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Abstract 

It is unclear whether observational associations between smoking and caffeine 

consumption during pregnancy and offspring mental health problems are causal or 

confounded. More robust evidence is needed to enable parents to make an 

informed choice about behaviours during pregnancy. Specifically, for caffeine 

consumption during pregnancy – a behaviour that is strongly correlated with 

smoking – pregnancy guidelines are unclear, leading to confusion and uncertainty 

for expecting parents. Understanding whether smoking and caffeine consumption 

during pregnancy are causally related to offspring mental health would strengthen 

the causal evidence base. 

The identification of a molecular pathway that could explain how prenatal 

exposures become biologically embedded to increase the risk for offspring health 

outcomes could add to the evidence for a causal relationship. Despite a 

hypothesised role for DNA methylation in mediating the link between prenatal 

exposures and mental health outcomes, very few studies have tested this 

hypothesis. In this thesis, I applied genetically informed analyses, as well as 

examined DNA methylation as a potential biological mechanism, to understand 

whether prenatal smoking and caffeine exposure are causally related to mental 

health outcomes.  

The results of this thesis indicate that observational associations between prenatal 

smoking exposure and externalising problems are likely to be confounded by a 

shared genetic liability between (maternal) smoking and (offspring) risk-seeking 

personality traits, in turn affecting offspring mental health outcomes. I found little 

evidence for associations between prenatal caffeine exposure and mental health 

outcomes. In line with these results, I found no evidence for a causal contribution 

of prenatal smoking- and caffeine-associated DNA methylation to offspring 

internalising problems. These results are in accordance with recent research, 

which indicates that, given the currently available technologies, DNA methylation 

may be more valuable as a biomarker for prenatal exposures and mental health 

outcomes than for understanding pathways to mental health problems. 
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Chapter 1  – Introduction 

1.1 Chapter overview 

In this chapter, I review studies that examine the hypothesis of a potential causal 

effect of smoking and caffeine consumption during pregnancy on offspring mental 

health outcomes, summarizing research applying different study designs, 

including observational, genetic, and epigenetic studies. Next, I outline the theory 

that motivated the investigation of offspring DNA methylation as a potential 

mediator of the associations under investigation. Lastly, I describe the limitations 

of the current evidence and explain how the investigation of a molecular 

mechanism linking intrauterine smoking and caffeine exposure to offspring 

mental health outcomes could add to the causal evidence base of this relationship. 

1.2 Developmental Origins of Health and Disease hypothesis and 

offspring mental health outcomes 

The Developmental Origins of Health and Disease (DOHaD) hypothesis focusses 

on investigating how the quality of the early environment (pre- and post-natal) can 

shape offspring’s susceptibility to health problems later in life (Wadhwa et al., 

2009). One famous example of DOHaD research is the investigation of the effects 

of the Dutch famine at the end of World War II in the Netherlands on offspring’s 

later health outcomes (Lumey et al., 2007). Data on this event allowed researchers 

to study the effects of deprivation of crucial nutrients and exposure to excessive 

stress during pregnancy. Results of this research indicated that malnutrition and 

stress during pregnancy led to increased risk for numerous diseases in offspring, 

including mental health problems, such as schizophrenia and affective disorders 

(Hoek et al., 1998; Lumey et al., 2007). Ever since, the interest in the effects of 

exposures early in development has rapidly increased, and there is a large and 

growing body of work in the fields of psychology and psychiatry investigating the 

effect of exposures during pregnancy on offspring mental health outcomes 

(Abdul-Hussein et al., 2020; Gage et al., 2016; Lieshout & Krzeczkowski, 2016). 

These studies are based on the hypothesis that the quality of the prenatal 

environment “programmes” offspring’s susceptibility to mental health problems 

(Lieshout & Krzeczkowski, 2016; O’Donnell & Meaney, 2017). In line with this 

hypothesis, this thesis explores whether maternal smoking and caffeine 
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consumption during pregnancy have a causal effect on offspring’s mental health 

outcomes (potential mechanisms are outlined in section 1.7). 

1.3 Mental health problems in childhood and adolescence 

Child mental health problems are commonly divided into externalising and 

internalising behaviour problems (Achenbach et al., 2016; Angold et al., 1999). 

The former describes mental health problems that manifest through the child 

expressing behaviours that act on the external environment and incorporates 

mental illnesses that describe behaviours such as impulsivity, aggression, and 

substance use. The latter describes mental health problems that include behaviours 

that are affecting the child’s inner state rather than the outer environment, such as 

withdrawal, anxiety, and depression symptoms. The concepts of externalising and 

internalising problems are commonly applied in research as well as clinical 

practice of child psychology and psychiatry (Achenbach et al., 2016). While 

externalising and internalising problems have been found to capture two different 

constructs (Achenbach, 1966), they are not mutually exclusive, might change over 

the course of development, and often co-occur (Angold et al., 1999; Bubier & 

Drabick, 2009; Sallis et al., 2019). Recent research has even proposed that the 

high number of comorbidities of diagnoses of mental health problems can be 

summarised into one common general psychopathology factor (or P-factor). The 

P-factor combines internalising and externalising problems and focuses on 

understanding the joint impact of both externalising and internalising problems in 

children (Murray et al., 2016; Sallis et al., 2019). Shared genetic factors 

influencing many mental health problems have been proposed as an explanation 

for the P-factor (Lahey et al., 2011). However, even after accounting for the 

common variance of externalising and internalising problems, a significant 

amount of variance unique to externalising and internalising problems remains 

(Murray et al., 2016). A study combining data from three large European cohort 

studies has found that in terms of quality of life later in life, the P-factor, 

combining shared variance of internalising and externalising problems during 

childhood, was the strongest predictor for negative outcomes. However, the 

unique variance of externalising problems was not associated with negative 

outcomes later in life. Despite this, the unique variance of internalising problems 

was still predictive of negative outcomes, including depression, anxiety, and 
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wellbeing in early adulthood (Sallis et al., 2019). Internalising problems are more 

difficult to assess, especially in young children (Goodman & Scott, 1999; 

Maurice-Stam et al., 2018). Both externalising and internalising problems in 

children are most commonly assessed through interviews or parent-based self-

report questionnaires. Whereas externalising behaviours can be observed by 

external reporters (e.g., teachers), internalising behaviour problems are less 

evident to external reporters, and require introspective skills of the individual to 

report. In addition, parents’ own mental health problems have been found to 

impact reporting of their children’s mental health outcomes (Gartstein et al., 2009; 

Najman et al., 2001) and the importance of using multiple informants on child 

internalising and externalising problems has been stressed to remove unique 

variance of the type of informant (Sallis et al., 2019). In sum, both externalising 

and internalising problems in childhood, specifically if co-occurring, are 

associated with negative health outcomes later in life, stressing the need to detect 

early manifestations of externalising and internalising problems and their 

determinants.  

1.4 Prevalence of offspring externalising and internalising problems 

Mental health problems in young people are significantly contributing to the 

global burden of health and disease (Erskine et al., 2015). It is estimated that 

about 50% of mental health problems have their origin in childhood (under the 

age of 14), but are often not treated until adulthood (Dick & Ferguson, 2015; Patel 

et al., 2007). In the United Kingdom (UK), national representative surveys were 

conducted to estimate the prevalence of mental health problems amongst young 

people aged 5 to 19 years. Mental health diagnoses of young people were derived 

according to diagnostic criteria of the International Classification of Disease 

(World Health Organization, 1992) and the Diagnostic and Statistical Manual of 

Mental Disorders (American Psychiatric Association, 2013) in the years 1999 (N 

= 10,438; obtained from Child Benefit records) (Meltzer et al., 2000), 2004 (N = 

12,294; data obtained from Child Benefit records) (Green et al., 2005) and 2017 

(N = 18,029 children with data in National Health Service (NHS) Patient register) 

(Sadler et al., 2018). The comparison of prevalence rates of these three reports 

showed a slight increase in the diagnosis of any mental health problem between 
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the ages 5 and 15, with a prevalence of 10% in 1999, 10% in 2004 and 11% in 

2017 (Figure 1.1) (Sadler et al., 2018).  

 

 

Figure 1.1 Prevalence rates of mental health problems in young people from 

1999 to 2017 (credit: Sadler et al., 2018). 

 

As shown in Figure 1.1, whereas externalising behaviour problems remained 

relatively stable over time, internalising behaviour problems increased from 

approximately 4% in 1999 and 2004, to approximately 6% in 2017 (Sadler et al., 

2018). The most recent survey found that in 2017, 1 out of 12 children (age range 

5 to 19) in England suffered from an internalising disorder, such as anxiety and 

depression symptoms. Prevalence rates for internalising disorders were higher for 

children identified as girls (10%) than children identified as boys (6%). In 

contrast, externalising problems were more commonly diagnosed in children 

identified as boys than girls. One out of 20 children met the diagnosis for a 

conduct disorder (prevalence: boys = 6%; girls = 3%) and 1 out of 6 children met 

the diagnosis for a hyperactivity disorder (prevalence: boys = 3%; girls = 1%) 

(Sadler et al., 2018). Overall, childhood mental health problems appear to have 

slightly increased over the past 20 years (Sadler et al., 2018) and prevention 
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strategies have been proposed to be the most efficient strategy to decrease mental 

health problems in children (Erskine et al., 2015). Successful prevention of mental 

health problems in children requires the identification of modifiable and 

quantifiable risk factors early in development (Erskine et al., 2015). This thesis 

will investigate the potential of smoking and caffeine consumption during 

pregnancy as a modifiable target for preventing offspring mental health disorders. 

1.5 Prevalence of smoking and caffeine consumption during pregnancy 

Before discussing the relationship of maternal smoking and caffeine consumption 

on offspring mental health problems more closely, I am going to elaborate on the 

relevance to public health by highlighting the prevalence of smoking and caffeine 

consumption during pregnancy with a particular focus on the UK and other 

European countries. Public awareness of the harmful effects of smoking during 

pregnancy has been increasing over the last 40 years and European strategies have 

been developed to promote guidelines for smoking cessation during pregnancy 

(Tobacco Free Initiative (World Health Organization), 2013). However, any effect 

of caffeine is less well understood, and most pregnancy guidelines recommend 

limiting caffeine consumption during pregnancy (discussed in more detail in 

section 1.9.1) (Reyes & Cornelis, 2018). Given the prevalence of smoking and 

caffeine consumption, an effect on child mental health, however small, would be 

important to note and may inform prevention and intervention strategies for 

smoking and caffeine use during pregnancy and offspring mental health problems. 

1.5.1 Smoking 

Despite established detrimental effects of smoking during pregnancy on offspring 

health outcomes, including low birth weight, prematurity and stillbirth, and 

guidelines recommending smoking cessation during pregnancy, this behaviour is 

still quite prevalent in Europe. Stopping smoking early during pregnancy has been 

found to substantially reduce the risk for offspring health outcomes (Diamanti et 

al., 2019, 2019; Giglia et al., 2006; Robinson et al., 2010; Smedberg et al., 2014). 

Even though most smoking women want to stop smoking during pregnancy, only 

around 30% of mothers who have smoked prior to pregnancy manage to stop 

smoking during pregnancy (Giglia et al., 2006; Robinson et al., 2010).  
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An extensive meta-analysis reviewed 295 studies that have reported the 

prevalence of smoking during pregnancy across 43 countries over the past 30 

years (Lange et al., 2018). Studies were included if primary data was available, 

samples contained lifetime non-smokers, and they were representative of the 

general population of the corresponding country (national/regional representative 

surveys or studies based on hospital data with complete reporting of births within 

a specific timeframe). Countries for which multiple studies were found, estimates 

were meta-analysed using random effects. Counties for which merely one or no 

study was available, regression models were used to predict the prevalence of 

smoking during pregnancy using country-specific indicators (e.g., country gross 

domestic product, gender inequality-index, prevalence of women smoking outside 

of pregnancy, etc.). These county estimates were then meta-analysed to estimate 

global and World Health Organization (WHO) region prevalence of smoking 

during pregnancy. Whereas the prevalence of smoking during pregnancy globally 

decreased over time and was estimated to be less than 2%, the prevalence in 

European regions was highest, with 8% of women smoking during pregnancy. 

The study estimated that globally, amongst women who report smoking during 

pregnancy, more than 70% of women do so daily. Overall, there is evidence that 

women who smoke during pregnancy substantially reduce the number of 

cigarettes smoked per day (Ershoff, 2000), with most women smoking fewer than 

10 cigarettes per smoking day (Lange et al., 2018; Smedberg et al., 2014). In fact, 

for the European region it was estimated that only 30% of women who smoked 

daily before becoming pregnant continued to smoke daily during pregnancy. 

Prevalence rates of smoking during pregnancy vary substantially between and 

within countries and regions (Lange et al., 2018), reflecting the complexity of this 

behaviour and how embedded it is in socioeconomic structures. For instance, 

Lange and colleagues (Lange et al., 2018) report that within the UK on average 23% 

of women smoke at some point during pregnancy (N studies = 19, range sample 

size: 82-16,865) and that the meta-analysed UK studies show substantial 

heterogeneity (I2 = 96%, P-value < 0.0001) (Lange et al., 2018). Prevalence rates 

across UK studies ranged between 14% in a study assessing smoking during 

pregnancy between 2007 to 2010 (Cooper et al., 2013), to 40%, in a study that 
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assessed smoking during pregnancy between 1983 to 2003 (Delpisheh et al., 

2007).  

1.5.2 Caffeine  

The effects of intrauterine caffeine exposure on offspring health outcomes are not 

well understood yet, which is reflected in lack of evidence-based pregnancy 

guidelines for caffeine use during pregnancy (Reyes & Cornelis, 2018). There are 

no nationally representative studies available for caffeine consumption during 

pregnancy (Verster & Koenig, 2018). Prevalence rates from prospective cohort 

studies suggests that the majority of women (96%) reduce or stop caffeine 

consumption during pregnancy, and 65% show caffeine aversion in the beginning 

of pregnancy (Lawson et al., 2002, 2004). Women that reduce their caffeine 

consumption during pregnancy consume on average only half the amount of 

caffeine that they consumed before becoming pregnant (Knight et al., 2005; 

Lawson et al., 2004). However, prospective cohort studies report that 60% to 75% 

of women continue consuming caffeine during pregnancy, with around 15% 

consuming more than 200 mg of caffeine a day (Chen et al., 2014; Reyes & 

Cornelis, 2018; Weng et al., 2008). Caffeine consumption is culturally bound, and 

the sources of caffeine may vary between different countries and be differentially 

socially patterned (Miyake et al., 2019; Reyes & Cornelis, 2018; Treur et al., 

2016). For instance, the most commonly consumed source of caffeine in Europe is 

coffee, except for the United Kingdom (UK), where consumption of caffeinated 

black tea is more common than coffee (Reyes & Cornelis, 2018; Treur et al., 

2016). In Japan and China, the most common source of caffeine is green tea and 

in South America it is Yerba Mate (Reyes & Cornelis, 2018; Treur et al., 2016). 

Whereas drinks containing natural sources of caffeine were found to be culturally 

specific, caffeinated soda and energy drinks were found to be similarly common 

across cultures (Reyes & Cornelis, 2018). A study comparing the relationship 

between smoking and caffeine consumption using data from prospective birth 

cohorts from the Netherlands and the UK found that caffeinated tea consumption 

in the Netherlands was associated with higher education and not associated with 

smoking initiation or smoking persistence. Yet in the UK, caffeinated tea 

consumption was not associated with education or socio-economic position 

(SEP), but with smoking initiation and persistence (Treur et al., 2016). This 
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indicates how culturally bound caffeine consumption is and that consumption can 

be differentially socially patterned even within countries that are perceived to be 

culturally comparable. 

1.6 Observational evidence of prenatal smoking and caffeine exposure 

and mental health outcomes  

1.6.1 Smoking  

Several observational epidemiological studies have investigated the relationship 

between smoking during pregnancy on offspring mental health outcomes (e.g., see 

review by Tiesler & Heinrich, 2014). Most of this research stems from 

longitudinal birth cohort studies, which are a useful resource to study the impact 

of early exposures on later offspring health outcomes, while allowing to control 

for potential confounding variables, eliminating reverse causation and recall bias 

as potential alternative explanations for any observed association. After 

randomised controlled trials (RCTs), which are often unethical and/or unfeasible 

for investigating intrauterine effects, they are the best source of evidence for 

interrogating these causal questions (Davey Smith, 2008). 

Data from the Finnish medical birth register, comprising a large representative 

sample of around 180,000 mothers and their children, found that the prevalence 

rates for offspring obtaining any psychiatric diagnosis between the ages 9 to 20 

years increased in a dose-response manner with the average number of cigarettes 

smoked per day during pregnancy (Ekblad et al., 2010). The risk of having any 

psychiatric disorder was 14% for offspring whose mothers did not report smoking 

during pregnancy, 21% for offspring whose mothers smoked 10 or fewer 

cigarettes per day, and 25% for offspring whose mothers smoked more than 10 

cigarettes per day.  

In contrast to the number of studies that investigated the relationship of maternal 

smoking during pregnancy and offspring externalising problems, comparatively 

few have investigated its association with offspring internalising problems (Dolan 

et al., 2016; Easey & Sharp, 2021; Tiesler & Heinrich, 2014). A systematic 

review investigating prenatal and early postnatal risk factors for externalising 

behaviour disorders identified smoking during pregnancy as one of the most 
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researched prenatal risk factors. Out of 11 studies that investigated smoking 

during pregnancy on offspring externalising problems, 8 reported evidence for an 

association with offspring attention deficit hyperactivity disorder (ADHD) 

symptoms (Latimer et al., 2012). Another review that looked at externalising and 

internalising problems in children and intrauterine smoke exposure also reported 

evidence for an association between smoking during pregnancy and offspring 

externalising problems, but there was not sufficient evidence to confirm a causal 

effect (Tiesler & Heinrich, 2014). However, the number of studies investigating 

the association of smoking during pregnancy and internalising problems in 

offspring was underrepresented and mixed findings were reported in those studies 

inspecting an effect on internalising problems (Tiesler & Heinrich, 2014). A 

recent meta-analysis of eight cohorts and two case control studies found evidence 

for an association between smoking during pregnancy and an increased risk of 

offspring mood disorders (bipolar disorder: RR = 1.44, 95% CI = 1.15 to 1.80; 

and depression: RR = 1.44, 95% CI = 1.21 to 1.71) (Duko et al., 2020). The forest 

plot of this meta-analysis is displayed in Figure 1.2. 

 

Figure 1.2. Forest plot of the studies included in the meta-analysis by Duko 

et al. investigating prenatal smoking and the risk for offspring mood 

disorders (credit: Duko et al., 2020). 



Chapter 1 – Introduction 

 10 

Whereas the meta-analysis by Duko and colleagues (Duko et al., 2020) focussed 

on diagnoses of mood disorders (age range 8 to 41 years) instead of behavioural 

manifestations of internalising problems, other studies have specifically inspected 

the association between prenatal smoking and risk for childhood internalising 

problems. A study using the Norwegian Mother and Child Cohort (MoBa; N = 

90,040 mother-child pairs) found that early smoking during pregnancy increases 

the risk for internalising problems in toddlers (1.5 to 3 years) in a dose-response 

manner, even when controlling for important confounding variables (paternal 

smoking, maternal education, maternal age, maternal depressive and anxiety 

symptoms, maternal alcohol consumption, parity, gestational age at birth, and 

smoking in previous pregnancies) (Moylan et al., 2015). This is in line with some 

previous research (Ashford et al., 2008b; Ekblad et al., 2010; Indredavik et al., 

2007; Menezes et al., 2013), but in contrast to other studies which did not find 

evidence for an association between maternal smoking and offspring internalising 

problems (Brion et al., 2010; Höök et al., 2006; Lavigne et al., 2011; Roza et al., 

2009). 

1.6.2 Caffeine  

Few research studies have investigated the effects of caffeine consumption during 

pregnancy on offspring externalising and internalising problems, generally 

producing mixed results. Whereas some studies using data from prospective birth 

cohorts report no association with offspring outcomes after adjusting for 

covariates (Berglundh et al., 2020a; Del-Ponte et al., 2016; Linnet et al., 2009; 

Loomans et al., 2012; Miyake et al., 2019), those that found evidence for 

associations are inconsistent about effects of different timings of exposure during 

pregnancy, types of caffeine source, and type and onset of offspring problem 

behaviours (Bekkhus et al., 2010; Hvolgaard Mikkelsen et al., 2017; Klebanoff & 

Keim, 2015). For instance, data from a large Danish birth cohort study (N = 

47,491) reported evidence for an increased risk for offspring mental health 

problems at age 11 in association with high consumption of caffeinated tea and 

coffee (> 8 cups per day) during the second but not during the third trimester of 

pregnancy (15 weeks gestation) (Hvolgaard Mikkelsen et al., 2017). Models were 

adjusted for a variety of significant covariates, such as maternal age, body mass 

index (BMI), and smoking during pregnancy, as well as mutually adjusted for 
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either coffee or tea consumption. High consumption of caffeinated coffee was 

associated with increased risk for offspring externalising disorders (oppositional-

conduct disorders, hyperactivity-inattention disorders), whereas high consumption 

of caffeinated tea was associated with increased risk for offspring internalising 

disorders (anxiety-depressive disorders) but only oppositional-conduct disorders 

from the externalising disorders group (Hvolgaard Mikkelsen et al., 2017). Both 

high consumption of caffeinated tea and coffee were associated with increased 

risk for any psychiatric disorder. None of these associations were replicated with 

maternal caffeine consumption during the third trimester of pregnancy. When 

considering total caffeine consumption during the second and third trimester of 

pregnancy (based on caffeine content of one cup of coffee = 100 mg and one cup 

of tea = 50 mg), a significantly reduced risk for offspring oppositional-conduct 

disorder, hyperactivity-inattention disorder, and any psychiatric disorder was 

observed for low caffeine consumption (Figure 1.3).  

 

 

Figure 1.3. Risk for offspring mental health problems at the age of 11 in 

association with total maternal caffeine consumption at 15- and 30-weeks 

gestation (credit: Hvolgaard Mikkelsen et al., 2017). 
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The authors hypothesised that the slightly increased risk for offspring mental 

health problems of mothers who did not consume coffee or tea, compared to 

offspring of mothers who did consume some coffee or tea, may be explained by 

the former being more likely to consume caffeine from other sources, such as 

caffeinated soda and energy drinks. They also hypothesised that exposure during 

the second trimester may have a stronger effect on offspring’s brain development 

and therefore explain why only second trimester but not third trimester exposure 

to caffeine was associated with offspring behavioural outcomes. Despite 

acknowledging the potential for confounding through genetics or socioeconomic 

factors, the authors concluded that mothers should avoid drinking high amounts of 

caffeine during pregnancy in order to avoid behavioural problems in their 

offspring. 

In contrast, a smaller study from the US using data from around 2,000 mother-

child pairs found evidence for associations between serum paraxanthine, a 

biomarker for maternal caffeine consumption, and offspring mental health 

problems, only in the third trimester but not earlier in pregnancy (Klebanoff & 

Keim, 2015). Paraxanthine is the main metabolite of caffeine, which shows a 

similar half-life (3.5 to 5 hours), captures caffeine consumption and metabolism, 

and shows more stability over the day than serum caffeine (Klebanoff & Keim, 

2015). The study observed inconsistent associations between paraxanthine under 

20 weeks gestation and offspring mental health outcomes, with an increased risk 

for internalising problems at the age of 4 but an opposite direction of effect for 

internalising problems at the age of 7 (although not statistically significant). 

Likewise, statistical evidence for associations was found for externalising 

problems at the age of 7 but not at the age of 4. Due to these inconsistent effects 

and lack of representation of very high caffeine consumption in their sample, the 

authors concluded low to moderate amounts of caffeine during pregnancy to not 

be hazardous for offspring mental health outcomes (Klebanoff & Keim, 2015). 

Similarly, inconsistent results were reported by the Norwegian birth cohort study 

MoBa (N = 32,927), that reported evidence for associations with some offspring 

ADHD symptoms only for caffeinated soft drink but not coffee or tea 

consumption during pregnancy (Bekkhus et al., 2010). The associations with 

caffeinated soft drink consumption were only consistent across the second and 
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third trimester for offspring hyperactivity but not for inattention symptoms 

(Bekkhus et al., 2010).  

In sum, observational evidence for an effect of intrauterine exposure to smoking 

and caffeine on offspring mental health outcomes shows mixed findings and 

provides confusing recommendations for intake during pregnancy. It should be 

noted that I could not find any systematic reviews of the effects of prenatal 

caffeine exposure on offspring mental health problems. The abovementioned 

studies that found evidence for an association with offspring mental health 

problems have an increased likelihood of being false-positives, due to high 

number of tests that were run to investigate different timings of exposure and 

effects on various offspring mental health outcomes.  

1.7 Biological effects of intrauterine exposure to smoking and caffeine on 

offspring mental health development 

The observational associations between smoking and caffeine consumption during 

pregnancy could be biologically plausible, as is suggested by human and animal 

studies that investigated the chemical compounds of tobacco and caffeine and 

their potential effect on offspring’s neurodevelopment. Chemicals contained in 

tobacco and caffeine can cross the placental barrier and pregnancy related changes 

in metabolism of these chemicals further increase the risk for an effect on 

offspring’s neurodevelopment. The next section elaborates on the potential 

mechanisms underlying the association of smoking and caffeine consumption 

during pregnancy with offspring’s mental health development. 

1.7.1 Biological pathways of smoking and caffeine during pregnancy on 

offspring’s brain development 

There are several potential mechanisms by which intrauterine exposure to 

smoking might “programme” offspring’s physiological development and 

therewith increase the risk for offspring’s mental health outcomes (Lieshout & 

Krzeczkowski, 2016). Cigarettes contain over 4,000 different chemicals that could 

individually or interactively exert effects on offspring (Abbott & Winzer-Serhan, 

2012; McDonnell & Regan, 2019). In animal and human studies that investigate 

the effects of smoking on mental health and behavioural problems, nicotine is the 

most researched chemical (Abbott & Winzer-Serhan, 2012). A potential pathway 
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for how intrauterine exposure to nicotine links to behavioural problems might be 

through the activation of nicotinic acetylcholine receptors (nAChRs), which can 

influence the development of the nervous system (Abbott & Winzer-Serhan, 

2012; Smith et al., 2010). The effects of nAChRs activation on the developing 

nervous system are based on animal studies, with the majority studying effects in 

rodents, but the translation of effects to human development is difficult (Garner, 

2014; Keeler & Robbins, 2011; Kenney & Müller, 2017). Furthermore, animal 

studies suggest that intrauterine nicotine exposure might exert effects on 

offspring’s monoamine system (Blood-Siegfried & Rende, 2010; Xu et al., 2001), 

which includes the regulation of the neurotransmitters dopamine, noradrenaline, 

and serotonin, that are linked to mood and anxiety disorders (Goddard et al., 

2010) conduct disorder (Baler et al., 2008), as well as aggressive and substance 

use behaviours (Seo et al., 2008). This is supported by further animal 

experiments, which found that prenatal exposure to nicotine led to more anxiety 

type of behaviours in rodents (Abbott & Winzer-Serhan, 2012). 

In comparison to smoking, the potential teratogenic effects of caffeine on 

offspring mental health and behavioural outcomes are less well studied (Ross et 

al., 2015). Epidemiological studies of the effects of caffeine on health outcomes 

have predominantly studied the effects of caffeine through assessment of 

consumption of caffeinated coffee, neglecting that coffee contains over 1,000 

other compounds, as well as the effects of other sources of caffeine (van Dam et 

al., 2020). Similar as for smoking, most mechanistic studies investigating prenatal 

effects of caffeine on offspring health outcomes rely on animal studies (Qian et 

al., 2020). In mice, prenatal caffeine exposure has been associated with 

accumulation of caffeine in offspring’s brain and changes in neurodevelopment, 

such as persistent changes to the development of the hippocampus (Silva et al., 

2013). In humans, hippocampal differences have been found to be associated with 

psychiatric disorders, such as major depressive and bipolar disorders, and 

schizophrenia (Sala et al., 2004), as well as with internalising problems in 

children and adolescents (Andre et al., 2020; Koolschijn et al., 2013). Potential 

effects of caffeine on neurodevelopment include delayed neuronal migration and 

inflated neuronal excitability likely due to caffeine acting on the adenosine 

receptor (Fuzik et al., 2019; Silva et al., 2013). Evidence for an effect of caffeine 
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exposure during pregnancy on human neurodevelopment is limited. There is some 

evidence from human studies that report positive effects of caffeine on 

neurodevelopmental outcomes in infants (Christensen et al., 2021). For instance, 

caffeine is commonly applied as treatment of apnea in preterm infants because of 

its potential to act as an adenosine receptor antagonist and its beneficial effects on 

respiratory and neurological functioning in those children (Abdel-Hady et al., 

2015; Kua & Lee, 2017). Through caffeine’s influence on the adenosine receptor, 

it may change the regulation of neurotransmitters such as dopamine, 

noradrenaline, and serotonin (Abdel-Hady et al., 2015; Fredholm et al., 1999), and 

exert effects on mental health symptoms of depression and anxiety (Calker et al., 

2019).  

However, it remains unclear whether the neurological effects of prenatal smoking 

and caffeine that have been observed in animal studies translate to prenatal effects 

in humans, and if they do, whether they can explain the increased risk for later 

behavioural and mental health problems that have been associated with prenatal 

exposure to smoking and caffeine.  

A recent neuroimaging study conducted in the United States investigated the 

relationship between caffeine exposure during pregnancy, offspring 

psychopathology (including externalising and internalising problems) and 

neurodevelopmental outcomes in 8- to 9-year-old children (N = 1,200) 

(Christensen et al., 2021). Maternal caffeine consumption during pregnancy was 

assessed through maternal self-report 8 to 10 years post-pregnancy and therefore 

results should be interpreted with caution, as risk for recall bias is high. Evidence 

of neurological differences (differences in 2 of 27 studied fibre tracts) was found 

between children exposed and unexposed to caffeine in utero, as well as increased 

levels of psychopathology amongst exposed versus unexposed children. However, 

there was no evidence for the neurological differences mediating the relationship 

of caffeine exposure during pregnancy and childhood psychopathology.  

In sum, the above-mentioned literature highlights that smoking and caffeine 

consumption expose the fetus to various compounds that may biologically impact 

offspring’s neurodevelopment and behavioural outcomes. Though, most of these 

mechanistic studies rely on results of animal data and it is unclear whether these 
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results translate to human populations.  

1.7.2 Pregnancy related changes in tobacco and caffeine metabolism 

In order to understand the biological effects that smoking and caffeine 

consumption may have on offspring mental health, it is important to consider 

pregnancy related changes in the metabolism of nicotine and caffeine. Neither the 

placenta nor the fetus is able to metabolize nicotine or caffeine, leaving the 

clearance of these substances dependent on maternal metabolism (Bowker et al., 

2015; Grosso & Bracken, 2005; McDonnell & Regan, 2019; van Dam et al., 2020; 

Wickström, 2007; Yu et al., 2016). Whilst there may be individual differences in 

the metabolism rate of chemicals contained in cigarettes and caffeine, general 

changes during pregnancy have been observed: nicotine metabolism increases 

around the second trimester of pregnancy (Bowker et al., 2015), while caffeine 

metabolism decreases during pregnancy (Yu et al., 2016). Faster nicotine 

metabolism may cause smoking mothers to smoke more cigarettes to alleviate 

their nicotine withdrawal symptoms and may be one of the reasons why nicotine 

replacement therapy, using the same levels as used outside of pregnancy, has been 

found not to be effective during pregnancy (Bowker et al., 2015; Jauniaux et al., 

1999). In contrast, decreased metabolism of caffeine during pregnancy may lead 

mothers to reduce their caffeine intake naturally. Throughout pregnancy, the 

metabolism of caffeine gradually decreases and in the second and third trimester 

of pregnancy the half-life of caffeine can last up until 18 hours, which is about 

four times longer than outside of pregnancy (Grosso & Bracken, 2005). If mothers 

– in addition to consuming caffeine – smoke during pregnancy, their caffeine 

metabolism will increase again (Grosso & Bracken, 2005), which may allow them 

to uphold their habitual caffeine consumption. However, as most mothers who 

smoke during pregnancy were already smoking before becoming pregnant, it 

seems more plausible that mothers who smoke during pregnancy also reduce their 

caffeine consumption to some degree. Interestingly, a RCT of pregnant women (N 

= 207) consuming high levels of caffeine (> 300 mg/day), who were allocated to 

either consumption of caffeinated or decaffeinated instant coffee, did not find 

evidence of a difference in smoking behaviour between the groups (Bech et al., 

2007). However, given the small sample size of this trial, this absence of clear 

evidence could likely be due to insufficient statistical power to detect an effect. 
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Nevertheless, if this finding replicates in larger samples, it could indicate that 

changes in the metabolic rate of caffeine during pregnancy do not influence 

maternal smoking behaviour. Due to the changes of caffeine metabolism during 

pregnancy and the potential of caffeine readily crossing the placenta barrier, the 

European Food Safety Authority (EFSA) has alerted “…unborn children to be the 

most vulnerable group for adverse effects of caffeine among the general 

population.” (EFSA Panel on Dietetic Products, Nutrition & Allergies (NDA), 

2015, p. 33).  

1.7.3 Epigenetics as a pathway linking intrauterine exposure to smoking 

and caffeine on offspring mental health outcomes 

The identification of a molecular pathway that could explain how prenatal 

smoking and caffeine exposure may become biologically embedded to increase 

the risk for offspring mental health outcomes could strengthen the causal evidence 

base. Epigenetics may prove as an intermediate molecular pathway explaining 

how genes interact with environmental exposures, such as intrauterine smoking 

and caffeine exposure, to increase offspring’s risk for disease (Cortessis et al., 

2012; Perera & Herbstman, 2011). Epigenetic changes are changes in gene 

expression in the absence of modifications to the DNA sequence (Bird, 2007). 

The most studied epigenetic process is Deoxyribonucleic acid (DNA) 

methylation, which is mainly associated with gene deactivation through the 

addition of a methyl group to a cytosine-phosphate-guanine (CpG) island near to a 

gene promoter site (Bird, 2007). There is evidence that DNA methylation is 

influenced by genetic as well as environmental factors (Teh et al., 2014). 

Evidence for this stems from twin studies with genetically identical twins. 

Whereas methylation patterns of monozygotic twins were found to be similar in 

early ages, they became more dissimilar as twins grew older, especially when 

having more divergent lifestyles (Fraga, Ballestar, Paz, Ropero, Setien, Ballestar, 

Heine-Suñer, Cigudosa, Urioste, & Benitez, 2005). DNA methylation undergoes 

profound changes during embryonic development and is therefore considered a 

promising pathway that may link prenatal exposures to offspring health outcomes 

later in life (Felix et al., 2018). The effect of prenatal exposures on offspring DNA 

methylation can be tested through epigenome-wide association studies (EWAS). 

EWAS are considered a hypothesis-free approach, which tests associations with a 



Chapter 1 – Introduction 

 18 

phenotype of interest and differing levels of DNA methylation at individual CpG 

sites.  

This thesis focusses on the potential effect of maternal smoking and caffeine 

consumption during pregnancy on offspring DNA methylation and investigates 

whether these exposure-associated DNA methylation changes may increase the 

risk for offspring mental health problems. The next section reviews previous 

EWAS that have been conducted in humans to assess associations with prenatal 

smoking and caffeine exposure, as well as offspring mental health outcomes. 

1.7.3.1 EWAS of smoking and caffeine consumption during pregnancy 

Smoking during pregnancy has been found to be robustly associated with 

offspring DNA methylation assessed in offspring’s cord blood. In a large EWAS 

meta-analysis of 13 birth cohorts (N = 6,685), differing DNA methylation levels 

were detected at more than 6,000 CpG sites (Joubert et al., 2016). These DNA 

methylation differences were mostly maintained until childhood (Joubert et al., 

2016). Despite the high phenotypic correlation between smoking and caffeine 

consumption during pregnancy, no EWAS has investigated the effect of maternal 

caffeine consumption on offspring cord blood DNA methylation yet.  

1.7.3.2 EWAS of childhood mental health problems 

Studies investigating DNA methylation and childhood mental health problems 

have predominantly focussed on DNA methylation at specific gene regions that 

were selected based on an a priori hypothesis (Barker, Walton, & Cecil, 2018; 

Jones et al., 2018). Often, hypotheses of these candidate gene studies are based on 

DNA methylation differences found in animal studies (Barker, Walton, & Cecil, 

2018; Jones et al., 2018). However, for understanding the epigenetic variation 

associated with complex phenotypes, such as childhood mental health problems, 

which are influenced by the interplay of multiple genes, a hypothesis generating 

approach appears to be more appropriate. The lack of overlap between candidate 

gene and epigenome-wide DNA methylation studies of mental health phenotypes 

highlights the limited knowledge that we currently have about the molecular 

underpinnings of mental health problems in humans (Barker, Walton, & Cecil, 

2018). Whereas many EWAS have investigated the association between risk 

factors and offspring DNA methylation, only few studies have investigated the 
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association between DNA methylation and childhood mental health outcomes 

(Barker, Walton, & Cecil, 2018). A small EWAS investigated the association 

between DNA methylation in saliva of 190 children, aged 5 to 14 years, 

discordant for maltreatment. Whereas DNA methylation at three CpG sites was 

associated with depressive symptoms, no differences between DNA methylation 

levels of maltreated and non-maltreated children were observed (Weder et al., 

2014). Further, a small study of 18 monozygotic twins discordant for adolescent 

depression, found increased DNA methylation at one CpG site to be associated 

with depression, which was replicated in post-mortem brain tissue of veterans 

discordant for depression (Dempster et al., 2014). No overlap in results was 

observed between these two studies, neither between the CpG sites nor their 

annotated genes. Similar to the pattern found in observational studies, in 

comparison to internalising problems, more EWAS of externalising problems 

have been conducted (Barker, Walton, & Cecil, 2018). At birth, DNA methylation 

differences at 7 CpG sites were found to differentiate between young children’s 

conduct symptoms (N = 260) (Cecil et al., 2018), 13 CpG sites to be associated 

with childhood ADHD (N = 892) (Walton et al., 2017) and 30 CpG sites with 

oppositional defiant disorder trajectories (N = 624) (Barker, Walton, Cecil, et al., 

2018). Yet again, little overlap was observed between these differentially 

methylated CpG sites (Barker, Walton, Cecil, et al., 2018). Noteworthy, all these 

EWAS have been conducted in the same UK based birth cohort and thus 

uncertainty remains whether these findings replicate in other cohorts. A recent 

large, international meta-analysis of DNA methylation and childhood ADHD (N = 

2,374) has found DNA methylation at 9 CpG sites at birth to be associated with 

ADHD at age 7-11 years (Neumann et al., 2020). None of the CpG sites reported 

in the previous ADHD EWAS by Walton and colleagues (Walton et al., 2017) 

replicated in the study by Neumann and colleagues (Neumann et al., 2020). 

1.8 Problems with observational evidence 

The inconsistent evidence for associations between maternal smoking and 

caffeine consumption and offspring mental health outcomes is likely due to the 

majority of research being reliant on observational designs and the heterogeneous 

nature of these designs and populations studied. Due to the established adverse 

effects of smoking and the uncertainty about the effects of caffeine during 
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pregnancy, it is not possible to conduct conventional controlled trials that 

randomly allocate mothers to either consuming or abstaining from smoking or 

caffeine during pregnancy. Randomised controlled trials (RCTs) of smoking or 

caffeine cessation interventions during pregnancy could theoretically be used to 

make causal inferences about potential intrauterine effects on offspring mental 

health outcomes. RCTs of smoking cessation interventions during pregnancy that 

have investigated effects on offspring health outcomes have predominantly 

focussed on birth outcomes, such as low birth weight and preterm birth 

(Chamberlain et al., 2017; Gresham et al., 2014; Lumley et al., 2009). Very few 

RCTs have investigated outcomes later in development (Coleman et al., 2012, 

2015) and I am not aware of any that assessed effects on offspring mental health 

or behavioural outcomes. This may be because of limited statistical power of such 

studies to detect small to moderate effects and the risk of bias because of low 

success rates of cessation interventions, high dropout rates, small sample sizes, 

and confounding by postnatal smoking relapse. Further, withdrawal symptoms 

and problems with blinding treatment and control conditions (e.g., having an 

appropriate placebo) complicate the conduct and interpretation of RCTs (Bech et 

al., 2007; Chamberlain et al., 2017). 

Most of the data that investigates prenatal effects stems from prospective birth 

cohort studies, as they allow ruling out reverse causation because of the known 

temporal sequence of events (it is not possible that offspring mental health 

problems have caused mothers to smoke or consume caffeine during pregnancy). 

However, other problems of observational research remain. The next section 

outlines the most important biases of observational associations of maternal 

smoking and caffeine consumption during pregnancy and offspring mental health 

outcomes in prospective birth cohort studies. 

1.8.1 Selection bias 

Two main types of missing data problems of longitudinal birth cohort studies 

contribute towards selection bias. First, longitudinal studies miss data of people 

who do not enrol in the study in the first place and therewith also the 

representation of associated characteristics of people who chose not to participate 

(or have not been approached to participate). Second, longitudinal studies miss 

data of people who initially participated but drop out of the study later on 
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(Hammerton & Munafò, 2021). Both of these missing data mechanisms are 

themselves associated with mental health problems, as research has shown that 

people with an increased risk for mental health problems are less likely to enrol 

and less likely to stay within cohort studies (Martin et al., 2016; Taylor, Jones, et 

al., 2018; Wolke et al., 2009). The latter is particularly challenging for research of 

pregnancy exposures on the development of mental health problems, as it requires 

participation until children are old enough to properly assess mental health 

phenotypes. Furthermore, research has found that smoking, lower education, and 

other factors related to lower SEP increase chances of dropout from longitudinal 

studies (Taylor, Jones, et al., 2018; Wolke et al., 2009). Thus, associations found 

in observational research of smoking and caffeine consumption during pregnancy 

and offspring mental health outcomes are likely biased due to selection bias, the 

direction of which is difficult to predict. Statistical methods such as multiple 

imputations and controlling for known confounding variables can be useful 

approaches to account for selection bias. The former approach assumes that the 

pattern of missing data is missing at random, which is rarely the case in studies 

investigating mental health phenotypes (Hammerton & Munafò, 2021). 

Statistically adjusting for confounding variables in complete case analyses may 

yield unbiased results even if the data is not missing at random, given that the 

adjustment resulted in the outcome being independent of the likelihood of being a 

complete case (Hughes et al., 2019). 

1.8.2 Measurement bias 

Measurement bias occurs when measures of the behaviour of interest are 

imprecise and capture additional variance of other variables that can dilute the 

effect that we are interested in (Hammerton & Munafò, 2021). This type of bias is 

commonly present in self-report measures that assess socially stigmatised 

behaviours (Hammerton & Munafò, 2021). Prevalence estimates of smoking 

during pregnancy are likely to be an underestimation of the actual percentage of 

mothers who smoke during pregnancy. Particularly during pregnancy, self-

reported smoking is likely to suffer from response bias with mothers 

underreporting smoking because of fear of social stigmatisation. This has been 

demonstrated by studies that found self-reported smoking during pregnancy to be 

underreported 20% to 25% of the time when compared to urinary cotinine levels 
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as a biomarker for actual smoking (England et al., 2007; Shipton et al., 2009). 

Even though caffeine consumption during pregnancy is less stigmatised than 

smoking, there is evidence for some social stigmatisation of caffeine consumption 

during pregnancy that may cause mothers to underreport actual consumption (see 

section 1.9.2 on mother blaming). Furthermore, caffeine consumption in research 

studies is typically imprecisely measured with most studies asking for self-report 

of cups of caffeinated beverage without considering variable cup sizes (van Dam 

et al., 2020). Particularly during pregnancy, most research has focussed on 

caffeine consumption from coffee only without differentiating between different 

types of coffee (e.g., espresso vs. filter coffee, etc.) and neglecting other sources 

of caffeine (caffeinated soda drinks), as well as effects of other ingredients than 

caffeine that are contained in coffee (CARE Study Group, 2008; Chen et al., 

2014; Grosso & Bracken, 2005). 

1.8.3 Confounding bias 

One of the main problems for deriving causal inferences from observational 

research is confounding. The confounding structure of smoking and caffeine 

consumption during pregnancy is highly complex, making it extremely 

complicated to narrow down whether an observational association with offspring 

mental health problems is truly due to the intrauterine smoking or caffeine 

exposure. The next sections will summarise the main confounding factors of 

observational associations between maternal smoking and caffeine consumption 

during pregnancy and offspring mental health problems. 

1.8.3.1 Social pattern of smoking and caffeine consumption during pregnancy 

Smoking and high caffeine consumption during pregnancy are strongly correlated 

and tend to also correlate with other substance use behaviours such as alcohol 

consumption (Chen et al., 2014; Loomans et al., 2012; Robinson et al., 2010), 

which is known to cause developmental problems, including symptoms of mental 

health problems, under the umbrella of Fetal Alcohol Spectrum Disorder (Lange 

et al., 2017). Despite the correlation between smoking and caffeine consumption 

during pregnancy, studies report different social patterns of the individual 

behaviours. Generally, studies report that mothers who smoke during pregnancy 

tend to be younger and to have a lower SEP than mothers who do not smoke 



Chapter 1 – Introduction 

 23 

during pregnancy (Chamberlain et al., 2017; Schneider & Schütz, 2008; 

Smedberg et al., 2014). In contrast, studies that investigated caffeine consumption 

during pregnancy report that mothers who consume caffeine during pregnancy are 

older and have a higher SEP than women who consume less or no caffeine during 

pregnancy (Berglundh et al., 2020a; Loomans et al., 2012; Weng et al., 2008). 

However, a recent study reported an inverse association between caffeine 

consumption during pregnancy and SEP (income and education) (Patti et al., 

2021). As noted earlier, there are only few nationally representative studies with 

data on maternal caffeine consumption during pregnancy and the cohort studies 

mentioned above may not be fully representative of caffeine consumption during 

pregnancy in the general population (Verster & Koenig, 2018). Furthermore, there 

is some indication that consumption of different caffeinated drinks is associated 

with different socio-demographic characteristics. For instance, whereas 

caffeinated coffee consumption during pregnancy was associated with older 

maternal age (> 35 years), consumption of caffeinated tea and soda consumption 

during pregnancy was associated with younger maternal age (< 20 years) (Chen et 

al., 2014). 

As mentioned above, the majority of women drink less than 200 mg of caffeine 

per day and it is likely that mothers, who consume more than 200-300 mg a day of 

caffeine, are demographically more similar to mothers who smoke during 

pregnancy, than mothers who consume lower amounts of caffeine during 

pregnancy (Chen et al., 2014). There is some indication that mothers who 

consume high levels of caffeine, on the one hand tend to be older and higher 

educated, on the other hand tend to work and smoke more, and drink more alcohol 

during pregnancy, compared to mothers who consume lower amounts of caffeine 

during pregnancy (Bech et al., 2007; Chen et al., 2014; Loomans et al., 2012).  

For smoking, the negative health effects on offspring are generally known and 

pregnancy guidelines across countries strictly recommend abstaining completely 

during pregnancy. Continuing to smoke during pregnancy is associated with 

social stigmatisation and may be correlated with other variables that may 

contribute to the risk for mental health problems in offspring. Across studies, it 

has been found that mothers who continued smoking during pregnancy face 
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severe hardships during pregnancy compared to mothers who do not smoke or 

manage to quit during pregnancy (DiClemente et al., 2000; Massey & Compton, 

2013; Robinson et al., 2010; Roza et al., 2009; Schneider & Schütz, 2008; 

Smedberg et al., 2014). In comparison, they tend to have lower SEP, be younger, 

live on their own or be in a relationship with someone who smokes, have more 

children, receive insufficient prenatal care, experience more stress, physical 

violence and unemployment, and to have more mental health problems 

(DiClemente et al., 2000; Massey & Compton, 2013; Robinson et al., 2010; Roza 

et al., 2009; Schneider & Schütz, 2008; Smedberg et al., 2014). Further, in 

comparison to mothers who continued smoking during pregnancy, regular 

smokers, who managed to quit during pregnancy, were found to have offspring 

with an easier temperament and to have more perceived self-efficacy three years 

post-pregnancy than mothers who did not manage to quit (Robinson et al., 2010). 

1.8.3.2 Maternal mental health problems and smoking and caffeine 

consumption during pregnancy 

An important domain that may confound associations between smoking and 

caffeine consumption during pregnancy and offspring mental health problems is 

maternal mental health. In non-pregnant populations, both, tobacco and caffeine 

consumption are associated with mental health problems (Alasmari, 2020; 

Kendler et al., 2008; Lara, 2010). In contrast to caffeine consumption during 

pregnancy, the relationship between smoking during pregnancy and maternal 

mental health problems has been thoroughly reported. A national survey 

conducted in the US found that smoking amongst pregnant women (N = 5,442) 

was associated with experiencing more severe psychological distress across all 

socio-demographic groups (Goodwin et al., 2017). Women who have experienced 

severe psychological distress within the past month were three times more likely 

to smoke during pregnancy compared to women who did not experience acute 

psychological distress, even after adjusting for socio-demographic variables. The 

risk for smoking was lower for women who experienced severe psychological 

distress at some point over the last year but not within the past month; yet still 

twice as large compared to women who did not experience any severe 

psychological distress, even after controlling for socio-demographic variables. 

Importantly, severe psychological distress tremendously increased the prevalence 
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of smoking during pregnancy for women with a higher socio-demographic 

background (high education and income), who generally are found to be less 

likely to smoke during pregnancy. Whereas less than 2% of women with a college 

degree and without having experienced severe psychological distress reported 

smoking, 45% of women who have a college degree and have experienced 

psychological distress reported smoking during pregnancy. However, no 

relationship between severe psychological distress and smoking heaviness during 

pregnancy was observed. These results are in line with studies from the 

Netherlands (N = 1,947) (Goedhart et al., 2009), Norway (N = 90,040) (Moylan et 

al., 2015; Zhu & Valbø, 2002), and Scotland (N = 395) (Pritchard, 1994), which 

reported associations between maternal smoking during pregnancy and a higher 

risk for depression and anxiety symptoms. Two common theories for the high 

comorbidity between mental health problems and substances use are: (1) self-

medication, where people already suffering from mental health problems use 

caffeine and tobacco to cope with their symptoms (Khantzian, 1997; Morgan & 

Jorm, 2008), and (2) the actual smoking and caffeine consumption behaviour 

contributing to the development of mental health disorders (Wootton et al., 2018). 

The associations between smoking during pregnancy and maternal mental health 

problems raise the question whether associations observed between prenatal 

exposure to smoking and offspring mental health problems may be (partly) 

explained by a shared genetic predisposition to smoking and mental health 

problems or because of shared environmental risk factors between smoking and 

mental health problems. Regardless of the true direction of effect, smoking is 

commonly perceived as a stress relief amongst smokers and abstaining from 

smoking and/or cutting down caffeine during pregnancy might increase stress 

(e.g., by experiencing unpleasant withdrawal symptoms). Considering the 

differences between socioeconomic variables of smokers and non-smokers 

outlined above, a pregnancy might pose as an additional strain to already 

challenging circumstances, such as financial insecurities and relationship 

problems, making a behaviour change even more challenging (DiClemente et al., 

2000). This is in line with research that found women with mental health 

problems who are pregnant and smoke, despite high acceptance of referral to 

smoking cessation programs, to be less likely to actually stop smoking during 

pregnancy than pregnant women without mental health problems (Howard et al., 
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2013). Research on the association between maternal caffeine consumption and 

mental health problems during pregnancy is scarce and even studies investigating 

the effect of intrauterine caffeine exposure on offspring mental health problems 

rarely report associations between maternal mental health during pregnancy 

(Bekkhus et al., 2010; Berglundh et al., 2020a; Klebanoff & Keim, 2015; 

Mikkelsen et al., 2017). Those studies that did report association between 

maternal caffeine consumption during pregnancy and maternal mental health 

found a positive association with increased worry (Mourady et al., 2017), 

depression and nervousness (Del-Ponte et al., 2016). In contrast, one study 

reported a negative association between maternal caffeine consumption and 

maternal risk for psychopathology (Linnet et al., 2009). Adding to the risk of 

confounding through exposure to maternal mental health problems during 

pregnancy, postnatal exposure may be an additional risk for confounding. 

Maternal mental health problems during pregnancy are strongly correlated with 

maternal and paternal postnatal mental health problems (Beck, 2001; O’hara & 

Swain, 1996), which are positively associated with the risk for offspring mental 

health problems (Aktar et al., 2019).  

1.8.3.3 Offspring’s own exposure to smoking or caffeine  

As outlined above, there are substantial differences between mothers who smoke 

and/or consume caffeine during pregnancy and mothers who do not. The list of 

confounding variable becomes even longer and more complex, with increasing the 

temporal gap between the actual intrauterine exposure and the assessment of the 

mental health problem (Davey Smith, 2008). For instance, studies that investigate 

the effect of maternal smoking on offspring mental health problems in 

adolescence could be confounded through the effects of offspring’s own smoking 

or caffeine consumption on their mental health (either due to a shared genetic 

liability or offspring modelling maternal smoking behaviour, or both). Therefore, 

in this thesis I focus on identifying early manifestations of mental health problems 

in young children, where own smoking or caffeine consumption is unlikely to be 

confounding associations with maternal smoking and caffeine consumption 

during pregnancy.  
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1.9 Why we need better evidence  

Despite issues with confounding and other types of bias, observational evidence 

currently drives our understanding of the role of prenatal exposures and the risk 

for offspring mental health outcomes. This weak evidence base is used to support 

public health policy and advice to pregnant women. Therefore, there is an urgent 

need to improve the evidence base by distinguishing causal relationships from 

mere correlation and by contextualising the role of maternal pregnancy exposures 

against other factors that could affect mental health, such as paternal exposures. 

1.9.1 Pregnancy guidelines 

There is a wealth of advice and guidance for health behaviours during pregnancy 

to ensure the best developmental outcome for the unborn child. Current UK 

guidelines advise women to quit smoking immediately once they find out about 

their pregnancy, as well as stressing that every additional cigarette poses a threat 

to their baby’s health (https://www.nhs.uk/pregnancy/keeping-well/stop-

smoking/). This guideline is based on scientific evidence that found smoking 

during pregnancy to be associated with negative birth outcomes such as premature 

birth, stillbirth, low birth weight, and sudden infant death syndrome (Marufu et 

al., 2015; Salihu & Wilson, 2007; Tyrrell et al., 2012). Furthermore, the guideline 

is based on research indicating an increased risk for asthma and overall health 

problems later in life (Hylkema & Blacquiere, 2009). For other maternal health 

behaviours during pregnancy, the evidence of harm to the fetus is much weaker. 

Generally, guidelines on these behaviours follow the “precautionary principle” 

and thus even if clear empirical evidence of the effect of an exposure during 

pregnancy on offspring is lacking, it is still recommend abstaining from the 

behaviour.  

In contrast to smoking during pregnancy, there are no uniform guidelines for 

caffeine consumption during pregnancy yet, as they differ from country to 

country. A study that systematically screened guidelines for caffeine consumption 

as published on the website of the “Food and Agriculture Organization” of the 

United Nations (http://www.fao.org/nutrition/nutrition-education/food-dietary- 

guidelines/en/) reports that out of 90 countries, 81 note caffeine consumption in 

their dietary guidelines, of which the majority (80%) were published over the past 

https://www.nhs.uk/pregnancy/keeping-well/stop-smoking/
https://www.nhs.uk/pregnancy/keeping-well/stop-smoking/
http://www.fao.org/nutrition/nutrition-education/food-dietary-guidelines/en/
http://www.fao.org/nutrition/nutrition-education/food-dietary-guidelines/en/
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10 years (Reyes & Cornelis, 2018). Yet only 13 countries provided advice for 

pregnant women. All of the pregnancy guidelines recommend avoiding caffeine 

use during pregnancy and eight countries further specified to limit caffeine 

consumption to no more than 200-300 mg/day. These pregnancy guidelines of 

limiting caffeine consumption are in line with the recommendation of a panel of 

the EFSA that, after reviewing the scientific evidence, has declared up to 200 

mg/day of caffeine to be safe for consumption during pregnancy (EFSA Panel on 

Dietetic Products, Nutrition & Allergies (NDA), 2015). The conclusion was 

derived based on results of prospective birth cohorts that reported a dose-response 

relationship with caffeine consumption during pregnancy and risk for adverse 

birth outcomes related to low birth weight (e.g., small for gestational age) (Bakker 

et al., 2010; CARE Study Group, 2008; Sengpiel et al., 2013).  

There are very good reasons for following the precautionary principle when there 

is uncertainty about the effect of an exposure during pregnancy – abstinence is 

likely to be the safest option for mother and fetus. A major challenge for 

developing pregnancy guidelines is the need to balance the lack of causal 

evidence for behaviours during pregnancy with harm avoidance for offspring and 

the invasiveness of the intervention for maternal autonomy (Stratil et al., 2020). 

The degree of precaution within pregnancy guidelines should be transparently 

communicated and the research that alerts for precaution should be appropriately 

referred to and summarised. For instance, the UK guideline for alcohol 

consumption during pregnancy highlights the level of uncertainty about safe 

amounts for alcohol consumption during pregnancy:  

“Experts are still unsure exactly how much – if any – alcohol is completely safe 

for you to have while you're pregnant, so the safest approach is not to drink at all 

while you're expecting.... Women who find out they're pregnant after already 

having drunk in early pregnancy should avoid further drinking. However, 

they should not worry unnecessarily, as the risks of their baby being affected are 

likely to be low“ 

(https://www.nhs.uk/pregnancy/keeping-well/drinking-alcohol-while-pregnant/) 

The precautionary principle may appear as the easiest strategy to mitigate the risk 

for offspring’s health problems; however, it may also decrease the urgency to 

https://www.nhs.uk/pregnancy/keeping-well/drinking-alcohol-while-pregnant/
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establish guidelines based on causal evidence (Gignon et al., 2013). It is 

commonly perceived that abstaining from smoking or caffeine consumption 

during pregnancy is only a small cost in comparison to the potential risk of 

compromising offspring’s health and its associated burden for society. However, 

despite a substantial amount of research indicating that women who smoke during 

pregnancy face sever hardships and lack a social support system there seems to be 

a lack of understanding for the wider social-structural context these behaviours 

are embedded in and lack of compassion in society for mothers who struggle with 

abstaining. Pregnancy guidelines that do not clearly state and communicate the 

level of uncertainty, may be misinterpreted by the public as if there was 

substantial evidence and increase stigmatisation of women not adhering to 

pregnancy guidelines. In sum, precautionary principle can limit women’s 

autonomy, especially regarding the stigmatisation of behaviours that are socially 

and culturally engrained and widely accepted in non-pregnant adults.  

1.9.2 Mother blaming 

The stigmatisation of certain behaviours in pregnant women can contribute to a 

culture of “mother blaming”, which includes the phenomenon of society 

(including health professionals and mothers themselves) holding the mother 

accountable for any (psycho-) pathology of their children, as well as for her own 

life circumstances, such as poverty (Koniak‐Griffin et al., 2006). An interesting 

study from Australia compared the perception of smoking and non-smoking 

pregnant women amongst college students. The study found that, whereas women 

were overall perceived more positively (healthier, more accepting, proud, 

empowered, believing, and relaxed) if they were pregnant compared to non-

pregnant, this perception changed towards the opposite when given the 

information that the women was smoking. Pregnant smoking women were 

perceived as more ignorant and selfish than non-pregnant smokers (Wigginton & 

Lee, 2013). This highlights the social stigmatization of women who smoke during 

pregnancy, which can be problematic because it prevents mothers to honestly 

report their smoking behaviour during pregnancy (see section 1.8.2) and to seek 

assistance to stop smoking (Koniak‐Griffin et al., 2006; Wigginton & Lee, 2013).  
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Compared to smoking, there is less social stigma around caffeine drinking in 

pregnancy, but changes in public health guidelines could change that. For 

instance, a recently published narrative review has claimed that there would be no 

safe level of caffeine for women to consume during pregnancy and that a 

substantial number of miscarriages in the US might be attributable to maternal 

caffeine consumption during pregnancy (James, 2020). This narrative review 

quickly attracted media attention and resulted in polarizing headlines, which 

likely have caused confusion, anxiety and guilt in many women as well as may 

have contributed to an overestimation of the known risk of caffeine during 

pregnancy among the general public (e.g., No Safe Level of Coffee Drinking for 

Pregnant Women, Study Says, 2020). My supervisors and I contributed to the 

reply by Murphy and colleagues to the editor of the narrative review of James 

(James, 2020), in which we highlighted the limitations of the research and alerted 

about jumping to conclusions based on observational evidence (Murphy et al., 

2020). Our main criticisms about the scientific conduct of the narrative review 

were: (1) the non-systematic search for literature, (2) the restricted discussion of 

the limitations of the studies included, (3) the premature causal inferences made 

from observational research and superficial discussion of potential confounding, 

and (4) the lack of information about the effect size of caffeine during pregnancy 

on offspring outcomes. In addition, concerns were raised about the 

incomprehensive press release of the paper that led to extrapolated media 

headlines and the false representation of pregnant women recklessly consuming 

caffeine during pregnancy without taking into account the wider social structures. 

Professor James replied to our letter, rejecting the scientific arguments that 

support concerns of bias in his research. Instead, he criticised the expertise of 

Murphy and the other 20 co-authors, despite all being experts in relevant areas of 

caffeine consumption during pregnancy (researchers in epidemiology, pregnancy 

exposures, psychology, and health practitioners in the field of prenatal care, etc.), 

and suggested bias because of high chances of Murphy and her co-authors being 

caffeine consumers themselves:  

“It is reasonable to assume that most, if not all, of Murphy and her 20 co-authors 

are habitual caffeine consumers, sharing common features with other consumers, 

including physical dependence and desire to continue to consume. The self-
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serving bias therein is likely to encourage resistance to information that 

challenges habit”.  

Furthermore, James did not address the concerns about the inadequate press 

release that led to polarized media headlines and the associated harm that such 

headlines may have caused for pregnant women. In sum, the article of James 

(James, 2020) and the surrounding scientific debate reflects the confusion that 

arises, even within the scientific community, when only observational research 

evidence is available, and highlights the confusion and scepticism that the 

communication of such research to the general public and expectant parents may 

bring about.  

Polarizing media articles and overblown interpretations of the scientific evidence 

neglect the psychological wellbeing of the mother as well as an understanding of 

the wider social and structural determinants of health. In particular, the 

contribution of a partner’s health behaviours pre-conception and their influence on 

maternal wellbeing and health during pregnancy is often ignored or downplayed 

(Román‐Gálvez et al., 2018). There is emerging evidence that partner smoking is 

a strong predictor of continued maternal smoking during pregnancy and that 

partners are unlikely to stop smoking during pregnancy (Riaz et al., 2018; Román‐

Gálvez et al., 2018; Schneider et al., 2010). Overall, having more evidence-based 

pregnancy guidelines and a less toxic risk communication for behaviours during 

pregnancy would help to reduce anxiety and increase well-being for parents and 

may therefore contribute towards a healthy development for offspring. The 

analyses of this thesis are aimed at contributing towards more evidence-based 

pregnancy guidelines by contextualising the observational evidence base with 

evidence from causal inference techniques using genetic and epigenetic data. 

1.9.3 Testing, rather than reinforcing, the DOHaD hypothesis 

To establish evidence-based pregnancy guidelines, it is important that researchers, 

who investigate intrauterine effects on offspring health, become aware of possible 

societal biases that may influence the hypothesis generation, conduction, and 

communication of their research. Sharp and colleagues (Sharp, Lawlor, et al., 

2018) argue that the damaging culture of “mother blaming” is in part explained by 

deeply held assumptions about the “causal primacy” of maternal pregnancy 
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effects – the pervasive idea that maternal exposures during pregnancy are the most 

important factors determining child health, and that other factors (e.g., paternal 

factors, postnatal exposures and wider societal influences) are much less 

important. Supporting this, in a 2019 article, we illustrated that the traditional 

focus of DOHaD research has been predominantly on maternal exposures during 

pregnancy (Sharp et al., 2019). For the article I screened and extracted the 

relevant information of all the original research articles that were published in the 

“Journal of the Developmental Origins of Health and Disease”, up until January 

2019. Comparing the number of articles that focussed on maternal exposures with 

articles that focussed on paternal exposures, for both, animal (N studies = 144) 

and human studies (N studies = 182) we found that results were clearly biased 

towards the focus on maternal pregnancy exposures. The sunbursts displayed in 

the paper illustrate our findings (Figure 1.4, interactive version of the sunburst can 

be found on https://gs8094.shinyapps.io/sunburst/).

https://gs8094.shinyapps.io/sunburst/
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Figure 1.4. Sunburst of studies published in the Journal of the Developmental Origins of Health and Disease and the proportions of their 

focus on maternal and paternal exposures (credit: Sharp et al., 2019). 
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As shown in Figure 1.4 in the left sunburst, across human and animal studies (N 

studies = 325), 84% of the studies investigated maternal exposures (at any time, 

not just pregnancy) and 78% focussed on maternal exposures during pregnancy. 

Yet only 4% of studies investigated paternal exposures (at any time, not just 

pregnancy). Further, whereas 81% of studies focussed exclusively on maternal 

exposures (removing studies that included paternal, offspring, grandparental 

exposure, etc.), only 0.3% (one study) exclusively focussed on paternal exposure 

(removing studies that included maternal, offspring, grandparental exposure, etc.).  

On the surface, there are good reasons for this, including the unique biological 

relationship between a pregnant mother and fetus, and the relative practical ease 

of recruiting pregnant women to birth cohorts during antenatal appointments. 

Against the latter argument stands the observation that in the DOHaD literature 

there was no difference in bias towards maternal pregnancy exposures when 

restricting studies to animal data only (Figure 1.4, right sunburst; 90% studying 

maternal exposures vs. 0.7% studying paternal exposures). This illustrates that 

lack of paternal data is not driving the bias observed in human studies (Figure 1.4, 

middle sunburst; 80% studying maternal exposures vs. 6% studying paternal 

exposures). This imbalance in the DOHaD literature supports the public focus on 

the behaviours of pregnant mothers and can be used to support further research to 

study more maternal pregnancy effects, acting via a looping effect to further 

intensify the focus (Sharp, Lawlor, et al., 2018). The DOHaD hypothesis is 

therefore further reinforced rather than tested. When this is considered alongside 

the fact that much of the evidence in DOHaD is weak and correlational, the 

current overfocus on maternal pregnancy exposures is less justifiable. There is 

now a need to redress the imbalance in DOHaD research by using causal 

inference approaches and contextualising the evidence by studying other factors 

(like paternal factors) with a similar frequency. This PhD project aims at 

complementing the current observational evidence base for effects of smoking and 

caffeine consumption during pregnancy on offspring mental health outcomes by 

applying genetic and epigenetic causal inference methods. The next section 

reviews available causal inference techniques that can be applied to answer 

research questions for which RCTs are difficult to implement. 
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1.10  Causal Inference Techniques 

The scarcity of controlled human trials in the field of prenatal exposures makes it 

difficult to isolate the effect of a single exposure on an outcome (Knopik et al., 

2018). As shown above, mothers who smoke and consume caffeine during 

pregnancy are facing many psychosocial adversities, which likely also influence 

offspring’s psychological development. Statistically adjusting for known 

confounding variables in observational research is unlikely to be sufficient to 

account for the highly complex underlying confounding structures (Robinson et 

al., 2010). Studies have shown that adjustment for known confounding factors of 

prenatal smoking and mental health problems still leads to biased results and 

genetically sensitive designs are needed to account for inherited confounders 

within families (Thapar & Rutter, 2009). Causal inference techniques using 

genetic and paternal data are thus far the best methods to account for a large 

proportion of confounding variables, including unknown and unmeasured 

confounding variables. 

1.10.1 Negative control studies 

Studies that use paternal exposures measured during their partner’s pregnancy as 

negative control exposures can help to isolate intrauterine effects by providing 

indication for the presence of confounding in associations between maternal 

behaviours during pregnancy and offspring health outcomes (Taylor, Davey 

Smith, et al., 2014). This approach assumes that maternal and paternal behaviours 

have similar confounding structures, but that there is little or no biological 

plausibility for a causal effect of the paternal exposure. For instance, maternal and 

paternal smoking during pregnancy have been found to share a similar 

socioeconomic confounding structure (Roza et al., 2009). If in addition to 

maternal data, paternal data on smoking and caffeine consumption is available, 

the comparison of the magnitude of the maternal-offspring and paternal-offspring 

effect estimates allows making inferences about a potential intrauterine effect 

(Gage et al., 2016). If a direct intrauterine effect exists, one would expect the 

maternal-offspring effect estimate to be larger than the paternal-offspring effect 

estimate, as a direct biological effect of smoking and caffeine consumption during 

pregnancy is only plausible through the maternal but not paternal environment. 
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Even if the mother’s partner smokes during pregnancy, the effect estimate of 

maternal smoking during pregnancy on offspring outcomes would still be 

expected to be larger than the effect through partner second-hand smoking during 

pregnancy (Taylor, Davey Smith, et al., 2014). Therefore, if paternal data during 

pregnancy is available, negative control studies can be used to investigate whether 

the observed association between maternal exposure and offspring outcome is 

confounded or reflecting a true intrauterine effect. The imbalance in research 

focussing on maternal compared to paternal pregnancy exposures, that was 

discussed in section 1.9.3, prevents investigation of intrauterine effects using 

negative control designs (Easey & Sharp, 2021).  

Some studies were able to apply a negative control design to investigate 

intrauterine effects of smoking during pregnancy on offspring mental health 

outcomes. Yet, comparison between maternal versus paternal associations of 

smoking during pregnancy and offspring externalising problems show 

inconclusive results about a true intrauterine effect (Dolan et al., 2016). Whereas 

some negative control studies found a stronger effect between maternal smoking 

and offspring externalising problems than for paternal smoking during pregnancy 

(Brion et al., 2010; Nomura et al., 2010), others did not (Langley et al., 2012; 

Roza et al., 2009). For internalising problems, a meta-analysis of negative control 

studies of five independent birth cohorts (total N = 21,246) has not found 

evidence for an intrauterine effect of smoking during pregnancy on offspring 

depressive symptoms in adulthood (Taylor et al., 2017). Despite offspring of 

mothers who smoked during pregnancy having higher odds for adult depression, 

the odds ratio was not statistically different from the odds ratio of partner smoking 

during pregnancy and offspring depressive symptoms. Within the same study, a 

sibling-comparison analysis (N = 258) was conducted that did not find a 

difference in risk for depression between siblings that were exposed to smoking in 

utero and their sibling who had not been exposed. Together, results of the 

negative control meta-analysis and sibling comparison study suggest that maternal 

smoking during pregnancy is not causally associated with an increased risk for 

offspring depression and that previous reported associations might be explained 

by confounding factors. 
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1.10.2 Mendelian Randomisation (MR) 

Another approach to overcome some of the limitations of observational research, 

such as unmeasured confounding and reverse causation, is to use genetic variants 

as instrumental variables that can be used as a proxy for the behaviour of interest. 

This method is called Mendelian Randomisation (MR) because it draws on 

Mendel’s law of random segregation, which posits that alleles are randomly 

segregated and assorted at conception. Genetic variants that proxy for the 

behaviour of interest should therefore not be related to common confounding 

variables, and thus can be used to mimic a randomised controlled trial in 

observational research (Davey Smith & Ebrahim, 2003a). MR yields less biased 

estimates under the premise that the instrumental variable assumptions hold which 

require that (1) the genetic variants are strongly associated with the exposure of 

interest, (2) the genetic variants are not associated with any variables affecting the 

outcome, and (3) the genetic variants are only associated with the outcome 

through the exposure of interest (Taylor, Davies, et al., 2014).  

1.10.2.1 MR studies of smoking and caffeine consumption and mental health 

problems 

In the general population, MR studies have helped to shed light on the 

contribution of smoking to the risk for mental health problems. For instance, MR 

studies indicate that smoking increases the risk to develop bipolar depression 

(Vermeulen et al., 2019) and schizophrenia (Wootton et al., 2018). In contrast, 

MR studies of ADHD and depression support the self-medication hypothesis, with 

people with ADHD and depression symptoms being more likely to initiate 

smoking but little evidence for smoking increasing the risk for ADHD or 

depression (Lewis et al., 2011; Treur et al., 2019). MR can also be applied in the 

context of prenatal exposures on offspring outcomes, a method called prenatal 

MR (Diemer et al., 2020), or intergenerational MR (Lawlor et al., 2017). A recent 

systematic review has identified 43 studies that have applied such a design, by 

using maternal genetic variants to proxy for the exposure of interest, and tested 

their associations with offspring outcomes (Diemer et al., 2020). The review 

identified four studies that have investigated the effects of prenatal smoking, of 

which the only mental health outcome investigated was autism spectrum disorder 

that showed weak evidence for an effect (Caramaschi et al., 2018; Diemer et al., 
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2020). Of the 43 studies, only one study has investigated the effects of maternal 

caffeine consumption during pregnancy on stillbirth. Also, in non-pregnant 

populations, only few studies have used MR to investigate potential causal effects 

of caffeine on mental health outcomes (Cornelis & Munafo, 2018). One study has 

investigated the effect of caffeine on depression and found no evidence for an 

effect (Kwok et al., 2016). Another study testing associations between the genetic 

variants for coffee and all ICD recorded health problems in the UK biobank, 

including 43 mental diseases, also did not find support for an association between 

coffee and mental health outcomes (Nicolopoulos et al., 2020). In this thesis, I use 

methods based on the principles of MR (Chapter 3: PheWAS; Chapter 6: 2-

sample MR) in order to make inferences about whether there is an intrauterine 

effect of smoking and caffeine exposure on mental health outcomes. 

1.10.2.2 MR studies of the relationship of smoking and caffeine consumption  

Few studies have investigated the relationship of smoking and caffeine 

consumption (Cornelis & Munafo, 2018). Results of these studies suggests that 

smoking might have a causal effect on increasing caffeine consumption 

(Bjørngaard, Nordestgaard, Taylor, Treur, Gabrielsen, Munafò, Nordestgaard, 

Åsvold, Romundstad, & Smith, 2017) but little evidence for caffeine consumption 

increasing smoking (Ware et al., 2017). Yet, one study did not find evidence for 

an association between smoking and caffeine consumption (Verweij et al., 2018). 

In sum, there is some evidence that smoking is causally increasing caffeine 

consumption and thus there might be an interactive effect of smoking and caffeine 

exposure during pregnancy on offspring mental health. Before such an interaction 

effect is further investigated, it is important to increase understanding of the 

association between prenatal caffeine exposure and mental health outcomes. Due 

to the scarcity of research on the effect of intrauterine caffeine exposure on 

offspring mental health, this thesis will focus on the individual effects of smoking 

and caffeine consumption during pregnancy and not on a potential interactive 

effect of smoking and caffeine. 

1.10.2.3 Instruments for MR studies of smoking and caffeine consumption 

The availability of large genome-wide association studies (GWAS) has made it 

possible to discover thousands of common genetic variants (single nucleotide 

polymorphisms; SNPs) that can be used as instruments in MR. GWAS are 
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considered hypothesis generating, as in contrast to candidate-gene studies, the 

entire genome is tested for associations with a phenotype (Manolio et al., 2009). 

The GWAS method has led to the discovery of many novel genetic variants that 

are associated with complex traits and illuminated potential biological pathways 

to mental health problems (Visscher et al., 2017). Further, they contributed 

towards establishing genetic instruments for modifiable risk exposures, such as 

smoking and caffeine consumption, that can be applied in MR studies (Liu, Jiang, 

Wedow, Li, Vrieze, et al., 2019; The Coffee and Caffeine Genetics Consortium et 

al., 2015). Genetic variants associated with smoking and caffeine consumption 

have shown to predict 1% to 4% of variance of these behaviours in the general 

population but their use for predicting these behaviours during pregnancy is still 

unknown (Lawlor et al., 2017). Due to the high number of tests, which results 

from testing each SNP for association with a phenotype, GWAS require large 

sample sizes to detect effects and therefore often include meta-analysis of 

different prospective cohort studies. However, considering the many novel 

variants that have been identified in GWAS, little is understood about the 

molecular mechanisms that explains these gene-phenotype associations (van der 

Sijde et al., 2014). In this thesis, I use genetic instruments derived from GWAS of 

smoking and caffeine consumption to explore whether observational associations 

between maternal smoking and caffeine consumption and offspring outcomes 

(DNA methylation and mental health) are confounded, or indeed indicating a 

causal effect of the exposures.  

1.10.3 Other genetically sensitive designs to infer causality 

Other examples of study designs that adjust for shared genetic factors between 

mother and offspring are studies with data on Assisted Reproductive 

Technologies and children-of-twins (Thapar & Rutter, 2009). Thapar and 

colleagues (Thapar et al., 2009) compared ADHD symptoms of offspring who 

have been exposed to smoking during pregnancy by their genetically related or 

unrelated mother (oocyte/embryo donations, surrogate mothers). The results 

showed that the magnitude of intrauterine smoke exposure on offspring ADHD 

was larger for related than unrelated mother-child pairs, indicating that inherited 

common genetic factors are more likely to be responsible for offspring ADHD 

symptoms than the actual intrauterine smoke exposure. However, while these 
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study designs are highly powerful, as they allow us to account for and 

differentiate between unmeasured environmental and genetic confounders, they 

require data that is scarce and difficult to obtain, in contrast to negative control 

and MR studies that were applied in this thesis.  

1.10.4 The meet-in-the-middle approach to establish causality  

The analyses of this thesis will follow the meet-in-the-middle approach (Vineis et 

al., 2013) to establish whether there is a causal effect of smoking and caffeine 

consumption during pregnancy on offspring mental health outcomes. According 

to the meet-in-the-middle approach, omics data provide an opportunity to derive 

causal pathways by discovering intermediate biomarkers that link an exposure to 

the risk of disease (Richmond et al., 2014; Vineis et al., 2013; Vineis & Perera, 

2007). Data of prospective birth cohorts can be used to discover biomarkers for 

the exposure in a prospective fashion and retrospectively investigate whether 

these biomarkers are enriched in people who developed a certain disease 

compared to people who did not develop the disease. Vineis and colleagues 

(Vineis et al., 2013) summarise the meet-in-the-middle approach in three steps: 

The first step examines the relationship between the exposure and disease. Next, 

the association between the exposure and a potential biomarker for the exposure 

(in this case, DNA methylation) is investigated. In the last step, the relationship 

between the biomarker and the disease is tested (Vineis et al., 2013). If the 

evidence for associations is congruent in the analyses of each step, confidence in a 

causal effect between the exposure and outcome increases. 

The three steps are used to investigate a potential causal effect of prenatal 

smoking and caffeine exposure in this thesis by: First, exploring the association 

between maternal smoking and caffeine consumption on offspring mental health 

outcomes in the phenome-wide association study (Chapter 3). Second, 

investigating associations between prenatal caffeine exposure and offspring cord 

blood DNA methylation (Chapter 4). Third, the association between prenatal 

smoking and caffeine associated DNA methylation changes and the risk for 

offspring internalising problems are examined through an EWAS meta-analysis of 

internalising problems (Chapter 5), an enrichment analysis and a two-sample MR 

analysis (Chapter 6). A causal effect of prenatal smoking and caffeine exposure 

on offspring mental health would be supported by results showing evidence for 
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associations between: (1) maternal smoking and caffeine consumption on 

offspring mental health (exposure-disease association), (2) maternal prenatal 

smoking and caffeine consumption on offspring DNA methylation (exposure-

intermediate biomarker association), and (3) prenatal smoking and caffeine 

associated DNA methylations changes and offspring internalising problems 

(intermediate biomarker-disease association).  

1.10.5 Triangulation 

As shown by the studies reported above, none of the different methods can yield a 

clear answer to the question whether maternal smoking and caffeine consumption 

during pregnancy increase the risk for offspring mental health problems. The 

concept of triangulation acknowledges that no single research method or design 

can provide the answer to a causal question. Rather it highlights the value in 

exploring the same research question through different techniques, subject to 

different or opposing biases, in order to understand causal effects (Lawlor et al., 

2016). In contrast to meta-analyses and replication studies, which aim at 

synthesising research approaches that are ideally very similar to one another, 

triangulation takes advantage of the diversity of underlying biases. If results of 

different research methods and designs, that bias results in different directions, are 

congruent in their conclusions about effects of an exposure on an outcome, 

confidence in causality increases (Pingault et al., 2018). The criteria for 

triangulating evidence for a causal effect are that: (1) at least two different 

methodologies are compared, which are subject to different and vastly 

independent sources of bias, (2) there is a common underlying research question, 

and timing and duration of the exposure is considered, and (3) the main source of 

bias of each method is understood and recognized, and the direction of bias is 

taken into account (ideally the different methods bias results in opposing 

directions). As outlined earlier, the main sources of bias in observational research 

are selection, measurement, and confounding biases (Hammerton & Munafò, 

2021; Lawlor et al., 2004). By contextualising observational research evidence 

about smoking and caffeine consumption during pregnancy on offspring mental 

health outcomes, which is likely confounded by socioeconomic factors, with MR 

studies that are free of confounding (but show different biases), it could be 

distilled whether a true causal relationship exists. In addition to applying 
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statistical approaches and using particular study designs, the identification of a 

potential biological pathway that could explain how prenatal exposure to smoking 

and caffeine consumption could become biologically embedded to increase the 

risk for offspring mental health problems would also strengthen the causal 

evidence base (Vineis et al., 2013).  

1.11 Chapter summary and conclusion  

In this thesis, I am attempting to improve the causal evidence base regarding the 

effects of maternal smoking and caffeine consumption during pregnancy on 

offspring mental health outcomes. Over the last decade, awareness for the 

importance of protecting mental health, particularly amongst young people, has 

tremendously increased. Data from the UK has found that approximately one out 

of eight children, between the age of 5 and 19, fulfil criteria for a mental health 

diagnosis (Sadler et al., 2018). This warrants a better understanding of the factors 

that influence mental health problems in children to improve detection of early 

indicators for mental health problems. Most DOHaD research has focussed on 

investigating maternal behaviours during pregnancy as a risk factor for offspring 

health problems but causal evidence is scarce (Sharp et al., 2019).  

In this chapter, I have outlined how the high prevalence of smoking and caffeine 

consumption during pregnancy warrants a more detailed understanding of the 

range and mechanisms of effects on offspring health outcomes. I have highlighted 

several imbalances and gaps that are currently present in the field and that I 

attempt to address within this thesis. First, most current evidence on associations 

between maternal health behaviours and child mental health pertains to maternal 

smoking and there is a lack of evidence regarding the potential effects of maternal 

caffeine, despite these two behaviours being highly correlated. Second, there 

appears to be an overrepresentation of studies investigating the effect of prenatal 

smoking and caffeine exposure on externalising problems, compared to 

internalising problems in offspring. Third, most of the evidence on maternal 

smoking and caffeine consumption during pregnancy on offspring mental health 

outcomes is based on observational study designs, which likely suffer from 

selection, measurement, and confounding biases and therefore cannot differentiate 

confounded from causal effects. Despite strong theoretical grounds for DNA 

methylation linking prenatal exposures and offspring mental health problems, 
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very few studies have formally investigated this research question (Barker, 

Walton, & Cecil, 2018). 

In conclusion, we urgently need better evidence to support public health policies 

and guidelines around health behaviours during pregnancy. Such policies will be 

most beneficial to the health of all family members if they are based on robust 

evidence of causal effects and communicated in a way that avoids blaming 

mothers. This thesis is aimed at contributing evidence for the establishment of 

evidence-based guidelines for smoking and caffeine consumption during 

pregnancy. I am trying to disentangle causal from confounded associations 

between smoking and caffeine consumption during pregnancy and offspring 

internalising and externalising mental health outcomes by using genetic variants 

as proxies for smoking and caffeine consumption during pregnancy. Further, I am 

investigating offspring DNA methylation as a molecular pathway explaining the 

role of prenatal exposure to smoking and caffeine on offspring mental health 

outcomes.  
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Chapter 2  – Methods and Samples  

2.1 Chapter overview 

In this chapter, I first introduce the methods that were used in more than one of 

the analyses of this thesis. The methods that were used just once in this thesis 

(phenome-wide association study and two-sample Mendelian Randomisation) are 

discussed in more detail in the individual chapters (Chapters 3 and 6, 

respectively). The methods described in this chapter include: Mendelian 

Randomisation (MR), Polygenic Risk Score (PRS) analyses and Epigenome-Wide 

Association Studies (EWAS).  

I then give an overview of the samples that were used for these analyses. Across 

this thesis, data were analysed from six prospective birth cohort studies, which are 

all part of the Pregnancy And Childhood Epigenetics (PACE) consortium (Felix et 

al., 2018): Avon Longitudinal Study of Parents and Children (ALSPAC) (Fraser 

et al., 2013); Born in Bradford (BiB) (Wright et al., 2013); Generation R Study  

(Jaddoe et al., 2006), INfancia y Medio Ambiente (INMA) (Guxens et al., 

2012); the Norwegian Mother and Child Cohort Study (MoBa) (Magnus et al., 

2006), and Etude des Déterminants pré et post natals du développement et de la 

santé de l′Enfant (EDEN) (Heude et al., 2016).  

In addition to describing the methods and samples, I describe publicly available 

databases, which combine results from studies that have already investigated 

genetic and epigenetic associations with traits of interest relevant to this thesis, 

and thus were used to contextualise results from my analyses. These include the 

genecards database (Stelzer et al., 2016), the GWAS catalog (Buniello et al., 

2019), and the EWAS catalog. (http://www.ewascatalog.org/about/).  

2.2 Methods  

2.2.1 Genetically informed analyses 

2.2.1.1 Mendelian Randomisation (MR)  

As briefly mentioned in the previous chapter, MR is a useful method to 

investigate intrauterine effects on long-term outcomes, especially where ethical or 

practical considerations render randomised controlled trials unfeasible (Davey 

http://www.ewascatalog.org/about/
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Smith, 2008). MR is particularly useful for investigating behaviours that are 

strongly socially patterned and therefore prone to confounding, such as smoking 

and caffeine consumption during pregnancy. As genotypes are allocated at 

conception, reverse causation can generally be ruled out in MR (e.g., it is not 

possible that starting to smoke as a teenager will influence the assortment of one’s 

own genetic variants). Crucially, the distribution of genetic variants in a 

population is generally unrelated to confounding variables, due to random 

segregation and assortment of alleles (Mendel's second law, or law of independent 

assortment). Therefore, genetic variants can be used as instrumental variables, and 

the MR design can be thought of as the observational research’s natural equivalent 

to a randomised controlled trial (Davey Smith & Ebrahim, 2003). The simplest 

possible form of human genetic variation is single-nucleotide-polymorphisms 

(SNPs), which capture common variation (frequency > 1%) at a single base pair 

across chromosomes (Davey Smith & Ebrahim, 2003; Hirschhorn & Daly, 2005). 

Cheap and convenient microarrays, as small as a post stamp, are routinely 

employed in population-based studies, which can genotype around one million 

SNPs from samples of DNA collected through saliva, buccal swabs, or blood. 

These capture most of the common variation in the genome without the need for 

expensive whole genome sequencing. 

The potential of MR to disentangle causal from confounded associations in the 

context of maternal pregnancy exposures can be illustrated by the example of an 

MR study of maternal alcohol consumption during pregnancy. Whereas some 

observational research reported counter-intuitive findings of modest/occasional 

maternal alcohol consumption during pregnancy being positively associated with 

cognitive outcomes in offspring, studies using MR found evidence for the 

opposite effect – i.e., prenatal alcohol exposure being detrimental, which suggests 

that previously reported observational associations were confounded (Zuccolo et 

al., 2013). This hypothesis was supported by the observation of moderate alcohol 

consumption during pregnancy in ALSPAC being associated with higher maternal 

education, socioeconomic position (SEP) and better nutrition, compared to no or 

low amounts of alcohol consumption during pregnancy (Zuccolo et al., 2013), as 

well as a similar effect between paternal alcohol consumption during pregnancy 
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and offspring intelligence quotient (IQ) in a negative control design (also in 

ALSPAC) (Alati et al., 2008).  

MR produces valid causal estimates of the association between exposure and 

outcome, under the premise that the instrumental variable assumptions hold, 

namely that the genetic variants are: (1) strongly associated with the exposure of 

interest (relevance), (2) not associated with any other variables affecting the 

outcome (independence, or exchangeability), and (3) only associated with the 

outcome through the exposure of interest (exclusion restriction) (Davies et al., 

2018; Pingault et al., 2018; Taylor, Davies, et al., 2014). Therefore, MR may 

provide insights into causal effects of smoking and caffeine consumption during 

pregnancy if: (1) there is evidence that genetic variants are strongly associated 

with the actual behaviour of smoking or consuming caffeine during pregnancy, (2) 

there is evidence that the genetic variants for smoking and caffeine consumption 

during pregnancy are not associated with potential confounding variables, such as 

SEP, maternal mental health or offspring’s own smoking or caffeine consumption, 

and (3) there is evidence that the genetic variants are only associated with 

offspring mental health outcomes through their association with maternal smoking 

or caffeine consumption during pregnancy.  

Genetic variants used in MR are commonly selected from GWAS of the exposure 

of interest – this ensures that the first assumption is met. In a GWAS, SNPs of the 

entire genome are tested for statistical associations with a trait of interest, which 

can either be tested by comparing frequencies of alleles between cases and 

controls, or across a trait’s distribution (Marees et al., 2018). Evidence for a 

genome-wide significant SNP-phenotype association is commonly determined by 

having a P-value that falls below the genome-wide P-value threshold 5 x 10-08. 

Additionally, SNPs can be investigated for indications of violations of assumption 

two and three, by running additional MR methods that are more robust to 

pleiotropy (e.g., MR Egger; see 2.2.2 for more information) (Bowden et al., 2015) 

and checking SNPs for already known associations with other phenotypes through 

running SNPs through the PhenoScanner (Kamat et al., 2019; Staley et al., 2016).  
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2.2.1.2 Polygenic Risk Score (PRS) Analyses  

For complex traits, such as behaviours during pregnancy and mental health 

outcomes, the magnitude of the effect sizes of the genome-wide significant SNPs 

is commonly very small, with SNPs having low predictive power when applied 

individually (Choi et al., 2020). This led to the assumption that complex traits are 

most likely polygenic. Instead of a single genetic variant, many genetic variants 

with small effect sizes contribute to the phenotypic variation that is observed for 

complex traits (Dudbridge, 2016). A fruitful method to increase predictive power 

of genetic predictors is to generate a polygenic risk score (PRS) that combines the 

effects of individual SNPs. The SNPs with the strongest evidence for an 

association with the trait of interest, commonly determined by the associations 

with the smallest P-values, are selected for generating the PRS (Choi et al., 2020). 

The number of SNPs selected for the PRS can vary depending on the P-value 

threshold chosen and may also include SNPs from GWAS results that have not 

revealed any genome-wide significant associations. Decreasing the P-value 

threshold offers the advantage of including a higher number of SNPs in the PRS, 

which may increase the predictive power of the PRS but at the cost of introducing 

more noise into the PRS (and thereby decreasing specificity) (Choi et al., 2020). 

The increase in explained variance, resulting from including SNPs that are only 

weekly associated with the trait of interest, is unlikely to be large enough to 

counterbalance the noise that they introduce (Janssens, 2019). Researchers might 

select their P-value threshold in accordance with their research question.  

Selecting a more stringent P-value threshold and only including SNPs more likely 

to be causally associated with the trait of interest, may be useful for research 

questions that are focussed on causal inference. A more liberal P-value threshold 

may be useful when the research questions are focussed on prediction. When a 

stringent P-value threshold is selected, PRS analyses can be used to infer causality 

by drawing on similar concepts as MR (except of not estimating the causal effect 

of the modifiable exposure on the disease) (Burgess & Thompson, 2013). 

Ideally, the target sample in which one wants to apply the PRS (e.g., for risk 

prediction or causal inference) is independent of the training/discovery GWAS 

sample that the PRS is based on (Dudbridge, 2016). A PRS is calculated for each 

individual in the target sample by summing the number of their risk alleles 
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weighted by the effect size of the effect allele of the training sample (Dudbridge, 

2016). A weighted PRS allows for some SNPs to have a stronger influence on the 

trait of interest than others (Janssens, 2019). The effect allele is defined as the 

allele, which has a higher frequency in the population expressing the trait of 

interest, compared to the population which does not express the trait of interest 

(e.g., an effect allele for depression would be the allele that is more commonly 

observed in people with depression than the control group or the effect allele for 

smoking would be the allele more commonly observed in people who smoke than 

people who do not smoke). Once the PRS has been generated, a regression 

analysis can be conducted in the target sample using the PRS as the (continuous) 

explanatory variable and the trait of interest as the outcome.  

In sum, MR and PRS analyses can be used for producing evidence robust to 

environmental confounding (especially socioeconomic confounding) by using 

genetic variants as proxies for modifiable exposures. Whereas PRS analyses can 

be used in an explorative manner to generate new hypotheses (e.g., see Chapter 3) 

without formal testing of the instrumental variable assumptions, MR is applied to 

test specific hypotheses, which requires that the instrumental variable assumptions 

hold in order to yield unbiased results. The next section will discuss threats to the 

instrumental variable assumptions. 

2.2.1.3 Genetic confounding  

As mentioned above, using genetic variants as instrumental variables mimics a 

randomised controlled trial under the premise that genes are allocated at random 

at conception (Mendel's law of random assortment of genes). This random 

assortment ensures that participants in the exposed and unexposed group only 

differ on their level of exposure but are otherwise exchangeable (Pingault et al., 

2018). Genetic confounding may threaten the exchangeability assumption. The 

next section will outline some important potential sources of genetic confounding. 

2.2.1.3.1 Population stratification 

One form of genetic confounding is population stratification, which occurs when 

cases and controls systematically differ in their allele frequency because of 

ancestry differences (Hellwege et al., 2017; Price et al., 2006). Spurious 

associations may arise when certain populations are more likely to express the 
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phenotype of interest than others, or because of ascertainment of case/control 

status. As mating does not occur completely at random but is influenced by 

geographical proximity, genetic structure is generated in a population (Choi et al., 

2020). As risk factors may also be associated with geographical location, 

population stratification may generate groups with differing levels of risks (Choi 

et al., 2020). This is problematic for MR, as population stratification implies that 

exchangeability cannot be ensured, given that the genetic variants were not 

randomly allocated and therefore people may not have been randomly grouped 

into “exposed” and “unexposed” groups. A famous example that illustrates the 

problem of population stratification is that of the “chopstick gene” (Hamer & 

Sirota, 2000). Due to population stratification, a gene was found to be associated 

with the use of chopsticks, despite no biological explanation. As the sample 

consisted of participants of Asian and white European ancestries, who differ in 

their allele frequencies, a spurious association was created between a certain allele 

and chopstick use that was due to cultural but not biological reasons (Hamer & 

Sirota, 2000). If not accounted for, population stratification could threaten the 

relevance assumption of MR, as the wrong genetic variants might be used as a 

proxy for the exposure of interest (e.g., if one would have used the genetic 

variants for chopstick use any effect of the genetic variants on an outcome would 

have been falsely attributed to chopstick use instead of ancestry). Also, it would 

have violated the exchangeability assumption, as the exposed and unexposed 

group would not only differ in terms of exposure (e.g., chopstick use) but also 

differ in their ancestries (and associated cultural variables). As GWAS and PRS 

analyses often combine many different populations to meet the sample size 

needed to detect small genetic effects, population stratification needs to be 

accounted for. One approach to reduce spurious associations because of 

population stratification is to conduct analyses separately for different ancestries 

(e.g., separate analyses for White European and Asian ancestries). An additional 

routinely used approach to further account for population stratification is to 

conduct a principal component analysis (PCA). Briefly, in PCA genotype data of 

the whole sample is used to infer continuous axes that account for as much 

between-subject genetic variance as possible (Price et al., 2006). These axes, or 

principal components, can then be added as covariates to the regression models to 

reduce genetic ancestry differences. The more diverse ancestries a sample 
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includes, the more principal components are needed to account for population 

stratification. Generally, the first component explains most of the variance 

introduced by population stratification, compared to the following ones (Anderson 

et al., 2010).  

2.2.1.3.2 Linkage disequilibrium  

Another reason why the exchangeability assumption may not hold within a 

specific population, is that not all alleles across the genome are allocated 

completely at random. Linkage disequilibrium (LD) refers to SNPs on a 

chromosome (particularly those physically close to one another) showing a 

correlation that is higher than would have been expected by chance, as they are 

not inherited independently of each other but ‘together’ on ‘LD blocks’ (Lawlor et 

al., 2008; Marees et al., 2018). The implications of LD for MR studies are 

twofold: On the one hand, LD enables to study a functional genetic variant that 

has not been assessed, by selecting an available genetic proxy that is in high LD 

with the functional variant of interest (tagging SNPs). On the other hand, LD may 

confound MR estimates if the genetic variant used as the instrumental variable is 

in LD with another variant that independently affects either the outcome 

(violating the exclusion restriction assumption) or potential confounders 

(violating the exchangeability assumption) (Lawlor et al., 2008). Pruning and 

clumping are statistical techniques that can be applied to account for LD. Both 

methods reduce the number of SNPs within the same genomic region. Pruning 

removes SNPs at random and clumping removes SNPs based on prespecified LD 

threshold (Choi et al., 2020).  

2.2.2 Pleiotropy 

Pleiotropy is defined as a single genetic variant influencing multiple phenotypes 

and believed to be a common phenomenon in the complex genome-phenome 

relationship (Hemani, Bowden, et al., 2018; Pingault et al., 2018). There are two 

forms of pleiotropic associations. One is called horizontal pleiotropy, describing 

an association between the genetic variant and the outcome that is not explained 

through the exposure of interest but through independent biological pathways 

(thus also commonly referred to biological pleiotropy) (Hemani, Bowden, et al., 

2018). The second form of pleiotropy is called vertical (or mediated) pleiotropy, 

where the outcome shows an association with the genetic variant because the 
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genetic variant is associated with a trait that influences the outcome. Whereas 

vertical pleiotropy is not problematic for MR because the other trait is mediated 

through the exposure of interest and therefore does not violate the exclusion 

restriction assumption (and actually reflects the concept MR is built on), 

horizontal pleiotropy could lead to biased estimates in MR because it violates the 

exclusion assumption (Davey Smith & Hemani, 2014). Figure 2.1 illustrates these 

two forms of pleiotropy with a hypothetical example assessing the effect of the 

smoking PRS on offspring mental health outcomes. The purple arrows describe 

the scenario of vertical pleiotropy. Hypothetically, if smoking during pregnancy 

leads to less social support because of stigmatisation, which in turn negatively 

influences offspring’s mental health development, the intergenerational MR 

analysis still should yield unbiased results. The pleiotropic path (social support) is 

associated with offspring mental health outcomes through the trait of interest 

(maternal smoking) and therewith only indirectly associated with the maternal 

smoking PRS. The red arrows in Figure 2.1 illustrate a hypothetical scenario for 

horizontal pleiotropy, which threatens the exclusion restriction assumption. 

Offspring mental health outcomes are not associated with the trait of interest 

(maternal smoking) but with the maternal smoking PRS through an independent 

biological pathway linking the SNPs of the smoking PRS and mental health 

outcomes (e.g., SNPs of the smoking PRS influencing the hypothalamic-pituitary-

adrenal (HPA)-axis and therewith mental health outcomes independently of the 

actual maternal smoking behaviour). Pleiotropic associations between the PRS for 

smoking and caffeine consumption and offspring mental health outcomes are 

investigated in more detail in the next chapter (Chapter 3). 
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Figure 2.1 Illustration of vertical and horizontal pleiotropy for assessing the 

effect of maternal smoking on offspring mental health outcomes. The purple 

arrows illustrate a vertical pleiotropic path from the maternal smoking PRS to 

offspring mental health outcomes. The red arrows illustrate horizontal 

pleiotropic pathway between the maternal smoking PRS and offspring mental 

health outcomes. 

 

2.3 Epigenome-wide association studies (EWAS) 

As briefly mentioned in Chapter 1, most studies investigating DNA methylation 

in relation to a phenotype of interest have applied a candidate gene approach. 

Since the release of Illumina methylation microarrays in 2007 (Bibikova, 2006), 

which allowed a wider range of DNA methylation sites to be assessed in a more 

time and cost-efficient manner, EWAS have become the state-of-the-art approach 

for investigating DNA methylation-phenotype associations (Jones et al., 2018). 

EWAS allow discovering novel differentially methylated CpG sites associated 

with a phenotype of interest in a hypothesis-free manner. Further, it is still 

possible to test previously found DNA methylation-phenotype associations in a 

candidate-gene hypothesis-testing fashion (if the array covers the candidate 

regions of interest) (Jones et al., 2018). In the following sections, I briefly discuss 

how DNA methylation for an EWAS is measured and how an EWAS is 

conducted. 
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2.3.1 Assessment of DNA methylation using Illumina microarrays 

DNA methylation can be collected from any tissue but in practice is most 

commonly assessed from saliva, buccal cell swaps, or blood because they can be 

collected non-invasively (Jones et al., 2018). Different methods can be used to 

assess DNA methylation, and the most common one is to assess DNA methylation 

through commercially attainable microarrays from Illumina. Illumina uses sodium 

bisulfite to detect which CpG sites are methylated (Bibikova, 2006 & Bibikova et 

al., 2011). Through applying sodium bisulfite to DNA samples, cytosine at 

unmethylated CpG sites is converted to uracil, whereas methylated CpG sites 

remain unchanged (Jones et al., 2018). This then allows quantification of the ratio 

of methylated to unmethylated CpG sites at a given genomic position across cells 

in form of a -value. The -value is commonly calculated using the following 

formula: 

𝛽 =
𝑀𝑎𝑥 (𝑀, 0)

𝑀𝑎𝑥 (𝑀, 0) + 𝑀𝑎𝑥(𝑈, 0) + 𝛼 
 

In this formula, the nominator represents the maximum DNA methylation signal 

(M) at a given allele and the denominator represents the sum of the methylated 

(M) and unmethylated signal (U) plus a constant 𝛼, which is recommended to be 

100, to stabilize -values where methylation intensities are small (Bibikova et al., 

2011; Du et al., 2010; Weinhold et al., 2016). The resulting -value is a value 

between 0 and 1, representing the average percentage (0-100%) of DNA 

methylation of alleles across all measured cells. To illustrate, a -value of 0 for a 

specific CpG would represent that none of the cells in a sample contained DNA 

that was methylated at that CpG. A -value of 1 would represent all cells in a 

sample contained DNA that was methylated at that CpG (both extremes are rarely 

observed in practice).  

Ever since the release of the first Illumina array in 2007 (Bibikova, 2006), the 

number of CpG sites that can be assessed across the epigenome has tremendously 

increased, from ~27K to ~800K, representing the fast developments in the field of 

epigenetics over the past two decades. Still the largest array currently available, 

which is the EPIC array (Moran et al., 2016), only assesses 853,307 CpG sites, 

covering less than 5% of CpG sites of the genome. Only one cohort of this thesis 
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assessed DNA methylation using the EPIC array, of which only common probes 

with the 450k array were used (see Born in Bradford in section 1.5.4 for more 

details). Therefore, DNA methylation analyses in this thesis are based on the 450k 

array (Bibikova et al., 2011), which is discussed in more detail below.  

2.3.1.1 The 450K array 

The 450k array was released in 2011 and covers approximately 480,000 CpG 

sites, representing less than 2% of CpG sites of the genome. The selection of 

probes on the 450k has been based on the co-methylation assumption, which 

posits that adjacent sites (within 50 bases) are likely to show very similar DNA 

methylation patterns (Bibikova et al., 2011; Eckhardt et al., 2006) and thus not all 

sites need to be assessed in order to observe global DNA methylation changes. 

More detailed information about the selection of probes on the 450k array can be 

found in the paper by Bibikova and colleagues (Bibikova et al., 2011). Briefly, 

genomic positions for the 450k array were selected by an epigenetic expert panel, 

resulting in 482,421 CpG sites, 3,091 non-CpG sites, and 65 randomly selected 

SNPs. Overall, these probes should be representing DNA methylation at multiple 

CpG sites (mean = 17.2 probes per gene) of 99% of genes (as annotated by 

RefSeq) and at 96% of CpG islands and shores (Bibikova et al., 2011). An 

illustration of DNA methylation patterns at these regions can be found in Figure 

2.2 and may help to clarify why DNA methylation at these regions are of 

particular interest. Most CpG sites in the genome tend to be methylated and are 

commonly found outside of gene promoter regions. However, CpG islands 

(Figure 2.2), which are sections of DNA where many successive CpG sites can be 

found (see blue line labelled CpG density), are typically unmethylated 

(represented by thin grey line in Figure 2.2) and commonly found in close 

proximity to promoter sites of 60-70% of all human genes (Illingworth & Bird, 

2009). In contrast to CpG islands, DNA methylation adjacent to CpG islands, at 

CpG shores and shelves, varies greatly (Figure 2.2, grey line). Changes in these 

DNA methylation patterns are likely to influence gene expression and are 

therefore an attractive research target. Whereas DNA methylation at CpG sites 

close to gene promoter sites tends to be negatively associated with gene 

expression, DNA methylation at gene bodies is more commonly positively 

associated with gene expression (Jones et al., 2018).  
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Figure 2.2 Illustration of DNA methylation patterns near a gene region 

(credit: Jones et al., 2018). The Black arrow represents the transcription start 

site and the black rectangles represent a gene. The grey line symbolizes 

variability in DNA methylation, with a thicker line representing higher 

variability in DNA methylation levels according to the genomic region. The 

blue line symbolises CpG density according to genomic region. 

2.3.2 Biological variation in DNA methylation 

When conducting an EWAS it is important to be aware of certain biological 

properties of DNA methylation that need to be accounted for to reduce variation 

that is not related to the trait of interest. Known biological sources of variation in 

DNA methylation include tissue-specificity, cell proportion types, age, sex, and 

population stratification. These sources of biological variation and how to adjust 

for them are discussed in more detail below.  

2.3.2.1 Tissue specificity 

DNA methylation is tissue specific, meaning that DNA methylation levels, 

observed at the same genomic position in a cell, are likely to differ across 

different tissue types. It is therefore unclear whether DNA methylation assessed in 

one type of tissue is able to function as a surrogate for DNA methylation in 

another tissue (Lokk et al., 2014). Whereas tissue-specificity might be less 

problematic for analyses trying to establish DNA methylation in an accessible 

tissue (such as blood or saliva) as a biomarker for a phenotype of interest, tissue-

specificity is highly relevant when the DNA methylation analysis is focussed on 

understanding biological pathways to the phenotype of interest. Regardless of the 

focus of the EWAS, studies investigating the association between DNA 

methylation and psychological/psychiatric phenotypes commonly rely on the 

assumption of cross-tissue concordance because of the inability to assess DNA 
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methylation in the tissue of most interest, which is human brain tissue (Walton et 

al., 2019). Efforts have been made to test the cross-tissue concordance assumption 

between peripheral and brain tissue derived DNA-methylation. Initial findings 

looked promising, with studies that applied a between-subjects approach reporting 

high correlations between DNA methylation in peripheral tissue and brain tissue. 

Across-subject correlations of DNA methylation in post-mortem brain tissue were 

found to be ranging from 0.77-0.91 with blood (Braun et al., 2019; Davies et al., 

2012; Horvath et al., 2012), 0.90 with saliva, and 0.85 with buccal cell tissue 

(Braun et al., 2019). However, when considering both, between- as well as within- 

subject correlations of DNA methylation levels across different tissues, 

correlations tend to be much smaller. Evidence for within subjects correlations of 

blood-brain DNA methylation was only found for 1.4% to 7.9% of CpG sites 

(Hannon et al., 2015; Walton et al., 2016). Further, a study by Edgar and 

colleagues (Edgar et al., 2017) calculated correlations between DNA methylation 

in post-mortem brain tissue and paired blood DNA methylation levels of 16 

subjects. They found that blood-brain DNA methylation at most CpG sites within 

subjects did not correlate and those CpG sites which did show evidence for a 

correlation, showed insufficient variability between individuals, indicating low 

susceptibility of those sites to environmental influences (and therewith low 

relevance for EWAS). Those CpG sites which met sufficient inter-individual 

variability to indicate susceptibility to environmental influences, showed a within-

subject blood-brain concordance ranging from 0.33-0.40, which still indicates 

substantial variability between blood-brain DNA methylation. Likewise, cross-

tissue comparisons of DNA methylation using brain tissue from living subjects 

obtained during neurosurgery for epilepsy, found that 26.6% of CpG sites in 

blood, 17.6% in saliva, and 20.4% in buccal cells showed sufficient inter- as well 

as intra-individual variability and were correlated with DNA methylation levels in 

brain tissue (Braun et al., 2019). Similar to previous studies, Braun and colleagues 

(2019) also found higher between-subjects correlations for brain DNA 

methylation and saliva (r = 0.90), blood (r = 0.86) and buccal cell DNA 

methylation (r = 0.86) than the corresponding within-subjects correlations (brain-

saliva: mean r = 0.12; blood-brain: mean r = 0.15; brain-buccal cell: mean r = 

0.14).  
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Lack of overlap between DNA methylation in blood and post-mortem brain tissue 

may be due to changes in brain DNA methylation related to death, or the cause of 

death, as well as to commonly limited sample sizes because of the scarcity of 

brain tissue for research purposes. In addition to studies using post-mortem brain 

tissue, some studies were able to test concordance with brain tissue from living 

subjects during brain surgery (Braun et al., 2019; Walton et al., 2016). Findings 

from these studies are in line with findings using post-mortem brain tissue. It is 

noteworthy that these studies show limited power due to restricted sample sizes 

and were collected from patients receiving neurosurgery because of severe 

epilepsy, which may also have impacted DNA methylation.  

In sum, tissue-specificity needs to be considered when inferring biological 

pathways from EWAS using peripheral tissue as surrogates for brain tissue. When 

interested in intra- and inter-individual correlations of brain tissue with peripheral 

tissue, peripheral blood seems to be the best available surrogate for brain tissue 

(slightly higher concordance than saliva or buccal when considering within-

subject variation) (Braun et al., 2019). No data are available on the overall 

concordance between DNA methylation in cord blood and brain tissue, yet 

specific CpG sites showing evidence for DNA methylation changes in cord blood 

can be looked up on databases of peripheral blood-brain tissue concordance 

(Edgar et al., 2017), to get an indication for whether these DNA methylation 

changes are likely to be mirrored in brain-tissue (Caramaschi et al., 2017, 2020).  

2.3.2.2 Estimated cell proportions 

In addition to cross-tissue variation, there is also substantial variation in DNA 

methylation within the same tissue caused by the different cell-types it contains 

(Houseman et al., 2012; Jones et al., 2018). Different cell types might confound or 

mediate associations between DNA methylation and a phenotype of interest, 

especially if the phenotype of interest also shows cell-type associated variation 

(Yousefi, Huen, Quach, et al., 2015). Therefore, it is often recommended to adjust 

for cell type proportions in EWAS and/or to explore associations between cell 

type proportions and the phenotype of interest. Cell type proportions can either be 

measured directly in each sample or be estimated. Due to time, cost and 

laboratory storage restrictions, and because many studies rely on pre-extracted 

DNA samples and do not have access to original samples, the latter is the more 
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common approach. A popular method to estimate cell proportions in blood is the 

Houseman method (Houseman et al., 2012), which builds a model, based on data 

of cell-types of a reference panel that can estimate cell proportions in the target 

sample. In fact, it is the differences in DNA methylation patterns between the 

cells, as established in the reference data that help to distinguish the proportions 

of each cell type in the target sample. The estimated proportion of each cell type 

can then be added as covariates to the EWAS models. As recent studies have 

shown that cell proportions are influenced by age (Jaffee & Price, 2008; Yousefi, 

Huen, Quach, et al., 2015) and most reference panels are based on adult 

populations, cord blood reference panels have been established that enable 

accurate prediction of cell proportions in cord blood (Bakulski et al., 2016; Gervin 

et al., 2016, 2019). For some other tissues than blood, such as saliva and placental 

tissue, the underlying cell type proportions may not have been clearly established 

in reference data and thus a reference free method may be more appropriate 

(Houseman et al., 2014; McGregor et al., 2016). However, reference-free analyses 

may come with the cost of reducing potentially interesting phenotypic variation 

(Gervin et al., 2016; McGregor et al., 2016). All EWAS analyses in this thesis 

used the Houseman method to estimate cell proportions in blood (reference panel 

for cell proportions at birth: Gervin et al., 2016; reference panel for cell 

proportions in childhood: Reinius et al., 2012). In addition to the hypothesis of 

environmental exposures leading to changes in DNA methylation between 

exposed and non-exposed individuals, the hypothesis exists that exposures may 

influence cell type proportions (Lappalainen & Greally, 2017). Therefore, I also 

tested the association between the phenotypes and estimated cell proportions in 

my analyses. 

2.3.2.3 Age 

Many studies have shown associations between chronological age and DNA 

methylation at various developmental stages (Li et al., 2018; Mulder et al., 2020; 

Teschendorff, West, et al., 2013; van Dongen et al., 2016; Xu et al., 2017). 

Overall, it is suggested that DNA methylation is more variable early compared to 

later in development (Mulder et al., 2020; Reynolds et al., 2020). Age dependent 

epigenetic changes, also referred to as epigenetic drift (Teschendorff, West, et al., 

2013), were initially observed in twin studies, which found higher variability of 
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DNA methylation with increasing age. Whereas monozygotic twins showed an 

almost identical DNA methylation profile in early life, epigenetic differences 

increased with increasing age (Fraga, Ballestar, Paz, Ropero, Setien, Ballestar, 

Heine-Suñer, Cigudosa, Urioste, Benitez, et al., 2005; Talens et al., 2012). A 

recent meta-analysis of two large birth cohorts (N = 2,348) has investigated DNA 

methylation changes from birth to adolescence and found that about half of the 

assessed CpG sites linearly change over development, specifically in the first 

decade of life, and generally show a decrease in DNA methylation (Mulder et al., 

2020). In addition to chronological age, gestational age was found to be strongly 

associated with cord blood DNA methylation. A meta-analysis of 17 birth cohorts 

has found DNA methylation at over 8,000 CpG sites to be associated with 

gestational age, yet of these only one CpG site showed consistent evidence for an 

association with DNA methylation in childhood and adolescence (Merid et al., 

2020). Yet, 280 of the gestational-associated CpG sites were in common with a 

list of CpG sites found to be associated with childhood age (Xu et al., 2017). 

Alternative explanations for lack of consistency across development in Merid and 

colleagues’ (Merid et al., 2020) meta-analysis may be the smaller sample sizes at 

later DNA methylation assessments or the increased number of other postnatal 

environmental exposures that have distorted the effect of gestational age (Merid et 

al., 2020). Noteworthy, the cord blood CpG sites associated with gestational age 

showed a higher variability in DNA methylation in early childhood than the non-

gestational age associated CpG sites, indicating that these CpG sites may be 

specifically prone to changes in DNA methylation. Due to the influence of age on 

DNA methylation it is recommended to adjust for age in EWAS analyses (Jones 

et al., 2018). 

2.3.2.4 Sex 

There are substantial differences in DNA methylation patterns between female 

and male sex. DNA methylation is involved in the deactivation of the second X 

chromosome in females. Due to the profound differences in DNA methylation at 

the sex chromosomes, these are typically analysed separately or removed from the 

analyses (Jones et al., 2018). Even when restricting analyses to autosomes and 

removing probes on autosomes, which are cross-reactive with sex chromosomes, 

sex-specific DNA methylation differences can still be observed (Yousefi, Huen, 
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Davé, et al., 2015). The mechanism for these sex-specific differences in DNA 

methylation is not clear, however, it is advised to either adjust for sex or to inspect 

sex-specific associations between DNA methylation and the phenotype of interest 

through stratifying by or including sex as a moderator (Jones et al., 2018).  

2.3.2.5 Population stratification  

As previously mentioned, population stratification may be a confounding factor in 

genetic analyses and is therefore commonly adjusted for by stratifying analyses by 

ancestry (Hellwege et al., 2017). Whereas PCA is commonly applied to adjust for 

genetic variation in the data attributable to genetic ancestry, stratification of 

ancestry is commonly based on self-reported ethnicity. Self-reported ethnicity is a 

complex multifaceted construct that may reflect genetic and/or cultural aspects 

(Barnholtz-Sloan et al., 2008). Ancestry differences, specifically if assessed 

through self-report, may also be associated with phenotypic differences, such as 

differences in behavioural, societal, and cultural aspects (Barnholtz-Sloan et al., 

2008). As environmental and genetic effects influence DNA methylation, ancestry 

may be an important cofounding factor in EWAS analyses (Fagny et al., 2015; 

Galanter et al., 2017). For instance, a study investigating DNA methylation and 

genotype data of 573 children with varying Hispanic origin found evidence for 

genetic, but even stronger evidence for self-reported ancestry, being associated 

with DNA methylation differences (Galanter et al., 2017). Whereas genetic 

ancestry, determined by PCA, was associated with 194 differentially methylated 

CpG sites, self-reported ancestry was associated with 916 CpG sites. Even after 

adjusting associations between self-reported ethnicity and DNA methylation for 

genetic ancestry, still 34% of variance remained, indicating an influence of self-

reported ethnicity on DNA methylation that is not explained by population 

stratification. The self-reported ethnicity associated CpG sites were enriched for 

CpG sites that have previously been associated with phenotypes of socioeconomic 

position, including exposure to maternal smoking during pregnancy, car exhaust 

gas and psychosocial stress. First, this illustrates the importance of accounting for 

self-reported ethnicity differences in samples combining populations with diverse 

ethnic identities. Second, it stresses the need for researchers to explicitly define 

how ancestry/ethnicity has been assessed in their study to ensure that adequate 

inferences can be drawn (Ali-Khan et al., 2011; Barnholtz-Sloan et al., 2008). In 
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this thesis, the only DNA methylation sample with large proportions of diverse 

ethnicities that was used was the Born in Bradford cohort (BiB; see 2.6.4 for 

cohort description) and thus the EWAS analysis of this cohort was stratified by 

self-reported ethnicity. 

2.3.3 Technical variation in DNA methylation assessment 

In addition to biological sources of variation in DNA methylation, another source 

of unwanted variation might be introduced by technical handling of DNA 

methylation samples. In this section, the sources of technical variation and how to 

account for them are discussed.  

As samples of DNA methylation are collected in different batches, a large source 

of technical variation may stem from batch effects. Some sources for batch effects 

can be controlled for at the study design stage by closely protocolling difference 

in sample collection, such as dates on which the individual batches were collected 

and the technical personnel that conducted the assessment. Further, randomising 

samples to different batches (e.g., avoiding assessing all cases and controls in the 

same batch) might help to reduce batch effects. Additional types of technical 

variation can be controlled through 848 control probes that were intentionally 

included on the 450k array to assess non-biological variation of the data (Fortin et 

al., 2014). Functional normalisation can be applied to the DNA methylation data 

using the variation assessed by the control probes to disentangle technical from 

biological variation (Fortin et al., 2014; Min et al., 2018). In addition, a selection 

of probes of the 450k microarray, summarised by Chen et al. (Chen et al., 2013), 

have consistently been classified as problematic and thus should be removed from 

the DNA methylation samples. Also, poor quality probes can be determined by 

the calculation of a detection P-value, which determines, based on the signal 

captured by the control probes on the array, whether the probe was able to capture 

a true signal or noise (Heiss & Just, 2019). The P-value cut-off for determining 

whether a probe captured a high-quality signal is chosen by the researcher. 

Generally, probes with detection P-value larger than 0.05 or 0.01 are removed 

prior to the EWAS analysis (Heiss & Just, 2019). In the EWAS analyses of this 

thesis, probes were removed if 5% of the samples had a detection P-value > 0.05. 

Another quality assessment for the DNA methylation data is to remove probes 

that are statistically classified as outliers. The Tukey method (Tukey, 1977) was 
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used to identify outliers in the EWAS analyses of this thesis, where probes are 

removed prior to the EWAS analysis that fall outside 3 times the interquartile 

range (Sharp, Arathimos, et al., 2018; Sharp et al., 2021).  

In order to account for any remaining unmeasured sources of non-biological 

variation, surrogate variable analysis (SVA) was applied (Leek et al., 2012). SVA 

helps to remove variance of unknown latent variables underlying the data and thus 

can be applied to reduce batch effects in microarray data (Leek et al., 2012). 

2.3.4 Statistical analysis 

The statistical analysis for the meta-EWAS conducted as part of this thesis 

followed the pipeline for meta-EWAS analyses used by Sharp and colleagues 

(Sharp et al., 2021). The pipeline includes nine quality control and analysis steps 

that could be conducted in EWAS meta-analyses. The first six steps were 

applicable to the analyses of my thesis (Figure 2.3). Step one includes proper 

filtering of probes to remove technical and biological variation as outlined above. 

The next steps will be discussed in detail in the following sections.  
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Figure 2.3 First six steps of the EWAS meta-analysis pipeline introduced by 

Sharp and colleagues. Only steps 1-6 were applicable to the analyses of this 

thesis. Steps 7-9 were specific to the research design of the study by Sharp and 

colleagues (credit: Sharp et al., 2021). 
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2.3.4.1 Probe-level analysis 

As DNA methylation is assessed as a continuous score, which in theory ranges 

from 0-100%, the degree of association between DNA methylation and 

phenotypic variation can be estimated through linear regression analyses. 

Depending on the specific research question, changes in DNA methylation can be 

investigated as the exposure or outcome. Processed DNA methylation is 

commonly stored in the form of a matrix, with rows representing the number of 

assessed probes (approx. 480,000) and columns representing participants within 

the sample (N columns = N participants). The regression analysis is performed in 

a row-wise manner, so that, for each CpG, participants’ DNA methylation values 

are compared to their values of the trait of interest (Ritchie et al., 2015). In this 

thesis, I use DNA methylation as the outcome in my studies of associations with 

maternal caffeine (Chapter 4) as well as the exposure in my studies of associations 

with childhood internalising problems (Chapter 5). When using DNA methylation 

as the exposure, the resulting regression coefficient represents the change in the 

trait of interest that is associated with a one-unit change in DNA methylation. As 

a one-unit change in DNA methylation represents a complete change from 

completely unmethylated (methylation beta value = 0; 0%) to completely 

methylated (methylation beta value = 1; 100%), across all measured cells, it is 

more sensible to divide the regression coefficient by 10, to receive a more 

biologically plausible coefficient. The coefficient would then represent the change 

in the trait of interest that is associated with an increase in percentage DNA 

methylation of 10% at a given CpG site. When DNA methylation is modelled as 

the outcome, the regression coefficient represents the change in DNA methylation 

at a given CpG site that is associated with a one-unit increase in the trait of 

interest. Regardless of whether DNA methylation was used as the exposure or 

outcome, each EWAS analysis in this thesis included a crude model, only 

adjusted for estimated cell proportions, a covariate model that included all other 

covariates, and two covariate adjusted models stratified by offspring’s sex. All 

individual cohort analyses were performed in R (R Core Team, 2014). Summary 

results of the probe-level results were prepared for meta-analysis using R.  
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2.3.4.2 Quality control checks for the probe-level analyses (Step 2 of EWAS 

meta-analysis pipeline) 

2.3.4.2.1 Cohort quality control checks 

Once the EWAS analysis has been conducted there are several quality control 

checks that can be performed to reassure that there were no problems with the 

data or the conduction of the analysis. The quality control checks applied in this 

thesis follow the EWAS meta-analysis pipeline, which has been proposed by 

Sharp and colleagues (Sharp et al., 2021). First, the correlation between the 

regression coefficients of each model were calculated and visualised in form of a 

correlation plot. The correlation plots serve as a form of sanity check to ensure 

that estimates of similar models are roughly correlated, and models are estimating 

the same effect. Second, the P-value distribution of the regression coefficients of 

each model was inspected through the creation of Quantile-Quantile (QQ)-plots. 

In a QQ-plot, the observed P-value distribution is compared to the distribution 

that would be expected under the null hypothesis (Ehret, 2010). If some P-values 

are smaller than would be expected under the null hypothesis, some dots at the 

end will come off the null line (P-values are sorted from largest to smallest). If 

dots systematically come off the line at lower values on the x-axis, caution is 

warranted, as it might represent systematic confounding, for instance through 

population stratification (Ehret, 2010). Visual inspection of the P-value 

distribution through QQ-plots can be supported through the calculation of the 

genomic inflation factor, Lambda (λ). A λ-value of 1 indicates that the observed 

P-value distribution is identical with the expected null-distribution, indicating no 

effect or confounding. Whereas we would expect a slightly larger λ-value than 1 

(e.g., 1.04) if there were some significant associations between DNA methylation 

at certain CpG sites and our trait of interest, a largely inflated lambda value is 

indicative of systematic differences likely due to confounding (Yang et al., 2011). 

Third, for each model precision plots were generated that visualise the relation of 

the average statistical precision of the EWAS results and the sample size of each 

cohort (Figure 2.4). The x-axis represents the square root of the sample size and 

the y-axis represents 1/median standard error (Figure 2.4). The diagonal line 

represents the expected precision given the sample size, and strong deviations 
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from the line could be indicative of issues with the analysis and/or data for that 

cohort (Figure 2.4).  

 

 

Figure 2.4 Precision plots for cohort results. The diagonal line represents 

expected precision according to sample size. 

 

2.3.4.3 Meta-analysis of probe-level cohort results (Step 3 of EWAS meta-

analysis pipeline) 

The prepared summary results were meta-analysed with fixed 

effect estimates weighted by the inverse of the variance using the software 

METAL (Willer et al., 2010). A fixed effects model was chosen as it assumes that 

the cohorts stem from the same overarching population and thus the effects should 

be the same across studies (Borenstein et al., 2007). The only error variance that is 

considered in a fixed-effects model is the within-cohort measurement error. The 

observed effect T in a cohort i, referred to as Ti, results from the sum of the 

common effect 𝜇 and the within-cohort error, 𝜀𝑖: 

𝑇𝑖 =  𝜇 +  𝜀𝑖 
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The weights ensure that a higher weight is attributed to cohorts with more precise 

estimates (Borenstein et al., 2007). The weights are calculated according to: 

𝑤𝑖 =
1

𝑣𝑖
 

Where wi is the weight for cohort i, which is calculated by dividing 1 by the 

variance (v) of cohort i. The estimated meta-analysed effect, 𝑇,̅ is calculated by 

first, summing up the products of each cohort’s effect size and their corresponding 

weight (nominator) and second, dividing it by the sum of the weights 

(denominator): 

�̅� =  
 ∑ wiTi

k
i=1

∑ wi
𝑘
𝑖=1

 

To obtain the standard errors (SE) of the estimated weighted effect, 𝑇,̅ the square 

root of the inverse of the sum of the weights is taken (Borenstein et al., 2007): 

𝑆𝐸(�̅�) =  √
1

∑ wi
𝑘
𝑖=1

 

2.3.5 Meta-analysis quality control checks (Step 5 and 6 of meta-EWAS 

pipeline) 

Quality checks of the meta-analysed results were conducted in a similar vein as 

for the individual cohort’s probe-level results. Correlation matrices of effect 

estimates of each model and QQ-plots and Lambda values of the P-values of the 

meta-analysed coefficients were generated. In addition, a leave-one-out analysis 

was conducted to investigate whether one of the cohorts may be driving the meta-

analysed effects. As the name already indicates, a leave-one-cohort-out analysis 

inspects how the meta-analysed results change if each cohort is sequentially 

omitted from the meta-analysis. If meta-analysed results significantly change with 

the removal of one cohort, this provides indication for that cohort exerting a 

dominant effect on the meta-analysed results that is observed when including all 

cohorts. As proposed by Sharp and colleagues (Sharp et al., 2021), for this thesis a 

critical change in results was determined by a change of direction in the meta 

effect estimate, a more than 20% attenuation to the null, or a confidence interval 

that includes zero after omission of a single cohort.  



Chapter 2 – Methods and Samples 

 68 

2.3.6 Differentially methylated regions 

A complementary analysis to the probe-level analysis is a differentially 

methylated regions (DMR) analysis. In contrast to the probe level analysis, which 

investigates associations between single probes and a trait of interest, a DMR 

analysis takes into account groups of CpG sites that are adjacent and show a 

similar direction of association with the trait of interest (Jones et al., 2018). One 

of the main advantages of DMR analyses is that they require fewer tests than 

probe-level analyses and therefore enhance the statistical power in commonly 

underpowered EWAS (Suderman et al., 2018). Furthermore, DMR analyses are 

considered to be more biologically meaningful as there is evidence that adjacent 

CpG sites underlie the same genomic control and are involved in similar 

biological functions (Eckhardt et al., 2006; Kuan & Chiang, 2012; Saffari et al., 

2018). One drawback of DMR analyses is that the magnitude of resulting effect 

estimates cannot be interpreted biologically, as is possible for a probe-level 

analysis. The DMR effect size is a meta-analysed coefficient across multiple CpG 

sites contained within the DMR, each with a unique effect and variance. However, 

if a DMR analysis is conducted complementary to a probe-level analysis, the 

probe-level analysis can be consulted to get an indication for the effect size. The 

DMR analyses in this thesis were conducted using the R-package dmrff 

(Suderman et al., 2018). 

2.4 Mendelian Randomization applied to epigenetic data 

As outlined above, DNA methylation is dynamic and thus as likely to suffer from 

reverse causation (less of a problem when using DNA methylation assessed in 

cord-blood because of the temporal order of events: offspring mental health 

outcomes cannot have influenced their DNA methylation levels at birth) and 

confounding (a factor that affects depression and methylation may explain any 

depression DNA methylation-association). These problems can be reduced by 

applying MR to inspect causal effects of DNA methylation on a phenotype of 

interest, or vice versa. When DNA methylation is used as the outcome, SNPs 

from GWAS of the exposure of interest can be used as a genetic proxy. When 

DNA methylation is studied as the exposure, SNPs that proxy for DNA 

methylation at CpG sites associated with an exposure of interest (e.g., caffeine or 

smoking), identified from EWAS, can be used to inspect the causal relationship 
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(Relton & Davey Smith, 2012; Richardson et al., 2018). As for other exposure 

phenotypes, SNPs discovered from GWAS are commonly selected as instruments 

that proxy for DNA methylation. SNPs that associate with DNA methylation 

variation at a CpG site are called quantitative trait loci (mQTL). If the mQTL is in 

proximity to the CpG site (usually within 1 Mb of each side of the CpG site) it is 

called a cis-SNP or cis-mQTL (Min et al., 2020). If the mQTL is distal (> 1Mb 

away from each side of the CpG site) to the CpG site or even on another 

chromosome, it is commonly referred to as trans-SNP or trans-mQTL (Min et al., 

2020). Cis-SNPs are more commonly used as instruments for DNA methylation 

than trans-SNPs, as most mQTLs are cis (~91%) and have a larger effect on DNA 

methylation levels than trans-SNPs (Gaunt et al., 2016; Min et al., 2020). Adding 

to this, trans-SNPs tend to be more prone to horizontal pleiotropy (Hemani, 

Bowden & Davey Smith, 2018). As in conventional MR, the instrumental variable 

assumptions must hold to derive accurate conclusions about the effect of DNA 

methylation on an outcome. When MR is applied to a DNA methylation context, 

the assumptions are as follows: First, the cis-SNP must be robustly associated 

with DNA methylation at the CpG site of interest. Second, the cis-SNP should 

only be associated with the phenotype of interest through exposure-associated 

DNA methylation variation. Third, the cis-SNP should not be associated with any 

confounding variables of the cis-SNP-outcome relationship. The first MR 

assumption should be met by selecting genome-wide significant cis-SNPs, which 

were replicated in independent samples (Hemani et al., 2018). As mentioned 

before, the second and third assumption cannot be tested directly and are 

threatened by horizontal pleiotropy (the cis-SNP is not only associated with DNA 

methylation at a given CpG site but also independently associated with other 

phenotypes that may confound associations). Risk of pleiotropy may be reduced 

by selecting cis- instead of trans-SNPs and by running sensitivity analyses using 

methods that are more robust to pleiotropy, such as MR-Egger, weighted median, 

and weighted mode MR (Hemani et al., 2018). However, pleiotropy detection 

using these methods is limited by the fact that commonly only few independent 

mQTLs can be identified per CpG site (Jamieson et al., 2020). If MR results 

indicate evidence in support of DNA methylation levels influencing the 

phenotype of interest, colocalization methods may be applied to provide evidence 
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for causation by investigating if the same genetic variant is affecting variation in 

DNA methylation and the phenotype of interest (Richardson et al., 2018).  

2.4.1.1 cis-SNP selection 

Large databases have been made available to identify adequate genetic 

instruments that can be used as proxies for DNA methylation at CpG sites. The 

mQTL database http://www.mqtldb.org (Gaunt et al., 2016), is a catalogue of 

SNP-DNA methylation associations (based on the 450k array) within the 

Accessible Resource for Integrated Epigenomic Studies (ARIES) sample (N = 

1,018; Relton, Gaunt, et al., 2015; see sample description for more details about 

ARIES). Recently, a new data catalogue of SNP-DNA methylation associations 

called the genetics of DNA methylation consortium (GoDMC) has been published. 

The GoDMC is a large collaboration project between more than 50 research 

groups that contribute data to investigate the genetic contribution to DNA 

methylation variation (http://www.godmc.org.uk/) (Min et al., 2020). The 

GoDMC has investigated the association between genotype and DNA methylation 

variation using ~10 million genotypes from the 1,000 genome project and blood 

DNA methylation data from ~30,000 European participants (Min et al., 2020) and 

is therefore much higher powered than the ARIES based mQTL database (N = 

1,018, http://www.mqtldb.org) (Gaunt et al., 2016). The results are now available 

on a database, containing around 300,000 independent mQTL loci 

(http://mqtldb.godmc.org.uk/). In this thesis, I use the GoDMC database in 

Chapter 6 to select genetic instruments as proxies for local DNA methylation 

associated with prenatal smoking and caffeine exposure.  

2.4.2 One-sample and two-sample MR 

Depending on the availability of data, different MR approaches may be applied to 

investigate a causal effect of DNA methylation on a phenotype of interest. If a 

single sample has genetic, DNA methylation, as well as data on the phenotype of 

interest, a one-sample MR approach may be applied (Richardson et al., 2018). If a 

single sample cannot meet these data requirements, a two-sample MR approach 

may be applied instead. The latter approach approach has the advantage to obtain 

the data needed from two different samples, one with genetic data and DNA 

methylation (not requiring data of the phenotype of interest; Figure 2.5 red 

rectangle) and one with genetic data and the phenotype of interest (not requiring 

http://www.mqtldb.org/
http://www.godmc.org.uk/
http://www.mqtldb.org/
http://mqtldb.godmc.org.uk/
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DNA methylation data; Figure 2.5 blue rectangle; Richardson et al., 2018). The 

two-sample MR approach tends to be higher statistically powered, as it allows 

using summary data from large GWAS studies. MR-base 

(https://www.mrbase.org/) is a platform that enables to apply a variety of MR 

methodologies to curated and harmonised GWAS summary statistics in a user-

friendly manner (Hemani, Zheng, et al., 2018). The database includes summary 

statistics of over 1,673 GWAS and provides all reported SNP-phenotype 

associations, without restricting to statistically significant results (Hemani, Zheng, 

et al., 2018). Two-sample MR using MR base was applied in Chapter 6 of this 

thesis to investigate a potential causal effect of prenatal smoking and caffeine 

exposure associated DNA methylation on offspring mental health problems.  

Figure 2.5. Illustration of a two-sample MR analysis investigating the causal 

effect of exposure-associated DNA methylation on a phenotype. Using data of 

sample 1 (top rectangle in red) the association between a genetic variant on DNA 

methylation at a selected CpG site is estimated. Using data of sample 2 (bottom 

rectangle in blue) the association between a genetic variant that is a proxy for 

DNA methylation changes at a selected CpG site and the phenotype of interest is 

estimated.  

 

https://www.mrbase.org/
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2.5 Multiple-testing correction 

Omics studies, including EWAS, involve conducting many statistical tests. By 

chance alone, we would expect a proportion of those statistical tests to produce 

low P-values. Analyses that run multiple tests on a signal dataset have an inflated 

chance to tap into Type I error (the probability that the null hypothesis is rejected 

even though it is true), leading to an increased chance of false positive 

associations (Shaffer, 1995). Whereas a commonly chosen risk threshold for a 

false positive finding in statistical analyses is 5% (there is a 5% chance), this risk 

increases exponentially with the number of tests that are run using the same data 

set (Goldman, 2008; Shaffer, 1995). As shown in the formula below, if running 20 

independent tests on the same data set, using a probability threshold of 5%, the 

probability (Ρ) for false positive finding increases from a 5% chance for one test, 

to a 64% chance when running 20 tests (Goldman, 2008): 

𝑃 (𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑓𝑖𝑛𝑑𝑖𝑛𝑔)

= 1 − Ρ (𝑛𝑜 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑓𝑖𝑛𝑑𝑖𝑛𝑔) 

                                                                                = 1 − (1 − 0.05)20  

                                                                                = 0.64 

Two common methods to account for the number of tests that (epi)genetic 

analyses require are the Bonferroni correction (Shaffer, 1995) and the Benjamin-

Hochberg False Discovery Rate (FDR) (Benjamini & Hochberg, 1995). The 

Bonferroni correction adjusts for the inflated Type I error by dividing the P-value 

threshold (𝛼) that would be applied to determine statistical significance of a single 

test (often 0.05) by the overall number of independent tests conducted with the 

same data (n) (Shaffer, 1995):  

𝛼𝐵𝐹 =
𝛼

𝑛
 

The Bonferroni correction is considered to be overly stringent for Type I 

adjustments in (epi)genetic studies as there is good evidence that the conducted 

tests are not independent of each other, and thus correction sacrifices 

unreasonable amounts of statistical power (Shaffer, 1995). As mentioned earlier, 

SNPs tested in genetic association studies are likely to be subject to linkage 

disequilibrium, where SNPs on the same chromosome show associations that are 
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higher than would have been expected by chance (Marees et al., 2018). Likewise, 

CpG sites, which are in close proximity to another, are likely to be correlated (see 

section 1.3.6 differentially methylated regions) (Saffari et al., 2018). Multiple-

testing correction using FDR also assumes independence between tests but is less 

stringent than the BF method (Benjamini et al., 2001). When applying FDR, each 

test’s P-value is adjusted based on a set number of false-positives (Benjamini & 

Hochberg, 1995). As with 𝛼, it is up to the researcher to decide on the expected 

proportion of false discoveries (Benjamini et al., 2001) and a popular approach is 

to expect a 5% FDR (Marees et al., 2018; Sharp, Arathimos, et al., 2018; Sharp et 

al., 2021). The FDR is defined as: 

𝐹𝐷𝑅 =  
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑁𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑁 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑁 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

2.6 Cohorts 

The next section will briefly discuss the cohort data that was used in the analyses 

of this thesis. ALSPAC was used in all analyses and is therefore discussed in most 

detail, followed by Generation R and MoBa, which were used for the analyses in 

Chapter 4 and 5. BiB, INMA, and EDEN only contributed data to the analyses of 

Chapter 4 and will thus only be discussed briefly. 

2.6.1 Avon Longitudinal Study of Parents and Children (ALSPAC) 

2.6.1.1 Overview 

ALSPAC is a multigenerational cohort study that started recruiting pregnant 

women in the beginning of the 90’s in the greater Bristol area, in South-West 

England (Boyd et al., 2013; Fraser et al., 2013). ALSPAC is therefore also known 

as the “Children of the 90’s study”. Data collection is still on-going and recently 

also started collecting data on a second generation called “Children of the 

Children of the 90’s” (CoCo90s) (Lawlor, Lewcock, et al., 2019). The data used 

in this thesis only focuses on the first generation of mothers (G0) and their 

children (G1), which included 14,541 pregnancies. The motivation to initiate 

ALSPAC was to increase understanding of modifiable exposures on development 

and health. In order to pursue this goal, a wealth of data was collected including 

genetic, epigenetic, biological, psychological, social, and other exposure 

phenotypes (Boyd et al., 2013). The ALSPAC study was approved by the 
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ALSPAC Ethics and Law Committee and the Local Research Ethics Committees 

and informed consent for the use of data collected via questionnaires and clinics 

was obtained from participants. An overview over the variables that have been 

collected can be found in the data dictionary and variable catalogue, which can be 

downloaded from the ALSPAC website 

(http://www.bristol.ac.uk/alspac/researchers/our-data/). The variable catalogue 

enables to search for specific variables of interest and can be found at 

http://variables.alspac.bris.ac.uk/.  

All the analyses in this thesis used data from ALSPAC. In Chapter 3, genotype 

and phenotype data of mothers of G0 and children of G1 were used. Chapter 4 

used maternal and offspring genotype data, as well as maternal and paternal 

phenotype data and cord blood DNA methylation from their children (G1). In 

Chapter 5, phenotype data from mothers of G0 and their children (G1) were used, 

as well as DNA methylation at birth and childhood of G1 children. As this thesis 

only includes G0 parents and their children (G1) the description of participants 

and data only focusses on these generations of ALSPAC. 

2.6.1.2 Participants and data collection 

As many pregnant women as possible, living in the Bristol area (formerly the 

county of Avon) with an expected delivery date that fell in between April 1991 

and the end of 1992 and were approached for participating in ALSPAC. 

Recruitment was conducted through media campaigns, visits to community 

centres, and distributing flyers at antenatal and maternity care centres. Out of 20 

248 eligible pregnancies, 14,541 mothers initially enrolled in the first recruitment 

phase in between 1991-1992, and 452 eligible mothers and children 

retrospectively enrolled in the second recruitment phase, after re-approaching 

eligible women 7-years post-pregnancy (Boyd et al., 2013). Overall, 15,247 

mothers and their children from phase 1 and phase 2 enrolled in ALSPAC. 

2.6.1.3 Genotype data 

Genotype data from ALSPAC was used in Chapters 3 and 4. Maternal blood 

during pregnancy was taken for maternal genotyping and offspring genotyping 

was derived from cord blood and peripheral blood taken at the age of 7 (Pembrey, 

2004). As of February 2019, the ALSPAC DNA bank contains DNA of 7,100 

http://www.bristol.ac.uk/alspac/researchers/our-data/
http://variables.alspac.bris.ac.uk/
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offspring, 6,000 mothers and 2,400 partners 

(http://www.bristol.ac.uk/alspac/researchers/our-data/biological-resources/). The 

ALSPAC children genotype data has been generated using the Illumina 

HumanHap550 quad chip genotyping platforms by 23andme subcontracting 

the Wellcome Trust Sanger Institute, Cambridge, UK and the 

Laboratory Corporation of America, Burlington, NC, US. Mothers were 

genotyped using Illumina human660w quad array at the Centre 

National Genotypage and genotypes were called with 

Illumina GenomeStudio. Quality control filtering was done with the PLINK 

(v1.07) software. SNPs with a minor allele frequency of < 1%, call rate < 95% 

and Hardy-Weinberg equilibrium P < 5 x 10-7 were removed. Both, offspring and 

maternal genotype data have been jointly imputed to the 1,000 genomes reference 

panel (version 1, Phase 3, Dec 2013 Release).   

2.6.1.4 DNA methylation data 

DNA methylation data from ALSPAC was used for analyses in Chapters 4 and 5. 

The ALSPAC sub-sample that has been selected for DNA methylation assessment 

is called ARIES. A detailed description of the sample can be found elsewhere 

(Relton, Gaunt, et al., 2015). Briefly, DNA methylation data has been collected 

for 1018 mother-child pairs, based on maternal and offspring availability of 

genotype data. Specifically, maternal genotype data needed to be available at 

offspring’s birth (collected at antenatal clinic) and at offspring’s mean age of 15.5 

years. Offspring’s genotype data needed to be available at the same time-points 

(birth and 15.5 years), as well as at mean age 7.5 years. For offspring, DNA 

methylation at birth was extracted from cord blood and from peripheral blood at 

mean age of 7 and 15.5 years. In ARIES, genome-wide DNA methylation has 

been assessed through the Illumina Infinium HumanMethylation450 BeadChip 

(450 K) array. ARIES has been normalised using functional normalisation and 

estimated cell proportion types were generated using the Houseman method, 

which both was implemented through the R-package Meffil (Min et al., 2018). In 

this thesis, cord blood and peripheral blood DNA methylation at age 7 were used. 

2.6.1.5 Phenotype data 

Phenotype data of ALSPAC was used in Chapter 3, 4 and 5. Phenotype data was 

collected through questionnaires, which can be divided into “Carer 

http://www.bristol.ac.uk/alspac/researchers/our-data/biological-resources/
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questionnaires”, that were answered by the carer of the child (mostly mothers, 22 

questionnaires to date), “Child based questionnaires”, that asked questions about 

the child but were completed by carers of the child (mostly mothers, 26 

questionnaires to date), “Child completed questionnaires”, that children completed 

answering questions about themselves (30 questionnaires to date), “Partner 

questionnaires”, that the partner of the carer of the child filled in about themselves 

(17 questionnaires to date), “Father questionnaires”, that fathers of the child 

completed after enrolling themselves into the study (one questionnaire to date), 

“Puberty questionnaires”, that were initially filled in by the carer of the child then 

by the carer and child together and finally by the child alone (nine questionnaires 

to date), and  “School questionnaires”, that were completed by school staff about 

the child (13 questionnaires to date). See 

http://www.bristol.ac.uk/alspac/researchers/our-data/questionnaires/ for an 

overview of the questionnaires.  

In addition to questionnaires, 10 focus clinics for offspring were conducted, where 

biological samples and clinical assessments were collected. Mothers were invited 

to 4 focus clinics and fathers were invited to one focus clinic (see 

http://www.bristol.ac.uk/alspac/researchers/our-data/clinical-measures/). The 

phenotype data that was used for the analyses of this thesis will be discussed in 

more detail in the corresponding chapters. 

2.6.1.5.1 Maternal smoking and caffeine consumption during pregnancy 

In ALSPAC, mothers self-reported their smoking behaviour during pregnancy by 

filling-in questionnaires sent out at 8-, 18-, and 32-weeks of gestation, as well as 

at 8-weeks post-pregnancy. In Chapter 3, the following smoking during 

pregnancy variables were used: Ever smoked during pregnancy, stopped smoking 

during pregnancy, or cut down smoking during pregnancy (binary items assessed 

at 8-weeks gestation), and ever smoked during the first three months of pregnancy 

(binary assessment at 18 weeks gestation). For the analysis of Chapter 4 and 5, 

where smoking during pregnancy was used as a covariate, smoking was coded as 

a categorical variable representing 0 = no or early smoking during pregnancy, 1 = 

stopped before the second trimester of pregnancy and 2 = smoking in the third 

trimester or throughout pregnancy. The categorical smoking during pregnancy 

http://www.bristol.ac.uk/alspac/researchers/our-data/questionnaires/
http://www.bristol.ac.uk/alspac/researchers/our-data/clinical-measures/
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variable was based on questions about smoking during pregnancy asked in 

questionnaires at 18-weeks gestation (“Did you smoke regularly during the first 

three months of pregnancy” and “have you smoked during the past two weeks”), 

32-weeks gestation (“How many cigarettes per day are you smoking at the 

moment?”), and 8-weeks post-pregnancy (“How many cigarettes (pipes or cigars) 

per day did you smoke during the last two months of pregnancy”). 

Maternal caffeine consumption in ALSPAC has been assessed through self-report 

in questionnaires at 8-, 18- and 32-weeks of gestation. Participants were asked 

how many cups of coffee and tea, and how many cans of cola they drank per 

week. In this thesis, I use the caffeine variables assessed at 18- and 32-weeks 

gestation to derive a variable capturing consumption of caffeine in milligrams per 

day (mg/day). For the analyses of Chapter 3, variables assessing changes in 

caffeine consumption since finding out about the pregnancy have also been 

included (binary assessment at 8-weeks gestation). For each caffeinated drink 

(coffee/tea/cola), participants were asked whether they stopped, reduced, 

craved/had more, or never had drunken the caffeinated drink during pregnancy. 

2.6.1.5.2 Offspring mental health outcomes  

This thesis used ALSPAC data of offspring phenotypes assessed in childhood (3 

to 10 years of age) and adolescence (12 to 18 years of age). The mental health 

phenotypes in childhood that were used in Chapters 3 and 5 were assessed 

through questionnaires based on maternal report. Internalising and externalising 

problems were assessed through the Strengths and Difficulties questionnaire 

(SDQ) (Goodman, 1997), the Development and Well-being Assessment 

(DAWBA) (Goodman et al., 2000), and the Short Mood and Feelings 

questionnaire (SMFQ) (Angold et al., 1995). Internalising phenotypes included: 

Symptoms of anxiety disorder (DAWBA), emotional problems (SDQ), specific 

phobias (DAWBA), depression (SMFQ), and post-traumatic stress disorder 

(DAWBA). Externalising phenotypes included: ADHD (SDQ), conduct disorder 

(SDQ), and oppositional defiant disorder (DAWBA). The adolescence phenotypes 

used in Chapter 3 were based on self-report, in addition to maternal report. Self-

reported symptoms of depression, anxiety, and phobia were assessed using the 

revised Computerised Interview Schedule (CIS-R) (Lewis et al., 1992) during 

clinic visits at the age of 17. Self-reported psychosis symptoms (positive and 
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negative symptoms) were assessed using the psychosis-like symptoms (PLIKS) 

semi-structured interview (Horwood et al., 2008) during focus clinics at the age of 

13 and 17. Diagnosis of eating disorders were assessed through adolescents self-

reporting on an item that asked whether they have been treated for an eating 

disorder by a doctor, nurse, or health care provider at the age of 13 and 16. Self-

harm was self-reported through multiple items asked in questionnaires at the age 

of 16 (see Easey, Mars et al., 2019 for more information). 

2.6.2 Generation Rotterdam (Generation R) 

2.6.2.1 Overview 

The Generation R Study is a prospective birth cohort study that recruited pregnant 

women with an expected delivery date between 2002-2006 that were living in 

Rotterdam the Netherlands. A more detailed description of the cohort is provided 

in Kooijman (Kooijman et al., 2016) and Kruithof and colleagues (Kruithof et al., 

2014). The motivation to set up this cohort was to understand the contribution of 

environmental and genetic factors to physical and mental health outcomes to 

improve prenatal and postnatal healthcare. The main outcomes of interest are 

categorised into growth and physical development, behavioural and cognitive 

function, childhood illnesses, and health and health care use (Hofman et al., 

2004). The aim of the cohort was to recruit data of 10,000 offspring and to include 

other ethnicities in addition to Dutch ethnicities, such as other European, 

Moroccan, Surinamese, and Turkish ethnicities (Hofman et al., 2004). The 

Medical Ethical Committee of Erasmus MC, University Medical Center 

Rotterdam gave ethical approval for the data collection of this study. 

2.6.2.2 Participants and data collection 

Recruitment was conducted through midwifes and obstetricians that distributed 

information about the study (orally and through handouts) to eligible pregnant 

women who were later on provided with additional information by the staff of 

Generation R either over the phone or a home visit, as well as during their first 

routine ultrasound appointment (Hofman et al., 2004). For recruitment of non-

Dutch speaking pregnant women, information leaflets were translated to other 

languages and staff was recruited that could, besides Dutch, also communicate in 

English, French, Portuguese or Turkish. At baseline, the cohort included 9,778 
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pregnant women (response rate 61%), which are still followed-up (response rate 

10 years post-pregnancy = 80%) (Kooijman et al., 2016). The baseline sample 

included 39% of participants identifying as Dutch, 13% as Turkish, 11 % as 

Moroccan, 10% as Surinamese, 4% as Anilles, 3% as Cape Verde, and 20% as 

Others (Hofman et al., 2004).  

2.6.2.3 DNA methylation assessment 

Offspring was selected for DNA methylation assessment based on European 

ancestry as measured by genetic principal components and oversampled from a 

subsample of children for whom more in-depth measurements were available at 

the age of 9 (Focus 9). Offspring DNA methylation was assessed at three time-

points, including birth (derived from cord blood), age 5 and age 9 (derived from 

peripheral blood) using the 450k array. Data preparation and normalisation was 

conducted in R, following the CPACOR workflow (Lehne et al., 2015). After 

running quality control checks for technical variation, 469,242 CpG sites of 1,396 

participants at birth, 493 at age, 5 and 465 at age 9 remained for analysis. Cell 

type proportions were estimated through the R-package minfi (Aryee et al., 2014), 

using the Houseman method (Houseman et al., 2014). In this thesis DNA 

methylation data collected at birth and peripheral blood in childhood (age 5) has 

been used in Chapters 4 and 5. 

2.6.2.4 Phenotype data 

A general overview of the phenotype data collected in the Generation R study can 

be found at https://Generation R.nl/researchers/data-collection/. Planned 

assessment phases of Generation R can be summarised into (1) a prenatal 

assessment phase, (2) assessment age 1-4 years, (3) assessment age 4-12 years and 

(4) assessment age 12-20 years. Recruitment is still on going, with the most recent 

assessment time point being assessments of offspring at the age of 17 years. In 

addition to physical and biological assessments of parents, mothers received four 

and fathers received one questionnaire via post during pregnancy. The study was 

initially set out with a main focus on understanding factors impacting offspring’s 

growth development. Thus, in the initial assessment during pregnancy, in week 

12, 20, and 30 of gestation, mothers were asked about fetal growth and related 

factors (Hofman et al., 2004). Between 0-4 years postnatally mothers received 

https://generationr.nl/researchers/data-collection/
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eight and fathers received one questionnaire(s) via post. The following 

assessments were conducted during focus clinics for which participants visited 

one of the Generation R research facilities in Rotterdam. Focus clinics took place 

at age 5, 9, 13, and 17. In this thesis, Generation R data that was used included 

maternal phenotypes during pregnancy and offspring phenotypes at the age of 0-4 

and focus 5.  

2.6.2.4.1 Maternal caffeine consumption during pregnancy 

In Generation R, maternal caffeine consumption from coffee and tea was assessed 

through self-report in questionnaires at week 18-25 of gestation and used in the 

analyses of Chapter 4. Participants were asked whether they consumed coffee 

and/or tea. If they answered yes, follow-up questions about whether the drink was 

caffeinated/decaffeinated and how many cups they consumed were asked (see 

Appendix K, K4 for more information). 

2.6.2.4.2  Offspring mental health outcomes 

Generation R contributed information about childhood internalising problems for 

the analyses of Chapter 5. Mothers reported on their offspring’s emotional and 

behavioural problems at the age of 36 and 72 months by filling-in questionnaires. 

The internalising subscale of the preschool Childhood Behaviour Checklist 

(CBCL-1½-5; Achenbach & Rescorla, 2000) was used to assess internalising 

problems. 

2.6.3 Norwegian Mother and Child Cohort Study (MoBa)  

2.6.3.1 Overview 

MoBa is a nation-wide birth cohort that aimed at recruiting as many pregnant 

women as possible that are living in Norway. The Norwegian Institute of Public 

Health manages the cohort and details about the study can be found at 

https://www.fhi.no/en/studies/moba/. Motivated by the fetal origins of health and 

disease hypothesis, the MoBa cohort was established in the late 90s, with the aim 

of extending available data to inspect a larger variety of potential early life 

exposures that may be relevant for offspring’s development of diseases (Magnus 

et al., 2016). While the initial cohort that started in 1999 was only aimed at 

investigating offspring outcomes up until the age of 3-years, follow-up of 

participants has later on been extended to assess outcomes throughout 

https://www.fhi.no/en/studies/moba/
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adolescence. Also, the focus has shifted from mainly studying health outcomes in 

offspring to also collecting more data of their parents (Magnus et al., 2016). The 

aim to collect data on 100,000 participants has been reached in 2009 and follow-

up is still ongoing (Magnus et al., 2016). The Norwegian Data Inspectorate and 

The Regional Committee for Medical Research Ethics gave approval for MoBa 

data collection. Ethics approval was obtained from the Regional Committee for 

Ethics in Medical Research, Norway. The Institutional Review Board of the 

National Institute of Environmental Health Sciences, USA, further approved 

collection of MoBa1 and MoBa2 data. 

2.6.3.2 Participants and data collection 

Recruitment was conducted at 50 out of 52 Norwegian hospitals that contain 

maternity units between 1999 and 2009. Information about the study, as well as 

the consent form and baseline questionnaire, were sent out along with invitations 

for routine ultrasound appointments (Magnus et al., 2006). Participation was 

restricted to Norwegian speaking participants as all the information was only 

provided in Norwegian only. Data of more than 114,000 offspring, 95,000 

mothers and 75,000 fathers has been collected (Magnus et al., 2016).  

2.6.3.3 DNA methylation assessment 

A random subset of offspring was selected for DNA methylation assessment, 

which is referred to as MoBa1 and recruited DNA methylation samples between 

2002-2004 (Joubert et al., 2016). In addition to a random subset, two non-random 

subsets of the MoBa cohort, called MoBa2 and MoBa3, were selected for DNA 

methylation assessment. MoBa2 was designed to study associations with 

childhood asthma and thus included cases and controls for asthma that were 

recruited between 2000-2005. MoBa3 aimed to study associations between DNA 

methylation and childhood cancer, which were recruited between 2000-2008. The 

analyses of this thesis only entail MoBa1 and MoBa2 data that have been used in 

Chapter 4 and 5. In both samples, DNA methylation was assessed using the 450k 

microarray. Beta values were calculated using the minfi R-package (Aryee et al., 

2014) and data was normalised using the intra-array normalization strategy Beta 

Mixture Quantile dilation (Teschendorff, Marabita, et al., 2013). After quality 

control checks, Moba1 contained 1,068 children and MoBa2 685 children. 
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2.6.3.4 Phenotype data 

In each trimester of pregnancy mothers were asked to fill in questionnaires and 

fathers were asked to fill in information once during their partner’s pregnancy. 

Postnatal assessments included questionnaires at 6 and 18 months, and at 3, 5, 7, 

8, 13, and 14 years post-pregnancy (see https://www.fhi.no/en/studies/moba/for-

forskere-artikler/questionnaires-from-moba/ for a detailed overview of each 

questionnaire). In 2015 and 2016, an additional questionnaire was sent out to 

fathers asking a variety of questions about the father’s physical and mental health 

as well as the relationship to their child and the child’s biological mother. 

Biological samples were collected at the routine ultrasound appointment. 

Additionally, several national health registries have been linked to MoBa 

participants through their national identification number (Magnus et al., 2016).  

2.6.3.4.1 Maternal caffeine consumption during pregnancy 

The analyses of Chapter 4 included variables of maternal caffeine consumption 

during pregnancy assessed in MoBa1 at 17-weeks of gestation. In MoBa, coffee 

consumption was assessed by asking participants how many cups of instant coffee 

and/or espresso they consumed and what type of brewing method they used 

(boiled/percolated/filtered). Caffeinated tea consumption was also assessed in 

cups per day. Cola/pepsi consumption was assessed in mugs per day (see 

Appendix K, K3 for more information). 

2.6.3.4.2  Offspring mental health outcomes 

In Chapter 5, information on childhood internalising problems assessed in MoBa1 

and MoBa2 was used. In a questionnaire sent out at 36-months post-pregnancy, 

mothers were asked to report on their offspring’s emotional and behavioural 

problems. Questions were based on nine selected items of the internalising 

subscale of the preschool Childhood Behaviour Checklist (CBCL-1½-5) 

(Achenbach & Rescorla, 2000; see Appendix T, T3 for more information). 

2.6.4 Born in Bradford (BiB) 

2.6.4.1 Overview 

BiB is a prospective birth cohort study that was initiated in 2007 and recruited 

12,453 pregnant women residing in the city of Bradford, UK. Mothers were 

invited to participate in BiB during a routine oral glucose tolerance test (OGTT) 

https://www.fhi.no/en/studies/moba/for-forskere-artikler/questionnaires-from-moba/
https://www.fhi.no/en/studies/moba/for-forskere-artikler/questionnaires-from-moba/
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in their second trimester of pregnancy (26-28 weeks gestation). More detailed 

information about the cohort can be found in the paper by Wright and colleagues 

(Wright et al., 2013) or on the studies website 

(https://borninbradford.nhs.uk/research/). Bradford is one of the most 

disadvantaged areas in the UK and the cohort was established with the aim to 

tackle and investigate causes for increased childhood mortality in the area, 

compared to the rest of the UK (Wright et al., 2013).  

2.6.4.2 Participants and data collection 

Approximately 20% of the population in Bradford are of South Asian ethnicity, 

predominately stemming from Pakistan (90%). To be able to include participants 

that could not speak English, the baseline questionnaires were translated into 

Urdu and Mirpur, and translators were provided for facilitating completion of the 

questionnaires. Out of 12,453 mothers that were recruited, 13,776 had successful 

pregnancies, of which 11,396 (82.7%) of mothers completed the baseline 

questionnaire. In addition to maternal data, data of 3,448 fathers were collected at 

baseline. Two subgroups of BiB were followed-up after pregnancy, one focussing 

on risk factors for childhood obesity in children born between October 2008 and 

May 2009 (N = 1,700) and one focussing on viral infections and allergic diseases 

(N = 2,300). The Bradford Research Ethics Committee (Ref 07/H1302/112) 

granted ethics approval for the data collection. 

2.6.4.3 DNA methylation data 

DNA methylation data of BiB was used in Chapter 4. Out of the participants with 

a singleton birth that (1) had completed the OGTT (2) had maternal and offspring 

genotype data available, and (3) self-identified as Pakistani or white British 

ethnicity (together representing ~90% of sample), a subsample of 500 Pakistani 

and 500 white British mother-child pairs were randomly selected for DNA 

methylation assessment (total N = 2,000). DNA methylation was assessed using 

the EPIC array derived from maternal blood samples taken at recruitment and 

offspring’s cord blood samples. After quality control checks for technical 

variation and matching genotype probes with genotype data, 864 samples 

remained. Data was normalised using functional normalisation and cell proportion 

types were estimated using the Houseman method, both conducted within the R-

https://borninbradford.nhs.uk/research/
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package meffil (Min et al., 2018). Cord blood DNA methylation data of BiB has 

been used for the analysis in Chapter 4. 

2.6.4.4 Phenotype data 

Phenotype data of BiB that was used in Chapter 4 of this thesis and only included 

maternal phenotypes assessed during pregnancy. A general overview of the 

phenotype data available in BiB can be found at 

https://borninbradford.nhs.uk/research/documents-data/. Briefly, baseline 

questionnaire data is available for 10,519 mothers and 3,287 fathers. Offspring 

phenotype data is available for the subsamples that were selected for follow-up 

(see BiB overview). Additionally, 99.1% of mothers and 90% of offspring 

participants were successfully linked to Bradford Royal Infirmary hospital 

records, giving access to a wide range of maternity and birth related phenotypes. 

Also, 84% of offspring participants could be linked to education records.  

2.6.4.4.1 Maternal caffeine consumption during pregnancy 

Data of maternal caffeine consumption assessed in BiB was used in the analyses 

of Chapter 4. In BiB, participants self-reported on the number of cups of 

caffeinated tea, filter/cafetiere coffee, and instant coffee they consumed per day at 

26- to 28-weeks of gestation (see Appendix K, K2 for more information). 

2.6.5 INfancia y Medio Ambiente (Environment and Childhood; INMA) 

2.6.5.1 Overview 

The aim of the INMA cohort was to investigate prenatal and postnatal factors that 

influence offspring growth and health development. A more detailed description 

is provided in the cohort profile (Guxens et al., 2012). The cohort includes data 

collected in several areas across Spain (Ribera d’Ebre, Menorca, Granada, 

Valencia, Sabadell, Asturias and Gipuzkoa), according to a common data 

collection protocol and is managed by the Barcelona Institute for Global Health 

(for more information also see https://www.proyectoinma.org/en/inma-project/).  

2.6.5.2 Participants and data collection 

Participation was restricted to mothers over the age of 16, who conceived without 

assisted reproductive technologies, did not experience any communication 

problems, lived in one of the recruitment areas, and were expected to be 

https://borninbradford.nhs.uk/research/documents-data/
https://www.proyectoinma.org/en/inma-project/
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delivering a singleton birth in the hospital where recruitment took place (Guxens 

et al., 2012). The recruitment time-point varied by study location and took place 

between 1997 and 2006 and the response rate ranged by study location from 45% 

to 98%. Furthermore, women recruited in the different areas differed on various 

demographic characteristics (age, education, employment status) (Guxens et al., 

2012). Data was collected in the first and second trimester of pregnancy and at 6-

assessment time points between birth and offspring at the age of 10 years 

(assessment time-points: 6-months; 1-1.5, 2-2.5, 4-5, 6-7, 9-10 years). 

Questionnaire data and sample size varied between included studies in INMA. 

2.6.5.3 Maternal caffeine consumption during pregnancy 

Data of maternal caffeine consumption assessed in INMA was used in the 

analyses of Chapter 4. Questionnaires were sent to participants to assess maternal 

coffee, tea, and cola consumption at 12-weeks of gestation. A categorical variable, 

ranging from “never or less than once per month” to “six or more per day” was 

used to assess the average amount of cups participants consumed (see Appendix 

K, K5 for more information). 

2.6.5.4 DNA methylation assessment 

In INMA, DNA methylation data was available for 385 out of the 742 children 

that enrolled in one of INMA’s sub cohorts (called Sabadell). Out of the families 

that consented to collection of cord blood for genetic and epigenetic assessments, 

a random subsample of 521 children was selected. The final sample comprised of 

385 children that were selected based on good DNA quality, availability of 

genetic and other data, and European ancestry. Offspring DNA methylation was 

assessed at birth (cord blood) and at the age of 4 years (peripheral blood) using 

the 450k microarray. Beta-values were generated through Illumina’s analysis 

software GenomeStudio and data was normalised using the minfi R-package 

(Aryee et al., 2014).  

2.6.6 Etude des Déterminants pré et post natals du développement et de la 

santé de l′Enfant (EDEN)  

2.6.6.1 Overview 

Similarly to the other cohort studies, EDEN (study on the pre- and early postnatal 

determinants of child health and development) (Heude et al., 2016) was set up to 
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investigate the influence of pre- and postnatal exposures through the maternal 

environment on offspring’s health development (Heude et al., 2016). EDEN 

started recruiting pregnant women in 2003 through two University Hospitals in 

France (Nancy and Poitiers) with a maternity unit. Mother-child pairs have been 

followed-up for up to 8-years post-pregnancy. Ethics approval for data collection 

was granted by the ethics committee of Kremlin Bicêtre and the Commission 

Nationale Informatique et Liberté.  

2.6.6.2 Participants and data collection 

Women were accounted as eligible for the study if they attended the maternity 

unit before week 24 of amenorrhoea. Further eligibility criteria were a singleton 

pregnancy, no diagnosed diabetes before pregnancy, French literacy and not 

planning to move outside of the recruitment area within the next 3 years. Out of 

3,758 eligible women that were recruited between 2003 and 2006, 1,034 women 

enrolled in Nancy and 968 in Poitiers, resulting in a total sample size of 2,002 

pregnant mothers (response rate = 53%). Data about maternal and offspring data 

was collected at 3 clinic visits for mothers, (time-points: 24-28 weeks of 

amenorrhea, delivery, 5-6 years post-pregnancy), and 4 clinic visits for offspring 

(time-points: birth, 1-, 3-, 6-years of age). Furthermore, data was collected 

through one prenatal questionnaire (24-28 week amenorrhoea) and 8 postnatal 

questionnaires (time-points: 4-months; 8-months; 1-, 2-, 3-, 4-, 5- and 8-years 

postnatally).  

2.6.6.3 Maternal caffeine consumption during pregnancy 

Phenotype data of Eden was used in the analyses of Chapter 4. In weeks 24-28 of 

gestation questionnaires were sent out to participants to assess their consumption 

of coffee, tea, and cola. Participants were asked about the average amount of daily 

cups consumed during the first trimester of pregnancy (see Appendix K, K6 for 

more information). 

2.6.6.4 DNA methylation assessment 

For the DNA methylation subsample a random sample of 150 children was 

selected amongst children who met the following requirements: (1) Participated in 

the five-year follow-up assessment, (2) had consent for the collection of cord 

blood and peripheral blood at the age of five, and (3) had a DNA methylation 
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sample with sufficient quality. Data was assessed using the 450k microarray and 

after quality control checks, 439,306 CpG sites were available for analysis (Merid 

et al., 2020). Estimated cell proportion types were estimated using the R-package 

minfi (Aryee et al., 2014). PCA was conducted in EDEN and 5 PC were used to 

control for batch effects (Merid et al., 2020). 

2.7 Databases 

For contextualising the results obtained from my analyses I consulted publicly 

available data resource platforms, which are introduced below. Each of these 

platforms provides a user-friendly overview over the publicly available scientific 

evidence for (epi)genetic associations with a variety of traits. 

2.7.1 Genecards 

The Genecards database (https://www.genecards.org/) provides an overview over 

the information that is available for all annotated genes. The database is managed 

by the Department of Molecular Genetics at the Weizmann Institute of Science in 

Israel. Genecards pools data from over 150 web-based platforms with information 

about genomic, transcriptomic, proteomic, genetic, clinical and functional 

information (see https://www.genecards.org/Guide/Sources for an overview of the 

genecards sources). I used the genecards database to understand the biological 

function of the genes annotated to the differentially methylated CpG sites found in 

my analyses and to explore whether there might be a potential biological pathway 

from changes in the expression of these genes to different manifestations in my 

traits of interest. 

2.7.2 NHGRI-EBI GWAS Catalog  

The NHGRI-EBI GWAS catalogue, or short GWAS catalog, can be accessed 

through https://www.ebi.ac.uk/gwas/ (Buniello et al., 2019). The catalogue 

provides an overview over all published GWAS that fulfil a sufficient scientific 

standard to be added to the catalogue (e.g., genome-wide analysis instead of 

candidate gene analysis, see https://www.ebi.ac.uk/gwas/docs/methods/criteria for 

all eligibility criteria). Studies are identified by weekly literature screenings, 

curated and added to the GWAS catalog by expert scientists (see 

https://www.ebi.ac.uk/gwas/docs/methods/curation for more detail on the curation 

procedure). The database was established in 2008 and over 10 years later, in 2019, 

https://www.genecards.org/
https://www.genecards.org/Guide/Sources
https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/docs/methods/criteria
https://www.ebi.ac.uk/gwas/docs/methods/curation
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contained over 70,000 SNP-trait associations (Buniello et al., 2019). The 

catalogue’s website contains a search engine were GWAS results of specific traits, 

variants, genes or genomic locations of interest can be looked-up. The 

corresponding GWAS study summary statistics can also be downloaded for 

further analysis. Evidence for an SNP-trait association is determined by a P-value 

of less P-value < 1.0 x 10-5. In my thesis, I used the GWAS catalog to check 

whether my traits of interest showed associations with SNPs annotated to the 

same genes, as the genes that were annotated to differentially methylated CpG 

sites in my EWAS analyses. As more GWAS studies than EWAS studies have 

been conducted and DNA methylation is partly influenced by genetics, any 

congruent evidence between genes detected in GWAS and EWAS studies could 

provide further evidence for a biological function of that gene on the traits of 

interest.  

2.7.3 EWAS catalog 

The EWAS catalog was established by the MRC Integrative Epidemiology Unit at 

the University of Bristol (http://www.ewascatalog.org/). Similar to the GWAS 

catalog, the EWAS catalog is a platform that pools summary statistics from all 

published EWAS studies of DNA methylation. Currently the catalogue is based 

on three main data sources, including: (1) Studies extracted from the literature 

through regular screenings of PubMed using the R-package journalclub 

(Suderman & Yousefi, 2020), (2) studies that have been conducted (but are not all 

published) within the Bristol-based ARIES DNA methylation sample, and (3) 

EWAS studies conducted within the Gene Expression Omnibus database 

(available at https://www-ncbi-nlm-nih-gov.bris.idm.oclc.org/geo/). Studies are 

classified as eligible for the catalogue if they were published after 2010, analysed 

at least 100,000 CpG sites, contained at least 100 participants, and include new 

data. Evidence for a CpG–trait association was determined by a P-value of less 

than 1 x 10-4 (http://www.ewascatalog.org/documentation/). In this thesis, I am 

using the EWAS catalog to explore (1) if the differentially methylated CpG sites 

of my analyses show associations with any other traits that might be related to my 

trait of interest, (2) whether the genes annotated to the differentially methylated 

CpG sites found in my analyses are associated with any other traits, and (3) 

identify previously published EWAS studies of my traits of interest.  

http://www.ewascatalog.org/
https://www-ncbi-nlm-nih-gov.bris.idm.oclc.org/geo/
http://www.ewascatalog.org/documentation/
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2.8 Chapter summary 

In this chapter, I have provided an introduction to the methods and samples used 

in this thesis. The methods that were introduced are MR and PRS analysis, as well 

as EWAS. MR is a useful technique that uses genetic instruments as proxies for 

exposures to enable causal inferences from observational data (Davey Smith & 

Ebrahim, 2003). Using a PRS instead of single variants may help to increase 

predictive power of genetic instruments for complex traits by aggregating the 

small effects of many SNPs into one combined score (Choi et al., 2020). In 

contrast to investigating DNA methylation at specific candidate genes, EWAS is a 

hypothesis generating approach, which is useful for discovering novel 

differentially methylated CpG sites, as well as validating CpG sites previously 

found in candidate-gene studies (Jones et al., 2018). In addition to discussing the 

methods, an overview over the six birth cohorts to which these methods are 

applied has been given. The specific measures of smoking and caffeine 

consumption, as well mental health phenotypes used of each of these cohorts, are 

discussed in more detail in each corresponding results chapter. Lastly, the 

Genecards, GWAS and EWAS catalog have been introduced, which were 

consulted across this thesis for contextualising results with findings of previously 

published (epi)genetic studies. 
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Chapter 3  – Maternal and child genetic liability for 

smoking and caffeine consumption and child mental 

health: An intergenerational polygenic risk score 

analysis in the ALSPAC cohort 

This chapter includes sections of the following manuscript that has been published 

on medRxiv and the Addiction Journal: 

Schellhas, L.*, Haan, E.*, Easey, K. E., Wootton, R. E., Sallis, H. M., Sharp, G. 

C., Munafò, M. R., & Zuccolo, L. (2021). Maternal and child genetic 

liability for smoking and caffeine consumption and child mental health: 

An intergenerational genetic risk score analysis in the ALSPAC cohort. 

Addiction. https://doi.org/10.1111/add.15521 

 * contributed equally to this work 

 

This study was part of a larger collaborative project conducted as a joint effort 

between PhD students and post-doctoral researchers, which included analyses of 

alcohol, caffeine, and smoking polygenic risk scores (PRS). Phenotype extraction 

and preparation of the variables for the analysis were divided between Dr. 

Kayleigh Easey (PhD student at the time), Dr. Robyn Wootton (post-doctoral 

researcher), Dr. Elis Haan (PhD student at the time), and myself. I extracted and 

prepared the caffeine variables, as well as IQ, personality, schizophrenia, sleep, 

physical activity, and body perception phenotypes for mothers during pregnancy 

and offspring. The script for generating PRS was provided by Dr. Robyn 

Wootton. Smoking PRS (for mothers and offspring) were generated by Dr. Robyn 

Wootton, the caffeine PRS for mothers was generated by Dr. Elis Haan, and the 

caffeine PRS for offspring was generated by myself. Individual datasets of each 

researcher were combined into a final dataset that was used for the analysis. Dr. 

Kayleigh Easey has written a general script for running the main analysis and 

conducted the analysis for the alcohol PRS, which has been published as a 

separate paper (Easey et al., 2021). For the main analysis of this project, I 

modified the script of Dr. Kayleigh Easey and conducted the analysis of the 

caffeine PRS and the lifetime smoking PRS. Dr. Elis Haan conducted the smoking 

initiation analysis. I have generated all the plots and figures presented in this 

https://doi.org/10.1111/add.15521
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chapter. The tables have mostly been generated by Dr. Elis Haan, except for the 

results tables of the caffeine PRS (maternal and offspring) and the lifetime 

smoking PRS (offspring) that I have generated. I have drafted the introduction, 

results, and discussion section of this paper. Throughout the project, we double-

checked and provided feedback on each other’s work. Co-authors provided 

comments that were incorporated before submitting the paper for publication.   
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3.1 Chapter overview 

As mentioned in Chapter 1, PRS analyses may be applied for investigating causal 

effects in observational study designs if the PRS is a valid proxy for the exposures 

of interest (here: caffeine and smoking). This is a specifically useful method for 

investigating causal effects of exposures where it is difficult to randomly assign 

participants to being exposed or unexposed, making it an attractive potential 

method for investigating effects of intrauterine exposures. However, there are 

several caveats when using MR to investigate intrauterine effects that are 

discussed and explored in more detail in this chapter. These include: lack of 

validation of the genetic variants as proxies for behaviours during pregnancy, 

genetic proxies lacking specificity for an exposure time point (they reflect lifetime 

maternal exposure instead of only exposure during pregnancy), and the potential 

of confounding due to the shared genetic liability between mother and offspring. 

The aim of this chapter was first, to test whether the PRS for smoking and 

caffeine consumption can be used as proxies for these behaviours during 

pregnancy and second, to explore, in a hypothesis free design, which mental 

health outcomes show evidence for causal (or confounded) associations with the 

smoking and caffeine PRS in ALSPAC (examining the exposure-disease 

relationship (step 1) of the meet-in-the-middle approach.) The second aim was 

explored by applying a cross-generational approach to a phenome-wide 

association study (PheWAS) design, which allowed to compare three effects: (1) 

offspring smoking and caffeine PRS on their own mental health outcomes, (2) 

maternal smoking and caffeine PRS on their own mental health outcomes, and (3) 

an intergenerational analysis testing the effect of maternal PRS on offspring 

mental health outcomes in childhood. The comparison of these three effects could 

be used to provide indications for: A potential causal effect of smoking and 

caffeine consumption on own mental health, pleiotropic associations of the 

smoking and caffeine genetic variants with mental health outcomes, or an effect 

of maternal smoking or caffeine consumption (intrauterine or postnatal) on to 

offspring. 

3.2 Introduction 

Smoking and caffeine consumption often co-occur (Treur et al., 2016) and are 

associated with mental health problems and other substance use behaviours 
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(Kendler et al., 2008; Lara, 2010). There is some evidence that smoking is a 

causal risk factor for mental health problems such as depression and 

schizophrenia (Vermeulen et al., 2019; Wootton et al., 2019); however, the 

relationship between caffeine and mental health is less clear, and possibly difficult 

to disentangle from smoking as the two often co-occur (Lara, 2010; Temple et al., 

2017). In addition to associations between smoking, caffeine, and mental health 

outcomes within individuals, observational research suggests that prenatal 

maternal consumption of tobacco and caffeine could have an intergenerational 

effect on offspring’s mental health (Bekkhus et al., 2010; Dolan et al., 2016; 

Moylan et al., 2015; Tiesler & Heinrich, 2014).  

Using conventional epidemiological methods alone, it is difficult to ascertain 

whether prenatal tobacco and caffeine exposure causally affect offspring mental 

health outcomes (Gage et al., 2016; Thapar et al., 2009). Not only do mothers and 

offspring share a similar environment (such as socio-economic position), they also 

share, on average, 50% of their segregating genetic variation. Due to this shared 

genetic and environmental confounding it is difficult to disentangle the effect of 

maternal substance use on offspring mental health from those of offspring’s own 

substance use.  

The association between maternal prenatal smoking and internalising problems in 

children is less extensively researched compared to associations with externalising 

problems, and existing evidence is mixed (Ashford et al., 2008a; Menezes et al., 

2013; Moylan et al., 2015; Taylor et al., 2017). Many studies report a positive 

association between prenatal smoking and offspring’s externalising problems 

(Brion et al., 2010b; Dolan et al., 2016; D’Onofrio et al., 2008; Manzano et al., 

2016), which could reflect a potential intrauterine effect of smoking. However, 

results vary when adopting different methods to account for shared environmental 

and genetic confounders (D’Onofrio et al., 2008). For example, studies using 

negative controls designs and sibling comparisons have found inconclusive 

evidence for a causal intrauterine effect (Brion et al., 2010; D’Onofrio et al., 

2008; Langley et al., 2012; Nomura et al., 2010; Roza et al., 2009). In fact, study 

designs adjusting for shared genetic factors between mother and offspring have 

concluded that genetic factors explain associations between maternal prenatal 

smoking and externalising problems in offspring (Rice et al., 2018). This 
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literature highlights the complexity of the nature of associations between 

pregnancy exposures and offspring mental health, and the importance of 

disentangling shared genetic and environmental confounders to understand 

whether a true causal effect exists. 

3.2.1 Intergenerational Mendelian Randomisation 

Using polygenic risk scores (PRS) as proxies for smoking or caffeine 

consumption can, in principle, reduce bias from confounding (see Chapter 2) 

(Davey Smith et al., 2007). As with conventional MR, unbiased estimates from 

intergenerational PRS analyses, where maternal genetic variants are used to test 

associations with offspring outcomes, can only be derived under the assumption 

that the key MR assumptions hold. In the context of intrauterine smoking and 

caffeine exposure the assumptions are as follows (Diemer et al., 2020; Lawlor et 

al., 2017): First, the maternal smoking and caffeine PRS must be robustly 

associated with the behaviours during pregnancy (relevance assumption). Second, 

the maternal smoking and caffeine PRS are only associated with offspring mental 

health outcomes through the intrauterine exposure to smoking or caffeine 

(exclusion restriction assumption). Third, none of the confounding variables of 

the association between maternal smoking or caffeine consumption during 

pregnancy and offspring mental health outcomes may be associated with the 

maternal PRS for smoking or caffeine (exchangeability assumption). A 

visualisation of the application of intergenerational MR to research the effect of 

smoking during pregnancy can be found in Figure 3.1. There are several reasons 

why these assumptions could be violated in intergenerational MR (or PRS) 

analyses that investigate the effects of smoking and caffeine consumption during 

pregnancy on offspring mental health problems. First, the genetic variants used in 

the PRS have mostly been identified and validated in non-pregnant adult 

populations and thus might not predict behaviours during pregnancy (violating the 

first MR assumption) (Lawlor et al., 2017; Liu, Jiang, Wedow, Li, Vrieze, et al., 

2019; The Coffee and Caffeine Genetics Consortium et al., 2015). This is the only 

assumption that can be tested directly by inspecting whether genetic variants that 

have been derived as proxies for behaviours in the general population, also predict 

the behaviour in pregnant populations (Lawlor et al., 2017). Second, offspring’s 

own smoking or caffeine consumption may confound associations because 
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mothers may pass on their genetic predisposition for smoking or caffeine 

consumption to their children, or “environmentally” influence them in their 

behaviour (genetic nurturing/dynastic effects, Figure 3.1) (Kong et al., 2018; 

Pingault et al., 2018). Consequently, when offspring’s mental health outcomes are 

assessed at an age where offspring are likely to have started smoking or drinking 

caffeine themselves, offspring’s own consumption may cause offspring’s mental 

health problems (violating the exclusion and exchangeability MR assumption 

because maternal PRS would not be independent of the confounding of 

offspring’s smoking or caffeine use). Therefore, in order to avoid confounding of 

maternal exposure-offspring outcome associations through offspring’s own 

smoking or caffeine consumption, it may be useful to apply a negative control 

approach that tests associations between maternal genetic variants and offspring 

outcomes before offspring start smoking or consuming caffeine themselves. 

Third, an association between maternal PRS and offspring mental health 

outcomes may reflect a shared genetic liability between smoking or caffeine 

consumption and mental health outcomes (pleiotropy, see Chapter 2) instead of a 

causal effect of the exposure (violating the exchangeability and exclusion 

restriction assumption because maternal PRS would not only be associated with 

offspring mental health through maternal smoking or caffeine use).  
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Figure 3.1 Application of intergenerational MR to investigate the 

intrauterine effect of smoking on mental health outcomes (credit: adapted 

from Lawlor et al., 2017).  
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3.2.1.1 Overlap between maternal and offspring genetic variants 

Whereas pleiotropy is a well-known problem for MR analyses, the shared genetic 

predisposition between mother and offspring, that may confound associations 

between maternal genetic variants and offspring mental health outcomes, is a 

unique challenge for intergenerational MR analyses (Diemer et al., 2020). On the 

surface it may easily be accounted for by adjusting intergenerational PRS analyses 

for offspring PRS (Lawlor et al., 2017). However, this turns out to be a naïve 

approach, as the adjustment for offspring PRS may cause spurious association 

because it introduces collider bias through paternal genotype (Diemer et al., 2020; 

Lawlor et al., 2017). When two variables are causally related to a third variable, 

that third variable is called a collider (Munafò et al., 2018). When an analysis is 

adjusted (or stratified/selected) for a collider, bias may be introduced because a 

spurious association is created between the variables that cause the collider and 

the outcome (Griffith et al., 2020; Richmond et al., 2017). If an intergenerational 

MR analysis is adjusted for offspring genotype (the collider of maternal and 

paternal genotype, see Figure 3.2) an association might be created between 

maternal PRS and offspring outcome that is not attributable to the intrauterine 

exposure but the association between the unmeasured paternal PRS and offspring 

outcome (Lawlor et al., 2017). 

 

 

Figure 3.2 Illustration of offspring smoking PRS as a collider caused by 

maternal and paternal smoking PRS. Spurious associations may be generated 

between maternal smoking PRS and offspring mental health outcomes if the 

analysis is adjusted for offspring smoking PRS. 
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Therefore, the gold standard is that intergenerational PRS analyses should, in 

addition to offspring PRS, control for paternal PRS to properly account for the 

inherited genetic liability between mother and offspring. However, this was not 

possible in the analysis of this chapter due to lack of paternal genetic data 

available in ALSPAC to sufficiently power genetic analyses, which is a common 

problem in birth cohort studies (Lawlor et al., 2017). In order to avoid collider 

bias, but to still be able to separate maternal genetic effects from offspring genetic 

effects, maternal and offspring smoking and caffeine PRS were used as separate 

predictors for offspring mental health outcomes in this study. 

3.2.2 Phenome-wide association studies (PheWAS)  

The main method applied in this chapter is based on the concept of a phenome-

wide associations study (PheWAS). PheWAS is a popular approach to discover 

novel and potential causal association between genetic variants (individually or as 

a PRS) and phenotypes in a hypothesis generating fashion (Bush et al., 2016; 

Millard et al., 2015). In contrast to GWAS, where associations between genetic 

variants and a single outcome are tested, a PheWAS tests the associations between 

preselected genetic variants (or a PRS) and a wide range of phenotypes (Bush et 

al., 2016). In addition to discovering new associations, it can be a useful approach 

for validating exposure-outcome associations discovered in GWAS, detecting 

pleiotropic effects, and to investigate the validity and specificity of a PRS (Bush 

et al., 2016; Hall et al., 2014). For instance, a PheWAS study that inspected 

associations between risk alleles for alcohol and nicotine use and a variety of 

outcomes in women (N = 26,394), was able to confirm already known genetic 

associations and discover novel associations, including psychological and 

socioeconomic traits (Polimanti et al., 2016). 

The degree to which a PheWAS is hypothesis generating may vary depending on 

the specific research question and is determined by the number of phenotypes 

chosen. A comprehensive PheWAS tests the associations between genetic variants 

(or PRS) and the “entire” phenome, whereas a targeted PheWAS selects a certain 

group of phenotypes and tests these for associations with a genetic variant (or 

PRS) (Bush et al., 2016). The latter is more commonly applied for research 

questions with an underlying biological hypothesis that may influence a specific 

group of phenotypes (Bush et al., 2016). The PheWAS analysis of this chapter 
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follows a targeted PheWAS design, as the research question is specified to 

explore associations of the genetic variants of smoking and caffeine consumption 

specifically with mental health phenotypes. PheWAS is a powerful approach to 

complement more conventional hypothesis testing approaches that often are 

subject to publication bias, with only significant results being published, due to 

the fact that in a PheWAS all results are commonly reported, including null 

findings (Millard et al., 2015).  

3.2.3 Chapter Aims  

The analyses in this chapter aimed to elucidate the effects of maternal prenatal 

smoking and caffeine consumption on offspring mental health, using data from 

ALSPAC. The study had two specific aims: First, to validate the smoking and 

caffeine PRS during pregnancy (in mothers) and second, to estimate the effect of 

maternal smoking and caffeine consumption on offspring mental health outcomes. 

The second aim was achieved by first estimating the association between maternal 

smoking and caffeine PRS and offspring mental health outcomes during 

childhood (before age 10 years when children are unlikely to start smoking or 

consuming higher level of caffeine themselves; childhood PRS analysis, Figure 

3.3), and then comparing the effect of mothers PRS and offspring PRS on 

offspring mental health. This comparison allowed disentangling pleiotropic from 

potential causal associations (intergenerational PRS analysis, Figure 3.3). Given 

the shared genetics between mothers and offspring, pleiotropic associations would 

be reflected by a larger estimated effect of the offspring PRS on offspring mental 

health, compared to the estimated effect of the maternal PRS (childhood PRS 

analysis, Figure 3.3). Following the same reasoning, a larger estimated effect of 

the maternal PRS on offspring mental health (relative to the estimated effect of 

the offspring PRS) would have provided more evidence to support a causal 

intrauterine effect of maternal behaviour on offspring mental health 

(intergenerational PRS analysis, Figure 3.3).  

This study aimed at identifying offspring mental health phenotypes that show 

indication of being influenced by maternal smoking and caffeine consumption 

(pre-, during-, or post-pregnancy), instead of a shared genetic predisposition 

between mother and offspring. This chapter did not aim to specifically test a pre 

specified hypothesis that investigates the effect of maternal smoking or caffeine 
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consumption during pregnancy on a specific offspring mental health phenotype of 

interest. As genetic variants are allocated at conception and thus a genetic 

susceptibility for smoking and caffeine consumption influences lifetime 

consumption and not just consumption during pregnancy, the current analyses can 

neither differentiate between pregnancy effects, nor pre- or post-natal effects of 

smoking and caffeine consumption (Lawlor et al., 2017). Offspring mental health 

phenotypes that show evidence of an association with maternal smoking and 

caffeine consumption, which is unlikely to be explained by shared genetics 

between mother and offspring, should be followed-up to investigate specific 

timings of exposures (pre-, during-, or post-pregnancy). For instance, the specific 

influence of exposure to smoking or caffeine during pregnancy may then be 

followed-up by running subsequent MR analyses investigating a mediating role of 

offspring DNA methylation in cord blood (e.g., as I have done in Chapter 6). 
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Figure 3.3 Design overview of the comparison of the intergenerational analysis 

(top) and the childhood analysis (bottom). A larger effect estimate in the 

intergenerational compared to the childhood analysis would reflect a causal 

effect of caffeine/smoke exposure through the maternal environment. A larger 

effect estimate in the childhood compared to the intergenerational analysis would 

reflect pleiotropic association of the polygenic risk scores with mental health. 

 

3.3 Methods 

3.3.1 Study population   

ALSPAC data was used in the analyses of this chapter. For the cohort description 

please refer to Chapter 2.  

3.3.2 Design 

A visual overview of the study design can be found in Figure 3.3. Given the 

shared genetic material between mothers and offspring, evidence for pleiotropic 

associations should be reflected by a larger estimated effect of the offspring PRS 

on offspring mental health (childhood PRS analysis), compared to the estimated 

effect of the maternal PRS (intergenerational PRS analysis). Following the same 

reasoning, a larger estimated effect of the maternal PRS on offspring mental 

health (relative to the estimated effect of the offspring PRS) would provide more 
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evidence to support a causal effect of maternal behaviour on offspring mental 

health (intergenerational PRS analysis).  

3.3.3 Phenotype data   

Mental health phenotypes were selected from questionnaires and clinical 

assessments. Besides mental health phenotypes, some non-mental health 

phenotypes were also included, that were selected based on evidence in the 

literature indicating high comorbidity with mental health problems (e.g., alcohol, 

cannabis, other drugs, personality, body mass index, sleep, socio-economic 

variables). To validate the PRS, phenotypes describing caffeine consumption and 

smoking behaviours were derived. Offspring assessment points were grouped into 

‘childhood’ (age 7-11 years) and ‘adolescence’ (age 12-18 years). Maternal 

assessment points were grouped into ‘during pregnancy’ (8, 18 and 32 weeks of 

gestation) and ‘outside of pregnancy’, which included phenotypes assessed pre- 

and/or post-pregnancy. Outcomes assessed within the first four years after 

pregnancy were excluded, as the transition to parenthood may influence mental 

health temporarily (Saxbe et al., 2018) and mothers may be more likely to be 

pregnant again. In total, 71 phenotypes for offspring (childhood and adolescence) 

and 79 phenotypes for mothers (during and outside of pregnancy) were included. 

Table 3.1 gives an overview of phenotypes included in the intergenerational and 

childhood PRS analyses across time-points. A complete list of phenotypes is 

given in Appendix A, Table A1. 
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Table 3.1 Availability of phenotypes included in the intergenerational and childhood analyses across the two generations 

 Offspring Mothers 

Measures Childhood 

(age <10) 

Adolescence 

(age 12-18) 

Outside of pregnancy 

(pre/post-pregnancy) 

During pregnancy 

Mental health     

Emotional problems      

Depression symptoms x x x x 

Anxiety symptoms x x x x 

Specific phobia x x   

Behavioural problems      

ODD symptoms x x  

Personality measures (extraversion, 

anger, impulsivity) 

 

Conduct disorder symptoms x x  

ADHD symptoms x x  

Total behavioural difficulties x x  

Neuro-developmental      

Autism (lifetime diagnosis) x   

Other     

Handedness (negative control) x    

IQ x x Only education & SEP Only education & SEP 

Number of stressful life events  x x x x 

BMI x x x Only Image perception 

and physical activity 

Sleep initiation  x x   

Sleep maintenance  x x   

Hours of sleep (duration) x x x  

Overall caffeine intake x x x x 

Note. ODD = Oppositional defiant disorder, ADHD = Attention deficit hyperactivity disorder, IQ = Intelligence quotient, BMI = Body mass index, SEP = Socio-economic 

position.
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3.3.3.1 Phenotype selection and coding 

3.3.3.1.1 Phenotype assessment 

The phenotype selection was aimed at including as many different mental health phenotypes 

available in ALSPAC as possible. If phenotypes correlated highly, only the one with the 

larger sample size was included. Following the same reasoning, if some phenotypes were 

assessed at close time points (e.g., at age 14 and age 16), but only showed a low to moderate 

association, both time points were included. Continuous phenotypes that substantially 

deviated from a normal distribution were transformed into quantiles and if a validated cut-off 

score was available, binary phenotypes were derived. Zero inflation was accounted for by 

transforming continuous phenotypes with more than 20% of zero values into three quantiles 

(0, < median, > median). Caffeine phenotypes (daily consumption of coffee, tea, cola in 

milligrams per day (mg/day)) were generated based on their caffeine content. In ALSPAC, 

caffeinated coffee and tea were initially assessed in cups per day and caffeinated cola was 

assessed in cans per day. Caffeine content for each cup/can were transformed based on the 

assumption that one cup of tea contains 27 mg, a cup of coffee 57 mg, and a can of cola 

(330ml) 20 mg of caffeine (Farrow et al., 1998). Total caffeine consumption was computed 

by summing the caffeine content in mg/day of each drink. Extreme outliers, such as 

consuming more than 28 cups of coffee and tea per day, were removed.  

3.3.4 Polygenic risk scores (PRS)  

In ALSPAC, genome-wide SNP data were available for 8,237 children and 8,196 mothers. 

After removing individuals who withdrew their consent or did not pass quality control, PRS 

could be generated for 7,964 children and 7,921 mothers (see Chapter 2 for more information 

about genotyping in ALSPAC) (Taylor, Jones, et al., 2018). The GWAS and Sequencing 

Consortium of Alcohol and Nicotine use (GSCAN, N = 1.2 million) (Liu, Jiang, Wedow, Li, 

Vrieze, et al., 2019) identified 378 single nucleotide-polymorphisms (SNPs) associated with 

smoking initiation that were conditionally independent at the genome-wide significance level 

(P-value < 5 x 10-8). Smoking initiation was defined as being an ‘ever’ vs. ‘never’ smoker 

where an ‘ever’ smoker had to have either smoked 100 cigarettes in their lifetime and/or 

smoked regularly every day for at least a month. Of the 378 genome-wide significant SNPs, 

356 were available in ALSPAC (Liu, Jiang, Wedow, Li, Vrieze, et al., 2019). Considering 

that smoking is a complex behaviour, of which initiation is only one part, a PRS for lifetime 

smoking was generated as a sensitivity analysis. The lifetime smoking score also captures 
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smoking heaviness (as well as smoking duration and cessation) but is derived in the entire 

population comprising both smokers and non-smokers and therefore is more suitable for use 

in unstratified samples (Wootton et al., 2019). The GWAS of lifetime smoking based on the 

UK Biobank data (N = 462,690) identified 126 independent loci (P-value < 5x10-8), which 

were all available in ALSPAC. The Coffee and Caffeine Genetics Consortium found eight 

SNPs to be independently associated with cups of coffee consumed per day at the genome-

wide level of significance (N = 91,462) (The Coffee and Caffeine Genetics Consortium et al., 

2015), which were all available in ALSPAC. These SNPs have also been found to be 

associated with caffeine use from other caffeinated beverages (Taylor, Davey Smith, et al., 

2018; Treur et al., 2017).  

Weighted genetic risk scores were created using independent genome wide significant hits 

(P-value < 5x10-8) and their effect estimates as reported in the discovery GWAS for each of 

the exposures. These PRS were derived using Plink v1.9 and standardised prior to use in 

analyses. As the PRS were based on discovery GWAS that only report independent variants 

(Liu, Jiang, Wedow, Li, Vrieze, et al., 2019; The Coffee and Caffeine Genetics Consortium et 

al., 2015; Wootton et al., 2019), clumping or pruning was not necessary (Choi et al., 2020). 

3.3.5 Statistical analysis   

All analyses were performed using Stata v15. The following linear and logistic regression 

analyses were conducted to test associations with the smoking and caffeine PRS: (1) maternal 

PRS with smoking and caffeine phenotypes in mothers during pregnancy to validate the PRS 

(Aim 1); (2) maternal and offspring PRS with childhood phenotypes (< 10 years) for 

investigating intergenerational effects (Aim 2, Figure 3.3). In addition to the two main aims, 

supplementary analyses were conducted that tested maternal and offspring PRS with their 

own phenotypes in mothers (during and outside of pregnancy) and offspring (adolescence). 

Results from the supplementary analyses were used to confirm PRS associations with 

relevant substance use behaviours outside of pregnancy as a positive control and to gain more 

information about mental health associations at later times in development. Analyses were 

adjusted for age, offspring sex, and the first 10 ancestry-informative principal components 

based on the ALSPAC genome-wide data. The sample was restricted to singletons or one 

individual from a twin pair and to individuals of European ancestry. The maximum sample 

size available in childhood was 6,156 (4,974 in adolescence) and 7,269 during pregnancy 

(7,199 outside of pregnancy). To avoid limiting the sample size further, and to reduce the risk 

of selection bias, analyses were not restricted to only mother-offspring pairs with complete 
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genotype data. Differences between smoking, caffeine, and socio-demographic variables 

were observed between participants with complete vs. partially missing genotype data, which 

supports the notion that restricting the sample to mother-offspring pairs where both have 

complete genotype data could have introduced selection bias (Appendix B, Table B1 and 

Table B2).  

3.3.6 Multiple testing 

Multiple testing was accounted for by running Monte Carlo permutation testing with 1,000 

repetitions. Similar to the nominal P-value that is based on the assumption that the data 

represents a random set of the general population, a permutation P-value (PPerm) indicates the 

probability of observing a value that is more or less extreme than the one observed, while 

taking into account the correlation structure of the analysed data (Conneely & Boehnke, 

2007). Permutation testing does not assume that the reference population follows a normal 

distribution but instead a reference population is generated from random draws 

(permutations) of the data at hand (Legendre & Legendre, 1998). Permutation testing has 

been acknowledged as a more adequate approach to correct for multiple testing in PheWAS 

studies, that aim at generating new hypotheses, than Bonferroni correction (Millard et al., 

2015). Bonferroni correction is likely to be overly conservative considering the high degree 

of correlation between the selected phenotypes (Conneely & Boehnke, 2007; Millard et al., 

2015). Thus, permutation testing was applied as the main multiple testing correction and 

permutation P-values are presented in the text. For phenotypes that showed evidence for 

association according to a permutation corrected P-value, effect estimates between the 

intergenerational and childhood analysis were compared. To get an indication for false 

positive findings, results were also compared with a more stringent Bonferroni correction. 

Evidence for association was considered strongest for phenotypes that had a permutation P-

value of less than 0.05 and also survived Bonferroni correction (all results are available in 

Appendix C to Appendix I). The analyses for Aim 1, which aimed at validating the caffeine 

and smoking PRS as proxies for smoking and caffeine consumption during pregnancy, were 

exempted from the multiple testing corrections, as the validation analyses were hypothesis-

testing (Millard et al., 2015). 
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3.4 Results 

3.4.1 Maternal smoking and caffeine consumption  

In ALSPAC, 25% of mothers reported smoking during the 1st trimester of pregnancy. 

Generally, 51% of mothers reported having ever smoked a cigarette in their lifetime, of which 

66% reported smoking before pregnancy and 49% reported smoking during the first trimester 

of pregnancy. Daily caffeine consumption varied widely amongst mothers in ALSPAC and 

thus the median (and IQR), which is less sensitive to extreme values, is reported instead of 

the mean and SD. Most mothers in ALSPAC (94%) consumed caffeine outside of pregnancy 

(8-years post-pregnancy), with a median overall caffeine level of 168 mg/day of caffeine 

(IQR: 108 to 252) and 38% consuming more than 200 mg/day of caffeine. During pregnancy, 

most mothers still consumed some caffeine daily (N 2nd trimester = 92%; N 3rd trimester = 

90%) but fewer mothers consumed more than 200 mg of caffeine (2nd trimester = 28%; 3rd 

trimester =, 3rd trimester = 27%). During pregnancy, mothers reported lower caffeine 

consumption with a median of 138 mg/day (IQR: 81 to 215) during the 2nd trimester and 135 

mg/day (IQR: 71 to 216) during the 3rd trimester. Tea was the caffeinated beverage that most 

mothers consumed outside (82%), as well as during pregnancy (86% during the 2nd, and 88% 

during the 3rd trimester). Followed by caffeinated coffee (63% outside of pregnancy; and 58% 

and 53% during the 2nd and 3rd trimester, respectively). Cola was the caffeine source that was 

least consumed (53% outside pregnancy; and 34% and 41% respectively during the 2nd and 

3rd trimester). Stratifying the sample into mothers who reported to consume any caffeine 

outside of pregnancy (> 0 mg/day caffeine 8-years post-pregnancy) and had data on caffeine 

consumption during pregnancy (2nd and 3rd trimester, N = 7,191) indicated that across time 

points in ALSPAC, caffeinated tea was the primary source of caffeine (Figure 3.4). Also, 

mothers significantly reduced their coffee consumption from the 2nd to 3rd trimester, whereas 

tea consumption remained relatively stable throughout pregnancy, as well as outside of 

pregnancy (Figure 3.4). Comparing caffeine consumption during pregnancy between mothers 

with and without data on caffeine consumption 8-years post-pregnancy showed that mothers 

with data 8-years post-pregnancy drank on average less caffeine during pregnancy than 

mothers with missing data 8-years post-pregnancy (2nd and 3rd trimester: mean difference = 

19 mg/day caffeine, t(13,289) = 9.17, P-value < 0.001; t(12,120) = 8.96, P-value < 0.001), 

respectively). Likewise for smoking, mothers with data on smoking 8-years post-pregnancy 

were less likely to have smoked during pregnancy (N = 7,574 of which 19% smoked during 

pregnancy) than mothers with missing data on smoking 8-years post-pregnancy (N = 5,785 of 
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which 33% smoked during pregnancy). This indicates that effects of smoking and high 

caffeine consumption during pregnancy on offspring mental health outcomes (which were 

assessed in childhood and adolescence several years post-pregnancy) are likely to be 

underrepresented in this study and effects of high maternal smoking/caffeine consumption 

might be underestimated (Webb, Bain & Page, 2017).  

Figure 3.4 Overview of the intake of the different sources of caffeine outside (8-years 

post pregnancy) and during pregnancy. Only includes mothers who had complete data 

on caffeine consumption during pregnancy (2nd and 3rd trimester) and reported 

consuming some caffeine (> 0 mg/day) 8-years post pregnancy (N = 7,191). Bars 

represent median mg/day of caffeine per caffeinated drink and error bars represent the 

IQR. 

 

Compared to mothers who did not report smoking, mothers who smoked reported 

consistently more caffeine consumption during (2nd trimester: 64 mg/day more caffeine, 3rd 

trimester: 75 mg/day more caffeine) and outside of pregnancy (8-years post-pregnancy: 30 

mg/day more caffeine). 

3.4.2 Aim 1: Validation of PRS during pregnancy 

The PRS for smoking initiation and lifetime smoking were positively associated with 

maternal smoking phenotypes during pregnancy and explained 1-5% of variance in smoking 

phenotypes during and outside of pregnancy (Table 3.2 and Appendix C, Table C1). The PRS 

for caffeine consumption was positively associated with total caffeine and caffeinated tea and 



Chapter 3 – Intergenerational smoking and caffeine PRS analysis 

 109 

coffee consumption during pregnancy, but not with cola consumption (Table 3.3). The 

caffeine PRS explained 0.2-0.4% of variance in caffeine phenotypes during pregnancy and 

0.2-1% of variance outside of pregnancy (Table 3.3). Results of the supplementary positive 

control analyses, using maternal and offspring smoking and caffeine PRS to predict smoking 

and caffeine consumption outside of pregnancy and during adolescence, validated that the 

smoking PRS could predict consumption during these times in life (Table 3.2). The caffeine 

PRS could predict consumption outside of pregnancy (except for cola consumption) but not 

during adolescence (Table 3.3). 

 

Table 3.2 Associations between smoking initiation PRS and smoking phenotypes in 

mothers (during and outside of pregnancy) and offspring in adolescence 
 Phenotype Effect 

estimate 

Effect 

size* 

95% CI P-value Sample 

size 

Adj. 

R2** 

Mothers  

Outside of 

pregnancy 

Mother has ever 

smoked 

OR 1.40 1.33, 1.48 1.24x10-8 7194 0.03 

 Number of 

cigarettes smoked 

before pregnancy 

Beta 0.15 0.08, 0.22 3.81x10-5 3426 0.05 

        

Pregnancy – 

18 weeks 

gestation 

Tobacco smoked in 

1st three months of 

pregnancy 

OR 1.35 1.23, 1.44 3.0x10-7 7237 0.05 

 Mother cut down 

smoking 

OR 1.33 1.25, 1.42 5.89x10-7 7269 0.03 

 Mother stopped 

smoking during 

pregnancy 

OR 0.98 0.88, 1.11 0.771 1863 0.01 

Offspring   

Adolescence– 

14 years 

Smoked at age 14 

years 

OR 1.18 1.09, 1.28 6.50x10-4 4145 0.03 

 Smoked more than 

20 cigarettes  

OR 1.19 1.03, 1.38 0.024 1058 0.03 

 Age 1st smoked a 

cigarette  

Beta 0.001 -0.04, 

0.04 

0.953 1064 0.01 

        

Adolescence– 

18 years 

Ever smoked a 

whole cigarette  

OR 1.26 1.15, 1.37 1.09x10-4 2402 0.02 

 Number of 

cigarettes smoked in 

lifetime  

Beta 0.19 0.10, 0.2 4.24x10-5 1144 0.01 

Note. * Reflects the average change in the outcome that is associated with a one standard deviation increase in 

the PRS. For binary outcomes, this will be the odds ratio (e.g., Mother’s odds of ever smoking are 1.4 times 

compared to not smoking), for continuous outcomes it represents the average unit change (e.g., 0.15 cigarettes 

smoked). ** For the logistic regression models, pseudo R2 is reported.  
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Table 3.3 Associations between caffeine PRS and daily caffeine intake in mothers 

(during and outside of pregnancy), and offspring (age 8 and 13 years) 

Note. * Reflects the average change in the outcome that is associated with a one standard deviation increase in 

the PRS. For continuous outcomes it represents the average unit change (e.g., a one standard deviation increase 

in PRS is associated with mothers consuming 9.89 mg/day more caffeine outside of pregnancy). For 

transformed variables, it represents the average quantile or quartile change (e.g., a one standard deviation 

change in PRS is associated with a 0.03 quantile mg/day increase in coffee consumption outside of pregnancy). 

** For the logistic regression models, pseudo R2 is reported. 

 

  

 Daily caffeine intake 

phenotype  

Effect 

size* (beta) 

95% CI P-value Sample 

size 

Adj. 

R2** 

Mothers       

Outside of 

pregnancy 

Total caffeine 9.89 6.34, 13.44 4.97x10-8 4783 0.01 

Coffee 0.03 0.01, 0.06 0.009 4655 0.003 

Tea 0.07 0.03, 0.10 1.01x10-4 4632 0.01 

Cola 0.01 -0.01, 0.03 0.332 4670 0.002 

   

Pregnancy – 

18 weeks 

gestation 

Total caffeine  5.85 3.09, 8.61 3.28x10-5 7220 0.004 

Coffee  0.02 0.01, 0.04 0.011 7198 0.002 

Tea 0.02 0.01, 0.04 0.007 7189 0.002 

Cola  -0.001 -0.02, 0.01 0.890 7185 0.002 

       

Pregnancy – 

32 weeks 

gestation 

Total caffeine 6.32 3.74, 8.89 1.56x10-6 6767 0.01 
Coffee  0.03 0.01, 0.04 0.01 6596 0.002 

Tea  3.42 1.80, 5.04 3.65x10-5 6608 0.004 

Cola  -0.01 -0.03, 0.01 0.278 6500 0.002 

Offspring   

Childhood – 

age 8 years 

Total caffeine 0.01 -0.01, 0.03 0.377 4589 0.002 

Coffee 0.01 -0.06,0.08 0.845 254 0.02 

Tea 0.18 -1.52, 1.88 0.836 1475 0.004 

Cola 0.003 -0.02, 0.03 0.829 4551 0.002 

   

Adolescence 

– age 13 

years 

Total caffeine  0.01 -0.03, 0.05 0.670 3405 0.004 

Coffee  0.03 -0.02, 0.08 0.271 467 0.05 

Tea 0.89 -0.35, 2.13 0.161 1933 0.004 

Cola  -0.02 -0.05, 0.02 0.424 2411 0.01 



Chapter 3 – Intergenerational smoking and caffeine PRS analysis 

 111 

3.4.3 Aim 2: Comparison of intergenerational and childhood smoking initiation PRS 

analyses 

Intergenerational PRS analyses. Of 16 childhood phenotypes, the association with the 

strongest evidence, according to the smallest permutation corrected P-value, were observed 

with reduced anxiety symptoms (β8years=-0.03, 95% CI -0.05, -0.01, Pperm=0.002) and 

increased conduct disorder symptoms (β7years =0.02, 95% CI 0.004, 0.04, Pperm=0.021). Of the 

non-mental health phenotypes, the strongest associations, according to the smallest 

permutation corrected P-value, were found for lower IQ (β8years =-0.59, 95% CI -1.05, -0.134, 

Pperm=0.02), higher overall caffeine consumption (mg/day; β8years=0.05, 95% CI 0.02, 0.07, 

Pperm= < 0.001), and BMI (β7years =0.08, 95% CI 0.02, 0.14, Pperm=0.001) as well as the 

likelihood of being left-handed (OR11years =1.11, 95% CI 1.01, 1.23, Pperm=0.012), which was 

included as a negative control phenotype (because a causal intrauterine effect of maternal 

smoking or caffeine use on handedness would not be expected). Only associations with 

offspring’s anxiety symptoms and caffeine consumption survived Bonferroni correction of P-

value < 0.003 (Figure 3.5, Appendix D, Table D1). 

Childhood PRS analyses. As observed in the intergenerational analysis, there was some 

evidence for an association with reduced anxiety problems (β8years =-0.03, 95% CI -0.05, -

0.01, Pperm=0.002) and increased conduct disorder symptoms (β7years =0.03, 95% CI 0.01, 

0.05, Pperm=0.001). In contrast to the intergenerational analysis, there was some evidence for 

an association with ADHD symptoms (β7years =0.03, 95% CI 0.003, 0.06, Pperm=0.034). The 

non-mental health phenotypes that showed the strongest evidence for association in the 

intergenerational analysis were replicated using the offspring smoking PRS (lower IQ: 

β8years= -0.74, 95% CI -1.18, -0.29, Pperm < 0.001; increased caffeine consumption: β8years = 

0.03, 95% CI 0.01, 0.06, Pperm = 0.006; BMI: β7years =0.05, 95% CI -0.0003, 0.10, 

Pperm=0.048) with the exception of left-handedness (OR11years =1.05, 95% CI 0.95, 1.15, 

Pperm=0.291; Figure 3.5). Only associations with IQ and conduct disorder symptoms survived 

the Bonferroni correction of P-value < 0.003 (Figure 3.5, Appendix D, Table D1). The results 

using lifetime smoking PRS were largely consistent. Only associations with offspring’s IQ, 

oppositional defiant disorder (ODD), and total behavioural difficulties survived Bonferroni 

correction (Appendix E, Table E1). 

Comparison of magnitude of effect estimates. For childhood anxiety, the effect estimates were 

of similar strength in the intergenerational (β8years=-0.03, 95% CI-0.05, -0.01) and childhood 

analysis (β8years =-0.03, 95% CI -0.05, -0.01), providing no evidence for an intrauterine effect. 
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The effect estimate for IQ, was slightly larger in the childhood (β8years= -0.74, 95% CI -1.18, -

0.29) compared to the intergenerational analysis (β8years =-0.59, 95% CI -1.05, -0.134), 

indicating that this association is more likely to be pleiotropic than reflecting an intrauterine 

effect. Even though the effect estimates of the BMI and caffeine phenotypes were slightly 

larger in the intergenerational (BMI: β7years =0.08, 95% CI 0.02, 0.14; caffeine: β8years=0.05, 

95% CI 0.02, 0.07) than the childhood analysis (BMI: β7years =0.05, 95% CI -0.0003, 0.10; 

caffeine: β8years = 0.03, 95% CI 0.01, 0.06) the overlapping confidence intervals indicate no 

strong evidence for an intrauterine effect. 
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Figure 3.5 Comparison of phenotype associations with the smoking initiation (SI) polygenic risk scores (PRS) in the intergenerational 

and childhood analysis. Points outside the lines had a permutation corrected P-value < 0.05. Points above the upper line represent positive 

associations and points below the lower line represent negative associations. caff_8 = Total caffeine consumption at age 8. BMI_7 = BMI at 

age 7. CD = Conduct Disorder at age 7. anxiety_8 = Anxiety at age 8. IQ_8 = IQ at age 8. HYP_7 = Hyperactivity at age 8. 
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3.4.4 Aim 2: Comparison of intergenerational and childhood caffeine PRS analyses 

Intergenerational PRS analyses. Given that offspring’s caffeine PRS was not robustly 

associated with caffeine consumption in childhood (Table 3.3), the results of the childhood 

analysis could be used as a test for pleiotropy, despite some children already consuming low 

levels of caffeine at this age. Of the 16 childhood phenotypes, the mental health association 

with the strongest evidence, according to the smallest permutation corrected P-value, was 

observed with decreased risk for specific phobias in offspring (OR10years =0.72, 95% CI 0.52, 

1.01, Pperm=0.028; Figure 3.6 and Appendix F, Table F1). There was no evidence for 

association with any of the non-mental health phenotypes (Appendix F, Table F1)  

Childhood PRS analyses. In contrast to the intergenerational analysis, there was no evidence 

for association with specific phobias (OR10years=1.00, 95% CI 0.72, 1.38, Pperm=0.998), but 

some evidence for association with reduced general anxiety symptoms (β8years= -0.02, 95% CI 

-0.04, -0.002, Pperm=0.026). The association with the strongest evidence amongst the non-

mental health phenotypes, according to the smallest permutation corrected P-value, was 

observed with fewer hours of sleep in term-time (β7years= -0.03, 95% CI -0.05, -0.004, 

Pperm=0.018), (Figure 3.6, Appendix F, Table F1). None of the associations of the 

intergenerational and childhood analyses for caffeine survived Bonferroni correction.  

Comparison of magnitude of effect estimates. The effect estimate of the association between 

the caffeine PRS and risk for specific phobias was larger in the intergenerational (OR10years 

=0.72, 95% CI 0.52, 1.01) compared to the childhood analysis (OR10years=1.00, 95% CI 0.72, 

1.38). As the confidence intervals were partially, but not completely, overlapping this might 

indicate an intrauterine effect of caffeine on reduced risk for offspring specific phobias, or 

chance. For general anxiety symptoms there was no evidence for an intrauterine effect, as the 

childhood analysis showed a similar size of effect (β8years= -0.02, 95% CI -0.04, -0.002) as the 

intergenerational analysis (β8years = -0.02, CI -0.02 to 0.02). The phenotype of fewer hours of 

sleep in term-time showed a similar strength of association in the childhood (β7years= -0.03, 

95% CI -0.05, -0.004) and intergenerational analysis (β7years= -0.03, 95% CI -0.03, 0.02) also 

providing no evidence for an intrauterine effect. 
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Figure 3.6 Comparison of phenotype associations with the caffeine polygenic risk scores (PRS) in the intergenerational and childhood 

analysis. Points outside the lines had a permutation corrected P-value < 0.05. Points above the upper line represent positive associations 

and points below the lower line represent negative associations. spec_phobia_10 = specific phobias at age 10.  anxiety_8 = Anxiety at age 8. 

sleep_hrs = Sleep duration in hours at age 7. 
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3.4.5 Supplementary analyses: Associations between maternal and 

offspring PRS and own mental health during and outside of 

pregnancy (mothers) and adolescence (offspring). 

In addition to the intergenerational and negative control analyses, associations 

between the maternal and offspring PRS and own mental health during and 

outside of pregnancy (mothers) and adolescence (offspring) were explored for 

pleiotropic or suggestive causal relationships. Further, by comparing the 

magnitude of effects across childhood, adolescence, and adulthood, the 

persistence of pleiotropic effects across development and the effect on mental 

health through maternal and offspring’s own behaviour could be explored.  

3.4.5.1 Maternal smoking initiation PRS and outcomes during and outside of 

pregnancy.  

Amongst the mental health phenotypes, there was consistent evidence for the 

maternal smoking PRS being associated with increased depressive symptoms 

during and outside of pregnancy. After applying the Bonferroni correction 

(threshold: P-value < 0.002), the strongest evidence was found for associations 

with lower education, higher caffeine consumption, and binge drinking during and 

outside of pregnancy, as well as with higher BMI, lower image perception, and 

personality traits such as more anger and monotony avoidance outside of 

pregnancy (Appendix G, Table G1). 

3.4.5.2 Offspring smoking initiation PRS and own outcomes during 

adolescence  

Consistent with the results using the childhood mental health phenotypes, there 

was some evidence for positive associations with externalising problems in 

adolescence (conduct disorder, oppositional defiant disorder, ADHD). However, 

there was very little evidence for associations with anxiety symptoms during 

adolescence. After applying the Bonferroni correction (threshold: P-value < 

0.001), the strongest evidence was found for associations with increased conduct 

disorder symptoms, higher BMI, lower IQ, more extraverted personality traits, 

and alcohol consumption (Appendix G, Table G1). 
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3.4.5.3 Offspring lifetime smoking PRS and own outcomes during and outside 

of pregnancy (mothers) and during adolescence (offspring) 

The results using the lifetime smoking PRS were largely consistent and can be 

found in Appendix H (Table H1 and Appendix C, Table C1). The strongest 

evidence was found for associations with education, social class, caffeine 

consumption, BMI, and anger phenotypes in mothers during and outside of 

pregnancy and conduct disorder, extraversion, and IQ phenotypes in adolescence 

(Appendix H, Table H1).  

3.4.5.4 Maternal caffeine PRS and own outcomes during and outside of 

pregnancy 

There was some evidence for association with decreased likelihood of having had 

schizophrenia diagnosis outside of pregnancy but no other mental health 

outcomes during or outside of pregnancy (Appendix I, Table I1). Amongst the 

non-mental health phenotypes, some evidence was observed for associations with 

less substance use during pregnancy (higher likelihood of reducing caffeine 

consumption, decreased likelihood to binge drink), as well as evidence for an 

association with lower socio-economic position. None of these associations 

survived the Bonferroni correction neither outside (threshold: P-value < 0.002) 

nor during pregnancy (threshold: P-value < 0.001; Appendix I, Table I1). 

3.4.5.5 Offspring caffeine PRS and own mental health outcomes during 

adolescence 

The caffeine PRS was not associated with caffeine consumption during 

adolescence (Table 3.3). There was only some evidence for the offspring caffeine 

PRS being associated with higher GCSE exam grades during adolescence but 

none of the mental health or substance use phenotypes. None of these associations 

survived Bonferroni correction (threshold: P-value < 0.001; Appendix I; Table 0). 
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3.5 Discussion 

3.5.1 Summary and interpretation of findings 

The aim of this study was to identify possible causal associations of maternal 

smoking and caffeine consumption on offspring mental health, which could be 

followed-up in analyses with a particular focus on the prenatal period. The results 

showed that the smoking and caffeine PRS are valid predictors of smoking and 

caffeine consumption from tea and coffee during pregnancy. The smoking 

initiation PRS was associated with various psychological traits and other 

substance use behaviours across different time points in life. In particular, 

associations were observed between the smoking initiation PRS and sensation-

seeking traits across development, such as less anxiety and increased externalising 

problems in childhood, an extroverted personality type, more externalising 

problems and alcohol consumption in adolescence, as well as higher expression of 

anger, more monotony avoidance outside of pregnancy and alcohol consumption 

during and outside of pregnancy. The caffeine PRS showed weak evidence for 

associations with offspring mental health outcomes. For the phenotypes that 

showed evidence for an association with the smoking and caffeine PRS, no strong 

difference in effect estimates could be observed between the childhood and 

intergenerational analysis, providing no evidence for an intrauterine effect. 

Critically, the results indicate evidence that the associations found between the 

maternal smoking and caffeine PRS and offspring mental health outcomes are 

likely due to pleiotropic effects, rather than acting through the maternal 

intrauterine environment. 

3.5.2 Smoking PRS and mental health 

The findings of pleiotropic associations between the smoking PRS and sensation-

seeking personality traits are supported by the literature. Observational evidence 

suggests that adolescents who start smoking tend to have more externalising 

behavioural problems (Crone & Reijneveld, 2007; Elkins et al., 2007; Pedersen et 

al., 2018), are more novelty seeking, and have lower cognitive abilities, socio-

economic position, and academic outcomes (Audrain-McGovern et al., 2004; 

Daly & Egan, 2017; Pedersen et al., 2018). Results of genetic analyses suggest 

that a shared genetic liability for smoking, externalising problems, and 

impulsivity (Harrison et al., 2019; Hicks et al., 2020; Stephens et al., 2012; Young 



Chapter 3 – Intergenerational smoking and caffeine PRS analysis 

 119 

et al., 2000), as well as socioeconomic variables (education and SEP; Gage et al., 

2018; Khouja et al., 2021), may explain observational associations (Iacono et al., 

2008). There was some evidence for the smoking PRS being associated with 

maternal depression during and outside of pregnancy, which could (partly) 

explain the association observed between the smoking PRS and offspring 

externalising problems (Eilertsen et al., 2020). A study adopting a similar design 

to the present one, examining associations between maternal and offspring PRS 

for increased alcohol consumption and maternal and offspring mental health, also 

found an association between maternal alcohol use and maternal depression 

during pregnancy but no evidence for an association with maternal alcohol PRS 

and externalising problems in offspring (Easey et al., 2021). Even though this 

requires further testing, it could provide some initial evidence that the association 

between the smoking PRS and offspring externalising problems is more likely to 

be pleiotropic than confounded by maternal depression. Especially since 

associations with impulsivity and sensation-seeking behaviours, as well as 

ADHD, were still evident in studies that only included genome-wide significant 

SNPs (Harrison et al., 2019; Hicks et al., 2020; Khouja et al., 2020; Liu et al., 

2019). Contextualising the results of this study with the abovementioned literature 

suggests that associations observed with the smoking initiation PRS are reflecting 

a common genetic liability with sensation-seeking phenotypes that is shared 

between mother and offspring.    

  

3.5.3 Caffeine PRS and Mental Health 

The caffeine PRS did neither predict maternal nor offspring’s caffeinated cola 

consumption, which could be explained by low consumption of cola in our sample 

and/or the low caffeine content in cola compared to coffee and tea. Further, it is 

possible that cola has a different underlying genetic or confounding structure than 

coffee and tea. During adolescence, the coffee PRS was not associated with any of 

the three included sources of caffeine. This in contrary to previous research that 

compared the development of caffeine consumption between monozygotic and 

dizygotic twins and found that genetic influences on caffeine consumption 

increase between the ages 9 to 13 years of age, and then remain stable at 

explaining 30% to 45% of variance in caffeine consumption (Kendler et al., 
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2008). However, the sample of that study was quite different from the ALSPAC 

sample (only included males born between 1940-1974). Thus, the possibility 

remains that no genetic effect was observed for adolescents in this study due to 

low average caffeine consumption at the assessment point of 13 years (overall 

caffeine: Median13years = 20 mg/day, IQR13years: 3 to 43). This is in line with 

findings from The Coffee and Caffeine Genetics Consortium, in which the PRS 

for coffee consumption was not replicated in a Pakistani population, where coffee 

consumption is rare (The Coffee and Caffeine Genetics Consortium et al., 2015). 

Also, it has been argued that the genetic contribution to caffeine consumption is 

stronger for heavier than modest caffeine consumers (Yang et al., 2010). 

However, as the discovery GWAS did not include adolescent populations, it is 

also possible that there are different genetic variants contributing to caffeine 

consumption during adolescence compared to adulthood. In sum, as the caffeine 

PRS could not predict caffeine consumption during adolescence, the associations 

between the caffeine PRS and mental health outcomes assessed in adolescence 

may not represent effects of offspring’s caffeine consumption on adolescent 

mental health. 

Results did not show strong evidence for intergenerational effects between the 

maternal caffeine PRS and offspring mental health outcomes in childhood. There 

was some evidence for pleiotropic associations of the caffeine PRS with lower 

risk for anxiety symptoms. Again, this finding ties in with other research stating 

pleiotropic effects of more risk-prone personality traits and increased substance 

use (Khouja et al., 2021; Malmberg et al., 2010). Further, previous research 

suggests that people with a predisposition towards anxiety consume less caffeine 

because it increases their anxiety symptoms and that caffeine does not have the 

same effect in less anxious people (Lara, 2010; Lee et al., 1985). The associations 

that were observed between caffeine PRS and decreased likelihood of binge 

drinking, reduced caffeine consumption, and lower socioeconomic position during 

pregnancy, as well as higher General Certificate of Secondary Education (GCSE) 

exam grades during adolescence stand in contrast to a study in the UK Biobank, 

where the caffeine PRS was positively associated with alcohol consumption 

outside of pregnancy and not associated with social class (Taylor, Davey Smith, et 

al., 2018). Therefore, these findings should be interpreted with caution, as they 
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might be unique to the ALSPAC sample in terms of participants’ 

sociodemographic characteristics or false positives. Although these results could 

be due to yet unexplained forms of bias, it is also possible that the caffeine PRS is 

capturing underlying personality/socio-behavioural profiles with far reaching 

consequences for health and wellbeing, which deserves further investigation.  

3.5.4 Smoking and caffeine consumption 

The descriptive statistics of maternal caffeine consumption confirm what has been 

found in previous studies with mothers generally reducing their overall caffeine 

intake during pregnancy, specifically consuming less caffeinated coffee and 

slightly more caffeinated tea (Figure 3.3) (Chen et al., 2014; Lawson et al., 2004) 

and mothers who smoke, consuming more caffeine during pregnancy than 

mothers who do not smoke during pregnancy (Chen et al., 2014; Loomans et al., 

2012; Robinson et al., 2010).  

Both the smoking initiation and lifetime smoking PRS showed evidence for 

associations with increased maternal caffeine consumption outside and during 

pregnancy (Appendix G, Table G1 and Appendix H, Table H1). However, only 

the smoking initiation PRS also showed evidence for associations with increased 

caffeine consumption in the childhood and intergenerational analyses (Figure 3.5; 

Appendix D, Table D1). Previous research suggested a shared genetic liability 

between smoking and caffeine consumption (Kendler et al., 2008; Treur et al., 

2017), however, children consume quite low levels of caffeine before the age of 

10 and even the caffeine PRS was not able to predict caffeine consumption during 

childhood. Furthermore, the smoking initiation PRS was not associated with 

caffeine consumption during adolescence (Appendix G, Table G1). The 

possibility remains that associations detected in the intergenerational and 

childhood analysis are (partly) reflecting effects of genetic nurturing. Genetic 

nurturing occurs when genetic variants that are used as a proxy for an 

environmental exposure also influence the raring environment of the child 

(Pingault et al., 2018). Therefore, it is possible that the smoking initiation 

instrument captures variance of a latent construct that influences childhood 

caffeine consumption. For instance, parenting practices have been found to differ 

between mothers who smoked and did not smoke during pregnancy (Tandon et 

al., 2009) and considering that the smoking PRS is likely to capture risk-prone 
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personality traits, parents with a higher smoking initiation PRS might tend to be 

less cautious about whether their children consume caffeinated beverages. Also, 

due the comorbidity of smoking and caffeine consumption, it is likely that 

children born to parents with a higher smoking initiation PRS might in general be 

more exposed to caffeinated beverages in their home environment. Adding to this, 

offspring with a higher smoking initiation PRS may be more sensation seeking 

and thus more likely to try caffeinated drinks as a child. On the other hand, the 

association could also represent a false positive finding and requires further 

testing in independent samples, integrating MR with family-based designs 

(Pingault et al., 2018). 

3.5.5 Strengths and Limitations 

A major strength of this study was the exploration of exposure-outcome 

associations at time points in life other than adulthood. Further, the validation of 

genetic variants discovered in non-pregnant female and male populations, as 

proxies during pregnancy, is vital for future investigation of intrauterine effects of 

the exposures (Lawlor et al., 2017). Lastly, the intergenerational comparison of 

associations of the maternal smoking and caffeine PRS with childhood mental 

health outcomes, that are likely to be free of confounding through offspring’s own 

substance consumption enabled to disentangle potential pleiotropic and 

environmental effects on mental health.  

 

The following limitations should also be considered. First, the limited sample size 

(in the context of genetic association studies) likely resulted in low statistical 

power to detect small effects. This may also have compromised the precision of 

effect estimates and thus no strong inferences can be made based on the 

comparison of effect estimates between the childhood and intergenerational 

analyses. Second, mental health outcomes were restricted to phenotypes as 

assessed in ALSPAC, and the comparison of related phenotypes was not similar 

across development (e.g., ADHD/conduct disorder in childhood with extraversion 

& anger personality traits in mothers outside of pregnancy). Third, many mental 

health phenotypes in childhood were based on maternal report, which may not 

accurately reflect offspring’s mental health problems (Gartstein et al., 2009; 

Najman et al., 2001) but rather mothers own mental health status (Hennigan et al., 
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2006; Ringoot et al., 2015). Fourth, PRS for smoking initiation were based on the 

latest GWAS that included ALSPAC mothers (Liu et al., 2019). Due to the 

sample overlap, the true strength of explored associations might be smaller than 

reported. However, given the small contribution of data from ALSPAC (~1%) to a 

total sample size of 1.2 million, the risk of bias is likely negligible. Fifth, to make 

the smoking PRS specific to our exposure of interest, the PRS was based on 

genome-wide significant SNPs only, yet the smoking PRS still showed 

associations with some alcohol phenotypes. Correlations were checked between 

the alcohol, smoking and caffeine PRS, which were low (Appendix J, Table J1). 

However, because of the phenotypic associations with alcohol consumption, it 

cannot rule out that associations observed with the maternal smoking PRS are 

cofounded by maternal alcohol consumption. Still, this is unlikely to affect the 

results of this study because there was no evidence for potential causal effects, 

and previous research by Easey and colleagues (Easey et al., 2021) observed no 

associations in intergenerational analyses between maternal alcohol PRS and 

offspring mental health outcomes (Easey et al., 2021). Sixth, as the dataset 

included phenotypes from later time points and only participants whose genotype 

data was available, it is possible that the findings are subject to selection bias (see 

Chapter 1) (Munafò et al., 2018; Taylor, Jones, et al., 2018). This has also been 

indicated by the comparison of smoking status and caffeine consumption during 

pregnancy between mothers with and without missing data 8-years post-

pregnancy (see section 3.4.1). Last, the comparison of the intergenerational and 

childhood PRS analyses was based on transmitted alleles and therefore an indirect 

effect of maternal non-transmitted alleles on offspring sensation-seeking traits 

through genetic nurturing cannot be ruled out (Kong et al., 2018). 

3.5.6 Future research  

Future studies investigating the effects on mental health using the smoking 

initiation PRS might consider accounting for sensation seeking personality traits. 

Further, future research should aim to differentiate effects of smoke exposure 

through the intrauterine and postnatal environment, explore non-linear effects of 

the smoking and caffeine PRS, and investigate a potential interaction of smoking 

and caffeine consumption during pregnancy on offspring mental health (Grosso & 

Bracken, 2005). More analyses exploiting paternal data would be helpful to 
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understand the effect of smoking and caffeine consumption on offspring mental 

health outcomes. For instance, studies with paternal genotype data could help to 

differentiate whether observed effects are due to intrauterine or postnatal 

exposure, through conducting negative control comparisons of prenatal 

associations of maternal and paternal substance use. Last, studies may want to 

follow-up the associations that were observed between the maternal smoking PRS 

and offspring metal health outcomes by integrating MR analyses in family-based 

designs to account for potential effects of genetic nurturing (Pingault et al., 2018). 

3.5.7 Conclusion 

In conclusion, this study validated the application of the smoking initiation, 

lifetime smoking and caffeine PRS for research investigating intrauterine 

exposures to smoking and caffeinated coffee and tea. Further, results of this study 

show stronger evidence for pleiotropic than causal effects of maternal smoking 

and caffeine consumption on offspring mental health (particularly externalising 

problems). Research using the smoking initiation PRS for investigating effects of 

smoking on externalising and internalising problems in children should be wary 

that, due to potential pleiotropy with sensation seeking personality traits, effects 

on externalising problems might be overestimated, whereas effects on 

internalising problems might be underestimated. Given the current study’s 

limitations, particularly its limited statistical power, these findings should be 

replicated in independent and larger samples using more refined methods for 

pleiotropy detection and corrections. 
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Chapter 4  – Maternal caffeine consumption during 

pregnancy and offspring cord blood DNA 

methylation: a meta-analysis of six epigenome-wide 

association studies 

4.1 Chapter overview 

As mentioned in Chapter 1, estimating causal effects of caffeine use during 

pregnancy on offspring health purely based on conventional observational studies 

is highly problematic due to problems of confounding. Even though the results of 

the phenome-wide association study (PheWAS; Chapter 3) did not indicate an 

effect of maternal caffeine consumption on offspring mental health outcomes, 

small to moderate effects of maternal caffeine consumption on offspring mental 

health might have been missed due to statistical power limitations. Furthermore, 

the analysis was restricted to caffeine consumption in a UK sample and results did 

not uniquely inspect effects of caffeine consumption during pregnancy. Therefore, 

this chapter specifically focusses on the effect of maternal caffeine consumption 

during pregnancy on offspring. As elaborated in Chapter 1, offspring DNA 

methylation is a potential molecular mediator of the relationship of caffeine on 

offspring mental health outcomes and could provide evidence for a causal 

intrauterine effect of caffeine. Therefore, I planned and conducted an EWAS 

meta-analysis study to explore the extent to which maternal caffeine consumption 

(from tea, coffee, and cola) during pregnancy is associated with offspring cord 

blood DNA methylation across the genome (step 2 of the meet-in-the middle 

approach: association between exposure and potential biomarker of the exposure). 

As caffeine consumption greatly differs culturally (see Chapter 1), the EWAS 

meta-analysis included cohorts from different European countries to reduce 

culture-specific confounding. I also conducted additional analyses (using paternal 

caffeine consumption as a negative control and a polygenic risk score (PRS) to 

proxy for maternal coffee consumption) in an attempt to infer whether identified 

associations were causal (e.g., specific to caffeine, as opposed to due to 

confounding factors/behaviours). 



Chapter 4 – EWAS meta-analysis of prenatal caffeine consumption 

 126 

4.2 Introduction 

Animal studies have shown that prenatal consumption can lead to changes in 

DNA methylation and offspring risk of disease (Buscariollo et al., 2014; Fang et 

al., 2014; Wu et al., 2015; Xu et al., 2012). In humans, a recent large epigenome-

wide association study (EWAS) meta-analysis, including 15 international cohorts, 

found associations between own coffee and tea consumption and (peripheral 

blood) DNA methylation differences at 11 CpG sites (Karabegović et al., 2020), 

but I have found no published studies of maternal caffeine consumption during 

pregnancy in relation to offspring DNA methylation. Considering the strong 

overlap between smoking and caffeine consumption, it cannot be ruled out that 

the strong associations found between maternal smoking during pregnancy and 

changes in offspring DNA methylation (Joubert et al., 2016), are partly 

attributable to effects of maternal caffeine consumption. 

Caffeine consumption during pregnancy tends to be positively associated with 

other lifestyle behaviours, such as smoking and alcohol consumption, and 

negatively associated with maternal age and socio-economic position (Chen et al., 

2014). Coffee consumption, in particular, is strongly associated with smoking 

(Sengpiel et al., 2013; Swanson et al., 1994), which can heavily confound 

associations with health outcomes. The association of smoking with consumption 

of other caffeinated drinks (e.g., tea and cola) is less clear, with some studies 

reporting positive associations (Sengpiel et al., 2013; Treur et al., 2016) and 

others reporting negative or null associations (Swanson et al., 1994; Taylor, 

Davey Smith, et al., 2018). Potential reasons for the conflicting results might be 

the lower caffeine content in these beverages and/or different patterns of 

confounding (Bjørngaard, Nordestgaard, Taylor, Treur, Gabrielsen, Munafò, 

Nordestgaard, Åsvold, Romundstad, & Davey Smith, 2017; Treur et al., 2016). 

For instance, an international analysis investigating associations between smoking 

and caffeine consumption from coffee, tea, and cola, found evidence for cultural 

confounding of tea (Treur et al., 2016). Whereas a positive association between 

smoking and tea consumption was found in the British birth cohort, the 

association with smoking was reversed in the Dutch cohort. Adding to this, tea 

consumption was associated with higher socio-economic position and education 

and lower alcohol consumption and BMI in the Dutch but not in the British birth 
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cohort, suggesting that confounding effects are context- and culture-specific. To 

better understand the effects of intrauterine caffeine exposure, it is important to 

study and compare associations with caffeine from different sources and different 

contexts for the same source.  

4.3 Methods 

4.3.1 Meta-analysis of epigenome-wide association studies (EWAS) 

4.3.1.1 Participating cohorts 

The EWAS meta-analysis included six independent prospective pregnancy and 

birth cohorts from the PACE consortium (Felix et al., 2018), that had data on cord 

blood DNA methylation and maternal caffeine consumption during pregnancy 

available. The total sample (N = 3,731) included two UK based cohorts (ALSPAC 

and BiB), one Dutch cohort (Generation R), one Norwegian (MoBa1), one 

Spanish (INMA), and one French (EDEN) cohort. Recruitment periods varied by 

cohort and took place between the beginning of the 1990s (ALSPAC) and 2009 

(MoBa1 and INMA). More details about the individual cohorts can be found in 

the cohort section (2.6) of Chapter 2.  

4.3.1.2 Measurement of maternal caffeine intake during pregnancy 

Assessment of maternal caffeine consumption varied by cohort and is described in 

more detail in Appendix K, K1 to K6. Generally, mothers self-reported the 

number of cups they consumed of caffeinated coffee, tea, and cola in 

questionnaires between weeks 12 to week 22 of pregnancy. All cohorts used Food 

Frequency Questionnaires (FFQ) (Thompson & Subar, 2017) except for 

Generation R, which also did not have information on caffeinated cola 

consumption available. Cups per day were transformed to milligrams of caffeine 

per day (mg/day), based on the assumption that one standard sized cup of coffee 

contains 57 mg, one cup of tea contains 27 mg, and one cup of cola contains 20 

mg of caffeine (Farrow et al., 1998). A continuous total caffeine score was 

calculated by summing the caffeine content from each caffeinated drink in mg/day 

and allowing for partially missing data by only excluding participants if they had 

missing data on all three caffeine variables (e.g., if a mother reported to consume 

two cups of tea per day but had missing data for cups of coffee and cola, she 

would be given a total caffeine score of 2 x 27 = 54 mg/day of caffeine). Further, 
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to control for data entry errors, participants were excluded if they reported 

consuming more than 5 standard deviations from the mean (equivalent to roughly 

5 x 82mg/day = 410 mg/day caffeine, which is approx. 7 cups of coffee or 15 cups 

of tea). In addition to the continuous score, I investigated whether any caffeine 

exposure (regardless of the amount of caffeine) during pregnancy might influence 

offspring DNA methylation, and thus dichotomised total caffeine into 0 = none, 

and > 0 = any.  

4.3.1.3 Measurement of DNA methylation 

Cord blood DNA methylation was assessed through normalised beta values 

ranging from 0 to 1, representing 0 to 100% methylation. Cohorts assessed 

methylation data individually, using their own laboratory methods, quality 

control, and normalisation. DNA methylation data was sampled using the lllumina 

Infinium® HumanMethylation450 (486,425 probes), except for BiB, which used 

the EPIC BeadChip array (866,553 probes). Probes on single nucleotide 

polymorphisms (SNPs), cross-hybridizing probes (Chen et al., 2013), and probes 

on the sex chromosomes were excluded. In the final meta-analysis, only probes 

that were available in both arrays (maximum 364,678) were included.  

4.3.1.4 Other covariates 

To adjust for biological variation in DNA methylation, models were adjusted for 

estimated cell proportions using the Houseman method with a cord blood 

reference panel (see Chapter 2 for more detail) (Gervin et al., 2016; Houseman et 

al., 2012), as well as a binary measure of offspring’s sex that was used as a 

stratification factor in a sex-stratified sensitivity analysis. As highlighted in 

Chapter 2, there is indication that CpG sites associated with gestational age may 

be specifically prone to changes in DNA methylation (Xu et al., 2017) and thus, 

gestational age was included as a sensitivity analysis in a separate model. To 

adjust for possible technical variation (explained in more detail in Chapter 2), all 

cohorts generated 20 surrogate variables and included them in models (as standard 

practice in the field: Sharp et al., 2021). 

In addition to the necessary biological and technical confounders that need to be 

adjusted for in EWAS analyses (see Chapter 2), I included the following variables 

as covariates that are commonly adjusted for in EWAS analyses of maternal 
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exposures (Joubert et al., 2016; Sharp et al., 2021), because they might influence 

offspring DNA methylation: (1) An ordinal measure representing maternal 

education as a proxy for socio-economic position (Alfano et al., 2019), (2) 

maternal age in years (Markunas et al., 2016), maternal BMI (Sharp et al., 2017), 

a binary measure of maternal smoking during pregnancy (e.g., in ALSPAC: 0 = 

no smoking/ giving up smoking during the first trimester, 1 = smoking after the 1st 

trimester) (Joubert et al., 2016). Last, a binary assessment of parity (1= one or 

more previous children, 0 = no previous children) was included, because 

compared to women who have given birth before, women who are pregnant for 

the first time were found to experience more stress during pregnancy (Gillespie et 

al., 2018; Lynn et al., 2011). Further, there is evidence that the intrauterine 

environment changes after the first pregnancy (Ballering et al., 2018) and that the 

likelihood for adverse birth outcomes is higher for nulliparous than multiparous 

women (Shah, 2010). See Appendix K, K1 to K6 for the classifications of 

covariates in each cohort.  

4.3.2 Statistical analyses 

4.3.2.1 Cohort-specific statistical analyses  

4.3.2.1.1 Probe-level analysis 

I generated an analysis plan and R script that were made available on GitHub 

(https://github.com/ammegandchips/Prenatal_Caffeine). I asked cohorts to 

exclude multiple pregnancies (e.g., twins) and siblings so that each mother was 

only included once in the dataset. If cohorts included more than one major ethnic 

group, I asked them to run the EWAS analysis separately for each group. The 

EWAS R script included: a function to exclude measurement error of DNA 

methylation probes, by removing probes that exceeded 3 times the IQR (Tukey, 

1977), a function to generate surrogate variables using the R package SVA (Leek 

et al., 2019), and a function to run an EWAS of each model using the R package 

Limma (Ritchie et al., 2015). For each model, the EWAS function ran a linear 

regression model at each CpG site using maternal caffeine phenotypes as the 

exposure and offspring cord blood DNA methylation as the outcome. For each of 

the different caffeine phenotypes (any vs. no caffeine; total caffeine, caffeine from 

coffee, tea, and cola), I adjusted for covariates (maternal education, maternal age, 

https://github.com/ammegandchips/Prenatal_Caffeine
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maternal BMI, maternal smoking during pregnancy, parity, estimated cell counts). 

In a sensitivity analysis, I stratified the any/none and total caffeine models by 

offspring’s sex to account for variation due to differential exposure to androgens 

during pregnancy (Suderman et al., 2017). In a second sensitivity analysis, I 

additionally adjusted for gestational age at birth. The rationale for this is that 

gestational age is robustly associated with DNA methylation (Merid et al., 2020; 

York et al., 2019) and there is some evidence that it can be associated with 

prenatal caffeine exposure (Bakker et al., 2010; Hoyt et al., 2014). However, it is 

not likely to be a true confounder, but rather could be a mediating factor on the 

causal pathway, so I wanted to avoid adjusting for it (which might introduce 

collider bias) in the main models.  

In addition to the EWAS analysis, I hypothesised that intrauterine caffeine 

exposure might influence cell composition in offspring cord blood (see Chapter 2, 

section 2.3.2.2), so I conducted linear regression analyses using the main caffeine 

phenotypes (any vs. no caffeine and total maternal caffeine consumption) as the 

exposures and estimated offspring cord blood cell proportions as the outcomes. 

4.3.2.1.2 Quality control checks for cohort results 

Prior to meta-analysing summary results from each cohort, I conducted quality 

checks to ensure that the EWAS were properly conducted and there were no 

problems with the data, in line with standard practice in the field (Sharp et al., 

2020; Van der Most et al., 2017). First, I generated correlation matrices of the beta 

coefficients for each of the models. Second, I plotted the distributions of the P-

values in QQ-plots and calculated Lambda values. Further, I generated precision 

plots by plotting 1/median standard error against the square root of the sample 

size of each cohort.  

4.3.2.1.3 Differentially methylated regions (DMR) 

I complemented the probe level approach using a regional analysis, which 

considers DNA methylation at clusters of neighbouring CpG sites throughout the 

epigenome. This approach is more statistically powerful and arguably makes more 

sense biologically; neighbouring CpG sites are assumed to exert similar biological 

functions. I used the DMRff method (Suderman et al., 2018) to identify 

differentially methylated regions (DMRs). I supplied cohorts with an R script to 
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conduct the DMR analysis using their own data. The code used the dmrff.pre 

function, which generates an R-object that includes each cohort’s EWAS 

summary statistics and a sparse correlation matrix from the cohort’s methylation 

data (Suderman et al., 2018). Probes were annotated to the human reference 

genome version 19, build 37h using the annotation data available from the R-

package meffil (Suderman et al., 2019). Cohorts sent me the objects that they 

generated using the dmrff.pre function for the DMR meta-analysis.  

4.3.2.2 Meta-analysis  

4.3.2.2.1 Probe level meta-analysis 

Because I was presuming that each of the cohorts EWAS was estimating the same 

effect, I meta-analysed results with fixed effect estimates weighted by the inverse 

of the variance using the software METAL (Willer et al., 2010). To correct for 

multiple testing, I calculated an FDR-adjusted P-value to 

determine statistical significance below the nominal P-value threshold of 

0.05 (Benjamini & Hochberg, 1995).   

4.3.2.2.2 Quality control checks for meta-analysed results 

I scrutinized the meta-analysis results in a similar manner as the individual cohort 

results. I generated correlation matrices of effect estimates of the meta-analysed 

models and investigated the distributions of P-values through QQ-plots and 

generation of Lambda values. Additionally, I performed a leave-one-cohort-out 

analysis using the R package metafor (Viechtbauer, 2010), which allowed me to 

inspect how the meta-analysis effect estimates are affected by removal of one 

cohort (with each cohort being removed sequentially). I deemed results to be 

driven by a single cohort (and therefore to “fail” the leave-one-out test), if the 

meta-analysis effect estimate changed direction, moved towards the null by more 

than 20%, or had a confidence interval that included 0 after removal of a single 

cohort. 

4.3.2.2.3 DMR meta-analysis 

I applied the dmrff.meta function (Suderman et al., 2018) to the R-objects that the 

cohorts sent me to perform the DMR meta-analysis. The dmrff.meta function first 

determines prospective candidate DMRs by screening regions in the in the meta-

analysed EWAS results for consecutive CpG sites that show the same direction of 
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effect, P-values smaller than 0.05, and a gap of at least 500 base-pairs between 

consecutive CpG sites (Suderman et al., 2018). Second, for these candidate 

DMRs, summary statistics are calculated within each cohort by meta-analysing 

the cohort-level EWAS summary statistics of the CpG sites in the region using a 

variation of the inverse weighted fixed effects meta-analysis approach that 

accounts for dependence between CpG sites. Last, the DMR summary statistics of 

each cohort are meta-analysed to obtain the final cross-cohort meta-analysed 

DMR statistics and P-values. The cross-cohort meta-analysis uses an inverse-

variance weighted fixed effects approach within the dmrff.meta function and 

results are adjusted for the number of conducted tests using the Bonferroni 

correction. In this study, I defined a DMR as a region with at least two CpG sites 

with the same direction of effect and a Bonferroni adjusted P-value (PBonferroni) < 

0.05.  

4.3.2.3 Causal inference and sensitivity analyses 

I conducted the following analyses in an attempt to infer whether associations at 

the identified CpG sites (from either the probe-level or region-based meta-

analyses) were likely to reflect causal intrauterine effects of maternal caffeine 

(i.e., be specific to caffeine) on offspring cord blood DNA methylation, or rather 

be spurious associations caused by confounders or other biases. 

4.3.2.3.1 Beverage-specific effects across meta-analysed caffeine models 

I investigated beverage-specific effects of the meta-analysed probe-level and 

DMR results by comparing the congruence between associations found using 

different sources of caffeine (that could have different confounding structures). If 

caffeine would be having a causal effect on offspring DNA methylation, I would 

not expect to find evidence for beverage-specific effects. Instead, I would expect 

models, using different sources of caffeine, to show high congruence in their 

results (in terms of CpG site hits and/or genes annotated to CpG sites found in the 

different models), despite potentially having different confounding structures. I 

expected beverage-specific effects to be indicated by low congruence of results 

between the different caffeine models, which would provide evidence that instead 

of caffeine driving the associations (which is common to all beverages), other 

factors than caffeine are driving the associations.  
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4.3.2.3.2 Negative control analysis: Paternal caffeine intake (ALSPAC only) 

To explore whether any of the maternal caffeine associated CpG sites are 

indicative of an intrauterine effect of caffeine on DNA methylation, I ran a 

negative control analysis using paternal caffeine phenotypes as the exposure and 

the CpG sites that showed the strongest evidence for association with maternal 

caffeine consumption as the outcome. In theory, even if maternal and paternal 

caffeine consumption are highly correlated, a true intrauterine effect of caffeine 

should be reflected by a larger effect estimate in the maternal caffeine analysis 

than the effect estimates in the paternal caffeine analysis (Taylor et al., 2017). 

However, if the effects were equally strong in the maternal and paternal caffeine 

analysis, this would provide some evidence for the maternal associations being 

confounded rather than representing an effect through the intrauterine 

environment (based on the assumption that maternal and paternal caffeine 

consumption underlie a similar confounding structure, but only the former has a 

plausible biological effect on the outcome through intrauterine exposures).  

Paternal caffeine consumption phenotypes (from coffee, tea, cola, total, any/none) 

were derived as described for maternal caffeine and used as exposure variables in 

linear regression models with DNA methylation as the outcome. All models were 

adjusted for the covariates listed above and estimated cell counts. Four models 

were compared: (1) paternal caffeine with no further adjustment, (2) paternal 

caffeine with additional adjustment for maternal caffeine, (3) maternal caffeine 

with no further adjustment (i.e., the EWAS model), and (4) maternal caffeine with 

additional adjustment for paternal caffeine. Robust inferences were derived from 

models 2 and 4, which are adjusted for partner’s caffeine consumption, as it 

reduces chances of confounding through assortative mating (when partners are not 

selected randomly but systematically based on specific characteristics, e.g., height 

or intelligence) (Lawlor, Wade, et al., 2019; Madley-Dowd et al., 2020). It has 

been suggested that caffeine consumption, as well as related behaviours – such as 

smoking and alcohol consumption – are subject to assortative mating (Madley-

Dowd et al., 2020; Reynolds et al., 2006). 
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4.3.2.3.3 PRS analysis: Maternal polygenic risk score for caffeine intake during 

pregnancy (ALSPAC only) 

To reduce chances of confounding and to further explore whether a causal effect 

of maternal caffeine consumption on offspring DNA methylation exists, I ran 

linear regressions in ALSPAC using a polygenic risk score (PRS) for caffeine as 

the exposure and the top maternal caffeine-associated CpG sites from the probe-

level meta-analysis as the outcome. Genetic variants, in theory, should be free of 

confounding variables and thus provide less biased estimates (Davey Smith & 

Ebrahim, 2003). I derived the PRS by the weighted sum of risk-alleles that have 

been found to predict coffee and tea consumption in the general population (see 

section “polygenic risk score analysis” in Chapter 2 for further information) 

(Taylor, Davey Smith, et al., 2018; The Coffee and Caffeine Genetics Consortium 

et al., 2015). I adjusted all models, in addition to the covariates, also for 

offspring’s caffeine PRS, which might be a confounder of the relationship of 

maternal caffeine PRS and offspring DNA methylation. Without adjustment for 

offspring PRS, a genetic effect of offspring PRS on offspring DNA methylation 

may be incorrectly attributed to the maternal caffeine PRS because of the shared 

genetic liability between mother and offspring (see Chapter 2 and 3 for more 

detail). Ideally, to avoid spurious results due to the genetic overlap between 

mother and offspring, results should be adjusted for both offspring and paternal 

PRS. Due to the scarcity of paternal genetic data in ALSPAC, I could only 

account for offspring PRS and results should be interpreted with caution as they 

might be affected by collider bias (Lawlor et al., 2017).  

4.3.2.3.4 Functional analysis 

To find out which gene pathways are linked to the CpG sites of the caffeine-

associated DMRs, I ran a gene ontology analysis using the R package missMethyl 

(Phipson et al., 2015). Due to the unequal number of CpG sites per gene assessed 

on the 450k array, some genes are overrepresented and more likely to show up as 

enriched in gene set analyses (Geeleher et al., 2013). missMethyl accounts for this 

bias by considering the probability of a gene pathway being selected in 

accordance with the number of probes per gene on the array. I tested enrichment 

of gene ontology (GO) categories and Kyoto Encyclopaedia of Genes and 

Genomes (KEGG) pathways. 
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4.4 Results 

4.4.1 Sample characteristics  

4.4.1.1 Maternal caffeine consumption during pregnancy 

In all cohorts, most mothers (80-94%) consumed at least some caffeine during 

weeks 12-28 of gestation, with a mean of 85 mg/day over all cohorts, but with 

large variation within and between cohorts (weighted average SD = 82 mg/day, 

Table 4.1). Approximately 14% of mothers in the total sample consumed more 

caffeine than the recommended caffeine limit of 200 mg/day. Across all cohorts, 

coffee and tea were the most common sources of caffeine, with coffee being the 

most common source in all cohorts except for the United Kingdom based cohorts 

ALSPAC and BiB, where the most common source was caffeinated tea (Figure 

4.1 and Table 4.1). 

 

 

Figure 4.1 Visualisation of average maternal caffeine consumption during 

pregnancy across caffeine sources and cohorts. Caffeine consumption 

reported in mg/day. Error bars represent standard errors. Asian = Asian 

ethnicity. White EU = White European ethnicity. Please note that I allowed 

for partially missing data when generating the total score and thus the 

individual sources of caffeine do not exactly add up to the total score. 
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Table 4.1 Overview of maternal caffeine consumption during pregnancy in the individual cohorts 

Cohort (N) Weeks of gestation 
M total caffeine  

(SD) 
N users (%) > 200 mg of caffeine* M coffee (SD) M tea (SD) M cola (SD) 

ALSPAC  

(N = 729) 

18 134.51 (94.43) 197 (27%) 52.37 (69.43) 71.84 (57.73) 2.85 (6.30) 

BIB  

(Asian; N = 353) 

26-28 48.82 (46.95) 5 (2%) 10.53 (33.10) 40.63 (33.49) 11.70 (19.98) 

 

BIB  

(white EU; N = 306) 

26-28 112.25 (105.13) 50 (19%) 45.48 (65.39) 66.14 (62.89) 14.82 (22.43) 

Generation R  

(N = 798) 

18-25 114.58 (95.67) 132 (20%) 117.69 (77.96) 57.01 (61.92) Not available 

INMA  

(N = 378) 

12 111.30 (129.33) 26 (8%) 79.17 (119.74) 25.17 (46.24) 6.46 (12.11) 

EDEN  

(N = 156) 

24-28 36.93 (43.01) 1 (<1%) 25.21 (41.63) 6.09 (14.76) 5.62 (8.48) 

 

MoBa1 1  

(N = 999) 

22 104.65 (106.27) 108 (11%) 69.67 (106.13) 17.46 (27.37) 13.78 (27.12) 

Total or M** 

(N = 3,724) 

- 84.86 (81.87) 519 (14%)  46.01 (64.96) 25.47 (34.95) 4.59 (10.61) 

 

 

Note. M = Mean. SD = Standard deviation. * Mothers were grouped as users of caffeine if they indicated to consume more than zero cups of coffee, tea or cola. caffeine 

content in milligrams per day. ** In the Total row, average caffeine content was calculated by weighting by the inverse variance for each cohort. EU = European. 
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4.4.1.2 Demographics 

A general overview over the demographics of the individual cohorts can be found 

in Table 4.2. Except for mothers from BiB, cohorts included slightly more 

mothers with higher (high school diploma or above) than lower educational 

attainment. Around 15% of mothers smoked after the 2nd trimester of pregnancy. 

There was no obvious or consistent difference in maternal age (except for 

MoBa1), level of education, maternal BMI, or offspring’s gestational age, 

between mothers who did and did not consume caffeine during pregnancy (Table 

4.3). However, mothers who consumed caffeine during pregnancy were about 

twice as likely to have smoked during pregnancy (20%), compared to mothers 

who did not consume caffeine during pregnancy (11%; Table 4.3). Furthermore, 

mothers who consumed caffeine were more likely to already have children (49%) 

compared to mothers who did not consume caffeine during pregnancy (33%; 

Table 4.3).
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Table 4.2 Overview of maternal demographic information across the individual cohorts 
Cohort  Country and ancestry DNA methylation 

array 

N high maternal 

SEP* (%) 

M maternal age 

(SD) 

N Maternal 

smoking (%)**  

N parity  

(%) 

M BMI M gestational 

age 

ALSPAC (N = 729) United Kingdom; 

Northern European 

450k 375 (51%) 29.79 (4.39) 77 (11%) 381 

(52.3%) 

22.79 

(3.63) 

39.53 (1.52) 

  

BiB  

(Asian ethnicity;   

N = 353) 

United Kingdom; 

Pakistani 

EPIC 146 (41%) 

 

28.21 (5.37) 9 (3%) 249 

(70.5%) 

25.75 

(5.23) 

26.62 (2.31) 

  

BiB  

(White EU 

ethnicity; N = 306) 

United Kingdom; 

Northern European 

EPIC 125 (41%) 

 

26.98 (6.15) 93 (30%) 159 (52%) 27.10 

(6.48) 

26.61 (1.88) 

  

Generation R  

(N = 798) 

The Netherlands; 

Northern European 

450k 458 (57%) 

 

30.15 (4.95) 109 (14%) 95 

(58.6%) 

23.06 

(3.64) 

40.20 (1.48) 

  

INMA  

(N = 378) 

Spain; Southern 

European 

450k 277 (73%) 

 

31.55 (4.07) 53 (14%) 161 (42.6) 23.79 

(4.44) 

41.06 (1.34) 

  

EDEN  

(N =162) 

France; Southern & 

Northern European 

450k 113 (70%) 

 

31.94 (4.10) 26 (16%) 324 (40.6) 23.52 

(4.64) 

39.51 (1.33) 

  

MoBa1  

(N = 999) 

Norway; Northern 

European 

450k 761 (76%) 29.93 (4.35) 287 (29%) 580 (58.1) 24.02 

(4.18) 

39.95 (1.56) 

  

Total or M 

(N = 3,725) 

- - 2,255 (61%) 30.01(4.60) 654 (18%) 1949 

(52%) 

23.61 

(4.12) 

38.73 (1.55) 

Note. M = Mean. SD = Standard deviation. In the Total row, average caffeine content was calculated by weighting by the inverse variance for each cohort. * High maternal 

socio-economic position (SEP): maternal education >= high school diploma. ** continued smoking during pregnancy. Gestational age in BiB was assessed between 26-28 

weeks of gestation. Parity = one or more previous pregnancies. EU = European.  
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Table 4.3 Demographic variables of the cohorts stratified by caffeine user status 
Cohort Users Non-users 

 N (%) M age  

(SD) 

N any 

smoking 

preg.(%) 

N high 

SEP(%) 

N 

parity 

(%) 

M 

BMI  

 (SD) 

M gest. 

age 

(SD) 

N (%) M age  

(SD) 

N any 

smoking 

preg.(%) 

N High 

SEP(%) 

N parity 

(%) 

M 

BMI 

(SD) 

M gest. 

age(SD) 

ALSPAC 664 

(91%) 

29.71 

(4.38) 

72 (11%) 334 

(50%) 

348 

(52%) 

22.81 

(3.61) 

39.52 

(1.52) 

65 

(9%) 

30.68 

(4.43) 

5 (8%) 41 (61%) 33 

(50.8%) 

22.48 

(3.79) 

39.65 

(1.43) 

BiB  

(Asian) 

284 

(80%) 

28.43 

(5.11) 

8 (3%)  

  

117 

(41%) 

75 

(26%)  

25.77 

(5.17) 

26.61 

(2.40) 

69 

(20%) 

27.30 

(6.32) 

1 (1%)  

  

29 (42%) 29 

(42%)  

25.70 

(5.51) 

26.64 

(1.88) 

BiB  

(White EU) 

262 

(86%) 

26.88 

(6.24) 

86* (33%) 104 

(40%) 

139 

(53%) 

27.25 

(6.57) 

26.62 

(1.94) 

44 

(14%) 

27.55 

(5.64) 

7* (16%) 21 (48%) 20 

(46%) 

26.22 

(5.96) 

26.51 

(1.48) 

Generation 

R 

650 

(81%) 

32.00 

(4.20) 

101* (16%) 448 

(70%) 

277* 

(42.6) 

23.13 

(3.70) 

40.19 

(1.51) 

148 

(19%) 

31.65 

(3.62) 

8 *(5%) 106 

(72%) 

47* 

(32%) 

22.73 

(3.34) 

40.21 

(1.41) 

INMA 326 

(86%) 

31.52 

(4.02) 

48 (15%) 241 

(74%) 

140 

(42.9) 

23.68 

(4.19) 

39.77 

(1.36)  

52 

(14%) 

31.73 

(4.39) 

5 (10%) 36 (69%) 21 

(40%) 

24.49 

(5.77) 

39.83 

(1.60)  

EDEN 144 

(89%) 

30.07 

(5.04) 

25 (17%) 82 (57%) 83 

(57.6) 

23.73 

(4.76) 

39.55 

(1.36) 

18 

(11%) 

30.78 

(4.22) 

1 (6%) 11 (61%) 12 

(67%)  

30.78 

(4.22) 

39.17 

(1.10) 

MoBa1 757 

(76%) 

30.19* 

(4.22) 

 241* 

(32%) 

576 

(76%) 

461* 

(61%) 

24.13 

(4.32) 

39.93 

(1.60)  

242 

(24%) 

29.12* 

(4.63) 

46* (19%) 186 

(77%) 

49* 

(20%) 

23.69 

(3.67) 

40.00 

(1.40)  

Total or M  3,087 

(83%) 

30.41 

(4.43) 

581 (20%) 1,902 

(62%) 

1,523 

(49%) 

23.64 

(4.13) 

38.57 

(1.58) 

638 

(17%) 

30.26 

(4.42) 

73 (11%) 430 

(67%) 

211 

(33%) 

23.64 

(3.90) 

38.21 

(1.45) 

Note. M = Mean. SD = Standard deviation. In the Total row, average caffeine content was calculated by weighting by the inverse variance for each cohort. Mothers were 

categorised as non-user of caffeine if they indicated to consume zero mg/day of coffee, tea, or cola. * significant difference between users and non-users according to P-value 

< 0.05. High maternal socio-economic position (SEP): maternal education >= continued education after high school. Gestational age in BiB was assessed between 26-28 

weeks of gestation. Parity = one or more previous pregnancies. EU = European. preg. = pregnancy. gest. = gestational age.
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4.4.2 Probe level meta-analysis 

4.4.2.1 Quality control checks for cohort results 

All correlation matrixes can be found in Appendix L, Figures L1 to L7. As 

expected, most of the models using the different caffeine phenotypes correlated 

moderately or highly. Only the model using caffeine from cola showed 

consistently very low correlations with the other model coefficients. Furthermore, 

the models using caffeine from tea and cola showed low and sometimes even 

negative correlations. This could be due to few mothers consuming caffeine from 

cola (Table 4.1) or indicate a differential effect of cola, tea, and coffee on DNA 

methylation, potentially through a different substance than caffeine or a different 

confounding structure. Lastly, the sex stratified models showed low correlations, 

most likely due to the small sample size in these models. Alternatively, this might 

indicate a differential effect of caffeine for male and female sex offspring. Visual 

inspection of the QQ-plots and Lambda values ranging from 0.99-1.07 indicated 

that most of the P-values of the models are randomly distributed (Appendix M, 

Figures A1 to M7). The precision plots can be found Appendix N, Figure N1). As 

expected, the cohorts with lower sample sizes had less precise estimates. MoBa1 

showed most precise estimates throughout all models, except for the tea models, 

where Generation R showed the most precise estimates. Furthermore, the model 

using caffeine from cola as the exposure variable were found to be less precise in 

all cohorts except for MoBa1, most likely because of low consumption of caffeine 

from cola in the other cohorts. ALSPAC showed relatively low precision in the 

any vs. no caffeine and coffee models, most likely because of few mothers 

abstaining from caffeine during pregnancy and mothers consuming more caffeine 

from tea than coffee (Appendix N, Figure N1). 

4.4.2.2 Association between maternal caffeine consumption and offspring cord 

blood DNA methylation  

The overall EWAS meta-analysis results of the caffeine models can be found in 

Table 4.4. After adjusting for multiple testing, the meta-analysis revealed only 

evidence for one CpG site (cg19370043) being negatively associated with total 

maternal caffeine consumption (estimate = -2.18 x 10-05; SE = 4.10 x 10-06; FDR 

adjusted P-value = 0.048) and two CpG sites (cg12788467, cg14591243) with 
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caffeine consumed from cola in mg/day (Respectively: estimate = 5.22 x 10-05, SE 

= 9.30 x 10-06, FDR adjusted P-value = 0.007; estimate = 2.77 x 10-05, SE = 5.00 x 

10-06, FDR adjusted P-value = 0.007; Table 4.5). The maternal caffeine-associated 

CpG site survived the leave-one-out analysis (Appendix O, Figure O1). Of the 

cola-associated CpG sites only one CpG site (cg12788467) survived the leave-

one-cohort-out analysis (Appendix O, Figure O1 and O2). According to the 

genecards database (Stelzer et al., 2016), the gene PRRX1 that is annotated to the 

total caffeine-associated CpG site cg19370043, has been found to be associated 

with determining mesodermal muscle types by regulating muscle creatine kinase. 

The gene HNF1B that has been annotated for CpG site cg12788467 has been 

found to be associated with regulation of nephron development of the embryonic 

pancreas (genecard database) (Stelzer et al., 2016). The effect estimates of models 

adjusted and unadjusted for covariates showed high to moderate correlations 

(Spearman’s r = 0.38-0.93), and correlation estimates were highest for coffee and 

lowest for cola (range correlation estimates: Coffee = 0.70-0.75; tea = 0.38-0.41; 

cola = 0.15-0.17; Appendix P, Figure P1). This could indicate that cola 

consumption in our sample was higher confounded than consumption of the other 

caffeinated beverages. Gestational age does not appear have an influence on the 

relationship between maternal caffeine consumption and offspring DNA 

methylation as adding gestational age as an additional confounder to the models 

did not change the effect estimates (Spearman’s r = 0.99-1.00). See Appendix P, 

Figure P1 for the full correlation matrix of the meta-analysed models. 
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Table 4.4 A summary of results of each EWAS model from the probe-level 

analysis 

Model* 

CpGs with 

FDR-

corrected 

P-value 

<0.05 

CpGs 

surviving 

leave-one-

out 

analysis 

Meta-

analysis 

sample 

size 

Genomic 

inflation 

factor 

(λ)** 

Any vs. no caffeine  

 All offspring (minimally adjusted) * 0 n.a. 
3731 

0.97 

 All offspring (adjusted for covariates) 0 n.a. 
3731 

0.97 

 
Female offspring (adjusted for 

covariates) 
0 n.a. 

1797 
0.99 

 
Male offspring (adjusted for 

covariates) 
0 n.a. 

1934 
1.00 

 
All offspring (adjusted for covariates 

and gestational age) 
0  

3731 
0.97 

Caffeine in mg/day 

 All offspring (minimally adjusted)* 33 n.a. 3731 1.03 

 All offspring (adjusted for covariates) 1 1 (100%) 3731 1.00 

 Female offspring (adjusted for 

covariates) 

0 n.a. 1797 1.00 

 Male offspring (adjusted for 

covariates) 

0 n.a. 1934 1.04 

 All offspring (adjusted for covariates 

and gestational age) 

0  3731 0.99 

Caffeine from coffee 

 All offspring (adjusted for covariates) 0 n.a. 2779 1.02 

Caffeine from tea 

 All offspring (adjusted for covariates) 0 n.a. 3477 1.00 

Caffeine from cola 

 All offspring (adjusted for covariates) 2 1 (50%) 2610 1.00 

Note. * only adjusted for estimated cell counts and 20 surrogate variables. Covariates: maternal 

age, maternal smoking, maternal parity, maternal education, maternal BMI, estimated cell counts 

and 20 surrogate variables. ** The genomic inflation factor (λ) estimates the extent of bulk 

inflation of EWAS P-values and the excess false positive rate. 1 = no inflation; > 1 some evidence 

of inflation. There is a slight deviation in sample sizes between the results and descriptive 

information (N = 6 participants) because of removal of data in MoBa between 2018 (time of 

analysis) and 2020 (time of generating descriptive information) due to withdrawal of consent 

and/or non-Nordic/non-European ancestry. 
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Table 4.5 CpG sites associated with maternal total caffeine consumption and 

caffeine consumption from cola with FDR-adjusted P-value < 0.05  
Predictor CpG (gene) Estimate (SE)  FDR adjusted 

P- value  

Total caffeine 

consumption 

(mg/day) 

Chr1: cg19370043 

(PRRX1) 
-2.18 x 10-05 (4.10 x 10-06) 0.048 

 

Caffeine consumption 

from cola (mg/day) 

Chr17: cg12788467 

(HNF1B) 
5.22 x 10-05 (9.30 x 10-06) 0.007 

Chr3: cg14591243 

(STAG1)* 
2.77 x10-05 (5.00 x 10-06) 0.007 

Note. “Estimate” can be interpreted as difference in offspring percentage methylation per one 

standard deviation increase in consumption of caffeine in mg/day, after adjustment for all 

covariates. * did not survive the Leave-one-out analysis. 

 

 

4.4.2.3 Beverage-specific effects 

Figure 4.3 displays DNA methylation at the 3 CpG sites discovered in the probe-

level analysis across the different caffeine models. If these associations were truly 

driven by caffeine exposure, I would expect to see similar associations of these 

CpG sites across the different beverage models. However, Figure 4.3 shows that 

the association between DNA methylation at cg19370043 and maternal total 

caffeine consumption (red) was mostly driven by coffee (yellow). There was no 

evidence for an association with DNA methylation at cg19370043 in the tea 

(green) or cola (purple) models. The effect estimate for the association between 

coffee and DNA methylation at cg19370043 was very similar to that for the 

association between total caffeine and DNA methylation at this site. The P-value 

was < 0.05, but the association did not survive adjustment for multiple testing in 

the EWAS meta-analysis, probably because of the lower statistical power to detect 

small effects in the coffee compared to total caffeine analysis (N total caffeine = 

3,731 vs. N coffee = 2,779; because the total caffeine model included mothers 

with partially missing data). The two associations between DNA methylation at 

cg12788467 and cg14591243 appear to be specific to cola consumption (purple) 

rather than general caffeine consumption. 
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Figure 4.2 Effect size estimates at the top CpG sites found in the probe-level analysis. Total caff model = total caffeine model. Error bars 

represent 95% Confidence Intervals.
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4.4.2.4 Negative control analysis (ALSPAC only): Associations between 

paternal caffeine intake and offspring DNA methylation (N = 619)  

In ALSPAC, adjustment for the other parent’s caffeine consumption did not show 

strong evidence for a change in magnitude of the total caffeine and cola associated 

CpG sites, indicating little evidence for an influence of shared parental 

confounders on the association with DNA methylation at this CpG site (Table 4.6 

and Figure 4.3). The effect estimates of the total caffeine CpG site (cg19370043) 

was slightly larger in the maternal caffeine models than in the paternal caffeine 

models (Table 4.6 and Figure 4.3), providing some evidence for a somewhat 

stronger effect of maternal than paternal caffeine consumption during pregnancy 

at this CpG site (which theoretically is in line with an intrauterine effect, yet the 

differences of the estimates were very small). The effects at the cola associated 

CpG site, cg14591243, appeared to be of similar magnitude for paternal and 

maternal cola consumption in the negative control comparison in ALSPAC, 

indicating that the association at this CpG site that were observed in the meta-

analysis, might be explained by common confounding factors of maternal and 

paternal caffeine consumption (e.g., SEP, diet, etc.) instead of actual caffeine 

exposure. The effect at the cola associated CpG site, cg12788467, did not change 

after adjusting the maternal caffeine model for paternal caffeine consumption. 

Yet, the effect was slightly attenuated after adjusting the paternal model for 

maternal caffeine consumption (Table 4.6 and Figure 4.3). This provides some 

evidence that the association with maternal cola consumption at this CpG site is 

not influenced by shared maternal and paternal confounding factors and that the 

effect is slightly stronger for maternal than paternal cola consumption. However, 

inference about an intrauterine effect based on this analysis is limited due to the 

small sample size, which is reflected by the wide confidence intervals, which are 

substantially overlapping for the maternal and paternal associations, especially in 

the analyses of the cola-associated CpG sites. 
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Table 4.6 Looking-up CpG sites found to be associated with maternal 

caffeine consumption in the results of associations between paternal 

caffeine consumption and offspring DNA methylation 
Exposure CpG (gene) Estimate (SE)  P-value  

Paternal self-reported caffeine consumption during pregnancy adjusted for maternal 

caffeine consumption 

Paternal total caffeine 

consumption adjusted 

for maternal total 

caffeine consumption  

cg19370043 

(PRRX1) 

3.72 x 10-06 (1.31 x 10-05) 0.776 

    

Paternal caffeine 

consumption from 

cola (mg/day) 

adjusted for maternal 

cola consumption  

cg12788467 

(HNF1B) 

6.22 x 10-05(1.13 x 10-04) 0.584 

cg14591243 

(STAG1) 

4.51 x 10-05 (5.68 x 10-05) 0.423 

Maternal self-reported caffeine consumption during pregnancy adjusted for paternal 

caffeine consumption  

Maternal total 

caffeine consumption 

adjusted for paternal 

total caffeine 

consumption  

cg19370043 

(PRRX1) 

-3.67 x 10-05 (2.10 x 10-05) 0.662 

    

Maternal caffeine 

consumption from 

cola adjusted for 

paternal cola 

consumption  

cg12788467 

(HNF1B) 

1.53 x 10-04 (8.46 x 10-05) 0.071 

cg14591243 

(STAG1) 

4.85 x 10-05 (4.24 x 10-05) 0.254 

Maternal self-reported caffeine consumption during pregnancy unadjusted for paternal 

caffeine consumption  

Maternal total 

caffeine consumption  

cg19370043 

(PRRX1) 

-3.48 x 10-05 (1.85 x 10-05) 0.061 

    

Maternal caffeine 

consumption from 

cola  

cg12788467 

(HNF1B) 

1.52 x 10-04 (7.60 x 10-05) 0.046 

cg14591243 

(STAG1) 

6.01 x 10-05 (3.75 x 10-05) 0.109 

Note. caffeine consumption assessed in mg/day.
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Figure 4.3 Comparison of maternal and paternal caffeine EWAS effect estimates at the top CpG sites of the meta-analysis results in 

ALSPAC. Error bars represent 95% Confidence Intervals. Maternal = not adjusted for paternal caffeine consumption. Maternal adj. 

paternal = adjusted for paternal caffeine consumption. Paternal = not adjusted for maternal caffeine consumption. Paternal adj.maternal = 

adjusted for maternal caffeine consumption. 
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Using all available CpG sites on the 450k array, results of the maternal models 

adjusted for paternal consumption showed no evidence for associations after 

multiple testing corrections (all FDR corrected P-values > 0.05). Interestingly 

though, the paternal models of any vs. no paternal caffeine consumption, showed 

evidence for many other CpG site associations, even with adjustment for maternal 

consumption (Table 4.7). However, given that the models with the other paternal 

caffeine phenotypes did not show evidence for associations, it seems more likely 

that due to the small sample size of paternal non-caffeine drinkers (N = 13), these 

results are false positives. Visual inspection of dot plots comparing DNA 

methylation values at the top 5 CpG sites of offspring whose fathers consumed 

any caffeine with fathers who did not consume any caffeine (Figure 4.4) did not 

indicate that these effects were driven by outliers (except for cg23063666, Figure 

4.4 top left). However, as can be seen in the plots, differences were small and the 

variance within groups high, thus, no clear evidence for an effect of paternal 

caffeine consumption on offspring DNA methylation can be concluded from this 

data.   
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Table 4.7 Summary of results of paternal caffeine models in ALSPAC 

Model* 

CpGs with 

FDR-corrected 

P-value <0.05 

Sample 

size 

Genomic 

inflation 

factor 

(λ)** 

Any vs. no caffeine (non-user = 13, user = 606) 

 All offspring (minimally adjusted) * 40 619 1.23 

 All offspring (adjusted for covariates) 17 617 1.20 

 Female offspring (adjusted for covariates) 54 312 1.18 

 Male offspring (adjusted for covariates) 27 305 1.07 

 
All offspring (adjusted for covariates and 

gestational age) 
18 617 1.18 

Caffeine in mg/day 

 All offspring (minimally adjusted)* 0 619 1.00 

 All offspring (adjusted for covariates) 0 617 1.01 

 Female offspring (adjusted for covariates) 0 312 0.94 

 Male offspring (adjusted for covariates) 0 305 0.98 

 All offspring (adjusted for covariates and 

gestational age) 

0 617 1.00 

Caffeine from coffee 

 All offspring (adjusted for covariates) 0 608 0.99 

Caffeine from tea 

 All offspring (adjusted for covariates) 0 562 0.96 

Caffeine from cola 

 All offspring (adjusted for covariates) 0 587 1.00 

Note. * only adjusted for estimated cell counts and 20 surrogate variables. Covariates: maternal 

age, maternal smoking, maternal parity, maternal education, maternal BMI, estimated cell counts 

and 20 surrogate variables and the corresponding maternal caffeine consumption phenotype) 

** The genomic inflation factor (λ) estimates the extent of bulk inflation of EWAS p-values and the 

excess false positive rate. 1 = no inflation; > 1 some evidence of inflation. 
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Figure 4.4 Dot plots comparing offspring DNA methylation at the top 5 CpG 

sites of the any paternal caffeine models in ALSPAC. Models were adjusted 

for maternal caffeine consumption. 0 = non-user, 1 = caffeine user. 
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4.4.2.5 PRS analysis (ALSPAC only): Associations between maternal caffeine 

PRS and offspring DNA methylation (N = 521) 

The 3 maternal caffeine associated CpG sites from the probe-level analysis 

showed no evidence for association with the maternal PRS for caffeine (all P-

values > 0.05) and even showed a different direction of effect for the cola-

associated CpG sites (Table 4.8). Also, results from the analysis using all CpG 

sites on the array showed no evidence for associations between maternal caffeine 

PRS and offspring cord blood DNA methylation after correcting for multiple 

testing (FDR adjusted P-value > 0.05). Results of the six CpG sites with a P-value 

of less than 5 x 10-5 are available in Appendix Q, Table Q1. 

Table 4.8 Results of the maternal caffeine PRS analysis in ALSPAC 
Exposure CpG (gene) Estimate (SE)  P-value  

Maternal caffeine 

PRS 

cg19370043 

(PRRX1) 

-0.26 (0.23) 0.259 

cg12788467 

(HNF1B;HNF1B) 

-0.05 (0.03) 0.461 

cg14591243 

(STAG1) 

-0.02 (0.03) 0.608 

 

4.4.3 Differentially methylated regions (DMR) meta-analysis  

The regional meta-analysis implemented using DMRff detected 22 differentially 

methylated regions for total maternal caffeine consumption with at least 2 and a 

maximum of 17 consecutive CpG sites (PBonferroni < 0.05; Figure 4.5, Appendix R, 

Table R1). The strongest evidence was found at a region on chromosome 17, with 

7 consecutive CpG sites (chr17: 58499679-58499911; estimate = -3.77 x 10-05; SE 

= 5.02 x 10-06; PBonferroni = 1.42 x 10-10; Figure 4.5, Appendix R, Table R1). In the 

any vs. no maternal caffeine consumption model, DMRff detected evidence for 11 

DMRs (Figure 4.6, Appendix R, Table R2). The strongest evidence was found at a 

region on chromosome 6, with 10 consecutive CpG sites (Chr6:31734147-

31734554; estimate = -9.44-03; SE = 1.37-03; PBF = 1.928-06 , Appendix R, Table 

R2). Only the COL9A3 gene on chromosome 20 was found to be in common 

between the DMRs detected in the total and any vs. no maternal caffeine models 

(Table 4.9). 

 



Chapter 4 – EWAS meta-analysis of prenatal caffeine consumption 

 152 

  

  

 

Figure 4.5 Candidate DMRs for total maternal caffeine consumption. Each 

dot represents a candidate DMR with at least two CpG sites showing the same 

direction of effect. The red lines represent the Bonferroni corrected P-value 

threshold. Chr = Chromosome. Dots above the top line represent positive 

associations with offspring DNA methylation whereas dots below the lower 

line represent negative associations with offspring DNA methylation. 
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Figure 4.6 Candidate DMRs for any maternal caffeine consumption. Each 

dot represents a candidate DMR with at least two CpG sites showing the same 

direction of effect. The red lines represent the Bonferroni corrected P-value 

threshold. Chr = Chromosome. Dots above the top line represent positive 

associations with offspring DNA methylation whereas dots below the lower 

line represent negative associations with offspring DNA methylation. 
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DMR analyses from the individual sources of caffeine revealed 12 DMRs for 

caffeine consumed from coffee (Figure 4.7), 18 DMRs for caffeine from tea 

(Figure 4.8), and 14 DMRs for caffeine consumption from cola (Figure 4.9) 

during pregnancy. All results are presented in Appendix R, Table R1 to R7.  

 

 

Figure 4.7 Candidate DMRs for maternal coffee consumption. Each dot 

represents a candidate DMR with at least two CpG sites showing the same 

direction of effect. The red lines represent the Bonferroni corrected P-value 

threshold. Chr = Chromosome. Dots above the top line represent positive 

associations with offspring DNA methylation whereas dots below the lower 

line represent negative associations with offspring DNA methylation. 
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Figure 4.8 Candidate DMRs for maternal tea consumption. Each dot 

represents a candidate DMR with at least two CpG sites showing the same 

direction of effect. The red lines represent the Bonferroni corrected P-value 

threshold. Chr = Chromosome. Dots above the top line represent positive 

associations with offspring DNA methylation whereas dots below the lower 

line represent negative associations with offspring DNA methylation. 
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Figure 4.9 Candidate DMRs for maternal cola consumption. Each dot 

represents a candidate DMR with at least two CpG sites showing the same 

direction of effect. The red lines represent the Bonferroni corrected P-value 

threshold. Chr = Chromosome. Dots above the top line represent positive 

associations with offspring DNA methylation whereas dots below the lower 

line represent negative associations with offspring DNA methylation. 
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As shown in Table 4.9 there was little overlap between the CpG sites or genes 

annotated to the DMRs of the different caffeine models. For each combination of 

models, I calculated the percentage overlap of CpG sites by dividing the overlap 

of CpG sites between two models by the sum of the models unique CpG sites 

(e.g., percentage crossover any caffeine and total caffeine models: 7/(167 + 63 - 

7) = 0.03 * 100 = 3%). Despite coffee being the most popular source of caffeine 

across cohorts, more crossovers were found between the total caffeine and tea 

models (crossover 11% and three crossover genes; C17orf64, GABBR1; HOXA2) 

than between the total caffeine and coffee models (crossover 7% and two 

crossover genes; C17orf64; B4GALNT4). Common genes and CpG sites 

annotated to the DMRs from the individual sources of caffeine were found 

between caffeine consumed from coffee and tea, which showed a 12% crossover 

of CpG sites (N crossover CpG sites = 19) that were annotated to the H19 gene on 

chromosome 11 and the C17orf64 gene on chromosome 17 (Table 4.9). However, 

in contrast to the DMRs associated with the C17orf64 gene, DMRs associated 

with the H19 gene showed a different direction of effect for maternal coffee and 

tea consumption (Appendix R, Table R3 and R4). No crossovers of genes and 

CpG sites of the cola associated DMRs were found with any of the other caffeine 

models (Table 4.9 and Appendix R, Tables R1 to R7).
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Table 4.9 Crossover of CpG sites and genes of the DMRs of the different caffeine models 

 

 

CpGs total 

caffeine 

(genes) 

CpGs any vs. no 

caffeine (genes) 

CpGs coffee 

(genes) 

 

CpGs tea  

(genes) 

CpGs cola 

(genes) 

Total caffeine – 

Female sex (genes) 

Total caffeine 

– Male sex 

(genes) 

CpGs total 

caffeine 

(genes) 

167 CpGs 

(100%) 

7 CpGs 

(COL9A3), 

crossover = 3% 

17 CpGs (C17orf64; 

B4GALNT4),  

crossover = 7%  

26 CpGs (C17orf64 

GABBR1; HOXA2), 

crossover = 11% 

0 CpGs  

(0 genes) 

6 CpGs 

(B4GALNT4), 

crossover = 3% 

0 CpGs 

(0 genes) 

- 

CpGs any vs. 

no caffeine 

(genes) 

63 CpGs 

(100%) 

0 CpGs  

(0 genes) 

0 CpGs 

(0 genes) 

0 CpGs 

(0 genes) 

0 CpGs (0 genes) 0 CpGs 

(0 genes) 

- - 

CpGs coffee 

(genes) 

86 CpGs 

(100%) 

19 CpGs  

(H19; C17orf64), 

crossover = 12% 

0 CpGs 

(0 genes) 

4 CpGs 

(B4GALNT4), 

crossover = 3% 

0 CpGs 

(0 genes) 

- - - 
CpGs tea (genes) 92 CpGs 

(100%) 

0 CpGs 

(0 genes) 

0 CpGs  

(0 genes) 

0 CpGs 

(0 genes) 

- - - - 
CpGs cola  

(genes) 

55 CpGs 

(100%) 

0 CpGs  

(0 genes) 

0 CpGs 

(0 genes) 

- - - - - 

Total caffeine – 

Female sex 

(genes) 

55 CpGs  

(100%) 

0 CpGs  

(0 genes) 

- - - - - - 
Total caffeine – Male 

sex (genes) 

85 CpGs 

(100%) 

Note. Cells highlighted in blue represent the total number of CpG sites (CpGs) that were contained across the DMRs of each caffeine model. Darker shading of blue = 

more overlap. Crossover = percentage of crossover CpG sites between the different models (N CpGs crossover / (N CpGs model 1 + N CpGs model 2 – N CpGs 

crossover). 
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The analyses from the sex-stratified models showed evidence for 12 DMRs in 

cord blood in female sex offspring (Figure 4.10; Appendix R, Table R6) and 18 

DMRs in male sex offspring (Figure 4.11 and Appendix R, Table R7) being 

associated with total maternal caffeine consumption. Some crossover was found 

between CpG sites and genes of the female sex stratified caffeine DMRs and the 

unstratified total caffeine model (crossover = 3%; six common CpG sites with the 

total caffeine model and four common CpG sites with the coffee model; Table 

4.9). However, no crossover was found between the genes and CpGs sites 

annotated to the male sex stratified total caffeine model and any other caffeine 

model (Table 4.9). This could indicate a sex-specific effect of maternal caffeine 

consumption during pregnancy on offspring DNA methylation. Alternatively, this 

could also represent male and female DNA methylation differences independent 

of maternal caffeine consumption. As has been mentioned in Chapter 2 (section 

2.3.2.4), differences in DNA methylation between male and female sex can still 

be observed when restricting analyses to autosomes and removing probes cross-

reactive with sex chromosomes (Yousefi, Huen, Davé, et al., 2015).  
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Figure 4.10 Candidate DMRs for female sex stratified models of total 

maternal caffeine consumption. Each dot represents a candidate DMR with 

at least two CpG sites showing the same direction of effect The red lines 

represent the Bonferroni corrected P-value threshold. Chr = Chromosome. 

Dots above the top line represent positive associations with offspring DNA 

methylation whereas dots below the lower line represent negative associations 

with offspring DNA methylation. 
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Figure 4.11 Candidate DMRs for male sex stratified models of total 

maternal caffeine consumption. Each dot represents a candidate DMR with 

at least two CpG sites showing the same direction of effect. The red lines 

represent the Bonferroni corrected P-value threshold. Chr = Chromosome. 

Dots above the top line represent positive associations with offspring DNA 

methylation whereas dots below the lower line represent negative associations 

with offspring DNA methylation. 

 

4.4.3.1 Functional analysis of DMRs 

Neither the functional categories defined by GO terms nor any of the KEGG 

pathways showed evidence for enrichment in genes annotated to CpG sites in the 

caffeine-associated DMRs (all FDR adjusted P-values > 0.05). The top 5 KEGG 

pathways and GO terms with the strongest evidence according to the smallest P-

values for each list of CpGs in the caffeine-DMRs are available in Appendix S, 

Table S1.  

4.4.4 Analysis of cell proportions 

The estimated cell proportions meta-analysis revealed that none of the caffeine 

phenotypes were associated with the proportions of cells in offspring cord blood 

(e.g., P-values of maternal caffeine meta-analysis: BCELL = 0.988; CD14 = 

0.917; CD4T = 0.058; CD8T = 0.848; GRAN = 0.323; NK = 0.187).  
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4.5 Discussion 

4.5.1 Summary & interpretation of findings 

In this study, I investigated the effects of maternal caffeine consumption during 

pregnancy on offspring cord blood DNA methylation, using data from six 

international birth cohorts from the PACE consortium. Different methods were 

used to triangulate the evidence: Associations were investigated between 

offspring DNA methylation and (1) maternal self-reported caffeine consumption 

during pregnancy across six birth cohorts (EWAS meta-analysis), (2) paternal 

self-reported caffeine consumption in ALSPAC (negative control analysis), and 

(3) maternal caffeine PRS in ALSPAC. Furthermore, the EWAS meta-analysis 

compared caffeine consumption during pregnancy across contexts (and 

caffeinated drinks) and thus reduced the potential for cultural confounding in the 

association between maternal caffeine consumption during pregnancy and 

offspring DNA methylation.  

For the EWAS meta-analysis, probe-level and regional DMR analyses were 

applied as hypothesis-free approaches to detect associations between maternal 

caffeine phenotypes and differential methylation levels in cord blood. Both these 

analyses were conducted for total caffeine consumption during pregnancy, as well 

as for caffeine consumption from coffee, tea, and cola consumption separately. 

Inferences about causal associations were attempted by first, testing the total 

caffeine and cola-associated CpG sites from the probe level analysis in a negative 

control and PRS analysis and second, analysing the CpG sites of the maternal 

caffeine associated DMRs for their biological function.  

4.5.1.1 Findings from the probe-level analysis 

The probe level analysis indicated that differences in DNA methylation at three 

CpG sites were associated with maternal caffeine phenotypes (one with maternal 

total caffeine consumption and two with maternal caffeine consumption from 

cola) of which all showed small effect estimates. The coefficients from the 

regression analyses represent the change in offspring cord blood DNA 

methylation at a given CpG site per 1 mg/day increase in maternal caffeine 

consumption. Putting these results into real life context, if the recommended limit 

of caffeine consumption during pregnancy would be doubled from 200 mg/day of 
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caffeine to 400 mg/day caffeine a day, this would only be associated with a 

0.004% decrease in DNA methylation at cg19370043 (coefficient multiplied by 

200; based on the assumption that intrauterine caffeine exposure has a linear 

effect on offspring DNA methylation). For the caffeinated cola results, drinking 

one extra cup of cola per day would be associated with a 0.017% increase in DNA 

methylation at cg12788467 (coefficient multiplied by the 20 mg caffeine 

contained in one cup of cola). These effect sizes are in line with the small effect 

sizes found in the EWAS of caffeine consumption on own DNA methylation 

(Karabegović et al., 2020), where an additional cup of coffee was associated with 

a 0.002% decrease in peripheral blood DNA-methylation at AHRR, which would 

be equivalent to a 0.007% decrease in DNA methylation per 200 milligrams of 

caffeine (0.002% / 57 mg of caffeine per cup of coffee x 200). The effect sizes of 

caffeine found in this study and the study of Karabegović and colleagues appear 

to be much smaller than the effect of smoking, where sustained smoking during 

pregnancy was associated with changes of up to ~7% decrease in offspring cord-

blood DNA methylation at the AHRR gene (Joubert et al., 2016).  

4.5.1.1.1 Relevance for offspring’s mental health development 

I found no evidence to link the caffeine associated CpG sites to any mental health 

phenotypes. According to the EWAS catalog, none of the three maternal caffeine 

associated CpG sites have previously been reported to be associated with 

neurological functions or mental health phenotypes. Similarly, according to the 

GWAS catalog, none of the genes mapped to the CpG sites has been reported to 

be associated with any traits related to mental health. 

4.5.1.2 Findings from the differentially methylated regions (DMR) analysis  

In the regional analyses, DMRff identified 12-22 DMRs for each of the caffeine 

models. No clear cluster between the functions of genes associated with maternal 

caffeine DMRs could be found. Surprisingly, only one gene mapped to DMRs of 

the total and any vs. no caffeine models overlapped (COL9A3), which is most 

likely explained by analyses using continuous instead of binary exposure 

variables being higher powered and suffering less of residual confounding 

(Fedorov et al., 2009; Royston et al., 2006). Even though the regional analyses 

revealed several potential DMRs for each of the different caffeine models, there 

were few overlapping DMRs between models, which indicates that the 
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associations of the DMRs are not driven by actual intrauterine exposure of 

caffeine but rather other confounding structures of the different sources of 

caffeine. Caffeine consumption is a complex phenotype, even more so during 

pregnancy (e.g., due to caffeine metabolism changes). Besides caffeine, each of 

the included caffeinate beverages contains numerous other chemical compounds 

that might exert an effect on maternal and offspring health (Ludwig et al., 2014). 

Whereas the coffee and tea models both showed DMRs with the same direction of 

effect of the C17orf64 gene on chromosome 17, no overlap was found with genes 

associated with the cola associated DMRs (Table 4.9). The biological function of 

C17orf64 is not very clear yet, but previous research reported it to be negatively 

associated with a DMR associated with maternal obesity in female (but not male) 

offspring in cord blood (Martin et al., 2019). Even though models were adjusted 

for maternal BMI, associations between coffee and tea consumption and CpG 

sites at gene C17orf64 might be due to residual confounding. Surprisingly, the 

DMRs of the male and female stratified models did not show any overlapping 

genes and, together with the larger effect estimates in the stratified compared to 

non-stratified total caffeine model, might indicate different effects of maternal 

caffeine consumption during pregnancy for female and male offspring (Table 4.9). 

Lack of overlap between the cola associated DMRs with the total caffeine 

associated DMRs (Table 4.9) further supports the assumption that the associations 

of maternal cola consumption on offspring DNA methylation might be explained 

by a different ingredient than caffeine or a different underlying confounding 

structure. This is in line with epidemiological evidence (N = 64,189), that found 

associations between maternal soft drink consumption during pregnancy and 

offspring hyperactivity, regardless of whether soft drinks contained caffeine, 

which indicates that associations are likely driven by other ingredients than 

caffeine (Berglundh et al., 2020). This is further supported by a study, which 

found that only maternal consumption of cola, but not consumption of coffee or 

tea, during pregnancy was associated with symptoms of inattention and 

hyperactivity in offspring at 18 months (N = 25,343) (Bekkhus et al., 2010).   

4.5.1.2.1 Relevance for offspring’s mental health development 

Both total maternal caffeine consumption and maternal tea consumption during 

pregnancy showed a DMR mapped to the GABBR1 gene (Appendix R, Table R1 



Chapter 4 – EWAS meta-analysis of prenatal caffeine consumption 

 165 

and R4). According to the GWAS catalog, this gene has been associated with 

various mental health problems including schizophrenia, neuroticism, autism 

spectrum disorder, and depression. It is worth noting that, it has also been linked 

to smoking and nicotine dependence in the GWAS catalog, as well as with 

smoking during pregnancy in the EWAS catalog, and therefore might also 

represent residual confounding with maternal smoking during pregnancy. Yet, it 

is interesting that it did not come-up in the coffee DMR results (Appendix R, 

TableR3) despite the high correlation between smoking and coffee consumption. 

This could indicate that the association between caffeinated tea and GABBR1 

might be due to a different ingredient than caffeine or a different confounding 

structure of tea in this sample.   

4.5.1.3 Attempts to infer causality 

I made several attempts to investigate whether intrauterine caffeine exposure 

might have a causal effect on offspring DNA methylation. First, beverage-specific 

effects for total caffeine, coffee, tea, and cola were inspected across the DMR and 

probe-level results. Overall lack of congruence of associations across models, 

which was evident in the probe-level and regional analysis, provided evidence for 

beverage-specific effects instead of the effects being driven by caffeine (which is 

common to all included beverages). Investigating the effects of the CpG sites 

found in the probe-level analysis across the different caffeine models further 

supported beverage-specific effects (Figure 4.2). 

Second, I conducted a negative control analysis in ALSPAC, which used paternal 

instead of maternal caffeine consumption during pregnancy as the exposure. 

Including paternal caffeine consumption as a covariate in the maternal caffeine 

models did not show clear evidence to change the results. This indicates that the 

association are not strongly influenced by common confounding factors of 

maternal and paternal caffeine consumption. Whereas there was limited evidence 

for a difference in effects between maternal and paternal caffeine consumption at 

the cola-associated CpG sites (cg12788467 and cg14591243), there was some 

evidence for a stronger maternal than paternal effect at the total caffeine 

associated CpG site (cg19370043). This could provide some evidence for an 

intrauterine effect of caffeine on DNA methylation at cg19370043; yet again, 

differences in effect estimates were small and thus are unlikely to have a strong 
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effect on offspring outcomes. The hypothesis free exploration using all probes on 

the 450k array showed DNA methylation at many probes to be associated with 

any vs. no paternal caffeine consumption during pregnancy. However, considering 

the limited sample size (ALSPAC fathers only) with very few fathers abstaining 

from caffeine during pregnancy (N = 15), this analysis is highly underpowered, 

with a high risk for false positives. Yet, it is possible that paternal caffeine 

consumption is influencing offspring DNA methylation, for instance through the 

germ line (Crean & Bonduriansky, 2014), and this hypothesis deserves further 

investigation in larger, independent samples.  

Last, I conducted a PRS analysis in ALSPAC using a caffeine PRS as a proxy for 

maternal caffeine consumption. Genetic variants for caffeine should in theory be 

free of confounding (Davey Smith et al., 2007; Davey Smith & Ebrahim, 2003) 

and thus give less confounded results than the analysis using self-reported 

caffeine. There was no evidence that the three CpG sites from the probe-level 

analysis, using self-reported maternal caffeine consumption as the exposure, were 

associated with the maternal PRS for caffeine in ALSPAC. Interestingly, 

however, whereas the total caffeine-associated CpG site showed the same 

direction of effect as in the maternal self-reported caffeine models, the cola-

associated CpG sites showed a different direction of effect. This is in line with 

results of Chapter 3, in which the genetic variants of coffee consumption were 

associated with maternal consumption of coffee and tea outside and during 

pregnancy but not with cola consumption (Schellhas, Haan et al., 2021; Taylor, 

Davey Smith, et al., 2018). The maternal caffeine PRS analysis using all probes 

on the 450k array did not show any associations with offspring cord blood DNA 

methylation, which could either provide some evidence that there is no effect of 

maternal caffeine consumption on offspring cord blood DNA methylation or due 

to the limited sample size, was underpowered to detect small effects, especially 

for a genetic analysis.  

4.5.2 Strengths 

This was the first large, international EWAS meta-analysis investigating the effect 

of caffeine from coffee, tea, and cola during pregnancy. A major strength of this 

study is the thorough investigation of the effects of caffeine consumption during 

pregnancy through various methods with slightly different biases (probe-level, 
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regional, negative control, and PRS analysis). All methods revealing few 

associations with small effect sizes, increases confidence that low to moderate 

amounts of caffeine during pregnancy are unlikely to have large effects on 

offspring cord blood DNA methylation. Further, even though the study did not 

account for all potential sources of caffeine (e.g., caffeine from energy drinks, 

chocolate, green tea, medication, etc.), the consideration of the effects of other 

common sources of caffeine besides coffee is important to reduce bias. 

Consumption of the different sources of caffeine might be slightly differentially 

socially patterned, allowing capturing a larger spectrum of the caffeine consuming 

population. For instance, British and non-Western Ethnicities consume more 

commonly caffeinated tea than coffee (The Coffee and Caffeine Genetics 

Consortium et al., 2015; Treur et al., 2016). Further, research found that the main 

source of caffeine might change during pregnancy, with even habitual coffee 

drinkers preferring caffeinated tea over coffee during pregnancy (Chen et al., 

2014; Lawson et al., 2004). Lastly, in contrast to previous research, this study 

assessed maternal caffeine consumption through mg/day instead of cups per day, 

which is a useful approach to isolate the effect of caffeine, allow comparison 

between different caffeinated beverages, and a more fine-tuned assessment of the 

effects of different caffeine dosages. Another strength is the use of two sensitivity 

analyses to explore whether any of the associations might reflect a causal effect of 

caffeine.  

4.5.3 Limitations 

The findings should be considered in the light of the following limitations. 

Measurement error might have occurred for several reasons. First, caffeine 

assessment in the meta-analysis relied on self-report, which has been found to be 

underestimated by non-pregnant men and women (Schreiber et al., 1988) and 

might even be more strongly underestimated during pregnancy because of social 

stigma (see Chapter 1). Second, the formula used to transform maternal caffeine 

consumption from cups/day to mg/day assumed relatively low amounts of 

caffeine per caffeinated drink in comparison to transformations in other studies 

(Treur et al., 2016; van Dam et al., 2020). Even though this might have led to a 

systematic underestimation of the effect size of caffeine for each of the beverages, 

the proportions between the individual caffeinated beverages was comparable to 
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that used in previous research (our study: 1 cup of coffee = 57 mg caffeine, 1 cup 

of tea = 27, 1 can of cola = 30, Ratio = 55%:26%:19%; e.g., Treur et al; 2016: 1 

cup of coffee = 75 mg caffeine, 1 cup of tea = 40 mg caffeine, 1 can of cola = 33 

mg caffeine: Ratio = 75%:40%:33%). Third, the questions used to assess caffeine 

consumption in the cohorts were very basic and did not differentiate between 

different cup sizes, types of coffee (e.g., brewed coffee, espresso, instant coffee, 

etc.), and brewing times, and therefore only allowed for rough estimations of 

maternal caffeine consumption (van Dam et al., 2020b). Fourth, the study relied 

on prospective cohort data, which is likely to suffer from selection bias, with more 

advantaged families tending to enrol in the study (Fraser et al., 2013). Fifth, 

results might not be generalizable to effects of maternal caffeine consumption at 

other trimesters of pregnancy or higher dosages of caffeine. In this study, maternal 

caffeine consumption was only investigated during the second trimester of 

pregnancy without controlling for pregnancy symptoms such as nausea and 

vomiting, which likely influence maternal caffeine consumption and might proxy 

for a healthy course of pregnancy (Lawson et al., 2004; Wikoff et al., 2017). 

Sixth, effects of caffeine exposure during pregnancy on offspring cord blood 

DNA methylation was only assessed at regions available on the 450k array, which 

only covers around 2% of CpG sites of the entire epigenome (Lövkvist et al., 

2016). Thus, differentially methylated regions not covered by the array have been 

missed out in this study. Seventh, I only assessed offspring DNA methylation in 

blood. There is some evidence suggesting that DNA methylation levels in blood 

might be able to proxy for DNA methylation levels in other tissues, yet I cannot 

rule out that maternal caffeine during pregnancy might be influencing DNA 

methylation differentially in other tissue types (Walton et al., 2019). Last, this 

study indicates that, if maternal caffeine consumption influences cord-blood DNA 

methylation, the effect is likely to be small. Although efforts were made to 

maximise the sample sizes by including more than one cohort, even larger sample 

sizes may be required to detect small effects of prenatal caffeine exposure on 

offspring DNA methylation. 

4.5.4 Future research 

Future research should aim to use a more accurate assessment of caffeine 

consumption during pregnancy by considering differing types of coffee, brewing 
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times, and cups sizes and/or assessing biomarkers of caffeine such plasma 

concentrations of the caffeine metabolite paraxanthine (Boylan et al., 2008). Also, 

future research should further explore the different confounding structures of 

various caffeinated beverages across different cultures. Further, it would be 

important to consider individual differences in the maternal metabolism of 

caffeine that might influence the intensity of exposure during pregnancy and 

might change the effect of caffeine on offspring DNA methylation. For instance, 

studies could conduct analyses using genetic variants that account for differences 

in caffeine metabolism (Cornelis et al., 2016) and/or consider pre-pregnancy 

caffeine consumption to account for differences in the tolerance to effects of 

caffeine during pregnancy (van Dam et al., 2020). Last, more assessments of 

prenatal paternal caffeine consumption are needed. This would enable the 

conduction of higher-powered negative control analyses to investigate intrauterine 

effects, as well as investigating the effects of paternal caffeine consumption prior 

to pregnancy and its effect on offspring DNA methylation.  

4.5.5  Conclusion 

In conclusion, results of this meta-analysis indicate little evidence for a strong 

effect of maternal caffeine consumption during the second trimester of pregnancy 

on offspring cord blood DNA methylation. Results of this study show little 

converging evidence between the associations of the different sources of caffeine, 

thus it seems more likely that associations between maternal caffeine 

consumption during pregnancy and offspring DNA methylation are explained by 

other factors than caffeine exposure, such as smoking or sugar content (which 

might explain the cola associations). By investigating caffeine consumption 

across different contexts (with slightly different confounding structures), chances 

of confounding bias should be reduced, however, as mothers across cohorts 

consumed relatively little caffeine during pregnancy, results might be different in 

higher caffeine consuming pregnant populations. 
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Chapter 5  – The development of childhood internalising 

problems: A meta-analysis of epigenome-wide-

association-studies 

5.1 Chapter overview 

In this chapter, I explore the relationship between child DNA methylation (at birth 

and childhood) and internalising problems (at the age of 3 and 7) through a 

hypothesis-free EWAS meta-analysis. In addition to the EWAS analysis, a 

candidate-gene analysis is conducted testing DNA methylation at genes that have 

previously been found to be associated with phenotypes related to internalising 

problems (adverse early life experiences, adult anxiety and depression). The 

results of the EWAS analysis of this chapter are part of the third step of the meet-

in-the-middle approach (see Chapter 1), which investigates the association 

between prenatal smoking and caffeine associated DNA methylations changes and 

offspring internalising problems (intermediate biomarker-disease association). I 

conducted parts of this chapter’s analyses during secondments at the Erasmus 

Medical Center Rotterdam (EMCR; Generation R analysis) and the Norwegian 

Institute of Public Health (MoBa analysis). Due to time restrictions and data 

policy regulations that do not allow for remote access to the Generation R data, a 

PhD student from the EMCR, Mannan Lou, ran some of my scripts for me and 

sent me the Generation R summary results.  

5.2 Introduction 

Over the past 20 years the prevalence of internalising problems, including 

depression and anxiety disorders, has tremendously increased amongst 

adolescents and young adults (Sadler et al., 2018; Twenge et al., 2019). In the 

UK, around 8% of young people between the age of 5 to 19 suffer from 

internalising disorders (Sadler et al., 2018). Anxiety disorders are among the most 

common mental health problems in children (Creswell et al., 2014; Ramsawh et 

al., 2011), but are still rarely diagnosed before adolescence, with a peak in 

diagnosis during young adulthood (American Psychiatric Association, 2013). 

There is some indication that many anxiety and depressive disorders already onset 

during childhood. For instance, in a nationally representative sample of more than 

10,000 US adolescents, anxiety disorders were reported to already been evident 
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during childhood, with a median age of onset at the age of 6 (Merikangas et al., 

2010). Furthermore, a prospective study in New Zealand (N = 1,037) found that 

about 50% of adults with depression and anxiety disorders at the age of 26, 

experienced psychological difficulties already between 11-15 years of age, with 

12% of cases reporting depression and 18% reporting anxiety symptoms before 15 

years of age (Kim-Cohen et al., 2003). Early detection of anxiety and depression 

is particularly important as early onset has been found to be associated with a 

more severe course, higher chances for chronicity and recurrence, as well as a 

higher risk for suicide attempts, than late onset (Ramsawh et al., 2011; Weissman 

et al., 1999). Anxiety and depression commonly co-occur, and there is evidence 

that they follow a bi-directional relationship, with onset of anxiety disorders being 

a risk factor for developing depression and vice versa (Jacobson & Newman, 

2017). Also, prevalence rates of comorbid anxiety and depression are high during 

childhood (Cummings et al., 2014; Garber & Weersing, 2010), with 

approximately 15% to 25% of young people diagnosed with depression having a 

comorbid anxiety disorder, and 10% to 15% of young people with an anxiety 

disorder suffering from comorbid depression (Cummings et al., 2014). The bi-

directional relationship between anxiety and depression, which is already evident 

during childhood, stresses that future research should aim to detect early 

manifestations of anxiety or depressive symptoms, so that onset can be prevented 

(Jacobson & Newman, 2017). 

The aetiology of anxiety and depression is determined by genetic and 

environmental influences. Twin studies suggest that anxiety and depression in 

childhood are moderately heritable, with about 40% of variance being explained 

by genetic influences (Polderman et al., 2015), and that there is a shared genetic 

liability for anxiety and depression (Eley, 1999; Gottschalk & Domschke, 2017). 

In contrast to twin studies, SNP-based heritability from recent GWAS of anxiety 

and depression report lower heritability estimates of 26% to 31% for anxiety 

(Purves et al., 2020), and only 9% for depression (Howard et al., 2019). In 

addition to genetic risk factors, early life experiences may shape the risk for the 

development of anxiety and depression later in life (Burt, 2009). Adverse 

intrauterine experiences, as well as early post-natal experiences, have been found 
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to be observationally associated with an increased risk for childhood internalising 

problems (Duko et al., 2020; LeMoult et al., 2020).  

A molecular mechanism that could account for the interplay between genetic and 

environmental influences on childhood internalising symptoms is DNA 

methylation. DNA methylation at birth has been proposed to be a valuable proxy 

for the quality of the intrauterine environment (Felix et al., 2018; Miguel et al., 

2019; Teh et al., 2014) and thus may help to shed light on the contribution of 

adverse intrauterine experiences to the development of offspring internalising 

problems later in life. In this chapter, I am going to investigate whether 

differences in DNA methylation at birth and childhood are associated with early 

manifestations of depression and anxiety, in the form of internalising problems, in 

childhood.  

5.2.1 Epigenetic studies of offspring anxiety and depressive symptoms  

5.2.1.1 Candidate gene studies of anxiety and depression 

Most of the studies investigating the relationship between DNA methylation and 

anxiety and depressive symptoms in children have investigated differences in 

DNA methylation at candidate genes (Barker, Walton, & Cecil, 2018; Weder et 

al., 2014). A common theory for how adverse experiences become biologically 

embedded pre- and postnatally is through influencing the stress-response 

regulated by the hypothalamic-pituitary-adrenal axis (HPA-axis) (Cao-Lei et al., 

2017; Miguel et al., 2019) and therefore many of these candidate gene studies 

have focussed on genes that are involved in the regulation of the HPA-axis 

(Kumsta, 2019; McGowan et al., 2009a; Murgatroyd & Spengler, 2011; Weaver 

et al., 2004). In the following section, I review the evidence for the most 

commonly investigated candidate genes, and briefly discuss how their function 

might contribute towards the development of internalising problems. 

5.2.1.1.1 Nuclear receptor subfamily 3 group C member 1 (NR3C1) gene 

In healthy individuals, stress induces activity of the HPA-axis to release cortisol, a 

glucocorticoid hormone, into the blood. Once a certain amount of cortisol is 

reached, a negative feedback loop becomes activated by cortisol reducing its own 

release through binding to the glucocorticoid receptor, that suppresses the activity 

of the HPA-axis and therewith stops the release of cortisol (Miller & 
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O’Callaghan, 2002). Research found that in individuals suffering from depression, 

the activation of the negative feedback loop is disturbed, probably due to lack of 

sensitivity of the glucocorticoid receptor, causing inflated levels of cortisol in the 

blood (Pariante & Lightman, 2008). Offspring can either be exposed to elevated 

cortisol levels prenatally, through maternal stress during pregnancy leading to an 

increased level of maternal glucocorticoids, which cross the placenta barrier, or 

postnatally, by offspring’s own secretion of glucocorticoids. There is evidence 

that both, increased prenatal and postnatal glucocorticoid exposure, is associated 

with dysregulation of offspring’s HPA-axis and brain development (Duthie & 

Reynolds, 2013; Lupien et al., 2009). Prenatal stress, particularly maternal anxiety 

and depression, was found to be associated with differences in offspring’s 

neuronal development (Miguel et al., 2019) and an inflated stress response after 

stressful events (Gutteling et al., 2005). 

A well-known epigenetic study by Weaver and colleagues (Weaver et al., 2004) 

found support for DNA methylation at the glucocorticoid receptor mediating the 

effect of early life adversity on the stress-response. Specifically, they investigated 

the effects of a high- vs. low-nurturing postnatal environment and found that, in 

contrast to rat pups raised in a high nurturing environment, pups raised in a low 

nurturing environment showed an increased fear response and elevated activity of 

the HPA-axis in response to stress (Weaver et al., 2004). The effects of high vs. 

low maternal care were mediated through epigenetic changes in offspring at the 

exon 17 of the promoter site of the Glucocorticoid receptor gene called Nr3c1. 

Following the findings of the study of Weaver and colleagues (Weaver et al., 

2004), many other candidate gene studies were conducted to investigate 

epigenetic changes at the glucocorticoid receptor gene in response to prenatal and 

postnatal exposure to stress. A systematic review from 2016 reported that at least 

13 animal and 27 human studies have investigated this topic (Turecki & Meaney, 

2016). According to the systematic review, 89% of these candidate gene studies 

showed congruent findings for an association between increased DNA 

methylation at the 1F exon variant of NR3C1 gene (the human counterpart to exon 

17 of Nr3c1 in rats) and different types of early adversity. Two of these studies 

investigated cord blood DNA methylation: One reporting hypermethylation at 1F 

of the NR3C1 gene in cord blood of 33 children exposed to maternal depression, 
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compared to DNA methylation levels of 36 children not exposed to prenatal 

depression (Oberlander et al., 2008). The other study found evidence for 

pregnancy related anxiety being associated with increased offspring cord blood 

DNA methylation at promoter regions of the NR3C1 gene amongst 83 mothers 

and their offspring, with the strongest evidence at exon 1F (Hompes et al., 2013). 

Findings from these two NR3C1 candidate gene studies in cord blood were partly, 

but not completely, overlapping (Hompes et al., 2013).  

In addition to candidate gene studies of cord blood, NR3C1 methylation assessed 

in peripheral blood was reported to be positively associated with internalising 

problems amongst 468 adolescents exposed to postnatal stressful life events, 

however, no DNA methylation differences at NR3C1 were found in adolescents 

exposed to perinatal stress (van der Knaap et al., 2014). Two studies investigated 

DNA methylation near promoters of the NR3C1 gene in brain tissue of suicide 

victims and only found hypermethylation in individuals who experienced early 

child abuse but not in suicide victims without experience of child abuse (Labonte 

et al., 2012; McGowan et al., 2009). Together with the other candidate gene 

studies, this suggests that changes in DNA methylation at NR3C1 are linked to an 

elevated stress-response and may be particularly influenced by childhood 

adversity (Labonte et al., 2012; McGowan et al., 2009; Weder et al., 2014).  

Besides NR3C1, other genes that have been targeted in DNA methylation studies 

investigating environmental exposures on children’s stress-response, 

neurodevelopment, and mental health problems are (Barker, Walton, & Cecil, 

2018; Weder et al., 2014): The serotonin transporter gene (SLC6A4) (Brummelte 

et al., 2017; Oberlander et al., 2010; Roberts et al., 2014), Brain-derived 

neurotropic factor (BDNF)(Fuchikami et al., 2011) and the FKBP Prolyl 

Isomerase 5 gene (FKBP5) (Klengel & Binder, 2015). 

5.2.2 Epigenome-wide association studies of anxiety and depression 

Candidate gene studies are unlikely to capture the full complexity of the gene-

environment interplay that contributes towards the development of internalising 

disorders (Barker, Walton, & Cecil, 2018). Yet only two EWAS have investigated 

associations between DNA methylation and childhood internalising problems. A 

small EWAS investigated the association between DNA methylation in saliva of 
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190 children (aged 5 to 14 years) discordant for maltreatment. While DNA 

methylation at three CpG sites was associated with depressive symptoms in the 

overall sample, no differences between DNA methylation levels of maltreated and 

non-maltreated children were observed (Weder et al., 2014). Genes corresponding 

to these CpG sites were ID3, NMDA, GRIN1, and TPPP, which are also involved 

in the stress-response and neurological development. Another small EWAS of 18 

monozygotic twins discordant for adolescent depression found increased buccal 

cell DNA methylation at one CpG site, annotated to the STK32C gene, to be 

associated with depression, which was replicated in post-mortem brain tissue of 

veterans discordant for depression (Dempster et al., 2014). No overlap in results 

was observed between these two EWAS, neither between the CpGs sites nor their 

annotated genes. While DNA methylation sites at NR3C1 did not survive multiple 

testing corrections in the two EWAS, some sites showed at least nominal 

significance in the EWAS of Dempster and colleagues (Dempster et al., 2014) and 

survived Bonferroni correction in a candidate gene follow-up in Weder and 

colleagues’ study (Weder et al., 2014). 

5.2.3 Summary 

In summary, DNA methylation may be a potential biological marker for 

internalising problems in childhood and help to improve the understanding and 

identification of symptoms that are commonly not diagnosed before adolescence.   

Candidate studies have consistently found altered DNA methylation at NR3C1 in 

offspring exposed to some form of prenatal or postnatal early life stress. Yet, in 

EWAS studies, changes in methylation at NR3C1 tend to not survive adjustment 

for multiple testing. Rather, results of EWAS studies indicate that DNA 

methylation at other genes might be more relevant for the development of anxiety 

and depression. This highlights the importance of not just focussing on selected 

genes, but to take on a hypothesis-generating epigenome-wide approach to 

discover the contribution of novel genes to the development of internalising 

problems (Barker, Walton, & Cecil, 2018). Studies that have taken an epigenome-

wide approach for investigating internalising symptoms in offspring were of small 

size, only investigated DNA methylation in childhood/adolescence (i.e., after 

postnatal influences on DNA methylation have taken place), and solely focussed 

on depressive but not anxiety symptoms in childhood. The aim of this study was 
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to increase understanding for the contribution of prenatal and postnatal 

environmental exposures to the development of internalising problems in 

childhood by investigating associations between cord blood and peripheral blood 

DNA methylation (in childhood) with internalising symptoms at ages 3 and 7, 

using data from multiple prospective European studies which collectively provide 

a large sample size (maximum N = 3,011).   

5.3 Methods 

To investigate critical windows in development when children are particularly 

susceptible to biologically embed adverse environmental experiences that are 

associated with internalising problems in childhood, two main analyses were 

conducted. The first analysis was set out to investigate the relationship between 

cord blood DNA methylation and childhood internalising problems, where 

associations might indicate the contribution of prenatal experiences to 

internalising problems in childhood. The cord blood analysis involved a 

prospective EWAS using offspring cord blood DNA methylation as the exposure 

and internalising problems in children at the age of 3 or 7 years as the outcome 

(from here on referred to as “cord blood analysis age 3” and “cord blood analysis 

age 7”). Second, to investigate postnatal effects, results from the cord blood 

analyses were compared with results from a cross-sectional analysis using 

childhood peripheral blood DNA methylation at the age of 7 and internalising 

problems at the age of 7 (from here on referred to childhood peripheral blood 

analysis age 7).  

5.3.1 Meta-analysis of epigenome-wide association studies  

5.3.1.1 Participating cohorts 

The prenatal EWAS meta-analysis included three independent birth cohorts that 

had data on offspring cord blood DNA methylation and internalising problems 

around the age of 3 available (total N = 3,011): ALSPAC (N = 739); Generation R 

(N = 793), MoBa1 (N = 998), and Moba2 (N = 481). As the MoBa DNA 

methylation subsamples did not have data on child internalising problems after the 

age of 3 available, and did not have DNA methylation data beyond birth, some 

meta-analyses contained data from ALSPAC and Generation R only. These were: 

A cord blood meta-analysis at age 7 (ALSPAC: N = 709; Generation R: N = 892; 
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total N = 1,601) and a peripheral blood meta-analysis at age 7 (ALSPAC: N = 

747; Generation R: N = 374; total N = 1,121). An overview of the sample sizes of 

the individual cohorts for the cord blood and peripheral-blood analyses is 

presented in the Flowcharts (Figure 5.1 and Figure 5.2). I excluded multiple 

pregnancies (e.g., twins) and siblings so that each mother was only represented 

once in the datasets. For more details about the individual cohorts please refer to 

Chapter 2. 
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Figure 5.1 Flow chart of the sample sizes of the cord blood analyses. Int. 

problems = Internalising problems. 

 

 

Figure 5.2 Flow chart of the sample size of the cross-sectional analysis. Int. 

problems = Internalising problems. 
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5.3.1.2 Measures 

5.3.1.2.1 DNA methylation 

Cord blood and peripheral blood DNA methylation was assessed through 

normalised beta values. Cohorts assessed methylation data individually, using 

their own laboratory methods, quality control, and normalisation. DNA 

methylation data was sampled using the lllumina Infinium® 

HumanMethylation450 (486,425 probes). Probes on SNPs, probes that cross-

hybridized according to Chen and colleagues (Chen et al., 2013), and probes on 

the sex chromosomes were excluded.  

5.3.1.2.2 Childhood internalising problems 

Child behaviour checklist (CBCL-1½-5). In Generation R and MoBa, child 

internalising problems at the age of 3 were assessed using the internalising 

subscale of the CBCL (Achenbach & Rescorla, 2000). The internalising subscale 

combines scores on the Anxious/Depressed, Withdrawn-Depressed, Emotional 

Reactivity and Somatic Complaints syndrome scales. Mothers reported on their 

children’s internalising problems over the last two months, on a 3-point Likert 

scale, ranging from 0 = “Not True” to 2 = “Very True or Often True”, with higher 

scores reflecting more internalising problems. Whereas Generation R used the full 

internalising scale (N items = 36), MoBa1 and MoBa2 used a short scale, which 

contained a subset of 9-items of the full internalising scale (further information on 

the MoBa subscale can be found here 

https://www.fhi.no/globalassets/dokumenterfiler/studier/den-norske-mor-far-og-

barn--undersokelsenmoba/instrumentdokumentasjon/instrument-documentation-

q6.pdf).  

Strengths and Difficulties Questionnaire (SDQ). In ALSPAC, internalising 

problems at the age of 3 were assessed using the emotional symptoms subscale of 

the SDQ (Goodman, 1997). The emotional symptoms scale incorporates 5 items 

that are rated by mothers on a 3-point Likert scale (0 = Not true, 1 = Somewhat 

true, 2 = Certainly true), with higher scores reflecting more internalising 

problems. Mothers were asked to report on their child’s behaviours over the past 

six months.  

https://www.fhi.no/globalassets/dokumenterfiler/studier/den-norske-mor-far-og-barn--undersokelsenmoba/instrumentdokumentasjon/instrument-documentation-q6.pdf
https://www.fhi.no/globalassets/dokumenterfiler/studier/den-norske-mor-far-og-barn--undersokelsenmoba/instrumentdokumentasjon/instrument-documentation-q6.pdf
https://www.fhi.no/globalassets/dokumenterfiler/studier/den-norske-mor-far-og-barn--undersokelsenmoba/instrumentdokumentasjon/instrument-documentation-q6.pdf
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Comparability of the questionnaires. Previous research from the UK (Goodman & 

Scott, 1999), Germany, and Austria (Klasen, 2000) has shown that the 

internalising problems subscale of the CBCL and emotional symptoms subscale 

of the SDQ correlate moderately to highly (r = 0.69 - 0.74) in 4 to 10-year-old 

children and can equally well distinguish between clinical and control 

populations. The comparability of the scales is further supported by studies from 

the Netherlands (van Widenfelt et al., 2003) and Finland (Koskelainen & 

Kaljonen, 2000), which found the CBCL and SDQ to be comparable in samples of 

older children aged 11-16 years. 

5.3.1.2.3 Covariates 

I included the following state-of-the-art covariates for EWAS analyses in the 

models to reduce biological and technical variation (see Chapter 2 for more 

detail). 

Offspring age. Due to known associations between age and variation in DNA 

methylation (Teschendorff, West, et al., 2013), I adjusted the cord blood analyses 

for gestational age in days and the meta-analysis using peripheral blood in 

childhood for offspring’s age at DNA methylation assessment. 

Technical batch. I accounted for DNA batch effects by adding 20 surrogate 

variables.  

Cell proportions. As explained in Chapter 2, cellular heterogeneity is an important 

source of variation in DNA methylation data that can exaggerate or mask true 

differences in methylation levels. I estimated cell proportions using the Houseman 

method (Houseman et al., 2012) with a cord blood reference panel for the 

analyses using cord blood (Gervin et al., 2016) and a peripheral blood reference 

panel for the childhood peripheral blood meta-analysis (Reinius et al., 2012). I 

then included estimated cell counts in models as covariates. 

I included the following covariates in the analyses to reduce variability in the 

outcome or if there was indication of confounding (variable might be causing 

both, DNA methylation and outcome). Therefore, I included covariates if there 

was indication in the literature that they were associated either with internalising 

problems (to reduce variability in the outcome) or correlated with both, DNA 
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methylation and internalising problems. A description of the variables of each 

cohort can be found in Appendix T, T1 to T3.  

Maternal education. An ordinal variable of maternal education, with higher scores 

representing a higher level of education, was used as a proxy for family 

socioeconomic position (SEP). Family SEP has been found to be associated with 

higher risk for offspring mental health problems (Barker et al., 2012; Goodman et 

al., 2011) and is commonly adjusted for in EWAS (Joubert et al., 2016; Sharp et 

al., 2021).  

Maternal age (years). Maternal age was found to be associated with both 

offspring mental health problems (Carslake et al., 2017), and DNA methylation 

(Markunas et al., 2016).  

Maternal smoking during pregnancy. Maternal smoking during pregnancy was 

included as an ordinal variable (0 = no smoking, 1 = giving up smoking early in 

pregnancy, 2 = smoking throughout pregnancy) and included because of the 

strong influence on DNA methylation (Joubert et al., 2016) and indication for 

association with offspring internalising problems (Ashford et al., 2008b; Moylan 

et al., 2015).  

Maternal anxiety and depression during pregnancy. Further, I separately adjusted 

for maternal anxiety and depressive symptoms during pregnancy, which should 

also be a proxy of postnatal depression (Matijasevich et al., 2015). Maternal 

depression, both during and outside of pregnancy, has been associated with an 

increased risk for offspring mental health problems (Ahun et al., 2018; Barker et 

al., 2012; Goodman et al., 2011; Matijasevich et al., 2015). Further, maternal 

anxiety and depression may partly explain variation in offspring DNA 

methylation because of the shared genetic propensity for anxiety and depression 

between mother and offspring, which may explain part of the variation of 

offspring’s DNA methylation levels (Jones et al., 2018; Miguel et al., 2019). In 

ALSPAC, frequency of maternal anxiety and depressive symptoms during 

pregnancy were assessed with the Edinburgh Postnatal Depression scale (10 items 

rated on 4-point Likert scale ranging from 0 = “Not at all” to 3 = “yes, most of the 

time”) (Cox et al., 1987) in the second trimester of pregnancy. In Generation R, 

the anxiety and depressive symptoms subscale of the Brief Symptom Inventory 
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(12 items, rated on a 5-point likert scale ranging from 0 = “Not at all” to 4 = 

“extremely”) (Derogatis & Melisaratos, 1983), assessed during the second 

trimester of pregnancy, were used. In MoBa1 and MoBa2, five selected items of 

the Hopkin’s symptom checklist (4-point Likert scale ranging from 0 = “Not 

bothered” to 3 = “Very bothered”) (Derrogatis et al., 1973), assessed in the third 

trimester of pregnancy, were used (Appendix T for further detail). 

5.3.2 Statistical analyses 

5.3.2.1 Cohort-specific statistical analyses  

Before running the EWAS, I removed probes that fell outside 3 times the inter-

quartile range (IQR: 25th to 75th percentile) (Tukey, 1977) from the methylation 

data. I generated surrogate variables using the R-package SVA (Leek et al., 2012) 

and estimated cell proportions using the Houseman method (Houseman et al., 

2012). For each model, I ran a linear regression model at each CpG site using the 

R-package Limma (Ritchie et al., 2015), with offspring DNA methylation as the 

exposure and internalising problems in childhood as the outcome. I z-standardised 

internalising problems scores and maternal depression and anxiety symptoms 

during pregnancy before running the regression models to ensure compatibility of 

the scales used in the different cohorts. The cord blood and childhood peripheral 

blood analyses included five models each: A minimally adjusted model only 

adjusted for estimated cell proportions, a covariate adjusted model including all 

covariates (except for maternal anxiety and depression symptoms during 

pregnancy), two models stratified for sex, and a final model that was additionally 

to the covariates, adjusted for maternal anxiety and depression symptoms during 

pregnancy.  

5.3.2.2 Probe-level analysis 

5.3.2.2.1 Quality control checks for cohort results 

Prior to meta-analysing summary results from each cohort, I conducted quality 

checks to ensure that there were no problems with the data. First, I generated 

correlation matrices of the beta coefficients for each of the models. Second, I 

plotted and inspected the distributions of the P-values through QQ-plots, and 

calculated Lambda values. Further, I generated precision plots by plotting 
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1/median standard error against the square root of the sample size of each cohort 

(see Chapter 2 for more detail).  

5.3.2.3 Differentially methylated regions (DMR analysis) 

In addition to the probe level analysis, I conducted a regional analysis in each 

cohort. More details about this method can be found in Chapter 2. I ran DMR 

analyses using the dmrff.pre function from the dmrff R-package (Suderman et al., 

2018). I annotate probes to the human reference genome version 19, build 37h 

using the annotation data available from the R-package meffil (Suderman et al., 

2019).  

5.3.2.4 Meta-analysis  

5.3.2.4.1 Probe-level meta-analysis 

I meta-analysed results with fixed effect estimates, weighted by the inverse of the 

variance using METAL (Willer et al., 2010). I adjusted P-values using a 5% FDR 

(see Chapter 2) and considered associations with an adjusted P-value below 0.05 

as evidence for statistical significance (Benjamini & Hochberg, 1995).  

5.3.2.4.2 Quality control checks for meta-analysed results 

I inspected P-value distributions of the meta-analysed results through creating 

QQ-plots and corresponding Lambda values. Also, for the meta-analysed models, 

I generated correlation matrices of effect estimates. Furthermore, I performed a 

leave-one-cohort-out analysis using the R-package metafor (Viechtbauer, 2010) to 

determine the impact of each individual cohort on the meta-results (see Chapter 

2).  

5.3.2.4.3 Differentially methylated regions (DMR) meta-analysis 

I meta-analysed DMR summary statistics from each cohort using an inverse-

variance weighted fixed effects approach within the dmrff.meta function 

(Suderman et al., 2018). I defined a DMR as a region with at least two CpG sites 

with the same direction of effect and a Bonferroni adjusted P-value of less than 

0.05 (PBonferroni = original P-value x number of tests that were run).  

5.3.3 Candidate-gene wide analysis 

To test whether DNA methylation at four commonly tested candidate genes show 

association with internalising symptoms in this sample, I looked-up results of 



Chapter 5 – EWAS meta-analysis of internalising problems 

 184 

CpG sites annotated to NR3C1, SCL6A4, BDNF, and FKBP5 in the probe-level 

meta-EWAS results. To assess evidence for an association between these CpG 

sites and internalising problems I adjusted the P-value threshold according to the 

Bonferroni method, where the number of tests was defined as the number of CpG 

sites annotated to a given candidate gene. 

5.4 Results 

5.4.1 Sample characteristics  

5.4.1.1 Maternal characteristics 

Demographic information about mothers that were included in the meta-analysis 

can be found in Table 5.1. Overall, offspring and maternal characteristics appear 

to be very similar across the different cohorts. The sample of the cord blood meta-

analysis at age 3 contained more mothers with higher education levels (69%) than 

mothers with lower education levels, and this pattern was consistent across the 

individual cohorts, except for ALSPAC, where mothers were approximately 

equally distributed between high and low education groups (high education = 

50%, Table 5.1). On average, 11% of mothers in the sample smoked in the third 

trimester or throughout pregnancy (Table 5.1). For the cord blood and peripheral 

blood meta-analyses using internalising problems at the age of 7 as the outcome 

(not including MoBa), the sample became slightly more equally distributed in 

terms of maternal education, yet still slightly more mothers had a high school 

degree (and/or further education; ~58%) than no High School degree (Table 5.1). 

The distribution of mothers who smoked during pregnancy was comparable to the 

sample in the analysis using internalising problems at the age of 3 as the outcome 

(11% to 12%, Table 5.1). Also, maternal age at birth was consistent across the 

cohorts and assessment time points, with mothers being on average 31 years of 

age at the birth of the study child (range: 29.75 to 32.31 years; Table 5.1).  
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Table 5.1 Maternal characteristics 

Cohort  High 

maternal SEP 

(N (%)) 

Maternal 

age (Mean, 

SD) 

Maternal 

smoking (N 

(%)) 

Maternal 

anxiety/depression 

during pregnancy 

(Mean (SD))* 

Internalising problems age 3 ~ Cord blood DNAm  

ALSPAC (N = 739) 372 (50%) 29.75 (4.32) 79 (11%) 0.63 (0.46) 

Generation R (N = 

793) 

560 (71%) 32.06 (3.99) 83 (11%) 0.13 (0.22) 

Moba 1 (N = 998) 838 (84%) 29.97 (4.30) 146 (15%) 0.23 (0.35) 

Moba 2 (N = 481) 391 (81%) 29.90 (4.29) 43 (9%) 0.23 (0.34) 

Total or mean (N = 

3,011) 

2,161 (72%) 30.52 (4.21) 351 (12%) - 

Internalising problems age 7 ~ Cord blood DNAm  

ALSPAC (N = 709) 366 (52%) 29.92 (4.35) 74 (10 %) 0.90 (0.47) 

Generation R (N = 

892) 

578 (65%) 31.78 (4.21) 103 (12%) 0.13 (0.26) 

Total or mean (N = 

1,601) 

944 (60%) 30.99 (4.27) 177 (11%) - 

Internalising problems age 7 ~ Peripheral blood DNAm age 7  

ALSPAC (N = 747) 384 (51.4%) 29.89 (4.33) 80 (11%) 0.60 (0.49) 

Generation R (N = 

374) 

264 (70.6%) 32.31 (3.90) 40 (11%) 0.11 (0.22) 

Total or mean (N = 

1,121) 

648 (57.8%) 30.81 (4.17) 120 (11%) - 

Note. In the Total row, means were weighted by the inverse variance for each cohort. Smoking = 

Smoking late/throughout pregnancy. High maternal socio-economic position (SEP): maternal 

education >= high school diploma. * As each cohort used different scales, it was not possible to 

generate a total sample mean.  

 

As different scales assessed maternal anxiety and depressive symptoms across the 

cohorts, no weighted mean could be calculated. The item means of the individual 

scales can be found in Table 5.1. Across cohorts and time-points, most mothers 

did not show symptoms of anxiety and depression during pregnancy. Mothers in 

ALSPAC had the highest frequency of experiencing anxiety or depressive 

symptoms, reporting on average to experience symptoms “not very often” (Mean 

= 0.63, SD = 0.46; Table 5.1) during the past seven days. In Generation R, 

mothers reported on average to experience any anxiety or depressive symptoms 

“not at all” (Mean = 0.13, SD = 0.22) during the past seven days, and in MoBa1 
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and MoBa2, mothers reported on average to “not have been bothered” with any 

anxiety or depressive symptoms in the past two-weeks (Mean = 0.23, SD = 0.63-

0.64; Table 5.1). This patterned remained consistent for analyses of internalising 

symptoms at the age of 7 (Table 5.1). 

5.4.1.2 Offspring characteristics 

At the assessment of internalising symptoms at the age of 3, the sample contained 

children with an average age of approximately 3.5 years (weighted mean in 

months = 41.67, SD = 1.18; Table 5.2). At the assessment of internalising 

problems at the age of 7, children within the sample were on average 6.7 years of 

age (weighted mean in months = 80.93, SD = 1.28; Table 5.2). Overall, the 

samples contained an equal number of male and female sex offspring, except for 

MoBa2, which contained slightly more male than female sex offspring (44% 

female offspring, Table 5.2). Across cohorts, female and male sex children 

showed similar levels of internalising problems (Table 5.2). At the age of 3, 

children showed almost no internalising problems, with mothers on average 

answering statements about their child expressing internalising problems with 

“not true” (see Item mean internalising problems in Table 5.2). The pattern of 

mothers reporting almost no internalising problems and similar levels of 

internalising problems for female and male offspring did not change in the 

samples with 7-year-old children (Table 5.2). 
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Table 5.2 Offspring characteristics 

Cohort (N) M age in months 

(SD)* 

M gestational age 

in weeks (SD) 

N (~%) 

Female 

Item mean (SD) of 

internalising subscale**  

Item mean (SD) of 

internalising subscale ** – 

Female sex  

Item mean (SD) of 

internalising subscale ** – 

Male sex 

Internalising problems age 3 ~ Cord blood DNAm  

ALSPAC (N 

= 739) 

47.59 (0.85)  39.55 (1.49) 377 (51%) 0.26 (0.27) 0.28 (0.04) 0.25 (0.28) 

Generation R 

(N = 793)  

36.36 (0.84) 40.26 (1.40) 400 (50%) 0.12 (0.10) 0.12 (0.11) 0.12 (0.10) 

Moba1 (N = 

998) 

47.59 (0.85) 39.97 (1.55) 499 (50%) 0.24 (0.42) 0.25 (0.22) 0.23 (0.21) 

Moba 2 (N = 

481) 

28.93 (16.38) 39.95 (1.45) 212 (44%)  0.24 (0.22) 0.25 (0.24) 0.23 (0.20) 

Mean or total 

(N = 3,011) 

41.67 (1.18) 39.92 (1.50) 1445 (48%) - - - 

Internalising problems age 7 ~ Cord blood DNAm  

ALSPAC (N 

= 709) 

81.20 (1.00)  39.54 (1.51) 356 (50%)  

  

 0.25 (0.28) 0.27 (0.27) 0.24 (0.29) 

Generation R 

(N = 892) 

70.92 (3.6) 40.25 (1.40) 448 (50%) 0.14 (0.14)  0.13 (0.13) 0.14 (0.14) 

Mean or total 

(N = 1,601) 

80.29 (1.43) 39.91 (1.49) 804 (50%) - - - 

Internalising problems age 7 ~ Peripheral blood DNAm at age 7   

ALSPAC (N 

= 747) 

81.22 (1.06) - 372 (50%) 0.27 (0.29) 0.27 (0.27) 0.26 (0.30) 

Generation R 

(N = 374) 

71.28 (4.32) - 195 (52%) 0.12 (0.13) 0.12 (0.12) 0.13 (0.14) 

Mean or total 

(N = 1,121) 

80.93 (1.28) - 572 (51%) - - - 

Note. M = mean. In the Total row, means were weighted by the inverse variance for each cohort. * age at DNA methylation assessment. ** As each cohort used different 

scales, it was not possible to generate a total sample mean for internalising problems. DNAm = DNA methylation. Item means were calculating by dividing the total score by 

the number of items.



Chapter 5 – EWAS meta-analysis of internalising problems 

 188 

5.4.1.3 Associations between offspring internalising problems and covariates 

Across cohorts and time points there was statistical evidence for maternal anxiety 

and depressive symptoms during pregnancy being positively associated with 

offspring internalising problems during childhood, yet the magnitude of 

associations was rather small (Table 5.3). As expected, there was evidence for 

internalising problems assessed at the age of 3 being positively associated with 

internalising problems assessed at the age of 7 but still only of moderate size, 

indicating that internalising problems change from age 3 to 7 (Table 5.3). Other 

than these associations, and a small association between younger maternal age at 

delivery and increased offspring internalising problems at the age of 3 in the 

MoBa1 cohort, there was little evidence of association between offspring 

internalising problems and any of the other covariates (Table 5.3). Offspring of 

mothers who smoked throughout or late during pregnancy had similar mean 

internalising problems at age 3 and 7, as offspring whose mothers quit early or 

never smoked during pregnancy (Table 5.4). 
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Table 5.3 Correlation table of internalising problems and covariates 

 Correlation with int. problems age 3 Correlation with int. 

problems age 7 

Covariates ALSPAC  Generation 

R 

MoBa1 MoBa2 ALSPAC  Generation 

R 

Maternal 

anxiety/depression 

during pregnancy 

0.13**  0.23** 0.19** 0.19** 0.15** 0.20** 

       

Maternal 

education 

-0.03 -0.06 -0.01 -0.02 0.05 -0.03 

       

Maternal age -0.05 -0.02 -0.07* -0.08 -0.01 -0.07* 

       

Gestational age -0.02 0.01 -0.06 -0.05 -0.03 -0.05 

       

Internalising 

problems age 3 

- - - - 0.39** 0.56** 

Note. int problems = internalising problems. * correlation statistically different from zero (P-

value < 0.05). ** correlation statistically different from zero (P-value < 0.001). 

 

Table 5.4 Comparison of internalising problems between offspring exposed/ not 

exposed to smoking during pregnancy 

 M int. problems age 3 (SD) M  int.problems age 7 

(SD) 

Maternal smoking 

during pregnancy 

ALSPAC  Generation 

R 

MoBa1 MoBa2 ALSPAC  Generation 

R 

No smoking or 

quitting early in 

pregnancy  

0.25 

(0.27) 

0.12  

(0.11) 

0.23 

(0.22) 

0.23 

(0.22) 

0.25 

(0.28) 

0.14  

(0.14) 

       

Smoking 

late/throughout 

pregnancy  

0.26 

(0.29) 

0.12  

(0.10) 

0.25 

(0.19) 

0.29 

(0.23) 

0.26 

(0.29) 

0.14  

(0.12) 

Note. M = mean int problems = internalising problems.  
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5.4.2 Probe-level meta-analysis 

5.4.2.1 Quality control checks for cohort results 

The correlation matrices of the individual cohort results can be found in Appendix 

U, Figures U1 to U8. In each cohort, the effect estimates of each of the models 

correlated moderately to highly and the pattern of correlations was consistent 

across cohorts, assessment time-points, and tissue of DNA methylation (cord vs. 

peripheral blood), indicating that each model was assessing the same effect. 

Lowest correlations were observed between the effect estimates of the sex-

stratified models, which may be explained by the small sample size in the 

stratified analyses, residual confounding (Yousefi et al., 2015), or sex-differences 

between the associations of DNA methylation and internalising problems. As 

most of the P-values in the QQ-plots follow the null line closely and stay within 

the 95% Confidence Intervals, there is little evidence for systematic confounding 

of the association between DNA methylation at individual CpG sites and 

offspring internalising problems (Appendix V, Figures V1 to V8). The precision 

plots show that ALSPAC has the highest precision in the prenatal analyses, 

despite MoBa1 and Generation R having slightly larger sample sizes (Appendix 

W, Figures W1 and W2. In the peripheral blood analysis, ALSPAC showed 

higher precision than Generation R, as would be expected because of the larger 

sample size (Appendix W, Figure W3). 

5.4.2.2 Quality control checks for meta-analysed results 

Correlation matrices of effect estimates of the models of the meta-analysed results 

were in line with the correlations observed in the individual cohorts (Appendix X, 

X1 to X3). Overall, estimates correlated highly, except for the sex stratified model 

coefficients, which only correlated moderately with the other model estimates, 

and did not show any association with each other. This pattern was consistently 

observed within cohorts, across tissues, as well as in the meta-analysed results, 

and could indicate potential sex-differences in the association between DNA 

methylation and internalising problems. Alternatively, this may also be explained 

by residual confounding of sex (Yousefi et al., 2015) and/or the small sample size 

in the sex-stratified analyses. Spurious results in sex-stratified EWAS models 

have previously been reported in a study where offspring sex was less likely to be 

a confounder/important source of variation in the trait of interest (paternal BMI) 
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(Sharp et al., 2021). Visual inspection of QQ-plots indicates that the P-values are 

mostly normally distributed (Appendix Y, Figures Y1 to Y3). The plots of the 

leave-one-out analysis can be found in Appendix Z, Figures Z1 to Z3). 

5.4.2.3 Association between DNA methylation and offspring internalising 

problems at the age of 3 and 7 

An overview of the results of the probe-level meta-analysis of each model can be 

found in Table 5.5. The cord blood meta-analysis using internalising problems at 

the age of 3 did not show any evidence for a statistically significant association 

between DNA methylation in cord blood and internalising problems. In the cord 

blood and childhood peripheral blood analyses using internalising problems at the 

age of 7 as the outcome, there was weak evidence for DNA methylation being 

associated with internalising problems in female sex offspring only (Table 5.5 and 

Table 5.6). The cord blood meta-analysis showed evidence for one CpG site being 

significantly associated with internalising problems in female sex offspring at the 

age of 7 (Chr6: cg266686320; estimate = -8.76, SE = 1.54, FDR adjusted P-value 

= 0.005), which did survive the leave-one-out analysis (Appendix G, Figure G1).  

Also, the childhood peripheral blood analysis did find evidence for DNA 

methylation at two CpG sites being significantly associated with internalising 

problems in female sex offspring at the age of 7 (Chr6: cg07283896; estimate = 

6.10, SE = 0.97, FDR adjusted P-value = 0.0001 and Chr7: cg08884410; estimate 

= 8.59, SE = 1.62, FDR adjusted P-value = 0.02; Table 1.5 and Table 1.6). 

However, of those CpG sites only cg08884410 survived the leave-one-out 

analysis (Appendix Z, Figures Z2 and Z3). The estimates are reflecting the change 

in internalising z-score per an increase from 0% to a 100% DNA methylation at a 

given CpG site. As DNA methylation does not change from 0% to 100% 

methylated or vice versa (see Chapter 2) (Mulder et al., 2020), a more reasonable 

interpretation would be to divide the estimate by 10, so that the estimate is 

representing a change in internalising z-score per 10% increase in percentage 

DNA methylation points at a given CpG site. For the cord blood meta-analysis, a 

10-point increase in percentage DNA methylation at cg266686320 would 

therefore be associated with a 0.9 decrease in offspring’s internalising z-scores at 

the age of 7 (Table 5.6). In the cross-sectional analysis, estimates were of similar 

magnitude; with a 10-point increase in percentage DNA methylation at 
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cg08884410 being associated with a 0.9 increase in female sex offspring’s 

internalising problems at the age of 7.  

 

Table 5.5 A summary of results of each EWAS model from the probe-level 

analysis 
Model N CpG 

sites with 

FDR-

corrected 

P-value 

<0.05 

N CpG 

sites (%) 

surviving 

leave-

one-out 

analysis 

Meta-

analysis 

sample 

size 

Genomic 

inflation 

factor 

(λ)** 

Internalising problems age 3 ~ Cord blood DNA methylation (N = 3,011) 

 
All offspring (minimally 

adjusted)* 
0 n.a. 3011 1.01 

 
All offspring (adjusted for 

covariates) 
0 n.a. 3011 1.00 

 
Female sex offspring (adjusted for 

covariates) 
0 n.a. 1452 1.02 

 
Male sex offspring (adjusted for 

covariates) 
0 n.a. 1559 0.99 

 
All offspring (adjusted for 

covariates and maternal anx/dep) 
0 n.a. 2987 1.00 

Internalising problems age 7 ~ Cord blood DNA methylation (N = 1,601) 

 All offspring (minimally 

adjusted)* 

0 n.a. 1601 1.02 

 All offspring (adjusted for 

covariates) 

0 n.a. 1601 1.03 

 Female sex offspring (adjusted for 

covariates) 

1 1 (100%) 804 1.02 

 Male sex offspring (adjusted for 

covariates) 

0 n.a. 797 1.06 

 All offspring (adjusted for 

covariates and maternal anx/dep) 

0 n.a. 1601 1.03 

Internalising problems age 7 ~ Childhood DNA methylation age 7 (N = 1,121) 

 All offspring (minimally 

adjusted)* 

0 n.a. 1601 0.99 

 All offspring (adjusted for 

covariates) 

0 n.a. 1136 0.98 

 Female sex offspring (adjusted for 

covariates) 

2 1 (50%) 572 1.02 

 Male sex offspring (adjusted for 

covariates) 

0 n.a. 564 0.94 

 All offspring (adjusted for 

covariates and maternal anx/dep) 

 n.a. 1136 0.98 

Note. * only adjusted for estimated cell counts and 20 surrogate variables. Covariates: maternal 

age, maternal smoking, maternal education, offspring age, estimated cell counts and 20 surrogate 

variables. ** The genomic inflation factor (λ) estimates the extent of bulk inflation of EWAS p-

values and the excess false positive rate. 1 = no inflation; > 1 some evidence of inflation. 
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Table 5.6 CpG sites associated with offspring DNA methylation and 

internalising problems at the age of 7 with FDR-adjusted P-value < 0.05  

Predictor CpG (gene) Estimate 

(SE)  

P-value BF 

adjusted  

P- value  

Internalising problems age 7 

~ Cord blood DNA 

methylation (Female sex 

only) 

Chr6: 

cg26668632 

(IFNGR1) 

-8.76 (1.54) 1.42 x 10-08 

  

0.005 

Internalising problems age 7 

~ Childhood DNA 

methylation age 7 (Female 

sex only) 

Chr6: 

cg07283896* 

6.10 (0.97) 3.20 x 10-10 

  

0.0001 

Chr7: 

cg08884410 

8.59 (1.62) 1.11 x 10-07 

  

0.02 

Note. “Estimate” can be interpreted as difference in internalising z-score per one unit increase in 

percentage DNA methylation points, after adjustment for all covariates. BF = Bonferroni. * did 

not survive the leave-one-cohort-out analysis. 

 

5.4.3 Differentially methylated regions meta-analysis  

5.4.3.1 Cord blood meta-analyses 

5.4.3.1.1 Internalising problems at the age of 3 

The DMRff meta-analysis found evidence for 2 to 3 differentially methylated 

regions (DMRs) in cord blood, with a length of 3 to 4 CpG sites to be associated 

with internalising problems at the age of 3 (Table 5.7). The covariate adjusted 

model showed evidence for two DMRs containing CpG sites annotated to the 

STK32C (Chr10: 134045514-134045913; estimate = 5.08, SE = 0.88; P-value = 

9.230 x 10-09) and MIR886 gene (Chr5: 135415693-135416613; estimate = -4.80, 

SE = 0.87; P-value = 3.948 x 10-08), of which only the region annotated to 

STK32C gene survived adjustment for maternal anxiety and depressive symptoms 

during pregnancy (Chr10: 134045514-134045913; estimate = 5.37, SE = 0.88, P-

value = 1.165 x 10-09). No regions were identified in the covariate models 

stratified by male sex, but three regions were identified in the female stratified 

models, which is in line with the probe-level results and indicates more evidence 

for DNA methylation being associated with internalising problems in female sex 

offspring. One of these regions overlapped with the region found in the covariate-

adjusted model, which was annotated to the MIR886 gene (Chr5: 135415693-

135416613; estimate = -8.54, SE = 1.28, P-value = 2.870 x 10-11). 
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Table 5.7 Results from the meta-analysis of differentially methylated regions for 

the cord blood meta-analysis: Internalising problems age 3 

DMR   N CpG 

sites 

Estimate 

(SE) 

Z P-value BF 

adjusted 

P-value 

Gene 

Covariate adjusted model  

Chr10: 

134045514-

134045913  

4 5.08 

(0.88) 

5.74 9.230 x 10-09 0.003 STK32C 

 

Chr5: 

135415693-

135416613 

15 -4.80 

(0.87) 

-5.49 3.948 x 10-08 0.014 MIR886 
 

Covariate adjusted model – Stratified by female sex 

Chr5: 

135415693-

135416613 

15 -8.54 

(1.28) 

-6.65 2.870 x 10-11 

 

1.049 x 

10-05 

 

MIR886 
 

Chr7: 

95025611-

95026095 

13 39.50 

(7.18) 

5.50 3.819 x 10-08 

 

0.014 

 

PON3 
 

Chr6: 

32120783-

32121055 

10 -17.66 

(3.24) 

-5.46 4.868 x 10-08 

 

0.018 

 

PPT2; 

PRRT1 

Covariate adjusted model – Stratified by male sex 

 0      

Covariate adjusted model –Maternal anx/dep adjusted 

Chr10: 

134045514-

134045913  

4 5.37 

(0.88) 

6.08 1.165 x 10-09 0.0004 STK32C 
 

Note. DMR = differentially methylated region. BF = Bonferroni. Covariate adjusted models were 

adjusted for maternal age, maternal smoking, maternal education, offspring age, estimated cell 

counts and 20 surrogate variables. 
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5.4.3.1.2 Internalising problems at the age of 7  

The meta-DMR analysis in cord blood showed evidence DNA methylation at 3 to 

4 regions being associated with internalising problems at the age of 7 (Table 5.8), 

yet none of these regions were the same as the regions found at age 3 (Table 5.7). 

In the covariate adjusted model one region annotated to gene PFKFB2 was found 

(Chr1: 207226769-207226830; estimate = 196.12, SE = 34.04, P-value = 8.377 x 

10-09) and this region also survived additional adjustment for maternal anxiety and 

depression symptoms during pregnancy (Chr1: 207226769-207226830; estimate = 

196.05, SE = 33.67, P-value = 5.805 x 10-09). Two regions were detected in each 

of the sex-stratified models, which were not overlapping (Table 5.8). Also, the 

regions associated with internalising problems of female sex offspring at the age 

of 3 were not replicated at age 7. The two regions found in the female-sex 

stratified model were annotated to MIR548F5; NBEA; MAB21L1 (Chr13: 

36050844-36050889; estimate = -79.94, SE = 14.73, P-value = 5.775 x 10-08) and 

SLC1A2 (Chr11: 35441311-35441777; estimate = -456.04, SE = 84.32, P-value = 

6.359 x 10-08). Only one of the two regions of the male-sex stratified model was 

annotated to a gene, namely ADSSL1 (Chr14: 105190337-105190477, estimate = 

648.61, SE = 108.59, P-value = 2.330 x 10-09). The non-annotated region was 

found on chromosome 6, spanning three CpG sites (Chr6: 75918463-75918733, 

estimate = 205.00, SE = 38.09, P-value = 7.370 x 10-08). 
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Table 5.8 Results from the meta-analysis of differentially methylated regions for 

the cord blood meta-analysis: Internalising problems age 7 

DMR  N CpG 

sites 

Estimat

e (SE) 

Z P-value BF 

adjusted 

P-value 

Gene 

Covariate adjusted model  

Chr1: 

207226769-

207226830 

3 196.12 

(34.04) 

5.76 8.377 x 10-09 0.003 PFKFB2 

Covariate adjusted model – Stratified by female sex 

Chr13: 

36050844-

36050889 

3 -79.94 

(14.73) 

-5.43 5.775 x 10-08 0.022 MIR548F; 

NBEA; 
MAB21L1 

Chr11: 

35441311-

35441777 

4 -456.04 

(84.32) 

-5.41 6.359 x 10-08 

 

0.024 SLC1A2 

 

Covariate adjusted model – Stratified by male sex 

Chr14: 

105190337-

105190477 

3 648.61 

(108.59) 

5.97 2.330 x 10-09 0.001 ADSSL1 

Chr6: 

75918463-

75918733 

3 205.00 

(38.09) 

5.38 7.370 x 10-08 0.023 

 

- 

Covariate adjusted model –Maternal anx/dep adjusted 

Chr1: 

207226769-

207226830 

3 196.05 

(33.67) 

5.82 5.805 x 10-09 0.002 PFKFB2 

Note. * only adjusted for estimated cell counts and 20 surrogate variables. Covariates: maternal 

age, maternal smoking, maternal education, offspring age, estimated cell counts and 20 surrogate 

variables. ** The genomic inflation factor (λ) estimates the extent of bulk inflation of EWAS P-

values and the excess false positive rate. 1 = no inflation; > 1 some evidence of inflation. DMR = 

differentially methylated region. BF = Bonferroni. 

  



Chapter 5 – EWAS meta-analysis of internalising problems 

 197 

5.4.3.2 Childhood peripheral blood analyses 

5.4.3.2.1 Internalising problems at the age of 7 

The DMR meta-analysis found evidence for 2-5 differentially methylated regions, 

spanning 2-10 CpG sites, in offspring’s peripheral blood at the age of 7 that were 

associated with internalising problems at the age of 7 (Table 5.9). In the covariate 

adjusted model, two regions were found that were mapped to the C10orf26 

(Chr10: 104535961-104536121; estimate = -55.48, SE = 8.83, P-value = 3.302 x 

10-10) and FAM125A (Chr19:17531148-17531370, estimate = 154.00, SE = 28.79, 

P-value = 8.832 x 10-08) gene. Of these two regions, none survived adjustment for 

maternal anxiety and depression during pregnancy (Table 5.8). The maternal 

anxiety and depression adjusted model found one DMR, with 3 CpG sites, 

mapped to the FAM848A gene to be associated with offspring internalising 

problems (Chr2:14772562-14772568; estimate = 5.37; SE = 14.21; P-value = 

8.049 x 10-08). The sex-stratified models showed evidence for 5 DMRs in the 

female sex-, and only 1 DMR in the male-sex stratified models, to be associated 

with internalising problems. Four regions of the female stratified model were 

annotated to the MIR2110; C10orf118 gene (Chr10: 115934483-115934488, 

estimate = 535.78, SE = 92.54, P-value = 7.046-09), HMGB1 (Chr13: 31039916-

31040215, estimate = 219.62, SE = 38.51, P-value = 1.178 x 10-08), FBXO21 

(Chr12: 117627133-117627450, estimate = 85.11, SE = 15.81, P-value = 7.299 x 

10-08) and KCNJ9 (Chr1: 160054219-160054321; estimate = 52.88, SE = 9.99, P-

value = 1.188 x 10-07) gene. The largest region associated with female offspring 

internalising problems at the age of 7 was on chromosome 6, spanning 10 CpG 

sites but has no gene annotated (Table 5.9). The male stratified model showed 1 

DMR, spanning eight CpG sites, that was annotated to the HOXA4 gene (Chr7: 

27170412-27170994; estimate = -18.33, SE = 2.65; P-value = 4.814 x 10-12). 
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Table 5.9 Results from the meta-analysis of differentially methylated regions for 

the cross-sectional analysis: Internalising problems age 7 

DMR  N 

CpG 

sites 

Estimate 

(SE) 

Z P-value BF 

adjusted 

P-value 

Gene 

Covariate adjusted model  

Chr10:104535961

-104536121 

5 -55.48 

(8.83) 

-6.28 3.302 x10-10 1.233-04 C10orf26 

Chr19:17531148-

17531370 

3 154.00 

(28.79) 

5.35 8.832 x10-08 0.033 FAM125A 

Covariate adjusted model – Stratified by female sex 

Chr10:115934483

-115934488 

2 535.78 

(92.54) 

5.79 7.046 x10-09 0.022 MIR2110; 

C10orf118 

Chr13:31039916-

31040215 

7 219.62 

(38.51) 

5.70 1.178 x10-08 0.003 HMGB1 

Chr6:31148370-

31148552 

10 14.56 

(2.57) 

5.67 

 

1.419 x10-08 0.004 - 

Chr12:117627133

-117627450 

4 85.11 

(15.81) 

5.38 7.299 x10-08 0.005 FBXO21 

Chr1:160054219-

160054321 

3 52.88 

(9.99) 

5.30 1.188 x10-07 0.028 KCNJ9 

Covariate adjusted model – Stratified by male sex 

Chr7:27170412-

27170994 

8 -18.33 

(2.65) 

-6.91 4.814 x10-12 1.789 

x10-06 

HOXA4 

Covariate adjusted model –Maternal anx/dep adjusted 

 Chr2:14772562-

14772568 

3 76.23 

(14.21) 

5.37 8.049 x10-08 0.030 FAM84A 

Note. * only adjusted for estimated cell counts and 20 surrogate variables. Covariates: maternal 

age, maternal smoking, maternal education, offspring age, estimated cell counts and 20 surrogate 

variables. ** The genomic inflation factor (λ) estimates the extent of bulk inflation of EWAS P-

values and the excess false positive rate. 1 = no inflation; > 1 some evidence of inflation. DMR = 

differentially methylated region. BF = Bonferroni. 
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5.4.4 Candidate gene look-up 

In addition to the hypothesis-free epigenome-wide approach, a targeted gene 

approach was performed for the four candidate genes described in the 

introduction. An overview of these results is presented in the Manhattan plots in 

Figure 5.3 to Figure 5.5). The CpG sites that reached nominal significance were 

checked for consistency in their direction of effect and P-value in the cord blood 

and peripheral blood analysis at the age of 7 and results are presented in Appendix 

BB, Table BB1). 

 

 

Figure 5.3 Manhattan plot of the candidate gene look-up of the internalising 

problems age 3 ~ cord-blood results. The black line represents the nominal 

significance level. The coloured lines represent the corresponding Bonferroni 

threshold (matched by colour to the corresponding gene). 
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Figure 5.4 Manhattan plot of the candidate gene look-up of the internalising 

problems age 7 ~ cord-blood results. The black line represents the nominal 

significance level. The coloured lines represent the corresponding Bonferroni 

threshold (matched by colour to the corresponding gene). 

 

 

 

 

 

Figure 5.5 Manhattan plot of the candidate gene look-up of the internalising 

problems age 7 ~ childhood peripheral blood results. The black line represents 

the nominal significance level. The coloured lines represent the corresponding 

Bonferroni threshold (matched by colour to the corresponding gene). 
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There were 32 CpG sites annotated to the candidate gene NR3C1, with one CpG 

site reaching nominal significance in the cord blood analysis of internalising 

problems at the age of 3 (Chr5: cg19457823, estimate = -1.17, SE = 0.53, P-value 

= 0.03) but not falling below the Bonferroni adjusted P-value threshold of 0.002 

(0.05/32 tests; red line, Figure 5.3), and not showing a consistent direction of 

effect in the cord blood analysis using internalising problems at the age of 7 

(Appendix BB, Table BB1). Overall, this indicates little evidence that DNA 

methylation at NR3C1 is contributing towards the development of internalising 

problems in children in this sample. Likewise, there was no evidence of DNA 

methylation at SLC6A4 gene influencing the development of childhood 

internalising problems. None of the 13 SLC6A4 annotated CpG sites even reached 

nominal significance (Figure 5.3) in the cord blood meta-analysis at the age of 3. 

Out of 91 CpG sites annotated to BDNF, only 9 reached nominal significance 

(black line, Figure 5.3) and none survived adjustment for multiple testing using 

the Bonferroni correction (Bonferroni P-value threshold: 0.05/91 tests = 0.0005; 

purple line, Figure 5.3). Out of the 9 CpG sites with nominal significance, only 1 

CpG site showed a consistent direction of effect in all three analyses, as well as a 

nominal significant P-value in the cord blood meta-analysis using internalising 

problems at the age of 7 (Chr11: cg10022526, estimate = -4.24, SE = 1.76, P-

value = 0.016; Appendix I, Table I1). However, the effect appeared to be very 

small in the childhood peripheral blood analysis using internalising problems at 

the age of 7 (estimate = -0.74, SE = 2.58, P-value = 0.774; Appendix BB, Table 

BB1). This provides weak evidence that DNA methylation at cg10022526 might 

be associated with prenatal exposures and internalising problems in childhood. 

Strongest evidence was found for DNA methylation at the FKBP5 gene being 

associated with internalising problems, with 5 out of 32 annotated CpG sites in 

the prenatal age 3 analysis reaching nominal significance (black line, Figure 5.3), 

of which 4 showed a persistent direction of effect (Appendix BB, Table BB1) but 

no P-value below the Bonferroni adjusted thresholds (Figure 5.3 to Figure 5.5; 

green line). In summary, there was no evidence for DNA methylation at 4 

candidate genes, which have previously been associated with offspring’s stress 

response, being associated with childhood internalising problems in this sample. 
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5.4.5 Meta-analysis of cell proportions 

In a meta-analysis of associations between internalising disorders and estimated 

cell proportions, neither the cord blood cell proportions nor the peripheral blood 

cell proportions were associated with offspring internalising problems (Appendix 

AA, AA1 to AA18). 

5.5 Discussion 

5.5.1 Summary and interpretation of findings 

Overall, the results of this study provide weak evidence for an association 

between DNA methylation and internalising problems in childhood. First, there 

were only few associations between DNA methylation at individual probes and 

regions, and internalising problems at the age of 3 and 7 years. Second, there was 

no overlap between CpG sites or regions across different assessment time-points 

of DNA methylation and internalising problems.  

The only pattern that could be observed across assessment time points was more 

evidence for associations with internalising problems in female than male sex 

children. The probe-level analysis showed weak evidence for DNA methylations 

at one CpG site in cord blood and two CpG sites in peripheral blood (of which 

only one survived the leave-one-out analysis) to be associated with internalising 

problems at the age of 7, in female sex children. The pattern of the probe-level 

analysis was confirmed by the DMR analyses, in which the highest number of 

internalising problem-associated DMRs was observed for female sex children in 

the cross-sectional analysis. Recent research indicates little systematic sex 

difference (~5%) in the development of DNA methylation at autosomes from 

birth to age 6 (Mulder et al., 2020), with female offspring tending to show higher 

levels of DNA methylation than male offspring. This could explain some, but not 

all of the associations that were observed in the probe-level and regional analysis. 

In the literature, internalising problems are reported to be more prevalent in 

female sex children than male sex (Gutman & Codiroli McMaster, 2020). Yet, it 

is unclear whether this sex difference in internalising problems is due to different 

biological pathways, socialisation, or both (Gutman & Codiroli McMaster, 2020). 

There are several potential explanations for the missing overlap between the 

probes and regions that were found to be associated with internalising problems at 
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age 3 and 7: (1) the effects are not persistent over development and/or of small 

magnitude, or (2) represent false positives/negatives due to the difference in 

sample size (and therewith power) between the age 3 and age 7 analysis. 

Alternatively, (3) it could also indicate that different developmental stages are 

subject to different confounding structures. Last, the use of different tissue types 

may have contributed to the lack of overlap in results since the comparison of 

DNA methylation in cord blood with peripheral blood in childhood might be 

problematic because of differences in cell compositions and gene regulations 

between these tissues (Martino et al., 2011; Mulder et al., 2020). However, this 

cannot complete account for the missing congruence, as results of this study did 

not show more alignment between DNA methylation in the two cord blood 

analyses than in the cord blood and peripheral blood analyses.   

The effect sizes of the probe-level EWAS meta-analysis appeared to be of similar 

magnitude as effects found in similar studies of childhood mental health 

problems, such as ADHD (Neumann et al., 2020) and aggressive behaviour 

(Dongen et al., 2021), as well as more distantly related phenotypes, such as BMI. 

In the EWAS meta-analysis of ADHD (N = 2,477) the effect sizes of the top hits 

showed a 10% increase in DNA methylation points at birth to be associated with 

changes in children’s ADHD z-scores of 0.2 to 0.4 (Neumann et al., 2020). In the 

EWAS meta-analysis of childhood aggressive behaviour (N = 2,425) the top site 

showed a 10% increase in DNA methylation points at birth to be associated with a 

0.4 z-score increase in childhood aggressive behaviour (Dongen et al., 2021). The 

top CpG site at birth of the EWAS meta-analysis of childhood BMI showed a sex- 

and age-adjusted standard deviation score of 0.27 (SE = 0.05; N = 3,295) between 

the ages 2 to 5 years, and of 0.96 (SE = 0.17; N = 4,133) at 5 to 10 years, in 

association with 10% increase in methylation points (Vehmeijer et al., 2020). In 

comparison, in this study a 10% increase in DNA methylation points at the top 

site at birth in female sex children was associated with a decrease in internalising 

problems z-score of 0.9. The effect sizes of the top CpG sites of the non-stratified 

models (P < 1x10-5, Appendic CC, Table CC1) at birth showed a range of 

internalising problems z-scores of 0.1 to 1.1, and in the cross-sectional analysis of 

0.2 to 0.5, in association with a change in 10% methylation points (Appendix CC, 

Table CC1). 
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5.5.2 Biological pathways 

According to the database look-up, some of the differentially methylated regions 

that were found to be associated with childhood internalising problems were 

annotated to genes linked to related traits such as: Brain development (PPT1, 

MAB21L1) and neurological functioning (SCL1A2, NBEA, PPT2) and previously 

associated with anxiety-related disorders (NBEA, C10orf26/WBP1L). 

Additionally, two of the genes annotated to the DMRs have previously been 

associated with autism spectrum disorder (PRRT1, NBEA) and schizophrenia 

(PRRT1, NBEA, C10orf26/WBP1L). However, most of the DMR annotated genes 

have not been linked to traits related to internalising problems (MIR886, PON3, 

PFKFB2, ADSSL1, HMGB1, FBXO21, KCNJ9, FAM125A). Interestingly, the 

STK32C gene that was annotated to a DMR of the cord-blood age 3 analysis has 

been reported to show increased buccal cell DNA methylation in a small EWAS 

of 18 monozygotic twins discordant for adolescent depression (Dempster et al., 

2014). Also, this was replicated in post-mortem brain tissue of veterans discordant 

for depression (Dempster et al., 2014). Furthermore, in a different study, a closely 

related gene region near the promoter of the STK32B gene was differentially 

methylated in adolescents at risk to develop generalised anxiety disorder (GAD; N 

= 221) (Ciuculete et al., 2018). However, the effect was very small, with 

adolescents high at risk for GAD only showing 1% increased methylation at a 

CpG site annotated to STK32B, compared to adolescents at low risk for GAD.  

However, as the STK32C region did not come up in the cord blood and peripheral 

blood age 7 analyses, it is not clear whether this a true positive finding or due to 

chance. Generally, the little congruence between results of the different models 

and time-points should alert to refrain from any biological interpretations before 

future research has replicated these findings.  

Also, the candidate-wide analyses did not support evidence for a contribution of 

DNA methylation differences in cord blood at NR3C1, SLC6A4, BDNF or FKBP5 

to the risk for internalising problems in childhood. Only a few of the CpG sites 

annotated to these genes showed nominal significant associations with 

internalising problems and none survived the Bonferroni correction (Figure 5.3 to 

Figure 5.5 and Appendix BB, Table BB1). However, most of the previous 

candidate gene studies were applied in samples of children with exposure to 
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adverse experiences, which was not factored into the analyses of this study. For 

instance, Weder and colleagues (Weder et al., 2014) did not find evidence for 

differential DNA methylation being associated with depression in 190 children 

(aged 5-14 years) in a candidate gene analysis of the same genes used in this 

study. However, they did find differences between maltreated and non-maltreated 

children at few probes that survived Bonferroni correction (N probes NR3C1 = 1; 

N probes BDNF = 9; N probes FKBP5 = 4), indicating that DNA methylation at 

these genes may be uniquely responsive to maltreatment (Weder et al., 2014). The 

demographics of this sample indicate a rather low risk for children to be exposed 

to adverse experiences (high maternal education, few mothers smoking during 

pregnancy, few mothers with anxiety/depression during pregnancy) and low 

levels of offspring internalising problems across the cohorts. Thus, results might 

be different in higher risk populations. Further, it has been noted that the 450k 

array, which has been used to assess DNA methylation in this study, does not 

assess methylation at the same sites as most of the candidate studies have (Weder 

et al., 2014), making direct replication of DNA methylation at these sites 

impossible in this study.  

5.5.3 Strengths 

The present investigation of the association between DNA methylation and the 

development of internalising problems in very young children complements the 

current evidence base on the involvement of DNA methylation in the 

development of anxiety and depressive disorders, which predominately comprises 

of adult populations and symptoms measured later in life (Barker, Walton, & 

Cecil, 2018; Li et al., 2019). Moreover, the investigation of associations with two 

different assessment time points of DNA methylation (cord- and peripheral-

blood), enabled to evaluate the importance of prenatal and postnatal risk factors, 

and the investigation of two different assessment time-points of internalising 

problems (age 3 and age 7) allowed evaluating the persistence of these effects 

across development. Another strength is in the application of a genome-wide 

probe-level and regional analysis, which allowed exploring the contribution of 

DNA methylation in a hypothesis-free way, which might shed light on novel 

biological pathways to anxiety and depression. The importance of hypothesis-free 

investigations of DNA methylation instead of candidate-gene analyses was 
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highlighted by the candidate gene look-up of this study. Despite higher statistical 

power due to less stringent multiple testing penalties (Jones et al., 2018), the 

candidate gene look-up did not show evidence for associations between DNA 

methylation at these genes and internalising problems. Candidate-gene findings 

commonly fail to replicate in genome-wide analyses and the usefulness of 

candidate gene approaches in the era of epi(genome)-wide association studies has 

been questioned (Barker, Walton, & Cecil, 2018; Duncan et al., 2019; Shabalin & 

Aberg, 2015). Last, the decent sample size and prospective design of the studies 

used in the meta-analysis allowed getting an indication for the temporal sequence 

of events and reduced recall bias.  

5.5.4  Limitations 

The results of this study should be interpreted by considering the following 

limitations. First, this study investigated the influence of DNA methylation on 

internalising problems in very young children. One of the main aims of this study 

was to understand the influence of environmental exposures during pregnancy on 

offspring internalising problems by using cord blood DNA methylation as a proxy 

for the quality of the intrauterine environment. As DNA methylation is highly 

susceptible to environmental exposures, the internalising problems assessment 

time point was chosen based on minimizing the temporal gap between exposure 

and outcome, to reduce the number of confounding factors. However, this came at 

the costs of the accuracy and clinical significance of assessing internalising 

problems. Previous research has refrained from including children younger than 

four years of age in their studies because the SDQ and CBCL questionnaires have 

not been developed to evaluate behaviour problems in such young children 

(Goodman & Scott, 1999), which is confirmed by the internalising scales lacking 

internal consistency in children under the age of 4 (Maurice-Stam et al., 2018). 

However, in this study no large difference in scores of internalising problems was 

observed at the age of 3 compared to the age of 7. Second, statistical power was 

compromised by the high zero inflation of internalising problems at both 

assessment time-points and thus, small effects might have been missed. Small 

effect sizes are common in EWAS studies of mental health problems in children 

and even larger sample sizes may be required to enable detection of numerous 

small signals (Neumann et al, 2020). Third, as suggested by their demographic 
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profile, children were probably at a low risk for being exposed to adverse 

experiences and thus results are unlikely to generalize to less advantaged 

populations. Selection bias is common problem in longitudinal cohort studies (see 

Chapter 2) (Boyd et al., 2013; Taylor, Jones, et al., 2018). Specifically, families 

with a less advantaged background and with more parental and offspring mental 

health problems have been found to be more likely to drop-out from longitudinal 

cohort studies (Wolke et al., 2009), which is partly confirmed by children in this 

study expressing very low amounts of internalising problems. This selection bias 

is likely to be even stronger for the DNA methylation subsamples included in this 

study, which have been selected based on completeness of other variables in the 

cohorts (see Chapter 2). Fourth, it is possible that measurement error was 

introduced by using an internalising problems total score, which combines anxiety 

and depressive symptoms in children. Previous research indicates that anxiety and 

depression symptoms during childhood have different underlying genetic and 

environmental structures and do not become strongly associated until adolescence 

(Waszczuk et al., 2014). Thus, measures differentiating between anxiety and 

depression symptoms during childhood might have been more adequate for this 

study than a combined measure. Last, this study relied on DNA methylation 

assessed in blood, yet the tissue of most interest for mental health phenotypes is 

DNA methylation in the brain. Even though there is some evidence that, at least 

part of blood DNA methylation can function as a proxy for brain DNA 

methylation (Davies et al., 2012; Kaminsky et al., 2009; Walton et al., 2016), it is 

not clear whether the DNA methylation changes associated with childhood 

internalising problems observed in this study proxy for DNA methylation in brain 

tissue. Regardless of tissue concordance, results of this study may contribute 

towards the development of DNA methylation biomarkers for early detection of 

internalising problems (Walton et al., 2019). However, formal analysis of DNA 

methylation as a clinical biomarker of internalising problems is warranted, which 

requires larger samples and different methodological approaches than used in this 

study (e.g., less stringent adjustment for confounders, training, and validation data 

sets, etc.; see Chapter 7) (Hüls & Czamara, 2020).  
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5.5.5 Future studies 

Future EWAS with larger sample sizes are needed to clarify the relationship 

between DNA methylation and development of internalising problems. The 

higher-powered regional analysis of this study found more evidence of 

associations between DNA methylation and internalising problems, which warrant 

replication by independent studies. Specifically, since annotated genes have not 

been reported by smaller previous EWAS of child/adolescent depression (except 

for STK32C in the prenatal age 3 analysis) (Dempster et al., 2014; Weder et al., 

2014). Future studies should aim to reduce noise in anxiety and depression 

assessments in children by, for instance, including multiple assessment time-

points of anxiety and depression across development and ideally drawing on 

reports from multiple informants (Sallis et al., 2019). Also, future research should 

try to replicate this study in populations with more diverse demographic 

characteristics and a higher risk for adverse childhood experiences. Results of this 

study suggest potential sex differences between associations of DNA methylation 

and internalising problems, which might deserve further investigation in future 

studies. Further, future studies might want to investigate an interaction effect 

between genotype and DNA methylation, as it has been suggested that certain 

genotypes may be more susceptible to biologically embed environmental effects 

(Brummelte et al., 2017; Oberlander et al., 2010; Olsson et al., 2010). This is 

supported by results of a study of Teh and colleagues (Teh et al., 2014), which 

suggests that around 75% of the most variable DNA methylation regions might be 

influenced by the interaction of offspring genotype and intrauterine environment. 

Furthermore, future studies might want to shift focus from predominately 

investigating the effect of early adverse experiences on DNA methylation, to also 

investigating resilience factors in children, by exploring the effect of positive 

early life experiences on DNA methylation and mental health outcomes (Kentner 

et al., 2019). Lastly, studies might want to investigate associations between DNA 

methylation and neuroimaging phenotypes (Walton et al., 2020), which might 

help to better evaluate the biological relevance of DNA methylation findings by 

posing as an intermediate phenotype to behavioural manifestations of mental 

health problems.  
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5.6 Conclusion  

This was the first study to investigate the association between differences in DNA 

methylation and the development of childhood internalising problems. Overall, 

results of this study indicate that DNA methylation in blood is unlikely to be 

strongly associated with childhood internalising problems. However, due to the 

high zero inflation of internalising problems in this sample, it is difficult to 

evaluate whether results might translate to populations at higher risk for adverse 

early life experiences. Despite few children expressing internalising problems in 

this sample, the DMR analyses suggested differences in DNA methylation at 

regions annotated to genes known to be involved in neurological functioning and 

development, particularly in female sex offspring. It is likely that these effects 

would be further exacerbated in populations with more occurrences of 

internalising problems. As anxiety and depression are highly polygenic disorders 

(Howard et al., 2019; Jami et al., 2020; Purves et al., 2020), which are likely 

influenced by the interplay of small effects of many different genes, more EWAS 

are needed to replicate or invalidate findings of this study, as well as to detect 

novel differentially methylated regions, which might have been missed by this 

study. 
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Chapter 6  – DNA methylation as a mediator of the 

association between smoking and caffeine 

consumption during pregnancy and offspring 

internalising problems 

6.1 Chapter overview  

In my previous results chapters, I have found no convincing evidence that there is 

a DNA methylation signature of prenatal caffeine use (Chapter 3) or internalising 

problems (Chapter 5). Similarly, in the PheWAS chapter (Chapter 4), I showed 

weak evidence for a causal intrauterine effect of prenatal smoking or caffeine 

exposure on offspring mental health outcomes, including internalising problems. 

Taken together, these results provide some evidence against a causal effect of 

prenatal smoke/caffeine exposure on offspring internalising disorders, including 

via a mechanism involving DNA methylation. For completeness of assessing the 

intermediate biomarker-disease association (step 3 of the meet-in-the-middle 

approach, see Chapter 1), in this chapter I investigate the association between the 

prenatal smoking- and caffeine-associated DNA methylation changes and 

offspring internalising problems. To do this, I first conduct an enrichment analysis 

to explore whether DNA methylation signals from the internalising problems 

EWAS are enriched for DNA methylation signals from the prenatal caffeine 

EWAS (Chapter 3) and a large meta-EWAS of prenatal smoking by Joubert and 

colleagues (N = 6,685) (Joubert et al., 2016). Second, I use two-sample Mendelian 

Randomisation to assess whether DNA methylation at CpG sites associated with 

prenatal caffeine (i.e., those identified in Chapter 3) and smoking (Joubert et al., 

2016) exposure, and CpG sites observationally associated with internalising 

problems (i.e., those identified in Chapter 4), are causally related to internalising 

problems.  

6.2 Introduction   

As mentioned in Chapter 1, there are theoretical grounds for assuming that DNA 

methylation mediates the relationship between prenatal exposures and risk for 

mental health problems (Barker, Walton, & Cecil, 2018; Pingault et al., 2017). 

Two-step MR has been suggested as a method to investigate DNA methylation as 
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a mediator for prenatal exposures on offspring outcomes (Davey Smith & 

Hemani, 2014; Relton & Davey Smith, 2012). However, the application of this 

method to investigated intrauterine effects involves stringent data requirements. In 

two-step MR, two different genetic markers are used as separate proxies for the 

exposure and mediator of interest. In the first step, the prenatal exposure-DNA 

methylation relationship is estimated through using a genetic instrument for the 

prenatal exposure. In the second step, a genetic proxy for local DNA methylation 

associated with the prenatal exposure is used to assess the association between 

DNA methylation and the outcome of interest. An example of how the effect of 

intrauterine caffeine exposure on offspring internalising problems could be 

investigated through two-step MR is illustrated in Figure 6.1. In the first step, the 

causal effect of prenatal caffeine exposure on DNA methylation is estimated by 

using a genetic instrument as a proxy for maternal caffeine consumption (e.g., 

using a PRS as in the PheWAS analysis in Chapter 5 and illustrated in Figure 6.1). 

In the second step, a cis-SNP is used as a proxy for caffeine-associated DNA 

methylation changes (Step 2, Figure 6.1).  
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Figure 6.1 Two-step MR to investigate offspring DNA methylation as a 

mediator of prenatal caffeine exposure on offspring internalising problems. 

Step 1: Estimation of the exposure on offspring DNA methylation through using a 

genetic instrument as a proxy for prenatal caffeine consumption (caffeine PRS). 

Step 2: Estimation of the association between prenatal caffeine-associated DNA 

methylation changes and internalising problems in offspring through using a 

genetic instrument to proxy for caffeine associated CpG sites (cis-SNP) (credit: 

adapted from Relton & Davey Smith, 2012). 

 

The first step involves an intergenerational analysis (maternal genetic variants as a 

proxy for the prenatal exposure on offspring DNA methylation) and thus is 

subject to the caveats of intergenerational MR, which were described in detail in 

Chapter 3. Maternal genetic variants capture to 50% offspring genetic variation 

and therefore, if offspring genotype is not adjusted for, may bias the estimation of 

the prenatal exposure on offspring outcome (step 1; association observed between 

the maternal caffeine PRS and offspring DNA methylation may simply represent 

an association between DNA methylation and offspring PRS). This is problematic 

for MR as it violates the exclusion restriction assumption of the genetic variant 
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only being associated with the outcome of interest through the effect of the 

exposure (Evans et al., 2019). However, as described in Chapter 3, adjustment for 

offspring genotype may induce collider bias unless the analysis is also adjusted 

for paternal genotype (see Figure 6.2) (Lawlor et al., 2017). Therefore, in order to 

derive unbiased estimates, two-step MR requires large sample sizes with data on 

maternal, offspring, and paternal genotype data, as well as data on offspring DNA 

methylation and the outcome of interest.  

 

 

 

Figure 6.2 Illustration of offspring PRS as a collider of maternal and paternal 

caffeine PRS. Red arrow represents to be estimated effect of intrauterine caffeine 

exposure on offspring DNA methylation. Black arrows represent potential 

confounding paths. 
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If a single sample is able to fulfil these stringent data requirements, an 

intergenerational two-step, one-sample MR can be conducted. However, such data 

sources are scarce and thus studies that applied this method tend to be 

underpowered (Caramaschi et al., 2017). Alternatively, two-step, two-sample MR 

can be conducted to address power limitations of one-sample MR, by assessing 

the first and second step in independent samples (Davey Smith & Hemani, 2014). 

This approach has the great advantage that for the second sample the wealth of 

GWAS summary data can be exploited to meet the statistical power needed for 

genetic causal inference techniques (Davey Smith & Hemani, 2014). This is 

particularly useful for research that investigates molecular pathways, which are 

commonly restricted to smaller sample sizes (see Chapter 2). Yet, for the 

intergenerational analysis of step one, GWAS data that has been separated into 

fetal/maternal components would be required (Evans et al., 2019) – which is 

currently not available for DNA methylation. For the abovementioned reasons, I 

was unable to conduct a two-step MR analysis and decided to assess just one-step, 

in a two-sample MR framework, to investigate the causal effect of prenatal 

smoking and caffeine associated DNA methylation at birth on offspring 

internalising problems (in childhood, and anxiety and depression in adulthood). 

For the one-step, two-sample MR analysis in this chapter, a genetic proxy (cis-

SNP) for the exposure-DNA methylation association was retrieved from sample 

one, which does not require data on the outcome variable of interest (Figure 6.3, 

top rectangle in red). In a second, independent sample that has genotype data and 

data on the outcome, the association of the same genetic proxy (cis-SNP) with the 

outcome is retrieved, without that sample requiring data on DNA methylation 

(Figure 6.3, bottom rectangle in blue).  
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Figure 6.3 Illustration of a two-sample MR analysis to investigate whether DNA 

methylation mediates the relationship of prenatal caffeine exposure on 

offspring internalising problems. Using data of sample 1 (top rectangle in red) 

the association between a genetic variant on DNA methylation is estimated. Using 

data of sample 2 (bottom rectangle in blue) the association between a genetic 

variant that is a proxy for prenatal associated DNA methylation changes and 

internalising problems is estimated.  

 

6.2.1 Two-sample MR of prenatal smoking and mental health outcomes  

Whilst no study has investigated the causal effect of prenatal caffeine associated 

DNA methylation on offspring mental health outcomes, several studies have 

assessed the causal effect of the CpG sites found to be differentially methylated 

according to maternal smoking during pregnancy (Richardson et al., 2019; 

Wiklund et al., 2019). Richardson and colleagues (Richardson et al., 2019) 

conducted a thorough analysis of DNA methylation at the prenatal smoking 

associated CpG sites from Joubert and colleagues’ EWAS meta-analysis (Joubert 

et al., 2016) and their causal effect on 643 complex traits, including phenotypes of 

depression and anxiety (e.g., “Seen a psychiatrist for nerves anxiety tension or 

depression”) and related phenotypes (e.g., neuroticism). Corresponding cis-SNPs 

were identified using the mQTL database http://www.mqtldb.org (Gaunt et al., 

2016), which is a catalogue of SNP-DNA methylation associations (based on the 

http://www.mqtldb.org/


Chapter 6 – DNA methylation as a mediator 

 216 

450k array) within the ARIES sample (N = 1,018; see Chapter 2 for more details 

about ARIES) (Relton, Gaunt, et al., 2015). The cis-SNP-outcome associations 

were obtained from GWAS available on the MR-Base platform 

http://www.mrbase.org/ (Hemani, Zheng, et al., 2018) and additional GWAS 

based on UK Biobank data conducted by the Neale lab 

(http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-

for-337000-samples-in-the-uk-biobank). After correction for multiple testing, 

results of the two-sample MR analysis indicated evidence for one causal 

association related to mental health. Amongst 22 outcomes that survived 

correction for multiple testing, DNA methylation at cg01307174 was found to be 

associated with an increased likelihood of worrying after embarrassment (β = 

0.03, SE < 0.01, P-value = 2.65 x 10-08). Wiklund and colleagues (Wiklund et al., 

2019) took a similar approach as Richardson and colleagues (Richardson et al., 

2019) by also performing two-sample MR analysis to inspect if there was 

evidence for causal associations between the differentially methylated CpG sites 

of prenatal smoking and any of 106 diverse health outcomes (including mental 

health outcomes) available in the UK biobank. Similar to Richardson and 

colleagues, they identified cis-SNPs for prenatal-smoking associated DNA 

methylation from Joubert and colleagues’ EWAS meta-analysis (choosing 69 

CpG sites with the smallest P-value) and selected corresponding cis-SNPs from 

the mQTL database (Gaunt et al., 2016). Their analysis found causal evidence for 

one CpG site (cg25189904) to be associated with the risk for schizophrenia. 

Except for these two CpG sites, the analyses of Winklund and colleagues and 

Richardson and colleagues already provide indication that most of the prenatal 

smoking associated DNA methylation changes are not causally related to the risk 

of internalising problems.  

In this chapter, I follow-up the prenatal smoking-associated CpG sites that were 

suggestive of contributing to increased worrying and schizophrenia in adulthood. 

DNA methylation changes at these CpG sites may also contribute to childhood 

internalising problems, as well as adult anxiety and depression, since these 

phenotypes are highly correlated with worrying and schizophrenia (Howard et al., 

2019; Jami et al., 2020; Nivard et al., 2017; Riglin et al., 2018). Furthermore, both 

of these studies have not specifically investigated the causal contribution of 

http://www.mrbase.org/
http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank
http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank
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smoking associated DNA methylation on childhood mental health problems. Due 

to the large time lag between the prenatal exposure and mental health assessment 

in the studies of Wiklund and colleagues (Wiklund et al., 2019) and Richardson 

and colleagues (Richardson et al., 2019), any effect of prenatal smoking-

associated DNA methylation on phenotypes of offspring internalising problems 

may have been diluted by other postnatal influences. Therefore, the analyses of 

this chapter investigate the association between prenatal smoking- and caffeine-

associated DNA methylation signals and early (childhood), as well as later 

manifestations of internalising problems (adult anxiety and depression). 

6.2.2 Genetic of DNA methylation consortium (GoDMC) for cis-SNP 

selection 

Recently, a new data catalogue of cis-SNP-DNA methylation associations has 

been published. The genetics of DNA methylation consortium (GoDMC) is a 

large collaboration project between more than 50 research groups that contribute 

data to investigate the genetic contribution to DNA methylation variation 

(http://www.godmc.org.uk/) (Min et al., 2020). The GoDMC has investigated the 

association between genotype and DNA methylation variation using ~10 million 

genotypes from the 1,000 genome project and blood DNA methylation data from 

~30,000 European participants (Min et al., 2020) and is therefore much higher 

powered than the ARIES based mQTL database (N = 1,018, 

http://www.mqtldb.org) (Gaunt et al., 2016). The results are now available on a 

database, containing around 300,000 independent DNA methylation-quantitative 

trait (mQTL) loci/cis-SNPs (http://mqtldb.godmc.org.uk/). As mentioned above, a 

cis-SNP represents a SNP that has been associated with DNA methylation at 

specific CpG site. If the DNA methylation associated SNPs is in proximity to the 

CpG site (within 1 Mb of each side of the CpG site) it is called a cis-mQTL or cis-

SNP (Min et al., 2020). If the mQTL is distal (> 1Mb away from each side of the 

CpG site) to the CpG site or even on another chromosome, it is commonly 

referred to trans-mQTL or trans-SNP (Min et al., 2020). Analyses of the GoDMC 

have confirmed the previous assumption that most mQTLs are cis and only a few 

are trans (~9%) (Gaunt et al., 2016; Min et al., 2020). In this chapter, I use the 

GoDMC database for identifying appropriate genetic instruments as proxies for 

http://www.godmc.org.uk/
http://www.mqtldb.org/
http://mqtldb.godmc.org.uk/
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local DNA methylation associated with prenatal smoking and caffeine exposure 

on offspring internalising problems using two-sample MR.  

6.3 Methods 

6.3.1 Data selection 

6.3.1.1 Sample 1: Retrieving the cis-SNP – DNA methylation associations  

6.3.1.1.1 Smoking  

Previous research has found limited evidence for a causal effect of most prenatal-

smoking associated DNA methylation on mental health outcomes, except for 

cg01307174, which showed evidence for a causal effect on worrying, and 

cg25189904 which showed evidence for a causal effect on schizophrenia 

(Richardson et al., 2019; Wiklund et al., 2019). Therefore, I selected these CpG 

sites to investigate their causal effect on internalising problems. The GoDMC 

identified 790 cis-SNPs to be associated with DNA methylation at cg01307174 

and 459 cis-SNPs to be associated with DNA methylation levels at cg25189904. 

6.3.1.1.2 Caffeine  

In Chapter 4, the probe-level EWAS meta-analysis found evidence for maternal 

total caffeine consumption to be associated with DNA methylation levels at 

cg19370043 in cord blood. The GoDMC database identified 5 cis-SNPs to be 

associated with DNA methylation at cg19370043.  

6.3.1.1.3 Internalising problems  

In Chapter 5, the probe-level EWAS meta-analysis of childhood internalising 

problems found evidence for one CpG site (cg26668632) in cord blood to be 

differentially methylated in association with internalising problems of female 

offspring at the age of 7. Further, two CpG sites in childhood peripheral blood 

were found to be differentially methylated in association with childhood 

internalising problems in female offspring (cg07283896 and cg08884410). The 

GoDMC showed no cis-SNPs for the CpG site of the cord blood analysis 

(cg26668632). From the peripheral blood CpG sites, the GoDMC indicated no 

cis-SNPs for cg08884410 but 74 cis-SNPs to be associated with DNA methylation 

at cg07283896, which will be used as proxies for childhood internalising 

problems associated DNA methylation changes.  
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6.3.1.2 Sample 2: Retrieving the Cis-SNP – outcome association  

Overlap between genetic susceptibilities of childhood and adolescent internalising 

symptoms and adult internalising problems has been reported (Jami et al., 2020). 

Following the line of reasoning that prenatal exposures may contribute towards 

the development of internalising problems in childhood and eventually may 

manifest into adult anxiety and depressive symptoms, I retrieved cis-SNP-

outcome associations from the most recent GWAS meta-analysis of childhood 

internalising problems (Jami et al., 2020), and adult major depression and anxiety 

(Howard et al., 2019; Purves et al., 2020).  

6.3.1.2.1 GWAS of internalising problems in childhood (Jami et al., 2020) 

The GWAS meta-analysis of internalising symptoms included repeated data on 

internalising problems of children aged 3-18 years of age. Data was gathered from 

22 cohorts of European ancestry, predominately from the EArly Genetics and 

Lifecourse Epidemiology (EAGLE) consortium (Middeldorp et al., 2019), 

resulting in an overall sample size of 64,641 children. Combining data across 

cohorts generated a GWAS of overall internalising symptoms. In addition to a 

GWAS analysis of the combined data (N observations = 132,260), cohorts were 

asked to conduct stratified analysis of age, rater (self, mother, father, teacher), and 

internalising measure (each with the premise of a sample size of at least 450 

children). Stratified cohort results were meta-analysed if a minimum sample size 

of 15,000 could be reached. Amongst 22 separate measures of internalising 

problems across cohorts, the same measures as for the EWAS meta-analysis of 

internalising problems (Chapter 4) were applied by five cohorts (including 

ALSPAC), contributing data from the emotional subscale of the SDQ and nine 

cohorts contributing data from the internalising subscale of the CBCL (including 

MoBa and GenerationR). ALSPAC, GenerationR, and MoBa, which were 

included in the EWAS meta-analysis of maternal caffeine consumption during 

pregnancy (Chapter 3) and internalising problems (Chapter 4) were also included 

in the GWAS meta-analysis of internalising problems, resulting in a sample 

overlap of ~22%. There was no evidence for any genome-wide significant SNPs 

in the GWAS meta-analysis of overall internalising problems, nor in any of the 

stratified analyses. However, there was some evidence of the results capturing 

some genetic effects of internalising problems. For instance, genetic correlations 
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showed evidence for association between childhood and adult internalising 

problems and a polygenic score based on the overall GWAS meta-analysis of 

internalising problems was able to predict maternal reported internalising 

problems in children at the age of 7 (explained variance = 0.38%). Furthermore, 

gene set analyses revealed associations with three genes, including WNT3, which 

has previously been associated with psychiatric traits related to internalising 

problems (neuroticism and depressive affect) (Jami et al., 2020).  

6.3.1.2.2 GWAS of depression (Howard et al., 2019) and anxiety (Purves et al., 

2020) in adulthood 

The GWAS meta-analysis of major depression (Howard et al., 2019) included 

three none-overlapping adult samples (Howard et al., 2018; Hyde et al., 2016; 

Wray et al., 2018), which led to an overall sample size of 807,553 (246,363 

people with depression (including self-declared) and 561,190 without depression). 

Overall, 102 variants were identified to be associated with depression and most 

variants showed a similar direction of effect and survived Bonferroni correction 

(87 variants P-value < 4.90 x 10-4) or nominal significance (97 variants P-value < 

0.05) in an independent replication sample (414,055 people self-reported to have 

received a clinical diagnosis of depression and 892,299 reported not to have 

received a diagnosis for depression). A PRS based on the GWAS meta-analysis of 

depression was able to capture 2% to 3% of variance in depression status (Howard 

et al., 2019).  

The GWAS of anxiety disorders included 126,443 participants of European 

ancestry from the UK Biobank (25,453 cases anxiety disorder, 58,113 controls; 

age range = 46-80). Cases of lifetime anxiety disorder were defined as either self-

reporting to have received a professional clinical diagnosis for at least one of five 

anxiety disorders (generalised anxiety disorder, social phobia, panic disorder, 

agoraphobia, or specific phobia) and/or to meeting a clinical cut-off on the anxiety 

items of the online administered Composite International Diagnostic Interview 

(CIDI) Short-form questionnaire (Kessler et al., 1998). Participants with a 

comorbid self-reported psychiatric diagnosis were excluded from the analysis. In 

the lifetime anxiety disorder GWAS, five variants were found to be genome-wide 

significant (P-value < 5x10-8). Further analysis of a genetic instrument generated 

based on the lifetime anxiety disorder variants was able to predict increased 
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chances of self-reporting a lifetime anxiety disorder and explained ~1% of 

variance. Two of the five loci associated with lifetime anxiety disorder were 

replicated in samples of neuroticism and depression but not in independent, 

smaller samples of participants with anxiety. 

6.3.2 Statistical analysis 

6.3.2.1 Enrichment of caffeine and smoking associated CpG sites in the 

internalising EWAS results 

Before conducting MR analyses, preliminary analyses were conducted to explore 

whether there is initial evidence for the DNA methylation signals from the 

internalising problems EWAS (Chapter 4) to be enriched for DNA methylation 

signals of maternal caffeine consumption during pregnancy (Chapter 3) and 

maternal smoking during pregnancy (Joubert et al., 2016). First, I checked the 

overlap between the direction of effect of the top 5,000 prenatal smoking- and 

caffeine-associated CpG sites (ranked by smallest P-value), in the internalising 

EWAS results from Chapter 4 (if we assume that the prenatal exposure is 

positively associated with internalising disorders, then we would expect to see the 

same direction of effect from the prenatal exposure to methylation and from 

methylation to internalising disorders). Second, I plotted P-values of the 

associations of the internalising EWAS results at those top 5,000 exposure-

associated CpG sites in QQ-Plots. This allowed me to visually inspect whether the 

associations of the internalising problems EWAS at the top exposure CpG-sites 

systematically show a smaller P-value than would have been expected by chance.  

6.3.2.2 Two-sample MR 

The steps for the two-sample MR analyses were as follows: First, I identified cis-

SNPs for each exposure through the GoDMC database 

(http://www.godmc.org.uk/). Second, I extracted summary statistics for the cis-

SNPs from the outcome GWAS (childhood internalising problems and adult 

anxiety and depression). Third, the estimates of the SNP-exposure and SNP-

outcome associations were used to generate a causal estimate (�̂�𝑗). More 

specifically, the causal estimate was generated for individual variants, using the 

Wald ratio test (Wald, 1940), by dividing the cis-SNP-outcome estimate (Y�̂�) by 

the cis-SNP-exposure estimate (�̂�𝑗) (Richardson et al., 2019):  

http://www.godmc.org.uk/
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�̂�𝑗 =
�̂�𝑗(𝑐𝑖𝑠 − 𝑆𝑁𝑃𝑗 → 𝑜𝑢𝑡𝑐𝑜𝑚𝑒)

X�̂�(𝑐𝑖𝑠 − 𝑆𝑁𝑃𝑗 → 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒)
 

If there is more than one cis-SNPs available for a given CpG site, the estimates of 

the individual variants can be meta-analysed using a fixed-effects inverse-

weighted variance approach (Burgess et al., 2013; Richardson et al., 2019):  

�̂�𝐼𝑉𝑊 =
∑ �̂�𝑗�̂�𝑗

2 1

𝜎𝑌𝐾
2𝑗

∑ �̂�𝑗
2 1

𝜎𝑌𝐾
2𝑗

 

More specifically, the weight reflects the product of the cis-SNP-exposure 

estimate and the inverse of the variance of the cis-SNP-outcome estimate 

(�̂�𝑗
2 1

𝜎𝑌𝐾
2 ). The estimated meta-analysed effect is then generated by weighing the 

individual causal estimates (�̂�𝑗,…𝑖) and dividing them by the sum of their weights. 

The two-sample MR analyses were performed using the TwoSampleMR R-

package (Hemani, Zheng, et al., 2018), that is linked to the MR-base platform 

(https://www.mrbase.org/). MR-base is a platform that enables to apply a variety 

of MR methodologies to curated and harmonised GWAS summary statistics in a 

user-friendly manner (Hemani, Zheng, et al., 2018). The database includes 

summary statistics of over 1,673 GWAS and provides all reported SNP-phenotype 

associations, without restricting to statistically significant results (Hemani, Zheng, 

et al., 2018). Cis-SNP-DNA methylation associations were extracted using the 

read_exposure_data function. To ensure that the cis-SNPs are independent, 

clumping was performed using the clump_data function using a European 

reference panel from the 1,000 Genomes Project (Durbin et al., 2010; Hemani, 

Zheng, et al., 2018). Clumping methods are applied to only keep SNPs that are 

weakly correlated, while maintaining the SNPs with the strongest signal with a 

phenotype (see Chapter 2) (Hemani, Zheng, et al., 2018). The function is based on 

PLINK’s clumping method, which prunes SNPs if they show a squared 

correlation coefficient (r2) of larger than 0.001 (Hemani, Zheng, et al., 2018). If a 

cis-SNP was not available in the outcome data, a proxy SNP was searched for, 

which must show an r2 with the target SNP of at least 0.80. I retrieved the cis-

SNP-outcome association using the extract_outcome_data function. Before 

https://www.mrbase.org/
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running the MR analysis, I harmonised the cis-SNP-exposure and cis-SNP-

outcome data using the harmonise_data function (Hemani, Zheng, et al., 2018), 

which ensures that the respective effects were referring to the same allele and 

effect sizes were on the same scale (e.g., transforming odds rations to β-values 

using log transformation). Finally, I calculated the two-sample MR causal 

estimate by running the mr function. If only one cis-SNP was available, the 

function returned the results of the Wald ratio tests for each SNP, and if more than 

one cis-SNPs was available for use, the function returned the results of a meta-

analysis of Wald ratios. The two-sample MR beta coefficients represent the 

corresponding change in SD of internalising problems/depression/anxiety per one 

SD change in prenatal smoking-/caffeine-associated DNA methylation. 

6.4 Results 

6.4.1 Enrichment of smoking and caffeine associated CpG sites in the 

internalising EWAS results 

The look-up of the signals of top prenatal caffeine-CpG sites (Chapter 3) in the 

cord blood DNA methylation-internalising problems age 3 associations (Chapter 

4) showed that ~3% of CpG sites (N CpG sites = 141 of 5,000) had the same 

direction of effect and P-value < 0.05. This number remained stable for the 

association of cord blood DNA methylation and internalising problems at the age 

of 7 (~3%, N CpG sites = 145 of 5,000). Interestingly, the number of prenatal 

smoking associated CpG sites with the same direction of effect and P-value < 0.05 

in the EWAS meta-analysis of internalising problems more than doubled from the 

age of 3 (~3%, N CpG sites = 128 of 5,000) to the age of 7 (~6%, N CpG sites = 

274 of 5,000). This is further supported by QQ-plots of the internalising EWAS P-

values just using the top 5,000 prenatal smoking- (Figure 6.4) and caffeine- 

associated CpG sites (Figure 6.5). 

Figure 6.4 reflects what was observed when comparing the direction of effect and 

P-values of the prenatal smoking- and internalising problems-associated CpG 

sites. Whereas the P-values of the associations with internalising problems at the 

age of 3, at the top prenatal smoking-associated CpG sites, show little evidence 

for enrichment, the associations with internalising problems at the age of 7, at the 

same CpG sites, show a smaller P-value than would have expected by chance. The 
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top prenatal smoking CpG site P-values tend to come off the line early on and 

systematically stay outside the 95% CI. As can be seen in Figure 6.5 below, the P-

values of the association of internalising problems in childhood at the top 5,000 

prenatal-caffeine associated CpG sites follow the null line closely and stay within 

the 95% CI, providing little evidence for enrichment.  

 

Figure 6.4 QQ-Plots of the association of the EWAS meta-analysis of 

internalising problems at the top 5,000 prenatal smoking-associated CpG sites. 

Association of EWAS meta-analysis of internalising problems at the age of three 

(left) and the age of seven (right) at the top 5,000 prenatal smoking-associated 

CpG sites (ranked by smallest P-values). Red dotted lines represent 95% 

Confidence Intervals (CI). Black line represents H0 line of P-values not being 

larger or smaller than expected by chance. 
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Figure 6.5 QQ-Plots of the association of the EWAS meta-analysis of 

internalising problems at the top 5,000 prenatal caffeine-associated CpG sites. 

Association of EWAS meta-analysis of internalising problems at the age of three 

(left) and the age of seven (right) at the top 5,000 prenatal caffeine associated 

CpG sites (ranked by smallest P-values). Red dotted lines represent 95% 

Confidence Intervals (CI). Black line represents H0 line of P-values not being 

larger or smaller than expected by chance. 

 

 

6.4.2 Clumping of the exposure instruments (cis-SNPs) 

For the smoking CpG sites, three independent cis-SNPs remained (rs35062988, 

rs144982147, rs13085908) after performing clumping on the 790 cis-SNPs of 

cg01307174. Also, three independent cis-SNPs (rs78434275, rs4655749, 

rs1276303) of the 459 initially identified cis-SNPs were available after 

performing clumping on cg25189904. After performing clumping on the five cis-

SNPs for prenatal caffeine associated DNA methylation at cg19370043, two 

independent cis-SNP (rs140512652 and rs139222757) remained, which will be 

used as a proxy for prenatal caffeine-associated DNA methylation changes in 

offspring. Performing clumping on the 74 cis-SNPs for childhood internalising 

problems associated DNA methylation at cg07283896 in peripheral blood in 

childhood resulted in one independent cis-SNP (rs6930934) that will be used as 

the corresponding proxy. 
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6.4.3 Two-sample MR of prenatal smoking-associated DNA methylation 

and childhood internalising problems, and depression and anxiety in 

adulthood 

For the meta-GWAS of childhood internalising problems, all three cis-SNPs for 

cg01307174 could be retrieved and two cis-SNPs could be retrieved for 

cg25189904 (rs4655749, rs1276303). All of the three cis-SNPs for cg01307174 

and cg25189904 could be retrieved from the GWAS meta-analysis of adult 

depression (Howard et al., 2019). For the GWAS of adult anxiety (Purves et al., 

2020) rs13085908, and a proxy (rs35458277) for cis-SNP rs35062988, could be 

retrieved for cg01307174. For DNA methylation at cg25189904 all of the cis-

SNPs could be retrieved from the GWAS of adult anxiety (Purves et al., 2020). 

The inverse-weighted meta-analysis and Wald ratio tests of the cis-SNPs for DNA 

methylation at cg01307174 and cg25189904 did not provide evidence for a causal 

effect of prenatal smoking-associated DNA methylation on either childhood 

internalising problems or adult depression or anxiety (Table 6.1). For instance, per 

one SD increase in prenatal smoking associated-DNA methylation at cg01307174, 

the internalising problems score increased by 0.01 SD (Table 6.1). The amount of 

DNA methylation variance that the instruments could explain at the two CpG sites 

associated with prenatal smoking varied from 5%-10% (R2 exposure in Table 

6.1). As expected, the instruments could explain less variance of the outcomes (R2 

outcome, Table 6.1). The SNPs could explain approximately 0.002% to 0.006% 

of variance of adult anxiety and depression, and 0.0003% to 0.0004% in 

childhood internalising problems (Table 6.1). This indicates that the direction of 

effect is as expected, with the instrument influencing smoking-associated DNA 

methylation first, and then the outcomes through smoking-associated DNA 

methylation (Hemani et al., 2017).  

  



Chapter 6 – DNA methylation as a mediator 

 227 

Table 6.1 Results of the two-sample MR of prenatal smoking-associated DNA 

methylation changes at birth and childhood internalising problems, and adult 

anxiety and depression 

Outcome CpG cis-SNPs available in 

outcome 

Method Beta 

(SE) 

P-

value 

R2 

exposure 

R2 

outcome 

Childhood 

internalising 

problems 

cg01307174 rs35062988, 

rs144982147, 

rs13085908 

IVW 

fixed-

effects 

meta-

analysis 

0.01 

(0.01)  

0.587 0.076 2.9 x 10-

06 

 cg25189904 rs4655749,  

rs1276303 

IVW 

fixed-

effects 

meta-

analysis 

4.7 x 

10-03 

(0.01) 

0.614 0.065 4.0 x 10-

06 

Adult 

depression 

cg01307174 rs35062988, 

rs144982147, 

rs13085908 

IVW 

fixed-

effects 

meta-

analysis 

1.5 x 

10-03 

(0.01) 

0.845 0.076 2.14 x 

10-05 

 cg25189904 rs4655749,  

rs1276303 

IVW 

fixed-

effects 

meta-

analysis 

2.13 

x 10-

05 

(4.1 x 

10-03) 

0.996 0.098 5.6 x 10-

06 

Adult 

anxiety 

cg01307174 rs13085908, 

rs35458277 (proxy for 

rs35062988) 

IVW 

fixed-

effects 

meta-

analysis 

-0.02 

(0.18) 

0.927 0.043 3.34 

x10-05 

 cg25189904 rs4655749,  

rs1276303 

IVW 

fixed-

effects 

meta-

analysis 

0.05 

(0.05) 

0.334 0.098 1.84 x 

10-05 

Note. IVW fixed effects meta-analysis = Inverse-variance weighted fixed-effects meta-analysis. 
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6.4.4 Two-sample MR of prenatal caffeine-associated DNA methylation and 

childhood internalising problems, and depression and anxiety in 

adulthood 

Both independent cis-SNPs for prenatal caffeine associated DNA methylation at 

cg19370043 (rs140512652 and rs139222757) could be retrieved from the GWAS 

of depression (Howard et al., 2019). None of the two independent cis-SNPs (nor 

proxy SNPs) could be retrieved from the GWAS of internalising problems (Jami 

et al., 2020) and the GWAS of adult anxiety (Purves et al., 2020). Therefore, I 

selected the non-independent cis-SNPs that could be retrieved from the GWAS of 

internalising problems and adult anxiety. Out of five cis-SNPs for cg19370043, 

only one cis-SNP could be retrieved from the GWAS of internalising problems 

(rs17350502) and adult anxiety (rs115822641). The results did not support a 

causal effect of prenatal caffeine-associated DNA methylation on the risk for 

internalising problems adult anxiety, or depression (Table 1). The cis-SNPs could 

explain little variance at the prenatal caffeine-associated CpG site, only 

accounting for 0.01% to 1.1% of variance (R2 exposure Table 1), and are therefore 

considered weak instruments. This was expected, as only single SNPs were 

available to proxy for DNA methylation at the caffeine-associated CpG site. The 

variance explained by the exposure cis-SNPs was lower than the explained 

variance of the outcome cis-SNPs (Table 1, R2 outcome range: 1.3 x 10-06 to 9.3 x 

10-06), indicating that the causal direction is as expected (Hemani et al., 2017). 
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Table 6.2 Results of the two-sample MR analysis of prenatal caffeine-associated 

DNA methylation at birth on childhood internalising problems, and adult 

anxiety and depression  

Outcome CpG cis-SNPs 

available in  

outcome 

Method Beta 

(SE) 

P-

value 

R2 

exposure 

R2 

outcome 

Childhood 

internalising 

problems 

Cg19370043 rs17350502* Wald 

ratio 

-0.15  

(0.16) 

0.348 0.0001 8.3 x 10-

06 

Adult 

depression 

Cg19370043 rs139222757, 

rs140512652 

IVW 

fixed-

effects 

meta-

analysis 

-0.004 

(0.01)  

0.673 0.011 1.3 x 10-

06 

Adult anxiety Cg19370043 rs115822641* Wald 

ratio 

0.12 

(0.20)  

0.545 0.003 9.3 x 10-

06 

Note. * Out of 5 non-independent cis-SNPs for cg1937004 (or proxy SNPs), these were the only 

SNPs available in the outcome GWAS. 
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6.4.5 Two-sample MR of internalising problems-associated DNA 

methylation and childhood internalising problems, and depression 

and anxiety in adulthood 

The independent cis-SNP, rs6930934, for childhood internalising problems 

associated DNA methylation at cg07283896 could be retrieved from the GWAS 

meta-analysis of childhood internalising problems (Jami et al., 2020) and adult 

depression (Howard et al., 2019). Whereas rs6930934 was not available in the 

GWAS of anxiety problems (Purves et al., 2020), an appropriate proxy SNP 

(rs9366903; R2 > 0.80) could be retrieved instead. The Wald Ratio estimates did 

neither support a causal effect of childhood internalising problems-associated 

DNA methylation on internalising problems (β < -0.01, SE = 0.01, P-value = 

0.854), nor on adult depression (β = -0.01, SE = 0.01, P-value = 0.063) or anxiety 

(β = -0.02, SE = 0.08, P-value = 0.772). The explained variance of the instruments 

was approximately 3% (R2 exposure = 0.031) and the explained variance of the 

outcomes much smaller at approximately 0.00003% for childhood internalising 

problems (R2 exposure = 3.0 x 10-07), 0.002% for adult depression (R2 outcome = 

1.97 x 10-05), and 0.00009% for adult anxiety problems (R2 outcome = 9.0 x      

10-07).  

6.5 Discussion 

6.5.1 Summary 

In this chapter, I investigated if there is causal evidence for an effect of exposure-

associated DNA methylation changes at birth on the development of childhood 

internalising problems, and adult depression and anxiety. The results of the 

enrichment analysis and two-sample MR analyses consistently provided no 

evidence for a causal effect of prenatal smoking- and caffeine-associated DNA 

methylation changes on the risk for any of the outcomes. Furthermore, there was 

no evidence for childhood internalising problems-associated DNA methylation to 

be causally related to the onset of internalising problems nor adult depression or 

anxiety.   

Overall, the findings of this chapter align with the results of the other chapters of 

this thesis: Chapter 3 indicated no evidence for a causal association between 

maternal smoking and caffeine consumption during pregnancy and offspring 
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mental health outcomes. Furthermore, Chapters 4 and 5 found limited evidence 

for an association between prenatal caffeine exposure and internalising problems 

in childhood with DNA methylation. The QQ-plots of the DNA methylation-

internalising problems associations at the top prenatal smoking CpG sites 

provided some indication for a causal relation between prenatal smoking and 

internalising problems through DNA methylation. This indicates that the 

internalising EWAS signals were enriched at prenatal smoking CpG sites despite 

the internalising EWAS results having been adjusted for maternal smoking (and 

therefore potentially been biased towards the null). However, a causal effect of 

prenatal-smoking associated DNA methylation on offspring internalising 

problems was not supported by the two-sample MR analysis. Testing the effect of 

DNA methylation at two prenatal smoking associated CpG sites, which in 

previous research showed evidence for a potential causal contribution towards 

related phenotypes of internalising problems (increased worrying) (Richardson et 

al., 2019) and schizophrenia (Wiklund et al., 2019), showed no evidence for a 

causal effect. Whereas the association between DNA methylation at cg01307174 

and internalising problems and depression showed the same direction of effect as 

with the worrying phenotype in the study by Richardson and colleagues 

(Richardson et al., 2019), the direction of effect was incongruent for the anxiety 

results. For DNA methylation at cg25189904, which was found to be causally 

associated with schizophrenia in the study by Wiklund and colleagues (Wiklund 

et al., 2019), the direction of effect was reversed for all of the phenotypes of this 

study. The lack of overlap of the results of this study with the findings of both 

Richardson’s and Wiklund’s studies could either indicate that the causal 

associations of the smoking-associated DNA methylation changes are uniquely 

contributing to worrying and schizophrenia but not internalising problems, 

anxiety, or depression, or that these associations represent false positive findings. 

This former hypothesis is unlikely to hold true, at least for the worrying 

phenotype, as this is a specific symptom of internalising problems (Wilkinson, 

2009). In support for the latter hypothesis is the use of a much higher-powered 

mqtl database (Min et al., 2020) for identifying appropriate cis-SNPs. 

Alternatively, it is also possible that stronger instruments, which explain more 

variance in DNA methylation variation at the selected CpG sites are needed to 

detect a causal contribution of prenatal smoking- and caffeine-associated DNA 
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methylation to internalising problems, anxiety, and depression (known as weak 

instrument bias) (Lawlor, 2016). 

6.5.2 Strengths 

A major strength of this study is the contribution towards closing the research gap 

of formal mediation analyses of DNA methylation on developmental mental 

health outcomes through MR analyses. Whereas the potential for MR analysis to 

understand the causal contribution of DNA methylation to the development of 

mental health outcomes have been noted several times (Barker, Walton, & Cecil, 

2018; Pingault et al., 2017; Walton et al., 2019), only few studies have applied it 

(Caramaschi et al., 2018; Cecil et al., 2018). Moreover, the closer investigation of 

causal associations of prenatal exposures on internalising problems is an 

important contribution towards the current literature of prenatal exposures on 

childhood psychopathology, where predominantly the association with 

externalising problems has been researched (Barker, Walton, & Cecil, 2018). 

Further, to my knowledge this study was the first to investigate if there was a 

causal effect of prenatal caffeine-associated DNA methylation on internalising 

problems (Diemer et al., 2020). Last, the follow-up of two potential causal 

associations between prenatal smoking associated-DNA methylation and mental 

health outcomes, using higher-powered cis-SNPs-exposure-associations, provides 

further evidence against the hypothesis of DNA methylation mediating the effect 

of prenatal smoking on mental health outcomes in offspring. 

6.5.3 Limitations 

The study has several limitations. First, the EWAS meta-analysis of prenatal 

caffeine and internalising problems only found weak evidence for an association 

with DNA methylation. Thus, it is possible that the DNA methylation levels at the 

selected exposure-CpG sites were too weakly associated with the exposure to 

identify an effect on internalising problems. Adding to this, the GWAS meta-

analysis of internalising problems also did not find a strong genetic signal with 

internalising problems (Jami et al., 2020) and thus, despite selecting the best 

available cis-SNPs through the GoDMC, the two-sample MR may have suffered 

from noise in the exposure and outcome associations. To combat this, I also 

conducted the two-sample MR with the adult GWAS of depression (Howard et 

al., 2018) and anxiety (Purves et al., 2020), in which especially the former was 
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able to identify many genetic signals. Yet, as these were phenotypes assessed in 

adulthood, it is possible that too much noise was introduced through the large 

temporal gap between prenatal exposure and outcome that could have weakened a 

causal effect. More generally, lack of representation of high smoking/caffeine 

consumption during pregnancy and offspring with mental health problems may 

have caused an underestimation of effects for high prenatal smoking/caffeine 

exposure (see Chapters 1, 2, 3, and 4) (Webb et al., 2017).  

Further, it is important to note several limitations of appraising epigenetic changes 

using MR. First, especially for the caffeine analyses, cis-SNPs were only able to 

explain a small fraction of variance in DNA methylation and thus, weak 

instrument bias may have biased the two-sample MR results towards the null 

(Lawlor, 2016). Second, proper inspection of cis-SNPs as valid instruments was 

restricted by the limited availability of independent cis-SNPs for the exposure 

associated CpG sites. In the GoDMC, approximately two cis-SNPs per DNA 

methylation site of the 450K array have been detected (Min et al., 2020). Few 

independent cis-SNPs per CpG site restrict the assessment of horizontal 

pleiotropy and may return spurious associations because of the variants being in 

LD with a causal variant (Richardson et al., 2018, 2019). Third, as neighbouring 

CpG sites are believed to exert similar biological functions (Suderman et al., 

2018), it may be more appropriate to conduct MR analysis using cis-SNPs that 

proxy for regional DNA methylation instead of individual CpG sites (Battram et 

al., 2019). Last, results of the GoDMC indicate that cis-SNPs show low 

concordance between blood and brain tissue and thus, tissue-specificity may 

explain the lack of evidence for an effect of changes in blood DNA methylation 

on internalising problems, anxiety, and depression (Min et al, 2020).  

6.5.4 Future directions for epigenetic research in mental health 

Recent developments in the field of epigenetics indicate little evidence for a direct 

contribution of DNA methylation towards complex trait variation (Min et al., 

2020). Analyses of the GoDMC indicate that DNA methylation is unlikely to be a 

direct mediator of genotype-phenotype associations but more likely to influence a 

variety of dynamic and complex regulatory processes that cause variance in 

complex traits (Min et al., 2020). This would explain why previous studies also 

found limited evidence for a causal contribution of DNA methylation to mental 
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health and other complex traits (Caramaschi et al., 2017, 2018; Cecil et al., 2018; 

Richardson et al., 2019; Wiklund et al., 2019). Before large scale multi-omics 

datasets with a larger coverage of DNA methylation probes enable researchers to 

unravel the potential non-linear paths of DNA methylation to complex trait 

variation (Min et al., 2020), future research may benefit to focus on developing 

DNA methylation profiles as biomarkers for mental health problems, and 

recruiting more diverse samples, which is discussed in more detail in Chapter 7.  

6.6 Conclusion  

In conclusion, these results, especially in the context of the results of the previous 

chapters, indicate no evidence for a causal effect of prenatal smoking and caffeine 

exposure on childhood internalising problems via a mechanism involving DNA 

methylation. The next chapter discusses these results in the context of the 

Developmental Origins of Health and Disease framework (DOHaD, see Chapter 1 

for more information) and its implications for future research in this area. 
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Chapter 7  – Discussion 

7.1 Chapter overview 

The analyses reported in this thesis were intended to contribute to the causal 

evidence base for the effects of smoking and caffeine consumption during 

pregnancy on offspring mental health outcomes. As discussed in Chapter 1, causal 

investigations of prenatal smoking and caffeine exposure are warranted, as the 

behaviours are quite prevalent in pregnant populations (Anderson et al., 2014; 

Frary, Johnson, & Wang, 2005; O’Keeffe et al., 2015). Current evidence in 

support of an effect of smoking and caffeine consumption during pregnancy is 

predominately based on correlational evidence from observational study designs 

(e.g., Brion et al., 2010a; Latimer et al., 2012; Miyake et al., 2019; Moylan et al., 

2015; Tiesler & Heinrich, 2014). This is problematic because smoking and 

caffeine consumption during pregnancy are likely to be correlated with other 

exposures that may also impact offspring’s mental health development (such as 

maternal socioeconomic position, personal hardships, and mental health problems, 

see Chapter 1). Therefore, correlational observational associations between 

prenatal smoking and caffeine exposure are likely to be confounded and other 

methods are needed to establish whether a true causal effect exists. The 

application of genetic methods and the investigation of DNA methylation as a 

potential molecular pathway in this thesis complement the observational evidence 

base. Triangulation of these results helps to unravel which of the reported 

observational associations between prenatal smoking and caffeine exposure and 

offspring mental health outcomes represent causal pathways or confounded 

associations. In this chapter, I summarise the results reported in this thesis and 

discuss them in the broader context of intrauterine effects, epigenetics, mental 

health, and the DOHaD framework. 

7.2 Summary of thesis findings 

In Chapter 3, I conducted a targeted intergenerational PheWAS to explore, in a 

hypothesis free manner, whether there was evidence for an effect of maternal 

smoking and caffeine consumption on offspring’s mental health phenotypes in 

childhood. The PRS for smoking and caffeine consumption, which have been 
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derived in samples from the general population, were validated as proxies for 

smoking and caffeine consumption during pregnancy. Using maternal and 

offspring smoking and caffeine PRS as separate predictors for offspring mental 

health outcomes in childhood, and comparing the magnitude of the corresponding 

effect estimates, did not show evidence for causal effects of maternal smoking and 

caffeine consumption on the risk for offspring mental health outcomes. Instead, 

the comparison of intergenerational (maternal PRS on offspring outcomes in 

childhood) and childhood effect estimates (offspring PRS on offspring outcomes 

in childhood) indicated that associations observed in the intergenerational 

analyses are likely to be attributed to pleiotropic effects. For externalising 

problems in childhood (hyperactivity, conduct disorders), there was evidence for 

pleiotropic associations with the smoking genetic variants (Table 7.1). For 

internalising problems, there was some evidence for pleiotropic associations 

between the smoking and caffeine genetic variants and a decreased likelihood of 

anxiety symptoms in childhood. As highlighted in Table 7.2, this analysis was 

likely underpowered and replication in larger, independent samples is warranted 

before strong conclusions can be drawn. However, if these results are robust, this 

could imply that PRS studies using the smoking and caffeine genetic variants to 

assess the effects of smoking and caffeine on mental health outcomes, may 

overestimate the effects of mental health phenotypes towards the externalising 

behaviours spectrum, and underestimate the effects on mental health phenotypes 

towards the internalising spectrum, especially anxiety phenotypes. The 

subsequent analysis in this thesis further investigated whether there may be an 

effect of prenatal smoking and caffeine exposure on offspring internalising 

problems that may have been underestimated in the PheWAS analysis. 

In Chapters 4 and 5, the association between prenatal caffeine and internalising 

problems in childhood and offspring DNA methylation were investigated through 

separate EWAS meta-analyses. As highlighted in Table 7.1, both EWAS meta-

analyses provided weak evidence for an association between offspring DNA 

methylation and prenatal exposure to caffeine (Chapter 4) and childhood 

internalising problems (Chapter 5). This provides little evidence for DNA 

methylation being a mediator of the relationship between prenatal caffeine 

exposure and offspring internalising problems. Taken together, the results of 
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Chapter 3, 4, and 5 already provided lack of evidence for DNA methylation 

mediating the effect of prenatal caffeine associated DNA methylation on offspring 

internalising problems. Likewise, for prenatal smoking, the results of the 

PheWAS analysis in Chapter 3, gave little indication for a causal contribution of 

prenatal smoking-associated DNA methylation to the risk for offspring mental 

health problems. This is further supported by previous research reporting lack of 

evidence for the prenatal smoking-associated DNA methylation changes being 

causally involved in complex trait variation (Richardson et al., 2019). For 

completeness, Chapter 6 inspected potential causality of prenatal smoking-and 

caffeine-associated DNA methylation changes in offspring on the risk for 

internalising problems, anxiety, and depression. Results indicated no evidence for 

enrichment of the internalising problems-associated DNA methylation signals at 

the top 5,000 prenatal caffeine-associated CpG sites but some evidence for 

enrichment at the top 5,000 prenatal smoking-associated CpG sites. Two-sample 

MR was conducted using cis-SNPs as proxies for prenatal smoking-, caffeine-, 

and internalising problems-associated DNA methylation and summary statistics 

from the largest and most recent GWAS of internalising problems, anxiety and 

depression (Howard et al., 2019; Jami et al., 2020; Purves et al., 2020). As already 

expected from the enrichment analyses, as well as the results of the previous 

chapters, the two-sample MR results provided no evidence for changes in DNA 

methylation mediating the effect of prenatal smoking, caffeine or internalising 

problems in childhood on the risk for internalising problems in childhood, and 

anxiety or depression in adulthood. An overview of the analyses of each chapter 

and how they contributed towards answering the main research question can be 

found in Figure 7.1.  
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Figure 7.1 Overview of analyses used in this thesis.
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Table 7.1 Qualitative Summary of results from each study of this thesis 

Chapter Main Findings 

3 – Intergenerational PheWAS of prenatal smoking and 

caffeine polygenic risk scores and offspring mental health 

outcomes in ALSPAC 

- The smoking and caffeine PRS are valid predictors for smoking and caffeine consumption (from tea 

and coffee but not cola) during pregnancy. 

- The maternal and offspring smoking PRS showed evidence for associations with an increased risk for 

childhood externalising problems and decreased anxiety problems. These associations are most likely 

explained by pleiotropy instead of an effect through maternal smoking. 

- There was evidence for the maternal caffeine PRS being associated with decreased anxiety problems 

and sleep during childhood. There was also evidence for the offspring PRS being associated with 

decreased anxiety during childhood. There is potential for pleiotropy between the caffeine genetic 

variants and decreased anxiety. 

4 – EWAS meta- analysis of prenatal caffeine exposure - The probe-level and DMR meta-analyses using six European birth cohorts found inconsistent evidence 

for associations between cord blood DNA methylation and different sources of caffeine (coffee, tea, 

cola).  

- Associations that were observed between cord blood DNA methylation and individual sources of 

caffeine are likely to be explained by other factors than caffeine (e.g., sugar or smoking). 

- Results provide no evidence for a strong effect of low to moderate amounts of caffeine during 

pregnancy on offspring DNA methylation. 

5 – EWAS meta-analysis of internalising problems in 

childhood 

- Overall, few associations between cord blood and childhood peripheral blood DNA methylation and 

internalising problems in childhood were found 

- Both the probe-level and DMR analyses indicated a stronger association with internalising problems in 

female than in male offspring 

- Internalising problems amongst the three cohorts included in the meta-analysis were highly zero 

inflated  
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- The DMR analyses suggested differences in DNA methylation at regions annotated to genes that were 

previously associated with adolescent depression or involved in neurological functioning and 

development. 

- The generalizability of these findings should be tested in samples with children with higher expression 

of internalising problems. 

6 – Two-Sample MR of prenatal smoking- and caffeine- 

associated DNA methylation changes on offspring childhood 

internalising problems, and adult anxiety and depression 

- The QQ-plots of the DNA methylation-internalising problems associations showed some evidence for 

enrichment at the top 5,000 prenatal smoking-associated CpG sites at the age of 6 (but not at the age of 

3). No evidence for enrichment was found at the top 5,000 prenatal caffeine-associated CpG sites. 

- Two-sample MR analyses did not provide evidence for a causal contribution of DNA methylation at 

prenatal smoking- and caffeine-associated CpG sites on childhood internalising problems, or anxiety or 

depression in adulthood. 
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7.3 Contribution of this thesis towards the existing DOHaD literature 

The imbalances of the DoHAD literature outlined in Chapter 1 have been 

addressed in this thesis as follows. First, this thesis contributes to our 

understanding of the effects of prenatal caffeine consumption, in addition to the 

effects of smoking during pregnancy, on offspring mental health outcomes. 

Smoking and caffeine consumption during pregnancy are highly correlated (Chen 

et al., 2014; Loomans et al., 2012; Robinson et al., 2010) and have been 

associated with offspring mental health outcomes (Tiesler & Heinrich, 2014). 

However, despite these phenotypic correlations, the PheWAS analysis in Chapter 

3 did not find evidence for associations between maternal caffeine consumption 

and offspring mental health outcomes. Also, despite a strong effect of prenatal 

smoking on offspring cord blood DNA methylation (Joubert et al., 2016) the 

meta-EWAS of prenatal caffeine exposure in Chapter 4 found limited evidence 

for an effect of prenatal caffeine exposure on offspring cord blood DNA 

methylation (Chapter 4). Second, the analyses of this thesis addressed the 

overrepresentation of studies that have investigated the effect of prenatal smoking 

on externalising problems, by specifically focussing on internalising problems in 

Chapters 5 and 6. This was further justified by the findings of the PheWAS 

analysis in Chapter 3 that indicated that the associations between prenatal 

smoking and externalising problems in childhood are likely to be explained by 

pleiotropic effects instead of an intrauterine effect. Third, causal effects were 

investigated by applying a range of diverse methods to complement the 

predominant observational evidence base of the DOHaD literature. An overview 

over the methods used and their corresponding strengths and limitations is 

presented in Table 7.1. With each of these methods being subject to slightly 

different biases and still all of the results pointing to the same conclusion, 

confidence increases in the hypothesis that DNA methylation is not a mediator of 

prenatal smoking and caffeine consumption on offspring mental health problems. 

The next section will elaborate on the different underlying biases of each of the 

analyses conducted within this thesis. 

7.3.1 Methodological strengths and limitations 

As outlined in Table 7.2, the different methods used in this thesis had unique 

methodological strengths and limitations, that allowed to inspect the research 
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question from slightly different angles. Triangulation of the evidence from these 

different analyses allowed greater confidence in inferences about whether or not 

an intrauterine effect exists.  

The intergenerational PheWAS methodology allowed for a hypothesis free 

exploration for suggestive causal or pleiotropic associations between smoking and 

caffeine genetic variants and mental health outcomes. Furthermore, by using PRS 

as proxies for maternal smoking and caffeine consumption, the number of 

confounding factors is likely to have been significantly reduced (Davey Smith & 

Ebrahim, 2003a). The main drawback of this study was the high number of tests 

that were run, which significantly reduced the statistical power to detect small 

genetic effects, which are common for complex traits (Choi et al., 2020). 

Furthermore, despite the PRSs proving to be valid proxies for smoking and 

caffeine consumption during pregnancy, associations reflect effects of maternal 

lifetime smoking and caffeine consumption (including pre-and post-pregnancy) 

and not uniquely intrauterine exposure (Diemer et al., 2020; Lawlor et al., 2017). 

The PheWAS analysis was followed by two EWAS meta-analyses to explore the 

potential of DNA methylation as a molecular pathway linking prenatal caffeine 

(Chapter 4) and internalising problems in childhood (Chapter 5). A general 

strength of EWAS analyses is the hypothesis free exploration of DNA 

methylation in association with traits of interest without limiting analyses to DNA 

methylation changes at specific genetic regions. Furthermore, dissimilar to the 

PheWAS analysis, associations are likely to specifically reflect intrauterine 

exposures, as the EWAS analyses used DNA methylation assessed at birth. 

However, unlike PRS analyses, results of EWAS analyses are prone to capture 

associations of confounding variables due to the dynamic nature of DNA 

methylation. Therefore, I cannot rule out the possibility that the associations 

observed between prenatal caffeine exposure and DNA methylation are 

influenced by confounding variables. Also, it needs to be acknowledged that the 

EWAS analyses in this thesis used DNA methylation assessed by the 450k array 

and thus results were only able to test associations between 2% of DNA 

methylation and the phenotypes of interest (Chapter 2). Last, due to tissue 

specificity the possibility remains that the exposures and internalising problems 

are associated with DNA methylation changes in brain tissue, that have not been 
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captured by the analyses in this thesis, which was restricted to DNA methylation 

assessed in blood. 

To get a sense of potential confounding in the EWAS meta-analysis of maternal 

prenatal caffeine consumption, a negative control and PRS analysis of caffeine 

consumption during pregnancy was conducted in ALSPAC. Yet, the substantially 

smaller sample sizes in these analyses, especially in the negative control analysis 

using paternal self-reported caffeine consumption during pregnancy, hampered 

the comparison of results with the maternal self-reported caffeine consumption 

results. Due to statistical power limitations, the negative control and PRS analyses 

in ALSPAC were unlikely to detect effects of maternal caffeine exposure on 

offspring DNA methylation, which were indicated to be rather small by the results 

of the EWAS meta-analysis using maternal self-reported caffeine consumption. 

More meaningful was the comparison of the associations between DNA 

methylation and maternal consumption across different caffeinated drinks and 

different European countries, which are likely to have dissimilar underlying 

confounding structures. As very few associations were common across the 

analyses using the different caffeinated drinks, this strengthens the hypothesis that 

it is not the actual caffeine content that is responsible for associations observed 

between the caffeinated beverages and offspring DNA methylation (particularly in 

the higher powered regional DMR analysis). Instead of caffeine, it seems more 

plausible that the different caffeinated drinks show different confounding 

structures that influenced DNA methylation (e.g., high sugar content of cola). 

In Chapter 6, an enrichment and two-sample MR analysis was applied to 

investigate the causal relationship between the DNA methylation changes, 

observed in association with (1) maternal caffeine consumption during pregnancy 

(Chapter 4), and (2) childhood internalising problems (Chapter 5), on offspring 

internalising problems. The enrichment analysis had the strength of not restricting 

test to only the statistically most significant CpG sites but to include the top 5,000 

CpG sites with the strongest evidence for associations with prenatal smoking and 

caffeine consumption. As DNA methylation at neighbouring CpG sites is likely to 

be highly correlated, this may allow investigating many small effects of exposure-

associated DNA methylation that may collectively increase the risk for offspring 

internalising problems. Yet again, results of the enrichment analysis are only 
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reflecting EWAS associations, which are prone to confounding and therefore may 

simply reflect associations with common confounding factors of prenatal smoking 

and caffeine consumption and offspring internalising problems (e.g., SEP or 

parental mental health problems). Complementing the enrichment analysis, a two-

sample MR analysis was applied that should reduce the likelihood of 

confounding. A great strength of this approach was the selection of cis-SNPs 

through the novel and highly powered mqtl database GoDMC (Min et al., 2020) 

in combination with using two of the most recent and highest powered GWAS of 

internalising problems (Jami et al., 2020), anxiety (Purves et al., 2020), and 

depression (Howard et al., 2019). However, the analysis was hampered by the 

weakly associated signals of local DNA methylation with prenatal caffeine and 

internalising problems. 

A common limitation of all the analyses conducted within this thesis is the 

presence of selection bias, as reflected by each of the samples showing rather low 

smoking rates/consuming little caffeine during pregnancy, tending to be more 

educated, and to suffer from less mental health problems than would be expected 

in the general population. This limits the generalisability of the findings of this 

thesis to populations that consume more caffeine or smoke more cigarettes during 

pregnancy (Webb et al., 2017). Therefore, replication of these analyses is highly 

warranted in higher risk samples with more extreme manifestations of smoking 

and caffeine consumption during pregnancy, as well as a higher prevalence of 

mental health problems in offspring. 
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Table 7.2 Summary of strengths and limitations of each of the methods used in this thesis 

Method Chapter Strengths Limitations 

Intergenerational 

PheWAS  

3 - Hypothesis free investigation of smoking and caffeine 

genetic variants with the mental health “phenome” 

available in ALSPAC. 

- Disentangling pleiotropic from potential causal effects 

of maternal smoking and caffeine consumption on 

offspring mental health outcomes in childhood. 

- Analysis likely to be statistically underpowered because of high 

number of tests. 

- Limited to mental health phenotypes assessed in ALSPAC. 

 

PRS analysis 3 and 4 - Reducing confounding variables by using genetic 

variants for exposures of interest. 

- Higher predictive power than using single genetic 

variants (Choi et al., 2020). 

- Intergenerational analyses require maternal, paternal, and offspring 

genetic data to avoid collider bias (Lawlor et al., 2017). 

- Not specific to intrauterine exposure. PRS for smoking and caffeine 

is a proxy for lifetime exposure of smoking and caffeine instead 

exposure during pregnancy (Diemer et al., 2020; Lawlor et al., 2017). 

- Higher risk of pleiotropic associations because of combining multiple 

SNPs in one score (Choi et al., 2020). 

- Requires large sample sizes to detect small genetic effects. 

EWAS 4 and 5 - Hypothesis free investigation of associations between 

DNA methylation and prenatal caffeine and internalising 

problems. 

- Insight into potential molecular pathways of pregnancy 

exposures on offspring mental health outcomes. 

 

 

- As DNA methylation is dynamic it is subject to confounding to the 

same degree as the phenome. 

- Tissue specificity: Unclear whether DNA methylation in cord blood 

is representative of DNA methylation in most relevant tissue for 

mental health phenotypes, which is brain tissue. 

- Only 2% of DNA methylation assessed by 450k array (Bibikova et 

al., 2011). 
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Cross-cohort meta-

analysis 

3, 4, 5, 

and 6 

- Reducing cultural biases because each cohort 

potentially being subject to slightly different biases that 

may be cancel each other out in meta-analysed results.  

- May introduce heterogeneity due to slightly different measures and 

assessment time-points across different cohorts and therefore dilute 

detection of small effects. 

- Biases shared between cohorts (e.g., selection bias) that may be 

exacerbated through meta-analysing results. 

Negative control analysis 

using paternal data 

3 - Strengthening causal inference of intrauterine effects of 

caffeine by reducing confounding effects that are shared 

between maternal and paternal caffeine consumption. 

- Highly underpowered due to much smaller sample size of paternal 

caffeine consumption during pregnancy. 

-Lack of variability in caffeine consumption because only very few 

fathers abstained from caffeine consumption during pregnancy. 

Enrichment analyses 

through QQ-plots 

6 - Analyses not restricted to few statically significant 

prenatal smoking and caffeine associated-CpG sites.  

- Allows to analyse small but systematic associations 

between internalising problems and smoking- and 

caffeine- associated CpG sites.  

- Associations may reflect effect of common confounding factors of 

prenatal smoking and caffeine consumption and offspring internalising 

problems. 

 

Two-Sample MR 6 - Highly powered because of opportunity to use available 

summary data from publicly available databases. 

- Reducing confounding variables by using genetic 

variants as proxies for DNA methylation and outcome of 

interest. 

- Sample overlap may have biased results towards the observational 

association (Lawlor, 2016). 

- Dependent on strength of association between DNA methylation and 

prenatal smoking and caffeine and strength of genetic proxies for 

exposure (weak instrument bias) of interest (Pierce & Burgess, 2013). 

- Results may have been biased towards the null because of weak 

instrument bias (Lawlor, 2016). 
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7.4 The future of genetics and epigenetics for prevention and treatment of 

mental health problems  

The development of reliable biomarkers for mental health phenotypes could 

contribute to facilitating diagnosis and prognosis of mental health problems, as 

well as treatment monitoring and clinical decision making (García-Giménez et al., 

2017; Ladd-Acosta & Fallin, 2015, Murray 2021). PRS and methylation risk 

scores (MRS) are promising candidates for biomarker development of mental 

health problems (Hüls & Czamara, 2020, Murray 2021). Before PRS and MRS 

biomarkers may be applied to the mental health care setting, more research is 

needed to increase their predictive power, specificity, and generalizability. The 

next sections will elaborate on the future of PRS and MRS as biomarkers for 

mental health problems.  

7.4.1 Polygenic risk scores 

The rapid developments in the field of genetic epidemiology warrant discussion of 

how PRS may be applied to clinical psychiatric practice in the future. Since the 

foundation of the psychiatric genomics consortium in 2009 

(https://www.med.unc.edu/pgc/), cheaper and more efficient assessment of 

genetic information has become available. Collaborative efforts of meta- and 

mega-analyses enabled recruitment of larger samples and led to a steady increase 

in predictive power of PRS for mental health problems. Amongst the PRS for 

psychiatric traits that have been investigated, the PRS for schizophrenia showed 

the highest predictive power by explaining ~11% of variance, followed by ~4% of 

variance explained by PRS for bipolar disorder, ADHD, and depression (Murray, 

2021). For Autism spectrum disorder and anorexia nervosa, the corresponding 

PRS were only able to explain ~2% of variance (Murray, 2021). Even though the 

predictive power of psychiatric traits in not high enough to inform psychiatric 

practice yet, it is indicated that this may change in the foreseeable future by 

generating larger sample sizes to increase the variance explained by PRS. For 

instance, the schizophrenia PRS, which is based on the yet largest GWAS sample 

size of a psychiatric trait, has approximately the same predictive value as other 

known risk factors for schizophrenia, such as family history and SES (Agerbo et 

https://www.med.unc.edu/pgc/
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al., 2015; Martin et al., 2019). However, merely increasing the sample size of a 

GWAS did not proof sufficient for obtaining more reliable PRS. For instance, 

whereas striving for larger sample sizes in GWAS of depression helped to 

increase the predictive power, it resulted in decreased specificity of the depression 

PRS. This is likely to be attributed to “minimal phenotyping”, where looser 

definitions of a phenotype are used to save costs and enable inclusion of more 

participants in the GWAS. However, minimal phenotyping decreases the 

specificity of genetic variants included in the PRS and therewith compromised the 

clinical relevance of the PRS (Cai et al., 2020). More detailed assessment of 

internalising problems may be crucial for genetic and epigenetic research, as the 

recent GWAS meta-analysis of internalising problems was not successful to 

identify a signal by merely increasing the sample size (Jami et al., 2020). Future 

genetic and epigenetic research may benefit from the availability of more precise 

measures of mental health through the development of digital assessment tools 

(Ferrar et al., 2020; Goldsack et al., 2020). 

With increasing predictive power and specificity of PRS for mental health 

problems, PRS may become integrated into mental health care in the future. Two 

recent articles have explored the potential future clinical application of PRS, 

highlighting that PRS may benefit prevention, diagnosis, and treatment strategies 

for mental health problems (Wray et al., 2021, Murray et al., 2021). First, PRS 

may be used to prevent the onset of mental health problems by posing as a 

screening tool to identify individuals who do not present with symptoms yet, but 

who might benefit from preventative actions due to an increased genetic risk. For 

instance, outside of the mental health sector large studies are already being 

implemented to test the utility of a breast cancer PRS as a screening tool to 

identify individuals with an increased genetic risk, who may benefit from more 

frequent monitoring to detect early stages and to engage in protective strategies, 

such as mastectomies (Wray, 2021; Yanes et al., 2020). There are no current 

screening strategies applied to identify people at risk for mental illness but if 

screening programs become implemented in psychiatry, the integration of PRS in 

such a program may be useful (Murray et al., 2021). The success of commercially 

attainable direct-to-consumer genetic testing platforms, such as 23andMe 

(www.23andme.com), My Heritage (www.myheritage.com), and ancestry 

https://www.23andme.com/en-int/
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(www.ancestry.com), are reflecting a general societal interest in genetics and 

people’s willingness to provide their data for genetic screenings. Genetic 

screenings offered by third party companies are problematic as the methods, 

which have been applied by these companies to estimate genetic risk, were found 

to not adhere to scientific standard (e.g., estimating genetic risk based on single 

SNPs instead of PRS) (Folkersen et al., 2020). To combat this, independent 

researchers generated a non-profit platform, called impute.me (www.impute.me) 

that enables individuals to receive information about their genetic risk that is in 

accordance with current scientific standards. The idea of impute.me is that people, 

who obtained their genetic information through a direct-to-consumer platform, 

can upload their genetic information to obtain state-of-the-art PRS, that are 

generated based on the most recent scientific evidence, for more than 2,000 traits 

(Folkersen et al., 2020). Alarmingly, a survey of 227 impute.me users has found 

that 61% experienced a negative emotional reaction (upset, anxious, sad, etc.) 

after receiving their PRS result and that only ~26% of participants could correctly 

answer questions about PRS and their interpretation (Peck et al., 2021). This 

stresses the urge for public education and knowledge about genetics to empower 

people to adequately evaluate and interpret results from such platforms (Folkersen 

et al., 2020: Murray, 2021). Integrating PRS into health records may be the safest 

way to ensure that information is appropriately contextualised with other health 

information and adequately communicated to the patient by a professional. It 

would also provide an opportunity for the patient to receive appropriate follow-up 

care through genetic counselling if needed. Second, it has been highlighted that 

PRS may facilitate clinical diagnosis of mental health disorders by providing 

another layer of information, especially in instances when individuals present with 

nonspecific or atypical symptoms that do not clearly fit into a diagnostic category 

(Murray, 2021). It is important to stress that PRS for complex traits may never be 

used independently for clinical diagnosis or prevention but may be used as 

another source of information, in addition to other risk factors such as family 

history and previous life experiences (Murray, 2021). In the future, if the 

specificity of PRS improves by identifying disorder specific genetic variants 

through deeper phenotyping, PRS may also enable a more fine-tuned 

differentiation of diagnoses (Cai et al., 2020: Murray, 2021). However, this is not 

possible yet, as many of the currently available mental health PRS are highly 

https://www.impute.me/
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correlated (e.g., correlation of 0.68 between the PRS for schizophrenia and bipolar 

disorder) (Lee et al., 2013). Last, in addition to screening and diagnoses, future 

PRS may inform about prognosis and treatment choices for individuals who 

already have a diagnosis for a mental disorder. For instance, it has been indicated 

that individuals with a high PRS for schizophrenia are more treatment resistant 

than individuals with a lower PRS (Murray, 2021). However, current research 

investigating the utility of PRS for informing about treatment response is limited 

by small sample sizes due to scarcity of data of individuals that are receiving 

different forms of treatment (Murray, 2021).  

Even more important than increasing the predictive power and specificity of PRS 

before they become integrated into health care, is the urge to increase the 

generalizability of PRS to other ancestries than white European ancestries. A 

review of 3,639 GWAS that were published between 2005 and 2018, investigating 

3,508 traits, revealed that, depending on year of publication, 72-96% of the 

samples came from European ancestry populations (see Figure 7.2) (Mills & 

Rahal, 2019). This is highly problematic since PRS discovered in European 

ancestry populations have repeatedly been found to have a much lower predictive 

power in non-European ancestry populations (Martin et al., 2019). For instance, 

genetic variants for diabetes that were derived from European ancestry 

populations were found to lead to false diagnoses in African ancestry populations 

(Gurdasani et al., 2019; Mills & Tropf, 2020). Therefore, to avoid inflating health 

disparities, it is crucial that more GWAS are conducted with individuals of more 

diverse ancestries before PRS may become integrated into health care (Martin et 

al., 2019).  
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Figure 7.2 Ancestry populations included in published GWAS (credit: Mills 

& Rahal, 2019). X-axis represents date of publication and the y-axis 

represents sample size of the GWAS. Other/mixed =  combinations of 

ancestries (e.g., European and African). Circles represent sample size per 

ancestry. The bar graph illustrates the distribution of sample size across 

different ancestries divide by discovery and replication samples. 

 

In summary, the genetic epidemiology field is developing quickly and may soon 

be used to inform clinical psychiatric practice. With larger consortia being 

established to boost the sample size of GWAS of psychiatric traits, it is important 

ensure that the specificity of PRS is not sacrificed by relying on single items to 

assess complex mental health phenotypes. With increasing the predictive power 

and specificity of PRS for mental health problems, they will become more 

clinically relevant and may be integrated into health care in the future. Before 

PRS should be considered as a tool for screening, diagnoses, and treatment, it is of 

uttermost importance to conduct more GWAS in populations of non-European 

ancestries to avoid exacerbating health care inequalities. The success of direct-to-

consumer genetic testing is warranting a more direct communication and 

involvement of clinical and research geneticists to ensure that genetic information 

does not become misinterpreted (Folkersen et al., 2020). Therefore, until PRS 

become integrated into routine health care it may be important to improve public 

genetic literacy to facilitate critical and accurate evaluation of genetic testing. 

7.4.2 DNA methylation scores  

As outlined in the previous chapters, despite theoretical grounds to investigate 

DNA methylation as an intermediate phenotype of the effect of environmental 
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exposures on mental health outcomes, scientific evidence to support this theory is 

lacking. Although DNA methylation at many CpG sites in cord blood was found 

to be associated with maternal smoking during pregnancy (Joubert et al., 2016), 

no causal contribution of these DNA methylation changes to the risk of offspring 

mental health outcomes could be established in Chapter 6. This finding is in line 

with previous research inspecting the causal contribution of exposure-associated 

DNA methylation to complex traits (Caramaschi et al., 2018; Cecil et al., 2018; 

Min et al., 2020; Richardson et al., 2019; Wiklund et al., 2019). This may indicate 

that, at least for now, it may be beneficial to shift the focus away from the aim of 

finding causal contribution of DNA methylation to complex trait variation and 

instead to guide research efforts towards the development of DNA methylation 

biomarkers. Overall, the lack of causal evidence found in this thesis and previous 

research indicates that, considering the technology and the accessible tissues (that 

are not necessarily biological important) available for epidemiological studies, the 

establishment of DNA methylation biomarkers may be more sensible. Currently 

association studies of DNA methylation and mental health problems consistently 

yield only few signals (see Chapter 4) (Barker, Walton, & Cecil, 2018; Emeny et 

al., 2018; Mooney et al., 2020; Starnawska et al., 2019). Similar as in the initial 

stages of GWAS of mental health problems (e.g., Purcell et al., 2009), larger 

samples with DNA methylation data will help detect more signals and enable the 

development of reliable biomarkers. The development of DNA methylation 

biomarkers has the advantage of not being reliant on tissue-specificity, even for 

mental health phenotypes where the most relevant tissue is brain tissue. In fact, 

DNA methylation biomarkers developed in peripheral tissue, such as blood and 

saliva, are most desirable as it is easier accessible and less invasive to obtain. 

However, the establishment of reliable DNA methylation biomarkers requires 

even larger data sets for training, testing, and validation (Hüls & Czamara, 2020). 

More DNA methylation data will likely be available in the future due to the rapid 

development of the field of epigenetics. The exponential increase in epigenetic 

epidemiology research is represented in Figure 7.3, which shows the rise in 

publications of epigenetic epidemiology papers as indicated by a search for 

“epigenetic epidemiology” on PubMed (https://pubmed.ncbi.nlm.nih.gov/). Part 

of this increase may be explained by a general increase in publications per year. 

However, this is unlikely to fully explain the very strong increase from 2010, with 

https://pubmed.ncbi.nlm.nih.gov/
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less than 300 epigenetic epidemiology publications to more than 800 publications 

from 2017 onwards. 

 

 

 

Figure 7.3 Number of epigenetic epidemiology publications per year. 

 

 

Future directions in the field of epigenetics look promising for developing DNA 

methylation biomarkers, as more consortia are being established to join forces to 

detect small epigenetic effects (e.g., PACE) (Felix et al., 2018), GoDMC (Min et 

al., 2020) and new technologies are being developed that enable capturing a wider 

spectrum of epigenetic variation in a more cost-efficient manner (Pidsley et al., 

2016). Yet, it is important to learn from the pitfalls of GWAS, and to ensure that 

the specificity of the methylation signals is retained while increasing the sample 

size of EWAS studies. 



Chapter 7 – Discussion 

 254 

 

Whereas the utility of PRS for clinical prognosis and decision making in 

psychiatry is already under discussion (see section 7.4.1; Murray et al., 2021; 

Wray et al., 2021), less literature has explored the utility of methylation risk 

scores (MRS) for clinical psychiatric practice. Yet, this is a topic worth discussing 

as recent studies indicate that the generation of MRS may help to establish 

reliable and highly predictive biomarkers for prenatal exposures and mental health 

problems in the future. Similar to PRS, MRS are generated by aggregating the 

many small associations found in association with a phenotype, into one common 

score that has a higher predictive power (Hüls & Czamara, 2020). The 

development of MRS requires a large training data set to detect accurate DNA 

methylation weights, another independent data set the MRS can be tested in and at 

least one (or more) independent data sets the MRS can be validated in (Hüls & 

Czamara, 2020). Exploiting the existent DNA methylation data sets, MRS could 

be developed for a variety of complex traits including smoking and depression 

(Barbu et al., 2020; McCartney et al., 2018). The MRS for smoking was able to 

explain 61% of variation in smoking status, compared to 2.8% of variance 

explained by a PRS in the same sample (McCartney et al., 2018). Together, the 

MRS and PRS for smoking were able to explain 61.4% of variance in smoking 

status. Due to its high predictive power and discriminant validity, the smoking 

MRS has already been recommended to replace phenotypic assessment of 

smoking in future research (Barbu et al., 2020). Also, biomarkers for maternal 

smoking during pregnancy in in form of an MRS in offspring cord blood and 

adult peripheral-blood have been developed (Rauschert et al., 2020; Reese et al., 

2017; Richmond et al., 2018). The smoking during pregnancy MRS based on cord 

blood has shown good accuracy, specificity, and sensitivity for predicting cotinine 

levels and self-report of sustained smoking during pregnancy (Reese et al., 2017). 

The exposure to smoking during pregnancy MRS based on offspring’s adult 

peripheral blood (assessed at age 30) showed a lower predictive ability than the 

MRS based on cord blood but was still able to predict whether mothers smoked 

during pregnancy (Richmond et al., 2018). Last, another study has applied 

machine learning methods to develop an MRS for maternal smoking during 

pregnancy using peripheral blood, which outperformed the MRS from Reese et al. 
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(2017) and Richmond et al. (2017) based on testing and validating their score in 

samples of adolescents (age 16) and adults (age 31) (Rauschert et al., 2020).  

Whereas MRS may already be used as biomarkers to assess smoking during and 

outside of pregnancy, more research is needed before appropriate biomarkers for 

mental health outcomes can be used. To derive good MRS as predictors for 

phenotypes that show a less strong signal with DNA methylation than smoking, 

even larger sample sizes will be needed to obtain an appropriate predictive power 

(Barbu et al., 2020). For instance, a recently developed MRS for depression was 

only able to explain 1.75% of variance in prevalent and 0.52% in incident 

depression, which is still lower than the predictive power of the PRS for 

depression (explained variance = 2.40%). However, the depression MRS was 

found to contribute a significant amount of explained variance on top of the 

depression PRS (additive explained variance in depression = 3.99%) (Barbu et al., 

2020). Despite more research being needed to improve the predictive power of the 

depression MRS before it can be applied as a proper biomarker, research using the 

MRS for depression already yielded valuable insights into the relationship 

between smoking, depression, and DNA methylation. Compared to the depression 

MRS trained in a sample of smoking and non-smoking participants, the 

depression MRS trained solely amongst non-smoking participants showed weaker 

predictive power for prevalent depression (explained variance = 0.4%) and no 

clear evidence of association with incident depression (P-value > 0.05). Adding to 

this, around half of the association between the MRS for depression and risk for 

depression was mediated by smoking. Another study (Clark et al., 2020) 

generated MRS from data of 581 major depressive patients and included 

information from clinical and important lifestyle variables (personality 

assessment, family history of depression, substance use, etc.) using machine-

learning techniques. The MRS, in combination with clinical and lifestyle 

information, was able to discriminate recurrence of depression within the same 

individuals 6 years after baseline assessment. This indicates that MRS may inform 

about disease prognosis and therefore might be useful in the future to guide 

decisions about appropriate treatments. 

It is important to start thinking about the potential utility of MRS for clinical 

practice. Whereas MRS may be beneficial for clinical research in the near future, 
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current evidence indicates that more work is needed to improve the sensitivity and 

specificity of MRS before they can actually be applied to inform clinical decision 

making (Hillary, 2021). As highlighted in the section on PRS (see 7.4.1), an 

important step towards developing reliable biomarkers for mental health problems 

will be to improve the signal to noise ratio in the assessment of mental health 

phenotypes (Cai et al., 2020). In sum, the development of MRS is an exciting 

avenue for future epigenetic research and – with larger sample sizes – may help to 

unravel contributions of environmental exposures on risk for mental health 

problems in the future. DNA methylation biomarkers could provide a more 

precise assessment of phenotypes for which self-report may be subject to 

reporting bias (e.g., smoking during pregnancy, see Chapter 1) or facilitate 

research in samples where phenotypes of interest have a lot of missing data, or 

have even not been assessed, by using a MRS as a proxy for those phenotypes 

(García-Giménez et al., 2017; Ladd-Acosta & Fallin, 2015; Sharp & Relton, 

2017).  

7.5 Ethical considerations of the development of an epigenetic biosocial 

archive 

Once more reliable MRS are available, they could contribute towards the 

development of a biosocial archive that encloses information about a person’s life 

exposures and future health development through epigenetic profiles (Relton, 

Hartwig, et al., 2015). Whereas the development of a biosocial archive may bring 

great benefits for understanding intrauterine effects, it also has the potential of 

inflating already existing health inequalities, if the current underlying biases in the 

field of DOHaD are not addressed in future epigenetic research. First, epigenetic 

research must shift away from the strong bias in the DOHaD field of 

predominantly studying maternal pregnancy exposures (see Chapter 1) (Sharp et 

al., 2019). As highlighted in Chapter 1, consumption behaviours during pregnancy 

are embedded in highly complex social structures and are strongly socially 

patterned. Due to DNA methylation being susceptible to environmental 

exposures, MRS are likely to capture not only the exposure of interest but also its 

associated confounding factors. Thus, DNA methylation biomarkers may help to 

efficiently capture complex confounded structures that would otherwise require a 

lot of phenotypic assessments (Hillary, 2021; Relton, Hartwig, et al., 2015; Sharp 
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& Relton, 2017). Yet, this requires that the influences of paternal and societal 

effects on offspring DNA methylation and mental health outcomes be recognised 

in addition to any maternal effects. MRS generated based on EWAS of maternal 

behaviours during pregnancy could act as a proxy for social inequalities that are 

outside of mothers’ actual locus of control. This could lead to mothers being 

wrongly held solely responsible for their offspring’s health outcomes (Ismaili 

M’hamdi et al., 2018). Therefore, to understand which confounding factors DNA 

methylation biomarkers are capturing, it is crucial to collect more data on paternal 

behaviours pre- and post-natally, as well as social factors surrounding increased 

smoking and caffeine consumption (Easey & Sharp, 2021; Sharp et al., 2019) and 

to study them in association with offspring DNA methylation. Second, before the 

development of a biosocial archive efforts should be made to focus collecting 

epigenetic data from more diverse populations. Current research in the field of 

epigenetics and complex traits predominantly relies on European ancestry 

epigenetic samples (such as the PACE consortium and the GoDMC) (Felix et al., 

2018; Min et al., 2020). It is very important to widen the representation to other 

populations, so that the potential benefits of a biosocial archive not only apply to 

populations of European ancestry. Evidence for the possibility of lack of diverse 

samples causing health inequality has already been reported from GWAS analyses 

(see section 7.4.1)(Gurdasani et al., 2019; Mills & Tropf, 2020). As the 

development of DNA methylation biomarkers is just emerging, it is very 

important to immediately address these imbalances in epigenetic research 

investigating DOHaD hypotheses to prevent health inequalities to be amplified by 

the emerging biosocial archive. Current large epigenetic consortia, such as the 

PACE (Felix et al., 2018) and GoDMC consortium (Min et al., 2020) mostly rely 

on white European/US populations, making it difficult to study DNA methylation 

in populations from diverse ethnicities. However, some of the more recent cohorts 

started to put effort into sampling from more diverse populations. For instance, 

the Born in Bradford cohort, which was included in the EWAS meta-analysis of 

prenatal caffeine of this thesis (Chapter 4), invested great efforts into recruiting 

participants from South-Asian ethnicities. Strategies applied in the recruitment of 

this cohort, such as translating questionnaires into different languages and 

providing translators for the administration of questionnaires (Chapter 2), may 

help future cohorts to increase their ethnic diversity.  
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7.6 Main conclusion 

Overall, the genetically and epigenetically informed analyses of this thesis, that 

each had slightly varying underlying biases, all provided no evidence for a causal 

effect of prenatal smoking and caffeine exposure on offspring mental health 

problems, including via a mechanism involving DNA methylation. The 

associations between the smoking PRS and offspring externalising problems 

found in Chapter 3 showed more evidence for being confounded by pleiotropy 

instead of reflecting a causal effect of prenatal smoking on offspring externalising 

problems. Likewise, the lacking synergy between associations of DNA 

methylation and consumption of different caffeinated drinks during pregnancy 

found in Chapter 4, indicates that different confounding structures of different 

caffeinated drinks are more likely to explain the associations than a causal 

intrauterine effect of caffeine on offspring DNA methylation. These findings were 

supported by the results of Chapter 6, which did not find evidence for a causal 

effect of prenatal smoking- and caffeine-associated DNA methylation on 

internalising problems, anxiety, and depression.  

Whereas the results of my thesis should not be used independently to advise 

expectant parents about intrauterine effects of smoking and caffeine on mental 

health outcomes, they may be triangulated with other research findings, as well as 

guide directions for further research in the field of DOHaD. For instance, the 

finding of potential pleiotropy of smoking and externalising behaviour traits is 

supported by other research using different methodologies and may be used to 

enhance prevention and intervention programs for stopping smoking during 

pregnancy (Crone & Reijneveld, 2007; Elkins et al., 2007; Pedersen et al., 2018; 

Harrison et al., 2019; Hicks et al., 2020). Whereas abstaining from smoking 

during pregnancy is highly recommended, due to the established harmful effects 

on offspring health, more research is needed to increase understanding of the 

effects of intrauterine caffeine exposure on offspring health. The results of my 

thesis have shown that investigating different sources of caffeine may help to 

differentiate confounded from causal effects of caffeine. The lack of evidence for 

a causal effect of DNA methylation at birth on mental health phenotypes is also in 

line with recent findings. Results of the highly statistically powered collaborative 

effort of the GoDMC have emphasised that – given the currently available 
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technologies – it is unlikely that any causal contribution of DNA methylation to 

complex trait variation may be discovered (Min et al, 2020). Before better 

technologies enable to assess a larger fraction of DNA methylation markers in 

more diverse tissue and cell types, DNA methylation may be used as a potential 

biomarker that could replace self-report measures and pose as a more accurate 

assessment of intrauterine exposure to smoking and caffeine consumption and 

mental health problems. If genetic and epigenetic research manages to address the 

current biases underlying the GWAS, EWAS, and DOHaD literature, PRS and 

MRS for mental health outcomes and intrauterine exposures could contribute 

towards improving prevention, diagnoses, and treatment of offspring mental 

health problems through the development of a biosocial archive. To do so, more 

diverse samples need to be recruited, which represent more diverse ancestries and 

risk populations. Furthermore, more data needs to be collected from fathers (not 

just mothers) and the wider social context (e.g., social inequalities) that is 

influencing human behaviour.  

Considering the currently lacking scientific evidence for a causal intrauterine 

effect of caffeine on offspring health problems, polarized media headlines and 

strong public opinions about consumption of caffeine during pregnancy appear 

disproportionate. The biases of the DOHaD field that have been described in 

Chapter 1, stress the importance of research findings being transparently 

communicated without using inflammatory language and deriving premature 

advice for pregnant women from single studies. A collaborative effort between 

the British Pregnancy Advisory Service and researcher from Cardiff University 

formed the WRISK project that aims at enhancing risk communication for 

pregnancy by advocating for a women-centred perspective when communicating 

pregnancy related risks (www.wrisk.org). A study as part of the WRISK project 

found that amongst 171 randomly selected media headlines published in the UK 

between 2018 and 2019, the most talked about risk factors were related to 

maternal food and drink consumption during pregnancy (Marshall et al., 2021). In 

the sample of headlines that they investigated, headlines were predominantly 

focussed on fetal outcomes, ignoring effects on maternal health. Interestingly, no 

strong deviations from the content of media headlines and studies’ press releases 

could be identified, stressing the importance of adequate and sensitive press 

https://www.bpas.org/
https://www.cardiff.ac.uk/
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releases and appropriate communication from the Science Media Centres of the 

corresponding research institutions. I hope that future work in DOHaD will foster 

a more considerate research culture, which openly acknowledges the complexity 

of investigating causal intrauterine effects, while empowering women to make an 

informed choice when facing uncertainty about the effects of behaviours during 

pregnancy.



  

261 

References  

Abbott, L. C., & Winzer-Serhan, U. H. (2012). Smoking during pregnancy: 

Lessons learned from epidemiological studies and experimental studies 

using animal models. Critical Reviews in Toxicology, 42(4), 279–303. 

https://doi.org/10.3109/10408444.2012.658506 

Abdel-Hady, H., Nasef, N., Shabaan, A. E., & Nour, I. (2015). Caffeine therapy in 

preterm infants. World Journal of Clinical Pediatrics, 4(4), 81–93. 

https://doi.org/10.5409/wjcp.v4.i4.81 

Abdul-Hussein, A., Kareem, A., Tewari, S., Bergeron, J., Briollais, L., Challis, J. 

R., Davidge, S. T., Delrieux, C., Fortier, I., Goldowitz, D., & others. 

(2020). Early life risk and resiliency factors and their influences on 

developmental outcomes and disease pathways: A rapid evidence review 

of systematic reviews and meta-analyses. Journal of Developmental 

Origins of Health and Disease, 1–16. 

Achenbach, T. M. (1966). The classification of children’s psychiatric symptoms: 

A factor-analytic study. Psychological Monographs, 80(7), 1–37. 

WorldCat.org. 

Achenbach, T. M., Ivanova, M. Y., Rescorla, L. A., Turner, L. V., & Althoff, R. 

R. (2016). Internalizing/Externalizing Problems: Review and 

Recommendations for Clinical and Research Applications. Journal of the 

American Academy of Child & Adolescent Psychiatry, 55(8), 647–656. 

https://doi.org/10.1016/j.jaac.2016.05.012 

Achenbach, T. M., & Rescorla, L. A. (2000). Manual for the ASEBA preschool 

forms and profiles (Vol. 30). Burlington, VT: University of Vermont, 

Research Center for Children, Youth, & Families. 

Agerbo, E., Sullivan, P. F., Vilhjálmsson, B. J., Pedersen, C. B., Mors, O., 

Børglum, A. D., Hougaard, D. M., Hollegaard, M. V., Meier, S., 

Mattheisen, M., Ripke, S., Wray, N. R., & Mortensen, P. B. (2015). 

Polygenic Risk Score, Parental Socioeconomic Status, Family History of 

Psychiatric Disorders, and the Risk for Schizophrenia: A Danish 

Population-Based Study and Meta-analysis. JAMA Psychiatry, 72(7), 635. 

https://doi.org/10.1001/jamapsychiatry.2015.0346 

Ahun, M. N., Consoli, A., Pingault, J.-B., Falissard, B., Battaglia, M., Boivin, M., 

https://doi.org/10.1001/jamapsychiatry.2015.0346


  

262 

Tremblay, R. E., & Côté, S. M. (2018). Maternal depression symptoms 

and internalising problems in the offspring: The role of maternal and 

family factors. European Child & Adolescent Psychiatry, 27(7), 921–932. 

Aktar, E., Qu, J., Lawrence, P. J., Tollenaar, M. S., Elzinga, B. M., & Bögels, S. 

M. (2019). Fetal and Infant Outcomes in the Offspring of Parents With 

Perinatal Mental Disorders: Earliest Influences. Frontiers in Psychiatry, 

10. https://doi.org/10.3389/fpsyt.2019.00391 

Alasmari, F. (2020). Caffeine induces neurobehavioral effects through modulating 

neurotransmitters. Saudi Pharmaceutical Journal, 28(4), 445–451. 

https://doi.org/10.1016/j.jsps.2020.02.005 

Alati, R., MacLeod, J., Hickman, M., Sayal, K., May, M., Smith, G. D., & 

Lawlor, D. A. (2008). Intrauterine Exposure to Alcohol and Tobacco Use 

and Childhood IQ: Findings from a Parental-Offspring Comparison within 

the Avon Longitudinal Study of Parents and Children. Pediatric Research, 

64(6), 659–666. https://doi.org/10.1203/PDR.0b013e318187cc31 

Alfano, R., Guida, F., Galobardes, B., Chadeau-Hyam, M., Delpierre, C., 

Ghantous, A., Henderson, J., Herceg, Z., Jain, P., Nawrot, T. S., Relton, 

C., Vineis, P., Castagné, R., & Plusquin, M. (2019). Socioeconomic 

position during pregnancy and DNA methylation signatures at three stages 

across early life: Epigenome-wide association studies in the ALSPAC 

birth cohort. International Journal of Epidemiology, 48(1), 30–44. 

https://doi.org/10.1093/ije/dyy259 

Ali-Khan, S. E., Krakowski, T., Tahir, R., & Daar, A. S. (2011). The use of race, 

ethnicity and ancestry in human genetic research. The HUGO Journal, 

5(1–4), 47–63. https://doi.org/10.1007/s11568-011-9154-5 

American Psychiatric Association. (2013). Diagnostic and statistical manual of 

mental disorders (DSM-5®). American Psychiatric Pub. 

Anderson, C. A., Pettersson, F. H., Clarke, G. M., Cardon, L. R., Morris, A. P., & 

Zondervan, K. T. (2010). Data quality control in genetic case-control 

association studies. Nature Protocols, 5(9), 1564–1573. 

https://doi.org/10.1038/nprot.2010.116 

Andre, Q. R., Geeraert, B. L., & Lebel, C. (2020). Brain structure and 

internalizing and externalizing behavior in typically developing children 

and adolescents. Brain Structure and Function, 225(4), 1369–1378. 

https://doi.org/10.1038/nprot.2010.116


  

263 

https://doi.org/10.1007/s00429-019-01973-y 

Angold, A., Costello, E. J., Messer, S. C., & Pickles, A. (1995). Development of a 

short questionnaire for use in epidemiological studies of depression in 

children and adolescents. International Journal of Methods in Psychiatric 

Research, 5(4), 237–249. 

Angold, A., Costello, E. J., & Erkanli, A. (1999). Comorbidity. Journal of Child 

Psychology and Psychiatry, 40(1), 57–87. https://doi.org/10.1111/1469-

7610.00424 

Aryee, M. J., Jaffe, A. E., Corrada-Bravo, H., Ladd-Acosta, C., Feinberg, A. P., 

Hansen, K. D., & Irizarry, R. A. (2014). Minfi: A flexible and 

comprehensive Bioconductor package for the analysis of Infinium DNA 

methylation microarrays. Bioinformatics, 30(10), 1363–1369. 

Ashford, J., Lier, P. A. C. V., Timmermans, M., Cuijpers, P., & Koot, H. M. 

(2008). Prenatal Smoking and Internalizing and Externalizing Problems in 

Children Studied From Childhood to Late Adolescence. Journal of the 

American Academy of Child & Adolescent Psychiatry, 47(7), 779–787. 

https://doi.org/10.1097/CHI.0b013e318172eefb 

Audrain-McGovern, J., Rodriguez, D., Tercyak, K. P., Cuevas, J., Rodgers, K., & 

Patterson, F. (2004). Identifying and Characterizing Adolescent Smoking 

Trajectories. Cancer Epidemiol Biomarkers Prev, 13. 

Bai, J., Wong, F. W., Bauman, A., & Mohsin, M. (2002). Parity and pregnancy 

outcomes. American Journal of Obstetrics and Gynecology, 186(2), 274–

278. 

Ballering, G., Leijnse, J., Eijkelkamp, N., Peeters, L., & Heus, R. de. (2018). 

First-trimester placental vascular development in multiparous women 

differs from that in nulliparous women. The Journal of Maternal-Fetal & 

Neonatal Medicine, 31(2), 209–215. 

https://doi.org/10.1080/14767058.2017.1280020 

Bakker, R., Steegers, E. A., Obradov, A., Raat, H., Hofman, A., & Jaddoe, V. W. 

(2010). Maternal caffeine intake from coffee and tea, fetal growth, and the 

risks of adverse birth outcomes: The Generation R Study. The American 

Journal of Clinical Nutrition, 91(6), 1691–1698. 

https://doi.org/10.3945/ajcn.2009.28792 

Bakulski, K. M., Feinberg, J. I., Andrews, S. V., Yang, J., Brown, S., L. 

https://doi.org/10.1080/14767058.2017.1280020
https://doi.org/10.3945/ajcn.2009.28792


  

264 

McKenney, S., Witter, F., Walston, J., Feinberg, A. P., & Fallin, M. D. 

(2016). DNA methylation of cord blood cell types: Applications for mixed 

cell birth studies. Epigenetics, 11(5), 354–362. 

https://doi.org/10.1080/15592294.2016.1161875 

Baler, R. D., Volkow, N. D., Fowler, J. S., & Benveniste, H. (2008). Is fetal brain 

monoamine oxidase inhibition the missing link between maternal smoking 

and conduct disorders? Journal of Psychiatry & Neuroscience : JPN, 

33(3), 187–195. 

Barbu, M. C., Shen, X., Walker, R. M., Howard, D. M., Evans, K. L., Whalley, H. 

C., Porteous, D. J., Morris, S. W., Deary, I. J., Zeng, Y., Marioni, R. E., 

Clarke, T.-K., & McIntosh, A. M. (2020). Epigenetic prediction of major 

depressive disorder. Molecular Psychiatry, 1–12. 

https://doi.org/10.1038/s41380-020-0808-3 

Barker, E. D., Copeland, W., Maughan, B., Jaffee, S. R., & Uher, R. (2012). The 

Relative Impact of Maternal Depression and Associated Risk Factors on 

Offspring Psychopathology. The British Journal of Psychiatry : The 

Journal of Mental Science, 200(2), 124–129. 

https://doi.org/10.1192/bjp.bp.111.092346 

Barker, E. D., Walton, E., & Cecil, C. A. M. (2018). Annual Research Review: 

DNA methylation as a mediator in the association between risk exposure 

and child and adolescent psychopathology. Journal of Child Psychology 

and Psychiatry, 59(4), 303–322. https://doi.org/10.1111/jcpp.12782 

Barker, E. D., Walton, E., Cecil, C. A. M., Rowe, R., Jaffee, S. R., Maughan, B., 

O’Connor, T. G., Stringaris, A., Meehan, A. J., McArdle, W., Relton, C. 

L., & Gaunt, T. R. (2018). A Methylome-Wide Association Study of 

Trajectories of Oppositional Defiant Behaviors and Biological Overlap 

With Attention Deficit Hyperactivity Disorder. Child Development, 89(5), 

1839–1855. https://doi.org/10.1111/cdev.12957 

Barnholtz-Sloan, J. S., McEvoy, B., Shriver, M. D., & Rebbeck, T. R. (2008). 

Ancestry Estimation and Correction for Population Stratification in 

Molecular Epidemiologic Association Studies. Cancer Epidemiology 

Biomarkers & Prevention, 17(3), 471–477. https://doi.org/10.1158/1055-

9965.EPI-07-0491 

Battram, T., Richmond, R. C., Baglietto, L., Haycock, P. C., Perduca, V., 

https://doi.org/10.1080/15592294.2016.1161875
https://doi.org/10.1158/1055-9965.EPI-07-0491
https://doi.org/10.1158/1055-9965.EPI-07-0491


  

265 

Bojesen, S. E., Gaunt, T. R., Hemani, G., Guida, F., Carreras-Torres, R., 

Hung, R., Amos, C. I., Freeman, J. R., Sandanger, T. M., Nøst, T. H., 

Nordestgaard, B. G., Teschendorff, A. E., Polidoro, S., Vineis, P., … 

Relton, C. L. (2019). Appraising the causal relevance of DNA methylation 

for risk of lung cancer. International Journal of Epidemiology, 48(5), 

1493–1504. https://doi.org/10.1093/ije/dyz190 

Bech, B. H., Obel, C., Henriksen, T. B., & Olsen, J. (2007). Effect of reducing 

caffeine intake on birth weight and length of gestation: Randomised 

controlled trial. BMJ : British Medical Journal, 334(7590), 409. 

https://doi.org/10.1136/bmj.39062.520648.BE 

Beck, C. T. (2001). Predictors of postpartum depression: An update. Nursing 

Research, 50(5), 275–285. 

Bekkhus, M., Skjøthaug, T., Nordhagen, R., & Borge, A. (2010). Intrauterine 

exposure to caffeine and inattention/overactivity in children: Caffeine and 

inattention/overactivity. Acta Paediatrica, 99(6), 925–928. 

https://doi.org/10.1111/j.1651-2227.2010.01744.x 

Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N., & Golani, I. (2001). Controlling 

the false discovery rate in behavior genetics research. Behavioural Brain 

Research, 125(1), 279–284. https://doi.org/10.1016/S0166-

4328(01)00297-2 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A 

Practical and Powerful Approach to Multiple Testing. Journal of the Royal 

Statistical Society: Series B (Methodological), 57(1), 289–300. 

https://doi.org/10.1111/j.2517-6161.1995.tb02031.x 

Berglundh, S., Vollrath, M., Brantsæter, A. L., Brandlistuen, R., Solé-Navais, P., 

Jacobsson, B., & Sengpiel, V. (2020). Maternal caffeine intake during 

pregnancy and child neurodevelopment up to eight years of age—Results 

from the Norwegian Mother, Father and Child Cohort Study. European 

Journal of Nutrition. https://doi.org/10.1007/s00394-020-02280-7 

Bibikova, M. (2006). High-throughput DNA methylation profiling using universal 

bead arrays. Genome Research, 16(3), 383–393. 

https://doi.org/10.1101/gr.4410706 

Bibikova, M., Barnes, B., Tsan, C., Ho, V., Klotzle, B., Le, J. M., Delano, D., 

Zhang, L., Schroth, G. P., Gunderson, K. L., Fan, J.-B., & Shen, R. (2011). 

https://doi.org/10.1093/ije/dyz190


  

266 

High density DNA methylation array with single CpG site resolution. 

Genomics, 98(4), 288–295. https://doi.org/10.1016/j.ygeno.2011.07.007 

Bird, A. (2007). Perceptions of epigenetics. Nature, 447(7143), 396–398. 

https://doi.org/10.1038/nature05913 

Bjørngaard, J. H., Nordestgaard, A. T., Taylor, A. E., Treur, J. L., Gabrielsen, M. 

E., Munafò, M. R., Nordestgaard, B. G., Åsvold, B. O., Romundstad, P., & 

Davey Smith, G. (2017). Heavier smoking increases coffee consumption: 

Findings from a Mendelian randomization analysis. International Journal 

of Epidemiology, 46(6), 1958–1967. https://doi.org/10.1093/ije/dyx147 

Blood-Siegfried, J., & Rende, E. K. (2010). The Long-Term Effects of 

Perinatal Nicotine Exposure on Neurologic Development. Journal of 

Midwifery & Women’s Health, 55(2), 143–152. 

https://doi.org/10.1016/j.jmwh.2009.05.006 

Borenstein, M., Hedges, L., & Rothstein, H. (2007). Meta-analysis: Fixed effect 

vs. Random effects. Meta-Analysis. Com. 

Bowden, J., Davey Smith, G., & Burgess, S. (2015). Mendelian randomization 

with invalid instruments: Effect estimation and bias detection through 

Egger regression. International Journal of Epidemiology, 44(2), 512–525. 

https://doi.org/10.1093/ije/dyv080 

Bowker, K., Lewis, S., Coleman, T., & Cooper, S. (2015). Changes in the rate of 

nicotine metabolism across pregnancy: A longitudinal study. Addiction 

(Abingdon, England), 110(11), 1827–1832. 

https://doi.org/10.1111/add.13029 

Boyd, A., Golding, J., Macleod, J., Lawlor, D. A., Fraser, A., Henderson, J., 

Molloy, L., Ness, A., Ring, S., & Davey Smith, G. (2013). Cohort Profile: 

The ‘Children of the 90s’—the index offspring of the Avon Longitudinal 

Study of Parents and Children. International Journal of Epidemiology, 

42(1), 111–127. https://doi.org/10.1093/ije/dys064 

Boylan, S. M., Cade, J. E., Kirk, S. F. L., Greenwood, D. C., White, K. L. M., 

Shires, S., Simpson, N. A. B., Wild, C. P., & Hay, A. W. M. (2008). 

Assessing caffeine exposure in pregnant women. The British Journal of 

Nutrition, 100(4), 875–882. https://doi.org/10.1017/S0007114508939842 

Braun, P. R., Han, S., Hing, B., Nagahama, Y., Gaul, L. N., Heinzman, J. T., 

https://doi.org/10.1016/j.jmwh.2009.05.006


  

267 

Grossbach, A. J., Close, L., Dlouhy, B. J., Howard, M. A., Kawasaki, H., 

Potash, J. B., & Shinozaki, G. (2019). Genome-wide DNA methylation 

comparison between live human brain and peripheral tissues within 

individuals. Translational Psychiatry, 9(1), 1–10. 

https://doi.org/10.1038/s41398-019-0376-y 

Brion, M.-J., Victora, C., Matijasevich, A., Horta, B., Anselmi, L., Steer, C., 

Menezes, A. M. B., Lawlor, D. A., & Smith, G. D. (2010). Maternal 

smoking and child psychological problems: Disentangling causal and non-

causal effects. Pediatrics, 126(1), e57–e65. 

https://doi.org/10.1542/peds.2009-2754 

Brummelte, S., Mc Glanaghy, E., Bonnin, A., & Oberlander, T. (2017). 

Developmental changes in serotonin signaling: Implications for early brain 

function, behavior and adaptation. Neuroscience, 342, 212–231. 

Bubier, J. L., & Drabick, D. A. G. (2009). Co-occurring Anxiety and Disruptive 

Behavior Disorders: The Roles of Anxious Symptoms, Reactive 

Aggression, and Shared Risk Processes. Clinical Psychology Review, 

29(7), 658–669. https://doi.org/10.1016/j.cpr.2009.08.005 

Buniello, A., MacArthur, J. A. L., Cerezo, M., Harris, L. W., Hayhurst, J., 

Malangone, C., McMahon, A., Morales, J., Mountjoy, E., Sollis, E., 

Suveges, D., Vrousgou, O., Whetzel, P. L., Amode, R., Guillen, J. A., 

Riat, H. S., Trevanion, S. J., Hall, P., Junkins, H., … Parkinson, H. (2019). 

The NHGRI-EBI GWAS Catalog of published genome-wide association 

studies, targeted arrays and summary statistics 2019. Nucleic Acids 

Research, 47(D1), D1005–D1012. https://doi.org/10.1093/nar/gky1120 

Burgess, S., Butterworth, A., & Thompson, S. G. (2013). Mendelian 

Randomization Analysis With Multiple Genetic Variants Using 

Summarized Data. Genetic Epidemiology, 37(7), 658–665. 

https://doi.org/10.1002/gepi.21758 

Burgess, S., Thompson, S. G., & CRP CHD Genetics Collaboration. (2011). 

Avoiding bias from weak instruments in Mendelian randomization studies. 

International Journal of Epidemiology, 40(3), 755–764. 

https://doi.org/10.1093/ije/dyr036 

Burt, S. A. (2009). Rethinking Environmental Contributions to Child and 

Adolescent Psychopathology: A Meta-Analysis of Shared Environmental 



  

268 

Influences. Psychological Bulletin, 135, 608–637. 

https://doi.org/10.1037/a0015702 

Buscariollo, D. L., Fang, X., Greenwood, V., Xue, H., Rivkees, S. A., & Wendler, 

C. C. (2014). Embryonic Caffeine Exposure Acts via A1 Adenosine 

Receptors to Alter Adult Cardiac Function and DNA Methylation in Mice. 

PLoS ONE, 9(1), e87547. https://doi.org/10.1371/journal.pone.0087547 

Bush, W. S., Oetjens, M. T., & Crawford, D. C. (2016). Unravelling the human 

genome–phenome relationship using phenome-wide association studies. 

Nature Reviews Genetics, 17(3), 129–145. 

https://doi.org/10.1038/nrg.2015.36 

Cai, N., Revez, J. A., Adams, M. J., Andlauer, T. F. M., Breen, G., Byrne, E. M., 

Clarke, T.-K., Forstner, A. J., Grabe, H. J., Hamilton, S. P., Levinson, D. 

F., Lewis, C. M., Lewis, G., Martin, N. G., Milaneschi, Y., Mors, O., 

Müller-Myhsok, B., Penninx, B. W. J. H., Perlis, R. H., … Flint, J. (2020). 

Minimal phenotyping yields genome-wide association signals of low 

specificity for major depression. Nature Genetics, 52(4), 437–447. 

https://doi.org/10.1038/s41588-020-0594-5 

Calker, D. van, Biber, K., Domschke, K., & Serchov, T. (2019). The role of 

adenosine receptors in mood and anxiety disorders. Journal of 

Neurochemistry, 151(1), 11–27. https://doi.org/10.1111/jnc.14841 

Cao-Lei, L., de Rooij, S. R., King, S., Matthews, S. G., Metz, G. A. S., 

Roseboom, T. J., & Szyf, M. (2017). Prenatal stress and epigenetics. 

Neuroscience & Biobehavioral Reviews. 

https://doi.org/10.1016/j.neubiorev.2017.05.016 

Caramaschi, D., Hatcher, C., Mulder, R. H., Felix, J. F., Cecil, C. A. M., Relton, 

C. L., & Walton, E. (2020). Epigenome-wide association study of seizures 

in childhood and adolescence. Clinical Epigenetics, 12(1), 8. 

https://doi.org/10.1186/s13148-019-0793-z 

Caramaschi, D., Sharp, G. C., Nohr, E. A., Berryman, K., Lewis, S. J., Davey 

Smith, G., & Relton, C. L. (2017). Exploring a causal role of DNA 

methylation in the relationship between maternal vitamin B12 during 

pregnancy and child’s IQ at age 8, cognitive performance and educational 

attainment: A two-step Mendelian randomization study. Human Molecular 

Genetics, 26(15), 3001–3013. https://doi.org/10.1093/hmg/ddx164 



  

269 

Caramaschi, D., Taylor, A. E., Richmond, R. C., Havdahl, K. A., Golding, J., 

Relton, C. L., Munafò, M. R., Davey Smith, G., & Rai, D. (2018). 

Maternal smoking during pregnancy and autism: Using causal inference 

methods in a birth cohort study. Translational Psychiatry, 8(1), 1–10. 

https://doi.org/10.1038/s41398-018-0313-5 

CARE Study Group. (2008). Maternal caffeine intake during pregnancy and risk 

of fetal growth restriction: A large prospective observational study. BMJ, 

337(nov03 2), a2332–a2332. https://doi.org/10.1136/bmj.a2332 

Carslake, D., Tynelius, P., van den Berg, G., Davey Smith, G., & Rasmussen, F. 

(2017). Associations of parental age with health and social factors in adult 

offspring. Methodological pitfalls and possibilities. Scientific Reports, 

7(1), 45278. https://doi.org/10.1038/srep45278 

Cecil, C. A. M., Walton, E., Jaffee, S. R., O’Connor, T., Maughan, B., Relton, C. 

L., Smith, R. G., McArdle, W., Gaunt, T. R., Ouellet-Morin, I., & Barker, 

E. D. (2018). Neonatal DNA methylation and early-onset conduct 

problems: A genome-wide, prospective study. Development and 

Psychopathology, 30(2), 383–397. 

https://doi.org/10.1017/S095457941700092X 

Chamberlain, C., O’Mara-Eves, A., Porter, J., Coleman, T., Perlen, S. M., 

Thomas, J., & McKenzie, J. E. (2017). Psychosocial interventions for 

supporting women to stop smoking in pregnancy. Cochrane Database of 

Systematic Reviews. https://doi.org/10.1002/14651858.CD001055.pub5 

Chen, L., Bell, E. M., Browne, M. L., Druschel, C. M., & Romitti, P. A. (2014). 

Exploring Maternal Patterns of Dietary Caffeine Consumption Before 

Conception and During Pregnancy. Maternal and Child Health Journal, 

18(10), 2446–2455. https://doi.org/10.1007/s10995-014-1483-2 

Chen, Y. A., Lemire, M., Choufani, S., Butcher, D. T., Grafodatskaya, D., Zanke, 

B. W., Gallinger, S., Hudson, T. J., & Weksberg, R. (2013). Discovery of 

cross-reactive probes and polymorphic CpGs in the Illumina Infinium 

HumanMethylation450 microarray. Epigenetics, 8(2), 203–209. 

https://doi.org/10.4161/epi.23470 

Chen, Y., Lemire, M., Choufani, S., Butcher, D. T., Grafodatskaya, D., Zanke, B. 

W., Gallinger, S., Hudson, T. J., & Weksberg, R. (2013). Discovery of 

cross-reactive probes and polymorphic CpGs in the Illumina Infinium 



  

270 

HumanMethylation450 microarray. Epigenetics : Official Journal of the 

DNA Methylation Society, 8(2), 203–209. 

https://doi.org/10.4161/epi.23470 

Choi, S. W., Mak, T. S.-H., & O’Reilly, P. F. (2020). Tutorial: A guide to 

performing polygenic risk score analyses. Nature Protocols, 15(9), 2759–

2772. https://doi.org/10.1038/s41596-020-0353-1 

Christensen, Z. P., Freedman, E. G., & Foxe, J. J. (2021). Caffeine exposure in 

utero is associated with structural brain alterations and deleterious 

neurocognitive outcomes in 9–10 year old children. Neuropharmacology, 

186, 108479. https://doi.org/10.1016/j.neuropharm.2021.108479 

Ciuculete, D. M., Boström, A. E., Tuunainen, A.-K., Sohrabi, F., Kular, L., 

Jagodic, M., Voisin, S., Mwinyi, J., & Schiöth, H. B. (2018). Changes in 

methylation within the STK32B promoter are associated with an increased 

risk for generalized anxiety disorder in adolescents. Journal of Psychiatric 

Research, 102, 44–51. https://doi.org/10.1016/j.jpsychires.2018.03.008 

Clark, S. L., Hattab, M. W., Chan, R. F., Shabalin, A. A., Han, L. K. M., Zhao, 

M., Smit, J. H., Jansen, R., Milaneschi, Y., Xie, L. Y., van Grootheest, G., 

Penninx, B. W. J. H., Aberg, K. A., & van den Oord, E. J. C. G. (2020). A 

methylation study of long-term depression risk. Molecular Psychiatry, 

25(6), 1334–1343. https://doi.org/10.1038/s41380-019-0516-z 

Coleman, T., Chamberlain, C., Davey, M.-A., Cooper, S. E., & Leonardi‐Bee, J. 

(2015). Pharmacological interventions for promoting smoking cessation 

during pregnancy. Cochrane Database of Systematic Reviews, 12. 

https://doi.org/10.1002/14651858.CD010078.pub2 

Coleman, T., Cooper, S., Thornton, J. G., Grainge, M. J., Watts, K., Britton, J., & 

Lewis, S. (2012). A Randomized Trial of Nicotine-Replacement Therapy 

Patches in Pregnancy. New England Journal of Medicine, 366(9), 808–

818. https://doi.org/10.1056/NEJMoa1109582 

Conneely, K. N., & Boehnke, M. (2007). So Many Correlated Tests, So Little 

Time! Rapid Adjustment of P Values for Multiple Correlated Tests. The 

American Journal of Human Genetics, 81(6), 1158–1168. 

https://doi.org/10.1086/522036 

Cooper, D. L., Petherick, E. S., & Wright, J. (2013). The association between 

binge drinking and birth outcomes: Results from the Born in Bradford 



  

271 

cohort study. J Epidemiol Community Health, 67(10), 821–828. 

https://doi.org/10.1136/jech-2012-202303 

Cornelis, M., Kacprowski, T., Menni, C., Gustafsson, S., Pivin, E., Adamski, J., 

Artati, A., Eap, C. B., Ehret, G., Friedrich, N., Ganna, A., Guessous, I., 

Homuth, G., Lind, L., Magnusson, P. K., Mangino, M., Pedersen, N. L., 

Pietzner, M., Suhre, K., … Ingelsson, E. (2016). Genome-wide association 

study of caffeine metabolites provides new insights to caffeine metabolism 

and dietary caffeine-consumption behavior. Human Molecular Genetics, 

ddw334. https://doi.org/10.1093/hmg/ddw334 

Cornelis, M., & Munafo, M. (2018). Mendelian Randomization Studies of Coffee 

and Caffeine Consumption. Nutrients, 10(10), 1343. 

https://doi.org/10.3390/nu10101343 

Cortessis, V. K., Thomas, D. C., Levine, A. J., Breton, C. V., Mack, T. M., 

Siegmund, K. D., Haile, R. W., & Laird, P. W. (2012). Environmental 

epigenetics: Prospects for studying epigenetic mediation of exposure–

response relationships. Human Genetics, 131(10), 1565–1589. 

https://doi.org/10.1007/s00439-012-1189-8 

Cox, J. L., Holden, J. M., & Sagovsky, R. (1987). Detection of postnatal 

depression: Development of the 10-item Edinburgh Postnatal Depression 

Scale. The British Journal of Psychiatry, 150(6), 782–786. 

Crean, A. J., & Bonduriansky, R. (2014). What is a paternal effect? Trends in 

Ecology & Evolution, 29(10), 554–559. 

https://doi.org/10.1016/j.tree.2014.07.009 

Creswell, C., Waite, P., & Cooper, P. J. (2014). Assessment and management of 

anxiety disorders in children and adolescents. Archives of Disease in 

Childhood, 99(7), 674–678. https://doi.org/10.1136/archdischild-2013-

303768 

Crone, M. R., & Reijneveld, S. A. (2007). The association of behavioural and 

emotional problems with tobacco use in adolescence. Addictive Behaviors, 

32(8), 1692–1698. https://doi.org/10.1016/j.addbeh.2006.11.006 

Cummings, C. M., Caporino, N. E., & Kendall, P. C. (2014). Comorbidity of 

Anxiety and Depression in Children and Adolescents: 20 Years After. 

Psychological Bulletin, 140(3), 816–845. 

https://doi.org/10.1037/a0034733 



  

272 

Daly, M., & Egan, M. (2017). Childhood cognitive ability and smoking initiation, 

relapse and cessation throughout adulthood: Evidence from two British 

cohort studies. Addiction, 112(4), 651–659. 

https://doi.org/10.1111/add.13554 

Davey Smith, G., & Ebrahim, S. (2003). ‘Mendelian randomization’: Can genetic 

epidemiology contribute to understanding environmental determinants of 

disease?*. International Journal of Epidemiology, 32(1), 1–22. 

https://doi.org/10.1093/ije/dyg070 

Davey Smith, G., & Hemani, G. (2014). Mendelian randomization: Genetic 

anchors for causal inference in epidemiological studies. Human Molecular 

Genetics, 23(R1), R89–R98. https://doi.org/10.1093/hmg/ddu328 

Davey Smith, G., Lawlor, D. A., Harbord, R., Timpson, N., Day, I., & Ebrahim, 

S. (2007). Clustered environments and randomized genes: A fundamental 

distinction between conventional and genetic epidemiology. PLoS Med, 

4(12), e352. 

Davey-Smith, G. (2008). Assessing intrauterine influences on offspring health 

outcomes: Can epidemiological studies yield robust findings? Basic & 

Clinical Pharmacology & Toxicology, 102(2), 245–256. WorldCat.org. 

https://doi.org/10.1111/j.1742-7843.2007.00191.x 

Davies, M. N., Volta, M., Pidsley, R., Lunnon, K., Dixit, A., Lovestone, S., 

Coarfa, C., Harris, R. A., Milosavljevic, A., Troakes, C., Al-Sarraj, S., 

Dobson, R., Schalkwyk, L. C., & Mill, J. (2012). Functional annotation of 

the human brain methylome identifies tissue-specific epigenetic variation 

across brain and blood. Genome Biology, 13(6), R43. 

https://doi.org/10.1186/gb-2012-13-6-r43 

Davies, N. M., Holmes, M. V., & Davey Smith, G. (2018). Reading Mendelian 

randomisation studies: A guide, glossary, and checklist for clinicians. 

BMJ, k601. https://doi.org/10.1136/bmj.k601 

Delpisheh, A., Kelly, Y., Rizwan, S., Attia, E., Drammond, S., & Brabin, B. J. 

(2007). Population attributable risk for adverse pregnancy outcomes 

related to smoking in adolescents and adults. Public Health, 121(11), 861–

868. https://doi.org/10.1016/j.puhe.2007.03.015 

Del-Ponte, B., Santos, I. S., Tovo-Rodrigues, L., Anselmi, L., Munhoz, T. N., & 

Matijasevich, A. (2016). Caffeine consumption during pregnancy and 



  

273 

ADHD at the age of 11 years: A birth cohort study. BMJ Open, 6(12). 

https://doi.org/10.1136/bmjopen-2016-012749 

Dempster, E. L., Wong, C. C. Y., Lester, K. J., Burrage, J., Gregory, A. M., Mill, 

J., & Eley, T. C. (2014). Genome-wide Methylomic Analysis of 

Monozygotic Twins Discordant for Adolescent Depression. Biological 

Psychiatry, 76(12), 977–983. 

https://doi.org/10.1016/j.biopsych.2014.04.013 

Derogatis, L. R., & Melisaratos, N. (1983). The Brief Symptom Inventory: An 

introductory report. Psychological Medicine, 13(3), 595–605. 

https://doi.org/10.1017/S0033291700048017 

Derrogatis, L., Lipman, R., & Covi, I. (1973). The SCL-90: An outpatient 

psychiatric rating scale. Psychopharmacology Bulletin, 9(1), 13–28. 

Diamanti, A., Papadakis, S., Schoretsaniti, S., Rovina, N., Vivilaki, V., Gratziou, 

C., & Katsaounou, P. A. (2019). Smoking cessation in pregnancy: An 

update for maternity care practitioners. Tobacco Induced Diseases, 17. 

https://doi.org/10.18332/tid/109906 

Dick, B., & Ferguson, B. J. (2015). Health for the World’s Adolescents: A Second 

Chance in the Second Decade. Journal of Adolescent Health, 56(1), 3–6. 

https://doi.org/10.1016/j.jadohealth.2014.10.260 

DiClemente, C., Dolan-Mullen, P., & Windsor, R. (2000). The process of 

pregnancy smoking cessation: Implications for interventions. Tobacco 

Control, 9(Suppl 3), iii16–iii21. https://doi.org/10.1136/tc.9.suppl_3.iii16 

Diemer, E. W., Labrecque, J. A., Neumann, A., Tiemeier, H., & Swanson, S. A. 

(2020). Mendelian randomisation approaches to the study of prenatal 

exposures: A systematic review. Paediatric and Perinatal Epidemiology. 

Dolan, C. V., Geels, L., Vink, J. M., van Beijsterveldt, C. E. M., Neale, M. C., 

Bartels, M., & Boomsma, D. I. (2016). Testing Causal Effects of Maternal 

Smoking During Pregnancy on Offspring’s Externalizing and Internalizing 

Behavior. Behavior Genetics, 46(3), 378–388. 

https://doi.org/10.1007/s10519-015-9738-2 

D’Onofrio, B. M., Van Hulle, C. A., Waldman, I. D., Rodgers, J. L., Harden, K. 

P., Rathouz, P. J., & Lahey, B. B. (2008). Smoking during pregnancy and 

offspring externalizing problems: An exploration of genetic and 

environmental confounds. Development and Psychopathology, 20(1), 139–



  

274 

164. https://doi.org/10.1017/S0954579408000072 

Du, P., Zhang, X., Huang, C.-C., Jafari, N., Kibbe, W. A., Hou, L., & Lin, S. M. 

(2010). Comparison of Beta-value and M-value methods for quantifying 

methylation levels by microarray analysis. BMC Bioinformatics, 11(1), 

587. https://doi.org/10.1186/1471-2105-11-587 

Dudbridge, F. (2016). Polygenic Epidemiology. Genetic Epidemiology, 40(4), 

268–272. https://doi.org/10.1002/gepi.21966 

Duko, B., Ayano, G., Pereira, G., Betts, K., & Alati, R. (2020). Prenatal tobacco 

use and the risk of mood disorders in offspring: A systematic review and 

meta-analysis. Social Psychiatry and Psychiatric Epidemiology, 55(12), 

1549–1562. https://doi.org/10.1007/s00127-020-01949-y 

Duncan, L. E., Ostacher, M., & Ballon, J. (2019). How genome-wide association 

studies (GWAS) made traditional candidate gene studies obsolete. 

Neuropsychopharmacology, 44(9), 1518–1523. 

https://doi.org/10.1038/s41386-019-0389-5 

Durbin, R. M., Altshuler, D., Durbin, R. M., Abecasis, G. R., Bentley, D. R., 

Chakravarti, A., Clark, A. G., Collins, F. S., De La Vega, F. M., Donnelly, 

P., Egholm, M., Flicek, P., Gabriel, S. B., Gibbs, R. A., Knoppers, B. M., 

Lander, E. S., Lehrach, H., Mardis, E. R., McVean, G. A., … The 

Translational Genomics Research Institute. (2010). A map of human 

genome variation from population-scale sequencing. Nature, 467(7319), 

1061–1073. https://doi.org/10.1038/nature09534 

Duthie, L., & Reynolds, R. M. (2013). Changes in the Maternal Hypothalamic-

Pituitary-Adrenal Axis in Pregnancy and Postpartum: Influences on 

Maternal and Fetal Outcomes. Neuroendocrinology, 98(2), 106–115. 

https://doi.org/10.1159/000354702 

Easey, K. E., & Sharp, G. C. (2021). The impact of paternal alcohol, tobacco, 

caffeine use and physical activity on offspring mental health: A systematic 

review and meta-analysis. MedRxiv, 2021.03.02.21252760. 

https://doi.org/10.1101/2021.03.02.21252760 

Easey, K. E., Wootton, R. E., Sallis, H. M., Haan, E., Schellhas, L., Munafò, M. 

R., Timpson, N. J., & Zuccolo, L. (2021). Characterization of alcohol 

polygenic risk scores in the context of mental health outcomes: Within-

individual and intergenerational analyses in the Avon Longitudinal Study 

https://doi.org/10.1007/s00127-020-01949-y
https://doi.org/10.1038/s41386-019-0389-5
https://doi.org/10.1159/000354702
https://doi.org/10.1101/2021.03.02.21252760


  

275 

of Parents and Children. Drug and Alcohol Dependence, 221, 108654. 

https://doi.org/10.1016/j.drugalcdep.2021.108654 

Eckhardt, F., Lewin, J., Cortese, R., Rakyan, V. K., Attwood, J., Burger, M., 

Burton, J., Cox, T. V., Davies, R., Down, T. A., Haefliger, C., Horton, R., 

Howe, K., Jackson, D. K., Kunde, J., Koenig, C., Liddle, J., Niblett, D., 

Otto, T., … Beck, S. (2006). DNA methylation profiling of human 

chromosomes 6, 20 and 22. Nature Genetics, 38(12), 1378–1385. 

https://doi.org/10.1038/ng1909 

Edgar, R. D., Jones, M. J., Meaney, M. J., Turecki, G., & Kobor, M. S. (2017). 

BECon: A tool for interpreting DNA methylation findings from blood in 

the context of brain. Translational Psychiatry, 7(8), e1187–e1187. 

https://doi.org/10.1038/tp.2017.171 

EFSA Panel on Dietetic Products, Nutrition, & Allergies (NDA). (2015). 

Scientific Opinion on the safety of caffeine. EFSA Journal, 13(5), 4102. 

Ehret, G. B. (2010). Genome-Wide Association Studies: Contribution of 

Genomics to Understanding Blood Pressure and Essential Hypertension. 

Current Hypertension Reports, 12(1), 17–25. 

https://doi.org/10.1007/s11906-009-0086-6 

Eilertsen, E. M., Hannigan, L. J., McAdams, T. A., Rijsdijk, F. V., Czajkowski, 

N., Reichborn-Kjennerud, T., Ystrom, E., & Gjerde, L. C. (2020). Parental 

Prenatal Symptoms of Depression and Offspring Symptoms of ADHD: A 

Genetically Informed Intergenerational Study. Journal of Attention 

Disorders, 1087054720914386. 

https://doi.org/10.1177/1087054720914386 

Ekblad, M., Gissler, M., Lehtonen, L., & Korkeila, J. (2010). Prenatal Smoking 

Exposure and the Risk of Psychiatric Morbidity Into Young Adulthood. 

Archives of General Psychiatry, 67(8), 841–849. 

https://doi.org/10.1001/archgenpsychiatry.2010.92 

Eley, T. C. (1999). Behavioral genetics as a tool for developmental psychology: 

Anxiety and depression in children and adolescents. Clinical Child and 

Family Psychology Review, 2(1), 21–36. 

Elkins, I. J., McGue, M., & Iacono, W. G. (2007). Prospective effects of attention-

deficit/hyperactivity disorder, conduct disorder, and sex on adolescent 

substance use and abuse. Archives of General Psychiatry, 64(10), 1145–

https://doi.org/10.1016/j.drugalcdep.2021.108654


  

276 

1152. https://doi.org/10.1001/archpsyc.64.10.1145 

Emeny, R. T., Baumert, J., Zannas, A. S., Kunze, S., Wahl, S., Iurato, S., Arloth, 

J., Erhardt, A., Balsevich, G., Schmidt, M. V., Weber, P., Kretschmer, A., 

Pfeiffer, L., Kruse, J., Strauch, K., Roden, M., Herder, C., Koenig, W., 

Gieger, C., … Ladwig, K.-H. (2018). Anxiety Associated Increased CpG 

Methylation in the Promoter of Asb1: A Translational Approach 

Evidenced by Epidemiological and Clinical Studies and a Murine Model. 

Neuropsychopharmacology, 43(2), 342–353. 

https://doi.org/10.1038/npp.2017.102 

England, L., Grauman, A., Qian, C., Wilkins, D., Schisterman, E., Yu, K., & 

Levine, R. (2007). Misclassification of maternal smoking status and its 

effects on an epidemiologic study of pregnancy outcomes. Nicotine & 

Tobacco Research, 9(10), 1005–1013. 

https://doi.org/10.1080/14622200701491255 

Ershoff, D. H. (2000). Predictors of intentions to stop smoking early in prenatal 

care. Tobacco Control, 9(90003), 41iii–45. 

https://doi.org/10.1136/tc.9.suppl_3.iii41 

Erskine, H. E., Moffitt, T. E., Copeland, W. E., Costello, E. J., Ferrari, A. J., 

Patton, G., Degenhardt, L., Vos, T., Whiteford, H. A., & Scott, J. G. 

(2015). A heavy burden on young minds: The global burden of mental and 

substance use disorders in children and youth. Psychological Medicine, 

45(7), 1551–1563. https://doi.org/10.1017/S0033291714002888 

Evans, D. M., Moen, G.-H., Hwang, L.-D., Lawlor, D. A., & Warrington, N. M. 

(2019). Elucidating the role of maternal environmental exposures on 

offspring health and disease using two-sample Mendelian randomization. 

International Journal of Epidemiology, 48(3), 861–875. 

https://doi.org/10.1093/ije/dyz019 

Fagny, M., Patin, E., MacIsaac, J. L., Rotival, M., Flutre, T., Jones, M. J., Siddle, 

K. J., Quach, H., Harmant, C., McEwen, L. M., Froment, A., Heyer, E., 

Gessain, A., Betsem, E., Mouguiama-Daouda, P., Hombert, J.-M., Perry, 

G. H., Barreiro, L. B., Kobor, M. S., & Quintana-Murci, L. (2015). The 

epigenomic landscape of African rainforest hunter-gatherers and farmers. 

Nature Communications, 6(1), 10047. 

https://doi.org/10.1038/ncomms10047 

https://doi.org/10.1001/archpsyc.64.10.1145
https://doi.org/10.1038/npp.2017.102


  

277 

Fang, X., Mei, W., Barbazuk, W. B., Rivkees, S. A., & Wendler, C. C. (2014). 

Caffeine exposure alters cardiac gene expression in embryonic 

cardiomyocytes. American Journal of Physiology-Regulatory, Integrative 

and Comparative Physiology, 307(12), R1471–R1487. 

https://doi.org/10.1152/ajpregu.00307.2014 

Farrow, A., Shea, K. M., & Little, R. E. (1998). Birthweight of term infants and 

maternal occupation in a prospective cohort of pregnant women. The 

ALSPAC Study Team. Occupational and Environmental Medicine, 55(1), 

18–23. 

Fedorov, V., Mannino, F., & Zhang, R. (2009). Consequences of dichotomization. 

Pharmaceutical Statistics, 8(1), 50–61. https://doi.org/10.1002/pst.331 

Felix, J. F., Joubert, B. R., Baccarelli, A. A., Sharp, G. C., Almqvist, C., Annesi-

Maesano, I., Arshad, H., Baïz, N., Bakermans-Kranenburg, M. J., 

Bakulski, K. M., Binder, E. B., Bouchard, L., Breton, C. V., Brunekreef, 

B., Brunst, K. J., Burchard, E. G., Bustamante, M., Chatzi, L., Cheng 

Munthe-Kaas, M., … London, S. J. (2018). Cohort Profile: Pregnancy And 

Childhood Epigenetics (PACE) Consortium. International Journal of 

Epidemiology, 47(1), 22–23u. https://doi.org/10.1093/ije/dyx190 

Ferrar, J., Griffith, G., Skirrow, C., Cashdollar, N., Taptiklis, N., Dobson, J., Cree, 

F., Cormack, F. K., Barnett, J. H., & Munafò, M. R. (2020). Validating 

digital assessments for remote clinical research. 

https://www.researchgate.net/profile/Jennifer-

Ferrar/publication/347552688_Validating_digital_assessments_for_remot

e_clinical_research_Preprint/links/5ffd710092851c13fe06cadb/Validating

-digital-assessments-for-remote-clinical-research-Preprint.pdf 

Folkersen, L., Pain, O., Ingason, A., Werge, T., Lewis, C. M., & Austin, J. (2020). 

Impute.me: An Open-Source, Non-profit Tool for Using Data From 

Direct-to-Consumer Genetic Testing to Calculate and Interpret Polygenic 

Risk Scores. Frontiers in Genetics, 11, 578. 

https://doi.org/10.3389/fgene.2020.00578 

Fortin, J.-P., Labbe, A., Lemire, M., Zanke, B. W., Hudson, T. J., Fertig, E. J., 

Greenwood, C. M., & Hansen, K. D. (2014). Functional normalization of 

450k methylation array data improves replication in large cancer studies. 

Genome Biology, 15(11), 503. https://doi.org/10.1186/s13059-014-0503-2 

https://www.researchgate.net/profile/Jennifer-Ferrar/publication/347552688_Validating_digital_assessments_for_remote_clinical_research_Preprint/links/5ffd710092851c13fe06cadb/Validating-digital-assessments-for-remote-clinical-research-Preprint.pdf
https://www.researchgate.net/profile/Jennifer-Ferrar/publication/347552688_Validating_digital_assessments_for_remote_clinical_research_Preprint/links/5ffd710092851c13fe06cadb/Validating-digital-assessments-for-remote-clinical-research-Preprint.pdf
https://www.researchgate.net/profile/Jennifer-Ferrar/publication/347552688_Validating_digital_assessments_for_remote_clinical_research_Preprint/links/5ffd710092851c13fe06cadb/Validating-digital-assessments-for-remote-clinical-research-Preprint.pdf
https://www.researchgate.net/profile/Jennifer-Ferrar/publication/347552688_Validating_digital_assessments_for_remote_clinical_research_Preprint/links/5ffd710092851c13fe06cadb/Validating-digital-assessments-for-remote-clinical-research-Preprint.pdf


  

278 

Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., 

Heine-Suñer, D., Cigudosa, J. C., Urioste, M., Benitez, J., Boix-Chornet, 

M., Sanchez-Aguilera, A., Ling, C., Carlsson, E., Poulsen, P., Vaag, A., 

Stephan, Z., Spector, T. D., Wu, Y.-Z., … Esteller, M. (2005). Epigenetic 

differences arise during the lifetime of monozygotic twins. Proceedings of 

the National Academy of Sciences of the United States of America, 

102(30), 10604–10609. https://doi.org/10.1073/pnas.0500398102 

Fraser, A., Macdonald-Wallis, C., Tilling, K., Boyd, A., Golding, J., Davey 

Smith, G., Henderson, J., Macleod, J., Molloy, L., Ness, A., Ring, S., 

Nelson, S. M., & Lawlor, D. A. (2013). Cohort Profile: The Avon 

Longitudinal Study of Parents and Children: ALSPAC mothers cohort. 

International Journal of Epidemiology, 42(1), 97–110. 

https://doi.org/10.1093/ije/dys066 

Fredholm, B. B., Bättig, K., Holmén, J., Nehlig, A., & Zvartau, E. E. (1999). 

Actions of caffeine in the brain with special reference to factors that 

contribute to its widespread use. Pharmacological Reviews, 51(1), 83–

133. 

Fuchikami, M., Morinobu, S., Segawa, M., Okamoto, Y., Yamawaki, S., Ozaki, 

N., Inoue, T., Kusumi, I., Koyama, T., Tsuchiyama, K., & Terao, T. 

(2011). DNA Methylation Profiles of the Brain-Derived Neurotrophic 

Factor (BDNF) Gene as a Potent Diagnostic Biomarker in Major 

Depression. PLoS ONE, 6(8). 

https://doi.org/10.1371/journal.pone.0023881 

Fuzik, J., Rehman, S., Girach, F., Miklosi, A. G., Korchynska, S., Arque, G., 

Romanov, R. A., Hanics, J., Wagner, L., Meletis, K., Yanagawa, Y., 

Kovacs, G. G., Alpár, A., Hökfelt, T. G. M., & Harkany, T. (2019). Brain-

wide genetic mapping identifies the indusium griseum as a prenatal target 

of pharmacologically unrelated psychostimulants. Proceedings of the 

National Academy of Sciences, 116(51), 25958–25967. 

https://doi.org/10.1073/pnas.1904006116 

Gage, S. H., Bowden, J., Davey Smith, G., & Munafò, M. R. (2018). Investigating 

causality in associations between education and smoking: A two-sample 

Mendelian randomization study. International Journal of Epidemiology, 

47(4), 1131–1140. https://doi.org/10.1093/ije/dyy131 



  

279 

Gage, S. H., Munafò, M. R., & Davey Smith, G. (2016). Causal Inference in 

Developmental Origins of Health and Disease (DOHaD) Research. Annual 

Review of Psychology, 67(1), 567–585. https://doi.org/10.1146/annurev-

psych-122414-033352 

Galanter, J. M., Gignoux, C. R., Oh, S. S., Torgerson, D., Pino-Yanes, M., 

Thakur, N., Eng, C., Hu, D., Huntsman, S., Farber, H. J., Avila, P. C., 

Brigino-Buenaventura, E., LeNoir, M. A., Meade, K., Serebrisky, D., 

Rodríguez-Cintrón, W., Kumar, R., Rodríguez-Santana, J. R., Seibold, M. 

A., … Zaitlen, N. (2017). Differential methylation between ethnic sub-

groups reflects the effect of genetic ancestry and environmental exposures. 

ELife, 6, e20532. https://doi.org/10.7554/eLife.20532 

Garber, J., & Weersing, V. R. (2010). Comorbidity of Anxiety and Depression in 

Youth: Implications for Treatment and Prevention. Clinical Psychology: 

Science and Practice, 17(4), 293–306. https://doi.org/10.1111/j.1468-

2850.2010.01221.x 

García-Giménez, J. L., Seco-Cervera, M., Tollefsbol, T. O., Romá-Mateo, C., 

Peiró-Chova, L., Lapunzina, P., & Pallardó, F. V. (2017). Epigenetic 

biomarkers: Current strategies and future challenges for their use in the 

clinical laboratory. Critical Reviews in Clinical Laboratory Sciences, 

54(7–8), 529–550. https://doi.org/10.1080/10408363.2017.1410520 

Garner, J. P. (2014). The Significance of Meaning: Why Do Over 90% of 

Behavioral Neuroscience Results Fail to Translate to Humans, and What 

Can We Do to Fix It? ILAR Journal, 55(3), 438–456. 

https://doi.org/10.1093/ilar/ilu047 

Gartstein, M. A., Bridgett, D. J., Dishion, T. J., & Kaufman, N. K. (2009). 

Depressed mood and maternal report of child behavior problems: Another 

look at the depression–distortion hypothesis. Journal of Applied 

Developmental Psychology, 30(2), 149–160. 

https://doi.org/10.1016/j.appdev.2008.12.001 

Gaunt, T. R., Shihab, H. A., Hemani, G., Min, J. L., Woodward, G., Lyttleton, O., 

Zheng, J., Duggirala, A., McArdle, W. L., Ho, K., Ring, S. M., Evans, D. 

M., Davey Smith, G., & Relton, C. L. (2016). Systematic identification of 

genetic influences on methylation across the human life course. Genome 

Biology, 17(1), 61. https://doi.org/10.1186/s13059-016-0926-z 



  

280 

Geeleher, P., Hartnett, L., Egan, L. J., Golden, A., Raja Ali, R. A., & Seoighe, C. 

(2013). Gene-set analysis is severely biased when applied to genome-wide 

methylation data. Bioinformatics, 29(15), 1851–1857. 

https://doi.org/10.1093/bioinformatics/btt311 

Gervin, K., Page, C. M., Aass, H. C. D., Jansen, M. A., Fjeldstad, H. E., 

Andreassen, B. K., Duijts, L., van Meurs, J. B., van Zelm, M. C., Jaddoe, 

V. W., Nordeng, H., Knudsen, G. P., Magnus, P., Nystad, W., Staff, A. C., 

Felix, J. F., & Lyle, R. (2016). Cell type specific DNA methylation in cord 

blood: A 450K-reference data set and cell count-based validation of 

estimated cell type composition. Epigenetics, 11(9), 690–698. 

https://doi.org/10.1080/15592294.2016.1214782 

Giglia, R. C., Binns, C. W., & Alfonso, H. S. (2006). Which women stop smoking 

during pregnancy and the effect on breastfeeding duration. BMC Public 

Health, 6(1), 195. https://doi.org/10.1186/1471-2458-6-195 

Gignon, M., Ganry, O., Jardé, O., & Manaouil, C. (2013). The Precautionary 

Principle: Is it Safe. European Journal of Health Law, 20(3), 261–270. 

https://doi.org/10.1163/15718093-12341272 

Gillespie, S. L., Mitchell, A. M., Kowalsky, J. M., & Christian, L. M. (2018). 

Maternal parity and perinatal cortisol adaptation: The role of pregnancy-

specific distress and implications for postpartum mood. 

Psychoneuroendocrinology, 97, 86–93. 

https://doi.org/10.1016/j.psyneuen.2018.07.008 

Goddard, A. W., Ball, S. G., Martinez, J., Robinson, M. J., Yang, C. R., Russell, 

J. M., & Shekhar, A. (2010). Current perspectives of the roles of the 

central norepinephrine system in anxiety and depression. Depression and 

Anxiety, 27(4), 339–350. https://doi.org/10.1002/da.20642 

Goedhart, G., van der Wal, M. F., Cuijpers, P., & Bonsel, G. J. (2009). 

Psychosocial problems and continued smoking during pregnancy. 

Addictive Behaviors, 34(4), 403–406. 

https://doi.org/10.1016/j.addbeh.2008.11.006 

Goldman, M. (2008). Why is multiple testing a problem. Statistics for 

Bioinformatics. 

Goldsack, J. C., Izmailova, E. S., Menetski, J. P., Hoffmann, S. C., Groenen, P. 

M. A., & Wagner, J. A. (2020). Remote digital monitoring in clinical trials 

https://doi.org/10.1163/15718093-12341272
https://doi.org/10.1016/j.psyneuen.2018.07.008


  

281 

in the time of COVID-19. Nature Reviews Drug Discovery, 19(6), 378–

379. https://doi.org/10.1038/d41573-020-00094-0 

Goodman, R. (1997). The Strengths and Difficulties Questionnaire: A research 

note. Journal of Child Psychology and Psychiatry, 38(5), 581–586. 

Goodman, R., & Scott, S. (1999). Comparing the Strengths and Difficulties 

Questionnaire and the Child Behavior Checklist: Is small beautiful? 

Journal of Abnormal Child Psychology, 27(1), 17–24. 

Goodman, R., Ford, T., Richards, H., Gatward, R., & Meltzer, H. (2000). The 

Development and Well-Being Assessment: Description and initial 

validation of an integrated assessment of child and adolescent 

psychopathology. Journal of Child Psychology and Psychiatry, and Allied 

Disciplines, 41(5), 645–655. 

Goodman, S. H., Rouse, M. H., Connell, A. M., Broth, M. R., Hall, C. M., & 

Heyward, D. (2011). Maternal Depression and Child Psychopathology: A 

Meta-Analytic Review. Clinical Child and Family Psychology Review, 

14(1), 1–27. https://doi.org/10.1007/s10567-010-0080-1 

Goodwin, R. D., Cheslack-Postava, K., Nelson, D. B., Smith, P. H., Hasin, D. S., 

Janevic, T., Bakoyiannis, N., & Wall, M. M. (2017). Serious 

Psychological Distress and Smoking During Pregnancy in the United 

States: 2008–2014. Nicotine & Tobacco Research, 19(5), 605–614. 

https://doi.org/10.1093/ntr/ntw323 

Gottschalk, M. G., & Domschke, K. (2017). Genetics of generalized anxiety 

disorder and related traits. Dialogues in Clinical Neuroscience, 19(2), 

159–168. 

Green, H., Maginnity, A., Meltzer, H., Ford, T., Goodman, R. (2005). Mental 

health of children and young people in Great Britain. The Stationary 

Office. 

https://files.digital.nhs.uk/publicationimport/pub06xxx/pub06116/ment-

heal-chil-youn-peop-gb-2004-rep1.pdf  

 Gresham, E., Byles, J. E., Bisquera, A., & Hure, A. J. (2014). Effects of dietary 

interventions on neonatal and infant outcomes: A systematic review and 

meta-analysis. The American Journal of Clinical Nutrition, 100(5), 1298–

1321. https://doi.org/10.3945/ajcn.113.080655 

Griffith, G. J., Morris, T. T., Tudball, M. J., Herbert, A., Mancano, G., Pike, L., 

https://files.digital.nhs.uk/publicationimport/pub06xxx/pub06116/ment-heal-chil-youn-peop-gb-2004-rep1.pdf
https://files.digital.nhs.uk/publicationimport/pub06xxx/pub06116/ment-heal-chil-youn-peop-gb-2004-rep1.pdf


  

282 

Sharp, G. C., Sterne, J., Palmer, T. M., Davey Smith, G., Tilling, K., 

Zuccolo, L., Davies, N. M., & Hemani, G. (2020). Collider bias 

undermines our understanding of COVID-19 disease risk and severity. 

Nature Communications, 11. https://doi.org/10.1038/s41467-020-19478-2 

Grosso, L. M., & Bracken, M. B. (2005). Caffeine Metabolism, Genetics, and 

Perinatal Outcomes: A Review of Exposure Assessment Considerations 

during Pregnancy. Annals of Epidemiology, 15(6), 460–466. 

https://doi.org/10.1016/j.annepidem.2004.12.011 

Gurdasani, D., Barroso, I., Zeggini, E., & Sandhu, M. S. (2019). Genomics of 

disease risk in globally diverse populations. Nature Reviews Genetics, 

20(9), 520–535. https://doi.org/10.1038/s41576-019-0144-0 

Gutman, L. M., & Codiroli McMaster, N. (2020). Gendered Pathways of 

Internalizing Problems from Early Childhood to Adolescence and 

Associated Adolescent Outcomes. Journal of Abnormal Child Psychology, 

48(5), 703–718. https://doi.org/10.1007/s10802-020-00623-w 

Gutteling, B. M., Weerth, C. de, & Buitelaar, J. K. (2005). Prenatal stress and 

children’s cortisol reaction to the first day of school. 

Psychoneuroendocrinology, 30(6), 541–549. 

https://doi.org/10.1016/j.psyneuen.2005.01.002 

Guxens, M., Ballester, F., Espada, M., Fernández, M. F., Grimalt, J. O., Ibarluzea, 

J., Olea, N., Rebagliato, M., Tardón, A., Torrent, M., Vioque, J., Vrijheid, 

M., Sunyer, J., & INMA Project. (2012). Cohort Profile: The INMA--

INfancia y Medio Ambiente--(Environment and Childhood) Project. 

International Journal of Epidemiology, 41(4), 930–940. 

https://doi.org/10.1093/ije/dyr054 

Hall, M. A., Verma, A., Brown-Gentry, K. D., Goodloe, R., Boston, J., Wilson, 

S., McClellan, B., Sutcliffe, C., Dilks, H. H., Gillani, N. B., Jin, H., Mayo, 

P., Allen, M., Schnetz-Boutaud, N., Crawford, D. C., Ritchie, M. D., & 

Pendergrass, S. A. (2014). Detection of Pleiotropy through a Phenome-

Wide Association Study (PheWAS) of Epidemiologic Data as Part of the 

Environmental Architecture for Genes Linked to Environment (EAGLE) 

Study. PLoS Genetics, 10(12). 

https://doi.org/10.1371/journal.pgen.1004678 

Hamer, D., & Sirota, L. (2000). Beware the chopsticks gene. Molecular 



  

283 

Psychiatry, 5(1), 11–13. https://doi.org/10.1038/sj.mp.4000662 

Hammerton, G., & Munafò, M. R. (2021). Causal inference with observational 

data: The need for triangulation of evidence. Psychological Medicine, 1–

16. https://doi.org/10.1017/S0033291720005127 

Hannon, E., Lunnon, K., Schalkwyk, L., & Mill, J. (2015). Interindividual 

methylomic variation across blood, cortex, and cerebellum: Implications 

for epigenetic studies of neurological and neuropsychiatric phenotypes. 

Epigenetics, 10(11), 1024–1032. 

https://doi.org/10.1080/15592294.2015.1100786 

Harrison, R., Munafo, M. R., Smith, G. D., & Wootton, R. E. (2019). Examining 

the effect of smoking on suicidal ideation and attempts: A triangulation of 

epidemiological approaches. MedRxiv, 19007013. 

https://doi.org/10.1101/19007013 

Heiss, J. A., & Just, A. C. (2019). Improved filtering of DNA methylation 

microarray data by detection p values and its impact on downstream 

analyses. Clinical Epigenetics, 11. https://doi.org/10.1186/s13148-019-

0615-3 

Hellwege, J., Keaton, J., Giri, A., Gao, X., Velez Edwards, D. R., & Edwards, T. 

L. (2017). Population Stratification in Genetic Association Studies. 

Current Protocols in Human Genetics, 95, 1.22.1-1.22.23. 

https://doi.org/10.1002/cphg.48 

Hemani, G., Bowden, J., & Davey Smith, G. (2018). Evaluating the potential role 

of pleiotropy in Mendelian randomization studies. Human Molecular 

Genetics, 27(R2), R195–R208. https://doi.org/10.1093/hmg/ddy163 

Hemani, G., Tilling, K., & Smith, G. D. (2017). Orienting the causal relationship 

between imprecisely measured traits using GWAS summary data. PLOS 

Genetics, 13(11), e1007081. https://doi.org/10.1371/journal.pgen.1007081 

Hemani, G., Zheng, J., Elsworth, B., Wade, K. H., Haberland, V., Baird, D., 

Laurin, C., Burgess, S., Bowden, J., Langdon, R., Tan, V. Y., 

Yarmolinsky, J., Shihab, H. A., Timpson, N. J., Evans, D. M., Relton, C., 

Martin, R. M., Davey Smith, G., Gaunt, T. R., & Haycock, P. C. (2018). 

The MR-Base platform supports systematic causal inference across the 

human phenome. ELife, 7, e34408. https://doi.org/10.7554/eLife.34408 

Hennigan, K. M., O’Keefe, M., Noether, C. D., Rinehart, D. J., & Russell, L. A. 

https://doi.org/10.1371/journal.pgen.1007081


  

284 

(2006). Through a Mother’s Eyes: Sources of Bias When Mothers with 

Co-occurring Disorders Assess Their Children. The Journal of Behavioral 

Health Services & Research, 33(1), 87–104. 

https://doi.org/10.1007/s11414-005-9005-z 

Heude, B., Forhan, A., Slama, R., Douhaud, L., Bedel, S., Saurel-Cubizolles, M.-

J., Hankard, R., Thiebaugeorges, O., De Agostini, M., Annesi-Maesano, I., 

Kaminski, M., & Charles, M.-A. (2016). Cohort Profile: The EDEN 

mother-child cohort on the prenatal and early postnatal determinants of 

child health and development. International Journal of Epidemiology, 

45(2), 353–363. https://doi.org/10.1093/ije/dyv151 

Hicks, B. M., Clark, D. A., Deak, J. D., Liu, M., Durbin, C. E., Schaefer, J. D., 

Wilson, S., Iacono, W. G., McGue, M., & Vrieze, S. I. (2020). Polygenic 

Risk Score for Smoking is associated with Externalizing Psychopathology 

and Disinhibited Personality Traits but not Internalizing Psychopathology 

in Adolescence. BioRxiv, 2020.07.29.227405. 

https://doi.org/10.1101/2020.07.29.227405 

Hillary, R. F., & Marioni, R. E. (2021). MethylDetectR: a software for 

methylation-based health profiling. Wellcome Open Research, 5, 283. 

https://doi.org/10.12688/wellcomeopenres.16458.2 

Hirschhorn, J. N., & Daly, M. J. (2005). Genome-wide association studies for 

common diseases and complex traits. Nature Reviews Genetics, 6(2), 95–

108. https://doi.org/10.1038/nrg1521 

Hoek, H. W., Brown, A. S., & Susser, E. (1998). The Dutch Famine and 

schizophrenia spectrum disorders. Social Psychiatry and Psychiatric 

Epidemiology, 33(8), 373–379. https://doi.org/10.1007/s001270050068 

Hofman, A., Jaddoe, V. W. V., Mackenbach, J. P., Moll, H. A., Snijders, R. F. M., 

Steegers, E. A. P., Verhulst, F. C., Witteman, J. C. M., & Büller, H. A. 

(2004). Growth, development and health from early fetal life until young 

adulthood: The Generation R Study. Paediatric and Perinatal 

Epidemiology, 18(1), 61–72. https://doi.org/10.1111/j.1365-

3016.2003.00521.x 

Hompes, T., Izzi, B., Gellens, E., Morreels, M., Fieuws, S., Pexsters, A., Schops, 

G., Dom, M., Van Bree, R., Freson, K., Verhaeghe, J., Spitz, B., 

Demyttenaere, K., Glover, V., Van den Bergh, B., Allegaert, K., & Claes, 



  

285 

S. (2013). Investigating the influence of maternal cortisol and emotional 

state during pregnancy on the DNA methylation status of the 

glucocorticoid receptor gene (NR3C1) promoter region in cord blood. 

Journal of Psychiatric Research, 47(7), 880–891. 

https://doi.org/10.1016/j.jpsychires.2013.03.009 

Höök, B., Cederblad, M., & Berg, R. (2006). Prenatal and postnatal maternal 

smoking as risk factors for preschool children’s mental health. Acta 

Paediatrica, 95(6), 671–677. https://doi.org/10.1111/j.1651-

2227.2006.tb02314.x 

Horvath, S., Zhang, Y., Langfelder, P., Kahn, R. S., Boks, M. P., van Eijk, K., van 

den Berg, L. H., & Ophoff, R. A. (2012). Aging effects on DNA 

methylation modules in human brain and blood tissue. Genome Biology, 

13(10), R97. https://doi.org/10.1186/gb-2012-13-10-r97 

Horwood, J., Thomas, K., Duffy, L., Gunnell, D., Hollis, C., Lewis, G., 

Thompson, A., Wolke, D., Zammitt, S., & Harrison, G. (2008). P0305 - 

Frequency of psychosis-like symptoms in a non-clinical population of 12 

year olds: Results from the Alspac birth cohort. European Psychiatry, 

23(S2), S282–S282. https://doi.org/10.1016/j.eurpsy.2008.01.595 

Houseman, E. A., Accomando, W. P., Koestler, D. C., Christensen, B. C., Marsit, 

C. J., Nelson, H. H., Wiencke, J. K., & Kelsey, K. T. (2012). DNA 

methylation arrays as surrogate measures of cell mixture distribution. 

BMC Bioinformatics, 13(1). https://doi.org/10.1186/1471-2105-13-86 

Houseman, E. A., Molitor, J., & Marsit, C. J. (2014). Reference-free cell mixture 

adjustments in analysis of DNA methylation data. Bioinformatics, 30(10), 

1431–1439. https://doi.org/10.1093/bioinformatics/btu029 

Howard, D. M., Adams, M. J., Clarke, T.-K., Hafferty, J. D., Gibson, J., Shirali, 

M., Coleman, J. R. I., Hagenaars, S. P., Ward, J., Wigmore, E. M., Alloza, 

C., Shen, X., Barbu, M. C., Xu, E. Y., Whalley, H. C., Marioni, R. E., 

Porteous, D. J., Davies, G., Deary, I. J., … McIntosh, A. M. (2019). 

Genome-wide meta-analysis of depression identifies 102 independent 

variants and highlights the importance of the prefrontal brain regions. 

Nature Neuroscience, 22(3), 343–352. https://doi.org/10.1038/s41593-

018-0326-7 

Howard, D. M., Adams, M. J., Shirali, M., Clarke, T.-K., Marioni, R. E., Davies, 

https://doi.org/10.1186/gb-2012-13-10-r97
https://doi.org/10.1016/j.eurpsy.2008.01.595


  

286 

G., Coleman, J. R. I., Alloza, C., Shen, X., Barbu, M. C., Wigmore, E. M., 

Gibson, J., Hagenaars, S. P., Lewis, C. M., Ward, J., Smith, D. J., 

Sullivan, P. F., Haley, C. S., Breen, G., … McIntosh, A. M. (2018). 

Genome-wide association study of depression phenotypes in UK Biobank 

identifies variants in excitatory synaptic pathways. Nature 

Communications, 9(1), 1470. https://doi.org/10.1038/s41467-018-03819-3 

Howard, L. M., Bekele, D., Rowe, M., Demilew, J., Bewley, S., & Marteau, T. M. 

(2013). Smoking cessation in pregnant women with mental disorders: A 

cohort and nested qualitative study. BJOG: An International Journal of 

Obstetrics & Gynaecology, 120(3), 362–370. 

https://doi.org/10.1111/1471-0528.12059 

Hoyt, A. T., Browne, M., Richardson, S., Romitti, P., & Druschel, C. (2014). 

Maternal Caffeine Consumption and Small for Gestational Age Births: 

Results from a Population-Based Case–Control Study. Maternal and Child 

Health Journal, 18(6), 1540–1551. https://doi.org/10.1007/s10995-013-

1397-4 

Hughes, R. A., Heron, J., Sterne, J. A. C., & Tilling, K. (2019). Accounting for 

missing data in statistical analyses: Multiple imputation is not always the 

answer. International Journal of Epidemiology, 48(4), 1294–1304. 

https://doi.org/10.1093/ije/dyz032 

Hüls, A., & Czamara, D. (2020). Methodological challenges in constructing DNA 

methylation risk scores. Epigenetics, 15(1–2), 1–11. 

https://doi.org/10.1080/15592294.2019.1644879 

Hvolgaard Mikkelsen, S., Obel, C., Olsen, J., Niclasen, J., & Bech, B. H. (2017). 

Maternal Caffeine Consumption during Pregnancy and Behavioral 

Disorders in 11-Year-Old Offspring: A Danish National Birth Cohort 

Study. The Journal of Pediatrics, 189, 120-127.e1. 

https://doi.org/10.1016/j.jpeds.2017.06.051 

Hyde, C. L., Nagle, M. W., Tian, C., Chen, X., Paciga, S. A., Wendland, J. R., 

Tung, J. Y., Hinds, D. A., Perlis, R. H., & Winslow, A. R. (2016). 

Identification of 15 genetic loci associated with risk of major depression in 

individuals of European descent. Nature Genetics, 48(9), 1031–1036. 

https://doi.org/10.1038/ng.3623 

Hylkema, M. N., & Blacquiere, M. J. (2009). Intrauterine Effects of Maternal 



  

287 

Smoking on Sensitization, Asthma, and Chronic Obstructive Pulmonary 

Disease. Proceedings of the American Thoracic Society, 6(8), 660–662. 

https://doi.org/10.1513/pats.200907-065DP 

Iacono, W. G., Malone, S. M., & McGue, M. (2008). Behavioral disinhibition and 

the development of early-onset addiction: Common and specific 

influences. Annu. Rev. Clin. Psychol., 4, 325–348. 

Illingworth, R. S., & Bird, A. P. (2009). CpG islands – ‘A rough guide’. FEBS 

Letters, 583(11), 1713–1720. https://doi.org/10.1016/j.febslet.2009.04.012 

Indredavik, M. S., Brubakk, A.-M., Romundstad, P., & Vik, T. (2007). Prenatal 

smoking exposure and psychiatric symptoms in adolescence. Acta 

Paediatrica, 96(3), 377–382. https://doi.org/10.1111/j.1651-

2227.2006.00148.x 

Ismaili M’hamdi, H., de Beaufort, I., Jack, B., & Steegers, E. A. P. (2018). 

Responsibility in the age of Developmental Origins of Health and Disease 

(DOHaD) and epigenetics. Journal of Developmental Origins of Health 

and Disease, 9(1), 58–62. https://doi.org/10.1017/S2040174417000654 

Jacobson, N., & Newman, M. (2017). Anxiety and Depression as Bidirectional 

Risk Factors for One Another: A Meta-Analysis of Longitudinal Studies. 

Psychological Bulletin, 143, 1155–1200. 

https://doi.org/10.1037/bul0000111 

Jaffee, S. R., & Price, T. S. (2008). Genotype–environment correlations: 

Implications for determining the relationship between environmental 

exposures and psychiatric illness. Psychiatry, 7(12), 496–499. 

https://doi.org/10.1016/j.mppsy.2008.10.002 

James, J. E. (2020). Maternal caffeine consumption and pregnancy outcomes: A 

narrative review with implications for advice to mothers and mothers-to-

be. Maternal and Child Health, 0(0), 10. 

Jami, E. S., Hammerschlag, A. R., Ip, H. F., Allegrini, A. G., Benyamin, B., 

Border, R., Diemer, E. W., Jiang, C., Karhunen, V., Lu, Y., Lu, Q., 

Mallard, T. T., Mishra, P. P., Nolte, I. M., Palviainen, T., Peterson, R. E., 

Sallis, H. M., Tate, A. E., Thiering, E., … Middeldorp, C. M. (2020). 

Genome-wide association meta-analysis of childhood and adolescent 

internalising symptoms. MedRxiv, 2020.09.11.20175026. 

https://doi.org/10.1101/2020.09.11.20175026 



  

288 

Jamieson, E., Korologou-Linden, R., Wootton, R. E., Guyatt, A. L., Battram, T., 

Burrows, K., ... & Richmond, R. C. (2020). Smoking, DNA methylation, 

and lung function: a mendelian randomization analysis to investigate 

causal pathways. The American Journal of Human Genetics, 106(3), 315-

326. 

Janssens, A. C. J. W. (2019). Validity of polygenic risk scores: Are we measuring 

what we think we are? Human Molecular Genetics, 28(R2), R143–R150. 

https://doi.org/10.1093/hmg/ddz205 

Jauniaux, E., Gulbis, B., Acharya, G., Thiry, P., & Rodeck, C. (1999). Maternal 

tobacco exposure and cotinine levels in fetal fluids in the first half of 

pregnancy. Obstetrics & Gynecology, 93(1), 25–29. 

https://doi.org/10.1016/S0029-7844(98)00318-4 

Jones, M. J., Moore, S. R., & Kobor, M. S. (2018). Principles and challenges of 

applying epigenetic epidemiology to psychology. Annual Review of 

Psychology, 69, 459–485. 

Joubert, B. R., Felix, J. F., Yousefi, P., Bakulski, K. M., Just, A. C., Breton, C., 

Reese, S. E., Markunas, C. A., Richmond, R. C., Xu, C.-J., Küpers, L. K., 

Oh, S. S., Hoyo, C., Gruzieva, O., Söderhäll, C., Salas, L. A., Baïz, N., 

Zhang, H., Lepeule, J., … London, S. J. (2016). DNA Methylation in 

Newborns and Maternal Smoking in Pregnancy: Genome-wide 

Consortium Meta-analysis. American Journal of Human Genetics, 98(4), 

680–696. https://doi.org/10.1016/j.ajhg.2016.02.019 

Kamat, M. A., Blackshaw, J. A., Young, R., Surendran, P., Burgess, S., Danesh, 

J., Butterworth, A. S., & Staley, J. R. (2019). PhenoScanner V2: An 

expanded tool for searching human genotype–phenotype associations. 

Bioinformatics, 35(22), 4851–4853. 

https://doi.org/10.1093/bioinformatics/btz469 

Kaminsky, Z. A., Tang, T., Wang, S.-C., Ptak, C., Oh, G. H. T., Wong, A. H. C., 

Feldcamp, L. A., Virtanen, C., Halfvarson, J., Tysk, C., McRae, A. F., 

Visscher, P. M., Montgomery, G. W., Gottesman, I. I., Martin, N. G., & 

Petronis, A. (2009). DNA methylation profiles in monozygotic and 

dizygotic twins. Nature Genetics, 41(2), 240–245. 

https://doi.org/10.1038/ng.286 

Karabegović, I., Portilla-Fernandez, E., Li, Y., Ma, J., Maas, S. C. E., Sun, D., 



  

289 

Hu, E. A., Kühnel, B., Zhang, Y., Ambatipudi, S., Fiorito, G., Huang, J., 

Castillo-Fernandez, J. E., Wiggins, K. L., de Klein, N., Grioni, S., 

Swenson, B. R., Polidoro, S., Treur, J. L., … Ghanbari, M. (2020). 

Epigenome-wide association meta-analysis of DNA methylation with 

coffee and tea consumption [Preprint]. Genomics. 

https://doi.org/10.1101/2020.04.15.042267 

Keeler, J. F., & Robbins, T. W. (2011). Translating cognition from animals to 

humans. Biochemical Pharmacology, 81(12), 1356–1366. 

https://doi.org/10.1016/j.bcp.2010.12.028 

Kendler, K. S., Schmitt, E., Aggen, S. H., & Prescott, C. A. (2008). Genetic and 

Environmental Influences on Alcohol, Caffeine, Cannabis, and Nicotine 

Use From Early Adolescence to Middle Adulthood. ARCH GEN 

PSYCHIATRY, 65(6), 9. 

Kenney, M., & Müller, R. (2017). Of rats and women: Narratives of motherhood 

in environmental epigenetics. BioSocieties, 12(1), 23–46. 

https://doi.org/10.1057/s41292-016-0002-7 

Kentner, A. C., Cryan, J. F., & Brummelte, S. (2019). Resilience priming: 

Translational models for understanding resiliency and adaptation to early 

life adversity. Developmental Psychobiology, 61(3), 350–375. 

https://doi.org/10.1002/dev.21775 

Kessler, R. C., Andrews, G., Mroczek, D., Ustun, B., & Wittchen, H.-U. (1998). 

The World Health Organization composite international diagnostic 

interview short-form (CIDI-SF). International Journal of Methods in 

Psychiatric Research, 7(4), 171–185. 

Khantzian, E. J. (1997). The self-medication hypothesis of substance use 

disorders: A reconsideration and recent applications. Harvard Review of 

Psychiatry, 4(5), 231–244. https://doi.org/10.3109/10673229709030550 

Khouja, J. N., Wootton, R. E., Taylor, A. E., Smith, G. D., & Munafò, M. R. 

(2021). Association of genetic liability to smoking initiation with e-

cigarette use in young adults: A cohort study. PLOS Medicine, 18(3), 

e1003555. https://doi.org/10.1371/journal.pmed.1003555 

Kim-Cohen, J., Caspi, A., Moffitt, T. E., Harrington, H., Milne, B. J., & Poulton, 

R. (2003). Prior Juvenile Diagnoses in Adults With Mental Disorder: 

Developmental Follow-Back of a Prospective-Longitudinal Cohort. 



  

290 

Archives of General Psychiatry, 60(7), 709. 

https://doi.org/10.1001/archpsyc.60.7.709 

Klasen, D. H. (2000). Comparing the German Versions of the Strengths and 

Dif®culties Questionnaire (SDQ-Deu) and the Child Behavior Checklist. 

Adolescent Psychiatry, 9(4), 6. 

Klebanoff, M. A., & Keim, S. A. (2015). Maternal Caffeine Intake During 

Pregnancy and Child Cognition and Behavior at 4 and 7 Years of Age. 

American Journal of Epidemiology, 182(12), 1023–1032. 

https://doi.org/10.1093/aje/kwv136 

Klengel, T., & Binder, E. B. (2015). Epigenetics of Stress-Related Psychiatric 

Disorders and Gene × Environment Interactions. Neuron, 86(6), 1343–

1357. https://doi.org/10.1016/j.neuron.2015.05.036 

Knight, C., Knight, I., Mitchell, D., & Zepp, J. E. (2005). Beverage caffeine 

intake in US consumers and subpopulations of interest: Estimates from the 

Share of Intake Panel survey. Food and Chemical Toxicology : An 

International Journal Published for the British Industrial Biological 

Research Association, 42, 1923–1930. 

https://doi.org/10.1016/j.fct.2004.05.002 

Knopik, V. S., Marceau, K., Bidwell, L. C., & Rolan, E. (2018). Prenatal 

substance exposure and offspring development: Does DNA methylation 

play a role? Neurotoxicology and Teratology. 

https://doi.org/10.1016/j.ntt.2018.01.009 

Kong, A., Thorleifsson, G., Frigge, M. L., Vilhjalmsson, B. J., Young, A. I., 

Thorgeirsson, T. E., Benonisdottir, S., Oddsson, A., Halldorsson, B. V., 

Masson, G., Gudbjartsson, D. F., Helgason, A., Bjornsdottir, G., 

Thorsteinsdottir, U., & Stefansson, K. (2018). The nature of nurture: 

Effects of parental genotypes. Science, 359(6374), 424–428. 

https://doi.org/10.1126/science.aan6877 

Koniak‐Griffin, D., Logsdon, M. C., Hines‐Martin, V., & Turner, C. C. (2006). 

Contemporary Mothering in a Diverse Society. Journal of Obstetric, 

Gynecologic, & Neonatal Nursing, 35(5), 671–678. 

https://doi.org/10.1111/j.1552-6909.2006.00089.x 

Kooijman, M. N., Kruithof, C. J., van Duijn, C. M., Duijts, L., Franco, O. H., van 

IJzendoorn, M. H., de Jongste, J. C., Klaver, C. C. W., van der Lugt, A., 



  

291 

Mackenbach, J. P., Moll, H. A., Peeters, R. P., Raat, H., Rings, E. H. H. 

M., Rivadeneira, F., van der Schroeff, M. P., Steegers, E. A. P., Tiemeier, 

H., Uitterlinden, A. G., … Jaddoe, V. W. V. (2016). The Generation R 

Study: Design and cohort update 2017. European Journal of 

Epidemiology, 31(12), 1243–1264. https://doi.org/10.1007/s10654-016-

0224-9 

Koolschijn, P. C. M. P., van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., & 

Crone, E. A. (2013). Hippocampal volume and internalizing behavior 

problems in adolescence. European Neuropsychopharmacology, 23(7), 

622–628. https://doi.org/10.1016/j.euroneuro.2012.07.001 

Koskelainen, M., & Kaljonen, A. (2000). The Strengths and Dif®culties 

Questionnaire among Finnish school-aged children and adolescents. 

Adolescent Psychiatry, 9(4), 8. 

Kruithof, C. J., Kooijman, M. N., van Duijn, C. M., Franco, O. H., de Jongste, J. 

C., Klaver, C. C. W., Mackenbach, J. P., Moll, H. A., Raat, H., Rings, E. 

H. H. M., Rivadeneira, F., Steegers, E. A. P., Tiemeier, H., Uitterlinden, 

A. G., Verhulst, F. C., Wolvius, E. B., Hofman, A., & Jaddoe, V. W. V. 

(2014). The Generation R Study: Biobank update 2015. European Journal 

of Epidemiology, 29(12), 911–927. 

Kua, K. P., & Lee, S. W. H. (2017). Systematic review and meta-analysis of 

clinical outcomes of early caffeine therapy in preterm neonates. British 

Journal of Clinical Pharmacology, 83(1), 180–191. 

https://doi.org/10.1111/bcp.13089 

Kuan, P. F., & Chiang, D. Y. (2012). Integrating prior knowledge in multiple 

testing under dependence with applications to detecting differential DNA 

methylation. Biometrics, 68(3), 774–783. https://doi.org/10.1111/j.1541-

0420.2011.01730.x 

Kumsta, R. (2019). The role of epigenetics for understanding mental health 

difficulties and its implications for psychotherapy research. Psychology 

and Psychotherapy: Theory, Research and Practice, 92(2), 190–207. 

https://doi.org/10.1111/papt.12227 

Kwok, M. K., Leung, G. M., & Schooling, C. M. (2016). Habitual coffee 

consumption and risk of type 2 diabetes, ischemic heart disease, 

depression and Alzheimer’s disease: A Mendelian randomization study. 



  

292 

Scientific Reports, 6(1). https://doi.org/10.1038/srep36500 

Labonte, B., Yerko, V., Gross, J., Mechawar, N., Meaney, M. J., Szyf, M., & 

Turecki, G. (2012). Differential Glucocorticoid Receptor Exon 1B, 1C, 

and 1H Expression and Methylation in Suicide Completers with a History 

of Childhood Abuse. Biological Psychiatry, 72(1), 41–48. 

https://doi.org/10.1016/j.biopsych.2012.01.034 

Ladd-Acosta, C., & Fallin, M. D. (2015). The role of epigenetics in genetic and 

environmental epidemiology. Epigenomics, 8(2), 271–283. 

https://doi.org/10.2217/epi.15.102 

Lange, S., Probst, C., Gmel, G., Rehm, J., Burd, L., & Popova, S. (2017). Global 

Prevalence of Fetal Alcohol Spectrum Disorder Among Children and 

Youth. JAMA Pediatrics, 171(10), 948–956. 

https://doi.org/10.1001/jamapediatrics.2017.1919 

Lange, S., Probst, C., Rehm, J., & Popova, S. (2018). National, regional, and 

global prevalence of smoking during pregnancy in the general population: 

A systematic review and meta-analysis. The Lancet Global Health, 6(7), 

e769–e776. https://doi.org/10.1016/S2214-109X(18)30223-7 

Langley, K., Heron, J., Smith, G. D., & Thapar, A. (2012). Maternal and Paternal 

Smoking During Pregnancy and Risk of ADHD Symptoms in Offspring: 

Testing for Intrauterine Effects. American Journal of Epidemiology, 

176(3), 261–268. https://doi.org/10.1093/aje/kwr510 

Lappalainen, T., & Greally, J. M. (2017). Associating cellular epigenetic models 

with human phenotypes. Nature Reviews Genetics, 18(7), 441–451. 

https://doi.org/10.1038/nrg.2017.32 

Lara, D. R. (2010). Caffeine, Mental Health, and Psychiatric Disorders. Journal of 

Alzheimer’s Disease, 20(s1), S239–S248. https://doi.org/10.3233/JAD-

2010-1378 

Latimer, K., Wilson, P., Kemp, J., Thompson, L., Sim, F., Gillberg, C., Puckering, 

C., & Minnis, H. (2012). Disruptive behaviour disorders: A systematic 

review of environmental antenatal and early years risk factors. Child: 

Care, Health and Development, 38(5), 611–628. 

https://doi.org/10.1111/j.1365-2214.2012.01366.x 

Lavigne, J. V., Hopkins, J., Gouze, K. R., Bryant, F. B., LeBailly, S. A., Binns, H. 

J., & Lavigne, P. M. (2011). Is Smoking During Pregnancy a Risk Factor 

https://doi.org/10.1093/aje/kwr510
https://doi.org/10.1038/nrg.2017.32


  

293 

for Psychopathology in Young Children? A Methodological Caveat and 

Report on Preschoolers. Journal of Pediatric Psychology, 36(1), 10–24. 

https://doi.org/10.1093/jpepsy/jsq044 

Lawlor, D. A., Harbord, R. M., Sterne, J. A. C., Timpson, N., & Smith, G. D. 

(2008). Mendelian randomization: Using genes as instruments for making 

causal inferences in epidemiology. Statistics in Medicine, 27(8), 1133–

1163. https://doi.org/10.1002/sim.3034 

Lawlor, D. A., Lewcock, M., Rena-Jones, L., Rollings, C., Yip, V., Smith, D., 

Pearson, R. M., Johnson, L., Millard, L. A. C., Patel, N., Skinner, A., & 

Tilling, K. (2019). The second generation of The Avon Longitudinal Study 

of Parents and Children (ALSPAC-G2): A cohort profile. Wellcome Open 

Research, 4. https://doi.org/10.12688/wellcomeopenres.15087.2 

Lawlor, D. A., Richmond, R., Warrington, N., McMahon, G., Davey Smith, G., 

Bowden, J., & Evans, D. M. (2017). Using Mendelian randomization to 

determine causal effects of maternal pregnancy (intrauterine) exposures on 

offspring outcomes: Sources of bias and methods for assessing them. 

Wellcome Open Research, 2, 11. 

https://doi.org/10.12688/wellcomeopenres.10567.1 

Lawlor, D. A., Smith, G. D., Bruckdorfer, K. R., Kundu, D., & Ebrahim, S. 

(2004). Those confounded vitamins: What can we learn from the 

differences between observational versus randomised trial evidence? The 

Lancet, 363(9422), 1724–1727. https://doi.org/10.1016/S0140-

6736(04)16260-0 

Lawlor, D. A., Tilling, K., & Davey Smith, G. (2016). Triangulation in 

aetiological epidemiology. International Journal of Epidemiology, 45(6), 

1866–1886. https://doi.org/10.1093/ije/dyw314 

Lawlor, D. A., Wade, K., Borges, M. C., Palmer, T., Hartwig, F. P., Hemani, G., 

& Bowden, J. (2019). A Mendelian Randomization dictionary: Useful 

definitions and descriptions for undertaking, understanding and 

interpreting Mendelian Randomization studies. 

Lawson, C. C., LeMasters, G. K., Levin, L. S., & Liu, J. H. (2002). Pregnancy 

hormone metabolite patterns, pregnancy symptoms, and coffee 

consumption. American Journal of Epidemiology, 156(5), 428–437. 

Lawson, C. C., LeMasters, G. K., & Wilson, K. A. (2004). Changes in caffeine 



  

294 

consumption as a signal of pregnancy. Reproductive Toxicology, 18(5), 

625–633. https://doi.org/10.1016/j.reprotox.2004.03.004 

Lee, M. A., Cameron, O. G., & Greden, J. F. (1985). Anxiety and caffeine 

consumption in people with anxiety disorders. Psychiatry Research, 15(3), 

211–217. https://doi.org/10.1016/0165-1781(85)90078-2 

Lee, S. H., Ripke, S., Neale, B. M., Faraone, S. V., Purcell, S. M., Perlis, R. H., 

Mowry, B. J., Thapar, A., Goddard, M. E., Witte, J. S., Absher, D., 

Agartz, I., Akil, H., Amin, F., Andreassen, O. A., Anjorin, A., Anney, R., 

Anttila, V., Arking, D. E., … Cross-Disorder Group of the Psychiatric 

Genomics Consortium. (2013). Genetic relationship between five 

psychiatric disorders estimated from genome-wide SNPs. Nature Genetics, 

45(9), 984–994. https://doi.org/10.1038/ng.2711 

Leek, J. T., Johnson, W. E., Parker, H. S., Fertig, E. J., Jaffe, A. E., Storey, J. D., 

Zhang, Y., & Torres, L. C. (2019). sva: Surrogate Variable Analysis. 

Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., & Storey, J. D. (2012). The 

sva package for removing batch effects and other unwanted variation in 

high-throughput experiments. Bioinformatics, 28(6), 882–883. 

https://doi.org/10.1093/bioinformatics/bts034 

Lewis, G., Pelosi, A. J., Araya, R., & Dunn, G. (1992). Measuring psychiatric 

disorder in the community: A standardized assessment for use by lay 

interviewers. Psychological Medicine, 22(2), 465–486. 

https://doi.org/10.1017/s0033291700030415 

Legendre, P., Legendre, L. (1998). Numerical ecology (2nd English ed.). Elsevier. 

Lehne, B., Drong, A. W., Loh, M., Zhang, W., Scott, W. R., Tan, S.-T., Afzal, U., 

Scott, J., Jarvelin, M.-R., Elliott, P., McCarthy, M. I., Kooner, J. S., & 

Chambers, J. C. (2015). A coherent approach for analysis of the Illumina 

HumanMethylation450 BeadChip improves data quality and performance 

in epigenome-wide association studies. Genome Biology, 16(1), 37. 

https://doi.org/10.1186/s13059-015-0600-x 

LeMoult, J., Humphreys, K. L., Tracy, A., Hoffmeister, J.-A., Ip, E., & Gotlib, I. 

H. (2020). Meta-analysis: Exposure to Early Life Stress and Risk for 

Depression in Childhood and Adolescence. Journal of the American 

Academy of Child & Adolescent Psychiatry, 59(7), 842–855. 

https://doi.org/10.1016/j.jaac.2019.10.011 

https://doi.org/10.1038/ng.2711
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1017/s0033291700030415


  

295 

Lewis, S. J., Araya, R., Smith, G. D., Freathy, R., Gunnell, D., Palmer, T., & 

Munafò, M. (2011). Smoking Is Associated with, but Does Not Cause, 

Depressed Mood in Pregnancy – A Mendelian Randomization Study. 

PLOS ONE, 6(7), e21689. https://doi.org/10.1371/journal.pone.0021689 

Li, C., Gao, W., Gao, Y., Yu, C., Lv, J., Lv, R., Duan, J., Sun, Y., Guo, X., Cao, 

W., & Li, L. (2018). Age prediction of children and adolescents aged 6-17 

years: An epigenome-wide analysis of DNA methylation. Aging (Albany 

NY), 10(5), 1015–1026. https://doi.org/10.18632/aging.101445 

Li, M., D’Arcy, C., Li, X., Zhang, T., Joober, R., & Meng, X. (2019). What do 

DNA methylation studies tell us about depression? A systematic review. 

Translational Psychiatry, 9. https://doi.org/10.1038/s41398-019-0412-y 

Lieshout, R. J. V., & Krzeczkowski, J. E. (2016). Just DO(HaD) It! Testing the 

clinical potential of the DOHaD hypothesis to prevent mental disorders 

using experimental study designs. Journal of Developmental Origins of 

Health and Disease, 7(6), 565–573. 

https://doi.org/10.1017/S2040174416000441 

Linnet, K. M., Wisborg, K., Secher, N. J., Thomsen, P. H., Obel, C., Dalsgaard, 

S., & Henriksen, T. B. (2009). Coffee Consumption During Pregnancy and 

the Risk of Hyperkinetic Disorder and ADHD: A Prospective Cohort 

Study. Obstetrical & Gynecological Survey, 64(4). 

https://doi.org/10.1097/01.ogx.0000345710.03145.80 

Liu, M., Jiang, Y., Wedow, R., Li, Y., Brazel, D. M., Chen, F., Datta, G., Davila-

Velderrain, J., McGuire, D., Tian, C., Zhan, X., Choquet, H., Docherty, A. 

R., Faul, J. D., Foerster, J. R., Fritsche, L. G., Gabrielsen, M. E., Gordon, 

S. D., Haessler, J., … Vrieze, S. (2019). Association studies of up to 1.2 

million individuals yield new insights into the genetic etiology of tobacco 

and alcohol use. Nature Genetics, 51(2), 237–244. 

https://doi.org/10.1038/s41588-018-0307-5 

Lokk, K., Modhukur, V., Rajashekar, B., Märtens, K., Mägi, R., Kolde, R., 

Koltšina, M., Nilsson, T. K., Vilo, J., Salumets, A., & Tõnisson, N. 

(2014). DNA methylome profiling of human tissues identifies global and 

tissue-specific methylation patterns. Genome Biology, 15(4), 3248. 

https://doi.org/10.1186/gb-2014-15-4-r54 

Lynn, F. A., Alderdice, F. A., Crealey, G. E., & McElnay, J. C. (2011). 

https://doi.org/10.1186/gb-2014-15-4-r54


  

296 

Associations between maternal characteristics and pregnancy-related stress 

among low-risk mothers: An observational cross-sectional study. 

International Journal of Nursing Studies, 48(5), 620–627. 

https://doi.org/10.1016/j.ijnurstu.2010.10.002 

Loomans, E. M., Hofland, L., van der Stelt, O., van der Wal, M. F., Koot, H. M., 

Van den Bergh, B. R. H., & Vrijkotte, T. G. M. (2012). Caffeine Intake 

During Pregnancy and Risk of Problem Behavior in 5- to 6-Year-Old 

Children. PEDIATRICS, 130(2), e305–e313. 

https://doi.org/10.1542/peds.2011-3361 

Lövkvist, C., Dodd, I. B., Sneppen, K., & Haerter, J. O. (2016). DNA methylation 

in human epigenomes depends on local topology of CpG sites. Nucleic 

Acids Research, 44(11), 5123–5132. https://doi.org/10.1093/nar/gkw124 

Ludwig, I. A., Clifford, M. N., Lean, M. E. J., Ashihara, H., & Crozier, A. (2014). 

Coffee: Biochemistry and potential impact on health. Food Funct., 5(8), 

1695–1717. https://doi.org/10.1039/C4FO00042K 

Lumey, L. H., Stein, A. D., Kahn, H. S., van der Pal-de Bruin, K. M., Blauw, G. 

J., Zybert, P. A., & Susser, E. S. (2007). Cohort Profile: The Dutch 

Hunger Winter Families Study. International Journal of Epidemiology, 

36(6), 1196–1204. https://doi.org/10.1093/ije/dym126 

Lumley, J., Chamberlain, C., Dowswell, T., Oliver, S., Oakley, L., & Watson, L. 

(2009). Interventions for promoting smoking cessation during pregnancy. 

The Cochrane Database of Systematic Reviews, 3, CD001055. 

https://doi.org/10.1002/14651858.CD001055.pub3 

Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress 

throughout the lifespan on the brain, behaviour and cognition. Nature 

Reviews Neuroscience, 10(6), 434–445. https://doi.org/10.1038/nrn2639 

Madley-Dowd, P., Rai, D., Zammit, S., & Heron, J. (2020). Simulations and 

directed acyclic graphs explained why assortative mating biases the 

prenatal negative control design. Journal of Clinical Epidemiology, 118, 

9–17. https://doi.org/10.1016/j.jclinepi.2019.10.008 

Magnus, P., Birke, C., Vejrup, K., Haugan, A., Alsaker, E., Daltveit, A. K., 

Handal, M., Haugen, M., Høiseth, G., Knudsen, G. P., Paltiel, L., 

Schreuder, P., Tambs, K., Vold, L., & Stoltenberg, C. (2016). Cohort 

Profile Update: The Norwegian Mother and Child Cohort Study (MoBa). 

https://doi.org/10.1016/j.ijnurstu.2010.10.002


  

297 

International Journal of Epidemiology, 45(2), 382–388. 

https://doi.org/10.1093/ije/dyw029 

Magnus, P., Irgens, L. M., Haug, K., Nystad, W., Skjærven, R., & Stoltenberg, C. 

(2006). Cohort profile: The Norwegian Mother and Child Cohort Study 

(MoBa). International Journal of Epidemiology, 35(5), 1146–1150. 

https://doi.org/10.1093/ije/dyl170 

Malmberg, M., Overbeek, G., Monshouwer, K., Lammers, J., Vollebergh, W. A., 

& Engels, R. C. (2010). Substance use risk profiles and associations with 

early substance use in adolescence. Journal of Behavioral Medicine, 33(6), 

474–485. 

Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., 

Hunter, D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, 

A., Cho, J. H., Guttmacher, A. E., Kong, A., Kruglyak, L., Mardis, E., 

Rotimi, C. N., Slatkin, M., Valle, D., Whittemore, A. S., … Visscher, P. 

M. (2009). Finding the missing heritability of complex diseases. Nature, 

461(7265), 747–753. https://doi.org/10.1038/nature08494 

Manzano, C., Hernández Castellano, M., Roman, L., Astals, M., Compta, B., & 

others. (2016). Maternal smoking during pregnancy and its impact on 

postnatal neurodevelopment. Clinics Mother Child Health, 13(249), 2. 

Marees, A. T., Kluiver, H. de, Stringer, S., Vorspan, F., Curis, E., Marie‐Claire, 

C., & Derks, E. M. (2018). A tutorial on conducting genome-wide 

association studies: Quality control and statistical analysis. International 

Journal of Methods in Psychiatric Research, 27(2), e1608. 

https://doi.org/10.1002/mpr.1608 

Markunas, C. A., Wilcox, A. J., Xu, Z., Joubert, B. R., Harlid, S., Panduri, V., 

Håberg, S. E., Nystad, W., London, S. J., Sandler, D. P., Lie, R. T., Wade, 

P. A., & Taylor, J. A. (2016). Maternal Age at Delivery Is Associated with 

an Epigenetic Signature in Both Newborns and Adults. PLoS ONE, 11(7). 

https://doi.org/10.1371/journal.pone.0156361 

Martin, C. L., Jima, D., Sharp, G. C., McCullough, L. E., Park, S. S., Gowdy, K. 

M., Skaar, D., Cowley, M., Maguire, R. L., Fuemmeler, B., Collier, D., 

Relton, C. L., Murphy, S. K., & Hoyo, C. (2019). Maternal pre-pregnancy 

obesity, offspring cord blood DNA methylation, and offspring 

cardiometabolic health in early childhood: An epigenome-wide association 



  

298 

study. Epigenetics, 14(4), 325–340. 

https://doi.org/10.1080/15592294.2019.1581594 

Marshall, O., Blaylock, R., Murphy, C., & Sanders, J. (2021). Risk messages 

relating to fertility and pregnancy: A media content analysis (6:114). 

Wellcome Open Research. 

https://doi.org/10.12688/wellcomeopenres.16744.1 

Martin, J., Tilling, K., Hubbard, L., Stergiakouli, E., Thapar, A., Davey Smith, G., 

O’Donovan, M. C., & Zammit, S. (2016). Association of Genetic Risk for 

Schizophrenia With Nonparticipation Over Time in a Population-Based 

Cohort Study. American Journal of Epidemiology, 183(12), 1149–1158. 

https://doi.org/10.1093/aje/kww009 

Martin, A. R., Daly, M. J., Robinson, E. B., Hyman, S. E., & Neale, B. M. (2019). 

Predicting polygenic risk of psychiatric disorders. Biological Psychiatry, 

86(2), 97–109. https://doi.org/10.1016/j.biopsych.2018.12.015 

Martino, D. J., Tulic, M. K., Gordon, L., Hodder, M., Richman, T. R., Metcalfe, 

J., Prescott, S. L., & Saffery, R. (2011). Evidence for age-related and 

individual-specific changes in DNA methylation profile of mononuclear 

cells during early immune development in humans. Epigenetics, 6(9), 

1085–1094. https://doi.org/10.4161/epi.6.9.16401 

Marufu, T. C., Ahankari, A., Coleman, T., & Lewis, S. (2015). Maternal smoking 

and the risk of still birth: Systematic review and meta-analysis. BMC 

Public Health, 15. https://doi.org/10.1186/s12889-015-1552-5 

Massey, S. H., & Compton, M. T. (2013). Psychological Differences Between 

Smokers Who Spontaneously Quit During Pregnancy and Those Who Do 

Not: A Review of Observational Studies and Directions for Future 

Research. Nicotine & Tobacco Research, 15(2), 307–319. 

https://doi.org/10.1093/ntr/nts142 

Matijasevich, A., Murray, J., Cooper, P. J., Anselmi, L., Barros, A. J. D., Barros, 

F. C., & Santos, I. S. (2015). Trajectories of maternal depression and 

offspring psychopathology at 6 years: 2004 Pelotas cohort study. Journal 

of Affective Disorders, 174, 424–431. 

https://doi.org/10.1016/j.jad.2014.12.012 

Maughan, B., Taylor, A., Caspi, A., & Moffitt, T. E. (2004). Prenatal Smoking 

and Early Childhood Conduct Problems: Testing Genetic and 

https://doi.org/10.12688/wellcomeopenres.16744.1
https://doi.org/10.1093/aje/kww009


  

299 

Environmental Explanations of the Association. Archives of General 

Psychiatry, 61(8), 836–843. https://doi.org/10.1001/archpsyc.61.8.836 

Maurice-Stam, H., Haverman, L., Splinter, A., van Oers, H. A., Schepers, S. A., 

& Grootenhuis, M. A. (2018). Dutch norms for the Strengths and 

Difficulties Questionnaire (SDQ) – parent form for children aged 2–18 

years. Health and Quality of Life Outcomes, 16(1). 

https://doi.org/10.1186/s12955-018-0948-1 

McCartney, D. L., Hillary, R. F., Stevenson, A. J., Ritchie, S. J., Walker, R. M., 

Zhang, Q., Morris, S. W., Bermingham, M. L., Campbell, A., Murray, A. 

D., Whalley, H. C., Gale, C. R., Porteous, D. J., Haley, C. S., McRae, A. 

F., Wray, N. R., Visscher, P. M., McIntosh, A. M., Evans, K. L., … 

Marioni, R. E. (2018). Epigenetic prediction of complex traits and death. 

Genome Biology, 19(1), 136. https://doi.org/10.1186/s13059-018-1514-1 

McDonnell, B. P., & Regan, C. (2019). Smoking in pregnancy: Pathophysiology 

of harm and current evidence for monitoring and cessation. The 

Obstetrician & Gynaecologist, 21(3), 169–175. 

https://doi.org/10.1111/tog.12585 

McGowan, P. O., Sasaki, A., D’Alessio, A. C., Dymov, S., Labonté, B., Szyf, M., 

Turecki, G., & Meaney, M. J. (2009). Epigenetic regulation of the 

glucocorticoid receptor in human brain associates with childhood abuse. 

Nature Neuroscience, 12(3), 342–348. https://doi.org/10.1038/nn.2270 

McGregor, K., Bernatsky, S., Colmegna, I., Hudson, M., Pastinen, T., Labbe, A., 

& Greenwood, C. M. T. (2016). An evaluation of methods correcting for 

cell-type heterogeneity in DNA methylation studies. Genome Biology, 

17(1), 84. https://doi.org/10.1186/s13059-016-0935-y 

Meltzer, H., Gatward, R., Goodman, R., Ford, T. (2000). The mental health of 

children and adolescents in Great Britain. The Stationery Office. 

https://www.dawba.info/abstracts/B-

CAMHS99_original_survey_report.pdf  

Menezes, A. M. B., Murray, J., László, M., Wehrmeister, F. C., Hallal, P. C., 

Gonçalves, H., Assunção, M. C. F., Menezes, C. B., & Barros, F. C. 

(2013). Happiness and Depression in Adolescence after Maternal Smoking 

during Pregnancy: Birth Cohort Study. PLOS ONE, 8(11), e80370. 

https://doi.org/10.1371/journal.pone.0080370 

https://www.dawba.info/abstracts/B-CAMHS99_original_survey_report.pdf
https://www.dawba.info/abstracts/B-CAMHS99_original_survey_report.pdf


  

300 

Merid, S. K., Novoloaca, A., Sharp, G. C., Küpers, L. K., Kho, A. T., Roy, R., 

Gao, L., Annesi-Maesano, I., Jain, P., Plusquin, M., Kogevinas, M., 

Allard, C., Vehmeijer, F. O., Kazmi, N., Salas, L. A., Rezwan, F. I., 

Zhang, H., Sebert, S., Czamara, D., … Melén, E. (2020). Epigenome-wide 

meta-analysis of blood DNA methylation in newborns and children 

identifies numerous loci related to gestational age. Genome Medicine, 

12(1), 25. https://doi.org/10.1186/s13073-020-0716-9 

Merikangas, K. R., He, J., Burstein, M., Swanson, S. A., Avenevoli, S., Cui, L., 

Benjet, C., Georgiades, K., & Swendsen, J. (2010). Lifetime Prevalence of 

Mental Disorders in U.S. Adolescents: Results from the National 

Comorbidity Survey Replication–Adolescent Supplement (NCS-A). 

Journal of the American Academy of Child & Adolescent Psychiatry, 

49(10), 980–989. https://doi.org/10.1016/j.jaac.2010.05.017 

Middeldorp, C. M., Felix, J. F., Mahajan, A., Ahluwalia, T. S., Auvinen, J., 

Bartels, M., Bilbao, J. R., Bisgaard, H., Bønnelykke, K., Boomsma, D. I., 

Bradfield, J. P., Bustamante, M., Chen, Z., Curtin, J. A., Custovic, A., 

Smith, G. D., Davies, G. E., Duijts, L., Eastwood, P. R., … Early Growth 

Genetics (EGG) consortium. (2019). The Early Growth Genetics (EGG) 

and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia: 

Design, results and future prospects. European Journal of Epidemiology, 

34(3), 279–300. https://doi.org/10.1007/s10654-019-00502-9 

Miguel, P. M., Pereira, L. O., Silveira, P. P., & Meaney, M. J. (2019). Early 

environmental influences on the development of children’s brain structure 

and function. Developmental Medicine & Child Neurology, 61(10), 1127–

1133. https://doi.org/10.1111/dmcn.14182 

Mikkelsen, S., Olsen, J., Niclasen, J., & Bech, B. (2017). Maternal Caffeine 

Consumption during Pregnancy and Behavioral Disorders in 11-Year-Old 

Offspring: A Danish National Birth Cohort Study. The Journal of 

Pediatrics, 189. https://doi.org/10.1016/j.jpeds.2017.06.051 

Millard, L. A. C., Davies, N. M., Timpson, N. J., Tilling, K., Flach, P. A., & 

Smith, G. D. (2015). MR-PheWAS: Hypothesis prioritization among 

potential causal effects of body mass index on many outcomes, using 

Mendelian randomization. Scientific Reports, 5(1), 16645. 

https://doi.org/10.1038/srep16645 



  

301 

Miller, D. B., & O’Callaghan, J. P. (2002). Neuroendocrine aspects of the 

response to stress. Metabolism, 51(6), 5–10. 

https://doi.org/10.1053/meta.2002.33184 

Mills, M. C., & Rahal, C. (2019). A scientometric review of genome-wide 

association studies. Communications Biology, 2(1), 1–11. 

https://doi.org/10.1038/s42003-018-0261-x 

Mills, M. C., & Tropf, F. C. (2020). Sociology, Genetics, and the Coming of Age 

of Sociogenomics. Annual Review of Sociology, 46(1), 553–581. 

https://doi.org/10.1146/annurev-soc-121919-054756 

Min, J. L., Hemani, G., Davey Smith, G., Relton, C., & Suderman, M. (2018). 

Meffil: Efficient normalization and analysis of very large DNA 

methylation datasets. Bioinformatics (Oxford, England), 34(23), 3983–

3989. https://doi.org/10.1093/bioinformatics/bty476 

Min, J. L., Hemani, G., Hannon, E., Dekkers, K. F., Castillo-Fernandez, J., Luijk, 

R., Carnero-Montoro, E., Lawson, D. J., Burrows, K., Suderman, M., 

Breterick, A. D., Richardson, T. G., Klughammer, J., Iotchkova, V., Sharp, 

G. C., Khleifat, A. A., Shatunov, A., Iacoangeli, A., McArdle, W. L., … 

Relton, C. L. (2020). Genomic and phenomic insights from an atlas of 

genetic effects on DNA methylation. MedRxiv, 2020.09.01.20180406. 

https://doi.org/10.1101/2020.09.01.20180406 

Miyake, Y., Tanaka, K., Okubo, H., Sasaki, S., & Arakawa, M. (2019). Maternal 

caffeine intake in pregnancy is inversely related to childhood peer 

problems in Japan: The Kyushu Okinawa Maternal and Child Health 

Study. Nutritional Neuroscience, 22(11), 817–824. 

https://doi.org/10.1080/1028415X.2018.1450089 

Mooney, M. A., Ryabinin, P., Wilmot, B., Bhatt, P., Mill, J., & Nigg, J. T. (2020). 

Large epigenome-wide association study of childhood ADHD identifies 

peripheral DNA methylation associated with disease and polygenic risk 

burden. Translational Psychiatry, 10(1), 1–12. 

https://doi.org/10.1038/s41398-020-0710-4 

Moran, S., Arribas, C., & Esteller, M. (2016). Validation of a DNA methylation 

microarray for 850,000 CpG sites of the human genome enriched in 

enhancer sequences. Epigenomics, 8(3), 389–399. 

https://doi.org/10.2217/epi.15.114 

https://doi.org/10.1053/meta.2002.33184


  

302 

Morgan, A. J., & Jorm, A. F. (2008). Self-help interventions for depressive 

disorders and depressive symptoms: A systematic review. Annals of 

General Psychiatry, 7(1), 13. https://doi.org/10.1186/1744-859X-7-13 

Morin, A. J. S., Arens, A. K., Maïano, C., Ciarrochi, J., Tracey, D., Parker, P. D., 

& Craven, R. G. (2017). Reciprocal Relationships between Teacher 

Ratings of Internalizing and Externalizing Behaviors in Adolescents with 

Different Levels of Cognitive Abilities. Journal of Youth and Adolescence, 

46(4), 801–825. https://doi.org/10.1007/s10964-016-0574-3 

Mourady, D., Richa, S., Karam, R., Papazian, T., Moussa, F. H., Osta, N. E., 

Kesrouani, A., Azouri, J., Jabbour, H., Hajj, A., & Khabbaz, L. R. (2017). 

Associations between quality of life, physical activity, worry, depression 

and insomnia: A cross-sectional designed study in healthy pregnant 

women. PLOS ONE, 12(5), e0178181. 

https://doi.org/10.1371/journal.pone.0178181 

Moylan, S., Gustavson, K., Øverland, S., Karevold, E. B., Jacka, F. N., Pasco, J. 

A., & Berk, M. (2015). The impact of maternal smoking during pregnancy 

on depressive and anxiety behaviors in children: The Norwegian Mother 

and Child Cohort Study. BMC Medicine, 13(1), 24. 

https://doi.org/10.1186/s12916-014-0257-4 

Mulder, R. H., Neumann, A., Cecil, C. A. M., Walton, E., Houtepen, L. C., 

Simpkin, A. J., Rijlaarsdam, J., Heijmans, B. T., Gaunt, T. R., Felix, J. F., 

Jaddoe, V. W. V., Bakermans-Kranenburg, M. J., Tiemeier, H., Relton, C. 

L., IJzendoorn, M. H. van, & Suderman, M. (2020). Epigenome-wide 

change and variation in DNA methylation from birth to late adolescence. 

BioRxiv, 2020.06.09.142620. https://doi.org/10.1101/2020.06.09.142620 

Munafò, M. R., Tilling, K., Taylor, A. E., Evans, D. M., & Davey Smith, G. 

(2018). Collider scope: When selection bias can substantially influence 

observed associations. International Journal of Epidemiology, 47(1), 226–

235. https://doi.org/10.1093/ije/dyx206 

Murgatroyd, C., & Spengler, D. (2011). Epigenetic programming of the HPA 

axis: Early life decides. Stress, 14(6), 581–589. 

https://doi.org/10.3109/10253890.2011.602146 

Murphy, C., Brown, T., Trickey, H., Sanders, J., Blaylock, R., Dean, C., 

Hennsessy, M., Schellhas, L., Sharp, G. C., Zuccolo, L., Munafò, M. R., 



  

303 

Cairns, K., Booker, M., Tennant, P., Fisher, J., Lee, E., Williams, E., Duff, 

E., Petersen, I., & Marshall, E. (2020, September 3). It remains unclear 

whether caffeine causes adverse pregnancy outcomes; but naive policy 

recommendations could cause harm [Letter to the editor]. 

https://ebm.bmj.com/content/early/2020/09/01/bmjebm-2020-

111432.responses#it-remains-unclear-whether-caffeine-causes-adverse-

pregnancy-outcomes-but-naive-policy-recommendations-could-cause-

harm 

Murray, G. K., Lin, T., Austin, J., McGrath, J. J., Hickie, I. B., & Wray, N. R. 

(2021). Could Polygenic Risk Scores Be Useful in Psychiatry?: A Review. 

JAMA Psychiatry, 78(2), 210–219. 

https://doi.org/10.1001/jamapsychiatry.2020.3042 

Najman, J. M., Williams, G. M., Nikles, J., Spence, S., Bor, W., O’Callaghan, M., 

Le Brocque, R., Andersen, M. J., & Shuttlewood, G. J. (2001). Bias 

influencing maternal reports of child behaviour and emotional state. Social 

Psychiatry and Psychiatric Epidemiology, 36(4), 186–194. 

https://doi.org/10.1007/s001270170062 

Neumann, A., Walton, E., Alemany, S., Cecil, C., González, J. R., Jima, D. D., 

Lahti, J., Tuominen, S. T., Barker, E. D., Binder, E., Caramaschi, D., 

Carracedo, Á., Czamara, D., Evandt, J., Felix, J. F., Fuemmeler, B. F., 

Gutzkow, K. B., Hoyo, C., Julvez, J., … Tiemeier, H. (2020). Association 

between DNA methylation and ADHD symptoms from birth to school 

age: A prospective meta-analysis. Translational Psychiatry, 10(1), 1–11. 

https://doi.org/10.1038/s41398-020-01058-z 

Nicolopoulos, K., Mulugeta, A., Zhou, A., & Hyppönen, E. (2020). Association 

between habitual coffee consumption and multiple disease outcomes: A 

Mendelian randomisation phenome-wide association study in the UK 

Biobank. Clinical Nutrition, 39(11), 3467–3476. 

https://doi.org/10.1016/j.clnu.2020.03.009 

Nivard, M. G., Gage, S. H., Hottenga, J. J., van Beijsterveldt, C. E. M., 

Abdellaoui, A., Bartels, M., Baselmans, B. M. L., Ligthart, L., Pourcain, 

B. S., Boomsma, D. I., Munafò, M. R., & Middeldorp, C. M. (2017). 

Genetic Overlap Between Schizophrenia and Developmental 

https://doi.org/10.1007/s001270170062
https://doi.org/10.1038/s41398-020-01058-z


  

304 

Psychopathology: Longitudinal and Multivariate Polygenic Risk 

Prediction of Common Psychiatric Traits During Development. 

Schizophrenia Bulletin, 43(6), 1197–1207. 

https://doi.org/10.1093/schbul/sbx031 

No safe level of coffee drinking for pregnant women, study says. (2020, August 

24). The Guardian. 

http://www.theguardian.com/lifeandstyle/2020/aug/24/no-safe-level-

coffee-drinking-pregnant-women-study-says 

Nomura, Y., Marks, D. J., & Halperin, J. M. (2010). Prenatal Exposure to 

Maternal and Paternal Smoking on Attention Deficit Hyperactivity 

Disorders Symptoms and Diagnosis in Offspring. The Journal of Nervous 

and Mental Disease, 198(9), 672–678. 

https://doi.org/10.1097/NMD.0b013e3181ef3489 

Oberlander, T. F., Papsdorf, M., Brain, U. M., Misri, S., Ross, C., & Grunau, R. 

E. (2010). Prenatal effects of selective serotonin reuptake inhibitor 

antidepressants, serotonin transporter promoter genotype (SLC6A4), and 

maternal mood on child behavior at 3 years of age. Archives of Pediatrics 

& Adolescent Medicine, 164(5), 444–451. 

https://doi.org/10.1001/archpediatrics.2010.51 

Oberlander, T. F., Weinberg, J., Papsdorf, M., Grunau, R., Misri, S., & Devlin, A. 

M. (2008). Prenatal exposure to maternal depression, neonatal methylation 

of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress 

responses. Epigenetics, 3(2), 97–106. https://doi.org/10.4161/epi.3.2.6034 

O’Donnell, K. J., & Meaney, M. J. (2017). Fetal Origins of Mental Health: The 

Developmental Origins of Health and Disease Hypothesis. American 

Journal of Psychiatry, 174(4), 319–328. 

https://doi.org/10.1176/appi.ajp.2016.16020138 

O’hara, M. W., & Swain, A. M. (1996). Rates and risk of postpartum 

depression—A meta-analysis. International Review of Psychiatry, 8(1), 

37–54. https://doi.org/10.3109/09540269609037816 

Olsson, C. A., Foley, D. L., Parkinson-Bates, M., Byrnes, G., McKenzie, M., 

Patton, G. C., Morley, R., Anney, R. J. L., Craig, J. M., & Saffery, R. 

(2010). Prospects for epigenetic research within cohort studies of 

psychological disorder: A pilot investigation of a peripheral cell marker of 



  

305 

epigenetic risk for depression. Biological Psychology, 83(2), 159–165. 

https://doi.org/10.1016/j.biopsycho.2009.12.003 

Pariante, C. M., & Lightman, S. L. (2008). The HPA axis in major depression: 

Classical theories and new developments. Trends in Neurosciences, 31(9), 

464–468. https://doi.org/10.1016/j.tins.2008.06.006 

Patel, V., Flisher, A. J., Hetrick, S., & McGorry, P. (2007). Mental health of 

young people: A global public-health challenge. 369, 12. 

Patti, M. A., Li, N., Eliot, M., Newschaffer, C., Yolton, K., Khoury, J., Chen, A., 

Lanphear, B. P., Lyall, K., Hertz-Picciotto, I., Fallin, M. D., Croen, L. A., 

& Braun, J. M. (2021). Association between self-reported caffeine intake 

during pregnancy and social responsiveness scores in childhood: The 

EARLI and HOME studies. PLOS ONE, 16(1), e0245079. 

https://doi.org/10.1371/journal.pone.0245079 

Peck, L., Borle, K., Folkersen, L., & Austin, J. (2021). Why do people seek out 

polygenic risk scores for complex disorders, and how do they understand 

and react to results?. European journal of human genetics : EJHG, 

10.1038/s41431-021-00929-3. Advance online publication. 

https://doi.org/10.1038/s41431-021-00929-3 

Pedersen, M. U., Thomsen, K. R., Heradstveit, O., Skogen, J. C., Hesse, M., & 

Jones, S. (2018). Externalizing behavior problems are related to substance 

use in adolescents across six samples from Nordic countries. European 

Child & Adolescent Psychiatry, 27(12), 1551–1561. 

https://doi.org/10.1007/s00787-018-1148-6 

Pembrey, M. (2004). The Avon Longitudinal Study of Parents and Children 

(ALSPAC): A resource for genetic epidemiology. European Journal of 

Endocrinology, 151(Suppl_3), U125–U129. 

https://doi.org/10.1530/eje.0.151u125 

Perera, F., & Herbstman, J. (2011). Prenatal environmental exposures, 

epigenetics, and disease. Reproductive Toxicology, 31(3), 363–373. 

https://doi.org/10.1016/j.reprotox.2010.12.055 

Phipson, B., Maksimovic, J., & Oshlack, A. (2015). missMethyl: An R package 

for analysing methylation data from Illuminas HumanMethylation450 

platform. Bioinformatics, btv560. 

Pidsley, R., Zotenko, E., Peters, T. J., Lawrence, M. G., Risbridger, G. P., Molloy, 

https://doi.org/10.1371/journal.pone.0245079
https://doi.org/10.1007/s00787-018-1148-6


  

306 

P., Van Djik, S., Muhlhausler, B., Stirzaker, C., & Clark, S. J. (2016). 

Critical evaluation of the Illumina MethylationEPIC BeadChip microarray 

for whole-genome DNA methylation profiling. Genome Biology, 17(1), 

208. https://doi.org/10.1186/s13059-016-1066-1 

Pingault, J.-B., Cecil, C. A. M., Murray, J., Munafò, M. R., & Viding, E. (2017). 

Causal Inference in Psychopathology: A Systematic Review of Mendelian 

Randomisation Studies Aiming to Identify Environmental Risk Factors for 

Psychopathology. Psychopathology Review, a4(1), 4–25. 

https://doi.org/10.5127/pr.038115 

Pingault, J.-B., O’Reilly, P. F., Schoeler, T., Ploubidis, G. B., Rijsdijk, F., & 

Dudbridge, F. (2018). Using genetic data to strengthen causal inference in 

observational research. Nature Reviews Genetics, 19(9), 566–580. 

https://doi.org/10.1038/s41576-018-0020-3 

Polderman, T. J. C., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van 

Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of 

the heritability of human traits based on fifty years of twin studies. Nature 

Genetics, 47(7), 702–709. https://doi.org/10.1038/ng.3285 

Polimanti, R., Kranzler, H. R., & Gelernter, J. (2016). Phenome-Wide Association 

Study for Alcohol and Nicotine Risk Alleles in 26394 Women. 

Neuropsychopharmacology, 41(11), 2688–2696. 

https://doi.org/10.1038/npp.2016.72 

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., & 

Reich, D. (2006). Principal components analysis corrects for stratification 

in genome-wide association studies. Nature Genetics, 38(8), 904–909. 

https://doi.org/10.1038/ng1847 

Pritchard, C. W. (1994). Depression and smoking in pregnancy in Scotland. 

Journal of Epidemiology and Community Health, 48(4), 377–382. 

Purves, K. L., Coleman, J. R. I., Meier, S. M., Rayner, C., Davis, K. A. S., 

Cheesman, R., Bækvad-Hansen, M., Børglum, A. D., Wan Cho, S., Jürgen 

Deckert, J., Gaspar, H. A., Bybjerg-Grauholm, J., Hettema, J. M., Hotopf, 

M., Hougaard, D., Hübel, C., Kan, C., McIntosh, A. M., Mors, O., … 

Eley, T. C. (2020). A major role for common genetic variation in anxiety 

disorders. Molecular Psychiatry, 25(12), 3292–3303. 

https://doi.org/10.1038/s41380-019-0559-1 



  

307 

Qian, J., Chen, Q., Ward, S. M., Duan, E., & Zhang, Y. (2020). Impacts of 

Caffeine during Pregnancy. Trends in Endocrinology & Metabolism, 

31(3), 218–227. https://doi.org/10.1016/j.tem.2019.11.004 

R Core Team. (2014). R: A Language and Environment for Statistical Computing. 

R Foundation for Statistical Computing. http://www.R-project.org/ 

Ramsawh, H. J., Weisberg, R. B., Dyck, I., Stout, R., & Keller, M. B. (2011). Age 

of onset, clinical characteristics, and 15-year course of anxiety disorders in 

a prospective, longitudinal, observational study. Journal of Affective 

Disorders, 132(1–2), 260–264. https://doi.org/10.1016/j.jad.2011.01.006 

Rauschert, S., Melton, P. E., Heiskala, A., Karhunen, V., Burdge, G., Craig, J. M., 

Godfrey, K. M., Lillycrop, K., Mori, T. A., Beilin, L. J., Oddy, W. H., 

Pennell, C., Järvelin, M.-R., Sebert, S., & Huang, R.-C. (2020). Machine 

Learning-Based DNA Methylation Score for Fetal Exposure to Maternal 

Smoking: Development and Validation in Samples Collected from 

Adolescents and Adults. Environmental Health Perspectives, 128(9), 

97003. https://doi.org/10.1289/EHP6076 

Reese, S. E., Zhao, S., Wu, M. C., Joubert, B. R., Parr, C. L., Håberg, S. E., 

Ueland, P. M., Nilsen, R. M., Midttun, Ø., Vollset, S. E., Peddada, S. D., 

Nystad, W., & London, S. J. (2017). DNA Methylation Score as a 

Biomarker in Newborns for Sustained Maternal Smoking during 

Pregnancy. Environmental Health Perspectives, 125(4), 760–766. 

https://doi.org/10.1289/EHP333 

Reinius, L. E., Acevedo, N., Joerink, M., Pershagen, G., Dahlén, S.-E., Greco, D., 

Söderhäll, C., Scheynius, A., & Kere, J. (2012). Differential DNA 

Methylation in Purified Human Blood Cells: Implications for Cell Lineage 

and Studies on Disease Susceptibility. PLoS ONE, 7(7), e41361. 

https://doi.org/10.1371/journal.pone.0041361 

Relton, C. L., & Davey Smith, G. (2012). Two-step epigenetic Mendelian 

randomization: A strategy for establishing the causal role of epigenetic 

processes in pathways to disease. International Journal of Epidemiology, 

41(1), 161–176. https://doi.org/10.1093/ije/dyr233 

Relton, C. L., Gaunt, T., McArdle, W., Ho, K., Duggirala, A., Shihab, H., 

Woodward, G., Lyttleton, O., Evans, D. M., Reik, W., Paul, Y.-L., Ficz, 

G., Ozanne, S. E., Wipat, A., Flanagan, K., Lister, A., Heijmans, B. T., 



  

308 

Ring, S. M., & Davey Smith, G. (2015). Data Resource Profile: Accessible 

Resource for Integrated Epigenomic Studies (ARIES). International 

Journal of Epidemiology, 44(4), 1181–1190. 

https://doi.org/10.1093/ije/dyv072 

Relton, C. L., Hartwig, F. P., & Davey Smith, G. (2015). From stem cells to the 

law courts: DNA methylation, the forensic epigenome and the possibility 

of a biosocial archive. International Journal of Epidemiology, 44(4), 

1083–1093. https://doi.org/10.1093/ije/dyv198 

Reyes, C. M., & Cornelis, M. (2018). Caffeine in the diet: Country-level 

consumption and guidelines. Nutrients, 10(11), 1772. 

Reynolds, C. A., Barlow, T., & Pedersen, N. L. (2006). Alcohol, tobacco and 

caffeine use: Spouse similarity processes. Behavior Genetics, 36(2), 201–

215. https://doi.org/10.1007/s10519-005-9026-7 

Reynolds, C. A., Tan, Q., Munoz, E., Jylhävä, J., Hjelmborg, J., Christiansen, L., 

Hägg, S., & Pedersen, N. L. (2020). A decade of epigenetic change in 

aging twins: Genetic and environmental contributions to longitudinal 

DNA methylation. Aging Cell, 19(8), e13197. 

https://doi.org/10.1111/acel.13197 

Riaz, M., Lewis, S., Naughton, F., & Ussher, M. (2018). Predictors of smoking 

cessation during pregnancy: A systematic review and meta-analysis. 

Addiction, 113(4), 610–622. https://doi.org/10.1111/add.14135 

Rice, F., Langley, K., Woodford, C., Smith, G. D., & Thapar, A. (2018). 

Identifying the contribution of prenatal risk factors to offspring 

development and psychopathology: What designs to use and a critique of 

literature on maternal smoking and stress in pregnancy. Development and 

Psychopathology, 30(3), 1107–1128. 

Richardson, T. G., Richmond, R. C., North, T.-L., Hemani, G., Davey Smith, G., 

Sharp, G. C., & Relton, C. L. (2019). An integrative approach to detect 

epigenetic mechanisms that putatively mediate the influence of lifestyle 

exposures on disease susceptibility. International Journal of 

Epidemiology, 48(3), 887–898. https://doi.org/10.1093/ije/dyz119 

Richmond, R. C., Al-Amin, A., Davey Smith, G., & Relton, C. L. (2014). 

Approaches for drawing causal inferences from epidemiological birth 

cohorts: A Review. Early Human Development, 90(11), 769–780. 



  

309 

https://doi.org/10.1016/j.earlhumdev.2014.08.023 

Richmond, R. C., Suderman, M., Langdon, R., Relton, C. L., & Davey Smith, G. 

(2018). DNA methylation as a marker for prenatal smoke exposure in 

adults. International Journal of Epidemiology, 47(4), 1120–1130. 

https://doi.org/10.1093/ije/dyy091 

Richmond, R. C., Timpson, N. J., Felix, J. F., Palmer, T., Gaillard, R., McMahon, 

G., Davey Smith, G., Jaddoe, V. W., & Lawlor, D. A. (2017). Using 

Genetic Variation to Explore the Causal Effect of Maternal Pregnancy 

Adiposity on Future Offspring Adiposity: A Mendelian Randomisation 

Study. PLoS Medicine, 14(1). 

https://doi.org/10.1371/journal.pmed.1002221 

Riglin, L., Collishaw, S., Richards, A., Thapar, A. K., Rice, F., Maughan, B., 

O’Donovan, M. C., & Thapar, A. (2018). The impact of schizophrenia and 

mood disorder risk alleles on emotional problems: Investigating change 

from childhood to middle age. Psychological Medicine, 48(13), 2153–

2158. https://doi.org/10.1017/S0033291717003634 

Ringoot, A. P., Tiemeier, H., Jaddoe, V. W. V., So, P., Hofman, A., Verhulst, F. 

C., & Jansen, P. W. (2015). Parental depression and child well-being: 

Young children’s self-reports helped addressing biases in parent reports. 

Journal of Clinical Epidemiology, 68(8), 928–938. 

https://doi.org/10.1016/j.jclinepi.2015.03.009 

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. 

(2015). Limma powers differential expression analyses for RNA-

sequencing and microarray studies. Nucleic Acids Research, 43(7), e47. 

Roberts, S., Lester, K. J., Hudson, J. L., Rapee, R. M., Creswell, C., Cooper, P. J., 

Thirlwall, K. J., Coleman, J. R. I., Breen, G., Wong, C. C. Y., & Eley, T. 

C. (2014). Serotonin tranporter methylation and response to cognitive 

behaviour therapy in children with anxiety disorders. Translational 

Psychiatry, 4(9), e444–e444. https://doi.org/10.1038/tp.2014.83 

Robinson, M., McLean, N. J., Oddy, W. H., Mattes, E., Bulsara, M., Li, J., 

Zubrick, S. R., Stanley, F. J., & Newnham, J. P. (2010). Smoking 

cessation in pregnancy and the risk of child behavioural problems: A 

longitudinal prospective cohort study. Journal of Epidemiology & 

Community Health, 64(7), 622–629. 



  

310 

https://doi.org/10.1136/jech.2009.088658 

Román‐Gálvez, R. M., Amezcua‐Prieto, C., Olmedo‐Requena, R., Saad, A. L.-M., 

Martínez‐Galiano, J. M., & Bueno‐Cavanillas, A. (2018). Partner smoking 

influences whether mothers quit smoking during pregnancy: A prospective 

cohort study. BJOG: An International Journal of Obstetrics & 

Gynaecology, 125(7), 820–827. https://doi.org/10.1111/1471-0528.14986 

Ross, E. J., Graham, D. L., Money, K. M., & Stanwood, G. D. (2015). 

Developmental Consequences of Fetal Exposure to Drugs: What We 

Know and What We Still Must Learn. Neuropsychopharmacology, 40(1), 

61–87. https://doi.org/10.1038/npp.2014.147 

Royston, P., Altman, D. G., & Sauerbrei, W. (2006). Dichotomizing continuous 

predictors in multiple regression: A bad idea. Statistics in Medicine, 25(1), 

127–141. https://doi.org/10.1002/sim.2331 

Roza, S. J., Verhulst, F. C., Jaddoe, V. W., Steegers, E. A., Mackenbach, J. P., 

Hofman, A., & Tiemeier, H. (2009). Maternal smoking during pregnancy 

and child behaviour problems: The Generation R Study. International 

Journal of Epidemiology, 38(3), 680–689. 

https://doi.org/10.1093/ije/dyn163 

Sadler, K., Vizard, T., Ford, T., Marchesell, F., Pearce, N., Mandalia, D., Davis, 

J., Brodie, E., Forbes, N., Goodman, A., & others. (2018). Mental health 

of children and young people in England, 2017. 

Saffari, A., Silver, M. J., Zavattari, P., Moi, L., Columbano, A., Meaburn, E. L., 

& Dudbridge, F. (2018). Estimation of a significance threshold for 

epigenome-wide association studies. Genetic Epidemiology, 42(1), 20–33. 

https://doi.org/10.1002/gepi.22086 

Sala, M., Perez, J., Soloff, P., Ucelli di Nemi, S., Caverzasi, E., Soares, J. C., & 

Brambilla, P. (2004). Stress and hippocampal abnormalities in psychiatric 

disorders. European Neuropsychopharmacology, 14(5), 393–405. 

https://doi.org/10.1016/j.euroneuro.2003.12.005 

Salihu, H. M., & Wilson, R. E. (2007). Epidemiology of prenatal smoking and 

perinatal outcomes. Early Human Development, 83(11), 713–720. 

https://doi.org/10.1016/j.earlhumdev.2007.08.002 

Sallis, H., Szekely, E., Neumann, A., Jolicoeur‐Martineau, A., van IJzendoorn, 



  

311 

M., Hillegers, M., Greenwood, C. M. T., Meaney, M. J., Steiner, M., 

Tiemeier, H., Wazana, A., Pearson, R. M., & Evans, J. (2019). General 

psychopathology, internalising and externalising in children and functional 

outcomes in late adolescence. Journal of Child Psychology and 

Psychiatry, and Allied Disciplines, 60(11), 1183–1190. 

https://doi.org/10.1111/jcpp.13067 

Schellhas, L., Haan, E., Easey, K. E., Wootton, R. E., Sallis, H. M., Sharp, G. C., 

Munafò, M. R., & Zuccolo, L. (2021). Maternal and child genetic liability 

for smoking and caffeine consumption and child mental health: An 

intergenerational genetic risk score analysis in the ALSPAC cohort. 

Addiction. https://doi.org/10.1111/add.15521 

Schneider, S., Huy, C., Schütz, J., & Diehl, K. (2010). Smoking cessation during 

pregnancy: A systematic literature review. Drug and Alcohol Review, 

29(1), 81–90. https://doi.org/10.1111/j.1465-3362.2009.00098.x 

Schneider, S., & Schütz, J. (2008). Who smokes during pregnancy? A systematic 

literature review of population-based surveys conducted in developed 

countries between 1997 and 2006. The European Journal of 

Contraception & Reproductive Health Care, 13(2), 138–147. 

https://doi.org/10.1080/13625180802027993 

Schreiber, G. B., Maffeo, C. E., Robins, M., Masters, M. N., & Bond, A. P. 

(1988). Measurement of coffee and caffeine intake: Implications for 

epidemiologic research. Preventive Medicine, 17(3), 280–294. 

https://doi.org/10.1016/0091-7435(88)90004-7 

Sengpiel, V., Elind, E., Bacelis, J., Nilsson, S., Grove, J., Myhre, R., Haugen, M., 

Meltzer, H. M., Alexander, J., Jacobsson, B., & Brantsæter, A.-L. (2013). 

Maternal caffeine intake during pregnancy is associated with birth weight 

but not with gestational length: Results from a large prospective 

observational cohort study. BMC Medicine, 11(1), 42. 

https://doi.org/10.1186/1741-7015-11-42 

Seo, D., Patrick, C. J., & Kennealy, P. J. (2008). Role of Serotonin and Dopamine 

System Interactions in the Neurobiology of Impulsive Aggression and its 

Comorbidity with other Clinical Disorders. Aggression and Violent 

Behavior, 13(5), 383–395. https://doi.org/10.1016/j.avb.2008.06.003 

Shaffer, J. P. (1995). Multiple Hypothesis Testing. Annual Review of Psychology, 

https://doi.org/10.1111/add.15521


  

312 

46(1), 561–584. https://doi.org/10.1146/annurev.ps.46.020195.003021 

Shabalin, A. A., & Aberg, K. A. (2015). Candidate gene methylation studies are at 

high risk of erroneous conclusions. Epigenomics, 7(1), 13–15. 

https://doi.org/10.2217/epi.14.70 

Shah, P. S. (2010). Parity and low birth weight and preterm birth: A systematic 

review and meta-analyses. Acta Obstetricia et Gynecologica 

Scandinavica, 89(7), 862–875. 

https://doi.org/10.3109/00016349.2010.486827 

Sharp, G. C., Alfano, R., Ghantous, A., Urquiza, J., Rifas-Shiman, S. L., Page, C. 

M., Jin, J., Fernández-Barrés, S., Santorelli, G., Tindula, G., & 36 other 

members of the Pregnancy and Childhood Epigenetics (PACE) 

consortium. (2021). Paternal body mass index and offspring DNA 

methylation: Findings from the PACE consortium. International Journal 

of Epidemiology. https://doi.org/10.1093/ije/dyaa267 

Sharp, G. C., Arathimos, R., Reese, S. E., Page, C. M., Felix, J., Küpers, L. K., 

Rifas-Shiman, S. L., Liu, C., The Cohorts for Heart and Aging Research in 

Genomic Epidemiology plus (CHARGE +) methylation alcohol working 

group, Burrows, K., Zhao, S., Magnus, M. C., Duijts, L., Corpeleijn, E., 

DeMeo, D. L., Litonjua, A., Baccarelli, A., Hivert, M.-F., Oken, E., … 

Zuccolo, L. (2018). Maternal alcohol consumption and offspring DNA 

methylation: Findings from six general population-based birth cohorts. 

Epigenomics, 10(1), 27–42. https://doi.org/10.2217/epi-2017-0095 

Sharp, G. C., Lawlor, D. A., & Richardson, S. S. (2018). It’s the mother!: How 

assumptions about the causal primacy of maternal effects influence 

research on the developmental origins of health and disease. Social 

Science & Medicine, 213, 20–27. 

https://doi.org/10.1016/j.socscimed.2018.07.035 

Sharp, G. C., & Relton, C. L. (2017). Epigenetics and noncommunicable diseases. 

Epigenomics, 9(6), 789–791. https://doi.org/10.2217/epi-2017-0045 

Sharp, G. C., Salas, L. A., Monnereau, C., Allard, C., Yousefi, P., Everson, T. M., 

Bohlin, J., Xu, Z., Huang, R.-C., Reese, S. E., Xu, C.-J., Baïz, N., Hoyo, 

C., Agha, G., Roy, R., Holloway, J. W., Ghantous, A., Merid, S. K., 

Bakulski, K. M., … Relton, C. L. (2017). Maternal BMI at the start of 

pregnancy and offspring epigenome-wide DNA methylation: Findings 

https://doi.org/10.1146/annurev.ps.46.020195.003021
https://doi.org/10.2217/epi.14.70


  

313 

from the pregnancy and childhood epigenetics (PACE) consortium. 

Human Molecular Genetics, 26(20), 4067–4085. 

https://doi.org/10.1093/hmg/ddx290 

Sharp, G. C., Schellhas, L., Richardson, S. S., & Lawlor, D. A. (2019). Time to 

cut the cord: Recognizing and addressing the imbalance of DOHaD 

research towards the study of maternal pregnancy exposures. Journal of 

Developmental Origins of Health and Disease, 10(05), 509–512. 

https://doi.org/10.1017/S2040174419000072 

Shipton, D., Tappin, D. M., Vadiveloo, T., Crossley, J. A., Aitken, D. A., & 

Chalmers, J. (2009). Reliability of self reported smoking status by 

pregnant women for estimating smoking prevalence: A retrospective, cross 

sectional study. The BMJ, 339. https://doi.org/10.1136/bmj.b4347 

Silva, C. G., Metin, C., Fazeli, W., Machado, N. J., Darmopil, S., Launay, P.-S., 

Ghestem, A., Nesa, M.-P., Bassot, E., Szabo, E., Baqi, Y., Muller, C. E., 

Tome, A. R., Ivanov, A., Isbrandt, D., Zilberter, Y., Cunha, R. A., 

Esclapez, M., & Bernard, C. (2013). Adenosine Receptor Antagonists 

Including Caffeine Alter Fetal Brain Development in Mice. Science 

Translational Medicine, 5(197), 197ra104-197ra104. 

https://doi.org/10.1126/scitranslmed.3006258 

Smedberg, J., Lupattelli, A., Mårdby, A.-C., & Nordeng, H. (2014). 

Characteristics of women who continue smoking during pregnancy: A 

cross-sectional study of pregnant women and new mothers in 15 European 

countries. BMC Pregnancy and Childbirth, 14(1), 213. 

https://doi.org/10.1186/1471-2393-14-213 

Smith, A. M., Dwoskin, L. P., & Pauly, J. R. (2010). Early exposure to nicotine 

during critical periods of brain development: Mechanisms and 

consequences. Journal of Pediatric Biochemistry, 1(2), 125–141. 

https://doi.org/10.3233/JPB-2010-0012 

Staley, J. R., Blackshaw, J., Kamat, M. A., Ellis, S., Surendran, P., Sun, B. B., 

Paul, D. S., Freitag, D., Burgess, S., Danesh, J., Young, R., & Butterworth, 

A. S. (2016). PhenoScanner: A database of human genotype–phenotype 

associations. Bioinformatics, 32(20), 3207–3209. 

https://doi.org/10.1093/bioinformatics/btw373 

Starnawska, A., Tan, Q., Soerensen, M., McGue, M., Mors, O., Børglum, A. D., 



  

314 

Christensen, K., Nyegaard, M., & Christiansen, L. (2019). Epigenome-

wide association study of depression symptomatology in elderly 

monozygotic twins. Translational Psychiatry, 9(1), 1–14. 

https://doi.org/10.1038/s41398-019-0548-9 

Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., 

Stein, T. I., Nudel, R., Lieder, I., Mazor, Y., Kaplan, S., Dahary, D., 

Warshawsky, D., Guan‐Golan, Y., Kohn, A., Rappaport, N., Safran, M., & 

Lancet, D. (2016). The GeneCards Suite: From Gene Data Mining to 

Disease Genome Sequence Analyses. Current Protocols in Bioinformatics, 

54(1). https://doi.org/10.1002/cpbi.5 

Stephens, S. H., Hoft, N. R., Schlaepfer, I. R., Young, S. E., Corley, R. C., 

McQueen, M. B., Hopfer, C., Crowley, T., Stallings, M., Hewitt, J., & 

Ehringer, M. A. (2012). Externalizing Behaviors are associated with SNPs 

in the CHRNA5/CHRNA3/CHRNB4 gene cluster. Behavior Genetics, 

42(3), 402–414. https://doi.org/10.1007/s10519-011-9514-x 

Stratil, J. M., Paudel, D., Setty, K. E., Menezes de Rezende, C. E., Monroe, A. A., 

Osuret, J., Scheel, I. B., Wildner, M., & Rehfuess, E. A. (2020). 

Advancing the WHO-INTEGRATE Framework as a Tool for Evidence-

Informed, Deliberative Decision-Making Processes: Exploring the Views 

of Developers and Users of WHO Guidelines. International Journal of 

Health Policy and Management, 1. 

https://doi.org/10.34172/ijhpm.2020.193 

Suderman, M., Simpkin, A., Sharp, G. C., Gaunt, T., Lyttleton, O., McArdle, W., 

Ring, S., Smith, G. D., & Relton, C. L. (2017). Sex-associated autosomal 

DNA methylation differences are wide-spread and stable throughout 

childhood. BioRxiv, 118265. https://doi.org/10.1101/118265 

Suderman, M., Staley, J. R., French, R., Arathimos, R., Simpkin, A., & Tilling, K. 

(2018). dmrff: Identifying differentially methylated regions efficiently 

with power and control. BioRxiv. https://doi.org/10.1101/508556 

Suderman, M., & Yousefi, P. (2020). journalclub: Journal club papers. 

https://github.com/perishky/journalclub 

Swanson, J. A., Lee, J. W., & Hopp, J. W. (1994). Caffeine and nicotine: A 

review of their joint use and possible interactive effects in tobacco 

withdrawal. Addictive Behaviors, 19(3), 229–256. 



  

315 

https://doi.org/10.1016/0306-4603(94)90027-2 

Talens, R. P., Christensen, K., Putter, H., Willemsen, G., Christiansen, L., 

Kremer, D., Suchiman, H. E. D., Slagboom, P. E., Boomsma, D. I., & 

Heijmans, B. T. (2012). Epigenetic variation during the adult lifespan: 

Cross-sectional and longitudinal data on monozygotic twin pairs. Aging 

Cell, 11(4), 694–703. https://doi.org/10.1111/j.1474-9726.2012.00835.x 

Tandon, M., Cardeli, E., & Luby, J. (2009). Internalizing Disorders in Early 

Childhood: A Review of Depressive and Anxiety Disorders. Child and 

Adolescent Psychiatric Clinics of North America, 18(3), 593–610. 

https://doi.org/10.1016/j.chc.2009.03.004 

Taylor, A. E., Carslake, D., de Mola, C. L., Rydell, M., Nilsen, T. I. L., 

Bjørngaard, J. H., Horta, B. L., Pearson, R., Rai, D., Galanti, M. R., 

Barros, F. C., Romundstad, P. R., Davey Smith, G., & Munafò, M. R. 

(2017). Maternal Smoking in Pregnancy and Offspring Depression: A 

cross cohort and negative control study. Scientific Reports, 7(1), 12579. 

https://doi.org/10.1038/s41598-017-11836-3 

Taylor, A. E., Davey Smith, G., Bares, C. B., Edwards, A. C., & Munafò, M. R. 

(2014). Partner smoking and maternal cotinine during pregnancy: 

Implications for negative control methods. Drug and Alcohol Dependence, 

139, 159–163. https://doi.org/10.1016/j.drugalcdep.2014.03.012 

Taylor, A. E., Davey Smith, G., & Munafò, M. R. (2018). Associations of coffee 

genetic risk scores with consumption of coffee, tea and other beverages in 

the UK Biobank: Coffee genetic risk scores. Addiction, 113(1), 148–157. 

https://doi.org/10.1111/add.13975 

Taylor, A. E., Davies, N. M., Ware, J. J., VanderWeele, T., Smith, G. D., & 

Munafò, M. R. (2014). Mendelian randomization in health research: Using 

appropriate genetic variants and avoiding biased estimates. Economics & 

Human Biology, 13, 99–106. 

Taylor, A. E., Jones, H. J., Sallis, H., Euesden, J., Stergiakouli, E., Davies, N. M., 

Zammit, S., Lawlor, D. A., Munafò, M. R., Davey Smith, G., & Tilling, K. 

(2018). Exploring the association of genetic factors with participation in 

the Avon Longitudinal Study of Parents and Children. International 

Journal of Epidemiology, 47(4), 1207–1216. 

https://doi.org/10.1093/ije/dyy060 



  

316 

Teh, A. L., Pan, H., Chen, L., Ong, M.-L., Dogra, S., Wong, J., MacIsaac, J. L., 

Mah, S. M., McEwen, L. M., Saw, S.-M., Godfrey, K. M., Chong, Y.-S., 

Kwek, K., Kwoh, C.-K., Soh, S.-E., Chong, M. F. F., Barton, S., Karnani, 

N., Cheong, C. Y., … Holbrook, J. D. (2014). The effect of genotype and 

in utero environment on interindividual variation in neonate DNA 

methylomes. Genome Research, 24(7), 1064–1074. 

https://doi.org/10.1101/gr.171439.113 

Temple, J. L., Bernard, C., Lipshultz, S. E., Czachor, J. D., Westphal, J. A., & 

Mestre, M. A. (2017). The Safety of Ingested Caffeine: A Comprehensive 

Review. Frontiers in Psychiatry, 8. 

https://doi.org/10.3389/fpsyt.2017.00080 

Teschendorff, A. E., Marabita, F., Lechner, M., Bartlett, T., Tegner, J., Gomez-

Cabrero, D., & Beck, S. (2013). A beta-mixture quantile normalization 

method for correcting probe design bias in Illumina Infinium 450 k DNA 

methylation data. Bioinformatics (Oxford, England), 29(2), 189–196. 

https://doi.org/10.1093/bioinformatics/bts680 

Teschendorff, A. E., West, J., & Beck, S. (2013). Age-associated epigenetic drift: 

Implications, and a case of epigenetic thrift? Human Molecular Genetics, 

22(R1), R7–R15. https://doi.org/10.1093/hmg/ddt375 

Thapar, A., Rice, F., Hay, D., Boivin, J., Langley, K., van den Bree, M., Rutter, 

M., & Harold, G. (2009). Prenatal Smoking Might Not Cause Attention-

Deficit/Hyperactivity Disorder: Evidence from a Novel Design. Biological 

Psychiatry, 66(8), 722–727. 

https://doi.org/10.1016/j.biopsych.2009.05.032 

Thapar, A., & Rutter, M. (2009). Do prenatal risk factors cause psychiatric 

disorder? Be wary of causal claims. British Journal of Psychiatry, 195(2), 

100–101. https://doi.org/10.1192/bjp.bp.109.062828 

The Coffee and Caffeine Genetics Consortium, International Parkinson’s Disease 

Genomics Consortium (IPDGC), North American Brain Expression 

Consortium (NABEC), UK Brain Expression Consortium (UKBEC), 

Cornelis, M., Byrne, E. M., Esko, T., Nalls, M. A., Ganna, A., Paynter, N., 

Monda, K. L., Amin, N., Fischer, K., Renstrom, F., Ngwa, J. S., Huikari, 

V., Cavadino, A., Nolte, I. M., Teumer, A., … Chasman, D. I. (2015). 

Genome-wide meta-analysis identifies six novel loci associated with 

https://doi.org/10.1016/j.biopsych.2009.05.032


  

317 

habitual coffee consumption. Molecular Psychiatry, 20(5), 647–656. 

https://doi.org/10.1038/mp.2014.107 

Thompson, F. E., & Subar, A. F. (2017). Dietary Assessment Methodology. In 

Nutrition in the Prevention and Treatment of Disease (pp. 5–48). Elsevier. 

https://doi.org/10.1016/B978-0-12-802928-2.00001-1 

Tiesler, C. M. T., & Heinrich, J. (2014). Prenatal nicotine exposure and child 

behavioural problems. European Child & Adolescent Psychiatry, 23(10), 

913–929. https://doi.org/10.1007/s00787-014-0615-y 

Tobacco Free Initiative (World Health Organization). (2013). WHO 

recommendations for the prevention and management of tobacco use and 

second-hand smoke exposure in pregnancy. 

http://www.ncbi.nlm.nih.gov/books/NBK190304/ 

Treur, J. L., Demontis, D., Smith, G. D., Sallis, H., Richardson, T. G., Wiers, R. 

W., Børglum, A. D., Verweij, K. J. H., & Munafò, M. R. (2019). 

Investigating causality between liability to ADHD and substance use, and 

liability to substance use and ADHD risk, using Mendelian randomization. 

Addiction Biology, e12849. https://doi.org/10.1111/adb.12849 

Treur, J. L., Taylor, A. E., Ware, J. J., McMahon, G., Hottenga, J.-J., Baselmans, 

B. M. L., Willemsen, G., Boomsma, D. I., Munafò, M. R., & Vink, J. M. 

(2016). Associations between smoking and caffeine consumption in two 

European cohorts: Smoking and caffeine consumption. Addiction, 111(6), 

1059–1068. https://doi.org/10.1111/add.13298 

Treur, J. L., Taylor, A. E., Ware, J. J., Nivard, M. G., Neale, M. C., McMahon, 

G., Hottenga, J.-J., Baselmans, B. M. L., Boomsma, D. I., Munafò, M. R., 

& Vink, J. M. (2017). Smoking and caffeine consumption: A genetic 

analysis of their association: Smoking and caffeine. Addiction Biology, 

22(4), 1090–1102. https://doi.org/10.1111/adb.12391 

Tukey, J. W. (1977). Exploratory data analysis (Ser. Addison-wesley series in 

behavioral science). Addison-Wesley Pub. 

 Turecki, G., & Meaney, M. J. (2016). Effects of the Social Environment and 

Stress on Glucocorticoid Receptor Gene Methylation: A Systematic 

Review. Biological Psychiatry, 79(2), 87–96. 

https://doi.org/10.1016/j.biopsych.2014.11.022 

Twenge, J. M., Cooper, A. B., Joiner, T. E., Duffy, M. E., & Binau, S. G. (2019). 



  

318 

Age, period, and cohort trends in mood disorder indicators and suicide-

related outcomes in a nationally representative dataset, 2005-2017. 

Journal of Abnormal Psychology, 128(3), 185–199. 

https://doi.org/10.1037/abn0000410 

Tyrrell, J., Huikari, V., Christie, J. T., Cavadino, A., Bakker, R., Brion, M.-J. A., 

Geller, F., Paternoster, L., Myhre, R., Potter, C., Johnson, P. C. D., 

Ebrahim, S., Feenstra, B., Hartikainen, A.-L., Hattersley, A. T., Hofman, 

A., Kaakinen, M., Lowe, L. P., Magnus, P., … Freathy, R. M. (2012). 

Genetic variation in the 15q25 nicotinic acetylcholine receptor gene 

cluster (CHRNA5–CHRNA3–CHRNB4) interacts with maternal self-

reported smoking status during pregnancy to influence birth weight. 

Human Molecular Genetics, 21(24), 5344–5358. 

https://doi.org/10.1093/hmg/dds372 

van Dam, R. M., Hu, F. B., & Willett, W. C. (2020). Coffee, Caffeine, and Health. 

New England Journal of Medicine, 383(4), 369–378. 

https://doi.org/10.1056/NEJMra1816604 

van Dongen, J., Hagenbeek, F. A., Suderman, M., Roetman, P. J., Sugden, K., 

Chiocchetti, A. G., Ismail, K., Mulder, R. H., Hafferty, J. D., Adams, M. 

J., Walker, R. M., Morris, S. W., Lahti, J., Küpers, L. K., Escaramis, G., 

Alemany, S., Jan Bonder, M., Meijer, M., Ip, H. F., … Boomsma, D. I. 

(2021). DNA methylation signatures of aggression and closely related 

constructs: A meta-analysis of epigenome-wide studies across the lifespan. 

Molecular Psychiatry, 26(6), 1–15. https://doi.org/10.1038/s41380-020-

00987-x 

van der Knaap, L. J., Riese, H., Hudziak, J. J., Verbiest, M. M. P. J., Verhulst, F. 

C., Oldehinkel, A. J., & van Oort, F. V. A. (2014). Glucocorticoid receptor 

gene ( NR3C1 ) methylation following stressful events between birth and 

adolescence. The TRAILS study. Translational Psychiatry, 4(4), e381–

e381. https://doi.org/10.1038/tp.2014.22 

Van der Most, P. J., Küpers, L. K., Snieder, H., & Nolte, I. (2017). QCEWAS: 

Automated quality control of results of epigenome-wide association 

studies. Bioinformatics, 33(8), 1243–1245. 

https://doi.org/10.1093/bioinformatics/btw766 

van der Sijde, M. R., Ng, A., & Fu, J. (2014). Systems genetics: From GWAS to 

https://doi.org/10.1056/NEJMra1816604
https://doi.org/10.1038/s41380-020-00987-x
https://doi.org/10.1038/s41380-020-00987-x


  

319 

disease pathways. Biochimica et Biophysica Acta (BBA) - Molecular Basis 

of Disease, 1842(10), 1903–1909. 

https://doi.org/10.1016/j.bbadis.2014.04.025 

van Dongen, J., Nivard, M. G., Willemsen, G., Hottenga, J.-J., Helmer, Q., Dolan, 

C. V., Ehli, E. A., Davies, G. E., van Iterson, M., Breeze, C. E., Beck, S., 

Suchiman, H. E., Jansen, R., Meurs, J. B. van, Heijmans, B. T., Slagboom, 

P. E., & Boomsma, D. I. (2016). Genetic and environmental influences 

interact with age and sex in shaping the human methylome. Nature 

Communications, 7(1), 11115. https://doi.org/10.1038/ncomms11115 

van Widenfelt, B. M., Goedhart, A. W., Treffers, P. D. A., & Goodman, R. 

(2003). Dutch version of the Strengths and Difficulties Questionnaire 

(SDQ). European Child & Adolescent Psychiatry, 12(6), 281–289. 

https://doi.org/10.1007/s00787-003-0341-3 

Vehmeijer, F. O. L., Küpers, L. K., Sharp, G. C., Salas, L. A., Lent, S., Jima, D. 

D., Tindula, G., Reese, S., Qi, C., Gruzieva, O., Page, C., Rezwan, F. I., 

Melton, P. E., Nohr, E., Escaramís, G., Rzehak, P., Heiskala, A., Gong, T., 

Tuominen, S. T., … Felix, J. F. (2020). DNA methylation and body mass 

index from birth to adolescence: Meta-analyses of epigenome-wide 

association studies. Genome Medicine, 12(1), 105. 

https://doi.org/10.1186/s13073-020-00810-w 

Vermeulen, J. M., Wootton, R. E., Treur, J. L., Sallis, H. M., Jones, H. J., 

Zammit, S., van den Brink, W., Goodwin, G. M., de Haan, L., & Munafò, 

M. R. (2019). Smoking and the risk for bipolar disorder: Evidence from a 

bidirectional Mendelian randomisation study. The British Journal of 

Psychiatry, 1–7. https://doi.org/10.1192/bjp.2019.202 

Verster, J. C., & Koenig, J. (2018). Caffeine intake and its sources: A review of 

national representative studies. Critical Reviews in Food Science and 

Nutrition, 58(8), 1250–1259. 

https://doi.org/10.1080/10408398.2016.1247252 

Verweij, K. J. H., Treur, J. L., & Vink, J. M. (2018). Investigating causal 

associations between use of nicotine, alcohol, caffeine and cannabis: A 

two-sample bidirectional Mendelian randomization study. Addiction, 

113(7), 1333–1338. https://doi.org/10.1111/add.14154 

Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor 

https://doi.org/10.1007/s00787-003-0341-3
https://doi.org/10.1186/s13073-020-00810-w


  

320 

package. Journal of Statistical Software, 36(3), 1–48. 

Vineis, P., & Perera, F. (2007). Molecular Epidemiology and Biomarkers in 

Etiologic Cancer Research: The New in Light of the Old. Cancer 

Epidemiology Biomarkers & Prevention, 16(10), 1954–1965. 

https://doi.org/10.1158/1055-9965.EPI-07-0457 

Vineis, P., Veldhoven, K. van, Chadeau‐Hyam, M., & Athersuch, T. J. (2013). 

Advancing the application of omics-based biomarkers in environmental 

epidemiology. Environmental and Molecular Mutagenesis, 54(7), 461–

467. https://doi.org/10.1002/em.21764 

Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. 

A., & Yang, J. (2017). 10 Years of GWAS Discovery: Biology, Function, 

and Translation. American Journal of Human Genetics, 101(1), 5–22. 

https://doi.org/10.1016/j.ajhg.2017.06.005 

Wadhwa, P. D., Buss, C., Entringer, S., & Swanson, J. M. (2009). Developmental 

Origins of Health and Disease: Brief History of the Approach and Current 

Focus on Epigenetic Mechanisms. Seminars in Reproductive Medicine, 

27(5), 358–368. https://doi.org/10.1055/s-0029-1237424 

Wald, A. (1940). The Fitting of Straight Lines if Both Variables are Subject to 

Error. The Annals of Mathematical Statistics, 11(3), 284–300. 

Walton, E., Calhoun, V., Heijmans, B., Thompson, P., & Cecil, C. (2020). The 

rise of neuroimaging epigenetics: A systematic review of studies 

examining associations between DNA methylation and brain imaging. 

Walton, E., Hass, J., Liu, J., Roffman, J. L., Bernardoni, F., Roessner, V., Kirsch, 

M., Schackert, G., Calhoun, V., & Ehrlich, S. (2016). Correspondence of 

DNA Methylation Between Blood and Brain Tissue and Its Application to 

Schizophrenia Research. Schizophrenia Bulletin, 42(2), 406–414. 

https://doi.org/10.1093/schbul/sbv074 

Walton, E., Pingault, J.-B., Cecil, C. A., Gaunt, T. R., Relton, C., Mill, J., & 

Barker, E. D. (2017). Epigenetic profiling of ADHD symptoms 

trajectories: A prospective, methylome-wide study. Molecular Psychiatry, 

22(2), 250–256. https://doi.org/10.1038/mp.2016.85 

Walton, E., Relton, C. L., & Caramaschi, D. (2019a). Using Openly Accessible 

Resources to Strengthen Causal Inference in Epigenetic Epidemiology of 

Neurodevelopment and Mental Health. Genes, 10(3), 193. 



  

321 

https://doi.org/10.3390/genes10030193 

Ware, J. J., Tanner, J., Taylor, A. E., Bin, Z., Haycock, P., Bowden, J., Rogers, P. 

J., Davey Smith, G., Tyndale, R. F., & Munafò, M. R. (2017). Does coffee 

consumption impact on heaviness of smoking? Addiction (Abingdon, 

England), 112(10), 1842–1853. https://doi.org/10.1111/add.13888 

Waszczuk, M. A., Zavos, H. M. S., Gregory, A. M., & Eley, T. C. (2014). The 

Phenotypic and Genetic Structure of Depression and Anxiety Disorder 

Symptoms in Childhood, Adolescence, and Young Adulthood. JAMA 

Psychiatry, 71(8), 905. https://doi.org/10.1001/jamapsychiatry.2014.655 

Weaver, I. C. G., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., 

Seckl, J. R., Dymov, S., Szyf, M., & Meaney, M. J. (2004). Epigenetic 

programming by maternal behavior. Nature Neuroscience, 7(8), 847–854. 

https://doi.org/10.1038/nn1276 

Webb, P., Bain, C., & Page, A. (2017). Essential Epidemiology: An Introduction 

for Students and Health Professionals. Cambridge University Press.  

Weder, N., Zhang, H., Jensen, K., Yang, B. Z., Simen, A., Jackowski, A., 

Lipschitz, D., Douglas-Palumberi, H., Ge, M., Perepletchikova, F., 

O’Loughlin, K., Hudziak, J. J., Gelernter, J., & Kaufman, J. (2014). Child 

Abuse, Depression, and Methylation in Genes Involved With Stress, 

Neural Plasticity, and Brain Circuitry. Journal of the American Academy 

of Child & Adolescent Psychiatry, 53(4), 417-424.e5. 

https://doi.org/10.1016/j.jaac.2013.12.025 

Weinhold, L., Wahl, S., Pechlivanis, S., Hoffmann, P., & Schmid, M. (2016). A 

statistical model for the analysis of beta values in DNA methylation 

studies. BMC Bioinformatics, 17. https://doi.org/10.1186/s12859-016-

1347-4 

Weissman, M. M., Wolk, S., Wickramaratne, P., Goldstein, R. B., Adams, P., 

Greenwald, S., Ryan, N. D., Dahl, R. E., & Steinberg, D. (1999). Children 

with prepubertal-onset major depressive disorder and anxiety grown up. 

Archives of General Psychiatry, 56(9), 794–801. 

Weng, X., Odouli, R., & Li, D.-K. (2008). Maternal caffeine consumption during 

pregnancy and the risk of miscarriage: A prospective cohort study. 

American Journal of Obstetrics and Gynecology, 198(3), 279.e1-279.e8. 

https://doi.org/10.1016/j.ajog.2007.10.803 

https://doi.org/10.1038/nn1276


  

322 

Wickström, R. (2007). Effects of Nicotine During Pregnancy: Human and 

Experimental Evidence. Current Neuropharmacology, 5(3), 213–222. 

https://doi.org/10.2174/157015907781695955 

Wigginton, B., & Lee, C. (2013). Stigma and hostility towards pregnant smokers: 

Does individuating information reduce the effect? Psychology & Health, 

28(8), 862–873. https://doi.org/10.1080/08870446.2012.762101 

Wiklund, P., Karhunen, V., Richmond, R. C., Parmar, P., Rodriguez, A., De Silva, 

M., Wielscher, M., Rezwan, F. I., Richardson, T. G., Veijola, J., Herzig, 

K.-H., Holloway, J. W., Relton, C. L., Sebert, S., & Järvelin, M.-R. 

(2019). DNA methylation links prenatal smoking exposure to later life 

health outcomes in offspring. Clinical Epigenetics, 11(1), 97. 

https://doi.org/10.1186/s13148-019-0683-4 

Wilkinson, P. (2009). Conceptualization about internalizing problems in children 

and adolescents. Ciência &amp; Saúde Coletiva, 14(2), 373–381. 

https://doi.org/10.1590/S1413-81232009000200007 

Willer, C. J., Li, Y., & Abecasis, G. R. (2010). METAL: Fast and efficient meta-

analysis of genomewide association scans. Bioinformatics, 26(17), 2190–

2191. https://doi.org/10.1093/bioinformatics/btq340 

Wolke, D., Waylen, A., Samara, M., Steer, C., Goodman, R., Ford, T., & 

Lamberts, K. (2009). Selective drop-out in longitudinal studies and non-

biased prediction of behaviour disorders. British Journal of Psychiatry, 

195(3), 249–256. https://doi.org/10.1192/bjp.bp.108.053751 

Wootton, R. E., Richmond, R. C., Stuijfzand, B. G., Lawn, R. B., Sallis, H. M., 

Taylor, G. M. J., Hemani, G., Jones, H. J., Zammit, S., Davey Smith, G., 

& Munafò, M. R. (2019). Evidence for causal effects of lifetime smoking 

on risk for depression and schizophrenia: A Mendelian randomisation 

study. Psychological Medicine, 1–9. 

https://doi.org/10.1017/S0033291719002678 

World Health Organization (Ed.). (1992). The ICD-10 classification of mental and 

behavioural disorders: Clinical descriptions and diagnostic guidelines. 

World Health Organization. 

Wray, N. R., Lin, T., Austin, J., McGrath, J. J., Hickie, I. B., Murray, G. K., & 

Visscher, P. M. (2021). From Basic Science to Clinical Application of 

Polygenic Risk Scores: A Primer. JAMA Psychiatry, 78(1), 101–109. 



  

323 

https://doi.org/10.1001/jamapsychiatry.2020.3049 

Wray, N. R., Ripke, S., Mattheisen, M., Trzaskowski, M., Byrne, E. M., 

Abdellaoui, A., Adams, M. J., Agerbo, E., Air, T. M., Andlauer, T. M. F., 

Bacanu, S.-A., Bækvad-Hansen, M., Beekman, A. F. T., Bigdeli, T. B., 

Binder, E. B., Blackwood, D. R. H., Bryois, J., Buttenschøn, H. N., 

Bybjerg-Grauholm, J., … Sullivan, P. F. (2018). Genome-wide association 

analyses identify 44 risk variants and refine the genetic architecture of 

major depression. Nature Genetics, 50(5), 668–681. 

https://doi.org/10.1038/s41588-018-0090-3 

Wright, J., Small, N., Raynor, P., Tuffnell, D., Bhopal, R., Cameron, N., Fairley, 

L., Lawlor, D. A., Parslow, R., Petherick, E. S., Pickett, K. E., Waiblinger, 

D., West, J., & on behalf of the Born in Bradford Scientific Collaborators 

Group. (2013). Cohort Profile: The Born in Bradford multi-ethnic family 

cohort study. International Journal of Epidemiology, 42(4), 978–991. 

https://doi.org/10.1093/ije/dys112 

Wu, D.-M., He, Z., Ma, L.-P., Wang, L.-L., Ping, J., & Wang, H. (2015). 

Increased DNA methylation of scavenger receptor class B type I 

contributes to inhibitory effects of prenatal caffeine ingestion on 

cholesterol uptake and steroidogenesis in fetal adrenals. Toxicology and 

Applied Pharmacology, 285(2), 89–97. 

https://doi.org/10.1016/j.taap.2015.03.028 

Xu, C.-J., Bonder, M. J., Söderhäll, C., Bustamante, M., Baïz, N., Gehring, U., 

Jankipersadsing, S. A., van der Vlies, P., van Diemen, C. C., van Rijkom, 

B., Just, J., Kull, I., Kere, J., Antó, J. M., Bousquet, J., Zhernakova, A., 

Wijmenga, C., Annesi-Maesano, I., Sunyer, J., … Koppelman, G. H. 

(2017). The emerging landscape of dynamic DNA methylation in early 

childhood. BMC Genomics, 18(1), 25. https://doi.org/10.1186/s12864-016-

3452-1 

Xu, D., Zhang, B., Liang, G., Ping, J., Kou, H., Li, X., Xiong, J., Hu, D., Chen, 

L., Magdalou, J., & Wang, H. (2012). Caffeine-Induced Activated 

Glucocorticoid Metabolism in the Hippocampus Causes Hypothalamic-

Pituitary-Adrenal Axis Inhibition in Fetal Rats. PLoS ONE, 7(9), e44497. 

https://doi.org/10.1371/journal.pone.0044497 

Xu, Z., Seidler, F. J., Ali, S. F., Slikker, W., & Slotkin, T. A. (2001). Fetal and 



  

324 

adolescent nicotine administration: Effects on CNS serotonergic systems. 

Brain Research, 914(1), 166–178. https://doi.org/10.1016/S0006-

8993(01)02797-4 

Yanes, T., Young, M.-A., Meiser, B., & James, P. A. (2020). Clinical applications 

of polygenic breast cancer risk: A critical review and perspectives of an 

emerging field. Breast Cancer Research, 22(1), 21. 

https://doi.org/10.1186/s13058-020-01260-3 

Yang, A., Palmer, A. A., & de Wit, H. (2010). Genetics of caffeine consumption 

and responses to caffeine. Psychopharmacology, 211(3), 245–257. 

https://doi.org/10.1007/s00213-010-1900-1 

Yang, J., Weedon, M. N., Purcell, S., Lettre, G., Estrada, K., Willer, C. J., Smith, 

A. V., Ingelsson, E., O’Connell, J. R., Mangino, M., Mägi, R., Madden, P. 

A., Heath, A. C., Nyholt, D. R., Martin, N. G., Montgomery, G. W., 

Frayling, T. M., Hirschhorn, J. N., McCarthy, M. I., … Visscher, P. M. 

(2011). Genomic inflation factors under polygenic inheritance. European 

Journal of Human Genetics, 19(7), 807–812. 

https://doi.org/10.1038/ejhg.2011.39 

York, T. P., Jackson-Cook, C., Moyer, S., Roberson-Nay, R., Murphy, S. K., 

Fuemmeler, B. F., Latendresse, S. J., Lapato, D. M., Wolen, A. R., Do, E. 

K., Hoyo, C., & Strauss, J. F. (2019). Replicated Umbilical Cord Blood 

DNA Methylation Loci Associated with Gestational Age at Birth. BioRxiv, 

749135. https://doi.org/10.1101/749135 

Young, S. E., Stallings, M. C., Corley, R. P., Krauter, K. S., & Hewitt, J. K. 

(2000). Genetic and environmental influences on behavioral disinhibition. 

American Journal of Medical Genetics, 684–695. 

Yousefi, P., Huen, K., Davé, V., Barcellos, L., Eskenazi, B., & Holland, N. 

(2015). Sex differences in DNA methylation assessed by 450 K BeadChip 

in newborns. BMC Genomics, 16. https://doi.org/10.1186/s12864-015-

2034-y 

Yousefi, P., Huen, K., Quach, H., Motwani, G., Hubbard, A., Eskenazi, B., & 

Holland, N. (2015). Estimation of blood cellular heterogeneity in 

newborns and children for epigenome-wide association studies. 

Environmental and Molecular Mutagenesis, 56(9), 751–758. 

https://doi.org/10.1002/em.21966 

https://doi.org/10.1016/S0006-8993(01)02797-4
https://doi.org/10.1016/S0006-8993(01)02797-4
https://doi.org/10.1186/s13058-020-01260-3


  

325 

Yu, T., Campbell, S. C., Stockmann, C., Tak, C., Schoen, K., Clark, E. A. S., 

Varner, M. W., Spigarelli, M. G., & Sherwin, C. M. T. (2016). Pregnancy-

induced changes in the pharmacokinetics of caffeine and its metabolites. 

The Journal of Clinical Pharmacology, 56(5), 590–596. 

https://doi.org/10.1002/jcph.632 

Zhu, S.-H., & Valbø, A. (2002). Depression and smoking during pregnancy. 

Addictive Behaviors, 27(4), 649–658. https://doi.org/10.1016/S0306-

4603(01)00199-X 

Zuccolo, L., Lewis, S. J., Davey Smith, G., Sayal, K., Draper, E. S., Fraser, R., 

Barrow, M., Alati, R., Ring, S., Macleod, J., Golding, J., Heron, J., & 

Gray, R. (2013). Prenatal alcohol exposure and offspring cognition and 

school performance. A ‘Mendelian randomization’ natural experiment. 

International Journal of Epidemiology, 42(5), 1358–1370. 

https://doi.org/10.1093/ije/dyt172 



 

326 

Appendices 

Appendix A  

A1 List of phenotypes included in the study. 
Phenotype Assessment instrument 

Time point 

Offspring: Children   

Mental health   

ADHD symptoms (categorical) SDQ1 6.7 years 

Conduct disorders symptoms (categorical) SDQ 6.7 years 

Oppositional-defiant disorder symptoms 

(categorical) 
DAWBA2 7.5 years 

SMFQ score (categorical) SMFQ3 9.5 years 

SDQ emotional symptoms score (categorical) SDQ 6.8 years 

General anxiety symptoms score (categorical) DAWBA 7.5 years 

Total behavioural difficulties score (categorical) SDQ 6.7 years 

Specific phobia clinical diagnosis (binary) DAWBA 9.5 years 

Autism diagnosis (binary) Derived combining multiple 

measures4 

9 years 

Non-mental health   

Sleep duration in hours Maternal report 6.7 years 

Number of life events (categorical) Life events inventory 

(maternal report) 

6.7 years 

Problems with sleep initiation in past year 

(binary) 

Maternal report 6.7 years 

Problems with sleep maintenance in past year 

(binary) 

Maternal report 6.7 years 

IQ total score  WISC5 8 years 

Body mass Index  7 years 

Right or left-handed (binary) Child completed 11 years 

Caffeine   

Total mg/day caffeine from tea, cola, coffee Maternal report 8 years 

Child drinks caffeinated tea (binary) Maternal report 8 years 

Child drinks caffeinated coffee (binary) Maternal report 8 years 

Offspring: Adolescents   

Mental health   

ADHD symptoms (categorical) SDQ 16.6 years 

Conduct disorder symptoms (categorical) SDQ 16.6 years 

Oppositional-defiant disorder symptoms 

(categorical) 

DAWBA 15.5 years 

   

   

Depressive symptoms – Sum of all the 5 

depression symptoms (categorical) 
CIS-R6 18 years 

Depression symptoms total score (categorical) MFQ7 17.5 years 

Depression symptoms score (categorical) MFQ 14 years 

 
1 The Strengths and Difficulties Questionnaire 
2 The Development and Well-Being Assessment 
3 The Short Mood and Feelings Questionnaire 
4 Colin, D., Jean, G., & Patrick, F. (2010). Traits contributing to the autistic spectrum. Plos 

One, 5(9). doi:10.1371/journal.pone.0012633 
5 The Wechsler-Intelligence Scale 
6 The Revised Clinical Interview Schedule 
7 The Mood and Feelings Questionnaire 
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PTSD (self-report 6-band computer prediction, 

binary) 

DAWBA 15 years 

Self-harming behaviour with suicidal intent 

(binary) 

Derived from multiple 

measures8 

15 years 

Emotional symptoms score (categorical) SDQ 16.5 years 

Anxiety score (categorical) CIS-R 17.1 years 

Phobias: Phobia symptom score (categorical) CIS-R 17.1 years 

Total behavioural difficulties score (categorical) SDQ 16.5 years 

Ever treated for an eating disorder (binary) Child completed 13 years 

Psychosis positive symptoms (categorical) Psychosis interview 12 years 

Psychosis negative symptoms score PLIKS9 16.5 years 

Psychosis positive symptoms (categorical) Psychosis interview 18 years 

Ever treated for an eating disorder (binary) Child completed 16 years 

Non-mental health   

Big-5 personality traits: Extraversion IPIP10 13 years 

Big-5 personality traits: Agreeableness IPIP 13 years 

Big-5 personality traits: Conscientiousness IPIP 13 years 

Big-5 personality traits: Emotional Stability 

(neuroticism) 

IPIP 13 years 

Big-5 personality traits: Intellect IPIP 13 years 

Maintaining sleep: Number of times young 

person usually wakes up at night (categorical) 

Child completed 15 years 

Initiating sleep: Average time (minutes) YP takes 

to fall asleep per week (categorical) 

Child completed 15 years 

Frequency respondent did any exercise during the 

past year (categorical) 

Child completed 14 years 

GCSE grades A-C (binary) Child completed 18 years 

GCSE grades D-G (binary) Child completed 18 years 

BMI  17 years 

IQ total score WASI11 15.5 years 

Sleep duration Child completed 15.5 years 

Number of life events (categorical) Life events inventory (child 

self-report) 

16.5 years 

Substance use   

Alcohol   

AUDIT: Frequency young person has a drink 

containing alcohol (Continuous) 

Child Self-report 17.1 years 

Level of risk identified by alcohol use disorders 

identification test  
AUDIT12 17.1 years 

Frequency had 6+ drinks on one occasion Child Self-report 17.1 years 

No. full drinks needed to feel tipsy/have buzz 

over last 3 months (categorical) 

Child Self-report 17.1 years 

Number of alcoholic drinks on a typical day 

(categorical) 

Child Self-report 18 years 

Total score of AUDIT test (categorical) AUDIT 18 years 

Number of times had whole drink in the past 6 

months (categorical) 

Self-report 12 years 

Number of drinks took to feel different after first 

5 times drinking (categorical) 

Self-report 12 years 

Number of times had 3+ drinks in one day 

(categorical) 

Self-report 12 years 

Tobacco   

 
8 Easey, K.E., Mars, B., Pearson, R. et al. Eur Child Adolesc Psychiatry (2019) 28: 1079. 

https://doi.org/10.1007/s00787-018-1266-1 
9 The psychosis-like symptoms measure 
10 The International Personality Item Pool 
11 Wechsler abbreviated scale of Intelligence 
12 Alcohol Use Disorders Identification Test 
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Age of respondent when first smoked a cigarette Self-report 14 years 

Age when respondent smoked first whole 

cigarette (years) 

Self-report 18 years 

Number of cigarettes respondent smoked 

altogether in lifetime (categorical) 

Self-report 18 years 

Frequency young person smokes cannabis 

(categorical) 

Self-report 16.5 years 

Respondent has smoked a cigarette (including 

roll-ups) (binary) 

Self-report 14 years 

Total number of cigarettes that the respondent 

has smoked (binary) 

Self-report 14 years 

Respondent has ever smoked a whole cigarette 

(including roll-ups) (binary) 

Self-report 18 years 

Young person has ever tried cannabis (binary) Self-report 16.5 years 

Caffeine   

Total mg/day caffeine from tea, coffee, cola 

(categorical) 

Maternal report 13 years 

Tea mg/day caffeine teenager Maternal report 13 years 

Coffee mg/day caffeine teenager (categorical) Maternal report 13 years 

Cola mg/day caffeine teenager (categorical) Maternal report 13 years 

Mothers during pregnancy    

Mental health   

Depression symptoms (binary) EPDS13 18 weeks gest 

Depression symptoms (binary) EPDS 32 weeks gest 

Hypersensitivity to interpersonal rejection IPMS14 18 weeks gest 

Anxiety symptoms (binary) CCEI15  

Non-mental health   

Number of life events mother experienced in 

pregnancy (categorical) 

Life events Inventory 18 weeks gest 

Image perception score during pregnancy Self-report 18 weeks gest 

Image perception change from before to during 

pregnancy 

Self-report 18 weeks gest 

Your reactions to becoming a parent (categorical) Self-report 18 weeks gest 

Activity level compared with other pregnant 

women (categorical) 

Self-report 32 weeks gest 

Physical activity (binary) Self-report 32 weeks gest 

Vomited in first three months of pregnancy 

(binary) 

Self-report 18 weeks gest 

Social class based on occupation (categorical) Self-report 32 weeks gest 

Mothers’ highest education in pregnancy 

(categorical) 

Self-report 32 weeks gest 

Substance use   

Alcohol   

Alcohol: binging (categorical) Self-report 18 weeks gest 

Alcohol per week Self-report 32 weeks gest 

Alcohol: binging (categorical) Self-report 32 weeks gest 

Tobacco   

Smoking first three months in pregnancy (binary) Self-report 18 weeks gest 

Ever smoked during pregnancy (binary) Self-report 8 weeks gest 

Stopped smoking during pregnancy (binary) Self-report 8 weeks gest 

Cut down smoking during pregnancy (binary) Self-report 8 weeks gest 

Caffeine   

Total mg/day caffeine pregnancy  Self-report 18 weeks gest 

Tea mg/day caffeine pregnancy (categorical) Self-report 18 weeks gest 

Coffee mg/day caffeine pregnancy (categorical) Self-report 18 weeks gest 

 
13 Edinburgh Postnatal Depression Scale 
14 Interpersonal Sensitivity Measure 
15 The Crown Crisp Experiential Index (anxiety sub-scale) 
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Cola mg/day caffeine pregnancy (categorical) Self-report 18 weeks gest 

Total mg/day caffeine pregnancy  Self-report 32 weeks gest 

Tea mg/day caffeine pregnancy  Self-report 32 weeks gest 

Coffee mg/day caffeine pregnancy (categorical) Self-report 32 weeks gest 

Cola mg/day caffeine pregnancy (categorical) Self-report 32 weeks gest 

Consumed more caffeine during pregnancy 

(binary) 

Self-report 8 weeks gest 

Never has been drinking caffeine (binary) Self-report 8 weeks gest 

Did not change caffeine consumption during 

pregnancy (binary) 

Self-report 8 weeks gest 

Reduced caffeine consumption during pregnancy 

(binary) 

Self-report 8 weeks gest 

Never drank tea vs. drinking tea (binary) Self-report 8 weeks gest 

Stopped drinking tea during pregnancy (binary) Self-report 8 weeks gest 

Reduced tea consumption during pregnancy 

(binary) 

Self-report 8 weeks gest 

Craved or had more tea during pregnancy 

(binary) 

Self-report 8 weeks gest 

Never drank coffee vs. drinking coffee (binary) Self-report 8 weeks gest 

Stopped drinking coffee during pregnancy 

(binary) 

Self-report 8 weeks gest 

Reduced coffee consumption during pregnancy Self-report 8 weeks gest 

Craved or had more coffee during pregnancy 

(binary) 

Self-report 8 weeks gest 

Never drank cola vs. drinking cola (binary) Self-report 8 weeks gest 

Stopped drinking cola during pregnancy (binary) Self-report 8 weeks gest 

Reduced cola consumption during pregnancy 

(binary) 

Self-report 8 weeks gest 

Craved or had more cola during pregnancy 

(binary) 

Self-report 8 weeks gest 

Cutting down cola consumption during 

pregnancy (binary) 

Self-report 8 weeks gest 

Other substances   

Hard drugs (binary) Self-report 18 weeks gest 

Cannabis first three months in pregnancy (binary) Self-report 8 weeks gest 

Mothers outside of pregnancy 

Mental health   

Anxiety symptoms (binary) CCEI 11 years (child age) 

Depression symptoms (binary) EPDS 11 years 

Ever had bulimia (binary) Self-report 12 weeks gest 

Ever had drug addiction (binary) Self-report 12 weeks gest 

Ever had alcoholism (binary) Self-report 12 weeks gest 

Ever had schizophrenia (binary) Self-report 12 weeks gest 

Ever had anorexia nervosa (binary) Self-report 12 weeks gest 

Ever had severe depression (binary) Self-report 12 weeks gest 

Ever had other psychiatric problem (binary) Self-report 12 weeks gest 

Image perception 3 months before pregnancy 

(categorical) 

Self-report 18 weeks gest 

Non-mental health   

Number of life events mums (categorical) Life-events inventory (self-

report) 

11 years 

Impulsivity trait  KSP16 9 years 

Monotony avoidance trait KSP 9 years 

Anger trait KSP 9 years 

Suspicion trait KSP 9 years 

Detachment trait KSP 9 years 

Social class based on occupation (categorical) Self-report 4 years 

 
16 The Karolinska Scale of Personality 
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Mothers’ highest educational qualifications 

(categorical) 

Self-report 5 years 

BMI mothers Self-report 12 weeks gest 

Mother participates in physical activity (binary) Self-report 18 years 

Substance use   

Tobacco   

Mother has ever been smoker (binary) Self-report 18 weeks gest 

Number of cigarettes mother smoked before 

pregnancy 

Self-report 18 weeks gest 

Number of cigarettes mother has smoked last 2 

weeks 

Self-report 8 years 

Caffeine   

Daily caffeine intake from cola (mg) (categorical) Self-report 8 years 

Daily caffeine intake from tea (mg) (categorical) Self-report 8 years 

Daily caffeine intake from coffee (mg) 

(categorical) 

Self-report 8 years 

Mothers’ daily caffeine intake through tea, coffee 

& cola (including persons with missing 1 or 2 

drinks) 

Self-report 8 years 

Alcohol   

Mothers’ total alcohol units daily (categorical) Self-report 8 years 

Mothers’ pre-pregnancy drinking (never/ever) 

(binary) 

Self-report 18 weeks gest 

Number of days in past month that mother had at 

least 4 units of alcohol (categorical) 

Self-report 5 years 

Mothers’ total alcohol units daily (categorical) Self-report 4 years 

AUDIT score in mothers (based on risk level) 

(categorical) 

 AUDIT 18 years 
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Appendix B  

B1 Two-sample t-tests (two-sided) to test differences between participants 

with complete and partially missing genotype data.  
 Participants with 

genetic data* 

N Mean (SE)  P-value 

diff 

Caffeine consumption 

during pregnancy (mg/day) 

Mothers and 

offspring  

4918 160 (1.76) 0.0002 

 Mothers or offspring 4778 151 (1.60)  

Social class* Mothers and 

offspring 

4052 1.98 (0.02) <0.001 

 Mothers or offspring 3733 1.74 (0.02)  

Maternal education** Mothers and 

offspring 

3935 2.1 (0.02) <0.001 

 Mothers or offspring 3353 2.4 (0.02)  

Maternal age (years) Mothers and 

offspring 

4788 27.57 

(0.07) 

<0.001 

 Mothers or offspring 4938 28.63 

(0.07) 

 

Note. Mothers and offspring refers to mother-offspring pairs that both have genotype data in 

ALSPAC. Mothers or offspring refers to mother-offspring pairs where either mother or offspring 

have genotype data but not both. * Social class levels are based on individual’s occupation where 

classes I to V stands for occupations: I – professional; II – managerial and technical; III – skilled 

non-manual and manual; IV – partly-skilled; V – unskilled; ** 4 categories: 0 = none or CSE, 1 = 
vocational, 2 = O-level, 3 = A-level; 4 = degree (CSE reflects to the certificate of secondary 

education which is available for both academic and vocational subjects. O level is equivalent to 

grades D and E and A level is equivalent to grades A to C after GCSE (General Certificate of 

Secondary Education) examination. Degree level reflects to higher education diploma. 
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B2 Chi-Square test to test differences between participants with complete and 

partially missing genotype data. 

 Participants with genetic data  

Maternal smoking during the 1st 

trimester of pregnancy (yes/no) 

Mothers and 

offspring 

Mothers or 

offspring 

Total 

N 

Yes N = 924 N = 1,304 2,228 

No N = 3,864 N = 3,634 7,498  

Total N 4,788 4,938 9,726 

Results: Χ2(1) = 69.57, P < 0.001 

Note. Mothers and offspring refers to mother-offspring pairs that both have genotype data in 

ALSPAC. Mothers or offspring refers to mother-offspring pairs where either mother or offspring 

have genotype data but not both. 
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Appendix C  

C1 Associations between the lifetime smoking PRS and smoking phenotypes 

in mothers during and outside of pregnancy and adolescents 

 
Phenotype Effect 

estimate 

Effect 

size* 

95% CI P-value Sample 

size 

Adj. R2** 

Mothers during pregnancy  

Tobacco smoked in 1st three 

months of pregnancy 

OR 1.235 1.159, 1.315 9.41x10
-6 

7237 0.04 

Mother cut down tobacco 

consumption 

OR 1.168 1.097, 1.244 <0.001 7269 0.02 

Mother stopped smoking 

during pregnancy 

OR 0.871 0.775, 0.979 0.024 1863 0.01 

Mothers outside of pregnancy  

Mother has ever smoked OR 1.147 1.089, 1.209 <0.001 7194 0.01 

Number of cigarettes mother 

smoked before pregnancy 

Beta 0.194 0.124, 0.264 5.27x10
-8 

3426 0.05 

Offspring: Adolescents  

Smoked age 14 years OR 1.117 1.033, 1.208 0.009 4145 0.03 

Smoked more than 20 

cigarettes age 14 

OR 1.156 0.995, 1.342 0.057 1058 0.01 

Age 1st smoked a cigarette 

(asked age 14) 

Beta -0.052 -0.096, -0.009 0.019 1064 0.01 

Ever smoked a whole 

cigarette age 18 

OR 1.130 1.035, 1.233 0.010 2402 0.01 

Number of cigarettes smoked 

in lifetime age 18 

Beta 0.084 -0.006, 0.174 0.069 1144 0.002 

* Reflects the average change in the outcome that is associated with a one standard deviation increase 

in the PRS. For binary outcomes, this will be the odds ratio (e.g., Mother’s odds of ever smoking are 

1.147 times compared to not smoking), for continuous outcomes it represents the average unit change 

(e.g., 0.775 cigarettes smoked). ** For the logistic regression models pseudo R2 is reported. 
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Appendix D  

D1 Associations between the maternal and offspring smoking initiation PRS and offspring phenotypes <10 years. 
 Intergenerational analyses Childhood analyses 

Regression analyses Permutation testing Regression analyses Permutation testing 

Phenotype Effect 

estimate 

Effect 

size 

95% CI P-

value 

95% CI P-

value 

Sample 

size 

Effect 

size 

95% CI P-

value 

95% CI P-

value 

Sample 

size 

1. Total caffeine Beta 0.045 0.021, 0.068 <0.001 <0.001, 

0.004 

<0.001 4067 0.032 0.010, 0.055 0.005 0.002, 0.013 0.006 4589 

2. Anxiety Beta -0.033 -0.053, -

0.012 

0.002 <0.001, 

0.007 

0.002 4993 -0.031 -0.051, -

0.010 

0.003 <0.001, 

0.007 

0.002 5355 

3. BMI Beta 0.076 0.018, 0.135 0.010 0.007, 0.022 0.013 5032 0.050 <0.001, 

0.101 

0.051 0.036, 0.063 0.048 5799 

4. IQ Beta -0.592 -1.049, -

0.134 

0.011 0.009, 0.026 0.016 4675 -0.735 -1.183, -

0.287 

0.001 <0.001, 

0.004 

<0.001 5295 

5. Conduct disorder Beta 0.024 0.004, 0.044 0.019 0.013, 0.032 0.021 5012 0.030 0.012, 0.049 0.001 <0.001, 

0.006 

0.001 5326 

6. Handedness OR 1.114 1.012, 1.225 0.030 0.006, 0.021 0.012 4849 1.045 0.954, 1.145 0.315 0.263, 0.320 0.291 5403 

7. Specific phobia OR 1.322 0.964, 1.813 0.078 0.042, 0.071 0.055 5100 1.182 0.881, 1.587 0.241 0.199, 0.252 0.225 5470 

8. Emotional problems Beta -0.016 -0.037, 0.004 0.117 0.106, 0.148 0.126 5139 -0.011 -0.031, 0.009 0.267 0.236, 0.291 0.263 5459 

9. ADHD Beta 0.016 -0.013, 0.045 0.277 0.232, 0.287 0.259 4916 0.030 0.003, 0.058 0.030 0.024, 0.047 0.034 5219 

10. Sleep duration Beta -0.009 -0.033, 0.014 0.426 0.392, 0.454 0.423 5127 -0.019 -0.042, 0.004 0.106 0.107, 0.149 0.127 5443 

11. Behavioural 

difficulties 

Beta 0.010 -0.021, 0.041 0.522 0.482, 0.544 0.513 5133 0.022 -0.008, 0.051 0.152 0.130, 0.176 0.152 5452 

12. Depression Beta -0.006 -0.027, 0.015 0.557 0.524, 0.586 0.555 4885 -0.007 -0.027, 0.012 0.466 0.442, 0.504 0.473 5434 

13. Sleep maintenance OR 0.983 0.919, 1.051 0.589 0.534, 0.596 0.565 5127 0.973 0.913, 1.038 0.383 0.313, 0.372 0.342 5448 

14. ODD Beta -0.004 -0.024, 0.016 0.700 0.683, 0.740 0.712 4943 0.015 -0.005, 0.034 0.148 0.146, 0.194 0.169 5319 

15. Autism OR 1.027 0.722, 1.460 0.874 0.860, 0.901 0.882 5975 1.153 0.803, 1.654 0.411 0.380, 0.442 0.411 6156 

16. Sleep initiation OR 0.995 0.934, 1.061 0.874 0.827, 0.873 0.851 5150 0.971 0.913, 1.032 0.309 0.269, 0.326 0.297 5476 

17. Life events Beta <0.001 -0.018, 0.019 0.996 0.991, 0.999 0.997 5167 0.010 -0.008, 0.028 0.271 0.237, 0.292 0.264 5493 

 

Note. The intergenerational analysis represents offspring phenotypes <10 years regressed on maternal PRS. The childhood analysis represents offspring phenotypes <10 

years regressed on offspring PRS. 
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Appendix E  

E1 Associations between maternal and offspring lifetime smoking PRS and offspring phenotypes <10 years. 
 Intergenerational analyses Childhood analyses 

Regression analyses Permutation testing Regression analyses Permutation testing 

Phenotype Effect 

estimate 

Effect 

size 

95% CI P-value 95% CI P-

value 

Sample 

size 

Effect 

size 

95% CI P-value 95% CI P-

value 

Sample 

size 

1. IQ Beta -0.742 -1.202, -0.282 0.002 <0.001, 

0.007 

0.002 4675 -0.929 -1.371, -0.488 3.73x10-5 <0.001, 

0.004 

<0.00

1 

5290 

2. Conduct 

disorder 

Beta 0.026 0.007, 0.045 0.009 0.003, 0.014 0.007 5012 0.029 0.010, 0.048 0.003 0.001, 0.009 0.003 5326 

3. BMI Beta 0.063 0.007, 0.119 0.029 0.020, 0.043 0.030 5032 0.026 -0.025, 0.076 0.316 0.282, 0.341 0.311 5799 

4. Total caffeine Beta 0.021 -0.003, 0.045 0.079 0.063, 0.097 0.079 4067 0.015 -0.007, 0.038 0.187 0.170, 0.220 0.194 4589 

5. Sleep 

initiation 

OR 0.950 0.892, 1.012 0.104 0.064, 0.099 0.080 5150 0.968 0.911, 1.029 0.273 0.203, 0.256 0.229 5476 

6. Behavioural 

difficulties 

Beta 0.025 -0.005, 0.056 0.107 0.089, 0.129 0.108 5133 0.045 0.016, 0.075 0.003 <0.001, 

0.007 

0.002 5452 

7. ADHD Beta 0.023 -0.006, 0.052 0.117 0.098, 0.139 0.117 4916 0.037 0.009, 0.065 0.009 0.006, 0.020 0.011 5219 

8. Specific 

phobia 

OR 1.222 0.916, 1.631 0.156 0.179, 0.230 0.204 5100 0.824 0.628, 1.083 0.150 0.169, 0.219 0.193 5470 

9. Anxiety Beta -0.012 -0.033, 0.009 0.256 0.229, 0.284 0.256 4993 -0.014 -0.034, 0.007 0.189 0.150, 0.198 0.173 5355 

10. Sleep 

duration 

Beta -0.013 -0.036, 0.010 0.259 0.243, 0.299 0.270 5127 0.002 -0.021, 0.024 0.878 0.851, 0.893 0.873 5443 

11. Sleep 

maintenance 

OR 1.019 0.952, 1.090 0.559 0.503, 0.565 0.534 5127 0.984 0.924, 1.048 0.594 0.556, 0.618 0.587 5448 

12. Autism OR 1.104 0.768, 1.589 0.563 0.512, 0.574 0.543 5975 1.259 0.838, 1.891 0.243 0.163, 0.213 0.187 6156 

13. ODD Beta 0.006 -0.014, 0.026 0.574 0.557, 0.619 0.588 4943 0.031 0.012, 0.051 0.002 <0.001, 

0.004 

<0.00

1 

5319 

14. Emotional 

problems 

Beta -0.005 -0.025, 0.016 0.656 0.630, 0.689 0.660 5139 -0.012 -0.031, 0.008 0.248 0.210, 0.264 0.236 5459 

15. Depression Beta -0.003 -0.023, 0.018 0.809 0.783, 0.833 0.809 4885 0.010 -0.010, 0.030 0.323 0.300, 0.359 0.329 5434 

16. Handedness OR 1.009 0.914, 1.114 0.846 0.790, 0.839 0.815 4849 1.006 0.924, 1.096 0.876 0.866, 0.906 0.887 5399 

17. Life events Beta -0.002 -0.020, 0.017 0.853 0.838, 0.882 0.861 5167 0.014 -0.004, 0.032 0.117 0.101, 0.143 0.121 5493 

Note. Intergenerational analysis refers to maternal PRS predicting offspring phenotypes <10 years. Childhood analysis refers to offspring PRS predicting offspring 

phenotypes <10 years. 
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Appendix F  

F1 Associations between maternal and offspring caffeine PRS and offspring phenotypes <10 years. 
 Intergenerational analyses Childhood analyses 

Regression analyses Permutation testing Regression analyses Permutation testing 

Phenotype Effect 

estimate 

Effect 

size 

95% CI P-

value 

95% CI P-

value 

Sample 

size 

Effect 

size 

95% CI P-

value 

95% CI P-

value 

Sample size 

1. Specific 

phobia 

OR 0.724 0.519, 1.012 0.057 0.019, 0.040 0.028 5100 0.999 0.723, 1.381 0.997 0.993, 1.000 0.998 4900 

2. Depression Beta -0.017 -0.039, 0.002 0.075 0.056, 0.089 0.071 4885 -0.017 -0.037, 0.002 0.081 0.055, 0.088 0.070 5434 

3. ADHD Beta -0.018 -0.008, 0.050 0.161 0.110, 0.152 0.130 4916 -0.018 -0.046, 0.010 0.206 0.199, 0.251 0.224 5219 

4. Handedness OR 1.064 0.968, 1.169 0.178 0.143, 0.189 0.165 4849 0.980 0.897, 1.070 0.624 0.548, 0.610 0.579 5399 

5. Life events Beta -0.008 -0.007, 0.030 0.228 0.217, 0.271 0.243 5167 -0.008 -0.027, 0.010 0.366 0.329, 0.390 0.359 5493 

6. ODD Beta 0.002 -0.032, 0.008 0.240 0.257, 0.314 0.285 4943 0.002 -0.018, 0.022 0.829 0.583, 0.644 0.614 5319 

7. Sleep 

initiation 

OR 
0.972 0.913, 1.036 

0.352 0.316, 0.375 0.345 5150 0.951 0.895, 1.010 0.094 0.059, 0.092 0.074 5476 

8. Total caffeine Beta 0.008 -0.015, 0.032 0.490 0.444, 0.506 0.475 4067 0.010 -0.012, 0.032 0.377 0.349, 0.410 0.379 4589 

9. BMI Beta 0.025 -0.033, 0.084 0.387 0.364, 0.425 0.394 5032 0.025 -0.027, 0.077 0.348 0.297, 0.356 0.326 5799 

10. Behavioural 

difficulties 

Beta -0.015 -0.019, 0.043 0.441 0.369, 0.431 0.400 5133 -0.015 -0.044, 0.015 0.324 0.294, 0.353 0.323 5452 

11. Emotional 

problems 

Beta 0.001 -0.014, 0.027 0.538 0.569, 0.631 0.600 5139 0.001 -0.018, 0.021 0.883 0.881, 0.919 0.901 5459 

12. Sleep 

duration 

Beta -0.026 -0.030, 0.017 0.577 0.544, 0.606 0.575 5127 -0.026 -0.048, -0.004 0.018 0.011, 0.028 0.018 5443 

13. CD Beta -0.006 -0.024, 0.015 0.624 0.627, 0.686 0.657 5012 -0.006 -0.024, 0.013 0.563 0.541, 0.603 0.572 5326 

14. Autism OR 1.052 0.758, 1.461 0.742 0.733, 0.787 0.761 5975 0.850 0.603, 1.199 0.326 0.307, 0.366 0.336 6156 

15. IQ Beta 0.276 -0.521, 0.390 0.778 0.766, 0.817 0.792 4675 0.276 -0.155, 0.707 0.209 0.183, 0.234 0.208 5290 

16. Anxiety Beta -0.022 -0.023, 0.019 0.849 0.805, 0.853 0.830 4993 -0.022 -0.042, -0.002 0.029 0.017, 0.038 0.026 5355 

17. Sleep 

maintenance 

OR 1.001 0.936, 1.071 0.970 0.947, 0.972 0.961 5127 0.983 0.922, 1.048 0.573 0.517, 0.579 0.548 5488 

Note. The intergenerational analysis represents offspring phenotypes <10 years regressed on maternal PRS. The childhood analysis represents offspring phenotypes <10 years 

regressed on offspring PRS. 
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Appendix G  

G1 Associations between the maternal and offspring smoking initiation PRS and phenotypes in mothers during and outside of 

pregnancy and adolescence. 
  Regression analyses Permutation testing 

Phenotype Effect 

estimate 

Effect size 95% CI P-value 95% CI P-value Sample size 

Mothers outside of pregnancy 

Mental health  

Depression symptoms OR 1.070 0.969, 1.182 0.161 0.117, 0.161 0.138 4725 

Anxiety symptoms OR 1.028 0.934, 1.131 0.542 0.515, 0.577 0.546 4740 

Bulimia OR 1.081 0.926, 1.261 0.295 0.319, 0.379 0.349 6799 

Drug addiction OR 0.938 0.594, 1.480 0.764 0.748, 0.801 0.775 6799 

Alcoholism OR 1.243 0.903, 1.711 0.163 0.118, 0.162 0.139 6799 

Schizophrenia OR 0.839 0.386, 1.825 0.632 0.585, 0.646 0.616 6799 

Anorexia nervosa OR 1.062 0.886, 1.272 0.484 0.429, 0.491 0.460 6799 

Severe depression OR 1.178 1.064, 1.303 0.004 <0.001, 0.004 <0.001 6799 

Other psychological problem OR 1.146 0.941, 1.396 0.157 0.103, 0.145 0.123 6799 

Substance use  

Alcohol 

Alcohol drinking before pregnancy OR 1.129 1.017, 1.253 0.026 0.006, 0.020 0.011 7199 

Binge drinking Beta 0.050 0.020, 0.080 0.001 <0.001, 0.004 <0.001 4866 

Daily alcohol units at child age 4 Beta 0.023 0.003, 0.044 0.027 0.018, 0.039 0.027 5680 

Daily alcohol units at child age 8 Beta -0.003 -0.033, 0.027 0.838 0.799, 0.847 0.824 2707 

AUDIT score Beta 0.023 0.002, 0.045 0.036 0.034, 0.061 0.046 2424 
Caffeine 

Total caffeine consumption Beta 8.568 4.948, 12.187 <0.001 <0.001, 0.004 <0.001 4783 

Non-mental health  

Life events Beta 0.021 -0.012, 0.055 0.212 0.222, 0.277 0.249 4219 

Sleep duration Beta -0.023 -0.049, 0.004 0.099 0.088, 0.127 0.106 1867 

Impulsivity personality trait Beta 0.072 -0.034, 0.177 0.183 0.147, 0.195 0.170 4847 

Monotony avoidance personality trait Beta 0.242 0.099, 0.386 0.001 <0.001, 0.006 0.001 4794 

Anger personality trait Beta 0.341 0.207, 0.475 <0.001 <0.001, 0.004 <0.001 4769 

Suspicion personality trait Beta 0.125 0.016, 0.234 0.024 0.012, 0.031 0.020 4856 

Detachment personality trait Beta -0.058 -0.169, 0.053 0.304 0.293, 0.352 0.322 4753 

Physical activity OR 0.933 0.858, 1.014 0.094 0.040, 0.069 0.053 2787 
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Social class Beta 0.020 -0.024, 0.064 0.379 0.422, 0.484 0.453 2906 

Education Beta -0.092 -0.124, -0.060 2.19 x 10-8 <0.001, 0.004 <0.001 4919 

BMI before pregnancy Beta 0.210 0.117, 0.302 9.67 x 10-6 <0.001, 0.004 <0.001 6398 

Image perception before pregnancy Beta 0.055 0.029, 0.082 3.26x10-5 <0.001, 0.004 <0.001 6623 

Total number of outcomes tested = 27 

Mothers during pregnancy 

Mental health  

Depression (18 wks) OR 1.115 1.028, 1.211 0.013 0.001, 0.010 0.004 6734 

Depression (32 wks) OR 1.124 1.039, 1.216 0.007 <0.001, 0.006 0.001 6751 

Anxiety OR 0.999 0.915, 1.091 0.991 0.979, 0.994 0.988 6645 

Hypersensitivity to interpersonal 

rejection 

Beta -0.474 -0.846, -0.102 0.012 0.003, 0.016 0.008 7167 

Feelings becoming a parent Beta -0.003 -0.025, 0.018 0.752 0.724, 0.778 0.752 7165 

Substance use  

Caffeine 

Total caffeine (18wks) Beta 7.352 4.748, 9.957 3.25x10-8 <0.001, 0.004 <0.001 7220 

Total caffeine (32wks) Beta 6.282 3.693, 8.872 2.02x10-6 <0.001, 0.004 <0.001 6767 

Alcohol 

Binge drinking (18wks) Beta 0.043 0.024, 0.061 8.07x10-6 <0.001, 0.004 <0.001 7171 

Binge drinking (32wks) Beta 0.034 0.014, 0.054 0.001 <0.001, 0.004 <0.001 5324 

Weekly alcohol units (32wks) Beta 0.160 0.033, 0.286 0.013 0.003, 0.014 0.007 4294 

Other substances 

Cannabis use in pregnancy OR 1.165 0.977, 1.389 0.082 0.046, 0.077 0.060 6918 

Hard drug use in pregnancy OR 0.990 0.568, 1.726 0.971 0.947, 0.972 0.961 7147 

Non-mental health 

Education Beta -0.100 -0.128, -0.071 1.01x10-11 <0.001, 0.004 <0.001 6954 

Social class Beta 0.050 0.023, 0.078 3.19x10-4 <0.001, 0.004 <0.001 5854 

Life events in pregnancy Beta 0.046 0.018, 0.074 0.001 <0.001, 0.004 <0.001 6744 

Image perception in pregnancy Beta 0.145 0.045, 0.245 0.005 0.004, 0.017 0.009 6699 

Image perception change Beta 0.077 -0.011, 0.166 0.087 0.079, 0.117 0.097 6549 

Activity level compared with other 

pregnant women 

Beta 0.011 -0.008, 0.029 0.262 0.226, 0.281 0.253 6611 

Physical activity OR 1.007 0.951, 1.066 0.795 0.764, 0.816 0.795 6767 

Vomiting in first three months of 

pregnancy 

OR 0.979 0.927, 1.034 0.418 0.367, 0.428 0.397 6797 

Sleep problems 18 weeks gestation Beta 0.019 0.001, 0.036 0.036 0.015, 0.036 0.005 6742 

Sleep problems 32 weeks gestation Beta 0.028 0.009, 0.046  0.003 <0.001, 0.004 <0.001 6743 

Total number of outcomes tested = 22 
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Offspring: Adolescents 

Mental health  

Conduct disorder symptoms Beta 0.041 0.015, 0.066 0.002 <0.001, 0.006 0.001 3834 

ADHD symptoms Beta 0.050 0.016, 0.085 0.004 0.001, 0.010 0.004 3852 

Oppositional-defiant disorder symptoms Beta 0.036 0.011, 0.060 0.004 <0.001, 0.006 0.001 3436 

Psychosis positive symptoms age 12 Beta 0.015 <0.001, 0.029 0.046 0.034, 0.061 0.046 4974 

Psychosis negative symptoms age 16 Beta -0.022 -0.059, 0.015 0.251 0.230, 0.285 0.257 3511 

Psychosis positive symptoms age 18 Beta 0.012 -0.004, 0.028 0.134 0.089, 0.129 0.134 3403 

PTSD disorder Beta 0.013 -0.002, 0.028 0.085 0.042, 0.071 0.055 4008 

Depression score age 17 (MFQ) Beta 0.008 -0.004, 0.020 0.178 0.164, 0.214 0.188 3212 

Depression symptom score age 18 (CIS-

R) 

Beta 0.015 -0.010, 0.041 0.236 0.210, 0.264 0.236 3303 

Eating disorder age 16 Beta -0.002 -0.007, 0.002 0.281 0.247, 0.303 0.274 3543 

Eating disorder age 13 Beta -0.001 -0.003, 0.001 0.395 0.452, 0.514 0.483 4256 

Specific phobia symptoms Beta 0.010 -0.008, 0.028 0.298 0.269,0.326 0.297 3293 

Emotional problems symptoms Beta -0.009 -0.032, 0.014 0.422 0.410, 0.472 0.441 4073 

Self-harming behaviour OR 0.958 0.810, 1.135 0.596 0.562, 0.624 0.593 2576 

Depression symptoms score age 14 

(MFQ) 

Beta -0.002 -0.016, 0.013 0.821 0.808, 0.856 0.833 4574 

Anxiety score Beta 0.002 -0.023, 0.027 0.848 0.830, 0.874 0.853 3293 

Total behavioural difficulties score Beta 0.036 -0.001, 0.073 0.055 0.035, 0.062 0.047 4055 

Substance use  

Cannabis use OR 1.225 1.127, 1.330 <0.001 <0.001, 0.004 <0.001 3571 

AUDIT risk score age 18 Beta 0.041 0.018, 0.064 0.001 <0.001, 0.004 <0.001 3008 

Binge drinking age 18 Beta 0.070 0.025, 0.114 0.002 0.001, 0.010 0.004 2829 

AUDIT total score age 18 Beta 0.069 0.029, 0.109 6.58x10-4 <0.001, 0.004 <0.001 3008 

Number of alcoholic drinks on a typical 

day 

Beta 0.066 0.022, 0.111 0.003 <0.001, 0.007 0.002 2826 

Number of drinks to feel tipsy Beta 0.050 0.008, 0.093 0.020 0.017, 0.038 0.026 2391 

Number of drinks to feel different after 

first five times drinking 

Beta 0.097 -0.016, 0.211 0.093 0.073, 0.109 0.090 299 

Binge drinking age 13 Beta 0.039 -0.065, 0.142 0.461 0.421, 0.483 0.452 464 

Frequency of having alcoholic drinks Beta 0.008 -0.024, 0.039 0.641 0.586, 0.647 0.617 3626 

Number of times had whole drink age 13 Beta 0.007 -0.066, 0.079 0.860 0.838, 0.882 0.861 1103 

Frequency of cannabis smoking Beta -0.016 -0.092, 0.060 0.676 0.625, 0.684 0.655 1035 

Total caffeine age 13 Beta 0.008 -0.030, 0.046 0.680 0.639, 0.698 0.669 3405 

Non-mental health 

BMI Beta 0.239 0.104, 0.373 0.001 <0.001, 0.004 <0.001 3606 

IQ Beta -0.582 -1.006, -0.159 0.007 0.003, 0.016 0.008 3720 
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GCSE grades D-G OR 1.086 0.988, 1.193 0.083 0.040, 0.069 0.053 2182 

GCSE grades A-C OR 0.819 0.651, 1.032 0.085 0.063, 0.097 0.079 2360 

Extraversion personality trait Beta 0.362 0.155, 0.569 0.001 <0.001, 0.006 0.001 4354 

Conscientiousness personality trait Beta -0.217 -0.403, -0.031 0.022 0.006, 0.021 0.012 4162 

Emotional Stability personality trait Beta -0.073 -0.263, 0.117 0.449 0.436, 0.498 0.467 4224 

Intellect personality trait Beta -0.053 -0.226, 0.119 0.545 0.491, 0.553 0.522 4263 

Agreeableness personality trait Beta -0.037 -0.188, 0.113 0.628 0.610, 0.671 0.641 4279 

Sleep maintenance Beta 0.025 <0.001, 0.051 0.051 0.039, 0.068 0.052 3418 

Sleep initiation (time to fall asleep) Beta 0.008 -0.027, 0.043 0.641 0.616, 0.677 0.647 3626 

Sleep duration (hours of sleep) Beta 0.015 -0.017, 0.047 0.360 0.304, 0.363 0.333 3726 

Frequency of doing exercise Beta -0.004 -0.027, 0.020 0.762 0.736, 0.790 0.764 4270 

Life events  Beta -0.006 -0.043, 0.031 0.756 0.762, 0.814 0.789 3376 

Total number of outcomes tested = 44 
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Appendix H  

H1 Associations between maternal and offspring lifetime smoking PRS and phenotypes in mothers during and outside pregnancy and 

adolescence. 
  Regression analyses Permutation testing 

Phenotype Effect 

estimate 

Effect size 95% CI P-value 95% CI P-value Sample size 

  Mothers outside of pregnancy 

Mental health  

Depression symptoms OR 1.007 0.913, 1.109 0.886 0.876, 0.915 0.897 4725 

Anxiety symptoms OR 1.005 0.915, 1.105 0.904 0.880, 0.918 0.900 4740 

Bulimia OR 1.140 0.964, 1.349 0.114 0.083, 0.121 0.101 6799 

Drug addiction OR 0.983 0.596, 1.620 0.941 0.912, 0.945 0.930 6799 

Alcoholism OR 1.270 0.968, 1.667 0.079 0.101, 0.143 0.121 6799 

Schizophrenia OR 1.585 0.870, 2.889 0.120 0.197, 0.249 0.222 6799 

Anorexia Nervosa OR 1.150 0.932, 1.419 0.174 0.096, 0.136 0.115 6799 

Severe depression OR 1.159 1.049, 1.280 0.007 0.001, 0.010 0.004 6799 

Other psychiatric problem OR 1.156 0.949, 1.408 0.134 0.079, 0.117 0.097 6799 

Substance use  

Alcohol 

Alcohol drinking before pregnancy OR 1.010 0.910, 1.122 0.833 0.816, 0.862 0.840 7199 

Binge drinking Beta 0.039 0.009, 0.068 0.010 <0.001, 0.004 <0.001 4867 

Daily alcohol units at child age 4 Beta 0.028 0.007, 0.049 0.008 0.006, 0.020 0.011 5680 

Daily alcohol units at child age 8 Beta -0.009 -0.039, 0.021 0.559 0.564, 0.626 0.595 2707 

AUDIT score Beta 0.014 -0.007, 0.035 0.181 0.174, 0.224 0.198 2424 
Caffeine 

Total caffeine consumption Beta 8.698 5.083, 12.313 2.46 x 10-6 <0.001, 0.004 <0.001 4783 

Non-mental health 

Life events Beta 0.026 -0.009, 0.060 0.142 0.117, 0.161 0.138 4219 

Sleep duration Beta -0.018 -0.046, 0.009 0.183 0.163, 0.213 0.187 1867 

Impulsivity personality trait Beta 0.111 0.006, 0.217  0.039 0.033, 0.060 0.045 4847 

Monotony avoidance personality trait Beta 0.184 0.037, 0.332 0.014 0.008, 0.025 0.015 4794 

Anger personality trait Beta 0.246 0.115, 0.377 2.34x10-4 <0.001, 0.004 <0.001 4769 

Suspicion personality trait Beta 0.164 0.057, 0.272 0.003 0.003, 0.016 0.008 4856 

Detachment personality trait Beta -0.061 -0.175, 0.054 0.301 0.258, 0.315 0.286 4753 

Physical activity OR 0.996 0.915, 1.085 0.929 0.919, 0.950 0.936 2787 
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Social class Beta 0.028 -0.015, 0.072 0.204 0.185, 0.237 0.210 2906 

Education Beta -0.083 -0.115, -0.051 4.33 x 10-7 <0.001, 0.004 <0.001 4919 

BMI before pregnancy Beta 0.160 0.065, 0.254 0.001 0.001, 0.010 0.004 6398 

Image perception before pregnancy Beta 0.028 0.002, 0.054 0.037 0.029, 0.054 0.040 6623 

Total number of outcomes tested = 27        

  Mothers during pregnancy 

Mental health  

Depression (18wks) OR 1.076 0.997, 1.163 0.060 0.034, 0.061 0.046 6734 

Depression (32wks) OR 1.078 0.999, 1.164 0.053 0.015, 0.036 0.024 6751 

Anxiety (18 wks) OR 1.064 0.980, 1.155 0.127 0.087, 0.126 0.105 6645 

Hypersensitivity to interpersonal rejection Beta -0.296 -0.657, 0.065 0.108 0.097, 0.137 0.116 7167 

Feelings becoming a parent Beta -0.012 -0.034, 0.009 0.266 0.236, 0.291 0.263 7165 

Substance use  

Caffeine 

Total caffeine (18wks) Beta 6.759 4.239, 9.280 <0.001 <0.001, 0.004 <0.001 7220 

Total caffeine (32wks) Beta 5.325 2.776, 7.874 <0.001 <0.001, 0.004 <0.001 6767 

Alcohol 

Binge drinking (18wks) Beta 0.024 0.005, 0.042 0.012 0.003, 0.016 0.008 7171 

Binge drinking (32wks) Beta 0.020 0.001, 0.039 0.044 0.049, 0.080 0.063 5324 

Weekly alcohol units (32wks) Beta 0.133 0.034, 0.233 0.009 0.008, 0.025 0.015 4294 

Other substances 

Cannabis use during pregnancy OR 1.106 0.942, 1.299 0.197 0.175, 0.225 0.199 6918 

Hard drugs  OR 1.053 0.670, 1.653 0.809 0.779, 0.829 0.805 7147 

Non-mental health 

Education Beta -0.094 -0.122, -0.065 <0.001 <0.001, 0.004 <0.001 6954 

Social class Beta 0.064 0.037, 0.091 <0.001 <0.001, 0.004 <0.001 5854 

Life events during pregnancy Beta 0.018 -0.010, 0.045 0.214 0.196, 0.248 0.221 6744 

Image perception during pregnancy Beta 0.121 0.023, 0.219 0.016 0.011, 0.028 0.018 6699 

Image perception change Beta 0.004 -0.087, 0.095 0.931 0.906, 0.940 0.924 6549 

Activity level compared with other pregnant 

women 

Beta -0.001 -0.019, 0.017 0.911 0.892, 0.928 0.911 6611 

Physical activity OR 1.002 0.946, 1.061 0.952 0.941, 0.968 0.956 6767 

Vomited first three months in pregnancy OR 0.979 0.928, 1.033 0.412 0.373, 0.435 0.404 6797 

Sleep (18 wks) Beta 0.014 -0.003, 0.032 0.108 0.089, 0.129 0.108 6742 

Sleep (32 wks) Beta 0.034 0.016, 0.052 <0.001 <0.001, 0.004 <0.001 6743 

  Offspring: Adolescence  

Mental health  

Conduct disorder symptoms Beta 0.057 0.031, 0.082 <0.001 <0.001, 0.004 <0.001 3834 

Psychosis positive symptoms age 12 Beta 0.024 0.010, 0.018 0.001 <0.001, 0.004 <0.001 4974 
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Depression symptoms age 17 (MFQ) Beta 0.019 0.007, 0.036 0.002 <0.001, 0.006 0.001 3212 

Total behavioural difficulties  Beta 0.055 0.019, 0.091 0.003 0.001, 0.009 0.003 4055 

Psychosis positive symptoms age 18 Beta 0.020 0.004, 0.018 0.014 0.004, 0.017 0.009 3403 

ADHD symptoms Beta 0.031 -0.003, 0.030 0.075 0.078, 0.116 0.096 3852 

Eating disorder age 16 Beta 0.003 -0.001, 0.041 0.146 0.138, 0.184 0.160 3543 

Depression symptoms score age 17 Beta 0.016 -0.010, 0.039 0.228 0.218, 0.272 0.244 3303 

Specific phobia symptoms Beta 0.010 -0.009, 0.031 0.301 0.261, 0.318 0.289 3293 

PTSD symptoms Beta 0.006 -0.007, 0.027 0.360 0.340, 0.401 0.370 4008 

Oppositional defiant disorder Beta 0.011 -0.013, 0.169 0.374 0.342, 0.403 0.372 3436 

Anxiety symptoms score Beta 0.012 -0.015, 0.066 0.387 0.345, 0.406 0.375 3293 

Eating disorder age 13 Beta 0.001 -0.001, 0.007 0.475 0.454, 0.516 0.485 4256 

Depression symptoms age 14 (MFQ) Beta 0.004 -0.010, 0.019 0.573 0.568, 0.630 0.599 4574 

Emotional problems symptoms Beta 0.004 -0.018, 0.036 0.700 0.655, 0.714 0.685 4073 

Psychosis negative symptoms age 16 Beta 0.002 -0.034, 0.038 0.922 0.892, 0.928 0.911 3511 

Self-harming behaviour OR  0.994 0.834, 1.185 0.944 0.927, 0.957 0.943 2576 

Substance use  

Alcohol 

Number of drinks needed to feel different Beta 0.099 -0.020, 0.218 0.103 0.101, 0.143 0.121 299 

Binge drinking age 13 Beta 0.090 -0.017, 0.197 0.099 0.073, 0.109 0.090 464 

Number of times had a whole drink past 6 

months 

Beta -0.007 -0.076, 0.062 0.840 0.825, 0.871 0.849 1103 

Number of alcoholic drinks on a typical day Beta 0.039 -0.005, 0.082 0.083 0.058, 0.091 0.073 2826 

Binge drinking age 18 Beta 0.063 0.017, 0.109 0.007 0.002, 0.012 0.005 2829 

Frequency of having alcoholic drinks Beta -0.002 -0.032, 0.027 0.876 0.833, 0.877 0.856 2886 

AUDIT risk score age 18 Beta 0.038 0.014, 0.061 0.002 <0.001, 0.006 0.001 3008 

AUDIT total score age 18 Beta 0.035 -0.004, 0.075 0.082 0.088, 0.127 0.106 3008 

Number of drinks needed to feel tipsy Beta 0.047 0.004, 0.089 0.032 0.030, 0.055 0.041 2391 

Tobacco  

Cannabis use OR 1.074 0.990, 1.164 0.082 0.040, 0.069 0.053 3571 

Frequency of cannabis use Beta 0.042 -0.031, 0.115 0.261 0.248, 0.305 0.276 1035 

Caffeine 

Total caffeine consumption Beta 0.018 -0.019, 0.055 0.348 0.342, 0.403 0.372 3405 

Non-mental health 

Extraversion personality trait Beta 0.445 0.244, 0.646 <0.001 <0.001, 0.004 <0.001 4354 

Conscientiousness personality trait Beta -0.187 -0.367, -0.008 0.041 0.030, 0.056 0.042 4162 

Agreeableness personality trait Beta 0.010 -0.132, 0.151 0.893 0.896, 0.932 0.915 4279 

Intellect personality trait Beta -0.009 -0.174, 0.156 0.918 0.900, 0.935 0.919 4263 

Emotional stability personality trait Beta -0.065 -0.253, 0.124 0.501 0.489, 0.551 0.520 4224 

IQ Beta -0.741 -1.163, -0.320 0.001 <0.001, 0.004 <0.001 3720 
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BMI Beta 0.205 0.078, 0.331 0.001 0.001, 0.010 0.004 3606 

Sleep maintenance Beta 0.033 0.008, 0.059 0.011 0.005, 0.018 0.010 3418 

GCSE grades D-G OR 1.106 1.008, 1.213 0.036 0.011, 0.028 0.018 2182 

Frequency of doing exercise Beta -0.025 -0.048, -0.001 0.039 0.032, 0.059 0.044 4270 

Sleep duration (hours of sleep) Beta -0.025 -0.055, 0.005 0.097 0.088, 0.127 0.106 3726 

Sleep initiation (time to fall asleep) Beta 0.025 -0.009, 0.060 0.150 0.127, 0.173 0.149 3626 

GCSE grades A-C OR 0.840 0.652, 1.082 0.160 0.101, 0.142 0.120 2360 

Life events Beta 0.011 -0.026, 0.047 0.570 0.583, 0.644 0.614 3376 

Total number of outcomes tested = 22        
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Appendix I  

I1 Associations between caffeine PRS and phenotypes in mothers during and outside of pregnancy and adolescence 
  Regression analyses Permutation testing 

Phenotype Effect 

estimate 

Effect size 95% CI P-value 95% CI P-value Sample size 

Mothers outside of pregnancy 

Mental health  

Depression symptoms OR 1.040 0.943, 1.148 0.398 0.507, 0.569 0.538 4725 

Anxiety symptoms OR 0.979 0.890, 1.077 0.641 0.340, 0.401 0.370 4740 

Bulimia OR 1.105 0.932, 1.309 0.225 0.180, 0.231 0.205 6799 

Drug addiction OR 0.987 0.657, 1.481 0.943 0.941, 0.968 0.956 6799 

Alcoholism OR 0.947 0.697, 1.287 0.706 0.697, 0.753 0.726 6799 

Schizophrenia OR 0.434 0.244, 0.772 0.008 0.021, 0.044 0.031 6799 

Anorexia Nervosa OR 1.076 0.899, 1.289 0.390 0.354, 0.415 0.384 6799 

Severe depression OR 1.054 0.953, 1.166 0.277 0.218, 0.272 0.244 6799 

Other psychiatric problem OR 1.048 0.867, 1.266 0.601 0.529, 0.591 0.560 6799 

Substance use  

Tobacco 

Ever smoking OR 1.010 0.959, 1.064 0.679 0.626. 0.685 0.656 7194 

Number of cigarettes smoked past 2 weeks Beta 0.304 -0.271, 0.879 0.300 0.270, 0.327 0.298 845 

Number of cigarettes smoked before pregnancy Beta 0.042 -0.028, 0.111 0.245 0.224, 0.279 0.251 3426 

Alcohol 

Alcohol drinking before pregnancy OR 0.972 0.876, 1.078 0.558 0.016, 0.514 0.545 7199 

Binge drinking Beta 0.004 -0.024, 0.032 0.786 0.752, 0.804 0.779 4867 

Daily alcohol units at child age 4 Beta 0.007 -0.013, 0.027 0.518 0.467, 0.529 0.498 5680 

Daily alcohol units at child age 8 Beta 0.014 -0.016, 0.044 0.347 0.354, 0.415 0.384 2707 

AUDIT score Beta 0.007 -0.013, 0.028 0.473 0.450, 0.512 0.481 2424 

Non-mental health 

Life events Beta -0.025 -0.059, 0.008 0.141 0.115, 0.159 0.136 4219 

Sleep duration Beta -0.007 -0.034, 0.019 0.588 0.535, 0.597 0.566 1867 

Impulsivity personality trait Beta 0.042 -0.063, 0.146 0.436 0.397, 0.459 0.428 4847 

Monotony avoidance personality trait Beta -0.107 -0.251, 0.037 0.144 0.131, 0.177 0.153 4794 

Anger personality trait Beta 0.014 -0.115, 0.144 0.830 0.784, 0.834 0.810 4769 

Suspicion personality trait Beta -0.017 -0.128, 0.095 0.772 0.718, 0.773 0.746 4856 

Detachment personality trait Beta 0.012 -0.102, 0.125 0.841 0.815, 0.861 0.839 4753 

Physical activity OR 0.966 0.890, 1.050 0.387 0.015, 0.340 0.370 2787 

Social class Beta -0.009 -0.053, 0.035 0.696 0.680, 0.737 0.709 2906 
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Education Beta 0.002 -0.030, 0.035 0.889 0.882, 0.920 0.902 4919 

BMI before pregnancy Beta 0.083 -0.008, 0.174 0.075 0.058, 0.091 0.073 6398 

Image perception before pregnancy Beta -0.003 -0.029, 0.023 0.820 0.796, 0.844 0.821 6623 

Total number of outcomes tested = 29        

  Mothers during pregnancy 

Mental health  

Depression symptoms (18 wks) OR 0.982 0.905, 1.067 0.647 0.616, 0.677 0.647 6734 

Depression symptoms (32 wks) OR 0.994 0.920, 1.074 0.870 0.823, 0.869 0.847 6751 

Anxiety symptoms OR 1.005 0.919, 1.099 0.910 0.891, 0.927 0.910 6645 

Hypersensitivity to interpersonal rejection Beta -0.040 0.838, 0.882 0.833 0.838, 0.882 0.861 7167 

Feelings becoming a parent Beta 0.007 0.496, 0.558 0.528 0.496, 0.558 0.527 7165 

Substance use  

Tobacco 

Ever smoked in pregnancy OR 1.007 0.947, 1.070 0.813 0.783, 0.833 0.809 6718 

Smoking first three months in pregnancy OR 1.029 0.966, 1.097 0.343 0.275, 0.333 0.303 7237 

Caffeine 

Reduced caffeine consumption during pregnancy OR 1.054 1.001, 1.111 0.046 0.017, 0.038 0.026 7269 

Reduced coffee consumption during pregnancy OR 1.061 1.008, 1.117 0.028 0.006, 0.021 0.012 7269 

Stopped drinking cola during pregnancy OR 1.094 0.991, 1.208 0.072 0.034, 0.061 0.046 4570 

Never drank coffee OR 1.064 0.988, 1.146 0.093 0.059, 0.092 0.074 6782 

Never drank cola OR 1.002 0.946, 1.062 0.933 0.915, 0.947 0.932 6744 

Stopped drinking coffee during pregnancy OR 1.039 0.981, 1.100 0.175 0.104, 0.146 0.124 5809 

Never has been drinking caffeine OR 0.967 0.918, 1.018 0.179 0.126, 0.170 0.147 7269 

Stopped drinking tea during pregnancy OR 1.039 0.973, 1.109 0.226 0.184, 0.236 0.209 6082 

Reduced cola consumption during pregnancy OR 1.039 0.967, 1.116 0.272 0.244, 0.300 0.271 7269 

Never drank tea OR 1.041 0.950, 1.141 0.353 0.269, 0.326 0.297 6754 

Reduced tea consumption during pregnancy OR 1.026 0.970, 1.085 0.333 0.290, 0.349 0.319 7269 

Consumed more caffeine during pregnancy OR 1.038 0.948, 1.137 0.384 0.333, 0.394 0.363 7269 

No change in caffeine consumption during 

pregnancy 

OR 0.986 0.934, 1.041 0.580 0.532, 0.594 0.563 7269 

Craved or had more caffeine during pregnancy OR 0.985 0.909, 1.068 0.698 0.682, 0.739 0.711 7269 

Craved or had more coffee during pregnancy OR 0.977 0.824, 1.160 0.774 0.700, 0.756 0.729 6782 

Craved or had more tea during pregnancy OR 1.013 0.927, 1.108 0.750 0.718, 0.773 0.746 6754 

Alcohol 

Binge drinking (32wks) 

Beta 

-0.022 

-0.041, -0.003 

   0.026 0.031, 0.057 0.043 5324 

Binge drinking (18wks) Beta -0.010 -0.029, 0.008 0.268 0.249, 0.306 0.277 7171 

Weekly alcohol units (32wks) Beta -0.056 -0.167, 0.056 0.329 0.314, 0.373 0.343 4294 

Craved or had more alcohol during pregnancy OR 0.949 0.569, 1.584 0.828 0.826, 0.872 0.850 6771 
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Other substances 

Cannabis use in first three months during 

pregnancy 

OR 1.124 0.952, 1.328 0.151 0.134, 0.180 0.156 6918 

Hard drugs during pregnancy OR 0.995 0.664, 1.491 0.980 0.968, 0.987 0.979 7147 

Non-mental health 

Life events during pregnancy Beta 0.001 0.154, 0.202 0.944 0.154, 0.202 0.177 6930 

Activity level compared with other pregnant 

women 

Beta 

0.011 0.227, 0.282 0.234 0.227, 0.282 0.254 

6611 

Image perception during pregnancy Beta -0.031 0.517, 0.579 0.540 0.517, 0.579 0.548 6699 

Physical activity Beta -0.003 0.754, 0.806 0.780 0.754, 0.806 0.781 6767 

Social class Beta 0.028 0.035, 0.062 0.043 0.035, 0.062 0.047 6954 

Image perception change Beta 0.019 0.394, 0.456 0.678 0.394, 0.456 0.425 3741 

Education Beta -0.005 0.658, 0.717 0.709 0.658, 0.717 0.688 6954 

Vomiting in first three months during pregnancy OR 1.003 0.950, 1.059 0.903 0.871, 0.911 0.892 0.903 

Sleeping problems (18 wks) Beta 0.002 0.797, 0.845 0.825 0.797, 0.845 0.822 6742 

Sleeping problems (32 wks) Beta -0.003 0.726, 0.780 0.733 0.726, 0.780 0.754 6743 

Total number of outcomes tested = 39        

Offspring: Adolescence 

Mental health  

Conduct disorder symptoms Beta 0.012 -0.014, 0.039 0.362 0.332, 0.393 0.362 3834 

Depression symptoms score age 18 Beta 0.013 -0.013, 0.039 0.314 0.288, 0.347 0.317 3303 

Specific phobia symptoms Beta 0.001 -0.019, 0.020 0.937 0.935, 0.963 0.950 3293 

Emotional problems score Beta -0.022 -0.047, 0.002 0.072 0.063, 0.097 0.079 3593 

Anxiety symptoms Beta 0.001 -0.024, 0.026 0.913 0.899, 0.934 0.918 3293 

Eating disorder age 13 Beta -0.001 -0.003, 0.001 0.289 0.346, 0.407 0.376 4256 

Eating disorder age 16 Beta 0.003 -0.001, 0.007 0.184 0.166, 0.216 0.190 3543 

ADHD symptoms Beta -0.027 -0.065, 0.010 0.146 0.142, 0.188 0.164 3435 

Depression score age 14 (MFQ) Beta -0.002 -0.016, 0.013 0.835 0.817, 0.863 0.841 4574 

Depression score age 17 (MFQ) Beta -0.003 -0.015, 0.010 0.685 0.647, 0.706 0.677 3212 

Psychosis negative symptoms age 16 Beta 0.000 -0.037, 0.036 0.996 0.993, 1.000 0.998 3511 

Total behavioural difficulties Beta -0.017 -0.056, 0.022 0.397 0.364, 0.425 0.394 3603 

Psychosis positive symptoms age 12 Beta 0.009 -0.006, 0.024 0.230 0.198, 0.250 0.223 4974 

Psychosis positive symptoms age 18 Beta 0.011 -0.006, 0.027 0.200 0.097, 0.137 0.116 3403 

PTSD disorder symptoms Beta -0.013 -0.027, 0.002 0.091 0.052, 0.084 0.067 4008 

Self-harming behaviour OR 0.985 0.811, 1.196 0.869 0.836, 0.880 0.859 2576 

Oppositional-defiant disorder symptoms age 15 

Beta -0.011 -0.036, 0.013 0.367 0.561, 0.623 0.592 3436 

 

Substance use  

Tobacco  
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Age when first smoked a cigarette Beta -0.013 -0.056, 0.030 0.553 0.535, 0.597 0.566 1064 

Has smoked a cigarette OR 1.045 0.927, 1.179 0.443 0.384, 0.446 0.415 2089 

Total number of cigarettes smoked age 14 OR 0.990 0.767, 1.277 0.931 0.900, 0.935 0.919 461 

Total number of cigarettes smoked age 18 Beta 0.069 -0.023, 0.162 0.142 0.114, 0.158 0.135 1144 

Alcohol        

Number of drinks to feel different Beta -0.039 -0.154, 0.076 0.505 0.494, 0.556 0.525 299 

Binge drinking age 13 Beta 0.010 -0.094, 0.113 0.854 0.834, 0.878 0.857 464 

Number of times had whole drink age 13 Beta 0.012 -0.059, 0.083 0.748 0.700, 0.756 0.729 1103 

Number of alcoholic drinks on a typical day Beta -0.012 -0.058, 0.034 0.609 0.580, 0.641 0.611 2826 

Binge drinking age 18 Beta 0.010 -0.036, 0.056 0.670 0.632, 0.691 0.662 2829 

Frequency having alcoholic drinks Beta 0.011 -0.020, 0.042 0.485 0.462, 0.524 0.493 2886 

AUDIT risk score age 18 Beta -0.007 -0.030, 0.017 0.562 0.539, 0.601 0.570 3008 

AUDIT total score age 18 Beta 0.010 -0.031, 0.050 0.647 0.986, 0.997 0.993 3008 

Number of drinks needed to feel tipsy Beta -0.015 -0.059, 0.029 0.500 0.461, 0.523 0.492 2391 

Other substances        

Cannabis use OR 0.977 0.900, 1.060 0.551 0.494, 0.556 0.525 3571 

Frequency of cannabis use Beta 0.018 -0.057, 0.093 0.636 0.613, 0.674 0.644 1035 

Non-mental health  

BMI Beta 0.031 -0.100, 0.161 0.645 0.612, 0.673 0.643 3606 

Agreeableness personality trait Beta 0.066 -0.080, 0.211 0.376 0.368, 0.430 0.399 4279 

Conscientiousness personality trait Beta -0.044 -0.218, 0.130 0.617 0.600, 0.661 0.631 4162 

Intellect personality trait Beta 0.100 -0.069, 0.269 0.245 0.223, 0.278 0.250 4263 

Emotional stability personality trait Beta -0.067 -0.263, 0.130 0.506 0.472, 0.534 0.503 4224 

Extraversion personality trait Beta -0.042 -0.243, 0.159 0.682 0.657, 0.716 0.687 4354 

Frequency of doing exercise Beta -0.009 -0.032, 0.014 0.450 0.443, 0.505 0.474 4270 

Sleep duration (hours of sleep) Beta -0.016 -0.047, 0.014 0.294 0.260, 0.317 0.288 3726 

GCSE grades A-C OR 1.467 1.146, 1.877 0.005 <0.001, 0.004 <0.001 2360 

GCSE grades D-G OR 1.007 0.914, 1.109 0.876 0.846, 0.889 0.869 2182 

IQ Beta 0.138 -0.293, 0.569 0.531 0.497, 0.559 0.528 3720 

Sleep initiation Beta 0.015 -0.019, 0.050 0.385 0.353, 0.414 0.383 3626 

Sleep maintenance Beta -0.003 -0.028, 0.022 0.804 0.813, 0.859 0.837 3418 

Life events Beta -0.007 -0.045, 0.031 0.733 0.690, 0.747 0.719 3376 

Total number of outcomes tested = 46        
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Appendix J  

J1 Correlation between smoking, caffeine and alcohol PRS 
 Smoking 

initiation PRS 

Lifetime 

smoking PRS 

Caffeine PRS Alcohol PRS 

Smoking 

initiation PRS 

- 0.35 0.01 0.08 

- Lifetime 

smoking PRS 

- -0.01 0.02 

- - Caffeine PRS - 0.12 
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Appendix K  

K1   ALSPAC definition of variables and covariates 

• Maternal coffee consumption: Coffee intake was initially assessed in cups per 

weekday and cups per weekend during 18-weeks gestation. Total cups of coffee were 

derived by adding up the cups of coffee consumed on weekdays and weekends. Cups 

of coffee were then transformed to mg/day by: (cups/week*57)/7.  

• Maternal tea consumption: Tea intake was initially assessed in cups per weekday 

and cups per weekend during 18-weeks gestation. Total cups of tea were derived by 

adding up the cups of tea consumed on weekdays and weekends. Cups of tea were 

then transformed to mg/day by: (cups/week*27)/7. 

• Maternal cola consumption: Cola intake was initially assessed in cans per weekday 

and weekend during 18-weeks gestation. Total cans of cola were derived by adding 

up the cans of cola consumed on weekdays and weekends. Cans were then 

transformed to mg/day by: (cans/week*20)/7. 

• Maternal total caffeine consumption: Total maternal caffeine intake during 

pregnancy in mg/day, summing caffeine from tea, coffee and cola drinks. NAs were 

treated as 0, unless tea, coffee and cola were all missing, in which case the variable 

was coded as missing.  

• Maternal education (as proxy for maternal socioeconomic position): Maternal 

education was assessed in week 32 of gestation and coded as an ordinal variable: 

"Vocational" = 1, “O level” (at 16, equivalent to lower grades of ordinary-level) = 2, 

"A level" (ordinary-level school-leaving certificate (at 16) = 3, and “Degree” 

(advanced-level school-leaving certificate (post-16)/degree) = 4. 

• Maternal smoking during pregnancy was assessed as an ordinary variable 

representing 0 = no or early smoking during pregnancy, 1 = Stopped before the 

second trimester of pregnancy and 2 = Smoking in the third trimester or throughout 

pregnancy.  

• Maternal age continuous numeric variable in years assessed at birth of study child. 

• Maternal BMI was assessed continuous numeric variable in years at 12-weeks 

gestation. 

• Parity has been assessed at 18-weeks gestation as number of previous pregnancies 

resulting in either a livebirth or a stillbirth.  

• Gestational age was calculated (in days) based on the date of the mother’s last 

menstrual period (LMP) when the mother was certain of this, but for uncertain LMPs 

and conflicts with clinical assessment the ultrasound assessment was used. Where 

maternal report and ultrasound assessment conflicted, an experienced obstetrician 

reviewed clinical records and made a best estimate. 

• Offspring sex was taken from obstetric records.  
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K2 Born in Bradford definition of variables and covariates 

• Maternal coffee consumption: Coffee intake was initially assessed in cups of 

caffeinated filter/cafetiere coffee and cups of instant coffee consumed per day 

during 26-28 weeks of gestation. Total cups of coffee were derived by adding 

up the number of cups of filter/cafetiere coffee and cups of instant coffee 

consumed per day. Missing data were treated as 0, unless caffeinated 

filter/cafetiere coffee and instant coffee were all missing, in which case the 

variable was coded as missing. Cups of coffee were then transformed to 

mg/day by: (cups/week*57)/7.  

• Maternal tea consumption: Tea intake was initially assessed in cups of 

caffeinated tea per day during 26-28 weeks of gestation. Cups of tea were then 

transformed to mg/day by: (cups/week*27)/7. 

• Maternal cola consumption: Cola intake was assessed in cups of regular, 

caffeinated cola per day and cups of caffeinated diet cola per day. Missing 

data were treated as 0, unless caffeinated regular cola and diet cola were all 

missing, in which case the variable was coded as missing Cups were then 

transformed to mg/day by: (cups/week*20)/7. 

• Maternal total caffeine consumption: Total maternal caffeine intake during 

pregnancy in mg/day, summing caffeine from tea, coffee and cola drinks. NAs 

were treated as 0, unless tea, coffee and cola were all missing, in which case 

the variable was coded as missing.  

• Maternal education (as proxy for maternal socioeconomic position): 

Maternal education was assessed in week 26-28 weeks of gestation and coded 

as an ordinal variable: " <5 GCSE equivalent " = 1, “5 GCSE equivalent” (at 

16, equivalent to lower grades of ordinary-level) = 2, " A-level equivalent " 

(ordinary-level school-leaving certificate (at 16) = 3, and “Higher than A-

level” (advanced-level school-leaving certificate (post-16)/degree) = 4. 

• Maternal smoking during pregnancy was assessed as an ordinary variable 

representing 0 = no or early smoking during pregnancy, 1 = Stopped before 

the second trimester of pregnancy and 2 = Smoking in the third trimester or 

throughout pregnancy.  

• Maternal age continuous numeric variable in years assessed at 26-28 weeks 

of gestation. 

• Maternal BMI was assessed continuous numeric variable in years at 26-28 

weeks of gestation. 

• Parity has been assessed at routine healthcare as an integer value. 

• Gestational age age at completion of questionnaire at weeks 26-28 of 

gestation (weeks and days). 

• Offspring sex was assessed at routine healthcare.  
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K3 MoBa1 definition of variables and covariates 

Dr. Christian Page who performed the analysis in MoBa provided the 

description of variables used in MoBa 

• Maternal coffee consumption: In MoBa coffee intake was assessed 

based on type of coffee (instant/espresso coffee) and brewing method 

(boiled/percolated/filtered) at the 17th week of gestation. Cups were 

transformed to mg of caffeine based on assuming 85 mg of caffeine per 

cup of boiled/ percolated/ filtered coffee and 60 mg per cup of 

instant/espresso coffee 

• Maternal tea consumption: Maternal cups of tea at 17 weeks gestation 

were transformed to mg based on the assumption that one cup of tea 

contains 50mg of caffeine 

• Maternal cola consumption: Cola consumption was measured as 

consumption of regular and diet Coca Cola/Pepsi in mugs and the 

transformed to cups (one mug = two cups; one small bottle = four cups; 

one large bottle, 1.5L = 12 cups). Cups were then transformed based on 

the assumption that one cup of cola contains 30mg of caffeine 

• Maternal education was grouped into 4 levels, 0 = not completed high 

school, 1 = High school, 2= some college and 4 = four or more years of 

college/university.  

• Maternal smoking during pregnancy categorical as 0/1, with 1 for any 

smoking during pregnancy, and 0 for no-smoking during pregnancy.  

• Maternal pre-pregnancy BMI self-reported continuous numeric variable 

in kg/m2 at around 16 weeks gestation. 

• Gestational age was calculated (in days) based on the ultrasound 

measurements taken at first check up in pregnancy (around 16 weeks, at 

enrolment in the cohort). If ultrasound measurement was not available, 

this was based on the last menstrual period.  

• Maternal age continuous numeric variable in years assessed by the 

Norwegian Medical Birth Registry 

• Parity was assessed by the Norwegian Medical Birth Registry as the 

number of previous live births 

• Offspring sex was provided by the Norwegian Medical Birth Registry.  
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K4 Generation R definition of variables and covariates  

Giulietta Monasso who performed the analysis in Generation R provided the 

description of variables used in Generation R 

• Maternal coffee consumption: Information about maternal coffee intake was 

assessed by questionnaire at 18-25 weeks gestational. Pregnant women, who 

indicated to consume coffee, were asked whether they consumed caffeinated or 

decaffeinated coffee, both, or other. The next question asked about their average 

number of cups of per day. As the quantity of cups did not differentiate between 

caffeinated or decaffeinated coffee intake, mothers who indicated to drink both 

caffeinated and decaffeinated coffee, needed to be excluded (and so were mothers 

who indicated to drink other types of coffee than caffeinated or decaffeinated). For 

mothers who reported to drink decaffeinated coffee, the number of cups of coffee per 

day was set to zero. To calculate the total caffeine intake from coffee, cups were 

transformed to mg assuming 57 mg of caffeine per cup.  

• Maternal tea consumption: Women who indicated to consume tea at 18-25 weeks 

gestational were asked about whether they consumed caffeinated or decaffeinated tea, 

both, or other. The next question asked about their average number of cups of per 

day. As the quantity of cups did not differentiate between caffeinated and 

decaffeinated tea intake, mothers who indicated to drink both caffeinated and 

decaffeinated tea, needed to be excluded (and so were mothers who indicated to drink 

other tea than caffeinated or decaffeinated). For mothers who reported to drink 

decaffeinated tea (herbal or green tea), the number of cups of tea per day was set to 

zero. To calculate the total caffeine intake from tea, cups were transformed to mg 

assuming 27 mg of caffeine per cup. 

• Maternal cola consumption: Not available. 

• Maternal total caffeine consumption: To calculate the total caffeine intake, mg/day 

of coffee and tea were summed up. For this analysis women with missing data on 

both coffee and tea were excluded. NAs were treated as 0, unless tea and coffee were 

missing, in which case the variable was treated as NA.  

• Maternal education (as proxy for maternal socioeconomic position): Maternal 

education was assessed via a questionnaire sent out during pregnancy (after 

enrolment) and coded into three categories: ‘no education or primary education’, 

‘secondary education/high school’, ‘higher education (college or university)’ 

• Maternal smoking during pregnancy was assessed via questionnaires, sent out 

during each trimester of pregnancy and coded as three categories: ‘no smoking in 

pregnancy/quit smoking until pregnancy was known (i.e., first trimester only)’ or 

‘continued smoking throughout pregnancy’ 

• Maternal age continuous numeric variable in years assessed via a questionnaire sent 

out during pregnancy  

• Maternal BMI was calculated from measured height during a visit to the research 

center during the first trimester of pregnancy and self-reported pre-pregnancy weight 

assessed via a questionnaire sent out during pregnancy  

• Parity was assessed via a questionnaire sent out during pregnancy  

• Gestational age was calculated (in days) based on the date of the mother’s last 

menstrual period (LMP) when the mother was certain of this and if she had a regular 

menstrual cycle of 28±4 days. For uncertain LMP and/or irregular cycle, ultrasound 

assessment was used. 

• Offspring sex was recorded by midwife/hospital records.   
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K5 INfancia y Medio Ambiente (INMA) definition of variables and 

covariates 

Dr. Silvia Fernandez who performed the analysis in INMA provided the 

description of variables used in INMA 

• Maternal coffee consumption: Coffee intake was assessed in cups per day at week 

12 of pregnancy. A semi-quantitative FFQ of 101 items was used with 9 possible 

responses from “never or less than once per month” to “six or more per day”. Based 

on these responses daily consumption of coffee was calculated.  Cups of coffee were 

then transformed to mg/day by: cups/day*57.  

• Maternal tea consumption: Tea and herbal infusion intake was assessed in cups per 

day at week 12 of pregnancy in the same way as coffee consumption. Cups of tea 

were then transformed to mg/day assuming 27 mg of caffeine per cup. 

• Maternal cola consumption: Regular and light soda intake was assessed in glasses 

per day at week 12 of pregnancy. Glasses of soda were then transformed to mg/day 

assuming 20mg of caffeine per glass of cola. 

• Maternal total caffeine consumption: Total maternal caffeine intake during 

pregnancy in mg/day, summing caffeine from tea, coffee and cola drinks.  

• Maternal education (as proxy for maternal socioeconomic position): Maternal 

education was assessed at week 12 of gestation and coded as an ordinal variable: 1 = 

without studies/primary studies unfinished, 2 = primary studies, 3 = secondary, and 4 

= University. 

• Maternal smoking during pregnancy was assessed as an ordinary variable 

representing 0 = no or quit smoking before second trimester, 2 = Smoking in the third 

trimester or throughout pregnancy.  

• Maternal age continuous numeric variable in years assessed at enrolment. 

• Maternal BMI Maternal pre-pregnancy BMI was calculated from measured height 

and self-reported pre-pregnancy weight collected using a questionnaire at enrolment 

(week 12 of pregnancy). Reported pre-pregnancy weight was highly correlated with 

measured weight at 12 weeks of pregnancy in INMA (r = 0.96; P < 0.0001). 

• Parity based on previous born children (previous stillbirths included, abortions 

excluded), asked at 12 weeks assessment. It was coded as 0 = no previous pregnancy 

and 1 = one or more previous pregnancies.  

• Gestational age was calculated (in weeks) based on the date of the mother’s last 

menstrual period when the mother was certain of this, corrected with the information 

from the ultrasound assessment. It was transformed to days by multiplying it by 7. 

• Offspring sex was taken from obstetric records.   
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K6 EDEN definition of variables and covariates 

Dr. Giancarlo Pesce who performed the analysis in EDEN provided the 

description of variables used in EDEN 

• Maternal coffee consumption: Coffee intake was initially assessed using a 

questionnaire administered during the week 24-28 of gestation, where mothers 

reported the daily consumption in the first trimester of pregnancy. Total cups of 

coffee were derived by adding up the cups of coffee consumed per day at home and 

outdoors. Cups of coffee were then transformed to mg/day by the formula: 

cups/week*57.  

• Maternal tea consumption: Tea intake was initially assessed using a questionnaire 

administered during the week 24-28 of gestation, where mothers reported the daily 

consumption in the first trimester of pregnancy. Total cups of tea were derived by 

adding up the cups of tea consumed per day at home and outdoors. Cups of tea were 

then transformed to mg/day by the formula: cups/week*27. 

• Maternal cola consumption: regular and light cola intakes were initially assessed 

using a food frequency questionnaire administered after delivery about the dietary 

habits in the last trimester of pregnancy. Total volume of cola consumption per day 

was estimated by multiplying the frequency of consumption by the volume of the 

most used glass for cola drinking. Total cups of cola were derived by adding up the 

volumes of regular and light cola consumption per day, divided by 250mL. Cups 

were then transformed to mg/day by the formula: cups*20. 

• Maternal total caffeine consumption: Total maternal caffeine intake during 

pregnancy in mg/day, summing caffeine from tea, coffee and cola drinks. NAs were 

treated as 0, unless tea, coffee and cola were all missing, in which case the variable 

was coded as missing.  

• Maternal education (as proxy for maternal socioeconomic position): Highest degree 

obtained by the mother was assessed at week 24-28 of gestation, as self-reported by 

the mother, and coded as an ordinal variable: "Vocational school" = 0, “French 

baccalauréat (BAC) degree” = 1, "BAC + 2 years of College" = 2, and “University 

or higher degree” = 3. 

• Maternal smoking during pregnancy was assessed as an ordinary variable 

representing 0 = no or early smoking during pregnancy, 1 = Smoking throughout 

pregnancy.  

• Maternal age continuous numeric variable in years assessed at birth of study child 

• Maternal BMI was assessed continuous numeric variable in kg/m2, dividing the 

weight before the beginning of the pregnancy, as self-reported by the mother at the 

clinical interview during pregnancy, and squared height in meters, as measured in 

clinic during pregnancy. 

• Parity coded as 0 = nulliparous, 1 = with at least one living child.  

• Gestational age was included as continuous variable (in weeks) based on the date of 

the mother’s last menstrual period (LMP) and the date of birth of the child.  

• Offspring sex was taken from obstetric records.  
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Appendix L  

L1 Correlation plot ALSPAC  

 

 

 

 

 

 

 

 

L2 Correlation plot BiB (Asian ethnicity)  

 

 

 

 

 

 

 

  



 

357 

L3 Correlation plot BiB (White European ethnicity) 

 

 

 

 

 

 

 

 

L4 Correlation plot Generation R  
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Correlation plot EDEN 

 

Figure P1   

 

 

 

 

 

 

 

L5 Correlation plot INMA  
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L6 Correlation plot MoBa1 
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Appendix M  

M1 ALSPAC QQ-Plots of caffeine models 
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M2 BiB (Asian ethnicity) QQ-Plots of caffeine models 
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M3 BiB (White European ethnicity) QQ-Plots of caffeine models 
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M4 Generation R QQ-Plots of caffeine models 
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M5 MoBa1 QQ-Plots of caffeine models 
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M6 EDEN QQ-Plots of caffeine models 
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M7 INMA QQ-Plots of caffeine models 
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Appendix N  

N1 Precision plots 
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Appendix O   

O1 Leave-one-out plot of the prenatal caffeine-associated CpG site 

(Cg19370043) 

 

O2  Leave-one-out plot of the prenatal cola-associated CpG site 

(Cg12788467) 
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O3 Leave-one-out plot of the prenatal cola-associated CpG site 

(Cg14591243) 
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Appendix P  

P1 Correlation matrix of the meta-analysed caffeine models 
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Appendix Q  

Q1 Top five associations between maternal caffeine polygenic risk score 

(PRS) and offspring DNA methylation 
CpG (gene) Estimate (SE)  P-value  

cg23254346 (ELAC2) -0.55 (0.12) 5.63 x 10 -06 

cg03136668 -1.34 (0.27) 3.51 x 10-06 

cg10414208 1.01 (0.24) 3.99 x 10-05 

cg00157109 (PRKAG2) 0.78 (0.19) 3.87 x 10-05 

cg02816367 (FYN) -0.82(0.19) 1.45 x 10-05 

Note. SE = standard error.
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Appendix R  

R1 Results from the meta-analysis of differentially methylated regions for 

maternal total caffeine consumption 
Differentially-

methylated 

region (DMR)    

N 

conse

cutive 

CpG 

sites 

Estimate (SE) Z P-value Bonferroni 

adjusted P-

value 

Gene 

chr17:58499679-

58499911 

7 -3.77 x 10-05 

(5.02 x 10-06) 

-8.15 3.650 x 10-16 1.420 x 10-10 C17orf64 

chr11:6291339-

6292490 

9 -5.57 x 10-05 

(7.34 x 10-06) 

-7.59 3.270 x 10-14 1.270 x 10-08 CCKBR 

chr12:47219737-

47220092 

10 -3.77 x 10-05 

(5.02 x 10-06) 

-7.52 5.680 x 10-14 2.210 x 10-08 SLC38A4 

chr6:30094980-

30095341 

14 -3.47 x 10-05 

(4.86 x 10-06) 

-7.14 9.560 x 10-13 3.720 x 10 -

07 

- 

chr6:33245488-

33245770 

15 -1.57 x 10-05 

(2.25 x 10-06) 

-6.98 2.850 x 10-12 1.110 x 10-06 B3GALT4 

chr20:61446962-

61447369 

11 2.57 x 10-05 

(4.12 x 10-06) 

6.24 4.500 x 10-10 1.753 x 10-04 COL9A3 

chr10:63657059-

63657363 

3 6.59 x 10-05 

(1.08 x 10-05) 

6.10 1.040 x 10-09 4.053 x 10 -

04 

- 

chr6:29599160-

29599331 

8 4.07 x 10-05 

(6.70 x 10-06) 

6.08 1.230 x 10-09 4.782 x 10-04 GABBR1 

chr5:140729653-
140730516 

7 -2.96 x 10-05 

(5.01 x 10-06) 
-5.91 3.340 x 10-09 1.301 x 10-03 PCDHGA

2;PCDHG

B1;PCDH

GA1;PCD

HGA3 

chr1:117317903-

117318185 

4 3.51 x 10-05 

(5.94 x 10-06) 

5.90 3.540 x 10-09 1.380 x 10-03 - 

chr22:38713874-

38714416 

8 -2.14 x 10-05 

(3.77 x 10-06) 

-5.68 1.360 x 10-08 5.310 x 10 -

03 

CSNK1E 

chr7:130130588-

130131258 

12 1.60 x 10-05 

(2.83 x 10-06) 

5.65 1.600 x 10-08 6.223 x 10-03 MESTIT1

;MEST 

chr6:41410759-

41411128 

4 -1.33 x 10-05 

(2.40 x 10-06) 

-5.56 2.660 x 10-08 1.035 x 10-02 - 

chr7:27153580-

27153847 

6 -3.66 x 10-05 

(6.60 x 10-06) 

-5.55 2.810 x 10-08 1.094 x 10 -

02 

HOXA3 

chr10:50649723-

50650248 

4 4.89 x 10-05 

(8.84 x 10-06) 

5.54 3.100 x 10-08 1.209 x 10 -

02 

- 

chr6:149806131-

149806339 

4 -3.18 x 10-05 

(5.74 x 10-06) 

-5.53 3.200 x 10-08 1.245 x 10 -

02 

ZC3H12D 

chr6:32164723-

32165237 

9 -2.46 x 10-05 

(4.47 x 10-06) 

-5.51 3.640 x 10-08 1.416 x 10-02 GPSM3;N

OTCH4 

chr4:62383028-

62383240 

3 -4.34 x 10-05 

(7.95 x 10-06) 

-5.46 4.790 x 10-08 1.867 x 10 -

02 

LPHN3 

chr1:228400217-

228400419 

2 4.11 x 10-05 

(7.66 x 10-06) 

5.37 8.020-08 3.125 x 10-02 OBSCN 

chr6:7468673-

7468973 

4 -3.68 x 10-05 

(6.86 x 10-06) 

-5.36 8.340-08 3.247 x 10 -

02 

- 

chr11:368366-

368943 

15 -2.03 x 10-05 

(3.80 x 10-06) 

-5.34 9.250-08 3.601 x 10 -

02 

B4GALN

T4 

chr7:27142810-

27143403 

8 2.96 x 10-05 

(5.57 x 10-06) 

5.32 1.060-07 4.145 x 10 -

02 

HOXA2 
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R2 Results from the meta-analysis of differentially methylated regions for 

any vs. no maternal caffeine consumption. 
Differentially-

methylated 

region (DMR)     

N 

conse

cutive 

CpG 

sites 

Estimate (SE) Z P-value Bonferroni 

adjusted P-

value 

Gene 

chr6:31734147-

31734554 

10 9.44 x 10-03 

(1.37 x 10-03) 

6.91 4.975 x 

10-12 

1.928 x 10-06 C6orf27 

chr1:11561497-

11562134 

5 1.05 x 10-02 

(1.63 x 10-03) 

6.42 1.338 x 

10-10 

5.184 x 10-05 PTCHD2 

chr22:51016501-

51017162 

8 1.16 x 10-02 

(1.83 x 10-03) 

6.32 2.691 x 

10-10 

1.043 x 10-04 CPT1B; 

CHKB-

CPT1B 

chr17:39969264-

39969297 

3 -5.99 x 10-03 

(9.97 x 10-04) 

-6.01 1.894 x 

10-09 

7.339 x 10-04 SC65;FKBP

10 

chr17:19883326-

19883474 

2 -1.24 x 10-02 

(2.13 x 10-03) 

-5.80 6.495 x 

10 -09 

2.517 x 10-03 - 

chr20:61002657-

61002866 

5 8.23 x 10-03 

(1.43-03) 

5.75 8.997 x 

10 -09 

3.487 x 10 -03 C20orf151 

chr11:64980819-

64981297 

5 8.00 x 10-03 

(1.44 x 10-03) 

5.57 2.553 x 

10 -08 

9.893 x 10 -03 SLC22A20 

chr10:530714-

531152 

6 1.08 x 10-02 

(1.94 x 10-03) 

5.55 2.885 x 

10 -08 

1.118 x 10 -02 DIP2C 

chr17:40575479-

40575822 

6 3.15 x 10-03 

(5.70 x 10-04) 

5.53 3.178 x 

10 -08 

1.232 x 10 -02 PTRF 

chr9:136567339-

136568145 

3 9.21 x 10-03 

(1.73 x 10-03) 

5.34 9.508 x 

10 -08 

3.685 x 10 -02 SARDH 

chr20:61447181-

61447490 

10 4.58 x 10-03 

(8.63 x 10-04) 

5.31 1.080 x 

10 -07 

4.186 x 10 -02 COL9A3 
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R3 Table H3 Results from the meta-analysis of differentially methylated 

regions for maternal coffee consumption. 
Differentially-

methylated 

region (DMR)    

N 

conse

cutive 

CpG 

sites 

Estimate (SE) Z P-value Bonferroni 

adjusted P-

value 

Gene 

chr1:25291385-

25292034 

7 -4.59 x 10 -05 

(5.87 x 10 -06) 

-7.83 4.831 x 10-15 1.877 x 10 -09 RUNX3 

chr22:46449461-

46449821 

5 -9.14 x 10-05 

(1.26 x 10 -05) 

-7.26 3.853 x 10-13 1.497 x 10 -07 C22orf2

6; 

LOC150

381 

chr11:2019732-

2020314 

19 -2.22 x 10-05 

(3.33 x 10 -06) 

-6.67 2.528 x 10-11 9.824 x 10 -06 H19 

chr6:49681178-

49681742 

8 -9.79 x 10-05 

(1.55 x 10-05) 

-6.30 2.911 x 10-10 1.131 x 10 -04 CRISP2 

chr11:2292895-

2293173 

10 6.05 x 10-05 

(1.01 x 10 -05) 

5.98 2.212 x 10-09 8.594 x 10 -04 ASCL2 

chr1:63249197-

63249213 

4 8.92 x 10-

05(1.60 x 10-05) 

5.57 2.537 x 10 -

08 

9.859 x 10 -03 ATG4C 

chr7:5111621-

5111916 

5 5.33 x 10 -05 

(9.61 x 10 -06) 

5.55 2.851 x 10 -

08 

1.108 x 10 -02 LOC389

458 

chr11:368351-

368683 

11 -4.43 x 10-

05(8.10 - x 1006) 

-5.47 4.496 x 10 -

08 

1.747 x 10 -02 B4GAL

NT4 

chr17:58499679-

58499911 

7 -3.93 x 10-

05(7.20 x 10 -06) 

-5.46 4.866 x 10-08 1.891 x 10 -02 C17orf6

4 

chr6:155537901-

155538055 

5 -4.43 x 10 -

05(8.20 x 10 -06) 

-5.40 6.837 x 10 -

08 

2.657 x 10 -02 TIAM2 

chr2:237478526-

237478664 

3 -4.98 x 10-

05(9.24 x 10 -06) 

-5.39 6.913 x 10 -

08 

2.686 x 10 -02 CXCR7 

chr2:732577-

732961 

2 -1.66 x 10-

04(3.13 x 10-05) 

-5.30 1.169 x 10-07 4.542 x 10-02 - 
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R4 Results from the meta-analysis of differentially methylated regions for 

maternal tea consumption. 
Differentially-

methylated region 

(DMR)    

N 

conse

cutive 

CpG 

sites 

Estimate (SE) Z P-value Bonferroni 

adjusted P-

value 

Gene 

chr13:114814024

-114814401 

4 -1.06 x 10-04 

(1.54 x 10-05) 

-6.88 6.181 x 10-

12 

2.393 x 10-

06 

RASA3 

chr7:27143046-

27143370 

6 6.86 x 10-05 

(1.04 x 10-05) 

6.59 4.355 x 10-

11 

1.686 x 10-

05 

HOXA2 

chr6:31127120-

31127379 

7 5.47 x 10-05 

(8.66 x 10-06) 

6.31 2.766 x 10-

10 

1.071 x 10-

04 

TCF19; 

CCHCR1 

chr6:160023581-

160024002 

4 1.32 x 10-04 

(2.25 x 10-05) 

5.88 4.198 x 10-

09 

1.625 x 10-

03 

 

chr6:29599160-

29599331 

8 6.55 x 10-05 

(1.12 x 10-05) 

5.82 5.802 x 10-

09 

2.247 x 10-

03 

GABBR1 

chr11:2019862-

2020537 

18 2.10 x 10-05 

(3.61 x 10-06) 

5.81 6.068 x 10-

09 

2.350 x 10-

03 

H19 

chr19:51189671-

51190179 

4 7.05 x 10-05 

(1.22 x 10-05) 

5.80 6.744 x 10-

09 

2.611 x 10-

03 

SHANK1 

chr3:42705828-

42706106 

3 -6.61 x 10-05 

(1.15 x 10-05) 

-5.73 1.017 x 10-

08 

3.940 x 10-

03 

ZBTB47 

chr6:136872115-

136872119 

2 8.55 x 10-05 

(1.49 x 10-05) 

5.73 1.021 x 10-

08 

3.955 x 10-

03 

MAP7 

chr1:117317838-

117318185 

5 4.62 x 10-05 

(8.07 x 10-06) 

5.73 1.031 x 10-

08 

3.992 x 10-

03 

- 

chr7:155284062-

155284759 

5 8.80 x 10-05 

(1.55 x 10-05) 

5.69 1.242 x 10-

08 

4.811 x 10-

03 

- 

chr8:144659883-

144660772 

5 5.20-05 (9.16-06) 5.67 1.422 x 10-

08 

5.507 x 10-

03 

NAPRT1 

chr6:32015651-

32015737 

3 1.94 x 10-05 

(3.51 x 10-06) 

5.53 3.217 x 10-

08 

1.246 x 10-

02 

TNXB 

chr9:136198682-

136199172 

3 -1.91 x 10-05 

(3.52 x 10-06) 

-5.41 6.305 x 10-

08 

2.442 x 10-

02 

SURF6 

chr10:63657059-

63657363 

3 9.72 x 10-05 

(1.81 x 10-05) 

5.37 7.766 x 10-

08 

3.007 x 10-

02 

 

chr17:80976690-

80977389 

3 2.72 x 10-05 

(5.12 x 10-06) 

5.32 1.033 x 10-

07 

4.001 x 10-

02 

B3GNTL1 

chr1:234367145-

234367493 

4 1.14 x 10-04 

(2.15 x 10-05) 

5.32 1.051 x 10-

07 

4.071 x 10-

02 

SLC35F3 

chr17:58499679-

58499816 

5 -4.68 x 10-05 

(8.86 x 10-06) 

-5.28 1.282 x 10-

07 

4.966 x 10-

02 

C17orf64 
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R5 Results from the meta-analysis of differentially methylated regions for 

maternal cola consumption. 
Differentially-

methylated 

region (DMR)    

N 

conse

cutive 

CpG 

sites 

Estimate (SE) Z P-value Bonferroni 

adjusted P-

value 

Gene 

chr3:99979117-

99979421 

3 -3.48 x 10-04 

(4.06 x 10-05) 

-8.57 1.024 x 10-17 4.087 x 10-12 TBC1D23 

chr3:37033632-

37033980 

5 -1.49 x 10-03 

(2.06 x 10-04) 

-7.25 4.099 x 10-13 1.636 x 10-07 EPM2AIP

1;MLH1 

chr22:31318103-

31318546 

9 -4.96 x 10-03 

(6.99 x 10-04) 

-7.10 1.218 x 10-12 4.862 x 10-07 C22orf27 

chr2:113992762-

113993313 

7 -5.24 x 10-03 

(7.70 x 10-04) 

-6.80 1.032 x 10-11 4.118 x 10-06 PAX8 

chr1:242220538-

242220925 

3 -5.53 x 10-03 

(8.52 x 10-04) 

-6.49 8.403 x 10-11 3.353 x 10-05  

chr2:11101549-

11101592 

2 -8.33 x 10-03 

(1.33 x 10-03) 

-6.27 3.533 x 10-10 1.410 x 10-04  

chr7:30635762-

30636176 

4 -4.05 x 10-03 

(6.56 x 10-04) 

-6.18 6.499 x 10-10 2.593 x 10-04 GARS 

chr14:50088544-

50088598 

2 -4.96 x 10-03 

(8.06 x 10-04) 

-6.15 7.553 x 10-10 3.014 x 10-04 RPL36AL

;MGAT2 

chr7:128530800-
128531165 

2 3.21 x 10-03 

(5.37 x 10-04) 
5.97 2.332 x 10-09 9.307 x 10-04 KCP 

chr17:18761852-

18761932 

2 2.80 x 10-04 

(5.05 x 10-05) 

5.56 2.753 x 10-08 1.099 x 10-02 PRPSAP2 

chr11:66104174-

66104485 

4 1.99 x 10-03 

(3.59 x 10-04) 

5.55 2.851 x 10-08 1.138 x 10-02 RIN1 

chr4:122853963-

122854405 

6 5.01 x 10-03 

(9.20 x 10-04) 

5.45 5.099 x 10-08 2.035 x 10-02 TRPC3 

chr13:24519920-

24520348 

3 -1.23 x 10-02 

(2.25 x 10-03) 

-5.45 5.124 x 10-08 2.045 x 10-02  

chr1:152080471-

152081002 

3 2.43 x 10-03 

(4.50 x 10-04) 

5.41 6.461 x 10-08 2.578 x 10-02 TCHH 
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R6 Results from the meta-analysis of differentially methylated regions for 

maternal caffeine consumption stratified by female sex 
Differentially-

methylated 

region (DMR)    

N 

conse

cutive 

CpG 

sites 

Estimate 

(SE) 

Z P-value Bonferroni 

adjusted P-

value 

Gene 

chr2:139538222-

139539001 

5 2.50 x 10-03 

(3.44 x 10-04) 

7.28 3.266 x 10-13 1.305 x 10-07 NXPH2 

chr19:50931432-

50931622 

4 2.08 x 10-03 

(3.26 x 10-04) 

6.38 1.812 x 10-10 7.240 x 1005 SPIB 

chr21:35831996-

35832180 

4 1.87 x 10-03 

(3.05 x 10-04) 

6.14 8.366 x 10-10 3.343 x 10-04 KCNE1 

chr4:184930940-

184931143 

4 1.32 x 10-04 

(2.25 x 10-05) 

5.85 5.048 x 10-09 2.017 x 10-03 STOX2 

chr6:33257050-

33257788 

18 5.78 x 10-05   

(1.01 x 10-05) 

5.74 9.618 x 10-09 3.844 x 10-03 WDR46 

chr11:45715517-

45715523 

2 -7.31 x 10-04 

(1.29 x 10-04) 

-5.65 1.627 x 10-08 6.501 x 10-03  

chr6:168197699-

168197921 

3 6.31 x 10-04  

(1.13 x 10-04) 

5.59 2.208 x 10-08 8.823 x 10-03 C6orf123 

chr6:27860893-

27860984 

3 2.37 x 10-04 

(4.34 x 10-05) 

5.48 4.322 x 10-08 1.727 x 10-02 HIST1H2A

MHIST1H2

BO 

chr4:89618637-

89618667 

2 1.58 x 10-03 

(2.90 x 10-04) 

5.44 5.467 x 10-08 2.185 x 10-02 NAP1L5; 

HERC3 

chr20:25565460-

25565667 

2 -8.45 x 10-04 

(1.56 x 10-04) 

-5.41 6.327 x 10-08 2.528 x 10-02 NINL 

chr11:368588-

368847 

6 -5.26 x 10-04 

(9.80 x 10-05) 

-5.37 7.859 x 10-08 3.141 x 10-02 B4GALNT4 

chr4:146018582-

146018691 

2 -1.08 x 10-03 

(2.02 x 10-04) 

-5.37 8.036 x 10-08 3.212 x 10-02 ANAPC10;

ABCE1 
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R7 Results from the meta-analysis of differentially methylated regions for 

maternal caffeine consumption stratified by male sex 
Differentially-

methylated 

region (DMR)    

N 

conse

cutive 

CpG 

sites 

Estimate 

(SE) 

Z P-value Bonferroni 

adjusted P-

value 

Gene 

chr12:58132093-

58132558 

3 -1.90 x 10-03 

(2.65 x 10-04) 

-7.18 7.022 x 10-13 2.837 x 10-07 AGAP2 

chr3:49170599-

49171051 

6 -6.61 x 10-04 

(9.84 x 10-05) 

-6.71 1.881 x 10-11 7.598 x 10-06 LAMB2 

chr7:94286343-

94286760 

16 5.06- x 1004 

(7.56 x 10-05) 

6.69 2.190 x 10-11 8.847 x10-06 SGCE; 

PEG10 

chr13:36871943-

36872346 

9 1.01 x 10-04 

(1.56 x 10-05) 

6.44 1.219 x 10-10 4.92 x 10-05 C13orf38 

chr2:3699195-

3699563 

5 5.21 x 10-04 

(8.65 x 10-05) 

6.02 1.697 x 10-09 6.856 x 10-04 - 

chr8:95961618-

95962383 

6 -4.29 x 10-04 

(7.24 x 10-05) 

-5.93 3.047 x 10-09 1.231 x 10-03 TP53INP1 

chr19:47852470-

47852595 

3 1.36 x 10-04 

(2.33 x 10-05) 

5.86 4.637 x 10-09 1.873 x 10-03 DHX34 

chr6:30614168-

30614422 

7 2.51 x 10-04 

(4.29 x 10-05) 

5.85 5.019 x 10-09 2.027 x 10-03 C6orf136; 

chr1:147801103-

147801721 

4 2.16 x 10-03 

(3.79 x 10-04) 

5.69 1.294 x 10-08 5.227 x 10-03 - 

chr7:63505768-

63506148 

3 -1.77 x 10-03 

(3.12 x 10-04) 

-5.67 1.393 x 10-08 5.628 x 10-03 ZNF727 

chr7:158110152-

158110685 

4 1.21 x 10-03 

(2.14 x 10-04) 

5.66 1.551 x 10-08 6.264 x 10-03 PTPRN2; 

chr11:31391088-

31391293 

3 1.89 x 10-04 

(3.39 x 10-05) 

5.58 2.378 x 10-08 9.606 x 10-03 DCDC1; 

DNAJC24 

chr13:47472050-

47472140 

4 -5.58 x 10-04 

(1.04 x 10-04) 

-5.39 6.932 x 10-08 2.800 x 10-02 HTR2A 

chr7:73894884-

73895109 

3 -1.79 x 10-03 

(3.33 x 10-04) 

-5.39 7.224 x 10-08 2.918 x 10-02 GTF2IRD1 

chr10:23982350-

23982387 

2 3.85 x 10-04 

(7.22 x 10-05) 

5.33 1.009 x 10-07 4.075 x 10-02 KIAA1217 

chr11:63974153-

63974229 

3 1.55 x 10-04 

(2.91 x 10-05) 

5.32 1.018 x 10-07 4.110 x 10-02 FERMT3 

chr1:20209848-

20210269 

2 -1.09 x 10-03 

(2.05 x 10-04) 

-5.32 1.055 x 10-07 4.261 x 10-02 OTUD3 

chr7:54609587-

54609671 

2 2.51 x 10-04 

(4.72 x 10-05) 

5.31 1.112 x 10-07 4.490 x 10-02 VSTM2A 
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Appendix S  

S1 Top 5 GO terms and KEGG pathways for CpGs in DMRs (BP = biological process; MF = molecular function; CC = cell 

compartment) 

Model 
Ontology/

KEGG 
Term/Pathway ID 

N CpGs 

differentially 

methylated 

N CpGs in 

term/pathway 

P-value for 

enrichment 

FDR 

corrected 

P-value 

Total caffeine        

 BP 
cell-cell adhesion via plasma-membrane adhesion 

molecules 
GO:0098742 5 260 0.0001 1 

 BP 
homophilic cell adhesion via plasma membrane 

adhesion molecules 
GO:0007156 4 160 0.0002 1 

 MF calcium ion binding GO:0005509 6 670 0.0006 1 

 CC integral component of plasma membrane GO:0005887 8 1520 0.001 1 

 CC intrinsic component of plasma membrane GO:0031226 8 1595 0.002 1 

 KEGG Glycosphingolipid biosynthesis - ganglio series path:hsa00604 1 15 0.033 1 

 KEGG Neuroactive ligand-receptor interaction path:hsa04080 2 317 0.048 1 

 KEGG Various types of N-glycan biosynthesis path:hsa00513 1 37 0.052 1 

 KEGG Circadian rhythm path:hsa04710 1 30 0.055 1 

 KEGG Hippo signaling pathway - multiple species path:hsa04392 1 28 0.073 1 

Any vs. no 

Caffeine 
       

 MF sarcosine dehydrogenase activity GO:0008480 1 1 0.001 1 

 BP sarcosine catabolic process GO:1901053 1 1 0.001 1 

 MF rRNA primary transcript binding GO:0042134 1 1 0.001 1 

 MF 
oxidoreductase activity, acting on the CH-NH group 

of donors, flavin as acceptor 
GO:0046997 1 2 0.001 1 

 CC endoplasmic reticulum GO:0005783 5 1287 0.0010 1 
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 KEGG Glycine, serine and threonine metabolism path:hsa00260 1 35 0.019 1 

 KEGG Fatty acid degradation path:hsa00071 1 41 0.024 1 

 KEGG Fatty acid metabolism path:hsa01212 1 55 0.041 1 

 KEGG PPAR signaling pathway path:hsa03320 1 72 0.045 1 

 KEGG Adipocytokine signaling pathway path:hsa04920 1 66 0.051 1 

Coffee        

 BP mesenchymal stem cell migration GO:1905319 1 3 0.002 1 

 BP regulation of mesenchymal stem cell migration GO:1905320 1 3 0.002 1 

 BP 
positive regulation of mesenchymal stem cell 

migration 
GO:1905322 1 3 0.002 1 

 MF C-X-C chemokine binding GO:0019958 1 6 0.003 1 

 MF 
N-acetyl-beta-glucosaminyl-glycoprotein 4-beta-N-

acetylgalactosaminyltransferase activity 
GO:0033842 1 2 0.003 1 

 KEGG Autophagy - other path:hsa04136 1 29 0.019 1 

 KEGG Various types of N-glycan biosynthesis path:hsa00513 1 37 0.023 1 

 KEGG 
Viral protein interaction with cytokine and cytokine 

receptor 
path:hsa04061 1 95 0.031 1 

 KEGG Th1 and Th2 cell differentiation path:hsa04658 1 87 0.063 1 

 KEGG Autophagy - animal path:hsa04140 1 129 0.081 1 

Tea        

 MF nicotinate phosphoribosyltransferase activity GO:0004516 1 1 0.0004 1 

 BP nicotinate nucleotide biosynthetic process GO:0019357 1 1 0.0004 1 

 BP nicotinate nucleotide salvage GO:0019358 1 1 0.0004 1 

 BP pyridine nucleotide salvage GO:0019365 1 1 0.0004 1 

 BP NAD salvage GO:0034355 1 1 0.0004 1 

 KEGG Nicotinate and nicotinamide metabolism path:hsa00760 1 34 0.022 1 

 KEGG Taste transduction path:hsa04742 1 82 0.066 1 

 KEGG GnRH secretion path:hsa04929 1 62 0.098 1 

 KEGG ECM-receptor interaction path:hsa04512 1 86 0.119 1 

 KEGG GABAergic synapse path:hsa04727 1 84 0.125 1 

Cola        

 MF 
alpha-1,6-mannosylglycoprotein 2-beta-N-

acetylglucosaminyltransferase activity 
GO:0008455 1 1 0.0003 1 



 

381 

 BP thyroid-stimulating hormone secretion GO:0070460 1 1 0.002 1 

 BP regulation of thyroid-stimulating hormone secretion GO:2000612 1 1 0.002 1 

 CC late recombination nodule GO:0005715 1 1 0.002 1 

 BP meiotic metaphase I plate congression GO:0043060 1 1 0.002 1 

 MF 
alpha-1,6-mannosylglycoprotein 2-beta-N-

acetylglucosaminyltransferase activity 
GO:0008455 1 1 0.0003 1 

 KEGG Mismatch repair path:hsa03430 1 22 0.018 1 

 KEGG Aminoacyl-tRNA biosynthesis path:hsa00970 1 43 0.029 1 

 KEGG Various types of N-glycan biosynthesis path:hsa00513 1 37 0.032 1 

 KEGG N-Glycan biosynthesis path:hsa00510 1 48 0.036 1 

 KEGG Fanconi anemia pathway path:hsa03460 1 48 0.037 1 

Total caffeine – 

female sex 
       

 CC nucleosome GO:0000786 2 90 0.0017 1 

 MF endoribonuclease inhibitor activity GO:0060698 1 2 0.002 1 

 BP negative regulation of ribonuclease activity GO:0060701 1 2 0.002 1 

 BP negative regulation of endoribonuclease activity GO:0060702 1 2 0.002 1 

 CC DNA packaging complex GO:0044815 2 98 0.002 1 

 KEGG Systemic lupus erythematosus path:hsa05322 2 113 0.003 0.93 

 KEGG Ubiquitin mediated proteolysis path:hsa04120 2 132 0.006 0.93 

 KEGG Alcoholism path:hsa05034 2 164 0.008 0.93 

 KEGG Various types of N-glycan biosynthesis path:hsa00513 1 37 0.033 1 

 KEGG Progesterone-mediated oocyte maturation path:hsa04914 1 86 0.078 1 

Total caffeine – 

male sex 
       

 BP 
positive regulation of phosphatidylinositol 

biosynthetic process 
GO:0010513 2 5 1.2 x 10-05 0.275 

 BP 
regulation of phosphatidylinositol biosynthetic 

process 
GO:0010511 2 7 4.2 x10 -05 0.480 

 BP 
positive regulation of phospholipid biosynthetic 

process 
GO:0071073 2 11 7.2 x 10-05 0.544 

 BP regulation of phospholipid biosynthetic process GO:0071071 2 18 2.4 10-04 1.000 

 BP response to methyl methanesulfonate GO:0072702 1 1 6.9 x 10-04 1.000 
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Appendix T  

T1  ALSPAC definition of variables and covariates  

• Offspring internalising problems: In ALSPAC, internalising problems at the age 3 

and 7 were assessed through questionnaires at 47 months and 81 months, 

respectively. The total emotional symptoms score was calculated by summing the 

score of each item for children that had complete data on all 5 items. To obtain the 

item mean, the total score was divided by 5 (the number of items of the emotional 

symptoms score) 

• Offspring age: Offspring’s age at completion of the questionnaires was first 

generated based on offspring’s date of birth and the date of completion of the 

questionnaires. Offspring’s age was transformed from days to weeks by dividing age 

in days by 7. 

• Maternal education (as proxy for maternal socioeconomic position): Maternal 

education was assessed in week 32 of gestation and coded as an ordinal variable: 
"Vocational/CSE" = 1, “O level” (at 16, equivalent to lower grades of ordinary-level) 

= 2, "A level" (ordinary-level school-leaving certificate (at 16) = 3, and “Degree” 

(advanced-level school-leaving certificate (post-16)/degree) = 4. 

• Maternal smoking during pregnancy was assessed as an ordinary variable 

representing 0 = no or early smoking during pregnancy, 1 = Stopped before the 

second trimester of pregnancy and 2 = Smoking in the third trimester or throughout 

pregnancy.  

• Maternal age continuous numeric variable in years assessed at birth of study child. 

• Parity has been assessed at 18 weeks gestation as number of previous pregnancies 

resulting in either a livebirth or a stillbirth.  

• Gestational age was calculated (in days) based on the date of the mother’s last 

menstrual period (LMP) when the mother was certain of this, but for uncertain LMPs 

and conflicts with clinical assessment the ultrasound assessment was used. Where 

maternal report and ultrasound assessment conflicted, an experienced obstetrician 

reviewed clinical records and made a best estimate. 

• Maternal anxiety and depression during pregnancy: Maternal anxiety and 

depressive symptoms during pregnancy were assessed with the Edinburgh Postnatal 

Depression scale in a questionnaire at 18 weeks gestation. A total score was 

generated if mothers had data on each of the ten items by summing up the individual 

item scores. 

• Offspring sex was taken from obstetric records 
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T2   Generation R definition of variables and covariates 

• Offspring internalising problems: Internalising problems at the age 3 and 7 were 

assessed through questionnaires at 36 months and 72 months, respectively. The 

CBCL internalising scale score was generated according to the CBCL manual.  

• Offspring age at internalising problems assessment was reported by mothers in the 

corresponding questionnaire. 

• Maternal education (as proxy for maternal socioeconomic position): Maternal 

education was assessed in week 12-20 of gestation and coded as an ordinal variable: " 

“no education finished " = 1, “primary” (at 12, equivalent to lower grades of 

ordinary-level) = 2, "secondary, phase 1" (ordinary-level school-leaving certificate (at 

16) = 3, and “3-secondary, phase 2” (advanced-level school-leaving certificate (post-

16)) = 4, “higher, phase 2” (education after High School) = 5. 

• Maternal smoking during pregnancy was assessed as an ordinary variable 

representing 0 = no or early smoking during pregnancy, 1 = Stopped before the 

second trimester of pregnancy and 2 = Smoking in the third trimester or throughout 

pregnancy.  

• Maternal age continuous numeric variable in years assessed at study intake. 

• Gestational age was assessed at birth of study child. 

• Maternal anxiety and depression during pregnancy was assessed through 

questionnaires at weeks 20-25 of gestation using the depression and anxiety subscales 

of the global severity index (GSI). The GSI assesses severity of anxiety and 

depressive symptoms over the past 7 days. A combined score was generated through 

taking the mean of the depression and anxiety subscales.  

• Offspring sex was derived from birth records. 
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T3   MoBa definition of variables and covariates 

• Offspring internalising problems: Internalising problems at the age 3 were assessed 

through a questionnaire at 36 months. Nine selected items of the original CBCL 

internalising subscale were used to calculate a total internalising problems score by 

summing the score of each item for children that had complete data on all 9 items. 

• Offspring age: Offspring’s age at completion of the questionnaires was first 

generated based on offspring’s date of birth and the date of completion of the 

questionnaires.  

• Maternal education (as proxy for maternal socioeconomic position): Maternal 

education was assessed at 15 weeks gestation and coded as an ordinal variable: 

"<High Sch " = 0, “High School degree” = 1, " Some college " = 2, and “+4yr 

College” = 3. 

• Maternal smoking during pregnancy was assessed as an ordinary variable 

representing 0 = no or early smoking during pregnancy, 1 = Stopped before the 

second trimester of pregnancy and 2 = Smoking in the third trimester or throughout 

pregnancy.  

• Maternal age continuous numeric variable in years collected from Norwegian 

Medical Birth Registry. 

• Parity has been assessed through linkage to the national health registries. 

• Gestational age has been assessed through linkage to the national health registries 

• Maternal anxiety and depression during pregnancy: Maternal anxiety and 

depressive symptoms during pregnancy were assessed with selective items from the 

(Hopkins) Symptoms Checklist-25 (SCL-25). The original SCL-25 scale comprises 

Maternal anxiety was assessed with 10 items for anxiety and 15 items that assess 

depression that are rated on a 4-point Likert scale (from "not at all, bothered," to 

"extremely bothered"). Mothers reported on their anxiety and depressive symptoms in 

a questionnaire at gestational week 15. 
• Offspring sex has been assessed through linkage to the national health registries. 
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Appendix U  

U1 Correlation plot cord blood meta-analysis age 3 – ALSPAC   

 

 
 
 

 

 

 

 

 

 

U2 Correlation plot cord blood meta-analysis age 3 – Generation   
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U3 Correlation plot cord blood meta-analysis age 3 – MoBa1 

 

 

 

 

 

 

 

 

 

 

 

U4 Correlation plot cord blood meta-analysis age 3 – MoBa2 
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U5 Correlation plot cord blood meta-analysis age 7 – ALSPAC 

 

 

 

 

 

 

 

 

U6 Correlation plot cord blood meta-analysis age 7 – Generation R 
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U7  Correlation plot cross-sectional meta-analysis age 7 – ALSPAC 

 

 
 

 

 

 

 

 

 

U8 Correlation plot cross-sectional meta-analysis age 7 – Generation R 
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Appendix V  

V1 QQ-plots cord blood meta-analysis age 3 – ALSPAC 
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V2 QQ-plots cord blood meta-analysis age 3 – Generation R 
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V3 QQ-plots cord blood meta-analysis age 3 – MoBa1 
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V4 QQ-plots cord blood meta-analysis age 3 MoBa2 
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V5 QQ-plots of the cord blood meta-analysis age 7 – ALSPAC 
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V6 QQ-plots of the cord blood meta-analysis age 7 – Generation R 
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V7 QQ-plots of the childhood peripheral blood meta-analysis age 7 – 

ALSPAC 
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V8 QQ-plots of the childhood peripheral blood meta-analysis age 7 – 

Generation R 
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Appendix W  

W1 Precision plot of the cord blood meta-analysis age 3  
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W2 Precision plot of the cord blood meta-analysis age 7  
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W3 Precision plot of the childhood peripheral blood meta-analysis age 7  
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Appendix X  

X1 Correlation matrix of the cord blood probe-level meta-analysis results: 

Internalising problems age 3 
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X2 Correlation matrix of the cord blood probe-level meta-analysis results: 

Internalising problems age 7 
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X3 Correlation matrix of the childhood peripheral blood probe-level meta-

analysis results: Internalising problems age 7  



 

403 

Appendix Y  

Y1 QQ-plot of the cord blood probe-level meta-analysis results: 

Internalising problems age 3 
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Y2 QQ-plot of the cord blood probe-level meta-analysis results: 

Internalising problems age 7 
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Y3 QQ-plot of the childhood peripheral blood probe-level meta-analysis 

results: Internalising problems age 7 
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Appendix Z  

Z1 Leave-one-out plot of the cord-blood meta-analysis age 7    

(Cg26668632) 

 

          

Z2 Leave-one-out plot of the childhood peripheral blood meta-analysis age 

7 (Cg08884410) 
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Z3 Leave-one-out plot of the childhood peripheral blood meta-analysis age 

7 (Cg07283896) 
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Appendix AA  

AA1 Forest plot of associations between cord blood BCELL cell 

proportion types and offspring internalising problems at age 3 

 

AA2 Forest plot of associations between cord blood CD8T cell 

proportion types and offspring internalising problems at age 3 
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AA3 Forest plot of associations between cord blood NK cell proportion 

types and offspring internalising problems at age 3 

 

AA4 Forest plot of associations between cord blood CD4T cell 

proportion types and offspring internalising problems at age 3 
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AA5 Forest plot of associations between cord blood CD14 cell 

proportion types and offspring internalising problems at age 3 

 

 

AA6 Forest plot of associations between cord blood GRAN cell 

proportion types and offspring internalising problems at age 3 
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AA7 Forest plot of associations between cord blood BCELL cell 

proportion types and offspring internalising problems at age 7 

 

 

AA8 Forest plot of associations between cord blood CD14 cell 

proportion types and offspring internalising problems at age 7 
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AA9 Forest plot of associations between cord blood CD4T cell 

proportion types and offspring internalising problems at age 7 

 

 

AA10 Forest plot of associations between cord blood CD8T cell 

proportion types and offspring internalising problems at age 7 

  



 

413 

AA11 Forest plot of associations between cord blood GRAN cell 

proportion types and offspring internalising problems at age 7 

 

 

AA12 Forest plot of associations between cord blood NK cell proportion 

types and offspring internalising problems at age 7 
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AA13 Forest plot of associations between peripheral blood BCELL cell 

proportion types and offspring internalising problems at the age of 7 

 

 

AA14 Forest plot of associations between peripheral blood CD4T cell 

proportion types and offspring internalising problems at age 7 

 

 

  



 

415 

AA15 Forest plot of associations between peripheral blood CD8T cell 

proportion types and offspring internalising problems at age 7 

 

 

AA16 Forest plot of associations between peripheral blood GRAN cell 

proportion types and offspring internalising problems at age 7 
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AA17 Forest plot of associations between peripheral blood MONO cell 

proportion types and offspring internalising problems at age 7 

 

 

AA18 Forest plot of associations between peripheral blood NK cell 

proportion types and offspring internalising problems at age 7 
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Appendix BB  

BB1 Candidate gene-wide analyses  
 Cord ~ Internalising 

problems age 3 

Cord ~ Internalising 

problems age 7 

Cross-sectional 

analysis 

CpG site (Gene) Estimate 

(SE) 

P-

Value 

Estimate 

(SE) 

P-

Value 

Estimate 

(SE) 

P-

Value 

 Chr5:cg19457823 

(NR3C1) 

-1.17 (0.53) 0.027 0.15 (0.48) 0.763 0.44 

(0.70) 

0.529 

Chr11: cg22043168 

(BDNF) 

4.66 (1.93) 0.016 1.65 (1.86) 0.374 -2.13 

(2.13) 

0.316 

Chr11: cg13360150 

(BDNF) 

5.12 (2.22) 0.021 1.87 (1.99) 0.348 -5.92 

(4.18) 

0.157 

Chr11: cg10022526 

(BDNF) 

-4.63 (2.01) 0.022 -4.24 (1.76) 0.016 -0.74 

(2.58) 

0.774 

Chr11: cg22043168 

(BDNF) 

-1.43 (0.65) 0.028 0.33 (0.63) 0.601 2.19 

(1.09) 

0.045 

Chr11: cg23497217 

(BDNF) 

-1.96 (0.91) 0.030 -0.97 (0.95) 0.305 0.20 

(1.39) 

0.887 

Chr11: cg06025631 

(BDNF) 

-5.58 (2.74) 0.042 

 

 

3.06 (3.44) 0.374 -10.31 

(5.43) 

0.058 

Chr11: cg26949694 

(BDNF) 

-1.77 (0.87) 0.043 0.09 (0.78) 0.906 0.65 

(1.31) 

0.617 

Chr11: cg15014679  

(BDNF) 

-1.05 (0.53) 0.048 -0.18 (0.52) 0.733 0.69 

(0.68) 

0.307 

Chr6: cg07633853 

(FKBP5) 

-1.03 (0.39) 0.007 -0.27 (0.46) 0.554 0.28 

(0.76) 

0.716 

Chr6: cg01294490 

(FKBP5) 

-2.94 (1.16) 0.011 -0.06 (1.17) 0.957 0.92 

(1.74) 

0.600 

Chr6: cg14284211 

(FKBP5) 

-1.34 (0.56) 0.017 -0.70 (0.56) 0.216 0.12 

(0.99) 

0.906 

Chr6: cg10300814 

(FKBP5) 

2.82 (1.29) 0.029 1.34 (1.22) 0.272 -0.45 

(1.91) 

0.815 

Chr6: cg00130530 

(FKBP5) 

1.31 (0.601) 0.029 -0.17 (0.61) 0.776 -0.62 

(0.82) 

0.450 
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Appendix CC   

CC1 Summary of results of top CpG sites from the probe-level analysis   
Model N CpG sites with 

P < 1 x 10-5 
Range effect estimate 

Internalising problems age 3 ~ Cord blood DNA methylation (N = 3,011) 

 All offspring (minimally 

adjusted)* 

2 2.50 to 3.07 

 All offspring (adjusted for 

covariates) 

4 2.41 to 11.25 

 Female sex offspring (adjusted for 

covariates) 

3 2.80 to 28.83 

 Male sex offspring (adjusted for 

covariates) 

9 2.65 to 29.34 

 All offspring (adjusted for 

covariates and maternal anx/dep) 

5 1.60 to 12.44 

Internalising problems age 7 ~ Cord blood DNA methylation (N = 1,601) 

 All offspring (minimally 

adjusted)* 

4 1.10 to 3.84 

 All offspring (adjusted for 

covariates) 

3 1.11 to 4.10 

 Female sex offspring (adjusted for 

covariates) 

5 3.30 to 8.76 

 Male sex offspring (adjusted for 

covariates) 

6 2.27 to 13.53 

 All offspring (adjusted for 

covariates and maternal anx/dep) 

6 1.08 to 6.75 

Internalising problems age 7 ~ Childhood DNA methylation age 7 (N = 1,121) 

 All offspring (minimally 

adjusted)* 

3 2.04 to 5.33 

 All offspring (adjusted for 

covariates) 

2 2.54 to 5.35 

 Female sex offspring (adjusted for 

covariates) 

2 23.84 to 72.60 

 Male sex offspring (adjusted for 

covariates) 

7 3.25 to 8.59 

 All offspring (adjusted for 

covariates and maternal anx/dep) 

2 2.87 to 5.47 

Note. * only adjusted for estimated cell counts and 20 surrogate variables. Covariates: 
maternal age, maternal smoking, maternal education, offspring age, estimated cell 

counts and 20 surrogate variables. 
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