,𝝅𝑮𝟕𝑫𝑰𝑰 + 𝝃𝒊,𝝅𝑮𝟔𝑬𝑰𝑰 + 𝝃𝒊,𝝅𝑮𝟕𝑭𝑰𝑰 − 𝑰𝑴𝑸𝑬𝑰𝑰𝑰 = 0 (3.4.28) 

𝑰𝑲𝒊 𝑹𝟑 = diag(𝑅3,1, 𝑅3,2, … , 𝑅3,𝑄)𝑄𝐾×𝑄𝐾 (3.4.29) 

𝛿(𝑖, 𝑘) =
1

𝜋
∫ cos(𝑘𝜃) 𝑑𝜃

𝜃𝑖+𝛽𝑖

𝜃𝑖

 (3.4.30) 
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𝜹𝒊 = (𝛿(𝑖, 𝑘), 𝛿(𝑖, 𝑘),… , 𝛿(𝑖, 𝑘))
𝑄×𝑄𝐾

 (3.4.31) 

𝜹𝒊,𝝅 = diag (
𝜋

𝛽𝑖
𝛿(1, 𝑘),

𝜋

𝛽𝑖
𝛿(2, 𝑘)… ,

𝜋

𝛽𝑖
𝛿(𝑄, 𝑘))

𝑄×𝑄𝐾

 (3.4.32) 

𝜎(𝑖, 𝑘) =
1

𝜋
∫ sin(𝑘𝜃) 𝑑𝜃

𝜃𝑖+𝛽𝑖

𝜃𝑖

 (3.4.33) 

𝜂(𝑚, 𝑘, 𝑖) =
1

𝜋
∫ cos(𝑘𝜃)

𝜃𝑖+𝛽𝑖

𝜃𝑖

∙ cos(𝑓𝑚,𝑖(𝜃 − 𝜃𝑖)) 𝑑𝜃 (3.4.34) 

𝜼𝒊 = [
𝜂(𝑚, 𝑘, 1) ⋯ 𝜂(𝑚, 𝑘, 1)

⋮ ⋱ ⋮
𝜂(𝑚, 𝑘, 𝑄) ⋯ 𝜂(𝑚, 𝑘, 𝑄)

]

𝑄𝑀×𝑄𝐾

 (3.4.35) 

𝜼𝒊,𝝅 = diag (
2𝜋

𝛽𝑖
𝜼(𝑚, 𝑘, 1),

2𝜋

𝛽𝑖
𝜼(𝑚, 𝑘, 2), … ,

2𝜋

𝛽𝑖
𝜼(𝑚, 𝑘, 𝑄))

𝑄𝑀×𝑄𝐾

 (3.4.36) 
 

𝜉(𝑚, 𝑘, 𝑖) =
1

𝜋
∫ sin(𝑘𝜃)

𝜃𝑖+𝛽𝑖

𝜃𝑖

· cos (𝑓𝑚,𝑖(𝜃 − 𝜃𝑖)) 𝑑𝜃 (3.4.37) 

𝒇𝒎,𝒊 = 𝑓𝑚,𝑖 ∙ 𝑰𝑴 (3.4.38) 

𝒇𝒎 = diag (𝒇𝒎,𝒊(1), 𝒇𝒎,𝒊(2),… , 𝒇𝒎,𝒊(𝑄)) (3.4.39) 

𝑮𝟒 = diag(𝒈𝟒(1), 𝒈𝟒(2), … , 𝒈𝟒(𝑄))𝑄𝑀×𝑄𝑀 (3.4.40) 
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3.4.3 Interface III – IV 

Similar to section 3.4.2, the respective boundary conditions applied to the interface between the 

Region III slot and Region IV outer air-gap subdomains are as follows: 

Here, the boundary condition (3.4.45) maps the total field intensity of Region III (𝐻𝜃
(𝐼𝐼𝐼)

), at its 

asymmetric outer radial boundary (𝑅4,𝑖=1 → 𝑅4,𝑖=𝑄), to the field intensity of each Region IV 

variant (𝐻𝜃,𝑖
(𝐼𝑉)

), at its radially symmetric outer boundary (𝑅4,𝑠). In common with (3.4.20), 

boundary condition (3.4.46) defines the continuity of the magnetic vector potential at the radially 

symmetric boundary between each Region IV variant and its associated Region III subdomain. 

𝒈𝟒(𝒊) = 𝑰𝑴 ∙ (
𝑈𝑓𝑚,𝑖(𝑅3,𝑠, 𝑅4,𝑠)

𝑋𝑓𝑚,𝑖(𝑅3,𝑠, 𝑅4,𝑠)
) (3.4.41) 

𝒈𝟓(𝒊) = 𝑰𝑴 ∙ (
2

𝑋𝑓𝑚,𝑖(𝑅3,𝑠, 𝑅4,𝑠)
) (3.4.42) 

𝒈𝟔(𝒊) = 𝑰𝑲 ∙ (
𝑅2
𝑘

2

𝑋𝑘(𝑅2, 𝑅3,𝑠)
) (3.4.43) 

𝒈𝟕(𝒊) = 𝑰𝑲 ∙ (
𝑅3,𝑠
𝑘

𝑈𝑘(𝑅3,𝑠, 𝑅2)

𝑋𝑘(𝑅3,𝑠, 𝑅2)
) (3.4.44) 

                 𝐻𝜃,𝑖
(𝐼𝑉)

|
𝑟=𝑅4,𝑠

= 𝐻𝜃
(𝐼𝐼𝐼)

|
𝑟=𝑅4,𝑖=1→𝑅4,𝑖=𝑄

 (3.4.45) 

 𝐴𝑖
(𝐼𝐼𝐼)

|
𝑟=𝑅4,𝑠

= 𝐴𝑖
(𝐼𝑉)

|
𝑟=𝑅4,𝑠

 (3.4.46) 
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The application of boundary equations (3.4.45), (3.4.46) to (3.3.10), (3.3.15) results in the 

following expressions: 

Development of equations (3.4.47) – (3.4.50) , expressed in matrix form, leads to (3.4.51) –

(3.4.54). 

where 

𝐶𝐼𝑉,𝑖,𝑘 =
1

𝜋
∫ 𝐻𝜃,𝑖

(𝐼𝐼𝐼)|
𝑟=𝑅4,𝑠

̇
∙  cos(𝑘𝜃) 𝑑𝜃

2𝜋

0

 (3.4.47) 

𝐸𝐼𝑉,𝑖,𝑘 =
1

𝜋
∫ 𝐻𝜃,𝑖

(𝐼𝐼𝐼)
|
𝑟=𝑅4,𝑠

∙ sin(𝑘𝜃) 𝑑𝜃

2𝜋

0

 (3.4.48) 

𝐶𝐼𝐼𝐼,𝑖 + 𝐷𝐼𝐼𝐼,𝑖 ln(𝑅4,𝑠) =  
1

𝛽𝑖
∫ 𝛢𝑖

(𝐼𝑉)
|
𝑟=𝑅4,𝑠

𝑑𝜃

𝜃𝑖+𝛽𝑖

𝜃𝑖

 (3.4.49) 

𝐹𝐼𝐼𝐼,𝑖 =
2

𝛽𝑖
∫ 𝛢𝑖

(𝐼𝑉)
|
𝑟=𝑅4,𝑠

∙ cos(𝑓𝑚,𝑖(𝜃 − 𝜃𝑖)) 𝑑𝜃

𝜃𝑖+𝛽𝑖

𝜃𝑖

 (3.4.50) 

−𝑰𝑲𝒊 𝑹𝟒𝑪𝑰𝑽 + 𝜹𝒊
𝑻𝑫𝑰𝑰𝑰 + 𝜼𝒊

𝑻𝒇𝒎𝑮𝟓𝑬𝑰𝑰𝑰 − 𝜼𝒊
𝑻𝒇𝒎𝑮𝟒𝑭𝑰𝑰𝑰 = 0 (3.4.51) 

 −𝑰𝑲𝒊 𝑹𝟒𝑬𝑰𝑽 + 𝝈𝒊
𝑻𝑫𝑰𝑰𝑰 + 𝝃𝒊

𝑻𝒇𝒎𝑮𝟓𝑬𝑰𝑰𝑰 − 𝝃𝒊
𝑻𝒇𝒎𝑮𝟒𝑭𝑰𝑰𝑰 = 0 (3.4.52) 

𝜹𝒊,𝝅𝑮𝟖𝑪𝑰𝑽 + 𝜹𝒊,𝝅𝑮𝟗𝑫𝑰𝑽 + 𝝈𝒊,𝝅𝑮𝟖𝑬𝑰𝑽 + 𝝈𝒊,𝝅𝑮𝟗𝑭𝑰𝑽 − 𝑰𝑸𝑪𝑰𝑰𝑰 − 𝑰𝑸 ln(𝑅4,𝑠)𝑫𝑰𝑰𝑰 = 0 (3.4.53) 

𝜼𝒊,𝝅𝑮𝟖𝑪𝑰𝑽 + 𝜼𝒊,𝝅𝑮𝟗𝑫𝑰𝑽 + 𝝃𝒊,𝝅𝑮𝟖𝑬𝑰𝑽 + 𝝃𝒊,𝝅𝑮𝟗𝑭𝑰𝑽 − 𝑰𝑴𝑸𝑭𝑰𝑰𝑰 = 0 (3.4.54) 
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3.4.4 Interface IV – V  

The fourth interface, between the outer air-gap (IV) and outer rotor PM subdomains (V) can be 

expressed similar to section 3.4.1. Therefore, the respective boundary conditions are provided in 

(3.4.57), (3.4.58). 

Algebraic manipulation of (3.3.15), (3.3.17) along with boundary conditions (3.4.57), (3.4.58) 

results in the following equations, expressed in matrix form. 

where 

𝒈𝟖(𝒊) = 𝑰𝑲 ∙ (
𝑅4,𝑠
𝑘

𝑈𝑘(𝑅4,𝑠, 𝑅5)

𝑋𝑘(𝑅4,𝑠, 𝑅5)
) (3.4.55) 

𝒈𝟗(𝒊) = 𝑰𝑲 ∙ (
𝑅5
𝑘

2

𝑋𝑘(𝑅5, 𝑅4,𝑠)
) (3.4.56) 

𝐵𝑟
(𝑉)
|
𝑟=𝑅5

= 𝐵𝑟,𝑖
(𝐼𝑉)

|
𝑟=𝑅5

 (3.4.57) 

𝐻𝜃,𝑖
(𝐼𝑉)

|
𝑟=𝑅5

= 𝐻𝜃
(𝑉)
|
𝑟=𝑅5

 (3.4.58) 

𝑰𝑲𝑸𝑪𝑽 + 𝑮𝟏𝟎𝑪𝑰𝑽 + 𝑮𝟏𝟏𝑫𝑰𝑽 = 0 (3.4.59) 

𝑰𝑲𝑸𝑬𝑽 + 𝑮𝟏𝟎𝑬𝑰𝑽 + 𝑮𝟏𝟏𝑭𝑰𝑽 = 0 (3.4.60) 

𝑮𝟏𝟐𝑪𝑽 + 𝑰𝑲𝑸𝑫𝑰𝑽 = 𝑮𝟏𝟒 ∙ 𝑴𝒓𝒄𝒌
(𝑽)

 (3.4.61) 

𝑮𝟏𝟐𝑬𝑽 + 𝑰𝑲𝑸𝑭𝑰𝑽 = 𝑮𝟏𝟒 ∙ 𝑴𝒓𝒔𝒌
(𝑽)

 (3.4.62) 
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3.4.5 Overall Solution 

The equations developed in this chapter form a system of linear equations that are solved 

simultaneously to calculate all the unknown Fourier coefficients. The flux density distributions in 

each Region II/IV variant can then be calculated using the following expressions: 

𝐵𝑟,𝑖
(𝐼𝐼)(𝑟, 𝜃) = ∑−(𝐶𝐼𝐼,𝑖

𝑅2
𝑟

𝑈𝑘(𝑟, 𝑅3,𝑠)

𝑋𝑘(𝑅2, 𝑅3,𝑠)
+ 𝐷𝐼𝐼,𝑖

𝑅3,𝑠
𝑟

𝑈𝑘(𝑟, 𝑅2)

𝑋𝑘(𝑅3,𝑠, 𝑅2)
) sin(𝑘𝜃)

𝐾

𝑘=1

 

𝐵𝑟,𝑖
(𝐼𝐼)(𝑟, 𝜃) +∑(𝐸𝐼𝐼,𝑖

𝑅2
𝑟

𝑈𝑘(𝑟, 𝑅3,𝑠)

𝑋𝑘(𝑅2, 𝑅3,𝑠)
+ 𝐹𝐼𝐼,𝑖

𝑅3,𝑠
𝑟

𝑈𝑘(𝑟, 𝑅2)

𝑋𝑘(𝑅3,𝑠, 𝑅2)
) cos(𝑘𝜃)

𝐾

𝑘=1

 

(3.4.67) 

𝐵𝜃,𝑖
(𝐼𝐼)(𝑟, 𝜃) = ∑−(𝐶𝐼𝐼,𝑖

𝑅2
𝑟

𝑋𝑘(𝑟, 𝑅3,𝑠)

𝑋𝑘(𝑅2, 𝑅3,𝑠)
+ 𝐷𝐼𝐼,𝑖

𝑅3,𝑠
𝑟

𝑋𝑘(𝑟, 𝑅2)

𝑋𝑘(𝑅3,𝑠, 𝑅2)
) cos(𝑘𝜃)

𝐾

𝑘=1

 

𝐵𝜃,𝑖
(𝐼𝐼)(𝑟, 𝜃) −∑(𝐸𝐼𝐼,𝑖

𝑅2
𝑟

𝑋𝑘(𝑟, 𝑅3,𝑠)

𝑋𝑘(𝑅2, 𝑅3,𝑠)
+ 𝐹𝐼𝐼,𝑖

𝑅3,𝑠
𝑟

𝑋𝑘(𝑟, 𝑅2)

𝑋𝑘(𝑅3,𝑠, 𝑅2)
) sin(𝑘𝜃)

𝐾

𝑘=1

 

(3.4.68) 

 

𝒈𝟏𝟎(𝒊) = 𝑰𝑲 ∙ (−
𝑅4,𝑖
𝑘

2

𝑋𝑘(𝑅4,𝑠, 𝑅5)
) (3.4.63) 

𝒈𝟏𝟏(𝒊) = 𝑰𝑲 ∙ (−
𝑅5
𝑘

𝑈𝑘(𝑅5, 𝑅4,𝑠)

𝑋𝑘(𝑅5, 𝑅4,𝑠)
) (3.4.64) 

𝒈𝟏𝟐(𝒊) = 𝑰𝑲 ∙ (−
𝑘

𝑅5

𝑋𝑘(𝑅5, 𝑅6)

𝑈𝑘(𝑅5, 𝑅6)
) (3.4.65) 

𝒈𝟏𝟒(𝒊) = 𝑰𝑲 (1 − (
𝑅6
𝑅5
)
𝑘+1

−
𝑘

𝑅5

𝑋𝑘(𝑅5, 𝑅6)

𝑈𝑘(𝑅5, 𝑅6)
· (1 +

1

𝑘
(
𝑅6
𝑅5
)
𝑘+1

)𝑅5) (3.4.66) 
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𝐵𝑟,𝑖
(𝐼𝑉)(𝑟, 𝜃) = ∑−(𝐶𝐼𝑉,𝑖

𝑅4,𝑠
𝑘

𝑈𝑘(𝑟, 𝑅5)

𝑋𝑘(𝑅4,𝑠, 𝑅5)
+ 𝐷𝐼𝑉,𝑖

𝑅5
𝑘

𝑈𝑘(𝑟, 𝑅4,𝑠)

𝑋𝑘(𝑅5, 𝑅4,𝑠)
) sin(𝑘𝜃)

𝐾

𝑘=1

 

𝐵𝑟,𝑖
(𝐼𝑉)(𝑟, 𝜃) +∑(𝐸𝐼𝑉,𝑖

𝑅4,𝑠
𝑟

𝑈𝑘(𝑟, 𝑅5)

𝑋𝑘(𝑅4,𝑠, 𝑅5)
+ 𝐹𝐼𝑉,𝑖

𝑅5
𝑟

𝑈𝑘(𝑟, 𝑅4,𝑠)

𝑋𝑘(𝑅5, 𝑅4,𝑠)
) cos(𝑘𝜃)

𝐾

𝑘=1

 

(3.4.69) 

𝐵𝜃,𝑖
(𝐼𝑉)(𝑟, 𝜃) = ∑−(𝐶𝐼𝑉,𝑖

𝑅4,𝑠
𝑟

𝑋𝑘(𝑟, 𝑅5)

𝑋𝑘(𝑅4,𝑠, 𝑅5)
+ 𝐷𝐼𝑉,𝑖

𝑅5
𝑟

𝑋𝑘(𝑟, 𝑅4,𝑠)

𝑋𝑘(𝑅5, 𝑅4,𝑠)
) cos(𝑘𝜃)

𝐾

𝑘=1

 

𝐵𝜃,𝑖
(𝐼𝑉)(𝑟, 𝜃) −∑(𝐸𝐼𝑉,𝑖

𝑅4,𝑠
𝑟

𝑋𝑘(𝑟, 𝑅5)

𝑋𝑘(𝑅4,𝑠, 𝑅5)
+ 𝐹𝐼𝑉,𝑖

𝑅5
𝑟

𝑋𝑘(𝑟, 𝑅4,𝑠)

𝑋𝑘(𝑅5, 𝑅4,𝑠)
) sin(𝑘𝜃)

𝐾

𝑘=1

 

(3.4.70) 

A key novelty of this analytical model lies in treatment of the asymmetric boundaries between 

Regions II-III and III-IV. It is reasonable to expect that the primary flux density discrepancy from 

each deviation will be spatially focused on the vicinity of the deviation. This effect is taken into 

account through the synthesis of the flux distribution using the equivalent air-gap variants.  

Considering Region II, the flux distribution in this physical air-gap is synthesised by concatenating 

the flux distributions of each variant for the angular domain they occupy, as explained in section 

3.3.2 and Figure 3-6. However, each deviation will also have an effect on the whole field 

distribution. This is approximated through the selected boundary conditions at the interface 

between Regions II-III and III-IV, as shown in sections 3.4.2 and 3.4.3, respectively. Specifically, 

as the total, and thus same Region III field intensity is mapped to the radial boundaries of each 

Region II/IV variant, the effect of each deviation on the flux distribution is not only quantified in 

the vicinity of the deviation but also in the remaining space.  

An alternative modelling approach would be to use the principle of superposition, as shown in 

[96] in the context of electric machines. With this method, the resultant air-gap flux distribution 

would again be synthesised but from a series of radially symmetric CMG instances. Each instance 
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would adopt the deviated radius of its respective pole piece. However, such an approach considers 

each deviation in isolation and therefore does not account for the effects on the complete flux 

distribution, rather just in the vicinity of the deviation. This will introduce an error, which will 

become more dominant when larger deviations are present. In addition, this approach would also 

increase the computational time from the introduction of additional Fourier coefficients. 

Specifically, as full CMG models are used, the number of unknown coefficients in Region III will 

be multiplied by the number CMG models used, i.e., the number of pole pieces.  

3.4.6 Torque and Force Calculation 

The torque exerted on each rotor is calculated using the Maxwell Stress Tensor (MST). The air-

gap subdomain is integrated along a contour, placed in the middle of the narrowest air-gap section. 

Therefore, the torque is given by (3.4.71): 

Due to the synthesis of the resultant flux density distributions, the distribution of each variant 

needs to be evaluated prior to the evaluation of the integral. Therefore, for the HSR torque     

(Region II), algebraic manipulation of equation (3.4.71) leads to (3.4.72). A similar expression can 

be deduced for the LSR torque (Region IV):  

 

 

𝑇 =
𝐿 ∙ 𝑅𝑎𝑖𝑟−𝑔𝑎𝑝

2

𝜇0
∫ 𝐵𝑟

(𝐼𝐼/𝐼𝑉)
(

2𝜋

0

𝑅𝑎𝑖𝑟−𝑔𝑎𝑝, 𝜃) ∙ 𝐵𝜃
(𝐼𝐼/𝐼𝑉)

(𝑅𝑎𝑖𝑟−𝑔𝑎𝑝, 𝜃)  ∙ 𝑑𝜃 (3.4.71) 

𝑇 =
𝐿 ∙ 𝑅𝑎𝑖𝑟−𝑔𝑎𝑝

2

𝜇0
(∑(∑∑𝑂𝐼𝐼,𝑖,𝑘 ∙ 𝑉𝐼𝐼,𝑖,𝑗

𝑘

𝑙=1

2𝐾

𝑘=1

−∑ ∑ 𝑂𝐼𝐼,𝑖,𝑘 ∙ 𝑉𝐼𝐼,𝑖,𝑙

2𝐾−𝑘+1

𝑙=𝐾+1

𝐾

𝑘=1

)

𝑄

𝑖=1

) (3.4.72) 
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where 

 Similarly, the magnetostatic force exerted on each pole piece can be calculated by integrating 

the MST along a contour, enclosing the respective pole piece. Therefore, the radial and tangential 

forces are given by (3.4.76), (3.4.77).  

 

 

 

𝑗 = 𝑘 − 𝑙 + 1 (3.4.73) 

𝑂𝐼𝐼,𝑖,𝑘 = −(𝐶𝐼𝐼,𝑖,𝑘
𝑅2
𝑟

𝑈𝑘(𝑟, 𝑅3,𝑖)

𝑋𝑘(𝑅2, 𝑅3,𝑖)
+ 𝐷𝐼𝐼,𝑖,𝑘

𝑅3,𝑖
𝑟

𝑈𝑘(𝑟, 𝑅2)

𝑋𝑘(𝑅3,𝑖, 𝑅2)
) ∙ ∫ sin(𝑘𝜃) 𝑑𝜃

𝜃𝑖+1

𝜃𝑖

 

𝑂𝐼𝐼,𝑖,𝑘 = +(𝐸𝐼𝐼,𝑖,𝑘
𝑅2
𝑟

𝑈𝑘(𝑟, 𝑅3,𝑖)

𝑋𝑘(𝑅2, 𝑅3,𝑖)
+ 𝐹𝐼𝐼,𝑖,𝑘

𝑅3,𝑖
𝑟

𝑈𝑘(𝑟, 𝑅2)

𝑋𝑘(𝑅3,𝑖, 𝑅2)
) ∙ ∫ cos(𝑘𝜃) 𝑑𝜃

𝜃𝑖+1

𝜃𝑖

 

(3.4.74) 

𝑉𝐼𝐼,𝑖,𝑗 = −(𝐶𝐼𝐼,𝑖,𝑗
𝑅2
𝑟

𝑋𝑘(𝑟, 𝑅3,𝑖)

𝑋𝑘(𝑅2, 𝑅3,𝑖)
+ 𝐷𝐼𝐼,𝑖,𝑗

𝑅3,𝑖
𝑟

𝑋𝑘(𝑟, 𝑅2)

𝑋𝑘(𝑅3,𝑖, 𝑅2)
) ∙ ∫ cos(𝑗𝜃) 𝑑𝜃

𝜃𝑖+1

𝜃𝑖

 

𝑂𝐼𝐼,𝑖,𝑘 = −(𝐸𝐼𝐼,𝑖,𝑗
𝑅2
𝑟

𝑋𝑘(𝑟, 𝑅3,𝑖)

𝑋𝑘(𝑅2, 𝑅3,𝑖)
+ 𝐹𝐼𝐼,𝑖,𝑗

𝑅3,𝑖
𝑟

𝑋𝑘(𝑟, 𝑅2)

𝑋𝑘(𝑅3,𝑖, 𝑅2)
) ∙ ∫ sin(𝑗𝜃) 𝑑𝜃

𝜃𝑖+1

𝜃𝑖

 

(3.4.75) 

𝐹𝑟 =
𝐿

𝜇0
∫
𝐵𝑟
2 − 𝐵𝜃

2

2
𝑑𝑠

 

𝑆

 (3.4.76) 

𝐹𝜃 =
𝐿

𝜇0
∫𝐵𝑟𝐵𝜃𝑑𝑠
 

𝑆

 (3.4.77) 
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3.5 Asymmetric Analytical Model – Validation 

The analytical model is validated by comparing a solution of two sample deviated CMGs to 

their 2D FEA equivalent of the same geometry. For the purpose of this validation, a degree of error 

has been arbitrarily introduced to the two dimensions and radial and tangential position of each 

pole piece. The parameters of the CMGs along with the respective geometric errors are provided 

in Table 5 and Table 6. 

For both air-gap Regions (II and IV) along with the modulation ring subdomains (III), the first 

200 harmonics are considered. The analytical model field solution is calculated at the middle of 

the narrowest inner air-gap section, i.e., between Region I and the most inward deviated pole piece, 

and is compared to the respective FEA results in Figure 3-7 and Figure 3-8. The resultant flux 

plots show the very good correlation between the analytical model and FEA, under the same 

assumption of infinite permeability in the ferromagnetic regions. It must be noted that in the case 

of CMG 2 (Figure 3-8), because of the much smaller air-gap, the infinite permeability assumption 

results in some unrealistic flux density values near 3 T. 

Table 5      CMG Parameters for Model Validation 

Variables CMG 1 CMG 2 

Number of pole pieces 5 7 

Inner rotor poles 4 6 

Outer rotor poles 6 8 

Inner rotor OD (mm) 100 mm 100 mm 

Outer rotor OD (mm) 148 mm 148 mm 

PM length (mm) 10 mm 10 mm 

Pole pieces length (mm) 10 mm 10 mm 

Air-gap length (mm) 2 mm 0.5 mm 

Axial length (mm) 100 mm 100 mm 
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The fundamental advantage of this model over its FE equivalent is the computational efficiency.  

The computational efficiency of this approach is directly linked to the number of harmonics used. 

The consideration of higher-order harmonics can increase the accuracy of the model, however this 

comes at the expense of computational time. The relationship between the number of harmonics 

and the accuracy and speed of the model is shown in Figure 3-9. Here, a common number of 

harmonics has been considered for all regions. It is observed that the analytical torque results for 

CMG 1 and CMG 2 converge to the FEA after the first 70 and 100 harmonics, respectively. The 

computational time for this harmonic set is 1.7 s for CMG 1 and 6.5 s for CMG 2, using a computer 

of the following specifications (Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz, 16 GB RAM). For 

comparison, the FEA required 2:05 minutes, thus representing a very significant decrease in 

computational efficiency. High finite element mesh density is necessary in order to minimise the 

error induced by the change in the mesh form. Specifically, in such asymmetric  

 

Table 6      Parameter Error for Model Validation 

Variable Pole Piece Error 

CMG 1 

 No. 1 No. 2 No. 3 No. 4 No. 5   

Length (mm) 0.018 -0.014 0.001 -0.020 -0.019   

Span angle (deg) 0.019 -0.018 0.001 0.009 0.018   

Radial position (mm) -0.001 0.204 -0.103 0.050 -0.030   

Angular position (deg) 0.206 0.011 -0.199 -0.099 -0.142   

CMG 2 

 No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 

Length (mm) 0.009 0.005 0.060 0.012 -0.002 0.011 0.008 

Span angle (deg) -0.038 -0.007 -0.023 -0.012 -0.024 0.012 0.012 

Radial position (mm) 0.122 -0.087 0.185 -0.004 0.099 -0.081 0.069 

Angular position (deg) 0.058 0.023 0.202 -0.014 0.095 0.109 -0.020 
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Figure 3-8 Analytical vs linear FEA flux density comparison – CMG 2 

Figure 3-7 Analytical vs linear FEA flux density comparison – CMG 1 
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models the mesh form will be different to the nominal even with the same mesh parameters, as  

they are practically a new geometry. This change in the mesh form alone induces a small error in 

the output variable and if this error is of the same order of magnitude as the error of the asymmetry, 

the results will be inconclusive.  It must be noted that the FEA is not optimised for speed, however, 

considering the difference in computational times even an optimised FE model would still be 

significantly slower than the equivalent analytical solution.  

Finally, due to the separation of the model in its regions, different order of harmonics can be 

used for each one and therefore the computational efficiency can be increased further depending 

on the required task. For example, if the accuracy in the torque calculation is more important than 

in the forces exerted on the pole pieces, then a lower order of harmonics for Region III can be 

selected, while retaining the desired accuracy and increasing the computational speed.  

 

Figure 3-9 Model Harmonics vs accuracy and speed for sample CMG   
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3.6 Asymmetric Analytical Model – Limitations 

3.6.1 Limitations due to assumption of infinite permeability in the pole pieces 

One limitation of the analytical model stems from the assumption of infinite permeability in the 

pole pieces. The saturation in the gear has a deteriorating effect on the analytical model’s accuracy. 

This is evident from the difference in absolute torque between the analytical model, and FEA, 

considering non-linear permeability. In particular, considering the deviated sample of CMG 1, the 

difference in terms of absolute torque is 11%. In Chapter 4, it is shown that in Monte-Carlo 

simulations, normalisation of the results with respect to the nominal torque allows the analytical 

model to yield accurate statistical results. Notwithstanding this, the fact that the analytical model 

cannot synthesise saturation in the poles, must be appreciated when generally considering its 

usage. 

3.6.2 Limitations due to modelling definition 

Similar to the infinite permeability assumption, all the assumptions considered, along with the 

subsequent limitations, restrict the use and accuracy of an analytical model. As explained in 

sections 3.2, 3.3, geometric deviations will create an asymmetry in the air-gap slot between 

consecutive pole pieces. This is much harder to model than the nominal case. Therefore, it is 

approximated by defining the Region III subdomains as detailed in 3.3.1 and Figure 3-3 – Figure 

3-5. In the author’s view, this is the root of the main limitation of this analytical model. 

Figure 3-10 presents the simple deviated case where the only deviation is the radial deviation 

of just one pole piece. Therefore, according to the Region III air-gap slot definitions of section 

3.3.1 and for the s = i case, the “ith” subdomain will be defined radially by the boundaries of the 

deviated pole piece. A fundamental assumption in this definition is that the tangential component 
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of the field density, 𝐵𝜃, is equal to 0 at the tangential boundaries of each subdomain. As observed 

in the inset of Figure 3-10, a discontinuity is created at the interface between the ith Region III 

subdomain and the following pole piece. Specifically, at the interface shown the ith subdomain 

assumes zero 𝐵𝜃 between (𝑅3,i, 𝑅4,i), while the same assumption for the following (ith+1) 

subdomain extends from (𝑅3,i+1, 𝑅4,i+1). Similarly, if the definition of the proceeding or average 

radii is selected, an equivalent discontinuity will be created. 

As shown in the analytical model validation section 3.5, in cases with small geometric 

deviations, the effect of the mentioned discontinuity is very small. However, in a study where large 

variations in the theoretical position of individual pole pieces are considered, the effects of this 

discontinuity may be more evident.  

Another practical limitation of this model can arise from the number of pole pieces. In an FE 

model, assuming the mesh element size and active area remain the same, the mesh density, and 

therefore the required computational time is constant and independent of the individual CMG 

Region III 

subdomain i

 True  

Bθ,i

III
= 0

B θ

III
= 0

Figure 3-10 Discontinuities in a simple deviated case 
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parameters. Conversely, with the proposed analytical model, an increase in the number of pole 

pieces means that additional subdomains are created. This results in an increase in the number of 

unknowns that are to be calculated. While such a computational time increase may be negligible 

in most cases, this will depend on the particular study the model is being used in. In cases where 

this becomes significant, methods to increase the computational efficiency may be employed, such 

as harmonic selection or further algebraic manipulation to decrease the size with this model 

definition [83]. 

An additional limitation of the presented model stems from the 2D approximation. As discussed 

in Chapter 1 and section 3.2.1, end effects are an important consideration in CMG analysis, with 

their structure being inherently prone to leakage and fringing. While longer gears and a 

compensation, through the knowledge of the aspect ratio, would minimise the discrepancies 

between 2D and 3D analyses, further work is required to comprehensively determine the 

correlation between those two methods, in the context of geometric deviations.  

3.7 Summary 

In this chapter a novel, asymmetric analytical model for CMGs was proposed and its advantages 

and limitations were reported. The presented model was shown to be capable of considering 

geometric deviations in the pole dimensions as well as in radial and tangential position. 

Furthermore, it was shown that mapping of 𝐻𝜃 from the asymmetric boundaries of Region III to 

the radially symmetric boundaries of Region II/IV variants, can effectively consider the gear-level 

effect of each deviation. Two deviated CMGs of different nominal parameters were used to prove 

the accuracy of the model. It was shown that excellent correlation was achieved with linear FEA, 

under the same assumption of an infinite permeability in the ferromagnetic regions. In addition to 
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the high level of accuracy, this flexible method offered a significant increase in computational 

efficiency, being more than an order of magnitude faster compared to the FEA.  
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CHAPTER 4 

STATISTICAL METHODOLOGY AND HYBRID STOCHASTIC 

MODEL 

 STATISTICAL METHODOLOGY AND HYBRID STOCHASTIC MODEL 

4.1 Introduction 

The asymmetric model described in Chapter 3 demonstrates the significant advantages of 

analytical modelling over FEA, mainly in terms of computational efficiency. However, similar to 

any other analysis method, the assumptions and simplifications made in the model’s formulations 

do result in some limitations.  

This chapter presents a methodology, which uses the analytical model to conduct statistical 

studies. In doing so, key limitations of the analytical model of Chapter 3 are addressed and 

approaches to compensate for their effect on the statistical results are developed. 

4.2 Statistical Methodology 

 The analytical model developed in Chapter 3 provides an efficient tool to assess the effect of 

geometric deviations. In a mass production environment, defining the acceptable range of product 

performance is as important as calculating ideal performance. Manufacturing tolerances can be 

specified to achieve an economically acceptable probability of a specific product falling into this 

range. The stochastic nature of manufacturing error means assessment of its effect requires the use 
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of statistical methods. In general, the range of outputs of such statistical studies can be described 

through a Probability Density Function (PDF) of the desired performance variable. However, in 

many real-world cases, the PDF form is unknown and therefore PDF estimators can be used in 

conjunction with a number of samples to construct the PDF.  

In this thesis, the effect of geometric deviation of the pole pieces of a CMG is discerned through 

a Monte-Carlo analysis. A number of deviated samples is analysed, each employing a different set 

of parameters. The parameters considered are the radial and angular position along with the length 

and span angle of each pole piece. For each simulation sample, the value of each parameter is 

obtained through random sampling of their respective distribution. The results from the total 

number of samples can then be used to construct the PDFs and draw conclusions. 

4.2.1 Probability Density Function Estimation 

A PDF can be estimated using parametric or nonparametric methods. Nonparametric methods 

are well suited to cases where there is insufficient information regarding the profile of the PDF, 

whereas parametric estimators initially assume an underlying PDF form [97]. A very common 

estimator is a histogram, however the accuracy of the results is highly dependent on the selection, 

volume and placement of the bins, which require careful consideration. Another alternative that 

has been used in Monte-Carlo analyses is the functional expansion technique, which has its own 

drawbacks [97], [98]. The estimator used in this study is the Kernel Density Estimator (KDE), 

which is a nonparametric method approximating the true PDF at discrete points rather than 

volumetrically. The KDE formula is defined in (4.2.1) and the properties of the kernel function are 

provided in (4.2.2) [97]. 
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where x1, …, xN are the samples of the unknown distribution, h is the bandwidth and k is the user-

defined kernel function.  

The bandwidth has a significant effect on the results of the KDE. In the literature, an optimal 

bandwidth has been reported which minimises the Mean Integrated Square Error (MISE) [97]. 

This bandwidth is calculated using (4.2.3). 

where σ is an initial estimate of the standard deviation of 𝑓ℎ(𝑥) and is calculated as in [99]. The 

Epanechnikov kernel [100], which is also known to minimise the MISE according to the properties 

in (4.2.2), has also been used throughout this study. 

4.2.2 Number of Samples 

Along with the PDF estimator, the other important factor of a Monte-Carlo analysis is the 

number of samples. The larger the number of samples, the better the correlation will be between 

the simulated and true PDFs. However, this comes at a cost of increasing computational time. 

Therefore, it is critical to use the least samples possible to ensure computational efficiency and 

accuracy are balanced.  

𝑓ℎ(𝑥) =
1

𝑁ℎ
∑𝑘 (

𝑥 − 𝑥𝑖
ℎ

)

𝑁

𝑖=1

 (4.2.1) 

∫ 𝑘(𝑢)𝑑𝑢 = 1
∞

−∞

,   ∫ 𝑢𝑘(𝑢)𝑑𝑢 = 0
∞

−∞

,     

∫ 𝑢2𝑘(𝑢)𝑑𝑢 = 𝑘2 ≠ 0
∞

−∞
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Equation (4.2.4) is provided in [101] as a mean of calculating the required, and hence minimum, 

number of samples when investigating the probability of an event.  

where p’ is an estimate of the probability, E is the allowable error in the estimation of p’, γ 

represents the confidence interval and 𝑧(1+𝛾)/2 is the 100((1+ 𝛾)/2) percent point of a standard 

normal distribution [101].  

It is apparent that there is no ‘singular’ minimum number of samples, as it depends on the 

predefined parameters (p’, z) and allowable error E. Furthermore, since the required number of 

samples by equation (4.2.4) is an estimation, its use does not guarantee an optimised study in terms 

of computational efficiency. The computational efficiency can be increased further by actively re-

calculating the required number of samples during the analysis. A complex system with several 

stochastic inputs will have an output PDF with an initially unknown form and parameters. 

Therefore, the re-calculation of the required samples is a key operation for equation (4.2.4) to be 

effective, and is performed as follows: 

1. For the first iteration of (4.2.4) the most conservative estimate of the probability will be 

used, equal to 0.5. This will initially result in an overestimation on the required number 

of samples. Considering this overestimation, the analysis through the analytical model 

can be initiated.  

2. After a number of samples, the PDF can be re-estimated using the method in 4.2.1, 

resulting in a better estimation of p’. 

3. A more accurate calculation of the minimum number of samples can then be performed. 

𝑁 =
𝑝′(1 − 𝑝′)

𝐸2
𝑧(1+𝛾) 2⁄
2  (4.2.4) 
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The process diagram of this methodology is shown in Figure 4-1. Initially, the aim is set and 

the statistical parameters p’, E and γ are selected. The first conservative estimation p’ of 0.5 is set 

and the value of each variable is obtained from their respective distributions. The analytical part 

of the model then generates and analyses samples. Following each assessed sample, the torque is 

calculated and normalised with respect to the nominal value of a non-deviated CMG. Using the 

KDE the PDF is re-constructed and a better estimate of p’ is obtained. The required number of 

samples is then updated automatically according to (4.2.4) and, when reached, the simulation is 

completed.  
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Figure 4-1 Process diagram of the Monte-Carlo analysis 
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4.3 Review of Analytical Model Limitations in the context of Statistical Analyses 

In Chapter 3, a thorough review of the limitations of the asymmetric analytical model was 

provided. It was identified that the infinite permeability assumption in the pole pieces results in a 

large discrepancy in absolute stall torque, with respect to FEA. In addition, it was mentioned that 

the boundary discontinuities, created by the modelling definitions of the Region II/IV variants and 

the Region III subdomains, could have a significant effect in studies where larger variations in the 

position of individual pole pieces are considered.  

These limitations can be mitigated to an extent in two ways: 

1. Defining the Region III subdomains using the average radii of the neighbouring pole 

pieces, as outlined in Chapter 3, section 3.3.1. 

2. Normalising and calibrating the stall torque values with respect to the nominal for both 

FEA and analytical. 

To demonstrate this, a simple Monte-Carlo simulation is performed using CMG 1, as outlined 

in Table 5 of Chapter 3. The individual geometric deviations of each pole piece are sampled from 

the distributions of the error sources. Each error source is defined by a tolerance, equal to the three-

sigma value of the assumed distribution. The details of these errors are provided in Table 7. 

Table 7      Parameters for the assessment of limitations 

Parameters Tolerance Value (3σ) Distribution 

Length (mm) 0.05 Normal 

Span angle (deg) 0.05 Normal 

Radial position (mm) 0.4 Normal 

Angular position (deg) 0.4 Normal 
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4.3.1 Effect of improved definition of Region III subdomains  

Figure 4-2 compares the resultant analytical Cumulative Distribution Function (CDF) plots 

(preceding and average definitions of Region III subdomains) to the equivalent linear FEA. Here, 

as samples with larger deviations are inevitably present, the effect of the discontinuities is more 

evident. However, Figure 4-2 shows that the discrepancy between the CDFs of the analytical 

model and linear FEA can be minimised by using the average definition of the Region III 

subdomains, rather than the preceding (or proceeding) definition. By considering the mean radii 

between consecutive pole pieces, the discontinuities between them and the enclosed subdomain 

are reduced, and therefore more accurate statistical results are obtained.  

 

 

Figure 4-2 CDF comparing normalised linear FEA with the analytical model, considering 

both the preceding and average definitions of the Region III subdomains  
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4.3.2 CDF calibration 

The saturation effects are apparent when comparing the absolute value of the stall torque from 

the analytical model to non-linear FEA. In this study, the stall torque discrepancy for the nominal 

case was around 11%. For small error distributions, normalisation of stall torque (w.r.t. nominal 

case) can significantly improve the correlation between the analytical and non-linear FEA CDFs. 

However, as is evident from  Figure 4-3, studies with larger deviations still have a non-negligible 

discrepancy between analytical and non-linear FEA CDFs. This correlation will naturally worsen 

with increasing errors. To account for this error, further calibration is required.  

A calibration factor (between the analytical and non-linear FEA CDFs) can be determined by 

comparing a number of deviated samples, analysed using both methods. The selection of those 

CMG samples is critical for the accuracy of the calibration. Assuming the input errors are normally 

Figure 4-3 CDF comparing normalised non-linear FEA with the analytical model, 

considering the preceding definition of the Region III subdomains  
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distributed the stall torques of the majority of the samples will be clustered near the nominal one 

(Figure 4-4). The lack of spread from this clustered sample distribution hinders the determination 

of a valid calibration factor for the discrepancy. To avoid this, the samples should be uniformly 

distributed along the torque spectrum. As a perfectly uniform distribution cannot be achieved, the 

closer to the ideal case they are, the better the calibration will be. Such a sample distribution can 

be achieved by uniformly sampling the torque spectrum and then identify the corresponding 

deviated CMGs that achieve these torque values (Figure 4-5). In order to reduce the required 

number of samples, the torque spectrum can be divided into equal sections with the same random 

sampling applied in each one, therefore facilitating the generation of evenly distributed samples. 

This approach effectively forces the sample selection to include a greater spread of results, and 

thus increase the accuracy of the calibration. 
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distributed samples 



86 

 
 

 

4.4 Hybrid Stochastic Model 

For the purpose of studying CMGs, analytical magnetostatic modelling and FEA have opposing 

advantages and disadvantages. The analytical model presents a significant increase in 

computational efficiency over FEA, but its accuracy is limited in conditions outlined in 4.3. By 

contrast, and notwithstanding the loss in accuracy due to 2D rather than 3D modelling, high fidelity 

non-linear FEA can be assumed to be accurate in most conditions. Therefore, in this study the FEA 

serves as the benchmark. However, the high computational cost of FEA makes it impractical for 

use in statistical studies. CMGs with low saturation levels could be assessed accurately using the 

analytical model. However, in cases, the infinite permeability assumption results in larger 

inaccuracies. In this section, an extension to the analytical model is presented, where the analytical 
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statistical results are calibrated according to a limited number of non-linear FEA instances, 

effectively creating a hybrid stochastic model. 

With the hybrid stochastic model, samples are selected during a Monte-Carlo simulation and 

are then assessed with non-linear FEA. As explained in 4.3.2, the torque spectrum of the generated 

samples is divided into 5 equal sections, which are then sampled. The number of samples is crucial 

in order to ensure computational efficiency is achieved.  This can simply be minimised by checking 

their convergence. Therefore, identifying the number of samples at which this convergence is 

achieved, ensures an accurate and computationally efficient calibration.  

Figure 4-6 Hybrid stochastic model process diagram  
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The hybrid stochastic model is better explained by Figure 4-6. The analytical model during a 

statistical study is used to continuously generate and analyse samples. The calibration process is 

initiated by post-processing those samples and obtaining their range of the results. This range is 

then split into sections and one sample is randomly selected from each one. These selected samples 

are then analysed using non-linear FE and their calibration data is calculated. This process is 

automatically repeated until convergence has been achieved. 

4.4.1 Hybrid Stochastic Model Validation 

 In order to validate and demonstrate the capabilities of this hybrid stochastic model, two case 

studies are assessed. The nominal CMG used in this section is the same as in 4.3. Each case study 

consists of a set of 7000 deviated CMGs that have been generated according to previously defined 

error distributions. The differentiating factor between these case studies is the width of the 

distribution. In the first case the specified tolerance corresponds to the three-sigma value          

(Table 8) while in the second, which represents a relatively worse manufactured case, to two-sigma    

(Table 10). The calibrated results are validated by comparing them to non-linear FE data from an 

equal number of similarly generated CMG samples. Linear FEA results are also presented for 

comparison purposes. 

 

Table 8      Parameters for model calibration – Standard Case 

Parameters Tolerance Value (3σ) Distribution 

Length (mm) 0.05 Normal 

Span angle (deg) 0.05 Normal 

Radial position (mm) 0.4 Normal 

Angular position (deg) 0.4 Normal 
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4.4.1.1 Hybrid Stochastic Model Validation – Standard Case 

Table 8 presents the error parameters with which the CMG samples have been generated. These 

samples have been analysed and calibrated according to the process diagram of Figure 4-6, leading 

to the following conclusions.  

Figure 4-7 maps out 150 data points, which correspond to the non-linear FE and analytical 

results of 150 identical samples. As expected, the appropriate selection of (relatively) evenly 

distributed samples leads to an obvious linear trend between the two methods. This trend is also 

illustrated by applying a best fit line among the scattered data points, which can be used to calibrate 

the analytical results and therefore accommodate for the discrepancy between the two methods.  

The accuracy of the calibration can be demonstrated by analysing a similar number of samples, 

generated according to Table 8, using non-linear FEA. Due to the very significant computational 

time required, the FEA study was completed by operating 16 computers (Intel(R) Core(TM) i7-

Figure 4-7 Analytical vs Non-linear FEA – Standard Case 
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6700 CPU @ 3.40GHz, 16 GB RAM) concurrently for around 16 hours. The resultant CDF plot, 

along with the linear FE, are presented in Figure 4-8. 

Figure 4-8 clearly shows how this calibration can be used to increase the correlation between 

the analytical and non-linear FE results. In the first instance, there is a notable difference between 

the raw analytical data and the calibrated ones. A similar discrepancy can be observed between the 

linear and non-linear FEA results, thus quantifying the effects of saturation and finite permeability. 

Furthermore, a small difference between the linear FE and raw analytical data can be identified, 

Table 9      Probabilities – Standard Case 

Linear FEA Non-linear FEA Analytical Model Hybrid Model 

0.61 0.73 0.61 0.73 

Figure 4-8 Comparison of CDFs – Standard Case 
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which quantifies the limitations of the model definitions, as discussed in section 3.6.2. The 

accuracy of the calibration is illustrated through the correlation of CDFs. It can also be examined 

further by evaluating the probability of an event. In this case the considered event is the probability 

of a sample achieving a stall torque within ± 1% of the nominal. The accuracy improvement is 

presented in Table 9, where the calibrated analytical and non-linear FE methods output the same 

probability. The probabilities calculated using the remaining methods are also presented as a 

reference. 

Table 10      Parameters for model calibration – Poorly manufactured case 

Parameters Tolerance Value (2σ) Distribution 

Length (mm) 0.05 Normal 

Span angle (deg) 0.05 Normal 

Radial position (mm) 0.4 Normal 

Angular position (deg) 0.4 Normal 

Figure 4-9 Analytical vs Non-linear FEA – Poorly Manufactured Case 
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4.4.1.2 Hybrid Stochastic Model Validation – Poorly Manufactured Case 

This second case study represents a scenario where larger deviations are more frequent in the 

generated samples, as the tolerances correspond to the two-sigma values of the respective error 

distributions (Table 10). Therefore, further aspects of the hybrid stochastic model are assessed and 

validated, through Figure 4-9, Figure 4-10 and Table 11. These samples have been analysed using 

the analytical model, non-linear FEA and as well as through the hybrid model. The resultant CDFs 

are presented in Figure 4-10. Similar to the comparison in section 4.4.1.1, the accuracy is 

quantified in terms of the probability of a sample achieving a torque within ± 1% of the nominal 

and is presented in Table 11, along with the total computational time. 

  Figure 4-10 shows that, as expected, the hybrid stochastic model achieves excellent correlation 

with the non-linear FEA, while a discrepancy is observed compared to the raw data, due to the 

Figure 4-10 Comparison of CDFs – Poorly Manufactured Case 
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effects of saturation. Furthermore, as the tolerance is specified for the two-sigma value, a wider 

error distribution has been considered. Therefore, as expected, there is a more significant 

difference between the raw analytical and linear FEA results, compared to the case presented in 

Figure 4-8. Similar to 4.4.1.1, the accuracy of the hybrid model is quantified and verified in      

Table 11. It is apparent that both the analytical and the hybrid models are significantly more 

efficient, providing a decrease in computational time by 98.5% and 98.2% compared to FEA, 

respectively. Although the hybrid model achieves a longer computational time than the analytical 

(≈ 16%), the significant increase in accuracy combined with the minimal difference in terms of 

efficiency decrease w.r.t. FEA, demonstrates the superiority of the model. Finally, the 

computational advantages of the hybrid model become more prominent with the increasing total 

number of samples calculated. This would occur in cases where the torque ripple is also assessed. 

Specifically, each sample will require additional calculations in different rotor positions, therefore 

increasing by a significant factor the total number of solutions for the analytical model.   

4.5 Summary 

This chapter presented the complete methodology for a statistical assessment of the effects of 

geometric deviations on the stall torque of CMGs. In the first instance, the statistical methodology 

of this thesis was presented. KDEs were employed to reconstruct the PDFs (and hence CDFs) 

through a non-parametric method, as there is initially insufficient information regarding the 

Table 11      Comparison metrics - Poorly manufactured case 

 
Non-linear 

FEA 
Analytical Model Hybrid Model 

Probability 0.53 0.40 0.53 

Computational time (hr) 480 7.3 8.75 

Efficiency increase N/A 98.5% 98.2% 
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underlying profile of the distribution plots. In addition, a technique was discussed with which the 

number of Monte-Carlo samples could be reduced and hence minimise the computational time of 

the study. Furthermore, a hybrid stochastic model was presented, which could be used to take into 

consideration the saturation effects. It was shown that a small number of non-linear FEA instances 

could calibrate the analytical results and achieve high accuracy even compared to non-linear FEA. 

This effectively formed a hybrid version of the model from Chapter 3, capable of overcoming 

some of the mentioned limitations.  
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CHAPTER 5 

EFFECT OF MODULATION RING DESIGN PARAMETERS ON 

SENSITIVITY TO ERROR 

 EFFECT OF MODULATION RING DESIGN PARAMETERS ON SENSITIVITY TO ERROR 

5.1 Introduction 

In the preceding chapters, an analytical tool and an associated statistical methodology were 

presented, which enable the effect of geometric imperfections on the performance of CMGs to be 

assessed. The purpose of this chapter is twofold: 

1. To assess the influence of two design variables, air-gap length and pole piece number, 

on the effects of geometric deviations on the stall torque. 

2. To assess the effects of geometric deviations on torque ripple and to thereby investigate 

the use of the analytical solution in this context. 

5.2 Motivation 

A given CMG design will be developed and optimised with respect to its target application. 

Such studies may focus on particular performance metrics, such as the specific torque. While 

increasing the specific torque of a CMG is very desirable in mass-critical applications, another key 

requirement is the accurate determination of the stall torque. This is particularly critical in certain 

applications, such as in the wind and marine energy generation sector. In those environments, stall 
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toque can be used for fault mitigation, where in extreme conditions with high loads, the CMG will 

slip, preventing damage from occurring. Apart from stall torque, the torque ripple is also frequently 

of interest. Geometric deviations in the pole pieces may create peaks in the gear’s torque profile, 

effectively increasing the slipping torque and the torque ripple. 

The air-gap length is a key design parameter of a CMG. Smaller air-gaps are typically desirable 

as they reduce the reluctance paths and can consequently significantly increase the specific torque. 

However, larger air-gaps can, in cases, be necessary to accommodate the mechanical structure, 

particularly when the modulation ring is used to transmit torque. The number of pole pieces is 

another important parameter. It has been shown that for a fixed cogging torque factor, higher 

torque ripple is observed in CMGs with lower number of pole pieces [102]. However, increasing 

the part count in this way may be undesirable from a manufacturing perspective [50]. The cogging 

torque factor is given by: 

where 𝑐𝑓 is the cogging torque factor, p is the number of pole pairs of the respective rotor and 

LCM is the lowest common multiple between p and Q. 

 It is evident that these parameters will be varied depending on the requirements of the particular 

application. Therefore, knowledge of their influence on the effects of geometric deviations could 

provide very useful inputs for the design of the gear, especially with regards to an accurate 

determination of the stall torque. 

 

 

𝑐𝑓 =
2𝑝𝑄

𝐿𝐶𝑀
 (5.2.1) 



97 

 
 

5.3  Case Studies 

 In this section the influence of the nominal air-gap length and the pole piece number on the 

susceptibility of gear performance to the effects of geometric deviations is discerned. The results 

are presented through CDF plots. In addition, to retain consistency with the preceding chapters, 

CDFs are also assessed to determine the probability of a sample gear achieving a stall torque within 

± 1% of the nominal. 

 The base CMG used in this study will be similar to the one used throughout the thesis and with 

parameters outlined in Table 12. Each parameter is assessed in isolation, with the remaining 

parameters retaining their nominal specifications. A range is specified in which the specific design 

parameter is incrementally varied and thus the effect of the geometric deviations on the torque 

Table 12      Baseline CMG Parameters 

Variables CMG 1 

Number of pole pieces 5 

Inner rotor poles 4 

Outer rotor poles 6 

Inner rotor OD (mm) 100 mm 

Outer rotor OD (mm) 148 mm 

PM length (mm) 10 mm 

Pole pieces length (mm) 10 mm 

Air-gap length (mm) 1 mm 

Axial length (mm) 100 mm 

Table 13      Design parameter variation range 

Parameters Range Increments 

Airgap length (mm) 0.5 – 2 4 

𝑃𝐻𝑆𝑅/𝑃𝐿𝑆𝑅 2/3, 3/4, 4/5, 5/6  4 
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performance is assessed. The investigated design parameters along with their variation range are 

outlined in Table 13. The pole piece error distributions are provided in Table 14. 

5.4 Results 

5.4.1 Airgap length 

Smaller airgaps are normally desirable as they decrease the reluctance in the magnetic circuit 

and will therefore increase the torque capability of the gear. The torque performance is studied 

considering a varying airgap as specified in Table 13. The results of this assessment are provided 

Table 14      Error distributions for the assessment of design parameters 

Parameters Tolerance Value (3σ) Distribution 

Length (mm) 0.05 Normal 

Span angle (deg) 0.05 Normal 

Radial position (mm) 0.4 Normal 

Angular position (deg) 0.4 Normal 

Figure 5-1 Normalised hybrid stall torque CDF with varying airgap length 
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in the CDF plots of Figure 5-1 and the probabilities outlined in Table 15 . In order to retain a 

degree of consistency with the base CMG, the outer rotor is modified to contain the same PM 

volume.  

Figure 5-1 clearly shows the higher effect of geometric deviations when the airgap is decreased. 

This decrease is quantified in Table 15, through the probability of a gear achieving a stall torque 

within ±1% of the nominal. In this study, it is 15% more probable to achieve this performance 

requirement for the CMG with largest air-gap (2 mm) compared to the gear with the smallest air-

gap (0.5 mm). Therefore, a decreasing air-gap length, increases the susceptibility of the a gear’s 

stall torque to the effects of geometric deviations. This is an expected observation as by increasing 

the reluctance of the magnetic circuit, any effects for positional or dimensional deviations of the 

pole pieces should be of smaller magnitude.  

5.4.2 Pole pairs ratio 

The pole pairs ratio is another important design characteristic of the modulation ring as it 

effectively defines the number of the pole pieces. As discussed in the introduction section of this 

chapter, depending on the particular application, both higher and lower number of pole pieces may 

be desirable. In this section four CMGs, with the same cogging torque factor equal to 1, are 

analysed with their specifications outlined in Table 12 and Table 13. The resultant CDF plots are 

provided in Figure 5-2 and the respective probabilities in Table 16.  

 

Table 15      Probabilities for varying airgap length 

0.5 mm 1 mm 1.5 mm 2 mm 

0.58 0.63 0.70 0.73 
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A clear trend is identified in Figure 5-2, where the geometric deviations of similar magnitude 

have less dominant effects with an increasing number of pole pieces. This observation is quantified 

in Table 16, where the CMG with the highest number of pole pieces is 19% more likely to meet 

the defined performance requirements compared to the one with the lowest. A higher number of 

pole pieces in a defined space will consequently decrease the contribution of each one in the total 

magnetic field modulation. A similar consequence could be expected for the effects of individual 

geometric deviations, which leads to the observed trend. Here, the effects from geometric 

deviations become less dominant, even with an increase in specific torque. Specifically, a 

Table 16      Probabilities for varying pole pairs ratio  

2/3 3/4 4/5 5/6 

0.63 0.71 0.79 0.82 

Figure 5-2 Normalised hybrid stall torque CDF with varying pole pairs ratio  
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minimum of 30% and maximum of 60% increase in specific torque is achieved by increasing the 

number of pole pieces, with a reduction however, on the effect of deviations.  

This particular analysis also emphasises the practical limits of the analytical model. As 

explained in Chapter 3, due to the approach taken, an increasing number of pole pieces will linearly 

increase the number of unknowns. Specifically, the 40% increase between the 2/3 and 3/4 cases 

results in an equivalent increase in the average time for a single solution, which from 3.5s increases 

to 5.5s. However, even though the number of unknowns increases linearly with 𝑄, the model 

becomes solver-limited as the computational time increases at an even greater rate. For the 

remaining cases the average computational time increased to around 11s and 18s, respectively. It 

must be noted that the software implementation of the presented model is not fully optimised for 

speed and the author expects that with an alternative platform, substantial improvements can be 

achieved. This is expanded further in Chapter 6.  

5.4.3 Effect of Saturation 

The studies of 5.4.1 and 5.4.2 do not include high levels of saturation in the gears. Therefore, 

the assumption of linearity in the analytical model holds. As a result, similar CDFs would be 

produced with either the raw analytical data or the hybrid model. The small differences between 

the two approaches are quantified in Table 17, where the analytical probabilities of both case 

studies are compared to the hybrid results.  
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 However, when a gear design has pole pieces which are highly saturated, the effect of 

calibration is more pronounced. Such a case has been purposely constructed, by performing a 

Monte-Carlo simulation with the nominal CMG, employing 4 mm thick pole pieces. While this is 

arguably an unrealistic gear, it significantly increases the saturation level in the pole pieces, and 

Table 17      Analytical and hybrid probabilities for both case studies 

 0.5 mm 1 mm 1.5 mm 2 mm 

Hybrid 0.58 0.63 0.70 0.73 

Analytical 0.47 0.51 0.58 0.63 

 2/3 3/4 4/5 5/6 

Hybrid 0.63 0.71 0.79 0.82 

Analytical 0.51 0.65 0.72 0.76 

Figure 5-3 Hybrid vs Analytical results for nominal (10 mm pole piece thickness) and 

highly saturated gear (4 mm pole piece thickness)  
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therefore highlights this effect. In terms of absolute stall torque, the nominal, 4 mm pole thickness 

CMG has a 44% difference between analytical and non-linear FEA, as would be expected given 

the high levels of saturation. This is better observed in Figure 5-3. Here, the difference between 

hybrid and analytical CDFs is much more distinct in the highly saturated case (4 mm thickness) 

compared to the results considering the nominal gear. It is the author’s view that when highly 

saturated gear designs are being analysed, some caution must be applied when using the hybrid 

approach. In such circumstances further FEA studies may be needed to develop confidence in the 

calibration process. It is important to note that the calibration (and the subsequent hybrid stochastic 

model) serves to calibrate the CDFs rather than an individual gear’s stall torque.  

5.4.4 Torque Ripple 

Up to this point, the effects of the geometric deviations are always expressed with regards to 

the stall torque of each CMG. It is expected that torque ripple will also be susceptible to geometric 

error. However, unlike the assessment of stall torque, one magnetic cycle must be studied 

incrementally for each gear. This proportionately increases the already considerable number of 

required samples. As such, even with the high computational efficiency of the model presented in 

this thesis, full statistical assessment of the effect of geometric error on torque ripple is impractical. 

Nonetheless, efficient tools to develop single-geometry solutions for torque ripple would be 

valuable. In addition, few deviated cases, while not giving a full statistical picture, may provide a 

useful insight into the possible effects of geometric deviations on torque ripple. As such, two 

deviated samples of the gear studied in this chapter are selected and analysed over one HSR pole 

pair pitch. Since the two rotors are rotating at different speeds, a HSR pole pair may not correspond 

to a magnetic cycle. However, it represents an angular domain in which the torque ripple can be 
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assessed. The results are compared to the nominal gear, as well as results from linear and non-

linear FEA. The exact errors of those samples are outlined in Table 19 at the end of this section. 

Figure 5-4 and Figure 5-5 present the torque ripple profiles over one HSR pole pair pitch for 

both samples. The presented torque ripple plots are developed by subtracting the mean torque from 

the raw profile, before normalising the ripple with respect to the peak of the nominal gear. These 

are compared to the profile of the nominal (Figure 5-4) and the equivalent linear FEA ones (Figure 

5-5). In Figure 5-4, it is evident that for similar deviations, there are larger effects in the magnitude 

of the pulsating torque, compared to those of the stall torque from the previous sections. For both 

samples, torque pulsations can exceed the nominal by around 20%. This can have a significant 

effect on the performance of the gear, particularly if a fault mitigation perspective exists, as in such 

a case this 20% increase represents the effective slipping torque at that instant.  Figure 5-5, shows 

that good correlation is also achieved with respect to linear FEA. The discontinuities created by 

Figure 5-4 Normalised torque ripple over 1 HSR pole pair pitch–Analytical Model 
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the modelling definitions, along with the synthesis of the air-gap flux densities, result in some 

discrepancies over a HSR pole pair pitch. However, even considering these discrepancies, the 

analytical model is sufficiently accurate to provide a useful estimate on the effects of 

manufacturing errors on torque ripple.    

These effects can also be expressed through the torque ripple coefficient (𝑇𝑟𝑖𝑝𝑝𝑙𝑒) of the gears, 

as defined in [103] and (5.4.1), along with the total harmonic distortion (𝑇𝐻𝐷) are calculated and 

presented in Table 18. 

 where 𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑒𝑎𝑛 are the maximum, minimum and average torque over one HSR pole pair 

pitch respectively. 

𝑇𝑟𝑖𝑝𝑝𝑙𝑒 =
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
𝑇𝑚𝑒𝑎𝑛

 (5.4.1) 

Figure 5-5 Normalised torque ripple over 1 HSR pole pair pitch–linear FEA 

comparison 
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 The data of Table 18 confirm that, for the samples analysed, more significant effects are 

expected in the torque ripple rather than in the stall torque. The correlation of the analytical results 

with respect to both linear and non-linear FEA is also verified. For sample No. 1, there are only a 

1.1 and 0.36 percentage points difference compared to linear FEA, for 𝑇𝑟𝑖𝑝𝑝𝑙𝑒 and 𝑇𝐻𝐷, 

respectively. The percentage differences with respect to their nominal values are also presented, 

where, regarding 𝑇𝑟𝑖𝑝𝑝𝑙𝑒, there are increases of 22% and 20% (with respect to the nominal) for the 

analytical and linear FEA, respectively. This is also a good comparison metric for the non-linear 

FEA. Here, for sample No.2, the analytical percentage increase of 𝑇𝑟𝑖𝑝𝑝𝑙𝑒, is closely aligned even 

to non-linear FEA, where a 17% increase is observed compared to 14%. This is an important 

observation as, apart from normalising w.r.t nominal, there is no other scaling or calibration 

applied to the analytical results. The correlation to non-linear FEA is also presented in Figure 5-6 

and Figure 5-7.  

Table 18      Torque ripple coefficient and total harmonic distortion comparison 

Analytical 

 Nominal Sample 1 Sample 2 

𝑻𝒓𝒊𝒑𝒑𝒍𝒆 (%) 29.5 36 (+22% w.r.t Nom) 35.7 (+ 17% w.r.t Nom) 

THD (%) 7.13 7.55 (+5.9% w.r.t Nom) 7.14 (+0.1% w.r.t Nom) 

Linear FEA 

 Nominal Sample 1 Sample 2 

𝑻𝒓𝒊𝒑𝒑𝒍𝒆 (%) 29.1 34.9 (+20% w.r.t Nom) 33.5 (+15% w.r.t Nom) 

THD (%) 7.05 7.41 (+5.1% w.r.t Nom) 7.00 (-0.7% w.r.t Nom) 

Non-linear FEA 

 Nominal Sample 1 Sample 2 

𝑻𝒓𝒊𝒑𝒑𝒍𝒆 (%) 24.0 27.9 (+16% w.r.t Nom) 27.4(+14% w.r.t Nom) 

THD (%) 5.85 6.06 (+3.6% w.r.t Nom) 5.82(-0.5% w.r.t Nom) 
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Figure 5-6 Normalised torque ripple comparison between analytical, linear and non-

linear FEA – Deviated Sample No. 1  

Figure 5-7 Normalised torque ripple comparison between analytical, linear and non-

linear FEA – Deviated Sample No. 2  
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 Figure 5-6 and Figure 5-7, along with Table 18, validate the accuracy of the analytical method 

in assessing the torque ripple of a specified CMG. In addition, the analytical model also offers a 

significant computational advantage, with the analytical study being ~7 and ~26 times faster the 

linear and non-linear FEA studies, respectively. However, they also highlight some of the 

limitations. In the first instance, as discussed in 3.6.2 and observed in Figure 5-5, the air-gap flux 

synthesis combined with pole radii discontinuities in the analytical model, result in some 

discrepancies compared to FEA. These are not precisely calculated with the analytical model and 

therefore reduce its accuracy in terms of reproducing the form of the torque pulsations. However, 

the significant computational efficiency increase over FEA, along with the good correlation to 

linear and non-linear FEA, demonstrate the strong potential of this model for the assessment of the 

effects of geometric deviations on the torque ripple of a CMG.  

 

 

Table 19      Error for Torque Ripple Samples 

Variable Pole Piece Error 

Deviated Sample No. 1 

 No. 1 No. 2 No. 3 No. 4 No. 5 

Length (mm) 0.000 0.037 0.014 0.011 -0.021 

Span angle (deg) -0.015 0.016 0.014 -0.026 0.014 

Radial position (mm) -0.284 -0.122 0.005 0.086 -0.196 

Angular position (deg) 0.009 -0.236 -0.108 0.167 0.185 

Deviated Sample No. 2 

 No. 1 No. 2 No. 3 No. 4 No. 5 

Length (mm) 0.022 -0.028 -0.023 -0.012 -0.006 

Span angle (deg) -0.003 -0.029 -0.009 -0.014 0.015 

Radial position (mm) 0.256 0.200 -0.099 -0.178 0.153 

Angular position (deg) -0.108 -0.074 0.014 -0.018 0.027 
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5.5 Summary 

This chapter demonstrated how the proposed methodology can be used to assess the geometric 

deviations in CMGs. The influence of two key design parameters, the air-gap length and the 

number of pole pieces, on the effect of geometric deviations was discussed. Regarding the air-gap 

length, it was shown that a smaller air-gap will increase the effect of the deviations, which is an 

important but also expected observation. The number of pole pieces were shown to decrease the 

effects of the geometric deviations, while providing a higher specific torque. The effects on the 

torque ripple were also discussed. The computational time of the analytical model is not low 

enough to practically perform a complete statistical study. Therefore, two sample deviated gears 

were selected for the nominal CMG of this chapter and assessed over one HSR pole pair pitch. An 

important observation was that, for the same deviations, a much higher effect is expected in the 

torque ripple profiles, compared to stall torque. The torque pulsations of the deviated gear over a 

HSR pole pair pitch could be around 20% higher compared to the nominal. Such discrepancies 

would become even more important when a fault mitigation perspective is considered. In addition, 

good correlation was shown even to non-linear FEA results. The analytical model can provide a 

very useful insight on the effects of geometric deviations on the torque ripple of a CMG. However, 

for their statistical assessment, further computational efficiency improvements are required.   
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CHAPTER 6 

SUMMARY OF THESIS 

 SUMMARY OF THESIS 

6.1 Thesis Overview 

Coaxial magnetic gears are a highly promising technology, offering contactless transmission 

and defined torque characteristics for specialist applications. The design of the modulation ring 

and subsequent route to manufacture is not yet a mature technology and it has been shown that 

gear performance is sensitive to its geometric accuracy. 

Chapter 1 introduced magnetic gearing technology. A brief history on MGs was provided, 

from their inception over a century ago, to the modern topologies, such as the CMG. CMGs, due 

to their inherent advantages over their mechanical counterparts, have been considered as promising 

alternatives in applications ranging from aerospace to the energy generation sector. Discrepancies 

between modelled and experimentally realised performance have often been reported, a degree of 

which has been attributed to ‘manufacturing error’. Furthermore, calculated performance in 

research studies has typically assumed exact geometry. Therefore, the effects of geometric 

imperfections have rarely been considered. It was also discussed that knowledge of those effects 

would be even more important when viewed from an application perspective, especially when 

mass production is considered. In such a case, the use of statistical tools would be necessary 
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accurately predict the range in expected performance. As FEA, due to the computational 

requirements, would be impractical for such studies, this is an area analytical modelling could offer 

significant advantages.   

Chapter 2 presented an overview of the sources of error in a CMG and provided estimates on 

the expected variation for each one. It was identified that, due in part to their use on PM machines, 

there is much less variability in the processes regarding the rotors, compared to those of the 

modulation ring. Consequently, in the absence of standardised processes, fewer options and 

strategies exist, which could be employed to mitigate the associated errors. It was therefore stated 

that the effect from geometric deviations in the modulation ring, if identified and understood, could 

be significantly reduced. Furthermore, a literature review was provided on the magnetic and 

mechanical models available. The potential of analytical modelling has been explored through 

radially symmetric models, however accurate consideration of asymmetries, within a 

computationally efficient model, would be necessary for the assessment of the effects from 

geometric deviations.  

Chapter 3 proposed a novel, asymmetric analytical model for CMGs, capable of considering 

individual dimensional and positional asymmetries of each pole piece. Furthermore, it was shown 

that mapping of 𝐻𝜃 from the asymmetric boundaries of Region III to the radially symmetric 

boundaries of Region II/IV variants, could effectively consider the gear-level effect of each 

deviation. The model was validated with the use of linear FEA, which also highlighted the 

significant increase in computational efficiency. In addition, the limitations of this model were 

thoroughly explored and discussed.  

Chapter 4 presented the complete methodology for a statistical assessment of the effects of 

geometric deviations on the stall torque of CMGs. In the first instance, the statistical methodology 
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of this thesis was presented, using KDEs to non-parametrically reconstruct the, initially unknown, 

PDFs (and hence CDFs). Furthermore, a hybrid stochastic model was presented, which could be 

used to account for the saturation effects. It was shown that few non-linear FEA instances could 

calibrate the analytical CDFs and achieve high correlation even compared to non-linear FEA. This 

effectively formed a hybrid version of the model from Chapter 3, capable of overcoming some of 

the mentioned limitations.  

Chapter 5 demonstrated how the proposed methodology could be used to assess the geometric 

deviations in CMGs. The influence of two key design parameters, the air-gap length and the 

number of pole pieces, on the effect of geometric deviations was discussed. Increasing air-gap 

length, along with increasing number of pole pieces, were found to decrease the susceptibility of 

the gear to the effects from geometric deviations. In addition, it was shown that for the same 

geometric deviations, a more significant effect was observed in the torque ripple. A complete 

statistical assessment of the torque ripple could not be performed, as a substantially larger number 

of samples would be required, and even the high computational efficiency of the analytical model 

would not be high enough to feasibly conduct this analysis. However, an analysis was performed 

for two deviated CMGs, and the results were compared to both linear and non-linear FEA, with 

which good correlation was achieved. This highlighted the significant potential of the analytical 

model for further analysis with regards to torque ripple.  

6.2 Conclusions 

Statistical analysis of the effect of manufacturing errors in complex products requires fast and 

accurate models. This thesis has developed and verified a novel stochastic model to assess the 

effects of geometric deviations in the modulation ring of a CMG. It has been proved that the 

asymmetric boundaries, created by those deviations, can be approximated by careful consideration 
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of the modelling regions. Specifically, radially symmetric variants of the air-gap regions (II, IV) 

are created, each employing the deviations of a pole piece. Furthermore, the mapping of the field 

intensity on the asymmetric boundary of Region III to the radially symmetric boundaries of Region 

II/ IV air-gap variants has been validated. This permitted the global capture of the spatial effects 

from each deviation, which would not have been the case with the superposition method. In 

addition, the proposed model provided a significant computational increase over the superposition 

method, by decreasing the number of unknowns in Region III by a factor, equal to the number of 

pole pieces (Q). 

Excellent correlation of this approach has been shown compared to 2D linear FEA, considering 

the same infinite permeability assumption. However, two key limitations exist: the discontinuities 

in the emulation of the pole pieces, and the inability to account for saturation effects. It has been 

shown that the first limitation can be mitigated through the definition of the radial Region III 

subdomain boundaries, by considering the average radii of the neighbouring pole pieces. The 

second limitation is addressed in Chapter 4, where a hybrid modelling technique has been 

presented, that can calibrate the analytical results using a few instances of non-linear FEA. This 

significantly improves the CDF correlation to that developed using non-linear FEA, while still 

retaining a substantial computational efficiency advantage over finite elements methods. 

Finally, it has been identified that torque ripple is more susceptible to the effects from geometric 

deviations compared to the gear’s initial stall torque. While the analytical model is a powerful tool, 

further improvements in its computational efficiency are required to utilise it to its full potential.  
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6.3 Recommendations for Further Research 

6.3.1 Further Design Metrics - Torque Ripple & Magnetostatic Forces 

In this thesis, the proposed models can effectively discern the effects of modulation ring 

geometric deviations in a CMG, primarily with respect to the gear’s stall torque. However, other 

performance metrics can be equally important, such as the torque ripple. To accurately assess the 

torque ripple effects, ideally one magnetic cycle must be studied for each CMG statistical sample. 

Considering that one magnetic cycle can be significantly longer than a rotor’s pole pair pitch, the 

already high total number of samples are substantially increased. It has been shown that smaller 

angular domains, such as an HSR pole pair pitch, can used to discern the effects on the torque 

ripple, however the number of samples is still too high to prevent a complete statistical assessment 

to be conducted.  To enable such an assessment within a statistical analysis, a further increase of 

computational efficiency is required. Possible routes to achieve this include further improvements 

to the mathematical modelling and solving. Specifically, the matrix size of unknowns that is solved 

can be reduced by employing harmonic selection methods or different modelling definitions. 

However, their accuracy would have to be validated. Furthermore, significant improvements in 

efficiency could be achieved with a better solving approach. As the computational time is almost 

entirely dominated by the solution of a single matrix of unknowns, any improvements in that aspect 

could substantially decrease the required time for a solution. 

Apart from the calculation of torque, the proposed model has the capacity to determine the 

cyclic radial and tangential magnetostatic forces exerted on the pole pieces, as shown in        

Chapter 3. These forces are a primary source for vibrations in the gear and are also important for 

the definition of the structural requirements of the modulation ring. Similar to the stall torque and 

torque ripple, geometric deviations will also have an effect on the magnitude of these forces and 
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the subsequent vibrations. Therefore, this thesis provides the modelling tools and the methodology 

for such a statistical assessment to be conducted.  

6.3.2 Further Deviations – 3D Effects 

In this thesis, the presented analytical model is capable of assessing radial and tangential 

deviations in both the dimensions and the positions of each of the pole pieces. Further geometric 

deviations can also exist, whose effects could be of interest. Notable errors in concentricity could 

arise during the assembly of the modulation ring and a methodology capable of assessing their 

effect would be valuable. However, it is a considerable challenge to model such errors within a 

highly computationally efficient framework. Furthermore, some deviations, as the ones considered 

in this thesis, could be assessed through 2D modelling. However, many geometric deviations are 

inherently three dimensional, and cannot be approximated in two dimensions. Errors in coaxiality 

or large structural deflection within the modulation ring, would vary along the length of the CMG. 

As efficient modelling techniques would still be necessary, a potential approach could be the axial 

discretisation of the gear into 2D models.  

Another area of further work, that has been frequently highlighted in this thesis, is the 

correlation between 2D and 3D results. Specifically, CMGs are known to have more dominant end 

effects, compared to PM machines, and further research is required to discern how the 2D effects 

from geometric deviations would translate in a 3D scenario.  

Finally, in Chapter 2 it was identified that one of the biggest deviations in a gear is in the 

magnetic properties of the PMs. Particularly, increasing temperature causes a notable reduction in 

the value of 𝐵𝑟𝑒𝑚 of approximately 0.12% per oC. Considering the relatively large typical operating 

temperature range, significant effects on the performance of the gear could be expected. However, 
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the techniques and models developed and validated in this thesis provide a comprehensive 

framework for these effects to be incorporated in the analysis of coaxial magnetic gears. 
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Appendix A – Supplementary Chapter 

FURTHER MODEL APPLICATIONS – VRM  

A.  

A.1. Introduction 

This thesis has demonstrated the capabilities and effectiveness of the proposed asymmetric 

analytical model in the context of CMGs. However, the modelling framework is very flexible as 

it considers only two categories of regions. As explained in Chapter 3, the main differentiation 

between those categories is the magnetisation, which, if present, leads to the solution of Poisson’s 

equation and otherwise to the Laplace’s equation. Regions, variants and subdomains of each 

category can then be employed to analyse the system under consideration. Therefore, it is apparent 

that a very similar model to the one used for CMGs could be used to analyse similar problems, 

such as some topologies of Variable Reluctance Machines (VRM), similar to the one developed in 

[104]. To aid the reader, and minimise the need for cross-references to Chapter 3, the mathematical 

approach to this model development is presented in full in this chapter. In addition, all input 

parameters and subsequent results are used purely for correlation and validation purposes, and 

therefore the results do not correspond to realistic performance.  

 

 

 



II 

 
 

 

A.2. Variable Reluctance Machine Analytical Model – Definition 

Considering modelling regions, a VRM of the type shown in Figure A-1 is very similar to a 

CMG. Specifically, the subdomain definition of the VRM’s rotor is equivalent to the modulation 

ring (Region III) and the air-gap adjacent to the LSR (Region IV) of a CMG. The main differences 

relate to the CMG’s PM rotors, where the LSR is replaced by a stator and the HSR is not existent. 

Assuming the magnetic field from the stator can be expressed mathematically by defining 𝐻 at the 

stator inner radius boundary, the problem definition can be presented as shown in Figure A-2 [105]. 

Similar to the proposed model of Chapter 3, the asymmetric analytical model for a VRM is also 

based on solutions of the 𝐴 in each region. These solutions are again developed using the definition 

of 𝐴 (A.2.1) and Maxwell’s Ampere law equation (A.2.2). 

Figure A-1 A simplified VRM 
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Assuming magnetostatic conditions, the partial derivative of �⃗⃗� with respect to time disappears. 

Furthermore, there is no applied current in any of the defined regions since the stator is not 

modelled as a region and its magnetic field distribution (𝐻) is just considered at its boundary. In 

addition, the absence of a magnetisation vector (no PM material) reduces 𝐽 to zero in all defined 

regions. Therefore, the equations (A.2.1) and (A.2.2) combined take the form of the Laplace 

equation (A.2.3) in all regions: 

�⃗⃗� = 𝛻 × 𝐴 (A.2.1)  

𝛻 × �⃗⃗� = µ0 𝐽 + µ0휀0
𝜕�⃗⃗�

𝜕𝑡
 (A.2.2)  

𝛻2𝐴 = 0 (A.2.3)  
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Figure A-2 VRM region definitions 

Region III

Airgap

Region II – subdomain i

Non-permeable rotor slots

Region I 

Non-permeable rotor structure

 

Stator  

equivalent 

boundary 

Rotor poles 

Non-

permeable 

rotor 

Region III 

Airgap 
Region II – subdomain i 

Non-permeable slots 

Region I 

Non-permeable rotor structure 



IV 

 
 

A.2.1. Region II – Non-permeable Rotor Slots  

In common with the CMG equivalent, any radial deviations of the rotor poles will create an 

asymmetric air-gap. Furthermore, as infinite permeability in the ferromagnetic regions is assumed, 

the additional challenge of assessing those deviations is still present, since the deviated poles are 

not directly defined as a modelling subdomain. Therefore, they are again emulated by applying a 

boundary condition of 𝐵𝜃 = 0 along the pole edge.  

In this asymmetric model, Region II is divided into a number of air-gap subdomains, each 

corresponding to an air-gap slot between consecutive poles. For the development of the model, the 

three options to define those subdomains are used, as also outlined in 3.3.1: 

1. Using the inner (𝑅2,i) and outer (𝑅3,i) radii of preceding (clockwise) pole (Figure A-3). 

2. Using the inner (𝑅2,i+1) and outer (𝑅3,i+1) radii of proceeding (anticlockwise) pole. 

θi 

βi 

R2,i 

R3,i 

R4 

R1 

R2,i+1 

R3,i+1 

I
II

III

Figure A-3 Geometry of VRM Region II subdomains 
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3. Using the mean inner (𝑅2,i + 𝑅2,i+1) 2⁄  and mean outer (𝑅3,i + 𝑅3,i+1) 2⁄  radii of the 

preceding and proceeding poles. 

 The opening angle (𝛽𝑖) and the initial angle of the subdomain with respect to a datum (𝜃𝑖) are 

defined in Figure A-3. The general solution of 𝐴 in each subdomain can now be derived from 

(A.2.3). The following notation in (A.2.4), (A.2.5) has been adopted for simplification: 

Using the separation of variables method, the general solution of the ith
 subdomain can be 

described by Fourier series and is provided in (A.2.6). 

with 

where 𝐶𝐼𝐼,𝑖, 𝐷𝐼𝐼,𝑖, 𝐸𝐼𝐼,𝑖,𝑚 and 𝐹𝐼𝐼,𝑖,𝑚 are the Fourier coefficients, with 𝑀 being the largest harmonic 

under consideration. 

𝑈𝑧(𝑎, 𝑏) = (
𝑎

𝑏
)
𝑧

+ (
𝑏

𝑎
)
𝑧

 (A.2.4)  

𝑋𝑧(𝑎, 𝑏) = (
𝑎

𝑏
)
𝑧

− (
𝑏

𝑎
)
𝑧

 (A.2.5)  

𝐴𝑖
(𝐼𝐼)(𝑟, 𝜃)  = 𝐶𝐼𝐼,𝑖 + 𝐷𝐼𝐼,𝑖 ln(𝑟) 

𝐴𝑖
(𝐼𝐼)(𝑟, 𝜃)  + ∑ (𝐸𝐼𝐼,𝑖,𝑚

𝑋𝑓𝑚,𝑖(𝑟, 𝑅3,𝑠)

𝑋𝑓𝑚,𝑖(𝑅2,𝑠, 𝑅3,𝑠)
− 𝐹𝐼𝐼,𝑖,𝑚

𝑋𝑓𝑚,𝑖(𝑟, 𝑅2,𝑠)

𝑋𝑓𝑚,𝑖(𝑅2,𝑠, 𝑅3,𝑠)
)

𝑀

𝑚=1

 

 𝐴𝑖
(𝐼𝐼𝐼)(𝑟, 𝜃)  =      ∙ cos (𝑓𝑚,𝑖(𝜃 − 𝜃𝑖)) 

(A.2.6)  

𝑓𝑚,𝑖 =
𝑚𝜋

𝛽𝑖
 (A.2.7)  

                     𝑠 = 𝑖 (A.2.8) 
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A.2.2. Region I/III – Non-permeable Rotor / Airgap 

The asymmetries of the iron poles result in asymmetric boundaries between Region II and 

Regions I, III, i.e., the non-permeable section of the rotor and the airgap, respectively. Similar to 

Chapter 3, a series of variants of each region are defined, equal in number to the ferromagnetic 

poles. Each variant is again associated with a Region II subdomain, which defines its radial 

boundaries (Figure A-4).  

In common with A.2.1, using the separation of variables method and the Laplace equation 

(A.2.3), the resultant general solutions for each variant can be derived. These are described by 

Fourier series and are provided in (A.2.9), (A.2.10). Similar to the model of Chapter 3, the resultant 

flux distribution for the air-gap is synthesised by using the appropriate Region III variant for the 

angular region it occupies (Figure A-4). 

Region I 

variant i

Region I 

variant i+1

Region III 

variant i

Region III 

variant i+1

I
II

III

Figure A-4 Asymmetric VRM Region I/III variant definitions  
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where 𝐶𝐼/𝐼𝐼𝐼,𝑖, 𝐷𝐼/𝐼𝐼𝐼,𝑖, 𝐸𝐼/𝐼𝐼𝐼,𝑖 and 𝐹𝐼/𝐼𝐼𝐼,𝑖 are the Fourier coefficients and K denotes highest order of 

harmonics considered. 

A.3. Variable Reluctance Machine Analytical Model – Solution 

The general solutions of (A.2.6), (A.2.9), (A.2.10) can be solved as a system of equations by 

applying the necessary boundary conditions at the interfaces between regions. The resultant 

expressions are presented in the following subsections.  

A.3.1. Interface I – II 

The geometric asymmetries of the iron poles result in an asymmetric interface between the non-

permeable section of the rotor (I) and the non-permeable slots between the poles (II). A solution 

is derived by considering the following boundary conditions. 

𝐴𝑖
(𝐼)(𝑟, 𝜃) = ∑(𝐷𝐼,𝑖

𝑅2,𝑠
𝑘

𝑈𝑘(𝑟, 𝑅1)

𝑋𝑘(𝑅2,𝑠, 𝑅1)
)

𝐾

𝑘=1

cos(𝑘𝜃) 

𝐴𝑖
(𝐼)(𝑟, 𝜃) +∑(𝐹𝐼,𝑖

𝑅2,𝑠
𝑘

𝑈𝑘(𝑟, 𝑅1)

𝑋𝑘(𝑅2,𝑠, 𝑅1)
)

𝐾

𝑘=1

sin(𝑘𝜃) 

(A.2.9) 

𝐴𝑖
(𝐼𝐼𝐼)(𝑟, 𝜃) = ∑(𝐶𝐼𝐼𝐼,𝑖

𝑅3,𝑠
𝑘

𝑈𝑘(𝑟, 𝑅4)

𝑋𝑘(𝑅3,𝑠, 𝑅4)
+ 𝐷𝐼𝐼𝐼,𝑖

𝑅4
𝑘

𝑈𝑘(𝑟, 𝑅3,𝑠)

𝑋𝑘(𝑅4, 𝑅3,𝑠)
)

𝐾

𝑘=1

cos(𝑘𝜃) 

𝐴𝑖
(𝐼𝐼𝐼)(𝑟, 𝜃) +∑(𝐸𝐼𝐼𝐼,𝑖

𝑅3,𝑠
𝑘

𝑈𝑘(𝑟, 𝑅4)

𝑋𝑘(𝑅3,𝑠, 𝑅4)
+ 𝐹𝐼𝐼𝐼,𝑖

𝑅4
𝑘

𝑈𝑘(𝑟, 𝑅3,𝑠)

𝑋𝑘(𝑅4, 𝑅3,𝑠)
) sin(𝑘𝜃)

𝐾

𝑘=1

 

(A.2.10) 



VIII 

 
 

                  𝐻𝜃,𝑖
(𝐼)
|
𝑟=𝑅2,𝑠

= 𝐻𝜃
(𝐼𝐼)
|
𝑟=𝑅2,𝑖=1→𝑅2,𝑖=𝑄

 (A.3.1) 

𝐴𝑖
(𝐼𝐼)
|
𝑟=𝑅2,𝑠

= 𝐴𝑖
(𝐼)
|
𝑟=𝑅2,𝑠

 (A.3.2) 

In common with Chapter 3, while the effect of each deviation on the flux distribution is spatially 

focused in its vicinity, there is still an effect on the remaining space. This effect is captured by 

(A.3.1), which maps the total field intensity of Region II (𝐻𝜃
(𝐼𝐼)
), at its asymmetric inner radial 

boundary (𝑅2,𝑖=1 → 𝑅2,𝑖=𝑄), to the field intensity of each Region I variant (𝐻𝜃,𝑖
(𝐼)
), at its radially 

symmetric outer boundary (𝑅2,𝑠). Furthermore, as it this interface there is no change of medium 

the continuity of the radial component of the flux density can be expressed as the continuity of the 

vector potential (A.3.2). Development of (A.2.6) and (A.2.9) along with these boundary conditions 

results in the following equations. 

 

𝐷𝐼,𝑖,𝑘 =
1

𝜋
∫ 𝐻𝜃,𝑖

(𝐼𝐼)
|
𝑟=𝑅2,𝑠

∙ cos(𝑘𝜃) 𝑑𝜃

2𝜋

0

 (A.3.3) 

𝐹𝐼,𝑖,𝑘 =
1

𝜋
∫ 𝐻𝜃,𝑖

(𝐼𝐼)
|
𝑟=𝑅2,𝑠

∙ sin(𝑘𝜃) 𝑑𝜃

2𝜋

0

 (A.3.4) 

𝐶𝐼𝐼,𝑖 + 𝐷𝐼𝐼,𝑖 ln(𝑅2,𝑖) =  
1

𝛽𝑖
∫ 𝛢𝑖

(𝐼)
|
𝑟=𝑅2,𝑠

𝑑𝜃

𝜃𝑖+𝛽𝑖

𝜃𝑖

 (A.3.5) 
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Equations (A.3.3) – (A.3.6) can be expanded and expressed in matrix form (A.3.7) – (A.3.10). 

The Fourier coefficients of Region I, 𝑫𝑰, 𝑭𝑰 are column vectors of length 𝐾 ∙ 𝑄, with 𝐾 and 𝑄 

denoting the maximum number of harmonics in the region and the number of iron poles, 

respectively. The Fourier coefficients of Region II, 𝑬𝑰𝑰, 𝑭𝑰𝑰 are column vectors of length 𝑀 ∙ 𝑄 and 

𝑪𝑰𝑰, 𝑫𝑰𝑰 of length equal to 𝑄, with 𝑀 being the maximum harmonic order considered in Region II. 

where 

 

 

𝛦𝐼𝐼,𝑖 =
2

𝛽𝑖
∫ 𝛢𝑖

(𝐼)
|
𝑟=𝑅2,𝑠

∙ cos(𝑓𝑚,𝑖(𝜃 − 𝜃𝑖)) 𝑑𝜃

𝜃𝑖+𝛽𝑖

𝜃𝑖

 (A.3.6) 

−𝑰𝑲𝒊 𝑹𝟐𝑫𝑰 + 𝜹𝒊
𝑻𝑫𝑰𝑰 + 𝜼𝒊

𝑻𝒇𝒎𝑮𝟒𝑬𝑰𝑰 − 𝜼𝒊
𝑻𝒇𝒎𝑮𝟓𝑭𝑰𝑰 = 0 (A.3.7) 

−𝑰𝑲𝒊 𝑹𝟐𝑭𝑰 + 𝝈𝒊
𝑻𝑫𝑰𝑰 + 𝝃𝒊

𝑻𝒇𝒎𝑮𝟒𝑬𝑰𝑰 − 𝝃𝒊
𝑻𝒇𝒎𝑮𝟓𝑭𝑰𝑰 = 0 (A.3.8) 

𝜹𝒊,𝝅𝑮𝟕𝑫𝑰 + 𝝈𝒊,𝝅𝑮𝟕𝑭𝑰 − 𝑰𝑸𝑪𝑰𝑰 − 𝑰𝑸 ln(𝑅2,𝑠)𝑫𝑰𝑰 = 0 (A.3.9) 

𝜼𝒊,𝝅𝑮𝟕𝑫𝑰 + 𝝃𝒊,𝝅𝑮𝟕𝑭𝑰 − 𝑰𝑴𝑸𝑬𝑰𝑰 = 0 (A.3.10) 

𝑰𝑲𝒊 𝑹𝟐 = diag(𝑅2,1, 𝑅2,2, … , 𝑅2,𝑄)𝑄𝐾×𝑄𝐾 (A.3.11) 

𝛿(𝑖, 𝑘) =
1

𝜋
∫ cos(𝑘𝜃)𝑑𝜃

𝜃𝑖+𝛽𝑖

𝜃𝑖

 (A.3.12) 

𝜹𝒊 = (𝛿(𝑖, 𝑘), 𝛿(𝑖, 𝑘),… , 𝛿(𝑖, 𝑘))
𝑄×𝑄𝐾

 (A.3.13) 
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𝜎(𝑖, 𝑘) =
1

𝜋
∫ sin(𝑘𝜃)𝑑𝜃

𝜃𝑖+𝛽𝑖

𝜃𝑖

 (A.3.15) 

𝜂(𝑚, 𝑘, 𝑖) =
1

𝜋
∫ cos(𝑘𝜃)

𝜃𝑖+𝛽𝑖

𝜃𝑖

· cos (𝑓𝑚,𝑖(𝜃 − 𝜃𝑖)) 𝑑𝜃 (A.3.16) 

𝜼𝒊 = [
𝜂(𝑚, 𝑘, 1) ⋯ 𝜂(𝑚, 𝑘, 1)

⋮ ⋱ ⋮
𝜂(𝑚, 𝑘, 𝑄) ⋯ 𝜂(𝑚, 𝑘, 𝑄)

]

𝑄𝑀×𝑄𝐾

 (A.3.17) 

𝜼𝒊,𝝅 = cos (
2𝜋

𝛽𝑖
𝜼(𝑚, 𝑘, 1),

2𝜋

𝛽𝑖
𝜼(𝑚, 𝑘, 2), … ,

2𝜋

𝛽𝑖
𝜼(𝑚, 𝑘, 𝑄))

𝑄𝑀×𝑄𝐾

 (A.3.18) 

𝜉(𝑚, 𝑘, 𝑖) =
1

𝜋
∫ sin(𝑘𝜃)

𝜃𝑖+𝛽𝑖

𝜃𝑖

· cos (𝑓𝑚,𝑖(𝜃 − 𝜃𝑖)) 𝑑𝜃 (A.3.19) 

𝒇𝒎,𝒊 = 𝑓𝑚,𝑖 ∙ 𝑰𝑴 (A.3.20) 

𝒇𝒎 = diag (𝒇𝒎,𝒊(1), 𝒇𝒎,𝒊(2),… , 𝒇𝒎,𝒊(𝑄)) (A.3.21) 

𝑮𝟒 = diag(𝒈𝟒(1), 𝒈𝟒(2), … , 𝒈𝟒(𝑄))𝑄𝑀×𝑄𝑀 (A.3.22) 

𝒈𝟒(𝒊) = 𝑰𝑴 ∙ (
𝑈𝑓𝑚,𝑖(𝑅2,𝑠, 𝑅3,𝑠)

𝑋𝑓𝑚,𝑖(𝑅2,𝑠, 𝑅3,𝑠)
) (A.3.23) 

  

𝜹𝒊,𝝅 = diag (
𝜋

𝛽𝑖
𝛿(1, 𝑘),

𝜋

𝛽𝑖
𝛿(2, 𝑘)… ,

𝜋

𝛽𝑖
𝛿(𝑄, 𝑘))

𝑄×𝑄𝐾

 (A.3.14) 
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A.3.2. Interface II – III 

Similar to section A.3.1, the respective boundary conditions applied to the interface between 

the Region II subdomains and Region III air-gap variants are as follows: 

The application of boundary equations (A.3.26), (A.3.27) to (A.2.9), (A.2.10) results in the 

following expressions: 

𝐶𝐼𝐼𝐼,𝑖,𝑘 =
1

𝜋
∫ 𝐻𝜃,𝑖

(𝐼𝐼)
|
𝑟=𝑅3,𝑠

∙ cos(𝑘𝜃) 𝑑𝜃

2𝜋

0

 (A.3.28) 

𝐸𝐼𝐼𝐼,𝑖,𝑘 =
1

𝜋
∫ 𝐻𝜃,𝑖

(𝐼𝐼)
|
𝑟=𝑅3,𝑠

∙ sin(𝑘𝜃) 𝑑𝜃

2𝜋

0

 (A.3.29) 

 

 

𝒈𝟓(𝒊) = 𝑰𝑴 ∙ (
2

𝑋𝑓𝑚,𝑖(𝑅2,𝑠, 𝑅3,𝑠)
) (A.3.24) 

𝒈𝟕(𝒊) = 𝑰𝑲 ∙ (
𝑅2,𝑠
𝑘

𝑈𝑘(𝑅2,𝑠, 𝑅1)

𝑋𝑘(𝑅2,𝑠, 𝑅1)
) (A.3.25) 

              𝐻𝜃,𝑖
(𝐼𝐼𝐼)

|
𝑟=𝑅3,𝑠

= 𝐻𝜃
(𝐼𝐼)
|
𝑟=𝑅3,𝑖=1→𝑅3,𝑖=𝑄

 (A.3.26) 

 𝐴𝑖
(𝐼𝐼)
|
𝑟=𝑅3,𝑠

= 𝐴𝑖
(𝐼𝐼𝐼)

|
𝑟=𝑅3,𝑠

 (A.3.27) 
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Development of equations (A.3.28) – (A.3.31), expressed in matrix form, leads to (A.3.32) – 

(A.3.35). 

where 

 

 

 

𝐶𝐼𝐼,𝑖 + 𝐷𝐼𝐼,𝑖 ln(𝑅3,𝑠) =  
1

𝛽𝑖
∫ 𝛢𝑖

(𝐼𝐼𝐼)
|
𝑟=𝑅3,𝑠

𝑑𝜃

𝜃𝑖+𝛽𝑖

𝜃𝑖

 (A.3.30) 

𝐹𝐼𝐼,𝑖 =
2

𝛽𝑖
∫ 𝛢𝑖

(𝐼𝐼𝐼)
|
𝑟=𝑅3,𝑠

∙ cos(𝑓𝑚,𝑖(𝜃 − 𝜃𝑖)) 𝑑𝜃

𝜃𝑖+𝛽𝑖

𝜃𝑖

 (A.3.31) 

−𝑰𝑲𝒊 𝑹𝟑𝑪𝑰𝑰𝑰 + 𝜹𝒊
𝑻𝑫𝑰𝑰 + 𝜼𝒊

𝑻𝒇𝒎𝑮𝟓𝑬𝑰𝑰 − 𝜼𝒊
𝑻𝒇𝒎𝑮𝟒𝑭𝑰𝑰 = 0 (A.3.32) 

 −𝑰𝑲𝒊 𝑹𝟑𝑬𝑰𝑰𝑰 + 𝝈𝒊
𝑻𝑫𝑰𝑰 + 𝝃𝒊

𝑻𝒇𝒎𝑮𝟓𝑬𝑰𝑰 − 𝝃𝒊
𝑻𝒇𝒎𝑮𝟒𝑭𝑰𝑰 = 0 (A.3.33) 

𝜹𝒊,𝝅𝑮𝟖𝑪𝑰𝑰𝑰 + 𝜹𝒊,𝝅𝑮𝟗𝑫𝑰𝑰𝑰 + 𝝈𝒊,𝝅𝑮𝟖𝑬𝑰𝑰𝑰 + 𝝈𝒊,𝝅𝑮𝟗𝑭𝑰𝑰𝑰 − 𝑰𝑸𝑪𝑰𝑰 − 𝑰𝑸 ln(𝑅3,𝑠)𝑫𝑰𝑰 = 0 (A.3.34) 

𝜼𝒊,𝝅𝑮𝟖𝑪𝑰𝑰𝑰 + 𝜼𝒊,𝝅𝑮𝟗𝑫𝑰𝑰𝑰 + 𝝃𝒊,𝝅𝑮𝟖𝑬𝑰𝑰𝑰 + 𝝃𝒊,𝝅𝑮𝟗𝑭𝑰𝑰𝑰 − 𝑰𝑴𝑸𝑭𝑰𝑰 = 0 (A.3.35) 

𝒈𝟖(𝒊) = 𝑰𝑲 ∙ (
𝑅3,𝑠
𝑘

𝑈𝑘(𝑅3,𝑠, 𝑅4)

𝑋𝑘(𝑅3,𝑠, 𝑅4)
) (A.3.36) 

𝒈𝟗(𝒊) = 𝑰𝑲 ∙ (
𝑅4
𝑘

2

𝑋𝑘(𝑅4, 𝑅3,𝑠)
) (A.3.37) 
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A.3.3. Interface III – Stator 

The stator is not directly considered as a region. It is approximated by defining its field intensity 

at the Region III outer boundary (𝑅5), as shown in [105] (A.3.39). Therefore, at that radius the 

following boundary condition applies.  

where 𝐻𝑘 is the peak value of the 𝑘th harmonic, 𝑝 the number of stator pole pairs and 𝜑0 the 

angular position. In this analysis, a sinusoidal stator field distribution is assumed, i.e., 𝐾 = 1. 

Algebraic manipulation of (A.2.10) along with boundary conditions (A.3.38) results in the 

following equations, expressed in matrix form. 

where 

 

𝐻𝜃,𝑖
(𝐼𝐼𝐼)

|
𝑟=𝑅5

= 𝐻𝜃
(𝑆𝑡𝑎𝑡𝑜𝑟)

|
𝑟=𝑅5

 (A.3.38) 

𝐻𝜃
(𝑆𝑡𝑎𝑡𝑜𝑟)

|
𝑟=𝑅5

=∑𝐻𝑘 ∙ 𝑐𝑜𝑠(𝑘𝑝(𝜃 − 𝜑0))

𝐾

𝑘=1

 (A.3.39) 

𝑰𝑲𝑸𝑫𝑰𝑽 = 𝑯𝜽𝒄𝒌
(𝑺𝒕𝒂𝒕𝒐𝒓)

 (A.3.40) 

𝑰𝑲𝑸𝑭𝑰𝑽 = 𝑯𝜽𝒔𝒌
(𝑺𝒕𝒂𝒕𝒐𝒓)

 (A.3.41) 

𝑯𝜽𝒄𝒌
(𝑺𝒕𝒂𝒕𝒐𝒓)

= [ℎ𝜃𝑐𝑘
(𝑆𝑡𝑎𝑡𝑜𝑟)

, ℎ𝜃𝑐𝑘
(𝑆𝑡𝑎𝑡𝑜𝑟)

, … , ℎ𝜃𝑐𝑘
(𝑆𝑡𝑎𝑡𝑜𝑟)

 ]
𝑄𝐾×1

 (A.3.42) 

𝑯𝜽𝒔𝒌
(𝑺𝒕𝒂𝒕𝒐𝒓) = [ℎ𝜃𝑠𝑘

(𝑆𝑡𝑎𝑡𝑜𝑟), ℎ𝜃𝑠𝑘
(𝑆𝑡𝑎𝑡𝑜𝑟), … , ℎ𝜃𝑠𝑘

(𝑆𝑡𝑎𝑡𝑜𝑟) ]
𝑄𝐾×1

 (A.3.43) 
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A.3.4. Overall Solution 

The equations developed in this chapter can be solved as a system of linear equations, to deduce 

all the unknown Fourier coefficients. These can then be used to calculate the flux distributions of 

each Region III variant, as follows: 

𝐵𝑟,𝑖
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𝑋𝑘(𝑅3,𝑠, 𝑅4)
+ 𝐹𝐼𝐼𝐼,𝑖

𝑅4
𝑟

𝑈𝑘(𝑟, 𝑅3,𝑠)
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𝐵𝜃,𝑖
(𝐼𝐼𝐼)(𝑟, 𝜃) = ∑−(𝐶𝐼𝐼𝐼,𝑖
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𝑟
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The resultant and total Region III air-gap flux distribution is then synthesised by concatenating 

the flux distributions of each variant for the angular domain they occupy, similar to Chapter 3. 

A.4. Variable Reluctance Machine Analytical Model – Validation 

The accuracy of this analytical model is validated by comparing a solution of two deviated 

VRMs to their 2D linear FEA equivalent, considering infinite permeability in ferromagnetic 

ℎ𝜃𝑐𝑘
(𝑆𝑡𝑎𝑡𝑜𝑟)(𝑘, 1) =

𝜇0
𝜋
∫ 𝐻𝑘 ∙ cos(𝑘𝜃) cos(𝑘𝑝(𝜃 − 𝜑0)) 𝑑𝜃

2𝜋

0

 (A.3.44) 

ℎ𝜃𝑠𝑘
(𝑆𝑡𝑎𝑡𝑜𝑟)(𝑘, 1) =

𝜇0
𝜋
∫ 𝐻𝑘 ∙ sin(𝑘𝜃) cos(𝑘𝑝(𝜃 − 𝜑0)) 𝑑𝜃

2𝜋

0
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regions. The specifications of the sample VRMs, along with their respective errors are outlined in 

Table 20 and Table 21. 

In all regions the first 200 harmonics are considered. The torque is calculated at the middle of 

the smallest airgap section (i.e., at a radius between the stator and the most outwardly deviated 

pole) for both the analytical model and the FEA. The resultant flux distribution plots of both 

methods are provided in Figure A-5 and Figure A-6. The accuracy of the model, depending on the 

number of harmonics considered, is shown in Figure A-7. 

In both validation cases an excellent correlation between the analytical model and FEA can be 

observed. This proves that the effect of such asymmetric deviations on the flux distribution in a 

VRM can be accurately tracked through the presented analytical model.  

 

 

 

 

Table 20      VRM Parameters for Model Validation 

Variables VRM 1 VRM 2 

Number of rotor poles 6 8 

Stator pole pairs 3 4 

Rotor OD (mm) 140 100 

Rotor poles length (mm) 30 20 

Rotor poles span angle (deg) 40 28.5 

Air-gap length (mm) 0.5 0.5 

Axial length (mm) 100 100 

Peak stator field intensity (A/m) 7.5·104 1·105 
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Figure A-6 Analytical vs linear FEA flux density – VRM No. 2 

Figure A-5 Analytical vs linear FEA flux density – VRM No. 1 
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The dominant feature of this method, which is its high computational efficiency, is illustrated 

further in Figure A-7. This figure shows the accuracy in the stall torque calculation along with the 

computational time for an increasing number of harmonics considered. The plot indicates that 

around 100-120 harmonics are required to achieve converged stall torque results, with the 

respective computational time being less than 2 s for both VRMs. On the contrary, the equivalent 

FEA was completed in 2:10 minutes.  

A.5. Summary 

In this chapter the asymmetric CMG analytical model of Chapter 3 has been adapted to a VRM 

application. It has been noted that, similar to the model of Chapter 3, the assumptions adopted 

introduce some limitations. These include the inability to take into account the saturation effects, 

due to the infinite permeability assumption, and the creation of discontinuous boundaries between 

regions. The effects of these discontinuities are typically very small, however in studies 

Figure A-7 Model computational speed and accuracy  
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investigating larger positional deviations of the iron poles, their effect may be more prominent. 

However, it has been shown that the model definitions of Chapter 3, together with the selected 

boundary conditions along with their treatment (e.g., mapping of the asymmetric Region II field 

intensity to the radially symmetric boundaries of each Region III variant) are still valid. Two 

deviated VRMs of different nominal parameters have been used to prove the accuracy of the 

model. It was shown that excellent correlation is achieved with linear FEA, under the same 

assumption of an infinite permeability in the ferromagnetic regions. In addition to the high level 

of accuracy, this flexible method offers a significant increase in computational efficiency, being 

more than an order of magnitude faster compared to linear FEA.  

 

 

Table 21      Parameter Error for VRM Model Validation 

Variable Rotor Pole Error 

VRM 1 

 

 No. 1 No. 2 No. 3 No. 4 No. 5 No. 6   

Length (mm) -0.007 0.006 0.060 0.046 -0.023 0.051   

Span angle (deg) 0.012 -0.001 0.012 -0.003 -0.002 0.025   

Radial position (mm) 0.090 -0.161 0.096 0.2174 0.065 0.138   

Angular position (deg) -0.072 0.245 -0.301 0.115 0.043 -0.174   

VRM 2 

 No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 

Length (mm) 0.012 -0.005 0.005 -0.013 0.015 -0.019 -0.018 -0.014 

Span angle (deg) 0.024 0.024 0.011 -0.020 0.012 0.027 0.008 0.017 

Radial position (mm) 0.043 0.042 -0.115 -0.004 -0.022 0.084 0.146 0.148 

Angular position (deg) -0.392 0.192 0.043 -0.101 0.187 -0.228 -0.014 -0.032 
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Appendix B – Publication 1 
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