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ABSTRACT

The noise of any measurement is fundamentally constrained by the laws of quantum me-
chanics, and this has significant implications for the development of sensors and measur-
ing devices which are essential tools in science and engineering. In quantum metrology, the
properties of quantum states of light are used to reduce measurement noise below the limit
allowed by classical physics. In this thesis, we explore the application of squeezed states of
light for improving precision and sensitivity in optical measurements.

Squeezed states are particularly versatile quantum states because they may be pro-
duced with high optical power, which makes them suitable for a range of optical applica-
tions. We begin by describing the development of a source of high power squeezed light,
which utilised the Kerr effect in photonic crystal fibre. This approach allows us to generate
quantum noise reduction at visible wavelengths.

We then investigate the precision improvement that may be attained by using squeezed
light to reduce the noise of measurements in the frequency domain. We develop theory
which shows that an improvement in the measured signal-to-noise ratio by applying squeez-
ing does not necessarily correspond to a precision improvement, due to the effect of classical
noise on the variance of the signal. Our theoretical model is used to identify the conditions
required for squeezing to provide a precision improvement for the detection of amplitude
modulation, and this is experimentally verified using our squeezed light source.

Finally, we develop a new method of optical loss estimation which provides enhanced
precision by using squeezed light. This approach employs a novel technique for the cancella-
tion of classical noise, which enables an experimental demonstration 8 orders of magnitude
above the power limitations of previous demonstrations of quantum enhanced loss estima-
tion. We anticipate that this approach will find application in imaging and spectroscopy.
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1
INTRODUCTION

Quantum metrology is concerned with the description of measurements according to the
laws of quantum mechanics [4]. Since quantum theory is non-deterministic, the outcome of
any measurement has some intrinsic uncertainty according to the properties of the quan-
tum state used to probe the measured system. It is of fundamental interest to study the
nature of this quantum noise [5].

A quantum description of measurements has also enabled new techniques for reducing
noise beyond the bounds imposed by using classical probe states [6]. This has significant
implications for science and technology, by allowing for improvements in current measure-
ment capabilities, and the development of new measurement devices. Squeezed states of
light, which have uncertainty reduced below the classical limit, have played an important
role in these developments. For example, squeezed light has been applied to the detection of
gravitational waves [7, 8], and in biological measurements [9, 10]. A particular advantage
of squeezed light is that it may be generated with high optical power. Since the power of
the probe sets a fundamental bound on the performance of an optical measurement, this
makes squeezing a crucial resource in quantum metrology [11]. In this thesis, we develop
a source of bright squeezed light, and use it to perform measurements with noise reduced
below the classical limit. In particular, we focus on methods that allow for the enhancement
of measurement precision with high probe power.

Chapter 2 consists of background material which covers relevant topics in quantum op-
tics. This includes a description of some useful quantum states and operators, and common
techniques for the detection of quantum states of light. We describe some relevant details
of spectrum analysis, which is necessary in order to correctly interpret the results of the ex-
perimental measurements in this thesis. This chapter also includes a detailed description of
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CHAPTER 1. INTRODUCTION

the noise characteristics of squeezed light, which will be useful for analysing the generated
squeezing.

In Chapter 3, we describe the development of a source of bright, visible wavelength
squeezed light using the Kerr effect in photonic crystal fibre (PCF). While the previous
experiments which have used PCF to generate high power visible squeezed light have em-
ployed spectral filtering [12, 13], we use a nonlinear interferometer to generate the squeez-
ing in this experiment. We therefore demonstrate the applicability of this technique at visi-
ble wavelengths, which was made possible due to the dispersion characteristics of the PCF.
The chapter includes a review of the theory of squeezing via the Kerr interaction, and an
overview of the various techniques that have used the Kerr interaction to generate squeez-
ing. Results from a numerical simulation are discussed, which quantifies the squeezing that
may be achieved given the characteristics of the PCF. We also provide a detailed characteri-
sation of the source and detector. The results for the squeezing measurements demonstrate
maximum of −1.3 dB quantum noise reduction, which is sufficient to demonstrate an im-
provement in the performance of optical measurements.

Chapter 4 reports on an experiment which demonstrates enhanced precision and sen-
sitivity in the estimation of a modulated optical loss, using the squeezed light source de-
scribed in Chapter 3. The precision of a measurement is determined by the variance of
repeated estimates [14], whereas sensitivity corresponds to the minimum detectable sig-
nal [15]. Previous experimental work with bright squeezed light has focused on sensitivity
enhancement [16, 10, 7, 8, 17]. In this chapter, we demonstrate that for frequency domain
measurements, improvement of sensitivity is not sufficient to demonstrate a precision en-
hancement. This is due to the effect of excess low frequency optical noise being transferred
to the measured signal, which can significantly increase the variance of the estimates. Our
theoretical results allow us to identify the conditions required to achieve a precision im-
provement with bright squeezing, and this is experimentally demonstrated. This work cor-
responds to the first measurement of amplitude modulation which demonstrates an im-
provement in precision beyond the classical limit using high power squeezing.

In Chapter 5, we experimentally demonstrate a novel method for the estimation of a
static loss with squeezed light, which enables an improvement in the measurement preci-
sion and sensitivity beyond the classical limit. Loss estimation is a crucial tool in optical
metrology, and is central to techniques such as spectroscopy and imaging [18, 19]. How-
ever, due to the aforementioned excess low frequency noise, loss estimation using bright
squeezing has so far only been discussed theoretically [20, 21], and experimental demon-
strations of quantum enhanced precision in loss estimation have been limited to picowatts
of optical power [22, 23]. Our approach uses high frequency path modulation to avoid low
frequency noise, and allows for further suppression of classical noise by optical cancella-
tion of common-mode signals. This demonstration constitutes an improvement of 8 orders

2



of magnitude beyond the power limitations of previous measurements of optical loss with
quantum enhanced precision. The theoretical limits of precision with this strategy are dis-
cussed in relation to other methods of loss estimation, and we also present simulations
which demonstrate the potential application of this approach to quantum imaging with
bright squeezed light.
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2
BACKGROUND

This chapter introduces some key concepts and techniques relevant to the rest of this thesis.
Section 2.1 reviews a quantum description of the electromagnetic field, and Section 2.2
describes the theory of photodetection and some common methods of detecting the quantum
properties of light. In Section 2.3, the noise properties of squeezed light are discussed in
more detail.

Statement of Work

This constitutes an introductory chapter and contains no new research material.

2.1 Quantum Optics

In this section, some theoretical concepts necessary for describing the quantum properties
of the electromagnetic field will be presented. We will begin by introducing the modal de-
composition of the electromagnetic field, and the quantum operators associated with these
modes. An initial focus on single mode quantum states and operators will facilitate the de-
scription of some important quantum effects, and a discussion of useful representations of
quantum states. We will then describe some features of multi-mode and continuous mode
light, and optical devices which act on more than one mode.

2.1.1 The Electromagnetic Field

In the classical picture, light corresponds to an electromagnetic wave, and can be described
by the electric and magnetic field amplitudes E and B. The dynamical behaviour of these
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fields in the presence of electric charges are governed by Maxwell’s equations, which can be
written as [24]

(2.1) ∇·E = ρ

ε0
,

(2.2) ∇·B = 0,

(2.3) ∇×E =−∂B
∂t

and

(2.4) ∇×B =µ0

(
J+ε0

∂E
∂t

)
.

Equations 2.2 and 2.3 express how the electric and magnetic fields are related to each other
independently of the presence of charges and currents, while Equations 2.1 and 2.4 describe
how the behaviour of the electric and magnetic fields are determined by the charge density
ρ and the current density J. The constants ε0 and µ0 are respectively the permittivity and
permeability of the vacuum.

Equations 2.1-2.4 will be used to describe the propagation of light in a dielectric medium
in Chapter 3. However, in the following, we consider for simplicity the case where light is
propagating in a vacuum, i.e. where ρ = 0 and J = 0. It is convenient to write the elec-
tromagnetic field in terms of the vector potential A and scalar potential φ, such that the
electric and magnetic fields may be defined as

(2.5) E =−∇φ− ∂A
∂t

and B =∇× A,

from which we can see that Equations 2.3 and 2.4 are satisfied. The fields obtained from
Equation 2.5 are unchanged by the gauge transformation

(2.6) A → A+∇χ, φ→φ− ∂χ

∂t
,

where χ is an arbitrary scalar field. We therefore choose the Coulomb gauge, defined by
∇·A = 0, which is particularly useful in quantum optics. With this choice of gauge, it follows
from Equation 2.1 that the scalar potential φ = 0 in the absence of charges. Equation 2.4
can then be written as

(2.7) ∇2A− 1
c2
∂2A
∂t2 = 0,

where c = (µ0ε0)−1/2 is the speed of light in a vacuum. Equation 2.7 can be used to describe
the properties of electromagnetic fields propagating in free space, and is known as the elec-
tromagnetic wave equation [25].
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2.1.2 Quantised Field Modes

Since Equation 2.7 is a linear differential equation, a general solution for A may be written
as a superposition of possible solutions:

(2.8) A ≡ A(r, t)=∑
k

Akuk(r, t),

where Ak defines the amplitude of each solution uk(r, t), for position vector r and time t. We
refer to the solutions uk(r, t) as modes of the electromagnetic field. A common choice of mode
basis is that of travelling plane wave solutions uk(r, t) = ei(k.r−ωk t), where ωk = c|k|, which
form a complete and orthonormal mode basis. The vector potential can then be written as

(2.9) A(r, t)=∑
k

(
Akei(k.r−ωk t) + A−kei(ωk t−k.r)

)
,

and we find that A−k = A∗
k, since the values of E and B must correspond to real quanti-

ties. The electromagnetic field may be quantised by associating each monochromatic mode
with an excitation of a quantum harmonic oscillator defined by the bosonic creation and
annihilation operators â and â†, which obey the bosonic commutation relations [26]

(2.10) [âk, â†
k′]= δk,k′ and [âk, âk′]= 0.

The quantised vector potential can then be defined as

(2.11) Â ≡ Â(r, t)=∑
k

(
Akâkei(k.r−ωk t) + A∗

k â†
kei(ωk t−k.r)

)
.

The expected value of the vector potential for a given quantum state |Ψ〉 then returns the
classical value: A = 〈Ψ| Â |Ψ〉. The Hamiltonian in this mode basis can be defined as a sum
of the Hamiltonians of each independent monochromatic mode [27]:

(2.12) Ĥ =∑
ω

ħω
(
â†
ωâω+ 1

2

)
,

where ħ is the reduced Planck constant. This corresponds to a system of decoupled quan-
tum harmonic oscillators, where each excitation generated by the creation operator â†

ω cor-
responds to a single photon with a well-defined frequency ω. The basis of travelling plane
waves is particularly convenient for describing the behaviour of monochromatic modes, and
many states of light can be approximated to behave like this, particularly in the case of
continuous-wave collimated laser light with a mode-field diameter much larger than the
scale of the wavelength of light [28]. However, in some cases, the propagation of light is
more conveniently described by a more realistic set of modes. For example, the basis of
Hermite-Gaussian modes provide a good description of laser beams propagating in free
space, which can account for effects such as diffraction [29]. Also, light can be generated as
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a train of optical pulses, which each contain a superposition of different frequency modes.
Therefore, in order to allow for a quantum description of more general states of light, we
consider the unitary transformation U applied to the set of modes Ak(r, t)= Akuk(r, t):

(2.13) Al(r, t)=∑
k

Ul,k Ak(r, t) and â†
l =

∑
k

Ul,kâ†
k.

Given that the transformation is unitary, it follows that the new creation and annihila-
tion operators still obey the bosonic commutation relations [28]. We can therefore define a
number state of the mode l, |n〉l , which is an eigenstate of the number operator n̂l = â†

l âl :

(2.14) n̂l |n〉l = nl |n〉l ,

where the eigenvalues nl are the set of non-negative integers, and the eigenstates |n〉l form
a complete and orthonormal basis. These number states, also known as Fock states, form a
basis for the Hilbert space of the quantised radiation state in the mode l. The action of the
creation and annihilation operators on the state |n〉l are summarised as:

(2.15) â†
l |n〉l =

√
nl +1 |nl +1〉l ,

(2.16) âl |n〉l =p
nl |nl −1〉l and

(2.17) âl |0〉l = 0.

The creation operator â†
l therefore creates a photon in the mode defined by the function

ul(r, t). While the unitarity of the transformation U ensures the bosonic commutation re-
lations apply, this transformation in general will couple different frequency components. If
this is the case, the functions ul(r, t) will no longer correspond to normal modes, and there-
fore the dynamics of the mode l cannot be considered independently from the other modes
of the electromagnetic field. However, it is often the case that each new mode has a spec-
trum that is closely distributed around a central frequency ωl . This case is referred to as the
quasi-monochromatic approximation, and it can be shown that the resulting Hamiltonian
can be approximated to have the same form as Equation 2.12, meaning that each mode can
be considered an independent excitation of the electromagnetic field [30].

2.1.3 Single Mode Quantum Optics

Light can often be well described by a single mode of the electromagnetic field. It is therefore
useful to consider the quantum states and operators that are used to describe light in a
single mode. While there are many choices of basis in which an independent field mode can
be excited, here the basis of monochromatic plane waves is used for simplicity. However, it is
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worth noting that many of the results that are given here apply in an arbitrary orthonormal
mode basis. The electric field for a single mode state can be written as

(2.18) Ê = Ekâkei(k.r−ωk t) +E∗
k â†

kei(ωk t−k.r).

Since we are only considering a single mode k, the index notation can be dropped, and
the creation and annihilation operators can be denoted simply as â† and â respectively.
Since the creation and annihilation operators are not Hermitian, they do not correspond
to physically observable quantities. It is therefore often useful to define the quadrature
operators:

(2.19) x̂ = 1p
2

(â+ â†) and p̂ = ip
2

(â† − â),

which are Hermitian observables. The commutator of the pair of quadrature operators is
given by

(2.20) [x̂, p̂]= i,

which implies that x̂ and p̂ are canonically conjugate variables. An important result of the
non-commutivity of the quadrature operators is the uncertainty relation:

(2.21) ∆x∆p ≥ 1
2

,

where ∆x and ∆p are the standard deviations of the probability distributions corresponding
to x̂ and p̂. States that saturate the bound ∆x∆p = 1

2 are known as minimum uncertainty
states. The eigenstates of the quadrature operators are denoted |x〉 and |p〉, and obey the
relations x̂ |x〉 = x |x〉 and p̂ |p〉 = p |p〉 for eigenvalues x and p. We can also transform into a
rotated basis by applying the phase shift operator Û(θ)= e−iθn̂. The action of Û(θ) on the an-
nihilation operator is Û(θ)†âÛ(θ)= âe−iθ. Using Equation 2.19, the quadrature amplitudes
at an arbitrary phase θ are therefore given by

(2.22) x̂θ = Û(θ)† x̂Û(θ)= 1p
2

(
eiθ â† + e−iθ â

)
= x̂cosθ+ p̂sinθ

and

(2.23) p̂θ = Û(θ)† p̂Û(θ)= ip
2

(
eiθ â† − e−iθ â

)
= p̂cosθ− x̂sinθ.

By comparing Equations 2.22-2.23 to Equation 2.18, it is clear that x̂θ is directly propor-
tional to the amplitude of the electric field at phase θ, and p̂θ is directly proportional to the
amplitude of the electric field at phase θ+π/2.

The quadrature operators can accordingly be used to define a phase space, i.e. a coordi-
nate system where all possible states can be represented. However, due to the uncertainty
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relation given by Equation 2.21, a quantum state must be described by a distribution in
phase space, as opposed to a single point. One such distribution is called the Wigner func-
tion, and is defined by [27]

(2.24) W(x, p)= 1
2π

∫ ∞

−∞

〈
x− y

2

∣∣∣ ρ̂ ∣∣∣x+ y
2

〉
ei ypd y,

for a quantum state defined by density matrix ρ̂. The Wigner function shares many of the
properties of a joint probability distribution over x and p. For example, it is a normalised
function:

(2.25)
∫ ∞

−∞

∫ ∞

−∞
W(x, p)dxdp = 1,

and the marginal distributions are given by integrating the Wigner function over the con-
jugate quadrature:

(2.26)
∫ ∞

−∞
W(x, p)dp = 〈x| ρ̂ |x〉 = P(x), and

∫ ∞

−∞
W(x, p)dx = 〈p| ρ̂ |p〉 = P(p).

The marginal distributions are true probability distributions and correspond to the pro-
jection of ρ̂ onto the quadrature states. For an arbitrary quadrature angle, the marginal
distribution can be obtained by applying the phase shift operator to the Wigner function:

(2.27)
∫ ∞

−∞
W(xθ, pθ)dpθ = 〈xθ| ρ̂ |xθ〉 = P(xθ).

This corresponds to the projection of the Wigner function onto the quadrature state |xθ〉 =
Û(θ) |x〉. Therefore, while the Wigner function is not itself measurable as a result of the
non-commutivity of the quadrature operators, it can be used to calculate the distributions
corresponding to the measurement of an arbitrary field quadrature. An important prop-
erty of the Wigner function is that is allows negative values of W(x, p), and is therefore a
quasi-probability distribution. The negativity of the Wigner function is associated with non-
classical features of a quantum state [31]. However, there exist many classical and quantum
states which do not have negative values of W(x, p). For example, Gaussian states, which are
defined by Gaussian distributed Wigner functions, must have a positive Wigner function.
Coherent states and squeezed states are examples of Gaussian states, and will be discussed
in further detail in Section 2.1.4. Other quasi-probability distributions that can be used to
describe quantum states are the Husimi Q representation and the Glauber–Sudarshan P
representation [32]. However, the Wigner function will be the distribution used to represent
quantum states in this thesis.

2.1.4 Quantum States of Light

In this section, we describe some single-mode quantum states which will be used in the
chapters that follow.
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2.1.4.1 Photon Number States

From the description of the photon number state in Section 2.1.2, the single-mode number
state |n〉 can be defined in a simplified notation as the eigenstate of the photon number
operator n̂ = â†â:

(2.28) n̂ |n〉 = n |n〉 .

Using Equation 2.15, the state |n〉 can then be written in terms of the vacuum state as

(2.29) |n〉 = (â†)n
p

n!
|0〉 = N̂(n) |0〉 ,

where we have defined the number state creation operator as

(2.30) N̂(n)= (â†)n
p

n!
.

From Equation 2.12, we can see that number states have a definite energy:

(2.31) 〈n| Ĥ |n〉 = ħω
(
n+ 1

2

)
and 〈n| Ĥ2 |n〉−〈n| Ĥ |n〉2 = 0.

The expected value and variance of the quadrature operator xθ can also be directly calcu-
lated as

(2.32) 〈n| x̂θ |n〉 = 0 and 〈n| x̂2
θ |n〉−〈n| x̂θ |n〉2 = n+ 1

2
,

which corresponds to a distribution centered on the origin, with a variance that is indepen-
dent of the phase θ and scales with the energy of the state. We can infer from this that
the mean value of the electric field for a number state is zero, and this behaviour is con-
siderably different to that of a classical field, which oscillates at frequency ω. The Wigner
function is [27]

(2.33) W(x, p)= (−1)n

π
Ln[2(x2 + p2)]e−x2−p2

,

where the function Ln[•] is the Laguerre polynomial, defined as

(2.34) Ln[x]=
n∑

k=0

(
n
k

)
(−1)k

k!
xk,

for binomial coefficient

(2.35)

(
n
k

)
= n!

k!(n−k)!
.

For any number state, this Wigner function is symmetric about the origin, indicating that
it always has a completely undefined phase. The Wigner function for a 3-photon number
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Figure 2.1: Wigner function of a 3-photon number state, |3〉.

state |3〉 is plotted in Figure 2.1. The highly non-classical nature of the photon number
state is indicated by the regions of negativity in the Wigner function. The vacuum state |0〉
is a special case of the number state, and using Equation 2.33, the Wigner function of the
vacuum state is

(2.36) W(x, p)= e−x2−p2

π
.

This is a Gaussian probability distribution with a standard deviation of 1/
p

2. From Equa-
tion 2.21, we can see that the vacuum state is a minimum uncertainty state.

2.1.4.2 Coherent States

The coherent state is defined as an eigenstate of the annihilation operator [26]:

(2.37) â |α〉 =α |α〉 ,

for complex amplitude α. It is useful for calculations to write this in the number basis, by
using Equation 2.29 and Equation 2.37:

(2.38) |α〉 =
∞∑
n
|n〉〈n|α〉 =

∞∑
n

αn
p

n!
〈0|α〉 |n〉 .

By substituting this expression into the normalisation condition 〈α|α〉 = 1, and using the
orthogonality of number states, it immediately follows that e|α|

2 | 〈0|α〉 |2 = 1, and this gives

(2.39) |α〉 = e−
|α|2

2
∞∑
n

αn
p

n!
|n〉 .
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An important property of Equation 2.39 is that for two coherent states
∣∣α〉

and
∣∣β〉

, the
overlap

∣∣〈α∣∣β〉∣∣2 = e−|α−β|
2
. Therefore, the coherent states do not form an orthonormal basis

set. However, the overlap decays exponentially with distance, such that
∣∣α〉

and
∣∣β〉

are
approximately orthogonal if |α−β| À 1. Equation 2.39 may also be written in terms of a
unitary operation on the vacuum state as [26]

(2.40) |α〉 = eαâ†−α∗â |0〉 = D(α) |0〉 ,

where the displacement operator D̂(α) is defined as

(2.41) D̂(α)= eαâ†−α∗â.

By considering the case of α= 0, it is evident that the coherent state with α= 0 is identical
to the zero photon Fock state, and that both states can be equally considered as the vacuum
state |0〉. The action of the displacement operator on the creation and annihilation operators
are respectively:

(2.42) D̂(α)†âD̂(α)=α+ â and D̂(α)†â†D̂(α)=α∗+ â†.

Therefore, for a coherent state with complex amplitude α = |α|eiθ, the expectation value
and variance of the quadrature operators are given by

(2.43) 〈α| x̂ |α〉 = x0 =
p

2|α|cos(θ), 〈α| x̂2 |α〉−〈α| x̂ |α〉2 = 1
2

and

(2.44) 〈α| p̂ |α〉 = p0 =
p

2|α|sin(θ), 〈α| p̂2 |α〉−〈α| p̂ |α〉2 = 1
2

.

From Equation 2.18, this implies that the mean value of the electric field oscillates with
frequency ω. Furthermore, the quadrature noise becomes negligible in the limit α À 1.
Coherent states therefore closely resemble the behaviour of classical light predicted by
Equation 2.9. It can also be shown that laser light can be considered as a coherent state
excitation [26]. The photon number statistics are governed by the probability distribution

(2.45) P(n)= |〈n|α〉|2 = e
−|α|2

2 |α|2p
n!

,

which is a Poissonian distribution defined by a mean and variance of

(2.46) 〈α| n̂ |α〉 = |α|2 and 〈α| n̂2 |α〉−〈α| n̂ |α〉2 = |α|2.

The Poisson distribution approaches a Gaussian distribution for large values of 〈n̂〉, and
the resulting photon number uncertainty of ∆n =p

n is often referred to as shot noise. The
Wigner function of a coherent state is given by [27]

(2.47) W(x, p)= 1
π

e−(x−x0)2−(p−p0)2 .
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Equation 2.47 describes a Gaussian minimum uncertainty state for all values of α, and cor-
responds to a vacuum state displaced from the origin by the distance |α|. This is illustrated
in Figure 2.2, in which the Wigner function for the coherent state |α〉 is plotted for α = 0
and α = 3e

iπ
4 . It is evident that the quadrature noise distribution of the coherent state is

independent of the amplitude α.

Figure 2.2: Wigner function of the coherent state, |α〉, for (a) α= 0 and (b) α= 3e
iπ
4 .

2.1.4.3 Squeezed States

A squeezed state of light can be defined by the condition that for some phase angle θ, the
uncertainty ∆x̂θ < 1/

p
2 [28]. From Equation 2.21, it is clear that there must be a corre-

sponding increase in the uncertainty of the orthogonal p̂θ quadrature. A particularly useful
example of squeezed light is provided by the squeezed coherent state, defined as

(2.48) |α, z〉 = D̂(α)Ŝ(z) |0〉 ,

where D̂(α) is the displacement operator as defined in Equation 2.41, and Ŝ(z) is the squeez-
ing operator:

(2.49) Ŝ(z)= e
1
2 (z∗â2−zâ†2) and z = reiϑ,

for real r and ϑ. The action of the squeezing operator on the creation and annihilation
operators is given by [26]
(2.50)

Ŝ(z)†âŜ(z)= âcosh(r)− â†eiϑ sinh(r) and Ŝ(z)†â†Ŝ(z)= â† cosh(r)− âe−iϑ sinh(r).

By using Equation 2.42, the action of the combined squeezing and displacement operators
on the creation and annihilation operators can then be derived as

(2.51) D̂(α)†Ŝ(z)†âŜ(z)D̂(α)= âcosh(r)− â†eiϑ sinh(r)+α
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and

(2.52) D̂(α)†Ŝ(z)†â†Ŝ(z)D̂(α)= â† cosh(r)− âe−iϑ sinh(r)+α∗.

This leads to the following eigenvalue equation for |α, z〉:

(2.53) (âcosh(r)+ â†eiϑ sinh(r)) |α, z〉 = (αcosh(r)+α∗eiϑ sinh(r)) |α, z〉 .

Squeezed coherent states therefore tend towards quadrature eigenstates in the limit of
infinite squeezing r →∞. For α = |α|eiθ, the quadrature expectation values and variances
are given by
(2.54)

〈α, z| x̂ |α, z〉 =
p

2|α|cos(θ), 〈α, z| x̂2 |α, z〉−〈α, z| x̂ |α, z〉2 = 1
2

[
e2r sin2

(
ϑ

2

)
+ e−2r cos2

(
ϑ

2

)]
and
(2.55)

〈α, z| p̂ |α, z〉 =
p

2|α|sin(θ), 〈α, z| p̂2 |α, z〉−〈α, z| p̂ |α, z〉2 = 1
2

[
e2r cos2

(
ϑ

2

)
+ e−2r sin2

(
ϑ

2

)]
.

This implies that, while the mean value of the quadrature operators is identical to that of
a coherent state, the uncertainty in each quadrature is dependant on the squeezing angle
ϑ. For r > 0, the minimum and maximum uncertainty values are er/

p
2 and e−r/

p
2 respec-

tively, and can therefore be reduced below the uncertainty of the vacuum state |0〉. For the
case that r = 0, the squeezed coherent state is identical to a coherent state. We note that for
ϑ = 0, |α, z〉 is a minimum uncertainty state according to Equation 2.21. However, not all
squeezed states are minimum uncertainty states, an example being the Kerr state, which
will be discussed in Chapter 3.

The Wigner function of a general squeezed coherent state |α, z〉 is given by [33]

(2.56) W(x, p)= 1
π

e−e2rα2
x−e−2rα2

y ,

where

(2.57)
αx = (x−R(α))cos

(
ϑ

2

)
+ (y−I(α))sin

(
ϑ

2

)
,

αy =−(x−R(α))sin
(
ϑ

2

)
+ (y−I(α))cos

(
ϑ

2

)
,

with R(•) and I(•) corresponding to the real and imaginary parts respectively. In Figure 2.3,
the Wigner function for a squeezed coherent state is plotted for α = 3ei π4 , r = 0.5 and ϑ =
π
2 . Since ϑ = 2θ, the squeezing is oriented in the amplitude direction, and such a state is
referred to as amplitude squeezed.

The contour of W(x, p) corresponding to the uncertainty of the squeezed coherent state
is an ellipse in phase space, i.e. the uncertainty is reduced in one quadrature at the expense
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Figure 2.3: Wigner function for a squeezed coherent state with α= 3ei π4 , and z = 0.5ei π2 .

of increased uncertainty in the orthogonal quadrature, and the corresponding probability
distribution is non-classical [34]. For general ϑ, the orientation of this squeezing ellipse in
quadrature space is given by the angle ϑ/2, as indicated by Equations 2.54-2.55. The photon
number statistics are given by

(2.58) 〈α, z| n̂ |α, z〉 = |α|2 +sinh2(r)

and

(2.59) 〈α, z| n̂2 |α, z〉−〈α, z| n̂ |α, z〉2

= |α|2
(
e2r sin2

(
θ− 1

2
ϑ

)
+ e−2r cos2

(
θ− 1

2
ϑ

))
+2sinh2(r)

(
sinh2(r)+1

)
.

This means that, for appropriate phase angles, the photon number statistics of squeezed
coherent light can be sub-Poissonian, with a photon number uncertainty reduced to ∆n =
e−rpn, below the shot noise limit of the coherent state. The minor axis of the uncertainty
ellipse in this case is parallel to the direction of the complex amplitude α, and such a state
is therefore amplitude squeezed. Conversely, a phase squeezed state has minimum uncer-
tainty in the direction orthogonal to α.

In the case that α = 0, the squeezed coherent state corresponds to a squeezed vacuum
state |z〉 = Ŝ(z) |0〉. From Equations 2.54 and 2.55, it is clear that for squeezed vacuum,
while the expectation values of the quadrature operators vanish, the quadrature variances
are identical to that of a squeezed coherent state, and can therefore also be reduced below
that of the vacuum state. For r = 0, the squeezed vacuum state |z〉 is reduced to the vac-
uum state |0〉. In general, it can be shown that, for some choice of ϑ, the application of the
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squeezing operator Ŝ(z) to any quantum state defined by the density matrix ρ̂ has the effect
of reducing the quadrature uncertainty ∆x̂ by a factor of e−r [34].

2.1.5 Multi-mode States and Operators

It is often the case that measurements in quantum optics require the description of more
than one mode. In this section, some states and operators will be introduced that can be
used to describe the behaviour of multi-mode light, and optical components that act on the
Hilbert space of more than one mode.

2.1.5.1 Beamsplitters

A beamsplitter is an optical component that transmits and reflects incident light into two
orthogonal spatial output modes. For the case that the properties of the beamsplitter are
independent of the polarisation of incident light, i.e. for a non-polarising beamsplitter, the
transformation of the two input modes defined by annihilation operators â and b̂ are given
by [26]

(2.60)
ĉ = teiφ1 â+ reiφ2 b̂,

d̂ = reiφ3 â+ teiφ4 b̂,

where t, r, φ1, φ2, φ3, φ4 ∈R. The parameters r and t are respectively the reflection and
transmission coefficients, and φn is the phase shift. This transformation is illustrated geo-
metrically in Figure 2.4(a). Assuming that the transformations preserve the commutation
relations, i.e. [ĉ, ĉ†] = [d̂, d̂†] = 1 and [ĉ, d̂†] = 0, the following conditions can be directly ob-
tained:

(2.61) r2 + t2 = 1 and φ1 +φ4 −φ2 −φ3 =π.

The values of R = r2 and T = t2 are known as the reflectance and transmittance, and define
the average fraction of energy reflected and transmitted from the beamsplitter respectively.
The ratio R : T is often written as a percentage, such that for example a 90:10 beamsplitter
is used to describe a beamsplitter with r2 = 0.9 and t2 = 0.1.

It is noted that, in order to preserve the commutation relations, the transformation
given in Equation 2.60 must be used even if one of the input modes is empty, and therefore
corresponds to a vacuum state. The coupling of vacuum fluctuations to non-classical light
can have a significant effect on the noise characteristics of the quantum state. Equation 2.61
implies that there is some freedom in the choice of the phase shift of each component, and
the correct phase shifts can be specified by considering the boundary conditions on the
electromagnetic field at a partially reflective and transmissive surface. For example, light
reflected by a medium with a higher refractive index than the one in which it is propagating
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Figure 2.4: Geometrical illustration of the transformation for polarising and non-polarising
beamsplitters, with input modes â, b̂ and output modes ĉ, d̂. (a) Non-polarising beamsplitter.
(b) Polarising beamsplitter, for horizontally polarised input light. (c) Polarising beamsplit-
ter, for vertically polarised input light.

acquires a phase shift of π, while light reflected by a medium with a lower refractive index
does not acquire a phase shift. Another important consequence of the conditions given in
Equation 2.61 is that the total photon number is conserved:

(2.62) n̂c + n̂d = ĉ† ĉ+ d̂†d̂ = (r2 + t2)(â†â+ b̂†b̂)= n̂a + n̂b,

as expected for a lossless beamsplitter.
When considering an optical system with more than one mode, it is often convenient to

use matrices to define transformations such as beamsplitter relations. Equation 2.60 can
therefore be written as

(2.63)

[
ĉ
d̂

]
=

[
teiφ1 reiφ2

reiφ3 teiφ4

][
â
b̂

]
.

For example, in the case of a 90:10 beamsplitter, the transformation matrix B is given by

(2.64) B =
[ p

0.1
p

0.9
−p0.9

p
0.1

]
.

It can be seen from this example that the π phase shift on the mode â upon reflection
ensures that the matrix B is unitary. As discussed in Section 2.1.2, this is necessary since
unitary transformations preserve the commutation relations.

Another commonly used beamsplitter in quantum optics experiments is the polarising
beamsplitter, which reflects and transmits orthogonal polarisation components. This is a
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four-mode transformation which can be written as

(2.65)


ĉH

d̂H

ĉV

d̂V

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




âH

b̂H

âV

b̂V

 .

As can be seen from Equation 2.65, the horizontally polarised component is always trans-
mitted, while the vertically polarised component is reflected into the perpendicular spatial
mode. This is illustrated in Figure 2.4(b)-(c). It can also be directly verified that this is
a unitary and photon number conserving transformation. While polarising beamsplitters
can equally be made to reflect horizontally polarised light and transmit vertically polarised
light, the convention used in Equation 2.65 will be used in this thesis.

2.1.5.2 Waveplates

Other useful optical components include half-wave plates and quarter-wave plates. These
devices act on a single spatial mode, and apply a relative phase shift between orthogonal
polarisation components. We have seen that the action of the phase shift operator U(θ) on
the annihilation operators gives U(θ)†âU(θ) = âe−iθ. Therefore, the action of a waveplate
on the polarisation modes is given by

(2.66)

[
b̂H

b̂V

]
=

[
1 0
0 e−iθ

][
âH

âV

]
=

[
âH

âV e−iθ

]
.

Such a waveplate can be oriented at an arbitrary angle φ to the horizontal axis. The trans-
formation can then be defined by a more general matrix M(θ,φ):

(2.67) M(θ,φ)=
[

cos
(
φ

) −sin
(
φ

)
sin

(
φ

)
cos

(
φ

) ][
1 0
0 e−iθ

][
cos

(
φ

)
sin

(
φ

)
−sin

(
φ

)
cos

(
φ

)]

=
[

cos2(φ)+ e−iθ sin2(φ) sin
(
φ

)
cos

(
φ

)
(1− e−iθ)

sin
(
φ

)
cos

(
φ

)
(1− e−iθ) sin2(φ)+ e−iθ cos2(φ)

]
.

For half-wave plates, θ =π, and for quarter-wave plates, θ =π/2. The effect of these devices
can more easily be seen by writing the specific matrices:
(2.68)

MHWP (φ)=
[

cos
(
2φ

)
sin

(
2φ

)
sin

(
2φ

) −cos
(
2φ

)] , MQWP (φ)=
[

cos2(φ)− isin2(φ) sin
(
φ

)
cos

(
φ

)
(1+ i)

sin
(
φ

)
cos

(
φ

)
(1+ i) sin2(φ)− i cos2(φ)

]
.

Half-wave plates accordingly rotate the polarisation direction of incident light, while quarter-
wave plates alter the ellipticity of the incident light, and can therefore be used to transform
between linear and circular polarisation states.
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2.1.5.3 Continuous Mode Light

In Section 2.1.2, the electromagnetic field operators were described in terms of a sum of
frequency modes. Implicit in this description was the assumption of a finite quantisation
cavity, of volume V , which ensures that only a discrete set of frequencies are supported.
To describe real experiments, it is often useful take the limit of a quantisation axis which
extends infinitely in the z direction, while retaining the assumption that the field is con-
fined to a finite area A perpendicular to this axis. In this case, a continuous spectrum of
frequencies are allowed, and therefore the summation of Equation 2.11 can be replaced by
an integral. The conversion between discrete and continuous variable notation gives [26]

(2.69)
∑
k
→ 1
∆ω

∫
dω, δk,k′ →∆ωδ(ω−ω′),

where the spacing of frequency modes ∆ω→ 0 in the limit of an infinite quantisation axis.
The bosonic creation and annihilation operators are related by

(2.70) âk →
p
∆ωâ(ω) and â†

k →
p
∆ωâ(ω)†,

which means that the commutation relations are maintained:

(2.71) [â(ω), â(ω′)†]= δ(ω−ω′) and [â(ω), â(ω′)]= 0.

Therefore, the continuous mode field operators can be treated much the same as the discrete
mode counterparts. However, since a single mode of the continuum has zero measure, it is
necessary to use the single particle representation for continuous mode Fock states, by
labelling the frequency of each excitation explicitly. With this notation, an n-photon Fock
state is written in terms of the vacuum state as

(2.72) |ω1,ω2...,ωn〉 = 1p
n!

â(ωn)†...â(ω1)† |0〉 .

With the condition that â(ω) |0〉 = 0, the action of the creation and annihilation operators on
a continuous mode Fock state are then given by [34]

(2.73) â(ω)† |ω1, ...,ωn〉 =
p

1+n |ω,ω1...,ωn〉

and

(2.74) â(ω) |ω1, ...,ωn〉 = 1p
n

n∑
i
δ(ω−ωi) |ω1, ...,ωi−1,ωi+1, ...,ωn〉 .

Orthogonality in the continuous mode basis is given by the expression:

(2.75)
〈
ω′

m, ...,ω′
1
∣∣ω1, ...,ωn

〉= δnm
1
n!

∑
N
δ(ω1 −ω′

1)δ(ω2 −ω′
2)...

20



2.1. QUANTUM OPTICS

where the summation is taken over the n! possible pairings of the different frequency
modes. Given the complexity of the above notation, it is often useful to transform into a
discrete mode basis by [35]

(2.76) b̂†
i =

∫
φi(ω)â(ω)†dω,

which may be compared to the equivalent transformation between discrete mode bases
given in Equation 2.13. Provided that the functions φi(ω) form an orthonormal basis set, the
resulting mode operators b̂i satisfy the discrete mode commutation relations. This approach
can for example be used to define a Fock space where each excitation corresponds to a single
photon wavepacket distributed over a range of frequencies.

Another useful feature of the continuous mode basis is that, assuming the bandwidth
of the field excitation is much smaller that its central frequency, it is possible to define
the time domain creation and annihilation operators, which are related to the frequency
domain annihilation operators by Fourier transform [26]:

(2.77) â(t)=
∫ ∞

−∞
â(ω)e−iωtdω, â(ω)=

∫ ∞

−∞
â(t)eiωtdt.

It follows from Equation 2.71 that such time domain operators also have an associated
commutation relation:

(2.78) [â(t), â(t′)†]= δ(t− t′).

The photon number operator can be written as a function of either time or frequency as

(2.79) n̂ =
∫

â(ω)†â(ω)dω=
∫

â(t)†â(t)dt.

We will see that the use of the continuous mode operators will play an important role in
describing the propagation of pulsed light, and in the theory of photodetection.

2.1.6 Fluctuation Analysis of Quantum States

When considering the time evolution of quantum fields, it is often useful to separate the
annihilation operator into the classical mean-field component

〈
Â(t)

〉
and the quantum fluc-

tuation operator â(t) [36]:

(2.80) Â(t)= 〈
Â(t)

〉+ â(t)=α(t)+ â(t).

Here, Â(t) is the annihilation operator evolved according to the Heisenberg picture, and
â(t) governs the quantum fluctuations. It is noted that

〈
Â(t)

〉
is still in general a function of

time, since the expectation value is taken on the vacuum state |0〉 and so does not average
over stochastic or deterministic variations in the coherent amplitude α(t).
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As a simple example, we can consider that for a quasi-monochromatic coherent state,
we have α(t) = α, where |α|2 is the average photon flux per unit time. The total number of
photons integrated over a duration T is given by

(2.81) n̂ =
∫ T

0
Â(t)† Â(t)dt =

∫ T

0

(
α∗+ â(t)†

)(
α+ â(t)

)
dt

= |α|2T +
∫ T

0

(
α∗â(t)+αâ(t)† + â(t)†â(t)

)
dt,

where â(t) is just the time domain bosonic annihilation operator as defined in Equation 2.77.
This gives a photon number mean and variance of

(2.82) 〈n̂〉 = |α|2T and 〈n̂2〉−〈n̂〉2 =
∫ T

0

∫ T

0
|α|2〈â(t)â(t′)†〉dtdt′ = |α|2T,

as expected from Equation 2.46. In Section 2.2, this approach will provide a useful means
of analysing photodetection techniques.

2.2 Photodetection

In order to describe in more detail how the quantum states discussed in Section 2.1 relate to
experimentally measured quantities, it is necessary to introduce the theory of photodetec-
tion. Here, we will focus on photodiode measurements, which will be the method of detection
used in Chapters 3-5.

2.2.1 Direct Detection

A photodiode is a semiconducting device which generates free electrons when photons are
absorbed, allowing a current to flow which is proportional to the number of detected pho-
tons [37]. We can therefore introduce a photocurrent operator:

(2.83) î(t)= qn̂(t)= qÂ(t)† Â(t),

where q is the electron charge, and this corresponds to the instantaneous photocurrent gen-
erated from an ideal detector. Direct detection refers to the measurement strategy whereby
a quantum state is measured directly by a single photodiode, and can therefore be used to
perform photon number measurements of a quantum state. This is illustrated in Figure 2.5.
A photodetector typically consists of a photodiode connected to an electronic circuit which
amplifies the voltage of the measured signal, such that it can be analysed by a measurement
device such as a spectrum analyser or oscilloscope.

Since not all photons that reach the photodiode will be absorbed, the quantum efficiency
η is used to characterise the ratio of generated electrons to incident photons. This effect
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Figure 2.5: Direct detection of a quantum state of light. It is assumed that the active area of
the photodiode is larger than the cross-sectional area of the mode function of the detected
light. The photocurrent is analysed on a measuring device such as a spectrum analyser or
oscilloscope.

can be accounted for by modelling the detector as a perfect efficiency photodiode preceded
by a beamsplitter with transmission coefficient t = p

η [26]. Another feature of imperfect
detectors is the electronic noise, which can be described by the addition of a stochastic noise
term to the measured photocurrent. Writing the annihilation operator as Â(t) = |α(t)|eiθ +
â(t), the photocurrent operator can be approximated as

(2.84) î(t)≈ q
(
|α(t)|2 +

p
2|α(t)|x̂θ(t)

)
,

where it is assumed that the term quadratic in the annihilation operators is negligible,
and electronic noise has been neglected. The quadrature operator x̂θ(t), as defined in Equa-
tion 2.22, corresponds to the quantum amplitude fluctuations of Â(t).

2.2.2 Homodyne Detection

Another commonly used detection technique is homodyne detection, which enables the mea-
surement of arbitrary quadrature components of an optical field [38]. This scheme is shown
in Figure 2.6 and involves the interference of a signal field Âs(t) to be measured with a
phase shifted reference field ÂLO(t)e−iφ, known as the local oscillator (LO), on a 50:50
beamsplitter (BS). The two output modes of the beamsplitter are measured on separate
photodiodes, and the quadrature measurement is achieved by taking the electronic sub-
traction of the two photocurrents. The phase φ can be controlled by a phase shifter applied
to the LO before the 50:50 beamsplitter. The output of each mode of the beamsplitter can
then be written as

(2.85) Â1(t)= 1p
2

(Âs(t)+ ÂLO(t)e−iφ), Â2(t)= 1p
2

(Âs(t)− ÂLO(t)e−iφ).

This results is a value for the photon number operator measured at each detector of

(2.86) n̂1(t)= 1
2

(Â†
s(t)Âs(t)+ Â†

LO(t)ÂLO(t)+ Â†
s(t)ÂLO(t)e−iφ+ Â†

LO(t)Âs(t)eiφ)
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Figure 2.6: Homodyne detection of a quantum state of light. The signal beam and local
oscillator typically come from the same source, in order that the local oscillator can provide
a constant phase reference.

and

(2.87) n̂2(t)= 1
2

(Â†
s(t)Âs(t)+ Â†

LO(t)ÂLO(t)− Â†
s(t)ÂLO(t)e−iφ− Â†

LO(t)Âs(t)eiφ).

The subtraction photocurrent is therefore

(2.88) î−(t)= q(n̂1(t)− n̂2(t))= q(Â†
s(t)ÂLO(t)e−iφ+ Â†

LO(t)Âs(t)eiφ).

If the LO is a bright coherent state, it may be written as ÂLO(t)= |αLO|eiθLO + âLO(t), where
âLO(t) is the ordinary bosonic annihilation operator. Furthermore, if the local oscillator is
sufficiently bright compared to the signal field (|αLO|À 〈Âs(t)〉), then the quantum fluctua-
tions on the LO may be neglected, resulting in

(2.89) î−(t)= q|αLO|
(
eθLO−φ Â†

s(t)+ eφ−θLO Âs(t)
)
=
p

2q|αLO|x̂s,θ(t),

where x̂s,θ is the quadrature amplitude of the signal field at phase θ = θLO−φ, as defined in
Equation 2.22. This means that quadrature measurements of the signal field can be taken
at arbitrary phases θ by scanning the phase shift φ applied to the LO. An advantage of this
strategy is that, in the strong LO limit, the detected photocurrent is insensitive to noise on
the LO beam [39]. Furthermore, given that the difference photocurrent is proportional to
the amplitude of the LO, arbitrarily small signals can be measured by increasing the power
of the local oscillator. By repeated measurements on identical copies of quantum states at
different phase angles, this strategy can be used to reconstruct the Wigner function of an
arbitrary single mode quantum state, in a process called homodyne tomography [40].
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2.2.3 Self-Homodyne Detection

A variation of the homodyne detection technique described above is self-homodyne detec-
tion, which is also referred to as balanced detection. In this case, the local oscillator beam
is removed, and both the addition and subtraction photocurrents are measured, as shown
in Figure 2.7. The signal field may be separated into the mean field and fluctuating com-

Figure 2.7: Self-homodyne detection of a quantum state of light. The removal of the local
oscillator means that only the amplitude quadrature is measured, as in direct detection.
The dashed line indicates a vacuum port.

ponents as Âs(t) = |α|eiθ + âs(t), and the LO is replaced by the vacuum state âv(t). From
Equation 2.86-2.87, the addition and subtraction photocurrents are then respectively

(2.90) î+(t)≈ q
(
|α|2 +

p
2|α|x̂s,θ(t)

)
and

(2.91) î−(t)=
p

2q|α|x̂v,θ(t).

By using the noise of the subtraction photocurrent as a reference, this measurement there-
fore enables a direct comparison of the amplitude noise of the quantum state Âs(t) relative
to the vacuum noise [36]. This can be used to measure the squeezing of bright amplitude
squeezed light, as discussed in Section 2.3.2.

For homodyne and self-homodyne detection, transimpedance-amplified balanced pho-
todetectors are often used [41]. These devices consist of two photodiodes connected in series,
such that the difference photocurrent is amplified. In the case of self-homodyne detection,
the addition photocurrent can be measured by sending all the light to one of the two photo-
diodes.
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2.2.4 Spectral Analysis of Photocurrents

We have seen in Sections 2.2.1-2.2.3 how the time domain photocurrent relates to the
quantum fluctuations of the measured light for these detection strategies. In practise, it
is also necessary to consider the low frequency classical noise due to the optical field and
the detection electronics. In the case of homodyne detection, there is significant cancella-
tion of low frequency optical noise in the subtraction photocurrent, since classical laser
intensity fluctuations will be correlated between the photodiodes. Therefore, for a detector
with sufficiently low electronic noise, time domain measurements of quantum noise can
be achieved [42]. However, in this thesis, we will be primarily concerned with direct mea-
surements of a quantum field, as described in Section 2.2.1. In this case, frequency domain
measurements are necessary to avoid the effect of classical fluctuations in the detected
light [36]. This can be achieved either by taking the Fourier transform of time domain data
acquired with an oscilloscope, or by measuring the spectral components of the photocurrent
directly using an electronic spectrum analyser (SA). In this section, some relevant details
of spectrum analyser measurements will be discussed.

An SA is an electronic device which measures the power spectrum of a voltage source.
Most modern spectrum analysers operate using the heterodyne principle, and the opera-
tion of such a spectrum analyser is outlined is as follows, based on the description in [43].
A block diagram illustrating the operation a heterodyne spectrum analyser is shown in
Figure 2.8. The input signal is mixed with a local oscillator, which shifts the frequency com-

Figure 2.8: Block diagram of a spectrum analyser (SA) operating on the heterodyne princi-
ple.

ponents of the signal, and the resulting signal is amplified. The intermediate frequency (IF)
filter is then used to select a frequency component of the signal. The IF filter has a fixed
frequency, so the frequency of the local oscillator must be tuned in order to select differ-
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ent frequency components of the signal. The 3 dB bandwidth of the IF filter is known as
the resolution bandwidth (RBW), and determines the frequency resolution of the displayed
noise spectrum. Following the IF filter, the signal is logarithmically amplified, which en-
ables the detection of signals with a large dynamic range. The envelope detector outputs a
voltage corresponding to the amplitude of the selected frequency component. The low-pass
video filter then reduces the fluctuations in the voltage from the envelope detector, effec-
tively averaging the measured signal. The bandwidth of the video filter is called the video
bandwidth (VBW), and for values of VBW<RBW, the video filter reduces the fluctuations on
the measured signal. Analog-to-digital converters are used to digitise the measured signal
before it is displayed, and each measured sample of the spectral noise power can therefore
be a result of further processing on multiple data points. For the measurements discussed
in this thesis, the spectrum analyser was set to sample mode, which means only one sam-
ple is used for each data point, and avoids additional complexity involved in analysing the
effect of further digital processing on the statistics of the measured data.

The measured power in a ±B/2 frequency interval around the detection frequency Ω can
be defined as

(2.92) pΩ = 2R
∣∣∣∣∫ ∞

−∞
H(ν) î(ν)dν

∣∣∣∣2 ,

where R is the resistance of the measurement device, H(ν) is the response function of the IF
filter, and the factor of 2 comes from the integration over positive and negative frequencies.
The spectral photocurrent î(ν) is related to the time domain photocurrent î(t) by Fourier
transform:

(2.93) î(ν)=
∫ ∞

−∞
î(t)e−2πiνtdt.

The function H(ν) is typically Gaussian distributed. While a rectangular filter function
would be ideal, the transient response of such a filter would significantly limit the speed
of the measurement. Nonetheless, when theoretically modelling the spectral noise power, a
rectangular filter function can often be assumed. In this case, Equation 2.92 reduces to

(2.94) pΩ = 2R

∣∣∣∣∣
∫ Ω+B

2

Ω−B
2

î(ν)dν

∣∣∣∣∣
2

.

It is important to note that Equation 2.94 differs from an often quoted definition of the

power in a frequency band, pΩ = 2R
∫ Ω+B

2

Ω−B
2
|i(ν)|2dν [36]. The reason for the definition used

here is that measuring devices such as spectrum analysers and oscilloscopes are fundamen-
tally voltage detectors, and therefore the displayed power level is computed from the voltage
measured in a given frequency range. This means that the integration of the photocurrent
density effectively occurs before taking the absolute square. While the average value 〈pΩ〉
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typically does not significantly differ between these definitions, Var(pΩ) does. Since much
of the analysis presented in this thesis will relate to the variance of the spectral power,
Equation 2.94 will be used as a definition for pΩ throughout.

In order to extract useful information from spectrum analyser measurements, it is often
necessary to make relative measurements between different spectral features. For exam-
ple, if the signal has a single harmonic component at a sideband frequency, signal-to-noise
ratio (SNR) measurements can be used to gain information about the properties of the de-
tected light. However, it is necessary to account for some of the electronic processing of
the spectrum analyser to correctly interpret the results of such measurements. When the
video filter averages the output of the logarithmic amplifier, the power pΩ is determined
from square of the average voltage, where the average voltage is a result of logarithmic
voltage measurements. The resulting power can differ from that which would be obtained
by computing the average of a series of power measurements, if the voltage does not have
a Gaussian probability distribution [44]. This is because the average of the log is not nec-
essarily the same as the log of the average. This is the case for noise measurements, which
follow a Rayleigh distribution, and results in an under-response of 2.51 dB in the measured
power of broadband noise. This means that a correction factor of 2.51 dB must be added to
noise measurements to obtain a true estimate of the noise power. The voltage of CW signals
is typically Gaussian distributed, and therefore this correction factor does not apply.

Another important consideration when analysing noise measurements relates to the
equivalent noise bandwidth (ENB), which defines the width of a rectangular filter which
would measure the same pΩ in response to white noise as a Gaussian filter with a RBW of B.
The ratio between the ENB and the RBW is 1.056 (0.24 dB). Therefore, if the assumption of
a rectangular is made when analysing the spectral noise power, 0.24 dB must be subtracted
from the measured noise power to correct for this difference [44].

So far we have discussed the additional considerations required when analysing the av-
erage power values measured by a spectrum analyser. In this thesis, the behaviour of the
variance of such measurements will also play an important role. Therefore, it is useful to
discuss the effect that video filtering has on the variance spectrum analyser measurements.
As outlined above, the function of the video filter is to reduce the variance of the power mea-
surements, and we will therefore introduce the factor ε, which corresponds to the variance
reduction factor due to video averaging. The bandwidth of the envelope modulation noise
resulting from these power fluctuations is approximately half the effective noise bandwidth
of the RBW filter, and the noise bandwidth of the video filter is typically a factor of π/2
greater than the VBW [44]. The value of ε results from the ratio of these two bandwidths,
and is therefore

(2.95) ε= πBV

1.056B
.
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It should be noted that modern spectrum analysers are not restricted to using the het-
erodyne principle described above, and can also output a power spectrum by digitising the
time domain data and performing the fast Fourier transform (FFT) to measure the spectral
noise power [45]. The same process would be required if using an oscilloscope for this mea-
surement. An advantage of FFT analysers is that, whereas heterodyne analysers require
an individual measurement at each frequency, FFT analysers can output the spectral noise
power for a range of frequencies using a single measurement of integration time t = 1/B,
where B is the frequency resolution. However, FFT analysers are limited by the sample
rate of the analog-to-digital converter, and therefore are more suitable for measurements
of low frequency signals. Many of the measurements in this thesis will be performed using
a spectrum analyser operating in heterodyne mode, due to the high measurement frequen-
cies and RBW. Nonetheless, Equation 2.94 may be used to analyse the spectral noise power
for both FFT and heterodyne spectrum analysis. In the case of FFT analysers, the vari-
ance reduction factor equivalent to that in Equation 2.95 simply corresponds to the inverse
of the number of averages used to compute each estimate of pΩ. Many of the spectrum
analyser measurements in this thesis will only be taken at a single frequency, for example
when monitoring the power of a signal over time. The spectrum analyser setting corre-
sponding to such time-domain measurements of a single frequency component is referred
to as zero-span mode. In this case, the speed advantage of FFT analysers measuring over
a wide frequency range does not apply, making heterodyne analysers ideal for this type of
measurement.

2.3 Measurements of Squeezed Light

The focus of this thesis is the application of bright squeezed light to high precision mea-
surements. Therefore, in this section, some of the concepts introduced so far will be used to
describe measurements of squeezed light in more detail. In particular, we will discuss the
detection of broadband amplitude squeezed light, accounting for the low frequency noise
typically observed in real experiments.

2.3.1 Squeezed Light in the Frequency Domain

We first consider the single mode squeezing operator defined in Equation 2.49. In the basis
of continuous frequency modes, the squeezing operator can be generalised as [46]

(2.96) Ŝ(ξ)= e
1
2 (P̂(ξ)−P̂(ξ)†),

where the operator

(2.97) P̂(ξ)=
∫ ∫

ξ(ω,ω′)â(ω)â(ω′)dωdω′
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is known as the continuous mode photon pair annihilation operator. A special case of the
function ξ(ω,ω′) is given by

(2.98) ξ(ω,ω′)= z(ω)δ(ω+ω′−2ωp), 0≤ω,ω′ ≤ 2ωp.

This corresponds to the nonlinear process of four-wave mixing, whereby a pair of photons
is created from two pump photons of frequency ωp [47]. The resulting photon pair creation
operator is

(2.99) P̂(ξ)† =
∫

z(ω)â(ω)†â(2ωp −ω)†dω.

By writing z(ν) = r(ν)eiϑ(ν), where ν = ω−ωp is the distance from the pump frequency,
the action of the corresponding squeezing operator Ŝ(ξ) on the creation and annihilation
operators is then given by [48]

(2.100) âξ(ν)= Ŝ(ξ)†â(ν)Ŝ(ξ)= â(ν)cosh(r(ν))− â(−ν)†eiϑ(ν) sinh(r(ν))

and

(2.101) âξ(ν)† = Ŝ(ξ)†â(ν)†Ŝ(ξ)= â(ν)† cosh(r(ν))− â(−ν)e−iϑ(ν) sinh(r(ν)).

Comparing Equations 2.100-2.101 to Equation 2.50, we can see that the effect of such a
squeezing operation on the vacuum state is to introduce correlations between pairs of fre-
quency modes centered on the pump frequency. Using Equation 2.76, we can transform into
the basis of discrete temporal modes:

(2.102) b̂ =
∫
φ(ω)∗âξ(ω)dω.

It follows that the annihilation operator for a single temporal mode of the continuous mode
squeezed state defined by Equation 2.98 is [49]

(2.103) b̂ξ = b̂cosh(r)− b̂†eiϑ sinh(r),

which is an ideal single mode squeezed state. Here we have assumed that the function φ(ν)
is sufficiently narrowband that the squeezing parameters r(ν) and ϑ(ν) may be assumed
to be constant. The connection between single mode squeezing in the time domain and
continuous mode squeezing between pairs of frequency modes will be useful for analysing
the detection of single mode squeezed light in the frequency domain.

2.3.2 Characterising the Noise Properties of Squeezed Light

We now consider self-homodyne of amplitude squeezed light in the frequency domain. As
for Equation 2.80, the annihilation operator of the amplitude squeezed state can be written
as

(2.104) Âs(t)= |α(t)|eiθ+ âs(t).
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The classical amplitude |α(t)| is treated here as a stochastic variable, and can be denoted
|α(t)| = α+ ζ(t)α, where 〈|α(t)|〉 = α and ζ(t) is a noise term with 〈ζ(t)〉 = 0, which arises
from the low frequency classical noise of the laser. By neglecting terms quadratic in the cre-
ation/annihilation operators as in Equation 2.84, the addition and subtraction photocurrent
are respectively:

(2.105) î+(t)= q
(
|α(t)|2 +

p
2|α(t)|x̂s,θ(t)+ne(t)

)
,

and

(2.106) î−(t)= q
(p

2|α(t)|x̂v,θ(t)+ne(t)
)
,

where ne(t) is the dark count rate from electronic noise, and x̂s,θ(t) and x̂v,θ(t) respectively
are the quadrature operators for the squeezed state and the vacuum state. The spectral
photocurrent density for the addition photocurrent is then given by

(2.107) î+(ν)= q
[

I(ν)+
p

2
∫
α(µ)x̂s,θ(ν−µ)dµ

]
,

where
∫ ≡ ∫ ∞

−∞, and I(ν) is the Fourier transform of the classical component:

(2.108) I(ν)=
∫ (|α(t)|2 +ne(t)

)
e−2πiνtdt.

Also, the Fourier transform of the quadrature operator is

(2.109) x̂s,θ(ν)=
∫

x̂s,θ(t)e−2πiνtdt = 1p
2

[
âs(−ν)†eiθ+ âs(ν)e−iθ

]
.

For amplitude squeezed light, âs(ν) has the form of Equation 2.100 with z(ν)= re2iθ, where
the phase ϑ = 2θ ensures the squeezing is oriented in the amplitude direction. The fre-
quency dependence of the classical amplitude of the light is defined by

(2.110) α(ν)=
∫

|α(t)|e−2πiνtdt =αδ(ν)+αh(ν),

where h(ν) = ∫
ζ(t)e−2πiνtdt describes the frequency dependence of the classical amplitude

noise. It also follows from Equation 2.108 that

(2.111) I(ν)=α2
(
δ(ν)+2h(ν)+

∫
h(µ)h(ν−µ)dµ

)
+ne(ν).

It is now possible to analyse the case of a spectrum analyser measurement at frequency Ω.
For a resolution bandwidth of B, the detected power is the average value 〈pΩ〉, where pΩ is

given by Equation 2.94. From Equations 2.107-2.111, and writing
∫ Ω+B

2

Ω−B
2
≡ ∫ Ω, this results
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in

(2.112) 〈p+
Ω〉 = 2R

〈∣∣∣∣∫ Ω

î+(ν)dν
∣∣∣∣2

〉

= 2q2R

[〈∣∣∣∣∫ Ω

I(ν)dν
∣∣∣∣2

〉
+2

〈∫ Ω ∫ Ω ∫ ∫
α(µ)∗α(µ)x̂s,θ(ν−µ)† x̂s,θ(ν−µ)dµdµdνdν

〉]

= 2q2R

[
4α4

〈∣∣∣∣∫ Ω

h(ν)dν
∣∣∣∣2

〉
+

〈∣∣∣∣∫ Ω

ne(ν)dν
∣∣∣∣2

〉
+α2Be−2r

]
,

where the expectation value has been evaluated on the vacuum state, and terms involving
the expectation value of a single quadrature operator have been neglected due to the orthog-
onality condition of Equation 2.75. The factor of e−2r on the last term demonstrates that the
detected light is in fact amplitude squeezed. The classical and electronic noise terms give
independent contributions since they are uncorrelated, and hence have a random phase
relationship. This is sometimes referred to as adding noise in quadrature [36]. The power
resulting from the subtraction photocurrent equivalently results in

(2.113) 〈p−
Ω〉 = 2q2R

[〈∣∣∣∣∫ Ω

ne(ν)dν
∣∣∣∣2

〉
+α2B

]
.

The noise of the subtraction photocurrent therefore gives a reliable measure of the combined
optical shot noise and electronic noise even in the presence of excess laser amplitude noise.
In order to estimate the squeezing, it is therefore necessary to ensure that 〈p+

Ω
〉 = 〈p−

Ω〉
when r = 0, i.e. that the classical noise due to ζ(t) is negligible at the detection frequency.
If the measured power due to electronic noise alone is 〈pE〉, then the squeezing parameter
Φ= e−2r may be directly inferred by

(2.114) Φ= 〈p+
Ω
〉−〈pE

Ω〉
〈p−
Ω
〉−〈pE

Ω
〉 .

This strategy is used to characterise the generated squeezing in Chapter 3. The degree of
squeezing is often quoted in decibels, as

(2.115) ΦdB = 10log10(Φ).

Throughout this thesis, experimentally measured squeezing values will accordingly be quoted
in decibels, with the dB subscript used to distinguish between the linear and logarithmic
units.

2.3.3 Effect of Loss on Squeezing

A final property of squeezed light which is useful to briefly discuss is the effect of loss on
squeezing. Optical loss on a mode Â, defined by transmittance η, can in general be mod-
elled by a beamsplitter with transmission and reflection coefficients t =p

η and r = √
1−η
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respectively [50]. Using Equation 2.60, we can therefore write the mode Â′ after the loss as

(2.116) Â′ =p
ηÂ+√

1−ηâ,

where the coupled mode â is in the vacuum state. As discussed in Section 2.1.5.1, this de-
scription ensures that the commutation relations are conserved. If the mode Â corresponds
to a squeezed state, it follows directly from Equation 2.116 that the squeezing parameter
on the output of the loss is given by [36]

(2.117) Φ′ = ηΦ+1−η, or 1−Φ′ = η(1−Φ).

Therefore, the measured noise suppression 1−Φ′ reduces linearly with the applied loss.
Squeezed coherent states therefore tend towards coherent states as loss is applied. This
effect can significantly limit the degree of squeezing observed.
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3
VISIBLE WAVELENGTH KERR SQUEEZING WITH

PHOTONIC CRYSTAL FIBRE

3.1 Introduction

By allowing for reduced quantum noise in an optical field, squeezed light provides a key
resource for investigations of fundamental physics [5, 51], and applications of quantum in-
formation processing [52, 53, 54] and quantum metrology [9, 55, 8]. This has led to a signifi-
cant amount of work in the generation and optimisation of squeezed light [56]. Any method
of generating quantum squeezing must involve a process which results in correlations be-
tween the fluctuations of the field quadratures. Three of the most common methods of gen-
erating squeezed light are parametric downconversion (PDC) [2], four-wave mixing [57] and
the Kerr effect [58]. Unlike the former two approaches, squeezing via the Kerr interaction is
inherently phase matched, which allows for flexibility in the wavelength of the probe light.
Additionally, it relies on the χ(3) nonlinear interaction, meaning it is necessary to use mate-
rials with inversion symmetry, such as optical fibre, for which the χ(2) interaction vanishes.
The possibility of using materials such as optical fibre lends a significant flexibility to the
approach of Kerr squeezing, and means that it does not require a cavity to enhance the
strength of the interaction. As well as simplifying the experimental requirements, the lack
of a cavity means that the bandwidth of squeezing is only limited by the optical bandwidth,
rather than the bandwidth of the cavity [59]. These features mean that utilising the Kerr
effect is a robust and flexible approach, which has routinely been used for the generation of
squeezed light [60, 59, 61].

The Kerr interaction requires high optical powers to reach sufficient nonlinearity. This
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is commonly achieved by using ultrashort pulses, for which high peak powers can be propa-
gated in optical fibre without generating unwanted nonlinear effects [60, 62]. However, this
requires careful control of the pulses, since dispersion can act to spread out the pulse and
therefore reduce the nonlinearity. Control of pulse spreading may be achieved by generat-
ing optical solitons, where the nonlinearity and dispersion are perfectly balanced [59, 63].
However, the conditions required to generate solitons in standard single-mode fibres place
significant constraints on experimental parameters such as fibre length, wavelength and
optical power. In order to avoid the limitations of standard single mode fibre, photonic crys-
tal fibre (PCF) may be used, in which a periodical microstructure arrangement of material
may be used to guide the light [64, 12, 65, 66, 67]. This enables the pulses to be confined
in a much smaller core size, leading to significantly higher nonlinearities, and therefore
lower minimum power requirements. It also has the advantage that the dispersion charac-
teristics may be tailored by the fibre structure, allowing for squeezing at a larger span of
wavelengths. This means that squeezing via the Kerr effect is applicable to a wide range
of measurements, and is particularly well suited for biological measurements, which of-
ten require shorter wavelengths due other measurement constraints such as fluorescence
spectra and imaging resolution [68, 69]. Bright Kerr amplitude squeezing using PCF has
previously been achieved at visible wavelengths via spectral filtering [12, 13]. However, the
squeezing that may be achieved by this approach is significantly limited by the loss applied
by the spectral filter [70]. Therefore, we use PCF to generate Kerr amplitude squeezing at
visible wavelengths in an nonlinear interferometer configuration. This work provides the
first demonstration of amplitude squeezing with a nonlinear interferometer using PCF at
visible wavelengths.

This chapter is structured as follows. Section 3.2 describes the theory of Kerr squeezing
and Section 3.3 reviews previous approaches of generating Kerr squeezed light. In Sec-
tion 3.4 we describe a numerical simulation which is used to quantify the predicted level of
squeezing of our setup. Section 3.5 provides a characterisation of important experimental
parameters of the source and detector. In Section 3.6, experimental results are presented
for Kerr squeezing, alongside results from the numerical simulation, providing insight into
potential future directions for improving the level of generated squeezing. Section 3.7 con-
cludes the chapter.

Statement of Work

Sections 3.2-3.4 contain introductory material only. The dispersion measurement setup was
originally built by Alex McMillan. The custom-built balanced detector was fabricated by
Francesco Raffaelli and assembled by myself. The photonic crystal fibre was fabricated at
the University of Bath by William Wadsworth. The source and detector characterisation
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described in Section 3.5 was carried out by myself, and the experimental work described in
Section 3.5 was completed by myself. The work presented in this chapter corresponds to the
development of the first squeezed light source at the University of Bristol.

3.2 Theory of Kerr Squeezing

3.2.1 The Optical Kerr Effect

The optical Kerr interaction in general describes the parametric coupling of two optical
fields of frequencies ω1 and ω2 via the χ(3) nonlinearity, where the frequencies of the coupled
fields following the interaction are unchanged. In the case of a strong incident beam of
frequency ω0, the field can couple to itself via the Kerr interaction, and for linearly polarised
light this degenerate process is described by the electric polarisation [26]:

(3.1) P = ε0χE = ε0

(
χ(1) +3χ(3)|E|2

)
E,

where χ is the electric susceptibility of the medium. This process will be referred to here
as the Kerr effect, and corresponds to a special case of degenerate four-wave mixing. Here,
we have assumed that there is a negligible χ(2), which is true of materials with inversion
symmetry, such as optical fibre. If χ(1) and χ(3) are real, the polarisation of the medium does
not generate absorption, and the effect of the nonlinear susceptibility is purely to modify
the refractive index n. Converting between the electric field and the intensity I (power per
unit area), we find

(3.2) n =√
1+χ≈ n0 +n2I,

where n0 =
√

1+χ(1) is the linear refractive index and n2 = 3χ(3)/4n2
0ε0c is the nonlinear

refractive index. The effect of nonlinear refraction is to generate intensity dependence on
the phase of the light. For a wavepacket propagating a distance L with wave vector β0, the
additional nonlinear phase shift acquired due to the Kerr nonlinearity is given by [71]

(3.3) φNL =β0Ln2I = γL〈P〉,

for an average power 〈P〉 confined in an area A, with the nonlinear coefficient γ=ω0n2/cA.
Ultrashort pulses with high peak power have been shown to allow significant nonlinearity
to be achieved in silica optical fibres [72]. However, the resulting time-dependence of the
nonlinear phase across the pulse duration leads to a chirping effect in the instantaneous
frequency, and broadening of the optical spectrum. Careful consideration of the combined ef-
fects of dispersion and nonlinear spectral broadening are therefore required to find optimal
properties for pulsed squeezed light generation. The expression for the electric polarisation
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given in Equation 3.1 strictly only applies to a medium with an instantaneous response [73].
To analyse the effects of dispersion in pulsed light, it is necessary to relax this assumption
and account for the frequency dependence of the linear susceptibility.

3.2.2 Nonlinear Pulse Propagation

We will now consider in more detail the effect of the nonlinear refractive index on pulsed
light propagating in a dispersive Kerr medium. We begin by considering the propagation
of an optical field in a dielectric material according to Maxwell’s equations. Firstly, from
Equation 2.3 and 2.4, we may write

(3.4) ∇×∇×E =−µ0

(
∂J
∂t

+ε0
∂2E
∂t2

)
.

For dielectric materials such as optical fibre, it is assumed that there are no free charges,
and for a non-magnetic dielectric material, the current density can then be defined as J =
∂P
∂t [74]. We can also write ρ = 0, and from Equation 2.1 this gives ∇ ·E = 0, and therefore
∇×∇×E =∇(∇·E)−∇2E =−∇2E. Equation 3.4 then becomes

(3.5) ∇2E = 1
c2
∂2E
∂t2 +µ0

∂2P
∂t2 .

It is useful to consider solutions of Equation 3.5 in the form of quasi-monochromatic plane
waves with central frequency ω0, propagating along the z direction:

(3.6) E(r, t)= 1
2

[Ê(z, t)e−i(ω0t−β0z) + Ê(z, t)∗ei(ω0t−β0z)],

where Ê(z, t) defines the slowly-varying envelope of the wavepacket, and β0 is the wave
vector. The assumption that the field is quasi-monochromatic implies that the envelope
function Ê(z, t) has a small spectral width ∆ω such that ∆ω/ω0 ¿ 1. We can also separate
the linear and non-linear parts of the electric polarisation as P(r, t) = PL(r, t)+PNL(r, t),
where [73]

(3.7) PL(r, t)= ε0

∫ ∞

−∞
χ(1)(t− t′)E(r, t′)dt′

and

(3.8) PNL(r, t)= 3ε0χ
(3)|E(r, t)|2E(r, t)= ε0εNLE(r, t).

Here we have used the adiabatic approximation, whereby variations in the pulse enve-
lope are assumed to be much slower than the relaxation time of the nonlinear polarisation
induced by the optical field, which justifies removing the frequency dependence from the
third-order susceptibility [74]. The quantity εNL = 3χ(3)|E(r, t)|2 may then be treated as
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time-independent given the slowly-varying envelope approximation and the perturbative
nature of PNL. We can write the polarisation components PL(r, t) and PNL(r, t) as

(3.9) PL(r, t)= 1
2

[P̂L(z, t)e−i(ω0t−β0z) + P̂L(z, t)∗ei(ω0t−β0z)]

and

(3.10) PNL(r, t)= 1
2

[P̂NL(z, t)e−i(ω0t−β0z) + P̂NL(z, t)∗ei(ω0t−β0z)].

In order to find an equation for the envelope function Ê(z, t), it is useful to work in the
frequency domain. We therefore consider the Fourier transform of the envelope function:

(3.11) Ê(z,ω−ω0)=
∫ ∞

−∞
Ê(z, t)ei(ω−ω0)tdt.

By using the definitions of PL(r, t) and PNL(r, t) in terms of the electric field, substituting
the solutions given by equations 3.6-3.10 into Equation 3.5, and taking the Fourier trans-
form, we then obtain the equation:

(3.12) 2iβ0
∂Ê(z,ω−ω0)

∂z
+β2

0(χ(1)(ω)+εNL)Ê(z,ω−ω0)= 0,

where we have made use of both the quasi-monochromatic assumption (∆ω/ω0 ¿ 1) and the
slowly-varying envelope approximation (∂2Ê(z, t)/∂t2 ¿ 1). We can then define the complex,
frequency dependent wavevector in terms of the linear susceptibility χ(1)(ω) as

(3.13) β̃=
√

1+χ(1)(ω)β0 =β(ω)+∆β,

where β(ω) is the real part of the wavevector, and ∆β = iα̃/2 is the imaginary part of the
wavevector, for absorption coefficient α̃. Since ∆β constitutes a small perturbation of the
wavevector, it is possible to neglect the frequency dependence in the attenuation given by
∆β. We can Taylor expand β(ω) about the central frequency component:

(3.14) β(ω)=β0 + (ω−ω0)
dβ(ω)

dω

∣∣∣∣
ω=ω0

+ 1
2

(ω−ω0)2
d2β(ω)

dω2

∣∣∣∣
ω=ω0

,

and associate β1 = dβ(ω)
dω

∣∣∣
ω=ω0

with the group velocity and β2 = d2β(ω)
dω2

∣∣∣
ω=ω0

with the group
velocity dispersion. Then, by substituting Equation 3.13 into Equation 3.12, and taking the
inverse Fourier transform, we obtain

(3.15)
∂Ê(z, t)
∂z

+β1
∂Ê(z, t)
∂t

+ 1
2

iβ2
∂2Ê(z, t)
∂t2 + α̃

2
Ê(z, t)= iεNLβ0Ê(z, t)

2
,

where we have replaced the (ω−ω0) terms with the differential operator i(∂/∂t) in the last
step. Equation 3.15 is known as the nonlinear Schrodinger equation [71], and describes the
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propagation of light in an nonlinear, lossy and dispersive medium. It may be written in a
more convenient form by using the coordinate frame travelling at the group velocity in the
z direction with the transformation ξ= t−β1z, which gives

(3.16)
∂Ê(z,ξ)
∂z

+ 1
2

iβ2
∂2Ê(z,ξ)
∂ξ2 + α̃

2
Ê(z,ξ)= iεNLβ0Ê(z,ξ)

2
.

This equation will be used for the simulation of pulsed squeezed light in PCF. An important
special case of Equation 3.16 is where the effects of nonlinearity and dispersion perfectly
balance, such that, for α̃ = 0, the envelope Ê(z,ξ) stays unchanged with propagation dis-
tance z. Such a solution of the propagation equation is known as a fundamental soliton. It
is also possible to find solutions of Equation 3.16 where the envelope changes periodically
with propagation distance, and these solutions are known as higher-order solitons. The con-
ditions required for solitons are given by pulses for which the power has a time dependence
of P(ξ)≈ P0 sech2(ξ/1.76TFWHM) and which satisfy integer solutions of the equation [71]

(3.17) N2 ≈ γP0T2
FWHM

3.11|β2|
,

where P0 is the peak power and TFWHM is the full-width at half-maximum of the initial
pulse. The case of N = 1 corresponds to the fundamental soliton, and higher values of N
correspond to the conditions required for higher order solitons. While for simplicity we have
considered the infinite plane wave case in the derivation of the nonlinear Schrodinger equa-
tion presented here, an identical result may be derived for the particular case of light prop-
agating in the optical modes of a fibre [71].

3.2.3 Quantum Noise in a Kerr Medium

In order to analyse the effect of the Kerr interaction on the noise of a coherent state, we will
consider Equation 3.16 in the case of zero-dispersion β2 = 0 and zero loss α̃= 0. This gives

(3.18)
∂Ê(z,ξ)
∂z

= iεNLβ0Ê(z,ξ)
2

,

with the solution

(3.19) Ê(z,ξ)= Ê(0,ξ)eizβ0εNL/2.

It is important to emphasise that this solution assumes negligible loss, such that εNL is
a constant of motion. By converting between the electric field operator and the bosonic
annihilation operator notation, the effect of the propagation of a single temporal mode in a
Kerr medium may be written as [75]

(3.20) âK = eiκâ†ââ = Û†
K âÛK ,
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where κ = γħωz and we have introduced the unitary operator ÛK = eiĤK governed by the
Kerr Hamiltonian ĤK = κ

2 â†2â2 = κ
2 n̂(n̂−1) for photon number operator n̂. With this Hamil-

tonian, it is now possible to analyse the effect of Kerr evolution for an initial coherent state
|α〉 [76]:

(3.21) |K〉 = ÛK |α0〉 = ei κ2 n̂(n̂−1) |α0〉 = e
−|α0|2

2
∞∑

n=0

αn
0p
n!

ei κ2 n(n−1) |n〉 .

An intuitive way to see the effect of this evolution on the noise statistics of the coherent
state is to plot the Wigner function of the final Kerr state, which is given by [77]

(3.22) W(x, y)= e−|α0|2−2|α|2

π

∞∑
m,n=0

αm
0 α

∗n
0

m!n!
e−i κ2 (m2−n2)Hm,n(2α∗,2α),

where α = x+ i y and Hm,n(z, z∗) is the complex Hermite polynomial, which can be defined
by [78]

(3.23) Hm,n(z, z∗)=
m∧n∑
k=0

(−1)kk!

(
m
k

)(
n
k

)
zm−k(z∗)n−k.

The Wigner function for an initial coherent state |α0〉 with α0 = 3 and the corresponding
Kerr state for κ = 0.08 are shown in Figure 3.1. The effect of the nonlinear phase shift is
that the higher amplitude components of the distribution are shifted in phase more than the
lower amplitude components, leading to the crescent shaped distribution shown. The result
is that the fluctuations in a range of quadrature components are reduced below the that of
the vacuum state, i.e. the Kerr state is squeezed. We also observe from the marked circles
centered on the origin that the photon number fluctuations of the state are unchanged
following the nonlinear phase shift, which illustrates the photon number preserving nature
of the Kerr effect. The non-classical nature of the Kerr state is indicated by the negative
regions of the Wigner function.

To analyse the amount of squeezing that results from the Kerr effect, it is useful to
consider a geometrical picture, where the uncertainty of the initial coherent state is given
by contours of the Wigner function in Cartesian coordinates centered on the coherent state
as

xα = 1

2
p

2
cosξ,

yα = 1

2
p

2
sinξ.

(3.24)

Writing the annihilation operator for the coherent state in the form â =α+δâ, and assuming
a bright field |α|À 1, Equation 3.20 can then be written as [79]

(3.25) âK = eiκ|α+ 1
2
p

2
eiξ|2

(
α+ 1

2
p

2
eiξ

)
≈ eiκα2

(
α+ 1

2
p

2
eiξ+ 1p

2
iκα2 cos(ξ)

)
,
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Figure 3.1: Plots showing the evolution of the Wigner function of a coherent state in a Kerr
medium. (a) Wigner function of an initial coherent state with α0 = 3. (b) Corresponding Kerr
state for κ= 0.08. The black circles indicate contours of constant amplitude, illustrating the
photon number conserving nature of the Kerr effect.

where the exponent is expressed as the first two terms of a Taylor expansion. Writing the
equation of the noise contour in Cartesian coordinates as before gives

xK = 1

2
p

2
cos(ξ),

yK = 1

2
p

2
sin(ξ)+ 1p

2
κα2 cos(ξ),

(3.26)

which is the equation for an ellipse, with x2
K+(yK −2κα2xK )2 = 1

8 . In this case, the squeezing
ellipse corresponds to that of an ideal minimum uncertainty squeezed state, with major and
minor axes respectively given by lengths [26]:

1p
2

er =
√

1
2
+θ2

K +θK

√
1+θ2

K ,

1p
2

e−r =
√

1
2
+θ2

K −θK

√
1+θ2

K ,

(3.27)

for the squeezing parameter r, where θK = κα2. It is therefore possible to define the field
variance of the Kerr state at an arbitrary phase angle θ as [80]

(3.28) 〈K | x̂2
θ |K〉−〈K | x̂θ |K〉2 ≈ 1

2

[
e2r sin2

(
θ− ν

2

)
+ e−2r cos2

(
θ− ν

2

)]
,

where ν/2 is the angle of the minor axis of the squeezing ellipse. We therefore see that for a
coherent state with |α|2 À 1, the generated quadrature squeezing increases monotonically
with the applied nonlinear phase shift.
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3.3 Observing Kerr Squeezing

Since the Kerr state is itself not photon number squeezed, it is not possible to distinguish
the Kerr state from a coherent state by direct detection alone. As described in Chapter 2,
homodyne detection provides a means of measuring the quantum noise distribution of an
optical signal at arbitrary phase angles. However, as discussed in Section 2.2.2, homodyne
detection requires that the power of the signal is negligible compared to the power of the
local oscillator [39]. This is typically difficult to achieve with a Kerr state, since achieving
sufficient nonlinearity requires high powers that will be difficult to surpass with the local
oscillator. Therefore, a number of alternative strategies have been developed to measure
the reduced quantum noise of the Kerr state.

One such strategy is to place the χ(3) medium in both arms of a balanced interferometer.
It was shown by Shirisaki and Haus that the interference of two identical Kerr states leads
to squeezed vacuum on one of the outputs of the interferometer, which may be measured
by homodyne detection [81]. This may be achieved in a Sagnac configuration, whereby the
initial coherent state is split by a beamsplitter into two counterpropagating beams, and
after passing through the same χ(3) material, the interference of these beams on the output
of the original beamsplitter results in the squeezed vacuum state [59, 60, 62, 63]. This
strategy has the advantage that both Kerr states should be identical, resulting in high
interferometric stability and visibility [58], and therefore a robust method of generating
squeezing.

An additional complexity of observing squeezed vacuum is the requirement of a local
oscillator which is phase locked to the squeezed vacuum state. For the detection of ampli-
tude squeezed light, a simple intensity measurement is sufficient to detect the reduction
in quantum noise. Therefore, it is desirable to have the ability to use the Kerr effect to
generate amplitude squeezing, and two common methods have been used to achieve this.
One method involves spectral filtering of high-order solitons [82, 83, 13], which can be un-
derstood as follows. High-order solitons have energy greater than that of the fundamental
soliton, and have a temporal and spectral envelope which varies periodically as it propa-
gates. Because of the energy dependence of the periodic spectral broadening, it is possible
to engineer the properties of the system such that amplitude fluctuations above the average
value lead to increased spectral broadening. In this case, spectral filtering of the broadened
pulse leads to increased loss, which counteracts the initial amplitude fluctuation. The op-
posite effect occurs for fluctuations below the average value, and this leads to amplitude
squeezing of the output state. A significant limitation of this method is that the loss applied
by the filter imposes a limit on the squeezing that may be produced [70]. Furthermore, the
collimation of the filtered beam is experimentally challenging [12].

Another method of generating amplitude squeezing is by placing the χ(3) material in
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an asymmetric interferometer [84]. As for squeezed vacuum generation, this can be imple-
mented in a Sagnac configuration [1, 61]. If the splitting ratio is approximately 90:10, the
stronger 90% reflected light experiences a significant nonlinear phase shift, and acquires
the quantum noise distribution of a Kerr state. The weaker auxiliary 10% transmitted light
only acquires a slight nonlinear phase shift and remains approximately coherent. Upon in-
terference of the two beams on the output of the beamsplitter, the coherent part acts to
displace the Kerr state in phase space, such that it becomes amplitude squeezed. This may
also be achieved by using a polarisation interferometer to attain more flexibility in the split-
ting ratio and relative phase of the Kerr phase-shifted light and the auxiliary light, which
allows for further optimisation [58, 85]. Polarisation interferometers have also been used to
generate polarisation squeezing using a similar approach [86]. However, the use of a polar-
isation interferometer requires that the Kerr squeezed beam and the displacement beam
propagate co-linearly through the fibre with orthogonal polarisations. Therefore, a delay
must be applied to the auxillary pulses to compensate for the birefringence in the optical
fibre. An intuitive explanation for the process of squeezing in an asymmetric interferom-
eter configuration is that interference of the two fields generates intensity dependence of
the output state on the nonlinear phase shift θK , which is itself dependent on the power of
light passed through the χ(3) medium. Therefore, an amplitude fluctuation above the aver-
age value leads to an increase in θK , which for particular power levels acts to reduce the
intensity of the output light, therefore suppressing the amplitude fluctuation. Amplitude
fluctuations below the average value lead to a similar cancellation effect, and this gives rise
to amplitude squeezing on the output of the interferometer. We can therefore see similar-
ities with the example of Kerr squeezing by spectral filtering, whereby fluctuations in the
nonlinear phase act to suppress fluctuations in amplitude. The method of generating Kerr
squeezing by using an asymmetric Sagnac interferometer is the experimental implemen-
tation used here. This method will therefore be the focus for the remainder of this section,
and will be discussed in more detail in Section 3.5 and 3.6.

The earliest experiments to generate Kerr amplitude squeezing used bright CW light [87].
However, it was discovered that the squeezing in this case became limited by guided acous-
tic wave Brillouin scattering, which is caused by the photon-phonon interactions in the
fibre. With pulsed light, the required Kerr nonlinearity could be achieved without generat-
ing such unwanted effects [60], and this has become a common approach for achieving Kerr
squeezing. The highest Kerr squeezing measured to date is 6.1 dB, which was achieved
by using 480 fs pulses [62]. A further advantage of using pulsed light is that the satura-
tion level of detection systems is typically determined by the average optical power, rather
than the peak power. Using ultra-short pulses then places a lower constraint on the satura-
tion power of the detector. With pulsed light, long interaction lengths may still be required
to generate the required Kerr nonlinearity in single-mode fibre, and this can lead to sig-
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nificant pulse spreading over distance in the fibre, which is detrimental to the generated
squeezing [88]. One approach to avoid this is to apply anomalous dispersion to the initial
pulses [58], compensating for any normal dispersion in the Kerr medium. The anomalous
dispersion can for example be provided by a prism pair [89]. Alternatively, solitons can be
used such that the pulse maintains its envelope during propagation [1, 61, 90]. Another
approach is to use PCF [65], which generally has a smaller core size than single-mode fi-
bre, and therefore typically requires a shorter interaction length. This allows for greater
flexibility in the wavelength of the squeezing, since the dispersion properties of PCF may
be engineered by careful design of fibre structure. Our approach will be to use PCF in an
asymmetric Kerr interferometer to generate amplitude squeezing at visible wavelengths. In
future work, PCF may be used to generate solitons in this configuration, which are typically
limited to the short-wavelength infrared region when using standard single-mode fibre. It
has been shown that the squeezing of optical solitons in a lossless medium is fundamen-
tally limited by Raman noise [91], where the high optical intensity results in the inelastic
scattering of photons. However, we will show that optical loss and the dispersive properties
of the fibre are the dominant limiting factors of the squeezing generated in this experiment.

3.4 Numerical Simulation

In the case of optical solitons, it has been shown that an analytical expression for the
squeezing generated in a Kerr medium may be obtained [92]. However, for more general
levels of dispersion, no such analytical result exists. Therefore, a numerical simulation is
used to analyse the predicted squeezing using the PCF in this case. In the absence of loss,
Equation 3.16 may be written in terms of the quantised amplitude Û :

(3.29)
∂Û
∂z

=− iβ2

2
∂2Û
∂ξ2 + iκ

∣∣Û∣∣2Û ,

where Û corresponds to the annihilation operator evolved according to the Heisenberg pic-
ture. It is possible to write Û =U+ û, where U = 〈Û〉 corresponds to the classical amplitude,
and û corresponds to the fluctuating quantum amplitude. From Equation 3.29, the prop-
agation equation for the classical part U may then be obtained by simply neglecting the
quantum terms, and U may then be solved numerically using the split-step method [71]. In
this method, dispersion and nonlinearity are assumed independent for small propagation
distances, and are alternately applied. To describe this algorithm, the pulse must first be
discretised in terms of propagation distance and time, such that U j(n) corresponds to the
classical amplitude of the envelope with the time step labelled by the integer j and the prop-
agation distance labelled by the integer n. Here, each time step is separated by an interval
∆t, and each propagation distance is separated by the interval ∆z. The two alternate steps
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of the split-step method may then be written as [71]

1. U j(n+1)= eiγħω|U j(n)|2∆zU j(n)

2. U j(n+1)=DFT−1
[

ei β2
2 ω2

j∆zDFT[U j(n+1)]
]

,
(3.30)

where DFT denotes the discrete Fourier transform, and ω j = 2π j/N∆t, where the pulse is
divided into a total of N discrete time steps.

The discretised propagation equation for the quantum amplitude operator may then be
obtained by cancelling the classical terms from Equation 3.29, which results in [88]

(3.31) û j(n+1)=
[
1+2iγħω∆z

∣∣U j(n)
∣∣2]

û j(n)+ iħωγ∆z
∣∣U j(n)

∣∣2 û†
j(n)

+ i∆zDFT−1
[
ω2

j
β2

2
DFT[û j(n)]

]
,

where the terms higher than first-order in û have been neglected. Equivalently, this may
be written in terms of the bosonic creation and annihilation operators corresponding to the
time mode k, â†

k and âk, as

(3.32) û j(n)=∑
k

[µ jk(n)âk +ν jk(n)â†
k],

where

(3.33) µ jk(n+1)=
[
1+2iγħω∆z

∣∣U j(n)
∣∣2]

µ jk(n)+ iħωγ∆z
∣∣U j(n)

∣∣2ν∗jk(n)

+ i∆zDFT−1
[
ω2

j
β2

2
DFT[µ jk(n)]

]
,

and

(3.34) ν jk(n+1)=
[
1+2iγħω∆z

∣∣U j(n)
∣∣2]

ν jk(n)+ iħωγ∆z
∣∣U j(n)

∣∣2µ∗jk(n)

+ i∆zDFT−1
[
ω2

j
β2

2
DFT[ν jk(n)]

]
.

Additionally, since we are interested in analysing the case where the pulse is initially de-
scribed by a coherent state, we can assume that each time mode of û is initially in the
vacuum state, giving the initial conditions µ jk(0) = δ jk and ν jk(0) = 0. This means that, by
numerically propagating the matrices µ jk and ν jk, the noise properties of the final state can
be found. Consider the nonlinear interferometer shown in Figure 3.2, with states Û ′ and Û ′′

propagating through a Kerr medium, and interfering on the output of BS2, resulting in the
state Û ′′′. It may been shown that if BS2 has reflection coefficient R and transmission coef-
ficient T, the squeezing parameter Φ of the output state Û ′′′ =U ′′′+ û′′′ when measured by
direct detection is given by [64]

(3.35) Φ= R
N∑

m=1

∣∣∣∣∣ N∑
j=1

∣∣∣U ′′′
j

∣∣∣(µ′jme−iθ j +ν′jmeiθ j
) ∣∣∣∣∣

2

+T
N∑

m=1

∣∣∣∣∣ N∑
j=1

∣∣∣U ′′′
j

∣∣∣(µ′′jme−iθ j +ν′′jmeiθ j
) ∣∣∣∣∣

2

,
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Figure 3.2: Schematic diagram of a nonlinear interferometer. BS1 and BS2 are beamsplit-
ters with arbitrary reflection and transmission coefficients.

where θ j corresponds to the phase of U j, the evolution matrices µ′jm and ν′jm correspond
to the state Û ′, and the matrices µ′′jm and ν′′jm correspond to the state Û ′′. This result is
equivalent to that which would be obtained for a nonlinear interferometer in the Sagnac
configuration, as described in Section 3.3. Equation 3.35 will therefore be used for the sim-
ulation of the squeezing generated by the PCF in this experiment.

3.5 Source and Detector Characterisation

3.5.1 Dispersion

As we have discussed, the dispersion of the optical fibre used to generate squeezing may
have a significant effect on the generated squeezing. In order to analyse the effects of the
dispersion of the PCF used in this experiment, an interferometric measurement of disper-
sion was first carried out, using a Spectra Physics Mai Tai Ti:Sapphire laser, which is used
for all the optical measurements in this thesis.

A schematic diagram of the dispersion measurement setup is shown in Figure 3.3. Lin-
early polarised light is split between two paths at the first polarising beamsplitter (PBS1).
One path is coupled into a 0.17 m length of PCF, and the half-wave plate HWP2 rotates the
polarisation of this light to be on axis with the fibre, such that it maintains linear polari-
sation on the output, while HWP3 rotates the polarisation of this light back to its original
state. The other path is subject to an adjustable delay. The two paths are recombined on
a second polarising beamsplitter PBS2, and the adjustable mirror may be scanned until
the the pulses overlap on the output. HWP4 is used to rotate the combined polarisation
state such that interference may be measured at the powermeter (PM) after PBS3. This is
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achieved by plotting the output power as a function of path length, and adjusting the mirror
until an interference pattern is observed.

Figure 3.3: Experimental diagram of the
interferometric dispersion measurement
setup.

Figure 3.4: Measured dispersion parame-
ter β2 at a range of wavelengths between
694−770 nm.

Due to the group velocity dispersion of the fibre, different wavelengths of light will prop-
agate in the fibre with different group velocities. Therefore, the temporal separation of the
pulses will depend on the wavelength of the light. We may consider the time difference, ∆τ,
that corresponds to the difference in propagation time of two different spectral components:

(3.36) ∆τ=
∣∣∣∣ L
vg1

− L
vg2

∣∣∣∣
for a fibre of length L, and light with group velocities vg1 and vg2 at frequencies ω1 and
ω2 respectively. For frequencies that are closely separated by a frequency difference ∆ω, we
can then write

∆τ=
∣∣∣∣L(

∂β

∂ω

∣∣∣∣
ω=ω1

− ∂β

∂ω

∣∣∣∣
ω=ω2

)∣∣∣∣= ∣∣∣∣L(
∂β

∂ω

∣∣∣∣
ω=ω2

+ ∂

∂ω

(
∂β

∂ω

∣∣∣∣
ω=ω0

)
∆ω− ∂β

∂ω

∣∣∣∣
ω=ω2

)∣∣∣∣
=

∣∣∣∣L ∂2β

∂ω2

∣∣∣∣
ω0

∆ω

∣∣∣∣ ,
(3.37)

where ω0 is the average frequency across the span ∆ω. By recording the mirror position
at the centre of the interference pattern for a range of wavelengths, each position can be
converted into a time value τ for light travelling at speed c = 3×108 m/s. Then, from Equa-
tion 3.37, by taking the gradient of the resulting data, ∂τ/∂ω, we can infer the group velocity
dispersion using [93]

(3.38)
∂2β

∂ω2 = 1
L
∂τ

∂ω
.
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This is plotted in Figure 3.4, and shows a zero-dispersion value at 730 nm, which is in
agreement with the approximate value provided by the manufacturer of the PCF.

3.5.2 Nonlinearity Coefficient

Another parameter which must be found in order to simulate the squeezing generated from
the PCF is the nonlinearity coefficient γ. In order to characterise γ, we will analyse the
effect of the Kerr nonlinearity on the optical spectrum of a typical laser pulse. We consider
again Equation 3.29, for the case of negligible dispersion β2 ≈ 0. Although the analytical
solution for the propagation equation in this case relies on the assumption that |Û |2 is
independent of propagation distance, it is important to note that since the optical power
varies across the duration of the pulse, |Û |2 typically depends strongly on ξ. This leads
to a time dependence of the nonlinear phase φNL(ξ). The instantaneous frequency rela-
tive to the carrier is then given by ω(ξ)−ω0 = ∂φNL(ξ)

∂ξ
. As the pulse propagates through the

nonlinear medium, this leads to the generation of new frequency components, broadening
the optical spectrum [74]. Figure 3.5 illustrates the effect of this broadening on the power
spectrum of 100 fs pulses from the Ti:Sapphire laser propagating through L = 1.22 m of
PCF. This measurement was taken using 0.6 mW of average power, which is equivalent to
≈ 75 W peak power for the 80 MHz repetition rate. The central wavelength was 730 nm,
which corresponds to the measured zero-dispersion wavelength of the PCF. This broadening

Figure 3.5: Experimentally measured opti-
cal spectrum from a pulse train with 75 W
peak power after propagating through a
L = 1.22 m length of PCF.

Figure 3.6: Simulation of the power spec-
trum of a pulse with a peak power of
75 W propagating through various lengths
of PCF with nonlinearity γ= 0.04 W−1m−1.

effect may also be simulated classically using Equation 3.30, and Figure 3.6 shows the sim-
ulated power spectrum of a pulse with the same properties and a nonlinearity coefficient
of γ= 0.04 W−1m−1. This value of γ was chosen since it gives the best agreement by visual
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comparison with the experimental data shown in Figure 3.5. Therefore γ = 0.04 W−1m−1

will be used for the simulations of squeezing in this chapter. The slight asymmetry in Fig-
ure 3.5 is expected due to the effect of third-order dispersion, which becomes important
close to the zero-dispersion wavelength [71].

3.5.3 Detection Efficiency

In order to obtain information about the detected optical power from electronic measure-
ments, it is crucial to properly characterise the detection efficiency. Due to the strong de-
pendence of the degree of squeezing on optical loss, obtaining a precise measurement of
the detection efficiency is also important in estimating the generated squeezing from the
measured squeezing. The two photodetectors used for measurements in this thesis are
transimpedance-amplified balanced detectors, which amplify the subtraction photocurrent
of two photodiodes. As discussed in Section 2.2.3, the addition photocurrent for self-homodyne
detection can be measured by sending all the light to one photodiode.

The electrical response of a detector to light is often quantified by the responsivity R,
which is defined as the generated current I as a fraction of the detected power P, and is
related to the detection efficiency η by [94]

(3.39) R = I
P

= ηq
ħω ,

for light with carrier angular frequency ω. Here, the generated current I can be obtained
from a voltage measurement V by using Ohm’s law according to the value of the gain re-
sistance RG : I = V /RG . Results of measured voltage as a function of optical power incident
on each photodiode are plotted for a Thorlabs PDB440A(-AC) detector and a custom-built
detector in Figures 3.7 and 3.8, for wavelengths of 740 nm and 760 nm respectively.

The gradients of these plots were used to calculate the responsivity by using values of
RG = 1.2 kΩ for the custom-built detector and RG = 18.9 kΩ for the Thorlabs detector. By
using Equation 3.39, this resulted in an estimate of η= 0.555±0.002 and η= 0.836±0.003
respectively, with the errors calculated from the fitting data. The higher efficiency of the
Thorlabs detector means that this is used for the majority of the sensing experiments in
this thesis. However, the custom-built detector has a significantly higher saturation power,
meaning it is useful for measurements of squeezing which used shorter lengths of PCF, and
therefore require higher power levels to generate sufficient nonlinearity for squeezing.

3.5.4 Shot Noise Clearance

Since classical laser noise and electronic noise generally dominate over quantum optical
noise at low frequencies, MHz of electronic bandwidth is typically required to observe shot
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Figure 3.7: Voltage as a function of de-
tected optical power for the Thorlabs
PDB440A(-AC) balanced detector.

Figure 3.8: Voltage as a function of de-
tected optical power for the custom-built
balanced detector.

noise limited behaviour and therefore the effect of squeezing. Transimpedance-amplified
photodetectors are also affected by broadband electronic noise [95], so it is important to
verify that the shot noise of the laser may be observed over this broadband electronic noise.

To confirm that this is the case, the noise power of the detector upon illumination was
compared with the noise power with the laser blocked. This is plotted in Figure 3.9 for
the Thorlabs detector and Figure 3.10 for the custom-built detector. We also distinguish
here between the shot noise level and the laser noise level, where the optical shot noise is
measured by sending an equal amount of light to both photodiodes, and the laser noise level
by sending all the light to a single photodiode, as discussed in Section 2.2.3. The electronic

Figure 3.9: Noise power spectrum of the
Thorlabs PDB440A(-AC) balanced detec-
tor, for 0.1 mW of average optical power.

Figure 3.10: Noise power spectrum of the
custom-built balanced detector, for 0.4 mW
of average optical power.
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noise properties of the detector may then be quantified by the shot noise clearance, which
corresponds to the ratio between the shot noise power and the electronic noise power [95].
From Figure 3.9, we observe 3 dB of shot noise clearance at 10 MHz, with 0.1 mW of optical
power. The results in Figure 3.10 exhibit a significant amount of electronic noise over the
bandwidth of the detector. However, the electronic noise reaches a minimum at around
3 MHz, where 2 dB of shot noise clearance is observed for a power of 0.4 mW. This data
indicates that the laser light is shot noise limited above & 2 MHz, and in Figure 3.9 we
observe the frequency independence of the shot noise, as expected from Equation 2.113 of
Chapter 2.

In order to verify that the scaling of this noise corresponds to the expected behaviour for
a coherent state, a measurement of the optical noise power as a function of the detected op-
tical power for the Thorlabs and custom-built detector are plotted in Figures 3.11 and 3.12
respectively, where each measurement was taken in a frequency band with significant shot
noise clearance. Here, the noise power corresponding to the detected optical signal has been

Figure 3.11: Noise power of the Thor-
labs PDB440A(-AC) balanced detector at
10 MHz as a function of detected power.

Figure 3.12: Noise power of the custom-
built balanced detector at 3 MHz as a func-
tion of detected power.

calculated by subtracting the electronic noise power from the total measured noise power.
These graphs demonstrate the expected linear scaling between variance and power from
Equation 2.113 of Chapter 2, and an R-square value of 0.999 and 0.997 are obtained for
a linear fitting of Figures 3.11 and 3.12 respectively. This is in contrast to the quadratic
scaling of the variance which would be observed if the laser light was dominated by classi-
cal intensity fluctuations [96]. We can therefore conclude that the laser light is limited by
optical shot noise in this frequency bandwidth.
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3.6 Experimental Implementation

Using the simulation described in Section 3.4 and characterisation data from Section 3.5,
it is possible to analyse the predicted squeezing using different lengths of fibre, to find
the optimal parameters for squeezing in this case. A value for the nonlinear phase shift
of φNL ≈ π has been shown to be sufficient for the generation of significantly squeezed
light [92]. It is therefore useful to analyse the squeezing at fibre lengths that give φNL = π

for powers that are sufficiently less than the saturation power of the detector used. We
first consider the custom-built detector, which saturates at ∼ 5 mW average power. Using
Equation 3.3 with γ = 0.04 W−1m−1 and a fibre length of L = 1.22 m, we find that a phase
shift of φNL = π occurs at P0 = 64 W peak power, which is 0.5 mW of average power for
the 80 MHz repetition rate, and may therefore be measured with this detector. Since the
Thorlabs detector saturates at ∼ 0.4 mW of average power, a longer length of fibre must
be used to measure sufficient nonlinearity without saturating this detector. We analyse the
case for the ∼ 14 m reel of PCF. Using Equation 3.3, the power required for L = 14 m is
P0 = 5.6 W (0.05 mW average power), which can be measured using the Thorlabs detector.

Due to effects such as third-order dispersion and Raman scattering, it is often not possi-
ble to create perfect fundamental solitons [71]. However, the use of anomalous dispersion to
counteract the effects of pulse envelope distortion has been shown to be useful for squeezed
light generation even without generating perfect solitons [88]. We can use the numerical
methods described in Section 3.4 for the 90:10 Kerr interferometer to simulate the squeez-
ing in the anomalous dispersion regime for the above lengths of fibre. Results for these
simulations are shown in Figure 3.13 and 3.14 for L = 14 m and L = 1.22 m respectively. In

Figure 3.13: Simulated squeezing as a
function of average input power from the
14 m reel of fibre, for β2 = −2ps2/km and
γ= 0.04 W−1m−1.

Figure 3.14: Simulated squeezing as a
function of average input power from the
1.22 m reel of fibre, for β2 =−6ps2/km and
γ= 0.04 W−1m−1.
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Figure 3.13, the results are plotted for β2 =−2ps2/km, which was found to be optimal. The
results in Figure 3.14 correspond to an optimal value of β2 = −6ps2/km. In each plot, the
red line represents the simulated classical output power versus input power to the interfer-
ometer, and the black line is the simulated squeezing parameter ΦdB as a function of input
power. The observed oscillations in the output power are expected due to the dependence of
the phase φNL on the optical power. We also observe oscillations in ΦdB, since squeezing is
observed for particular values of φNL, which varies periodically. This simulation provides
a useful heuristic picture of amplitude squeezing using this method, since the stationary
points of the oscillations in output power coincide with squeezing, while regions of sharply
increasing or decreasing output power coincide with antisqueezing. Qualitatively, we expect
this to be the case, since, on a stationary point in output power, fluctuations in the power of
the input light become suppressed on the output of the interferometer, leading to amplitude
squeezing, while the opposite effect occurs for antisqueezing.

The optimal values found for the dispersion parameter given above can be used to mo-
tivate the range of wavelengths tested when optimising squeezing in this experiment. A
schematic of the experimental setup is shown in Figure 3.15. 100 fs pulses from the Spectra

Figure 3.15: Diagram of the experimental setup used for squeezed light generation. Inter-
ference of the 90% reflected Kerr phase shifted light with the 10% transmitted light leads to
amplitude squeezing on the output of the interferometer, which can be measured by direct
detection at PD1. The dashed line indicates that the path to PD2 is unused for the detec-
tion of squeezed light, and this port is only used for the calibration of shot noise from the
balanced subtraction of the photocurrents from PD1 and PD2.

Physics Mai Tai Ti:Sapphire laser are coupled into the asymmetric nonlinear interferom-
eter, which has a splitting ratio of 90:10. Half-wave plates HWP1 and HWP2 are used to
match the polarisation of the light with one of the main axes of the PCF, such that the light
output from the fibre is approximately linearly polarised. The effect of nonlinear interfer-
ence at the 90:10 beamsplitter was monitored by measuring the optical power of the light
backpropagated from the interferometer at powermeter PM1 and by measuring the noise
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power of the light at PD1. The shot noise level was calibrated by measuring the noise power
of the subtraction photocurrent of PD1 and PD2.

Experimental results from this setup are shown in Figures 3.16 and 3.17 for the 14 m
and 1.22 m length of fibre respectively. The red curves show the power of the backpropa-

Figure 3.16: Squeezing results from the
14 m reel of PCF, for λ = 740 nm. The
noise power is measured at a frequency of
10 MHz.

Figure 3.17: Squeezing results from the
1.22 m length of PCF, for λ = 760 nm. The
noise power is measured at a frequency of
3 MHz.

gated light at PM1 versus the detected power, which is calibrated from a measurement at
PM2. The black curves represent the measured squeezing parameter in dB, ΦdB, as a func-
tion of detected power, and the dashed lines correspond to the quantum noise limit. The
squeezing parameter is calculated using Equations 2.114-2.115 of Chapter 2. Since regions
of sharply increasing backpropagated power correspond to plateaus in the power propa-
gated towards PD1, we expect from the previous discussion that plateaus in backpropagated
power will coincide with antisqueezing, while regions with a steep slope in backpropagated
power will coincide with squeezing, and this behaviour is indeed observed. A maximum of
−0.8 dB of squeezing is observed in the 1.22 m length of fibre, while −1.3 dB is observed
in the 14 m reel. We also find an optimal wavelength of 760 nm for the L = 1.22 m and
740 nm for L = 14 m reel, which agrees with the optimal dispersion parameters predicted
by the simulation. However, while the simulation predicts soliton-like behaviour for a wide
range of the power values used, significant spectral distortion is observed experimentally,
as shown in Figure 3.18 for the 14 m reel and Figure 3.19 for the 1.22 m length of fibre.
A possible reason for the distortion observed in the optical spectra shown in Figures 3.18-
3.19 is the effect of third-order dispersion [71]. By degrading the interference of the pulses
on the 90:10 beamsplitter, this is likely to place a significant limit on the squeezing that
may be generated with this PCF [88]. While third-order dispersion may be incorporated
into the simulation, interferometric instability in the dispersion measurement meant that
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Figure 3.18: Experimentally measured op-
tical spectrum for a range of detected pow-
ers for the 14 m reel of PCF, at λ= 740 nm.

Figure 3.19: Experimentally measured op-
tical spectrum for a range of detected pow-
ers for the 1.22 m reel of PCF, at λ =
760 nm.

it was difficult to obtain a precise estimate of β3 for this experiment. An additional reason
for the discrepancy between the simulated and measured squeezing values may be due to
the Raman effect [88, 91].

3.7 Conclusion

This chapter provides a numerical and experimental study of amplitude squeezing via the
optical Kerr effect with PCF. Our work complements previous studies of squeezing in mi-
crosctructured fibre, and shows that significant squeezing can be achieved using this ap-
proach at visible wavelengths by engineering the dispersion properties of the fibre. The ap-
proach of using an asymmetric interferometer provides an advantage over previous demon-
strations of bright visible squeezing via the Kerr effect in PCF [12], since there is no require-
ment for filtering of the squeezed light. While single mode fibre was used to generate high
power photon number squeezing at visible wavelengths in [58], the use of PCF here means
that there is no requirement for additional dispersion compensation. In Section 3.6, we
demonstrated a maximum of −1.3 dB of measured squeezing, which corresponds to −1.6 dB
when corrected for the detection efficiency of η = 0.836. The numerical simulation showed
good qualitative agreement with the experimental results, and was consistent with the
optimal wavelengths found for squeezing in each fibre length due to the second-order dis-
persion.

There are a number of reasons for the lack of exact numerical agreement between the
simulation and experimental results. Firstly, there is some uncertainty in experimental
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parameters such as the nonlinearity coefficient γ and the pulse duration T0. Furthermore,
while we would expect to see soliton-like behaviour at around the wavelengths used for
the measurement, this was not observed experimentally. This suggests higher-order effects
such as third-order dispersion may act to degrade the squeezing observed in this case, since
even small values of third-order dispersion may have a significant effect on the stability of
optical solitons. This indicates a promising route to improving the generated squeezing in
future experiments using PCF, by engineering the fibre structure to flatten the dispersion
curve, such that it is possible to obtain negligible β3 for finite β2. Another effect that may
have limited the squeezing obtained in this experiment is Raman scattering, which has
been shown to be significant in previous fibre squeezing measurements [91]. However, this
is more challenging to overcome, with the only known approach being cryogenic cooling of
the optical fibre.

The degree of squeezing demonstrated here is nonetheless sufficient for the application
of this source to significantly reduce the noise of optical measurements. In the following
chapters, this squeezed light source will be used to experimentally investigate high-power
quantum precision-enhancement in optical metrology.
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4
QUANTUM ENHANCED PRECISION ESTIMATION OF

AMPLITUDE MODULATION

4.1 Introduction

The performance of any optical measurement is fundamentally limited by quantum fluc-
tuations in the probe and the measurement device. When coherent laser light is used as a
probe, the optical fluctuations are due to shot noise, arising from the Poisson distributed
photon number distribution of the coherent state [26]. In some cases, noise contributions
from other classical sources, such as detection electronics or excess laser noise, can be re-
duced such that the optical shot noise determines the uncertainty in the measured observ-
able [97]. This defines the quantum noise limit (QNL) for classical optics, which is charac-
terised by a 1/

p
N scaling in error, for a probe containing N photons [98]. Therefore, by

increasing the intensity of the probe beam, or measuring for longer periods of time, it is
possible in general to reduce the effect of shot noise on the measurement. It is also pos-
sible to reduce the error by strengthening the interaction between the probe and sample
via multiple passes [99, 100] or optimising sample length [101]. However, there can often
exist restrictions on the total optical exposure, the measurement time, and sample prop-
erties [102, 103]. By using non-classical states of light, the fluctuations in the probe beam
may be significantly reduced relative to that of a coherent state, thus providing a way to
perform ‘sub-shot-noise’ parameter estimation per photon in the probe [6, 104].

The QNL defines the best precision achievable without the use of quantum correlations
for a given apparatus and photon number [9]. This is distinguished from the standard quan-
tum limit (SQL), which defines a measurement-independent limit to the precision that may
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be achieved using a minimum uncertainty state of a given photon number, without quan-
tum resources [98]. Here, we will use the QNL to describe the theoretical limit of precision
with classical light, since by accounting for experimental parameters such as detection ef-
ficiency, the QNL allows for a more intuitive description of the precision improvement by
using non-classical light. As we have seen in Chapter 2, squeezed states can have uncer-
tainty below the QNL, and therefore provide a suitable resource for quantum metrology.
Squeezed states of light may also be produced with arbitrary intensity using coherent laser
light [105]. This makes squeezed light a uniquely practical probe state for improving the
performance of optical techniques beyond the QNL.

The ability of a measurement to estimate a parameter may be characterised by both
precision and sensitivity. The precision is determined by the variance of repeated esti-
mates [14], and therefore depends on the fluctuations in the measured signal. Sensitiv-
ity is defined as the smallest possible signal that may be observed [15], and therefore
only depends on the signal-to-noise ratio (SNR). Sub-shot-noise measurements using bright
squeezed light have so far been driven by improvements in sensitivity beyond the QNL, and
this has been applied to optical techniques such as spectroscopy [16, 106, 107, 108, 109],
light microscopy [10, 110], gravitational wave detection [7, 8], optical magnetometry [17],
and a range of other optical techniques [111, 112, 9, 113, 114]. However, we will show that
observing enhanced sensitivity is not sufficient to show enhanced precision. Demonstra-
tions of transmission measurements with precision beyond the QNL have been limited to
∼ pW of probe power [23, 115]. This restricts the practical applicability compared to us-
ing classical laser light, since classical measurements are often able to reach much higher
levels of power. To attain a precision improvement using bright squeezed light as a probe,
the variance of the measured signal must be dominated by quantum noise. In this chapter,
we develop a theoretical model which can be used to calculate the variance of signals mea-
sured in the frequency domain. This model is used to determine the conditions required
to obtain both precision and sensitivity enhancement beyond the QNL in the estimation
of a modulated optical loss using bright amplitude squeezed light, which is experimentally
demonstrated. This corresponds to the first observation of enhanced precision in the esti-
mation of amplitude modulation (AM) using high power amplitude squeezed light.

In Section 4.2, we begin by introducing the theory of Fisher information [116], which
will be used to quantify the precision improvement of our measurement using squeezed
light. In Section 4.3, we derive the Fisher information for the loss parameter measured
in this experiment, and show that a quantum advantage in precision is attainable under
certain conditions. Section 4.4 shows the experimental results for the AM measurement
and Section 4.5 concludes the chapter.
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4.2 Parameter Estimation and the Cramér-Rao Bound

The purpose of any measurement is to estimate a parameter θ, or set of parameters θ =
{θ1,θ2, ...}, based on a set of data x = {x1, x2, ...}. The problem of parameter estimation is to
define a measurement strategy which maximises the information about θ contained in x,
and an estimator θ̂(x) which maximises the amount of information about θ that may be
extracted from x [117]. The caret in this context indicates that η̂ is an estimator, as opposed
to an operator. We will first discuss some desirable properties of estimators.

Two key properties which determine the performance of an estimator are the variance
and the bias. Intuitively, the variance describes how close the set of estimates are, on aver-
age, to the expected value of the estimates. The bias is the difference between the expected
value of the estimator and the true value of the parameter. These properties quantify the
error in the estimation procedure. In order to define these quantities more formally, we can
specify a probability distribution f (x|θ) which describes the likelihood of observing the out-
come x, given the parameter θ. This is known as the likelihood function. The bias is then
given by [118]

(4.1) Biasθ(θ̂)=E f (x|θ)(θ̂)−θ.

Here, Ex|θ(θ̂) is known as the expectation value of θ̂, and can be given as Ex|θ(θ̂)= ∫
X θ̂(x) f (x|θ)dx

when x is a continuous parameter, where X is the domain of the estimator θ̂. For a discrete
parameter x this integral is replaced with a summation. In the ideal case the bias will be
zero, such that on average, θ̂ = θ. The variance of an estimator is defined by [116]

(4.2) Varθ(θ̂)=E f (x|θ)[(θ̂−E f (x|θ)[θ̂])2].

A desirable property of an estimator is to have the minimum variance, such that the uncer-
tainty in the estimated values is small. In order to minimise the error due to both the bias
and the variance, an optimal estimator can be defined as one which minimises a quantity
called the mean squared error, defined as [116]

(4.3) MSEθ(θ̂)=E f (x|θ)[(θ̂−θ)2],

which can equivalently be expressed as

(4.4) MSEθ(θ̂)=Varθ(θ̂)+Biasθ(θ̂)2.

The mean squared error provides a useful characterisation of the estimator performance in
both classical and quantum estimation theory [119]. However, due to the bias term, esti-
mators which minimise the mean squared error typically depend on the value of the true
parameter θ and are therefore not realisable in practise. A common approach is to require
that the bias is zero, and find an estimator which minimises the variance.
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4.2.1 Fisher Information

In order to determine whether an estimator has minimum variance, it is necessary to find a
lower bound on the variance of any unbiased estimator. Such a bound is called the Cramér-
Rao bound (CRB), and is expressed as [120]

(4.5) Varθ(θ̂)≥ 1
F (θ)

,

where F (θ) is the Fisher information of the parameter θ. The precision of a measurement is
given by the inverse of the variance, and therefore the CRB sets a bound on the maximum
achievable precision of the measurement, for any estimator θ̂. If an unbiased estimator
saturates the CRB for all θ, it is known as an efficient estimator. The Fisher information
may be written in terms of the likelihood function as [116]

(4.6) F (θ)=E f (x)

[(
∂

∂θ
log( f (x|θ))

)2]
.

Intuitively, the Fisher information describes how sharply peaked the likelihood function is.
For a narrow likelihood distribution, the data x is highly dependent on θ, and therefore
contains more information about θ than a more broadly peaked f (x|θ). The distribution
f (x|θ) is directly determined by the choice of measurement. Therefore, in order to optimise
the estimation procedure, a first step is to choose a measurement procedure for which the
corresponding f (x|θ) maximises the Fisher information. Then, an unbiased estimator is
required which minimises Varθ(θ̂), and in the optimal case saturates the CRB.

4.2.2 Quantum Fisher Information

Figure 4.1: General quantum parameter estimation procedure illustrated by the interac-
tion of an initial state ρ̂0 with a system described by the parameter θ. The final state ρ̂θ
is subjected to the POVM {Ê(x)} and the measurement outcomes x are described by the
distribution f (x|θ)=Tr[Ê(x)ρ̂θ]. The estimator θ̂ is then computed based on the data x.

In quantum estimation theory, finding the optimal quantum measurement strategy may
be a highly non-trivial task. It is therefore useful to consider the bound on the variance as
a result of optimising over all possible quantum measurements. Such a bound is given
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by the quantum Fisher information FQ(θ), and leads to the quantum Cramér-Rao bound
(QCRB) [121]:

(4.7) Varθ(θ̂)≥ 1
F (θ)

≥ 1
FQ(θ)

.

FQ(θ) therefore corresponds to the maximum possible value of F (θ), where this bound is
only saturated in the case that F (θ) is evaluated for the optimal measurement strategy. A
general quantum measurement strategy is shown in Figure 4.1. An initial quantum state
given by the density operator ρ̂0 is allowed to interact with a system, where some prop-
erty of this system is described by the parameter θ. The interaction of ρ̂0 with the system
generates some dependence of the state on θ, which is now given by ρ̂θ. A measurement of
the state ρ̂θ can be described by the set of operators {Ê(x)} acting on ρ̂θ known as a pos-
itive operator-valued measure (POVM) [122]. Here, x denotes the measurement outcome,
and the elements Ê(x) must be positive semi-definite and satisfy

∫
Ê(x)dx = 1, where 1 is

the identity operator. The probability distribution of the measurement data are described
by the Born rule: f (x|θ) = Tr[Ê(x)ρ̂θ]. The POVM formalism may then be used to compute
F (θ) according to 4.6. The quantum Fisher information FQ(θ) corresponds to the maximum
value of F (θ) over all POVMs. For an initial pure state ρ0 = |Ψ〉〈Ψ|, transforming under
unitary evolution Û(θ)= eiĤ(θ), FQ(θ) may be written as [123]

(4.8) FQ(θ)= 4(〈Ψ| Ĥ(θ)2 |Ψ〉−〈Ψ| Ĥ(θ) |Ψ〉2).

The quantum Fisher information then depends only on the initial state ρ̂0 and the Hamil-
tonian Ĥ(θ) generating translations in θ. Therefore, by careful consideration of the probe
state and interaction, FQ(θ) may be maximised. For mixed initial states or non-unitary pro-
cesses, it is often the case that an analytic expression for FQ(θ) cannot be obtained. In such
cases, it is however often possible to find an upper bound for FQ(θ) [124]. Minimisation of
Varθ(θ̂) for an unbiased estimator θ̂ then yields an optimal quantum estimation strategy.

4.3 Estimation of a Modulated Loss with Squeezed
Light

4.3.1 Theoretical Model

The parameter estimated in this experiment is the modulation index, δm, which corre-
sponds to a fractional modulation in optical loss [125]. This may be expressed as δm =
(P −P ′)/P, where P and P ′ are the maximum and minimum output power due to modula-
tion, as illustrated by Figure 4.2. By observing the power oscillations in the time domain, it
may be possible to directly measure δm from P and P ′. However, typical laser sources and
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Figure 4.2: Illustration of the effect of AM on the time dependence of optical power.

detectors are only shot noise limited in the MHz frequency regime. Therefore, by making a
frequency domain measurement of the optical power around the modulation frequency, we
can infer a value of δm without integrating over any low frequency classical noise. Provided
that the modulation frequency Ω is in a shot noise limited bandwidth, squeezed light may
then be used to estimate a value of δm with sensitivity beyond the QNL. However, we show
that sub-QNL sensitivity is not a sufficient condition to enhance precision. In this section,
we define an estimator for δm in terms of the measured spectral noise power, and discuss the
experimental conditions that must be satisfied in order to attain a precision improvement in
δm by using amplitude squeezed light as a probe. While estimation of the modulation index
is itself of limited application, the detection of modulated signals has played a crucial role
in both classical and quantum optical metrology [126, 110, 10]. The analysis discussed here
provides a general methodology which may be directly translated into such applications.

For a modulation frequency Ω, the process of sinusoidal AM generates two optical side-
bands at ±Ω from the carrier frequency. Upon photodetection, this leads to a single elec-
tronic sideband in the spectral noise power at frequency Ω, which contains information
about δm. An estimator for δm is derived from the optical SNR using a similar approach to
Xiao et al. [127], which used homodyne detection. For direct photodetection of AM in a shot
noise limited bandwidth around Ω, we may write the SNR as δSNR = 〈ps〉/〈pn〉, where 〈ps〉
is the average signal component of the generated electronic power at frequency Ω and 〈pn〉
is the average electronic power due to the optical noise. The assumption of a weakly mod-
ulated carrier (δm ¿ 1) means that we can consider that the loss applied by the EOM has
a negligible effect on both the squeezing parameter Φ and the average optical power on the
output of the EOM. Therefore, for an optical power of P on the input of the EOM, the aver-
age (DC) measured photocurrent may be expressed as i0 = qηqP(1− (δm/2))/ħω≈ qηqP/ħω,
for a photodiode efficiency of ηq and light with a carrier wave of angular frequency ω. By
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calculating the expected values for the signal and noise, we may then write δSNR as

(4.9) δSNR = 〈ps〉
〈pn〉

≈ δ2
m i0

4qΦB
,

for a resolution bandwidth of B (see Appendix A.1). From Equation 4.9, we can define an
estimator for the modulation index as

(4.10) δ̂m =
√

4qΦBδ̂SNR

i0
,

where

(4.11) δ̂SNR = pΩ− pN

pN − pE
and i0 =

qηq〈P〉
ħω .

The carets on δ̂m and δ̂SNR indicate that these are estimators. Here, pΩ, pN and pE are
the measured spectral noise powers of the electronic sideband, the optical noise floor and
the electronic noise floor respectively. 〈P〉 is the average detected optical power, and both
〈P〉 and pN may be precalibrated with high precision. The dependence of δ̂m on the optical
noise is then contained in the measurement of pΩ.

For an input resistance of R to the measuring device (e.g. spectrum analyser or oscillo-
scope), we can define the power of the electronic sideband as

(4.12) pΩ = 2R| îΩ|2,

where îΩ is the photocurrent in the frequency bin centered onΩ. By considering power fluc-
tuations due to quantum optical noise, low frequency classical optical noise, and electronic
noise, the variance of the signal power is found to be

(4.13) Var(pΩ)= 〈p2
Ω〉−〈pΩ〉2 ≈

R2

M

[
2qδ2

m i3
0ΦB+4δ4

m i4
0Var(R[H])+4q2δ2

m i2
0Var(R[N ])

]
(see Appendix A.2). R[•] corresponds to the real part, H is the DC component of the classical
relative amplitude noise from the laser and modulator, N is the component of electronic
noise in the ±B frequency interval around Ω, and M is the number of spectral averages.
The dependence of Var(pΩ) on H is due to classical noise being transferred from the carrier
to the optical sidebands upon modulation. We assume here that the variance of the optical
noise due to the classical intensity fluctuations scales quadratically with optical power,
as expected for technical laser noise [96]. In order to quantify the advantage in precision
which may be obtained by using squeezed light, we analyse the Fisher information on the
modulation index, F (δm). Given that we use an amplitude squeezed state to perform an
amplitude measurement, the classical Fisher information saturates the quantum Cramér-
Rao bound [128]. Therefore, directly evaluating the classical Fisher information provides a
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bound on any quantum strategy. For our measurement strategy, and assuming αÀ 1, δ̂SNR

is normally distributed and we can define F (δSNR) according to [129]

(4.14) F (δSNR)= 1
Var(δ̂SNR)

=
[(
∂〈δ̂SNR〉
∂〈pΩ〉

)2

Var(pΩ)

]−1

.

F (δm) can be obtained from F (δSNR) by using [129]

(4.15) F (δm)=
(
∂δSNR

∂δm

)2
F (δSNR).

We find that Var(R[N ]) contributes negligibly to F (δm), and from Equation 4.10-4.15, this
leads to

(4.16) F (δm)≈ M
[

2qΦB
i0

+4δ2
mVar(R[H])

]−1
.

The quantum advantage is then the ratio Q(δm) between the values of F (δm) for a squeezed
(Φ < 1) and coherent (Φ = 1) state. The variance of δ̂m can be obtained by standard error
propagation. We find

(4.17) Var(δ̂m)=
(
∂〈δ̂m〉
∂〈pΩ〉

)2

Var(pΩ)= 1
F (δm)

.

Therefore, δ̂m is an efficient estimator. We also find that, in the limit of weak AM, 〈δ̂m〉 = δm,
meaning our estimator is unbiased.

The Fisher information per detected photon may be defined as F ′(δm) = F (δm)/〈N〉,
where 〈N〉 = i0/qB is the number of photons detected in the measurement time B−1. Us-
ing Equation 4.16, this gives

(4.18) F ′(δm)= M
[
2Φ+4δ2

m〈N〉Var(R[H])
]−1

.

A graph illustrating the dependence of F ′(δm) on the RBW is shown in Figure 4.3 for a
typical laser source which is quantum noise limited at Ω (solid line) and various levels
of squeezing (dashed lines), with all other parameters fixed. We find that, for sufficiently
high RBWs, squeezing provides sub-QNL precision in estimating δm. This can be seen from
Equation 4.16, since for 2qΦB/i0 À 4δ2

mVar(R[H]), quantum noise limits the precision of
the measurement, and we find Q(δm)→Qopt, where

(4.19) Qopt = 1
Φ

.

Given that all the information on the parameter δm is contained at the modulation fre-
quency Ω, this model suggests a practically achievable quantum advantage in precision is
possible, per photon in the probe.
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Figure 4.3: Theoretical model of the Fisher information per detected photon F ′(δm), using
Equation 4.18. This is plotted for typical laser light which is quantum noise limited at
Ω (solid line) and squeezed light (dashed lines): −1.6 dB and −2.6 dB are the measured
and inferred generated squeezing levels in our experiment, −5.7 dB is amplitude squeezing
previously achieved using an asymmetric Kerr interferometer [1] and −15 dB is the highest
measured squeezing to date [2]. For each plot, P = 0.2 mW, λ= 740 nm, ηq = 1, δm = 1×10−4

and Var(R[H])= 1×10−5.

4.3.2 Simulation

In order to verify the theoretical model described in 4.3.1, a simulation of the generated
photocurrent was implemented. The photocurrent was discretised in the time domain, and
given by

(4.20) i(tn)= q
(|α(tn)|2 +σ(tn)

)
,

where tn = n/ fs is the time at sample n, for a sample rate of fs. α(tn) corresponds to the
discretised classical amplitude from Equation A.2, where the stochastic classical noise func-
tion ζ(tn) is defined such that it has a spectral amplitude which is proportional to 1/k2 for
frequency index k. This ensures that the classical noise is negligible at high frequencies
∼ 10 MHz surrounding the modulation frequency. The function σ(tn) describes the quan-
tum optical noise and follows a Normal distribution with variance Var(σ(tn)) = ΦN fs, for
N detected photons per second. This definition follows since N/ fs photons are detected in a
time interval 1/ fs, which leads to a quantum noise contribution of

√
ΦN/ fs photons in this

measurement interval, following Poisson statistics. The count rate of photons from quantum
noise is therefore given by

√
ΦN fs photons per second. By implementing the Fast Fourier
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Transform (FFT) algorithm, we can then compute the power in the kth frequency bin as

(4.21) p(νk)= 2R
N2

s
|i(νk)|2

for k > 1, where i(νk) is the discrete Fourier transform of the time domain photocurrent.
Here, νk = kB, where B = Ns fs and Ns is the total number of samples. Figure 4.4 shows
the simulated power spectrum p(νk) in the frequency domain surrounding the modulation
frequency Ω= 10 MHz, for R = 50 Ohms, α2 = 1×1015, fs = 100 MHz, B = 10 kHz and Φ= 1.
By sampling the SNR from the simulated power spectrum, δ̂m may be estimated, and this
is plotted for a range of δm in Figure 4.5. This shows agreement between the estimated and
true modulation index for low δm. However, for δm & 0.02, there is a bias in the estimation,
which increases with δm. This is due to the discrepancy between the value of 〈P〉 used in
the estimation according to Equation 4.11 and the true value of 〈P〉 when AM is applied.

Figure 4.4: Simulated spectral noise power
p(νk) around the modulation frequency.

Figure 4.5: Simulated estimation and true
value of the modulation index for a range
of modulation depths.

Figure 4.6 shows a comparison of the simulated Var(pΩ) with the theoretical value pre-
dicted from Equation A.32 of Appendix A.2. This demonstrates good numerical agreement,
and illustrates that classical noise dominates the variance of the measured signal at high
δm, since Var(pΩ) diverges from the QNL above δm & 0.002. This behaviour is expected,
since the amplitude the measured signal must be small for quantum effects to dominate,
due to the difference in the scaling of classical and quantum noise with the number of mea-
sured photons. These results suggest a limit in the amount of power that can be measured
with quantum limited precision, due to low frequency classical noise on the optical probe.
However, by efficiently encoding information on the measured signal, quantum limited pre-
cision may be achieved with high power quantum probes. In the case of this measurement,
all the measured signal photons contribute to the estimation, and quantum limited preci-
sion is possible for small δm.
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Figure 4.6: Variance of the peak power of the sideband. The black data points correspond
to the variance of the simulated noise power p(νΩ), while the solid and dashed curves are
theoretical values taken using Equation A.32 of Appendix A.2.

4.4 Experimental Implementation

For the measurement, we used the source of amplitude squeezed light described in Chap-
ter 3. Here, the squeezed light is generated using 14 m of photonic crystal fibre (PCF),
and the average optical power of the output state is 0.2 mW, which equates to 25 W of
peak power. This probe is launched into a modulating sample, in this case implemented
using a Thorlabs EO-AM-NR-C1 electro-optic modulator (EOM), which modulates the po-
larisation of the light. Passing this light through a polarising beamsplitter (PBS) produces
weak AM, and generates optical sidebands at a distance ±Ω from the carrier frequency. It
is necessary to verify that the classical amplitude of the light on the output of the PBS is
in fact sinusoidally amplitude modulated at frequency Ω, as described by Equation A.2 in
Appendix A.1. Therefore, a more detailed analysis of the action of the EOM on the clas-
sical amplitude is provided in Appendix A.3. The resulting state is measured with direct
detection, by collecting all the light on a single photodiode of a Thorlabs PDB440A(-AC)
balanced amplified photodetector. The balanced subtraction photocurrent is used to cali-
brate the shot noise level. A Rohde & Schwarz FPC1000 spectrum analyser (SA) is used for
measurement of the spectral noise power. A diagram of the experimental setup is shown
in Figure 4.7. Also shown are illustrations of the behaviour of the spectral noise power of
an initial laser input (a), where the noise characteristics at Ω initially approximate that of
a coherent state |α〉 and so quantum noise dominates the power fluctuations. The light is
subsequently squeezed in amplitude (b) and then modulated in amplitude (c). The insets
show the ideal evolution of the state at ±Ω for an initial coherent state |α〉. The final state
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is amplitude squeezed with an average photon number of 〈n̂(±Ω)〉 = δm|α|2/2.

Figure 4.7: Experimental setup, showing expected behaviour for laser light. (a-c) Plots of
spectral noise power illustrating the effect of amplitude squeezing and modulation on a
typical laser source, with the quadrature diagrams showing a coherent state defined by
x̂, p̂ at ±Ω. (d) Schematic of the experiment. A pulsed laser at 740 nm propagates into
the Sagnac interferometer for squeezed state generation. A birefringent photonic crystal
fibre (PCF) provides the nonlinear medium for Kerr squeezing. The electro-optic modulator
(EOM) combined with the polarising beamsplitter (PBS) are used to generate AM, which is
measured on a spectrum analyser (SA).

One condition that is required for the theoretical model to accurately describe the ob-
servations is that the RBW must be significantly larger than the optical linewidth of the
generated sidebands. This means that the width of the measured electronic sideband must
be limited by the RBW. If this condition is satisfied, then the theoretical description of the
optical sidebands as delta functions is justified. This was experimentally verified by mea-
suring the full width at half maximum (FWHM) of the detected electronic sideband as a
function of B. These results are shown in Figure 4.8, and fitting a line to the data resulted
in the equation: FWHM = 0.991B+0.023. This demonstrates the expected linear scaling,
since the width of the electronic sideband is approximately equal to the RBW. The error
bars in Figure 4.8 are smaller than the data points. The optical linewidth of the sidebands
was measured to be < 1 Hz, lower than the smallest resolvable frequency width of the SA.

Figure 4.9 shows the spectral noise power traces of amplitude modulated squeezed light
and antisqueezed light, with the corresponding shot noise level. The blue trace corresponds
to −1.2 dB of amplitude squeezing, and the red trace corresponds to 2.7 dB of antisqueezing.
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Figure 4.8: Scaling of FWHM of the elec-
tronic sideband with the RBW.

Figure 4.9: 10 MHz AM measured by di-
rect detection. The red trace corresponds to
−1.2 dB of squeezing, and the blue trace to
2.7 dB of antisqueezing.

The traces for squeezing and antisqueezing are corrected for the difference in the respective
shot noise levels by subtracting the difference between the shot noise level corresponding
to each trace and the average shot noise level. The electronic noise has also been subtracted
from each trace. The RBW is B = 10 kHz, and the frequency separation of trace points in
Figure 4.9 is smaller than the RBW since the trace is a result of multiple samples within
each RBW interval. These results demonstrate enhanced sensitivity to measurements of
AM due to the amplitude squeezing, as already shown in [127].

In order to compare experimental measurement noise to that predicted from Equa-
tion 4.17, it is necessary to determine the value of M. As described in Section 2.2.4, for a
heterodyne spectrum analyser, the VBW filter performs a smoothing of the detected power,
which reduces the variance by a factor ε [44]. This is equivalent to the effect of spectral
averaging, and we can therefore write M = 1/ε, giving

(4.22) M = 1.056B
πBV

.

A constant ratio of B/BV = 100 was used for data collection, which results in M = 33.6.

Measurements of Var(δ̂m) as a function of detected power and δ̂m are plotted in Fig-
ure 4.10 and Figure 4.11 respectively. In Figure 4.10, numerical agreement is observed
between the experimental data and the QNL, where the QNL corresponds to Equation 4.17
for Var(R[H]) = 0. This is possible since for the high RBW (B = 30 kHz) and low modula-
tion index (δ̂m = 2×10−4) used, quantum noise dominates the variance of the measurement.
The slight divergence between the theory and experiment at low powers is likely due to the
contribution of electronic noise, which becomes greater when the detected photocurrent is
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Figure 4.10: Measured variance of the
modulation index as a function of detected
power.

Figure 4.11: Measured variance of the
modulation index as a function of δ̂m.

small. The theoretical fitting in Figure 4.11 corresponds to Equation 4.17 where Var(R[H])
is used as a fitting parameter, and this gives Var(R[H])= 2.3±0.4×10−5 with an R-square
value of Rs = 0.996. Figure 4.11 demonstrates significant divergence from the QNL for high
modulation indices, which supports the results from theory and simulation shown in Fig-
ure 4.6.

We have seen that under certain conditions it is possible to reach the QNL in the esti-
mation of δ̂m. Therefore, by varying Φ from antisqueezing to squeezing, it is expected that
a quantum advantage in precision may be observed when Φ < 1. From Equation 4.17, we
know that Var(δ̂m) is proportional to Φ and inversely proportional to 〈P〉. However, the
profile of squeezing with optical power is such that the shift in power is negligible across
the range of squeezing values [−1.6,2.7] dB of this measurement. Therefore, Var(δ̂m) scales
linearly with Φ. By fitting the data for Var(δ̂m) to a linear function, we infer the measured
quantum advantage using

(4.23) Q(δ̂m)= Var(δ̂m)QNL

Var(δ̂m)Φ
,

where Var(δ̂m)QNL is the variance of the modulation index for coherent light inferred from
the fitting, and Var(δ̂m)Φ corresponds to the measured variance in the modulation index for
the squeezing parameter Φ. Figure 4.12 shows results for Q(δ̂m) at a range of different lev-
els of squeezing, measured with a 100 kHz RBW. The value of δm had a small experimental
drift which varied between δm = [0.8,1.0]×10−4 over the duration of the measurements.
The large RBW means that classical noise contributes negligibly to Var(δ̂m), and the mea-
surement saturates the optimal quantum bound Qopt given by Equation 4.19 (red curve). A
quantum advantage of Q(δ̂m)= 1.44±0.09 is observed with −1.6 dB of squeezing, in agree-
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Figure 4.12: Measured quantum advantage in precision of estimated δm, Q(δ̂m), for a range
of squeezing levels. The red line corresponds to Qopt.

ment with Qopt = 1.45. We therefore demonstrate sub-shot-noise precision in the estimation
of δm using bright squeezed light. Each measurement of Var(δ̂m)Φ is taken from 50 samples
of δ̂m. In Figure 4.12, the error bars indicate the standard deviations over 236 variance
measurements.

Figure 4.13: Projected Q(δ̂m) for a range of RBWs B, for an average level of −1.3 dB squeez-
ing.

We may also infer the quantum advantage for an arbitrary Φ from the linear fitting of
Var(δ̂m)Φ with Φ. By doing this for a range of RBWs, we can plot the dependence of Q(δ̂m)
on B for Φ = −1.3 dB, which corresponds to the average maximum squeezing value. These
results are shown in Figure 4.13, with Var(R[H]) used as a fitting parameter, which gives
Var(R[H]) = 7±1×10−6. The R squared value for this fitting is R2 = 0.89. We demonstrate
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sub-QNL precision down to B = 100 Hz, with the decreasing Q(δ̂m) at low B due to the in-
creasing relative classical noise contribution. The maximum quantum advantage observed
here is Q(δ̂m)= 1.34±0.07, which again closely agrees with the the optimal Qopt = 1.35 for
the average squeezing parameter of Φ = 0.74. In Figure 4.13, the error bars were derived
from the standard deviations over 10 evaluations of the quantum advantage from sepa-
rate fittings to the data, where each fitting curve was based on an average of 23 variance
measurements for each Φ. The bounds on the quantum advantage for this measurement
are determined directly by the squeezing value, and therefore by improving the measured
squeezing, significant further enhancement is possible. Optical losses cause a significant
degradation in measured squeezing, and we measure a detection efficiency of ηq = 0.84 and
an optical efficiency between the output of the interferometer and the detector of ηopt = 0.81.
The maximum squeezing value of −1.6 dB corresponds to −2.6 dB of generated amplitude
squeezing, accounting for these additional losses.

4.5 Conclusion

The work presented in this chapter constitutes the first study of enhanced-precision spectral
estimation with bright squeezed states of light in the presence of classical laser noise. The
only known previous experimental demonstration of enhanced precision estimation with
bright squeezed light was found in [9], which shows both sensitivity and precision improve-
ment in particle tracking, and corresponds to a phase measurement. However, our work
provides a more detailed analysis by developing a theoretical model for the expected mea-
surement precision, which shows agreement with experiment. Such a quantitative study
of precision estimation with squeezed light has been seen before using squeezed vacuum
states for phase estimation in [130, 131]. The work shown in this chapter likewise included
analysis of the estimator variance for a measurement of AM, using high power amplitude
squeezed states of light.

In Section 4.3, the theoretical model was derived for the Fisher information on the mod-
ulation index of a modulated optical loss, F (δm), measured by direct detection at the fre-
quency of the generated optical sideband. We showed that amplitude squeezed states allow
us to extract a higher F (δm) per detected photon. The quantum advantage was found to de-
pend on the generated squeezing, the RBW and the classical laser noise. The amount of low
frequency classical noise transferred to the optical sidebands increases with the amplitude
of the measured signal. We therefore show that for measurements of high power optical
signals, sub-QNL sensitivity does not necessarily imply sub-QNL precision.

In Section 4.4, we presented an experimental demonstration of this estimation proce-
dure. This verified the theoretical model, showing up to a 44% quantum advantage in pre-
cision in the estimation of the modulation index, per detected photon. This general demon-
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stration motivates applications in areas such as spectroscopy [132] and imaging [133],
where precision may determine the performance of the measurement, which can be im-
proved by using squeezed light. Further to this, the theoretical model for the variance of
the spectral noise power may be directly applicable to measurements such as Raman spec-
troscopy [134, 10], which involve the detection of a modulated signal using a high power
squeezed probe. Our measurement utilised amplitude squeezed light of 0.2 mW average
optical power (25 W peak power) as a probe. This power is comparable to the photon dose
required to induce a photophobic response in living cells [103], therefore indicating this
technique’s relevance to biological measurements. This work opens the way to performing
measurements that compete with the optical powers of current classical techniques, but
have superior precision and sensitivity beyond the classical limit.
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5
QUANTUM ENHANCED ESTIMATION OF STATIC LOSS WITH

BRIGHT SQUEEZED LIGHT

5.1 Introduction

Loss estimation is a ubiquitous tool in optical metrology, and forms the basis of spec-
troscopy [18] and imaging [19]. It therefore has wide-ranging applicability across science
and engineering [19, 135, 136, 137, 138, 139]. Loss estimation is also a particularly sim-
ple means of extracting information from a sample, since it involves only direct intensity
measurements and therefore does not require phase sensitive detection. However, when
the measured loss is small, or when there are restrictions in the probe power or measure-
ment duration, optical noise is a key limiting factor in the performance of such measure-
ments [97]. The loss parameter δ is defined by 〈P〉out = (1−δ)〈P〉in, where 〈P〉out and 〈P〉in

are the average optical power before and after the sample respectively. The quantum noise
limit for loss estimation is given by Var(δ)= [(1−δ)/〈N〉]1/2 [22], for 〈N〉 average photons in
the probe. In the previous chapters, we have shown how squeezed light may be used to re-
duce the noise of an optical probe below the quantum noise limit. Amplitude squeezing may
be used to reduce the optical noise while maintaining the bright intensity of laser light. As
discussed in Chapter 4, the probe power sets a bound on the measurement precision, which
means that bright amplitude squeezed light is an ideal resource for loss estimation [21].

The quantum noise limit represents a fundamental limit to the precision of loss esti-
mation using classical light. However, unlike in the case of a modulated loss measurement
described in Chapter 4, there are many experimental challenges associated with encoding
a static loss as an AC signal in a shot noise limited bandwidth. Therefore, measurements of
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optical loss are often constrained by excess low frequency classical noise due to the laser or
the detection electronics [140, 141].

One approach for reaching the quantum noise limit in the case of molecular absorption
measurements is frequency modulation (FM) spectroscopy [126]. This involves modulat-
ing the frequency of the laser across the absorption feature of the sample, such that the
wavelength modulation is converted into amplitude modulation, which can be detected by a
direct intensity measurement. The generated signal at the frequency of modulation is pro-
portional to the sample absorption. Since lasers can be frequency modulated at ∼MHz, this
allows for an estimation of the absorption which avoids low frequency noise, and therefore
high sensitivities can be achieved using this method. However, it also requires a narrow
absorption feature for full modulation, which significantly limits its use in more general
applications of loss estimation.

Another method which can be used for imaging and spectroscopy is spatial modulation.
In this approach, the position of a sample is modulated in and out of the path of a tightly
focused laser beam [142]. This is typically achieved by mounting the sample on a piezo-
electric stage which is driven with a sinusoidal voltage, but it is also possible to modulate
the laser beam. This generates intensity modulation, which can be used to infer the sample
absorption. As for FM spectroscopy, the modulation allows for low frequency noise to be
significantly avoided. However, the frequency of modulation is commonly limited to ∼kHz,
which means that this approach is typically still limited by excess classical noise [143].
Furthermore, this strategy is restricted to the detection of nanoparticles [144].

An alternative to such modulation-based techniques is balanced detection of the DC
photocurrent [97], whereby the photocurrent measured by two photodiodes is slightly un-
balanced by the presence of an absorbing sample. The resulting DC signal can be used to
obtain an estimate of the sample absorption. In this case, the excess laser noise is corre-
lated between the two detectors, and this is referred to as common-mode noise. This means
that there is significant cancellation of classical noise in the subtraction photocurrent, as
described in Section 2.3.2. This technique has enabled imaging of single molecules with sen-
sitivity approaching the quantum noise limit [19]. A significant challenge in this approach
is achieving sufficient rejection of common-mode noise, and minimising electronic noise in
order to obtain quantum noise limited behaviour at DC.

Photon counting experiments have enabled transmission estimation [23] and imag-
ing [133] with precision surpassing the quantum noise limit. This is typically achieved by
using a non-degenerate photon pair source to generate pairs of photons in two separate
spatial modes, referred to as the signal and idler beams. The detection of a signal photon
is then used to indicate the presence of an idler photon. By placing the sample in the path
of the idler beam, and using photon counting devices for timing the arrival of detected pho-
tons, a transmission estimate can be obtained by comparing the number of signal and idler
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photons detected coincidentally with the total number of detected signal photons. While this
approach has allowed for significant quantum precision enhancement [22], such measure-
ments are limited to picowatts of optical power, which restricts the practical applicability of
this technique as discussed in Chapter 4.

In this chapter, we describe an experiment which can be used to measure a static optical
loss with precision and sensitivity beyond the quantum noise limit using bright amplitude
squeezed light. This novel approach enables cancellation of excess laser noise, and allows for
detection at MHz frequencies by using resonantly enhanced amplitude modulation. While
loss estimation with high power squeezed light has been the subject of theoretical stud-
ies [20, 21], the experiment presented here corresponds to the first measurement of a static
loss with enhanced precision using amplitude squeezed light. This measurement repre-
sents an improvement of 8 orders of magnitude beyond the power limitations of previous
measurements of optical loss with quantum enhanced precision [23, 22]. In Section 5.2, we
give an overview of theoretical limits in the precision of loss estimation. In Section 5.3, we
derive the Fisher information of the measured loss parameter. Section 5.4 describes the
experimental scheme and the results obtained for the loss measurement. Section 5.5 con-
cludes the chapter.

Statement of Work

The simulation presented in Figure 5.11 was based on code written by Euan Allen, and
analysis of the imaging simulations accordingly resulted from discussions with Euan Allen,
Giacomo Ferranti, Alex McMillan and Jonathan Matthews.

5.2 Quantum Limits in Loss Estimation

5.2.1 Direct Detection

Here we will present an analysis of the Fisher information on a transmission parameter
η= 1−δ for absorption δ, comparing the strategy of direct detection for laser light with and
without the presence of excess laser intensity fluctuations. In the case of an ideal coherent
state of initial amplitude Â0(t) = αeiθ + â(t), the quantum field amplitude after the trans-
mission η can be written as Â(t)=p

ηαeiθ+ b̂(t), where b̂(t)=p
ηĉ(t)+√

1−ηd̂(t) for bosonic
annihilation operators ĉ(t) and d̂(t). Here, we have modelled the loss as a beamsplitter, with
ĉ(t) corresponding to the transmitted quantum fluctuations of the probe light, and d̂(t) the
coupled vacuum mode. A schematic illustrating this strategy is shown in Figure 5.1.

An estimate of η is provided by comparing the DC voltage generated from the photocur-
rent with and without the presence of the sample, denoted V ′ and V respectively. Following
a similar approach to Section 4.3, here in the time domain, we can write the measured
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Figure 5.1: Diagrams showing the strategies of direct detection (a) and balanced detection
(b) for estimating optical loss. The dashed lines indicate vacuum ports.

voltage U in terms of the photocurrent î(t) as

(5.1) U = R
T

∫ T

0
î(t)dt,

for a measurement over a time interval T, using a measuring device with resistance R. The
time domain photocurrent for the detected light after propagating through the sample can
be written as

(5.2) î(t)= qÂ(t)† Â(t)≈ q
(
ηα2 +p

ηα
[
b̂(t)e−iθ+ b̂(t)†eiθ

])
,

where terms quadratic in the creation/annihilation operators have been neglected. The re-
sulting expected values of the measured voltages are 〈V ′〉 = qRηα2 with the sample and
〈V 〉 = qRα2 without the sample. The transmission estimate η̂ is then given by

(5.3) η̂= V ′

V
,

where the caret indicates that η̂ is an estimator. We can also assume that the value of V can
be precalibrated with high precision. The variance of the measured voltage with the sample
in place is

(5.4) Var(V ′)= 〈V ′2〉−〈V ′〉2 = R2

T2

∫ T

0

∫ T

0
〈 î(t) î(t′)〉dtdt′− R2

T2

∫ T

0

∫ T

0
〈 î(t)〉〈 î(t′)〉dtdt′

= q2R2ηα2

T2

∫ T

0

∫ T

0
〈b̂(t)b̂(t′)e−2iθ+ b̂(t)b̂(t′)† + b̂(t)†b̂(t′)+ b̂(t)†b̂(t′)†e2iθ〉dtdt′

= q2R2ηα2

T2

∫ T

0

∫ T

0
δ(t− t′)dtdt′ = q2R2ηα2

T
.
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For large photon numbers, the statistics of the measured voltage are normally distributed,
and the Fisher information on the voltage saturates the Cramér-Rao bound [129]: F (V ′) =
Var(V ′)−1. Therefore, the Fisher information on the transmission parameter, F (η), can be
calculated:

(5.5) F (η)=
(
∂〈V ′〉
∂η

)2

F (V ′)=
(
∂〈V ′〉
∂η

)2 1
Var(V ′)

= Tα2

η
= 〈N〉

η
,

where 〈N〉 = Tα2 corresponds to the number of photons detected in time T. As expected,
this bound is identical to the quantum Fisher information on a loss parameter for a co-
herent state [128], meaning direct detection is an optimal measurement strategy for loss
estimation in the absence of excess laser noise.

We now relax the assumption of an ideal coherent state, and include a classical ampli-
tude noise term ζ(t). The quantum amplitude can then be written as Â(t)= (1+ζ(t))pηαeiθ+
b̂(t). In this case, we obtain the following expression for î(t):

(5.6) î(t)= qÂ(t)† Â(t)≈ q
(
ηα2 +p

ηα
[
b̂(t)e−iθ+ b̂(t)†eiθ

])
+2ηα2ζ(t).

The variance of the voltage measurement then gives the result:

(5.7) Var(V ′)= 〈V ′2〉−〈V ′〉2 = q2R2ηα2

T
+ 4α4η2R2

T2

∫ T

0

∫ T

0
〈ζ(t)ζ(t′)〉dtdt′.

For a typical laser, the second term of this expression will dominate due to the slow intensity
fluctuations [96], and therefore direct detection will no longer saturate the bound given by
Equation 5.5.

5.2.2 Balanced Detection

Due to the effect of classical intensity fluctuations discussed in Section 5.2.1, direct detec-
tion does not provide an optimal strategy for transmission estimation using classically-noisy
laser light. However, a strategy that may be used to overcome these intensity fluctuations is
balanced detection [145]. Here, the optical power is evenly split between two photodiodes,
and the sample is placed in the path to one of the photodiodes. A differential measure-
ment of the photocurrent of the two photodiodes is then made. Since the classical intensity
fluctuations are correlated between the two detectors, this strategy can reject a significant
fraction of the excess laser noise in the limit of small losses (δ¿ 1). Furthermore, by using
a transimpedance-amplified balanced photodetector, the electronic subtraction of the pho-
tocurrents occurs before amplification, meaning that it is not necessary to precisely match
the electronic properties of two separate amplifiers [95]. We label the photocurrents gener-
ated by photodiodes PD1 and PD2 as î1(t) and î2(t) respectively, with the sample placed in
the path of PD1 as illustrated in Figure 5.1. Writing the quantum amplitude of the state
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before the 50:50 beamsplitter as Â(t) = αeiθ + ê(t), the photocurrent measured by the two
detectors are:

(5.8) î1(t)= α2

2
+

√
1
2
αb̂(t)e−iθ+

√
1
2
αb̂(t)†eiθ+α2ζ(t),

(5.9) î2(t)= ηα2

2
+

√
η

2
αĉ(t)e−iθ+

√
η

2
αĉ(t)†eiθ+ηα2ζ(t).

In this case, we can denote the quantum amplitudes as b̂(t)=p
1/2

(
ê(t)+ f̂ (t)

)
and ĉ(t)=√

η/2
(
ê(t)− f̂ (t)

)−√
1−η ĝ(t), where f̂ (t) and ĝ(t) correspond to the vacuum fluctuations

coupled from the 50:50 beamsplitter and the applied loss respectively. This results in a
difference photocurrent of

(5.10) î−(t)= (1−η)
α2

2
+ αe−iθ

p
2

(
b̂(t)−p

ηĉ(t)
)+ αeiθ

p
2

(
b̂(t)† −p

ηĉ(t)†
)
+ (1−η)α2ζ(t).

The resulting expectation value of the subtraction voltage with the sample in place is 〈V−〉 =
qRα2(1−η)/2, as compared the total voltage of 〈V 〉 = qRα2. Therefore, an estimator for the
transmission parameter may be written as

(5.11) η̂= V −2V−
V

.

The variance of the voltage resulting from the subtraction photocurrent, V−, is

(5.12) Var(V−)= 〈V 2
−〉−〈V−〉2 = R2

T2

∫ T

0

∫ T

0
〈 î−(t) î−(t′)〉dtdt′− R2

T2

∫ T

0

∫ T

0
〈 î−(t)〉〈 î−(t′)〉dtdt′

= q2R2(1−η)2α4

T2

∫ T

0

∫ T

0
〈ζ(t)ζ(t′)〉dtdt′+ q2R2α2(1+η)

2T
.

In the case that the loss of the sample is small (δ = 1−η¿ 1), the classical noise term in
Equation 5.12 is negligible in comparison to the quantum noise term, resulting in

(5.13) Var(V−)≈ q2R2α2

T
,

as expected due to voltage fluctuations from optical shot noise. As before, it may be assumed
that V can be precalibrated with high precision. The resulting Fisher information in the
case of balanced detection of a small optical loss is

(5.14) F (η)=
(
∂〈V−〉
∂η

)2
F (V−)=

(
∂〈V−〉
∂η

)2 1
Var(V−)

≈ 〈N〉
4

.

This result is expected since half of the measured light does not interact with the sample.
Therefore, as well as the effective number of probe photons being halved, there is a shot
noise contribution from the light measured by both detectors, leading to the factor of 4
difference to the Fisher information obtained with direct detection using a coherent state.
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5.3 Estimation of a Static Loss with Squeezed Light

While balanced detection is a useful method for detecting an optical loss using laser light,
there are some significant limitations with this measurement strategy. Firstly, it requires
shot noise limited behaviour at DC, which is technically challenging due to the high elec-
tronic noise typically observed at low frequencies. This makes balanced detection particu-
larly difficult when using low probe powers (µW) [97], where the shot noise clearance is sig-
nificantly reduced. It also relies on the detector having a high common mode rejection ratio,
in order for excess laser noise not to be amplified by the detection electronics. Furthermore,
this strategy is fundamentally limited by shot noise, since, as discussed in Section 2.3.2,
any noise reduction due to quantum correlations such as squeezing is removed when mea-
suring the subtraction photocurrent. While strategies such as wavelength modulation [126]
or spatial modulation of the sample [142] overcome these problems of low frequency noise,
they typically demand very specific properties of the sample. Absorption measurements us-
ing wavelength modulation, for example, require the sample to have a narrow absorption
feature. In the case of spatial modulation strategies, the diameter of the sample must be
much smaller than the wavelength of the light [142]. This motivates the need for a mea-
surement strategy which avoids the effects of low frequency electronic noise and classical
intensity fluctuations, and for which bright squeezed light may provide a precision advan-
tage, but which does not place such restrictions on the measured sample. In this section,
such a scheme is proposed, which employs path modulation of amplitude squeezed light.

For this strategy, amplitude modulation is required in order to encode information on
the static transmission parameter η in a shot noise limited bandwidth. By using a mod-
ulator which is resonantly enhanced to allow δm = 1, the maximum amount of power is
transferred to the signal. Resonant modulators use an LC circuit with a fixed resonant
frequency to significantly reduce the voltage required for full modulation. However, as dis-
cussed in Chapter 4, a direct measurement of a fully amplitude modulated signal will be
dominated by the intensity noise transferred to the sideband. Here, amplitude modulated
light on both output ports of a PBS is recombined by using a second PBS, before being
measured by direct detection, as shown in Figure 5.2. A sample of transmission η is placed
on one of the output ports of PBS1. Since the amplitude modulation generated on each
output of PBS1 will be π out of phase, the modulation of the combined signal will cancel
out when η = 1. When η < 1, the imbalance in the modulation due to the loss generates a
signal in the measured photocurrent at the modulation frequency. This scheme essentially
corresponds to a modulation of the path of the probe light between the two ports of PBS1.
However, in contrast to the spatial modulation scheme described in Section 5.1, this does
not require mechanical modulation of the sample position, and can therefore achieve much
higher modulation frequencies. Similarly to balanced detection, the contribution of laser
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Figure 5.2: Schematic of the quantum enhanced loss estimation measurement. The electro-
optic modulator (EOM) fully modulates the polarisation of the amplitude squeezed state
Â0(t), which leads to path modulation between the two output ports of PBS1. With a sample
placed before PBS2, the loss causes an imbalance in the modulation. This generates a signal
at the modulation frequency which is proportional to the applied loss, and is detected by the
photodiode (PD). The dashed lines indicate vacuum ports.

intensity noise to the variance of this signal will be negligible if the applied loss is small.
Furthermore, if the input state is amplitude squeezed, the squeezing is not significantly
degraded by the modulation for a small loss. Therefore, amplitude squeezing may be used
to enhance the precision of the transmission estimate. In Appendix B.1, the signal-to-noise
ratio of the measured photocurrent is shown to be

(5.15) δSNR = i0δ
2
m(1−η)2

16qΦB
,

for DC photocurrent i0, modulation index δm, squeezing parameter Φ, and resolution band-
width B. From Equation 5.15, the estimator for the transmission of the sample can then be
written as

(5.16) η̂= 1−
√

16qΦBδ̂SNR

i0δ
2
m

,

where δ̂SNR and i0 can be estimated according to Equation 4.11 in Chapter 4, and the
values of δm, 〈P〉 and pN may all be precalibrated. In Appendix B.2, the variance of the
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power of the electronic sideband for M spectral averages is derived to be
(5.17)

Var(pΩ)≈ R2

M

[
1
2

qδ2
m(1−η)2 i3

0ΦB+ 1
4
δ4

m(1−η)4 i4
0Var(R[H])+ q2δ2

m(1−η)2 i2
0Var(R[N ])

]
.

The Fisher information on the transmission parameter can then be derived from

(5.18) F (η)=
(
∂δSNR

∂η

)2
F (δSNR),

where F (δSNR) can be obtained using Equation 4.14 as before. Neglecting the electronic
noise term, this gives the result:

(5.19) F (η)= M
[

8qΦB
i0δ

2
m

+4(1−η)2Var(R[H])
]−1

.

We note that both Equation 5.16 and Equation 5.19 rely on the assumption that the applied
loss is small, i.e. δ¿ 1, such that the effect of the loss on the quantum fluctuations can be
neglected. In the limit that the classical noise term in Equation 5.19 may also be neglected,
Equation 5.19 can be written as

(5.20) F (η)= M〈N〉δ2
m

8Φ
,

where 〈N〉 is the average number of detected photons in the measurement time B−1. With
no squeezing, full modulation and no spectral averaging, this is a factor of 2 lower than the
bound for balanced detection, since the DC signal is not measured. We can also define the
Fisher information per photon incident on the sample F ′(η)=F (η)/〈Ns〉, where 〈Ns〉 = 〈N〉/2
is the average number of photons propagating through the sample in the measurement
time B−1. This is a useful metric since the number of photons is often limited by optical
power which the sample can be exposed to. Using Equation 5.20, assuming full modulation
and no spectral averaging, this gives F ′(η) = 1/4Φ. We can compare this to the result of
F ′(η) = 1/Φ obtained for a squeezed coherent state, using direct detection. Due to the low
frequency noise observed on realistic sources of bright squeezed light, we can conclude that
our measurement strategy provides a practical means of detecting an optical loss, using
amplitude squeezed light as a probe.

The variance of the estimate η̂ using this strategy can also be derived as

(5.21) Var(η̂)=
(
∂〈η̂〉
∂〈pΩ〉

)2
Var(pΩ)= 1

F(η)
.

The estimator therefore corresponds to a minimum-variance estimator for this measure-
ment strategy.

In Figure 5.3, F (η) is plotted as a function of the applied modulation depth. The solid
black curve corresponds to Equation 5.20, for i0 = 0.2 mA, Φ = 1, and B = 1 MHz. The
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Figure 5.3: Theoretical model of the Fisher Information F (η) versus the applied modula-
tion depth δm for shot noise limited laser light, for the measurement strategy described in
Figure 5.2.

QNL is defined by F (η)QNL = i0/8qB, i.e. the maximum value of F (η) for Φ = 1. The best
performance is achieved for δm = 1 because the applied modulation determines the number
of signal photons transferred to the measured sideband.

An equivalent strategy could be implemented by measuring the addition photocurrent
of two photodiodes placed on each output port of PBS1, with the sample placed in the path
to one of the photodiodes. This strategy is illustrated in Figure 5.4. This approach simpli-
fies the optical arrangement, and the fewer optical components will mean that a lower total
loss will be applied to the squeezed light. However, similarly to balanced detection, it would
require careful balancing of the current generated by each photodiode. This challenge could
be partially overcome by connecting the photodiodes in parallel, such that the addition of
the photocurrents occurs before amplification. This would avoid the requirement of need-
ing to balance the gain properties of separate amplifiers, as for balanced transimpedance-
amplified photodetectors [95]. However, the efficiency of the two photodiodes would still
need to be closely matched in order to achieve sufficient rejection of the common-mode
signal. Therefore, the strategy illustrated in Figure 5.2 is used for the experimental demon-
stration here.
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Figure 5.4: Alternative strategy for static loss estimation by measuring the addition pho-
tocurrent of amplitude modulated light on both output ports of PBS1. The presence of the
sample before PD1 leads to a residual signal at the modulation frequency, which can be
used to estimate the loss of the sample.

5.4 Experimental Implementation

5.4.1 Quantum Enhanced Loss Estimation

The form of Equation 5.17 is similar to that of Equation 4.13 for the detection of ampli-
tude modulation. By comparing these equations, we expect that, for small values of loss,
and large RBWs, a quantum advantage may be achieved with this measurement strategy
using the source described in Chapter 3. A diagram of the experimental setup is shown in
Figure 5.5. As before, the power of the amplitude squeezed light is 0.2 mW, generated using
14 m of PCF. In order to obtain optimal amplitude modulation (δm ≈ 1), the polarisation
state of the incident light must be extremely pure, with a visibility ∼ 100%. A Thorlabs
GT5-B Glan-Taylor (GT) polariser was used to achieve this. By placing a QWP on the out-
put of the Sagnac interferometer (QWP1), the ellipticity in the polarisation of the squeezed
light is largely removed. HWP3 then rotates axis of polarisation to align with the trans-
mission port of the GT polariser. QWP1 and HWP3 therefore together minimise the loss on
the light transmitted through the GT. Following the GT, QWP2 is used to generate circular
polarisation. This reduces the voltage required to modulate between horizontal and verti-
cal polarisation states, and means that full amplitude modulation can be observed on the
output ports of PBS1 without applying a DC bias to the modulator. The EOM used is a cus-
tom Qubig AM7-NIR amplitude modulator, which is resonantly enhanced for modulation
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at 10 MHz. A Thorlabs TED200C temperature controller is used to stabilise the modula-
tion. An AR coated N-BK7 glass window with η = 0.98±0.01 is used to provide the optical
loss, with the exact transmission dependent on its orientation. Due to the modulation, the
average probe power incident on the sample is 0.1 mW, i.e. half of the power of the gener-
ated amplitude squeezing. The light is recombined by PBS2, and the amplitude modulation
observed on the output of PBS2 will be proportional to the applied loss. This signal is de-
tected by a single photodiode of the Thorlabs PDB440A(-AC) balanced detector, and the
photocurrent is analysed by the Rohde & Schwarz FPC1000 spectrum analyser (SA).

Figure 5.5: Schematic diagram of the loss estimation experiment. Pulsed laser light at
740 nm propagates into the Sagnac interferometer, generating 0.2 mW of amplitude
squeezed light. The polarisation extinction of the probe light is optimised using a Glan-
Taylor polariser (GT), and the transmission through the GT is maximised using QWP1 and
HWP3. QWP2 is used to circularly polarise the light incident on the EOM. The light on
each output port of the PBS is amplitude modulated with δm ≈ 1. A detector on the output
port of PBS2 generates a photocurrent from the combined signal, which is analysed using
an electronic spectrum analyser (SA).

As discussed in Section 5.3, the applied modulation must be δm ≈ 1 in order to saturate
the quantum noise limit for this measurement strategy. To verify that sufficient modu-
lation is provided by the EOM, a measurement of δm was made by blocking one port of
PBS1, such that full amplitude modulation is observed on the output of PBS2. However,
since this level of AC power is too high to be measured with the spectrum analyser, an
oscilloscope was used for this measurement of δm. The results of this measurement are
shown in Figure 5.6, and demonstrate the expected sinusoidal modulation predicted by
Equation B.6 of Appendix B.1. The fitting curve gives an average voltage modulation am-
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plitude of Vpk = 0.918±0.001 V. Using the quantum efficiency of ηq = 0.84 inferred from
Figure 3.7, the quoted transimpedance gain of G = 51×103 V/A, and the measured aver-
age power of 〈P〉 = 73.7 µW, we infer a value of δm = 2Vpkħω/〈P〉Gqηq = 0.976±0.001. This
value is sufficiently close to full amplitude modulation such that squeezing may allow for
precision enhancement beyond the quantum noise limit.

Figure 5.6: Trace of the detected voltage as a function of time, showing 10 MHz modulation.
The red curve is a sine fitting, from which we infer a modulation depth of δm = 0.976±0.001.

This was achieved by applying a sinusoidal voltage with an amplitude Vp = 8.6 V and an
optimal frequency of 9.92 MHz to the modulator. A limitation of this measurement is that
the voltage data was acquired using the AC coupled RF port of the detector. This means that
inferring δm requires a reliable measurement of ηq. With a DC coupled detector, a relative
voltage measurement could be used to determine δm with more accuracy.

To verify that the power spectrum of the detected light behaves as expected from Equa-
tion B.15 in Appendix B.1, a trace was measured with and without the presence of the
N-BK7 loss sample, using a coherent state as a probe. This data is shown in Figure 5.7.
This measurement was taken with a resolution bandwidth of B = 1 MHz. The red trace
corresponds to the case with the sample in place, and gives rise to a peak in the power at
f = 10 MHz, as expected from Equation B.15. The blue trace was measured without the
sample in place, and the signal is significantly removed. However, a slight peak may still be
observed in the blue trace at 10 MHz. This is because there is not complete cancellation of
the modulation signal, since there will be a slight imbalancing due to time-dependent vari-
ations in the coupling of the two paths into the photodetector. This effect may be treated
in a similar manner to common-mode rejection in balanced detection. The results shown in
Figure 5.7 demonstrate a 58 dB suppression of the common-mode signal, which is compara-
ble with purpose-built balanced detectors [97]. The bias in the measurement resulting from
the incomplete common mode rejection is Bias(η̂)≈ 1×10−6, which is 2 orders of magnitude
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Figure 5.7: Trace of the detected noise power using the setup shown in Figure 5.5. The
red trace was obtained using a transmission of η = 0.98, and the blue trace was measured
without a sample in place. The black trace corresponds to the dark noise of the detector.

smaller than the error due to the shot noise contribution for 0.2 mW of detected power,
according to Equation 5.20. The effect of the imbalancing is therefore not large enough to
lead to a significant bias in the transmission estimation, although this bias will lead to a
more significant error for smaller losses. However, it may result in an increase of the clas-
sical noise contribution to the variance of the measurement. This demonstrates that an
improvement to this measurement strategy could be made by further increasing the resolu-
tion bandwidth, since this would reduce the effect of the imbalancing on the measurement
bias and variance relative to the effect of quantum noise. However, because the frequency
of the signal is fixed at the 10 MHz resonant frequency of the EOM, increasing the RBW
beyond 1 MHz leads to distortion of the signal. Therefore for this experiment, the maximum
RBW used was B = 1 MHz.

From Equation 5.21, it is expected that, with a RBW of B = 1 MHz, the variance of the
transmission estimate will scale linearly with the squeezing parameter. A measurement
of Var(η̂) as a function of the squeezing parameter ΦdB is shown in Figure 5.8. This data
was taken using RBW of B = 1 MHz and a VBW of BV = 100 kHz. The average value of η̂
observed across the range of squeezing values is η̂= 0.9816±0.0007, which is in close agree-
ment with the approximate η= 0.98±0.01 obtained using a powermeter. The black dashed
line is a linear fitting from Equation 5.21, using the experimentally measured values and a
single fitting parameter for Var(R[H]). This fitting gives Var(R[H])= 8.0±0.6×10−6, which
is consistent with the value of Var(R[H]) = 7±1×10−6 inferred from the amplitude mod-
ulation measurement in Chapter 4. The solid black curve corresponds to the CRB for this
measurement strategy, i.e. the predicted variance for this measurement according to the
bound given by Equation 5.20. Each measurement of η̂ was taken from an average of 50
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spectrum analyser measurements, and the error bars in Figures 5.8 and 5.9 indicate the
standard deviations over 23 variance measurements. While the experimental results are

Figure 5.8: Experimentally measured
Var(η̂) as a function of squeezing. The
dashed line is a linear fitting and the solid
black line corresponds to the CRB given by
Equation 5.20.

Figure 5.9: Experimentally measured
quantum precision advantage as a function
of squeezing. The red curve corresponds to
Qopt.

close to the CRB, the small constant offset observed is characteristic of classical noise on
the signal. Figure 5.9 shows the achieved quantum advantage as a function of squeezing
for the same data as shown in Figure 5.8. The quantum advantage is defined as the ra-
tio between the variance at ΦdB = 0 dB inferred from the linear fitting with the measured
variance for squeezing parameter Φ:

(5.22) Q(η̂)= Var(η̂)QNL

Var(η̂)Φ
.

The red curve indicates Qopt = 1/Φ. While the experimental data shows a similar scaling
with squeezing to Qopt, the observed divergence from this bound is due to the classical noise
as shown in Figure 5.8. The effect of classical noise in Figure 5.9 is to flatten the linear trend
of Q(η̂) with Φ, meaning that the data points are shifted closer to the QNL. Nonetheless, a
maximum quantum advantage of Q(η̂)= 1.2±0.1 is observed with −0.7 dB of squeezing, and
the scaling of Q(η̂) with the squeezing parameter demonstrates that this strategy provides
an effective method of estimating a static optical loss with quantum enhanced precision.
Furthermore, the proximity of the measured Var(η̂) to the CRB shows that this method
is comparable to the fundamental bound for loss estimation using an amplitude squeezed
probe of the same average power.

It is possible to further test the agreement with the theoretical model for Var(η̂) by
measuring how Q(η̂) varies with RBW. Since there is a greater fraction of optical power
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in the sideband than for the measurements of amplitude modulation in Chapter 4, it is
expected that higher RBWs will be required to achieve significant quantum precision en-
hancement than for the measurements shown in Figure 4.13 in Chapter 4. The results for
Q(η̂) as a function of B are shown in Figure 5.10, for an average squeezing parameter of
ΦdB = −1 dB. The maximum quantum advantage at B = 1 MHz is Q(η̂) = 1.18±0.05. The

Figure 5.10: Inferred Q(η̂) from experimentally measured Var(η̂) as a function of RBW, for
an average of ΦdB =−1 dB squeezing. The error bars were derived from the standard devia-
tion over 23 separate fittings to the data, where each fitting corresponds to a single variance
measurement.

red curve is a theoretical fitting, which infers a value for the classical amplitude noise of
Var(R[H])= 2±1×10−5. Due to the increased relative contribution of classical noise for low
RBW, B = 1 MHz corresponds to the only RBW at which a significant quantum advantage
is observed. The R squared value for this fitting is R2 = 0.75. The fitting of this model to
the data is therefore worse than the equivalent fitting shown Figure 4.13. However, this is
expected due to the lower squeezing value achieved here, and also since the RBW is lim-
ited to a maximum value of B = 1 MHz. The error bars increase for smaller RBWs because
the increased classical noise contribution means that the quantum precision enhancement
is negligible compared to the measurement uncertainty. The results shown in Figures 5.8-
5.10 indicate that the quantum advantage could be further improved by using a higher
RBW, which would require increased detection bandwidth and higher frequency modula-
tion. While further improvement in the confidence of this fitting could be obtained by using
more narrowly spaced RBWs, heterodyne spectrum analysers typically only allow values
of B ∈ {1,3}×10nHz for integer n, meaning that these data points are therefore as closely
spaced as possible. From Figure 5.10, we expect that the measurement would saturate Qopt

by using a RBW of B = 10 MHz. The lower average squeezing observed in this experiment is
a direct result of the loss generated by the additional optical components required for static

92



5.4. EXPERIMENTAL IMPLEMENTATION

loss estimation. The transmission measured between the output of the Sagnac interferome-
ter and the detector is ηopt = 0.71, as compared to ηopt = 0.81 for the amplitude modulation
experiment described in Chapter 4. Accounting for the detector efficiency of ηq = 0.84, this
implies that the average level of generated amplitude squeezing is ΦdB =−1.8 dB. Despite
the lower squeezing observed, these results demonstrate a significant quantum advantage
in the estimation of η.

5.4.2 Towards Quantum Imaging with Bright Squeezed Light

Direct absorption imaging is a common application of transmission estimation [19, 146],
and here we consider the potential applicability of the measurement strategy outlined in
Section 5.3 to quantum enhanced imaging. This would involve raster scanning the sam-
ple across the path of the laser beam, and making a single transmission measurement at
each sample position, as in [133]. Raster scanning is necessary since only a single spatial
mode is squeezed: in order to directly observe quantum noise reduction across multiple pix-
els without raster scanning, it would be necessary to populate each independent spatial
mode with quantum correlated photons [147]. To increase imaging resolution, a microscope
arrangement could be used to focus the squeezed light on the sample.

Both sensitivity and precision determine the performance of such an imaging measure-
ment. Sensitivity is characterised by the minimum detectable absorption due to the pixel
noise floor. Image quality is therefore limited by sensitivity when the signal at a given pixel
is comparable with the noise floor, such that the signal can become obscured by the noise
floor. Precision in imaging is determined by the pixel error, and therefore limits image qual-
ity when the contrast between pixels is comparable with the pixel error due to fluctuations
in the signal. In studies of quantum imaging using photon pair sources, the measurement is
performed in the time domain, and therefore the pixel error typically corresponds directly to
the pixel noise floor. Accordingly, both sensitivity [146] and precision [133] have been used
to characterise the quantum image enhancement using such systems. However, the results
of the present chapter and Chapter 4 have shown that for frequency domain measurements
using bright squeezed light, sensitivity enhancement is not sufficient to imply precision en-
hancement. In Figure 5.11, the effect of sensitivity and precision enhancement on a noisy
image of a cell is illustrated. Image (a) corresponds to the true image, with each pixel rep-
resenting a transmission value 0 ≤ η≤ 1, which we want to estimate. In image (b) an error
∆η has been added to each pixel, such that the value of each pixel is given by η̂ = η+∆η.
Additionally, we have defined a noise floor N, such that if 1−η< N, the transmission value η̂
is replaced by a random value according to the pixel error: η̂=∆η. In image (c), a sensitivity
enhancement is illustrated by reducing the noise floor by a factor: N ′ =p

ΦN. In image (d)
both the precision and sensitivity have been enhanced, by reducing the noise floor according
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Figure 5.11: Simulation of an imaging measurement illustrating the effect of sensitivity
and precision enhancement. (a) is the true image of the sample, and in (b), the effect of
pixel error and a noise floor has been included. Image (c) corresponds to a 5dB sensitivity
enhancement, and in (d), both sensitivity and precision have been enhanced by 5dB. These
results are based on a simulation originally written by Euan Allen. The unprocessed image
is taken from [3].

N ′ = p
ΦN, and reducing the pixel error according to: ∆η′ = p

Φ∆η. This simulation illus-
trates the additional improvement provided by a precision enhancement, compared with
just enhancing the sensitivity.

For bright light microscopy, the power in the signal and the contrast between pixels is of-
ten sufficiently high for measurement precision and sensitivity not to limit the performance
of the measurement. However, for measurements where the absorption of the sample, or the
absorption contrast, is small, both precision and sensitivity can determine the quality of the
image. We define the absorption contrast here as C = (ηmax −ηmin)/ηmax, where ηmax and
ηmin are the maximum and minimum transmission parameters. In particular, if the absorp-
tion contrast is C ∼O(1/

p〈N〉), for 〈N〉 detected photons, quantum noise in the probe beam
may be a limiting factor in the image quality. For example, imaging of single molecules has
been shown to be limited by optical shot noise [19].

For a quantum imaging measurement based on the scheme discussed in Section 5.4.1,
squeezing would directly enhance the sensitivity of the measurement by reducing the noise
floor of each pixel. However, for squeezing to increase the precision of the imaging measure-
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ment, it is necessary that quantum noise dominates the variance on the timescales required
to raster scan across the entire sample. This is because it is possible that the low frequency
classical noise exhibits some nonstationary behaviour on such longer timescales. The sig-
nal power measured over a range of pixels will then have an additional noise contribution.
Accordingly, a variance measurement taken over a longer duration may become dominated
by classical noise, even when using B = 1 MHz. Therefore, it is necessary to measure the
quantum advantage over a range of sweep times, Ts, in order to determine the longest
measurement duration for which a quantum advantage may be achieved. The sweep time
corresponds to Ts = N f −1

s , where fs is the sample rate and N is the number of samples. It
is important to note that the sample rate can be chosen to be less than the resolution band-
width. The sweep time therefore simply corresponds to the duration over which the data is
collected. Results of Q(η̂) as a function of Ts are shown in Figure 5.12, for B = 1 MHz, and an
average squeezing parameter of −1 dB. The optimal quantum advantage of Q(η̂)= 1.2±0.1
is observed for a sweep time of Ts = 0.02 s. However, the precision enhancement is reduced
for long sweep times, and a significant quantum advantage is not observed from Ts = 0.512 s
and above. This behaviour is in contrast to the results for measurements of amplitude mod-

Figure 5.12: Inferred Q(η̂) from experimentally measured Var(η̂) as a function of sweep
time, for an average of ΦdB = −1 dB squeezing. The error bars are derived from the stan-
dard deviations over 23 variance measurements. This shows that a quantum advantage in
imaging may be achieved when the raster scan is performed over a short enough measure-
ment duration.

ulation in Chapter 4, for which a constant sweep time of Ts = 1 s was used, with no observed
degradation in the precision enhancement for long sweep times. The larger impact of using
longer sweep times demonstrated by Figure 5.12 may be due to slight variations in the bal-
ancing of the coupling from the two paths into the photodetector over time. This presents a
significant challenge in observing a quantum precision enhancement in imaging using this
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setup, since the minimum sweep time for the spectrum analyser is Ts = 0.002 s. Completing
the measurement within 0.02 s would therefore limit the image to 10 pixels. In order to
overcome this limitation in sweep time, it may be necessary to further increase the RBW
and modulation frequency. An alternative approach to overcoming this challenge would be
to synchronise a spectrum analyser sweep at the modulation frequency with the raster scan,
such that each pixel corresponds some subset of the data from a single sweep. This would
enable an image to be acquired within a Ts = 0.02 s sweep of the spectrum analyser.

It is nonetheless possible to simulate the behaviour of a quantum imaging measure-
ment using the model described in Section 5.3. These results are shown in Figure 5.13, for
a probe beam generating a photocurrent of 0.1 mA, and with a RBW of B = 1 MHz. Image
(a) represents the matrix of true transmission values η corresponding to the sample. The
average absorption for this image is δ= 1×10−3 and the contrast is C = 1×10−4. Image (b)
corresponds to the measurement strategy for direct detection described in Section 5.2.1 for
an integration time B−1, in the presence of classical noise with Var(R[H])= 1×10−5. Since
the effect of classical noise for the DC measurement is much greater than the absorption
contrast, no image of the sample can be observed with the DC measurement. Images (c)-(f)
correspond to the measurement strategy described in Section 5.3. In the second row, images
(c) and (d) respectively represent the case of ΦdB = 0 dB and ΦdB =−5 dB squeezing, with a
classical noise contribution of Var(R[H])= 1×10−3. Due to the high level of classical noise,
squeezing does not improve the precision of the image. While the sensitivity of the image
is improved by squeezing, this does not have a visible effect in this case, since the signal is
typically sufficiently above the noise floor for each pixel. Images (e) and (f) are plotted for
ΦdB = 0 dB and ΦdB = −5 dB respectively, and correspond to Var(R[H]) = 1×10−5, which
approximates the level of classical noise observed experimentally. Here, squeezing is ob-
served to reduce the effect of optical noise on the image, due to the improved precision of
each transmission measurement. These simulations illustrate that the ability to improve
imaging performance using bright squeezed light is highly dependent on the properties of
the sample. Sensitivity enhancement can be observed when the signal for each pixel is com-
parable to the pixel noise floor, which for this strategy corresponds to samples with a low av-
erage absorption, δ∼O(1/

p〈N〉), for 〈N〉 average photons. The effect of quantum precision
enhancement can be observed for samples with low absorption contrast, C ∼O(1/

p〈N〉), and
when the pixel error is dominated by quantum noise. However, using realistic experimental
parameters, an improvement in the image quality can be observed by applying squeezing.
Furthermore, these simulations illustrate the effectiveness of this measurement strategy
for reducing the impact of low frequency laser noise, which would prohibit the possibility of
imaging such a low contrast sample using conventional bright light microscopy.

96



5.5. CONCLUSION

Figure 5.13: Simulation of absorption imaging for varied detection strategies and experi-
mental parameters. (a) is the true image of the sample and (b) corresponds to direct detec-
tion of the DC photocurrent with Var(R[H]) = 1×10−5. (c)-(f) are plotted for the strategy
outlined in Section 5.3, for varied levels of classical noise and squeezing.

5.5 Conclusion

In this chapter, a strategy for estimating optical transmission with bright squeezed light
was demonstrated. Enhanced precision transmission estimation using quantum probes has
been the focus of many theoretical and experimental studies [20, 21, 146, 22, 23, 133]. How-
ever, such demonstrations have been limited to picowatts of optical power, due to the sig-
nificant low frequency excess noise observed on sources of high power amplitude squeezed
light. In order to overcome the effect of low frequency excess noise, the strategy demon-
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strated here applied path modulation of the amplitude squeezed light to transfer the signal
to a shot noise limited bandwidth. The applicability of this scheme for quantum imaging
was also studied.

Section 5.2 analysed the limits of precision in common measurement strategies for
transmission estimation. Section 5.2.1 considered the case of direct detection, and analysed
the Fisher information with and without the presence of excess low-frequency amplitude
noise. It was shown that while direct detection of a coherent state saturates the quantum
Crámer-Rao bound for transmission estimation, this no longer provides an optimal strategy
in the presence of excess laser noise. The bound for the Fisher information using balanced
detection is lower than that for direct detection of a coherent state. However, due to the can-
cellation of classical amplitude fluctuations, it was shown that balanced detection provides
an optimal strategy for the estimation of a small optical absorption using laser light.

Section 5.3 provides an analysis of the measurement strategy proposed here, in which
resonantly enhanced amplitude modulation is used to generate an absorption signal at the
modulation frequency. Both the estimator and estimator variance are derived. This strategy
is shown to provide a similar cancellation of excess laser noise for slight absorption as
balanced detection. Unlike balanced detection, amplitude squeezing can be used with this
approach to reduce the variance of the transmission measurement beyond the quantum
noise limit.

In Section 5.4, an experimental demonstration of the proposed quantum enhanced trans-
mission estimation measurement is presented. A quantum advantage of Q(η̂) = 1.2±0.1 is
observed, and the experimental results agree quantitatively well with the variance pre-
dicted from the theoretical model. The average power of the amplitude squeezed light inci-
dent on the sample is 0.1 mW, which is 8 orders of magnitude above the power limitations
of previous sub-QNL measurements of transmission [23, 22]. The measurement strategy
demonstrated here could be directly applied to bright quantum imaging and spectroscopy,
and the effectiveness of this scheme for quantum imaging is demonstrated by simulation.
By providing a new means of achieving quantum limited precision in transmission estima-
tion, this work may also find application in classical metrology, since it does not require
shot noise limited behaviour at DC, or impose significant restrictions on the characteristics
of the sample.
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CONCLUSION

For the last three decades, experiments with squeezed light have predominantly been ori-
ented towards improving the sensitivity of optical measurements. In this thesis, we have
focused on the precision advantage that can be obtained using bright squeezing, when ac-
counting for the low frequency excess noise which is characteristic of laser light.

We began in Chapter 3 by presenting an experimental scheme for the generation of am-
plitude squeezed light, using an approach originally demonstrated in [1]. By using PCF, we
achieved −1.3 dB of squeezing at 740 nm, therefore demonstrating the suitability of this ap-
proach to shorter wavelengths. The flexibility in the wavelength of the probe light with this
method allows for a wide range of applicability. The results of the numerical simulations
suggests the possibility for further improvements in the squeezing obtained with this setup.
In particular, we anticipate that the measured squeezing may be improved by designing a
PCF with lower third-order dispersion in order to minimise the pulse distortion. Additional
improvement may be obtained by reducing optical loss. Nonetheless, the achieved squeez-
ing was sufficient that this source could be used for the subsequent experiments presented
in this thesis.

In Chapter 4, we investigated the precision advantage that may be obtained by using
squeezed light to reduce optical noise in frequency domain measurements. While it is often
assumed that an improvement in the signal-to-noise ratio will directly lead to a precision
enhancement [127], we found that this is not necessarily the case, due to the low frequency
optical noise transferred to the detected signal. The findings of our theoretical model were
verified both by numerical simulation and experiment. For the experiment, the modulation
index of an EOM was measured with a precision exceeding the quantum noise limit by 44%,
using 0.2 mW of squeezed light. This was made possible by using the theoretical model to
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find the conditions required for the variance of the signal to be limited by quantum noise.
Although the detailed analysis was restricted to measurements of amplitude modulation,
the theoretical model may be directly applied to similar frequency domain measurements
such as Raman spectroscopy [134, 10], for which the performance may depend on both pre-
cision and sensitivity.

In Chapter 5, a novel method of estimating a static loss was proposed and experimen-
tally demonstrated, which was shown to provide a quantum precision improvement by using
a bright amplitude squeezed probe. The Fisher information for this measurement strategy
was compared with other methods of classical loss estimation, and our approach was shown
to provide a number of further advantages. For example, by employing path modulation
to avoid low frequency classical noise, there is no requirement for shot noise limited be-
haviour at DC, and the only significant constraint on the sample is that the total absorption
must be small. The average power of the probe was 0.1 mW, which is 8 orders of magnitude
above the power limitations of previous demonstrations of loss estimation with quantum
enhanced precision [23, 22]. Since the measured signal contains a significant fraction of the
detected power, the effect of classical noise on the variance of the loss estimate could still
be observed, which prevented the measurement from saturating the absolute theoretical
bounds provided by the Fisher information calculations. However, this excess noise may be
removed in future experiments by using classical noise reduction techniques. Alternatively,
a higher frequency of modulation and detection would allow for an increased RBW, which
would ensure that the measurement is limited by quantum noise. The scheme presented
here may be directly applied to quantum imaging, as demonstrated by simulation. Addi-
tionally, it provides an alternative to FM spectroscopy, which may be advantageous in the
case that an absorption feature is too broad to be detected by frequency modulation.

The work presented in this thesis represents an effort to enable quantum enhanced pre-
cision in measurements using high power squeezed light. While sensitivity enhancement
has featured prominently in many demonstrations of bright squeezing [16, 10, 7, 8, 17],
we show that considerations of the precision of such measurements will be important in
facilitating the further development of quantum optical techniques in metrology. For exam-
ple, the analysis of the variance of the signal power in Chapter 4 provided the groundwork
for the realisation of the loss estimation measurement in Chapter 5. The focus on resource
counting and the analysis of Fisher information closely resembles the approach taken in
photon counting experiments, while including the effect of excess noise which is often en-
countered in measurements with bright laser light.
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QUANTUM ENHANCED PRECISION ESTIMATION OF

AMPLITUDE MODULATION

A.1 Calculation of the Signal-to-Noise Ratio

Here we derive the expected value of the electronic power pΩ in the ±B/2 frequency interval
centered on the modulation frequency Ω, generated by the current î(t). We may write pΩ as

(A.1) pΩ = 2R| îΩ|2,

where R is the input resistance, îΩ = ∫ Ω î(ν)dν is the photocurrent in the frequency bin
centered on Ω, using the notation

∫ Ω ≡ ∫ Ω+B/2
Ω−B/2 .

The amplitude of the optical field before modulation is applied may be written as Â0(t)=
[1+ζ(t)]α0eiθ + â(t), where θ is the phase of the classical field, â(t) describes the quantum
amplitude fluctuations and ζ(t) is a stochastic noise function which corresponds to the low
frequency classical noise of the laser. We have assumed a continuous-wave amplitude α0

for simplicity. By making the assumption of large amplitude αÀ 1 and small modulation
Ψm ¿ 1, the amplitude Â(t) of the detected light after modulation may be written as

(A.2) Â(t)≈ (Ψ0 +Ψm cos(2πΩt))[1+ζ(t)]αeiθ+ â(t)≡ |α(t)|eiθ+ â(t),

whereΨ0 andΨm are related to the modulation index byΨ0 = 1−δm/2 andΨm = δm/2, and
the detection efficiency ηq is modelled as an additional loss before detection, such that α=
p
ηqα0. The effect of amplitude modulation on the quantum noise term has been neglected

due to the small modulation assumption. The current at time t may then be written as

(A.3) î(t)= q
(
Â(t)† Â(t)+ne(t)

)
= q

(
|α(t)|2 +

p
2|α(t)|x̂θ(t)+ â(t)†â(t)+ne(t)

)
,
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where we have defined the quadrature operator x̂θ(t) = 1p
2
[â(t)e−iθ + â(t)†eiθ] and the elec-

tronic noise term ne(t) corresponds to the number of electrons generated independently of
the optical field. The component of the photocurrent at frequency ν is then given by

(A.4) î(ν)= q
[

I(ν)+
p

2
∫
α(µ)x̂θ(ν−µ)dµ+

∫
â(−µ)†â(ν−µ)dµ

]
,

where
∫ ≡ ∫ ∞

−∞, and we have defined the unitary Fourier transforms

(A.5) I(ν)=
∫ (|α(t)|2 +ne(t)

)
e−2πiνtdt

and

(A.6) x̂θ(ν)=
∫

x̂θ(t)e−2πiνtdt = 1p
2

[
â(−ν)†eiθ+ â(ν)e−iθ

]
.

We also define â(ν) as the squeezed vacuum operator [26]

(A.7) â(ν)= b̂(ν)cosh r(ν)− e2iθ(ν)b̂(−ν)† sinh r(ν),

where b̂(ν) and b̂(ν)† are the bosonic creation and annihilation operators. The squeezing
is defined such that r(ν) = r and θ(ν) = θ within the frequency bandwidth −Λ/2 ≤ ν ≤ Λ/2
(where Λ/2 > Ω) and r(ν) = 0 outside of this frequency range. The 2θ phase factor then
orients the squeezing in the amplitude direction. By defining IΩ = ∫ Ω I(ν)dν we can write
pΩ as

(A.8) pΩ = 2q2R
[
|IΩ|2 +

p
2I∗Ω

∫ Ω ∫
α(µ)x̂θ(ν−µ)dµdν+ I∗Ω

∫ Ω ∫
â(−µ)†â(ν−µ)dµdν

+
p

2IΩ
∫ Ω ∫

α(µ)∗ x̂θ(ν−µ)†dµdν+2
∫ Ω ∫ Ω ∫ ∫

α(µ)∗α(µ)x̂θ(ν−µ)† x̂θ(ν−µ)dµdµdνdν

+
p

2
∫ Ω ∫ Ω ∫ ∫

α(µ)∗ x̂θ(ν−µ)†â(−µ)†â(ν−µ)dµdµdνdν+ IΩ
∫ Ω ∫

â(ν−µ)†â(−µ)dµdν

+
p

2
∫ Ω ∫ Ω ∫ ∫

α(µ)â(ν−µ)†â(−µ)x̂θ(ν−µ)dµdµdνdν

+
∫ Ω ∫ Ω ∫ ∫

â(ν−µ)†â(−µ)â(−µ)†â(ν−µ)dµdµdνdν
]

,

where (•)∗ denotes the complex conjugate. From Equation A.2, we can find the frequency
dependence of the classical field amplitude:
(A.9)

α(ν)=
∫

|α(t)|e−2πiνtdt =α
[
Ψ0(δ(ν)+h(ν))+Ψm

2
(δ(ν−Ω)+δ(ν+Ω)+h(ν−Ω)+h(ν+Ω))

]
,
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where h(ν) = ∫
ζ(t)e−2πiνtdt, and since classical noise is only observed at low frequencies

(. 2 MHz), we can write for example h(Ω)= 0. Equation A.2 allows us to define I(ν) as

(A.10) I(ν)=α2
[
Ψ2

0

(
δ(ν)+2h(ν)+

∫
h(µ)h(ν−µ)dµ

)
+Ψ0Ψm

(
δ(Ω−ν)+δ(Ω+ν)

+2h(ν−Ω)+2h(ν+Ω)+
∫

h(µ)h(ν−µ−Ω)dµ+
∫

h(µ)h(ν−µ+Ω)dµ
)
+

+Ψ
2
m

4

(
δ(ν−2Ω)+δ(ν+2Ω)+2δ(ν)+2h(ν−2Ω)+2h(ν+2Ω)+4h(ν)

+
∫

h(µ)h(ν−µ−2Ω)dµ+
∫

h(µ)h(ν−µ+2Ω)dµ+2
∫

h(µ)h(ν−µ)dµ
) ]

+ne(ν).

We can then find the expectation 〈pΩ〉 with respect to the random variables h(ν), ne(ν)
and â(ν). Since these variables are independent, the expectation value may be defined as
〈•〉 ≡ 〈〈〈0| • |0〉〉h(ν)〉ne(ν). To calculate this, we first compute

(A.11) |IΩ|2 =Ψ2
0Ψ

2
mα

4
[

1+4
∫ Ω

R[h(ν−Ω)]dν+2
∫ Ω ∫

R[h(µ)h(ν−µ−Ω)]dµdν

+4
∣∣∣∣∫ Ω

h(ν−Ω)dν
∣∣∣∣2 +4

∫ Ω ∫ Ω ∫
R[h(ν−Ω)∗h(µ)h(ν−µ−Ω)]dµdνdν

+
∣∣∣∣∫ Ω ∫

h(µ)h(ν−µ−Ω)dµdν
∣∣∣∣2 ]

+Ψ0Ψmα
2
[

2
∫ Ω

R[ne(ν)]dν

+4
∫ Ω ∫ Ω

R[h(ν−Ω)∗ne(ν)]dνdν+2
∫ Ω ∫ Ω ∫

R[h(µ)∗h(ν−µ−Ω)∗ne(ν)]dµdνdν
]

+
∣∣∣∣∫ Ω

ne(ν)dν
∣∣∣∣2 ,

where R[•] signifies the real part. Then, by evaluating the quantum part of the expectation
value, we obtain the result:

(A.12) 〈pΩ〉 = 2q2R
[
〈|IΩ|2〉+Φ

∫ Ω ∫ Ω ∫
〈α(µ)∗α(µ+ν−ν)〉dµdνdν+BΛ

(
Φ2

8
+ 1

8Φ2 − 1
4

)]
= 2q2R

[
α4

(
Ψ2

0Ψ
2
m +2Ψ2

0Ψ
2
m

∫ Ω ∫
〈R[h(µ)h(ν−µ−Ω)]〉dµdν

+4Ψ2
0Ψ

2
m

〈∣∣∣∣∫ Ω

h(ν−Ω)dν
∣∣∣∣2

〉
+4Ψ2

0Ψ
2
m

∫ Ω ∫ Ω ∫
〈R[h(ν−Ω)∗h(µ)h(ν−µ−Ω)]〉dµdνdν

+Ψ2
0Ψ

2
m

〈∣∣∣∣∫ Ω ∫
h(µ)h(ν−µ−Ω)dµdν

∣∣∣∣2
〉 )

+α2
( (
Ψ2

0 +
Ψ2

m
2

)
ΦB

+
(
Ψ2

0 +
Ψ2

m
2

)
Φ

∫ Ω ∫ Ω ∫
〈h(µ)∗h(µ+ν−ν)〉dµdνdν

)
+

〈∣∣∣∣∫ Ω

ne(ν)dν
∣∣∣∣2

〉

+BΛ
(
Φ2

8
+ 1

8Φ2 − 1
4

) ]
,

103



APPENDIX A. QUANTUM ENHANCED PRECISION ESTIMATION OF AMPLITUDE
MODULATION

for the squeezing parameter Φ= e−2r. In Equation A.12, we have neglected terms involving
the expectation value of the product of an odd number of creation or annihilation operators,
and terms outside the domain of h(ν). We have also used the fact that the expected am-
plitude of the classical noise terms 〈h(ν)〉 = 〈ne(ν)〉 = 0, since the corresponding stochastic
time-domain functions have a mean of zero. By observing that αÀ 1, 〈|∫ h(ν)dν|〉 ¿ 1 and
δm ¿ 1 for i0 ≈ qα2 we find

(A.13) 〈pΩ〉 ≈ R

(
i2
0δ

2
m

2
+2qi0ΦB+2q2

〈∣∣∣∣∫ Ω

ne(ν)dν
∣∣∣∣2

〉)
.

Similarly, at a small frequency interval ∆ f from Ω, we find that the electronic power of the
optical noise floor and electronic noise floor are respectively
(A.14)

〈pN〉 ≈ R

(
2qi0ΦB+2q2

〈∣∣∣∣∫ Ω

ne(ν)dν
∣∣∣∣2

〉)
and 〈pE〉 = R

(
2q2

〈∣∣∣∣∫ Ω

ne(ν)dν
∣∣∣∣2

〉)
.

We then find that the optical signal-to-noise ratio δSNR may be expressed as

(A.15) δSNR = 〈pΩ〉−〈pN〉
〈pN〉−〈pE〉

≈ i0δ
2
m

4qΦB
.

A.2 Calculation of the Variance of the Sideband Power

In order to calculate the variance Var(pΩ) = 〈p2
Ω〉− 〈pΩ〉2, an expression for 〈pΩ〉2 may be

evaluated directly from Equation A.12 to give

(A.16) 〈pΩ〉2 = 4q4R2
[
〈|IΩ|2〉2 + (2Ψ2

0 +Ψ2
m)〈|IΩ|2〉α2

(
ΦB

+Φ
∫ Ω ∫ Ω ∫

〈h(µ)∗h(µ+ν−ν)〉dµdνdν
)
+〈|IΩ|2〉ΛB

(
Φ2

4
+ 1

4Φ2 − 1
2

)
+

(
Ψ4

0 +Ψ2
0Ψ

2
m +Ψ

4
m

4

)
α4

(
Φ2B2 +2Φ2B

∫ Ω ∫ Ω ∫
〈h(µ)∗h(µ+ν−ν)〉dµdνdν

+Φ2
∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫ ∫

〈h(µ)∗h(µ+ν−ν)〉〈h(µ)∗h(µ+ν−ν)〉dµdµdνdνdνdν
)

+ (2Ψ2
0 +Ψ2

m)α2
(
Φ2

8
+ 1

8Φ2 − 1
4

)(
ΦΛB2 +ΦΛB

∫ Ω ∫ Ω ∫
〈h(µ)∗h(µ+ν−ν)〉dµdνdν

)
+Λ2B2

(
Φ2

8
+ 1

8Φ2 − 1
4

)2 ]
.

To find an expression for 〈p2
Ω〉, we can again neglect terms where the expectation value of

the quadrature operators vanishes, giving
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(A.17) 〈p2
Ω〉 = 4q4R2

〈
|IΩ|4 +4|IΩ|2

∫ Ω ∫ Ω ∫ ∫
α(µ)∗α(µ)x̂θ(ν−µ)† x̂θ(ν−µ)dµdµdνdν

+2I∗2
Ω

∫ Ω ∫ Ω ∫ ∫
α(µ)α(µ)x̂θ(ν−µ)x̂θ(ν−µ)dµdµdνdν

+2I2
Ω

∫ Ω ∫ Ω ∫ ∫
α(µ)∗α(µ)∗ x̂θ(ν−µ)† x̂θ(ν−µ)†dµdµdνdν

+4|IΩ|2
∫ Ω ∫ Ω ∫ ∫

α(µ)α(µ)∗ x̂θ(ν−µ)x̂θ(ν−µ)†dµdµdνdν

+3|IΩ|2
∫ Ω ∫ Ω ∫ ∫

â(ν−µ)†â(−µ)â(−µ)†â(ν−µ)dµdµdνdν

+|IΩ|2
∫ Ω ∫ Ω ∫ ∫

â(−µ)†â(ν−µ)â(ν−µ)†â(−µ)dµdµdνdν

+2I∗Ω

∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫
α(µ)α(µ)∗ x̂θ(ν−µ)x̂θ(ν−µ)†â(−µ)†â(ν−µ)dµdµdµdνdνdν

+2I∗Ω

∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫
α(µ)α(µ)∗ x̂θ(ν−µ)†â(−µ)†â(ν−µ)x̂θ(ν−µ)dµdµdµdνdνdν

+2I∗Ω

∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫
α(µ)∗α(µ)â(−µ)†â(ν−µ)x̂θ(ν−µ)† x̂θ(ν−µ)dµdµdµdνdνdν

+2I∗Ω

∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫
α(µ)∗α(µ)x̂θ(ν−µ)† x̂θ(ν−µ)â(−µ)†â(ν−µ)dµdµdµdνdνdν

+2IΩ
∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫

α(µ)∗α(µ)x̂θ(ν−µ)†â(ν−µ)†â(−µ)x̂θ(ν−µ)dµdµdµdνdνdν

+2IΩ
∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫

α(µ)∗α(µ)â(ν−µ)†â(−µ)x̂θ(ν−µ)x̂θ(ν−µ)†dµdµdµdνdνdν

+2IΩ
∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫

α(µ)∗α(µ)x̂θ(ν−µ)† x̂θ(ν−µ)â(ν−µ)†â(−µ)dµdµdµdνdνdν

+2IΩ
∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫

α(µ)∗α(µ)â(ν−µ)†â(−µ)x̂θ(ν−µ)† x̂θ(ν−µ)dµdµdµdνdνdν

+2I∗Ω

∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫
α(µ)α(µ)x̂θ(ν−µ)â(ν−µ)†â(−µ)x̂θ(ν−µ)dµdµdµdνdνdν

+2I∗Ω

∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫
α(µ)α(µ)â(ν−µ)†â(−µ)x̂θ(ν−µ)x̂θ(ν−µ)dµdµdµdνdνdν

+2IΩ
∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫

α(µ)∗α(µ)∗ x̂θ(ν−µ)† x̂θ(ν−µ)†â(−µ)†â(ν−µ)dµdµdµdνdνdν

+2IΩ
∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫

α(µ)∗α(µ)∗ x̂θ(ν−µ)†â(−µ)†â(ν−µ)x̂θ(ν−µ)†dµdµdµdνdνdν

+4
[ ∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫ ∫

α(µ)∗α(µ)α(µ)∗α(µ)×

x̂θ(ν−µ)† x̂θ(ν−µ)x̂θ(ν−µ)† x̂θ(ν−µ)dµdµdµdµdνdνdνdν
]

+2
[ ∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫ ∫

α(µ)∗α(µ)×
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x̂θ(ν−µ)† x̂θ(ν−µ)â(ν−µ)†â(−µ)â(−µ)†â(ν−µ)dµdµdµdµdνdνdνdν
]

+2
[ ∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫ ∫

α(µ)∗α(µ)×

â(ν−µ)†â(−µ)â(−µ)†â(ν−µ)x̂θ(ν−µ)† x̂θ(ν−µ)dµdµdµdµdνdνdνdν
]

+2
[ ∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫ ∫

α(µ)∗α(µ)×

x̂θ(ν−µ)†â(−µ)†â(ν−µ)â(ν−µ)†â(−µ)x̂θ(ν−µ)dµdµdµdµdνdνdνdν
]

+2
[ ∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫ ∫

α(µ)∗α(µ)×

â(ν−µ)†â(−µ)x̂θ(ν−µ)x̂θ(ν−µ)†â(−µ)†â(ν−µ)dµdµdµdµdνdνdνdν
]

+2
[ ∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫ ∫

α(µ)∗α(µ)∗×

x̂θ(ν−µ)†â(−µ)â(ν−µ)x̂θ(ν−µ)†â(−µ)†â(ν−µ)dµdµdµdµdνdνdνdν
]

+2
[ ∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫ ∫

α(µ)α(µ)×

â(ν−µ)†â(−µ)x̂θ(ν−µ)â(ν−µ)†â(−µ)x̂θ(ν−µ)dµdµdµdµdνdνdνdν
]

+
[ ∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫ ∫

â(ν−µ)†â(−µ)â(−µ)†â(ν−µ)×

â(ν−µ)†â(−µ)â(−µ)†â(ν−µ)dµdµdµdµdνdνdνdν
] 〉

.

To explicitly evaluate 〈p2
Ω〉 in the following, we calculate the integrals in Equation A.17

separately, using Equation A.9 and the commutation relations of the Bose operators with
the expectation value taken on the vacuum state. Terms 2-5 of Equation A.17 respectively
give

(A.18)
〈

4|IΩ|2
∫ Ω ∫ Ω ∫ ∫

α(µ)∗α(µ)x̂θ(ν−µ)† x̂θ(ν−µ)dµdµdνdν
〉

= (2Ψ2
0 +Ψ2

m)α2Φ

(
〈|IΩ|2〉B+2

∫ Ω ∫ Ω

〈|IΩ|2R[h(ν−ν)]〉dνdν

+
∫ Ω ∫ Ω ∫

〈|IΩ|2h(µ)∗h(µ+ν−ν)〉dµdνdν
)
,

(A.19)
〈

2I∗2
Ω

∫ Ω ∫ Ω ∫ ∫
α(µ)α(µ)x̂θ(ν−µ)x̂θ(ν−µ)dµdµdνdν

〉
= Ψ

2
m

4
α2Φ

(
〈I∗2
Ω 〉B+2

∫ Ω ∫ Ω

〈I∗2
Ω h(ν+ν−2Ω)〉dνdν
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+
∫ Ω ∫ Ω ∫

〈I∗2
Ω h(µ−Ω)h(ν+ν−µ−Ω)〉dµdνdν

)
,

(A.20)
〈

2I2
Ω

∫ Ω ∫ Ω ∫ ∫
α(µ)∗α(µ)∗ x̂θ(ν−µ)† x̂θ(ν−µ)†dµdµdνdν

〉
= Ψ

2
m

4
α2Φ

(
〈I2
Ω〉B+2

∫ Ω ∫ Ω

〈I2
Ωh(ν+ν−2Ω)∗〉dνdν

+
∫ Ω ∫ Ω ∫

〈I2
Ωh(µ−Ω)∗h(ν+ν−µ−Ω)∗〉dµdνdν

)
and

(A.21)
〈

4|IΩ|2
∫ Ω ∫ Ω ∫ ∫

α(µ)α(µ)∗ x̂θ(ν−µ)x̂θ(ν−µ)†dµdµdνdν
〉

= (2Ψ2
0 +Ψ2

m)α2Φ

(
〈|IΩ|2〉B+2

∫ Ω ∫ Ω

〈|IΩ|2R[h(ν−ν)]〉dνdν

+
∫ Ω ∫ Ω ∫

〈|IΩ|2h(µ)∗h(µ+ν−ν)〉dµdνdν
)
.

The summation of terms 6 and 7 of Equation A.17 gives

(A.22)
〈

3|IΩ|2
∫ Ω ∫ Ω ∫ ∫

â(ν−µ)†â(−µ)â(−µ)†â(ν−µ)dµdµdνdν
〉

+
〈
|IΩ|2

∫ Ω ∫ Ω ∫ ∫
â(−µ)†â(ν−µ)â(ν−µ)†â(−µ)dµdµdνdν

〉
= 〈|IΩ|2〉ΛB

(
Φ2

2
+ 1

2Φ2 −1
)
.

It is also possible to combine terms 8-15 of Equation A.17 as follows:

(A.23) 2
∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫ [

〈I∗Ωα(µ)α(µ)∗ x̂θ(ν−µ)x̂θ(ν−µ)†â(−µ)†â(ν−µ)〉

+〈I∗Ωα(µ)α(µ)∗ x̂θ(ν−µ)†â(−µ)†â(ν−µ)x̂θ(ν−µ)〉
+〈I∗Ωα(µ)∗α(µ)â(−µ)†â(ν−µ)x̂θ(ν−µ)† x̂θ(ν−µ)〉
+〈I∗Ωα(µ)∗α(µ)x̂θ(ν−µ)† x̂θ(ν−µ)â(−µ)†â(ν−µ)〉
+〈IΩα(µ)∗α(µ)x̂θ(ν−µ)†â(ν−µ)†â(−µ)x̂θ(ν−µ)〉
+〈IΩα(µ)∗α(µ)â(ν−µ)†â(−µ)x̂θ(ν−µ)x̂θ(ν−µ)†〉
+〈IΩα(µ)∗α(µ)x̂θ(ν−µ)† x̂θ(ν−µ)â(ν−µ)†â(−µ)〉

+〈IΩα(µ)∗α(µ)â(ν−µ)†â(−µ)x̂θ(ν−µ)† x̂θ(ν−µ)〉
]

dµdµdµdνdνdν
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= (4Φ2 −2)
∫ Ω ∫ Ω ∫ Ω ∫

〈R[IΩ]α(µ)α(µ+ν−ν−ν)∗〉dµdνdνdν

=Ψ0Ψmα
2(4Φ2 −2)

(
〈R[IΩ]〉B2 +2

∫ Ω ∫ Ω ∫ Ω

〈R[IΩ]R[h(ν+ν−ν−Ω)]〉dνdνdν

+
∫ Ω ∫ Ω ∫ Ω ∫

〈R[IΩ]h(µ−Ω)h(µ+ν−ν−ν)∗〉dµdνdνdν
)
.

Similarly, we find that terms 16-19 of Equation A.17 simplify as

(A.24) 2
∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫ [

〈I∗Ωα(µ)α(µ)x̂θ(ν−µ)â(ν−µ)†â(−µ)x̂θ(ν−µ)〉

+〈I∗Ωα(µ)α(µ)â(ν−µ)†â(−µ)x̂θ(ν−µ)x̂θ(ν−µ)〉
+〈IΩα(µ)∗α(µ)∗ x̂θ(ν−µ)† x̂θ(ν−µ)†â(−µ)†â(ν−µ)〉

+〈IΩα(µ)∗α(µ)∗ x̂θ(ν−µ)†â(−µ)†â(ν−µ)x̂θ(ν−µ)†〉
]

dµdµdµdνdνdν

=Φ2
∫ Ω ∫ Ω ∫ Ω ∫

〈I∗Ωα(µ)α(µ+ν−ν−ν)〉dµdνdνdν

+Φ2
∫ Ω ∫ Ω ∫ Ω ∫

〈IΩα(µ)∗α(µ+ν−ν−ν)∗〉dµdνdνdν

= 2Ψ0Ψmα
2Φ2

(
〈R[IΩ]〉B2 +2

∫ Ω ∫ Ω ∫ Ω

〈R[I∗Ωh(ν+ν−ν−Ω)]〉dνdνdν

+
∫ Ω ∫ Ω ∫ Ω ∫

〈R[I∗Ωh(µ−Ω)h(µ+ν−ν−ν)]〉dµdνdνdν
)
.

We can write term 20 of Equation A.17 as

(A.25) 4
[ ∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫ ∫

α(µ)∗α(µ)α(µ)∗α(µ)×

x̂θ(ν−µ)† x̂θ(ν−µ)x̂θ(ν−µ)† x̂θ(ν−µ)dµdµdµdµdνdνdνdν
]

= 4

〈∣∣∣∣∫ Ω ∫
α(µ)x̂θ(ν−µ)dµdν

∣∣∣∣4
〉

= 4
〈 ∣∣∣∣Ψ0α

(∫ Ω

x̂θ(ν)dν+
∫ Ω ∫

h(µ)x̂θ(ν−µ)dµdν
)
+Ψmα

2

( ∫ Ω

x̂θ(ν−Ω)dν+
∫ Ω

x̂θ(ν+Ω)dν

+
∫ Ω ∫

h(µ−Ω)x̂θ(ν−µ)dµdν+
∫ Ω ∫

h(µ+Ω)x̂θ(ν−µ)dµdν
) ∣∣∣∣4 〉

.

In the expansion of Equation A.25, many terms vanish due to both the restricted domain
of h(ν) and the action of creation and annihilation operators on the vacuum. This allows
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Equation A.25 to be significantly simplified, leading to the result:

(A.26) 4
[ ∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫ ∫

〈α(µ)∗α(µ)α(µ)∗α(µ)×

x̂θ(ν−µ)† x̂θ(ν−µ)x̂θ(ν−µ)† x̂θ(ν−µ)〉dµdµdµdµdνdνdνdν
]

= (4Ψ4
0 +4Ψ2

0Ψ
2
m +Ψ4

m)α4Φ2
(

1
2

B2 +
∫ Ω ∫ Ω ∫ Ω ∫ Ω

〈R[h(ν−ν)h(ν−ν)]〉dνdνdνdν

+
∫ Ω ∫ Ω ∫ Ω ∫ Ω

〈h(ν−ν)∗h(ν−ν)〉dνdνdνdν+B
∫ Ω ∫ Ω ∫

〈h(µ)∗h(µ+ν−ν)〉dµdνdν

+2
∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫

〈R[h(µ)h(µ+ν−ν)∗h(ν−ν)]〉dµdνdνdνdν

+ 1
2

∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫ ∫
〈h(µ)∗h(µ+ν−ν)h(µ)∗h(µ+ν−ν)〉dµdµdνdνdνdν

)
+Ψ

4
m

8
α4Φ2

(
1
2

B2 +B
∫ Ω ∫ Ω ∫

〈R[h(µ−Ω)h(ν+ν−µ−Ω)]〉dµdνdν

+2
∫ Ω ∫ Ω ∫ Ω ∫ Ω

〈h(ν+ν−2Ω)∗h(ν+ν−2Ω)〉dνdνdνdν

+2
∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫

〈R[h(µ−Ω)h(ν+ν−2Ω)∗h(ν+ν−µ−Ω)]〉dµdνdνdνdν

+ 1
2

∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫ ∫
〈h(µ−Ω)∗h(µ−Ω)h(ν+ν−µ−Ω)∗h(ν+ν−µ−Ω)〉dµdµdνdνdνdν

)
.

The summation of terms 21-24 of Equation A.17 can be written as

(A.27)

2
∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫ ∫ [

〈α(µ)∗α(µ)x̂θ(ν−µ)† x̂θ(ν−µ)â(ν−µ)†â(−µ)â(−µ)†â(ν−µ)〉

+〈α(µ)∗α(µ)â(ν−µ)†â(−µ)â(−µ)†â(ν−µ)x̂θ(ν−µ)† x̂θ(ν−µ)〉
+〈α(µ)∗α(µ)x̂θ(ν−µ)†â(−µ)†â(ν−µ)â(ν−µ)†â(−µ)x̂θ(ν−µ)〉

+〈α(µ)∗α(µ)â(ν−µ)†â(−µ)x̂θ(ν−µ)x̂θ(ν−µ)†â(−µ)†â(ν−µ)〉
]

dµdµdµdµdνdνdνdν

=
(
5Φ3

2
−2Φ+ 1

2Φ

)∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫
〈α(µ)∗α(µ+ν+ν−ν−ν)〉dµdνdνdνdν

= (2Ψ2
0 +Ψ2

m)α2
(
5Φ3

2
−2Φ+ 1

2Φ

)(
1
2

B3

+ 1
2

∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫
〈h(µ)∗h(µ+ν+ν−ν−ν)〉dµdνdνdνdν

)
.

Similarly, we can combine terms 25 and 26 of Equation A.17 to give

(A.28)

2
∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫ ∫ [

〈α(µ)∗α(µ)∗ x̂θ(ν−µ)†â(−µ)â(ν−µ)x̂θ(ν−µ)†â(−µ)†â(ν−µ)〉
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+〈α(µ)α(µ)â(ν−µ)†â(−µ)x̂θ(ν−µ)â(ν−µ)†â(−µ)x̂θ(ν−µ)〉
]

dµdµdµdµdνdνdνdν

= (2Ψ2
0 +Ψ2

m)α2 (
Φ3 −Φ)( 1

2
B3

+ 1
2

∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫
〈R[h(µ)h(µ+ν+ν−ν−ν)]〉dµdνdνdνdν

)
.

The final term of Equation A.17 gives the result:

(A.29)
∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫ ∫ ∫ ∫

〈â(ν−µ)†â(−µ)â(−µ)†â(ν−µ)×

â(ν−µ)†â(−µ)â(−µ)†â(ν−µ)〉dµdµdµdµdνdνdνdν

= B3Λ

(
7Φ4

32
− 3Φ2

8
+ 7

32Φ4 − 3
8Φ2 + 5

16

)
.

By combining all the terms calculated for Equation A.17, we obtain the result for 〈p2
Ω〉:

(A.30)

〈p2
Ω〉 = 4q4R2

[
〈|IΩ|4〉+ (4Ψ2

0 +2Ψ2
m)α2Φ

(
〈|IΩ|2〉B+2

∫ Ω ∫ Ω

〈|IΩ|2R[h(ν−ν)]〉dνdν

+
∫ Ω ∫ Ω ∫

〈|IΩ|2h(µ)∗h(µ+ν−ν)〉dµdνdν
)
+Ψ

2
m

2
α2Φ

(
〈R[I∗2

Ω ]〉B

+2
∫ Ω ∫ Ω

〈R[I∗2
Ω h(ν+ν−2Ω)]〉dνdν

+
∫ Ω ∫ Ω ∫

〈R[I∗2
Ω h(µ−Ω)h(ν+ν−µ−Ω)]〉dµdνdν

)
+〈|IΩ|2〉ΛB

(
Φ2

2
+ 1

2Φ2 −1
)

+Ψ0Ψmα
2(4Φ2 −2)

(
〈R[IΩ]〉B2 +2

∫ Ω ∫ Ω ∫ Ω

〈R[IΩ]R[h(ν+ν−ν−Ω)]〉dνdνdν

+
∫ Ω ∫ Ω ∫ Ω ∫

〈R[IΩ]h(µ−Ω)h(µ+ν−ν−ν)∗〉dµdνdνdν
)

+2Ψ0Ψmα
2Φ2

(
〈R[IΩ]〉B2 +2

∫ Ω ∫ Ω ∫ Ω

〈R[I∗Ωh(ν+ν−ν−Ω)]〉dνdνdν

+
∫ Ω ∫ Ω ∫ Ω ∫

〈R[I∗Ωh(µ−Ω)h(µ+ν−ν−ν)]〉dµdνdνdν
)

+ (4Ψ4
0 +4Ψ2

0Ψ
2
m +Ψ4

m)α4Φ2
(

1
2

B2 +
∫ Ω ∫ Ω ∫ Ω ∫ Ω

〈R[h(ν−ν)h(ν−ν)]〉dνdνdνdν

+
∫ Ω ∫ Ω ∫ Ω ∫ Ω

〈h(ν−ν)∗h(ν−ν)〉dνdνdνdν+B
∫ Ω ∫ Ω ∫

〈h(µ)∗h(µ+ν−ν)〉dµdνdν

+2
∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫

〈R[h(µ)h(µ+ν−ν)∗h(ν−ν)]〉dµdνdνdνdν

+ 1
2

∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫ ∫
〈h(µ)∗h(µ+ν−ν)h(µ)∗h(µ+ν−ν)〉dµdµdνdνdνdν

)
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+Ψ
4
m

8
α4Φ2

(
1
2

B2 +B
∫ Ω ∫ Ω ∫

〈R[h(µ−Ω)h(ν+ν−µ−Ω)]〉dµdνdν

+2
∫ Ω ∫ Ω ∫ Ω ∫ Ω

〈h(ν+ν−2Ω)∗h(ν+ν−2Ω)〉dνdνdνdν

+2
∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫

〈R[h(µ−Ω)h(ν+ν−2Ω)∗h(ν+ν−µ−Ω)]〉dµdνdνdνdν

+ 1
2

∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫ ∫
〈h(µ−Ω)∗h(µ−Ω)h(ν+ν−µ−Ω)∗h(ν+ν−µ−Ω)〉dµdµdνdνdνdν

)
+ (2Ψ2

0 +Ψ2
m)α2

(
5Φ3

2
−2Φ+ 1

2Φ

)(
1
2

B3

+ 1
2

∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫
〈h(µ)∗h(µ+ν+ν−ν−ν)〉dµdνdνdνdν

)
+ (2Ψ2

0 +Ψ2
m)α2 (

Φ3 −Φ)( 1
2

B3

+ 1
2

∫ Ω ∫ Ω ∫ Ω ∫ Ω ∫
〈R[h(µ)h(µ+ν+ν−ν−ν)]〉dµdνdνdνdν

)
+B3Λ

(
7Φ4

32
− 3Φ2

8
+ 7

32Φ4 − 3
8Φ2 + 5

16

)]
.

In the expression for Var(pΩ) = 〈p2
Ω〉− 〈pΩ〉2, there is significant cancellation between

〈p2
Ω〉 and 〈pΩ〉2, and by taking the leading remaining terms we find that

(A.31) Var(pΩ)= 〈p2
Ω〉−〈pΩ〉2 ≈ 4q4R2 [〈|IΩ|4〉−〈|IΩ|2〉2 +2〈|IΩ|2〉Ψ2

0α
2ΦB

]
≈ 4q4R2

[
16Ψ4

0Ψ
4
mα

8
∫ Ω ∫ Ω

〈R[h(ν−Ω)]R[h(ν−Ω)]〉dνdν

+4Ψ2
0Ψ

2
mα

4
∫ Ω ∫ Ω

〈R[ne(ν)]R[ne(ν)]〉dνdν+2ΦBΨ4
0Ψ

2
mα

6
]

.

By associating H = ∫ Ω h(ν−Ω)dν = ∫ B/2
−B/2 h(ν)dν as the relative amplitude of the classical

optical noise in the DC component, N = ∫ Ω ne(ν)dν as the amplitude of the electronic noise
in the ±B/2 frequency interval around Ω, and substituting Ψ0 ≈ 1, Ψm = δm/2 and i0 ≈
qηqα

2
0, we find that for M spectral averages,

(A.32) Var(pΩ)≈ R2

M

[
2qδ2

m i3
0ΦB+4δ4

m i4
0Var(R[H])+4q2δ2

m i2
0Var(R[N ])

]
.

From Equation A.32, an improvement in precision beyond the quantum noise limit may be
obtained in the case that squeezing (Φ< 1) provides a significant reduction in Var(pΩ).

A.3 Electro-optic Amplitude Modulation

Amplitude modulated light, as described by Equation A.2, provides a particularly conve-
nient picture for analysing the behaviour of optical signals in the frequency domain. How-
ever, it is typically the case that modulation sidebands generated in real experiments can
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only be approximately described in this way. In order to verify that Equation A.2 provides
an accurate description of the state generated in this experiment, it is necessary to consider
the evolution of the orthogonal polarisation components of the classical amplitude.

Since the PCF has some birefringence, there will be some ellipticity in the polarisation
of the light collected from the output of the fibre. If the HWP on the output of the Sagnac
interferometer rotates the polarisation of the light to align with the horizontal axis, the
classical amplitude incident on the EOM may be written as

(A.33)

[
αH

αV

]
=

[
αin
2 + e−iΘ αin

2
αin
2 − e−iΘ αin

2

]
,

which follows from the properties of the matrix defined in Equation 2.67. Here, αH and αV

label the horizontal and vertical polarisation components, αin is the mean classical ampli-
tude of the light from the Sagnac interferometer, and Θ determines the ellipticity of the
polarisation. For the squeezed light generated using the 14 m reel of fibre, the polarisation
visibility of the light output from the Sagnac is V = (Pmax−Pmin)/(Pmax+Pmin)≈ 0.9, where
Pmax and Pmin are respectively the maximum and minimum powers transmitted through
a linear polariser. Using Equation A.33, we obtain cos(Θ)= 0.9 and therefore Θ= 0.45.

With the principle axes of the EOM oriented at 45° to the polarisation of the incident
light, the transformed polarisation vector of the state on the output of the EOM can be given
by [148]

(A.34)

[
α′

H
α′

V

]
=

[
cos(π/4) −sin(π/4)
sin(π/4) sin(π/4)

][
e−iΓ

1

][
cos(π/4) sin(π/4)
−sin(π/4) sin(π/4)

][
αin
2 + e−iΘ αin

2
αin
2 − e−iΘ αin

2

]

=
[
αin
2 + e−i(Θ+Γ) αin

2
αin
2 − e−i(Θ+Γ) αin

2

]
,

where Γ is the phase shift imparted by the EOM. The resulting magnitude of the detected
horizontal component after the PBS is then

(A.35) |αH | =
√

1
2
α2

in (1+cos(Γ+Θ)).

The phase Γ can be defined in terms of the voltage V applied to the EOM as Γ = πV /Vπ,
where Vπ is the voltage required to achieve Γ=π, and is referred to as the half-wave voltage.
Applying sinusoidal voltage modulation at frequency Ω, this may be written as

(A.36) Γ(t)=−πV0 cos(2πΩt)
Vπ

=−δEOM cos(2πΩt),

where δEOM defines the modulation depth of the EOM. Making the assumption of small
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modulation δEOM ¿ 1, the magnitude of the horizontal component can be approximated as

(A.37) |α′
H(t)| =

√
1
2
α2

in(1+cos(Γ(t))cos(Θ)−sin(Γ(t))sin(Θ))

≈
√

1
2
α2

in(1+cos(Θ)−δEOM cos(2πΩt)sin(Θ))

= 1p
2
αin

√
1+cos(Θ)

√
1+ sin(Θ)δEOM cos(2πΩt)

1+cos(Θ)

≈ 1p
2
αin

√
1+cos(Θ)

(
1+ sin(Θ)δEOM cos(2πΩt)

2+2cos(Θ)

)
.

On the second line of Equation A.37, only the first term in the Taylor expansion of cos(Γ(t))
has been kept, due to the assumption δEOM ¿ 1. Accordingly, the approximation made on
the third line of Equation A.37 consists of taking only the first two terms of the Binomial
expansion. In order to write this in the form of Equation A.2, we first reparameterise, by
defining

(A.38)

α=max
(|α′

H(t)|) ,

A = 1p
2
αin

√
1+cos(Θ) and

B = αin
p

1+cos(Θ)sin(Θ)
2
p

2+2
p

2cos(Θ)
.

From the definition of α, we can then write

(A.39) |α′
H(t)| =α(1−Ψm +Ψm cos(2πΩt))

= (A+BδEOM)(1−Ψm +Ψm cos(2πΩt))= A+BδEOM cos(2πΩt).

This leads to a valid solution for Ψm:

(A.40) Ψm = BδEOM

A+BδEOM
.

We note that, when the light incident on the EOM is circularly polarised, i.e. Θ = π/4, the
modulation depth is δEOM = Ψm/2 = δm, demonstrating the correspondence between the
modulation depth of the voltage applied to EOM and the measured fractional amplitude
modulation. While this equality does not hold for more general polarisation states, this
analysis demonstrates that the amplitude modulation is well described by Equation A.39
when the light incident on the modulator has some degree of ellipticity, provided that the
applied modulation is small. Therefore, the classical amplitude of the detected light is well
described by a function oscillating sinusoidally by a fraction Ψm.
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QUANTUM ENHANCED ESTIMATION OF STATIC LOSS WITH

BRIGHT SQUEEZED LIGHT

B.1 Calculation of the Signal-to-Noise Ratio

Here we derive the signal-to-noise ratio for the loss estimation scheme described in Sec-
tion 5.3. The quantum amplitude of the field before modulation is described by Â in(t) =
[1+ζ(t)]αeiθ+ â(t). Since the amplitude modulation is generated by polarisation modulation
from the EOM, we can define a vector which describes all spatial and polarisation modes of
the system:

(B.1) ~̂A in(t)=



|α(t)|eiθ+ âH(t)
b̂H(t)
ĉH(t)
âV (t)
b̂V (t)
ĉV (t)


,

where H denotes horizontal polarisation and V denotes vertical polarisation, and we have
defined |α(t)| = [1+ ζ(t)]α. The different spatial modes are illustrated in Figure 5.2: â rep-
resents the spatial mode co-linear with the input beam, b̂ represents the spatial mode co-
linear with the reflection port of PBS1, and ĉ corresponds to the vacuum port of the sample
loss. The EOM then applies a relative phase shift of Γ(t) to the polarisation components
parallel to the birefringent axes of the EOM [148]. The EOM crystal is oriented such that
its birefringent axes are aligned at 45° to the H and V axes. To compute the propagation of
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the quantum state, we first define the following matrices:

(B.2) R(φ)=



cos
(
φ

)
0 0 −sin

(
φ

)
0 0

0 cos
(
φ

)
0 0 −sin

(
φ

)
0

0 0 cos
(
φ

)
0 0 −sin

(
φ

)
sin

(
φ

)
0 0 cos

(
φ

)
0 0

0 sin
(
φ

)
0 0 cos

(
φ

)
0

0 0 sin
(
φ

)
0 0 cos

(
φ

)


,

M(Γ(t))=



e−iΓ(t) 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, B =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1


and

Λ=



p
η 0

√
1−η 0 0 0

0 1 0 0 0 0
−√

1−η 0 p
η 0 0 0

0 0 0 p
η 0

√
1−η

0 0 0 0 1 0
0 0 0 −√

1−η 0 p
η


.

The matrix R(φ) rotates the polarisation basis by φ radians, and is used to change into
the basis corresponding to the birefringent axes of the EOM. M(Γ(t)) corresponds to the
action of the EOM, B is the matrix corresponding to the polarising beamsplitters, and Λ
applies the effect of the sample with transmission η. The action of the EOM on the input
state can be calculated as

(B.3) ~̂Amod(t)= R(−π/4)M(Γ(t))R(π/4)~̂A in(t)

=



1
2 |α(t)|eiθ(1+ e−iΓ(t))+ âH (t)

2 (1+ e−iΓ(t))+ âV (t)
2 (1− e−iΓ(t))

b̂H(t)
ĉH(t)

1
2 |α(t)|eiθ(1− e−iΓ(t))+ âH (t)

2 (1− e−iΓ(t))+ âV (t)
2 (1+ e−iΓ(t))

b̂V (t)
ĉV (t)


.

The state output from the second polarising beamsplitter is described by

(B.4) ~̂Aout(t)= BΛB ~̂Amod(t)=
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

p
η

2 |α(t)|eiθ(1+ e−iΓ(t))+
p
ηâH (t)

2 (1+ e−iΓ(t))+
p
ηâV (t)

2 (1− e−iΓ(t))+√
1−ηĉH(t)

b̂H(t)

−
p

1−η
2 |α(t)|eiθ(1+ e−iΓ(t))−

p
1−ηâH (t)

2 (1+ e−iΓ(t))−
p

1−ηâV (t)
2 (1− e−iΓ(t))+p

ηĉH(t)
1
2 |α(t)|eiθ(1− e−iΓ(t))+ âH (t)

2 (1− e−iΓ(t))+ âV (t)
2 (1+ e−iΓ(t))

p
ηb̂V (t)+√

1−ηĉV (t)
−√

1−ηb̂V (t)+p
ηĉV (t)


.

The detected photocurrent is then the sum of the contributions to the spatial mode â from
the horizontal and vertical polarisation modes:

(B.5) î(t)= q
(
Âout

1 (t)† Âout
1 (t)+ Âout

4 (t)† Âout
4 (t)+ne(t)

)
,

where each component Âout
i (t) of the vector ~̂Aout(t) has been labelled by the index i to indi-

cate the corresponding spatial and polarisation mode, and the term qne(t) again represents
the dark current. Writing δ= 1−η, this results in

(B.6) î(t)= 1
2

q|α(t)|2 (
1+η−δcos(Γ(t))

)+ 1
2

q|α(t)|(1+η−δcos(Γ(t))
)(

eiθ âH(t)† + e−iθ âH(t)
)

+ 1
2

iq|α(t)|sin(Γ(t))δ
(
eiθ âV (t)† − e−iθ âV (t)

)
+ 1

2
qâH(t)†âH(t)

(
1+η−δcos(Γ(t))

)
+ 1

2
qâV (t)†âV (t)

(
1+η+δcos(Γ(t))

)
+1

2
q
√
η(1−η)|α(t)|

(
e−iθ(1+ eiΓ(t))ĉH(t)+ eiθ(1+ e−iΓ(t))ĉH(t)†

)
+(1−η)qĉH(t)† ĉH(t)+qne(t).

In the limit of small loss, the effect of the loss may be neglected from the quantum terms,
and we can write
(B.7)

î(t)≈ 1
2

q|α(t)|2 (
1+η−δcos(Γ(t))

)+p
2q|α(t)|x̂θ(t)+ qâH(t)†âH(t)+ qâV (t)†âV (t)+ qne(t),

where we have defined x̂θ(t) = 1p
2

(
eiθ âH(t)† + e−iθ âH(t)

)
. In order to calculate the power

of the photocurrent at the frequency of the sideband, it is necessary to consider explicitly
the time dependence of the modulation function Γ(t). The EOM used in this experiment
is capable of producing sinusoidal modulation at arbitrary modulation indices, and we can
therefore assume a function of the form Γ(t) = π

2 −arcsin(δm cos(2πΩt)) for modulation fre-
quency Ω, such that cos(Γ(t))= δm cos(2πΩt), for modulation index δm. The constant bias of
π/2 is obtained by placing a quarter-wave plate immediately before the EOM, such that the
light incident on the modulator is circularly polarised [148]. The matrix M(Γ(t)) therefore
describes the combined action of the QWP and the EOM. The spectral photocurrent is then

(B.8) î(ν)= I(ν)+
p

2
∫
α(ν)x̂θ(ν−µ)dµ+

∫
âH(−µ)†âH(ν−µ)dµ+

∫
âV (−µ)†âV (ν−µ)dµ,
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for
∫ ≡ ∫ ∞

−∞, where I(ν) is the classical component of the spectral photocurrent, defined:

(B.9) I(ν)=
∫ (

1
2
|α(t)|2 (

1+η−δmδcos(2πΩt)
)+ne(t)

)
e−2πiνtdt.

Also, if the input state is amplitude squeezed and horizontally polarised, as described by
Equation B.1, the quantum fluctuation operator âH(t) is defined as

(B.10) âH(ν)= d̂H(ν)cosh r(ν)− e2iθ(ν)d̂H(−ν)† sinh r(ν),

where d̂H(ν) and d̂H(ν)† are bosonic creation and annihilation operators. As before, we can
assume constant squeezing parameters r(ν) and θ(ν) in the measurement bandwidth. It
should be noted that the vacuum mode âV (ν) is not squeezed since it is in the orthogo-
nal polarisation state to the amplitude squeezed light. Following the same approach as in
Appendix A.1, the power in the sideband at frequency Ω is given by pΩ = 2R| îΩ|2, where

îΩ = ∫ Ω î(ν)dν, for
∫ Ω ≡ ∫ Ω+B

2

Ω−B
2

. This gives

(B.11)

pΩ = 2q2R
[
|IΩ|2 +

p
2I∗Ω

∫ Ω ∫
α(µ)x̂θ(ν−µ)dµdν+ I∗Ω

∫ Ω ∫
âH(−µ)†âH(ν−µ)dµdν

+ I∗Ω

∫ Ω ∫
âV (−µ)†âV (ν−µ)dµdν+

p
2IΩ

∫ Ω ∫
α(µ)∗ x̂θ(ν−µ)†dµdν

+2
∫ Ω ∫ Ω ∫ ∫

α(µ)∗α(µ)x̂θ(ν−µ)† x̂θ(ν−µ)dµdµdνdν+ IΩ
∫ Ω ∫

âH(ν−µ)†âH(−µ)dµdν

+ IΩ
∫ Ω ∫

âV (ν−µ)†âV (−µ)dµdν
]

,

with IΩ = ∫ Ω I(ν)dν. From the result of Appendix A.1, we have assumed here that terms
smaller than O(α2) do not contribute significantly to the average power of the sideband.
From Equation B.9, we find

(B.12) I(ν)= 1
2
α2(1+η)δ(ν)+α2(1+η)h(ν)+ 1

2
α2(1+η)

∫
h(µ)h(ν−µ)dµ

− 1
4
α2δmδ

[
δ(ν−µ)+δ(ν+µ)

]− 1
2
α2δmδ [h(ν−Ω)+h(ν+Ω)]

− 1
4
α2δmδ

[∫
h(µ)h(ν−Ω−µ)dµ+

∫
h(µ)h(ν+Ω−µ)dµ

]
+ne(ν).

From this, we can calculate

(B.13) |IΩ|2 = δ2
mδ

2α4
[

1
16

+ 1
4

∫ Ω

R[h(ν−Ω)]dν+ 1
8

∫ Ω ∫
R[h(µ)h(ν−Ω−µ)]dµdν

+ 1
4

∣∣∣∣∫ Ω

h(ν−Ω)dν
∣∣∣∣2 + 1

4

∫ Ω ∫ Ω ∫
R[h(µ)h(ν−Ω)h(ν−Ω−µ)]dµdνdν
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+ 1
16

∣∣∣∣∫ Ω ∫
h(µ)h(ν−Ω−µ)dµdν

∣∣∣∣2 ]
−δmδα

2
[

1
2

∫ Ω

R[ne(ν)]dν

+
∫ Ω ∫ Ω

R[h(ν−Ω)ne(ν)]dνdν+ 1
2

∫ Ω ∫ Ω ∫
R[h(µ)h(ν−Ω−µ)ne(ν)∗]dµdνdν

]
+

∣∣∣∣∫ Ω

ne(ν)dν
∣∣∣∣2 .

Taking the expectation value on Equation B.11, a result is obtained for the average power
of the sideband:

(B.14) 〈pΩ〉 = 2q2R
[
〈|IΩ|2〉+Φ

∫ Ω ∫ Ω ∫
〈α(µ)∗α(µ+ν−ν)〉dµdνdν

]
= 2q2R

[
α4

(
1
16
δ2

mδ
2 + 1

8
δ2

mδ
2
∫ Ω ∫

〈R[h(µ)h(ν−Ω−µ)]〉dµdν

+ 1
4
δ2

mδ
2

〈∣∣∣∣∫ Ω

h(ν−Ω)dν
∣∣∣∣2

〉
+ 1

4
δ2

mδ
2
∫ Ω ∫ Ω ∫

〈R[h(µ)h(ν−Ω)h(ν−Ω−µ)]〉dµdνdν

+ 1
16
δ2

mδ
2

〈∣∣∣∣∫ Ω ∫
h(µ)h(ν−Ω−µ)dµdν

∣∣∣∣2
〉 )

+α2
(
ΦB+Φ

∫ Ω ∫ Ω ∫
〈h(µ)∗h(µ+ν−ν)〉dµdνdν

)
+

〈∣∣∣∣∫ Ω

ne(ν)dν
∣∣∣∣2

〉 ]
,

for squeezing parameter Φ. By considering that δ¿ 1,
∫ |h(ν)|dν¿ 1, and writing i0 = qα2,

the average power of the signal can be approximated as

(B.15) 〈pΩ〉 ≈ R

(
1
8

i2
0δ

2
mδ

2 +2qi0ΦB+2q2

〈∣∣∣∣∫ Ω

ne(ν)dν
∣∣∣∣2

〉)
.

The power of the optical noise floor and electronic noise floor are found to be identical to
those for the case of amplitude modulation:
(B.16)

〈pN〉 ≈ R

(
2qi0ΦB+2q2

〈∣∣∣∣∫ Ω

ne(ν)dν
∣∣∣∣2

〉)
and 〈pE〉 = R

(
2q2

〈∣∣∣∣∫ Ω

ne(ν)dν
∣∣∣∣2

〉)
.

The resulting signal-to-noise ratio δSNR for this measurement is therefore

(B.17) δSNR = 〈pΩ〉−〈pN〉
〈pN〉−〈pE〉

≈ i0δ
2
mδ

2

16qΦB
.

B.2 Calculation of the Variance of the Sideband Power

The calculation of the variance of the signal power is significantly simplified here, since,
assuming a similar result to Appendix A.2, we anticipate that terms smaller than O(α6)
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will not significantly contribute to Var(pΩ). Using Equation B.14, we can therefore write
(B.18)

〈pΩ〉2 = 4q4R2
[
〈|IΩ|2〉2 +2〈|IΩ|2〉α2ΦB+2〈|IΩ|2〉α2Φ

∫ Ω ∫ Ω ∫
〈h(µ)∗h(µ+ν−ν)〉dµdνdν

]
.

Using Equation B.11, 〈p2
Ω〉 can be written as

(B.19) 4q4R2
[ 〈|IΩ|4〉+6

〈
|IΩ|2

∫ Ω ∫ Ω ∫ ∫
α(µ)∗α(µ)x̂θ(ν−µ)† x̂θ(ν−µ)dµdµdνdν

〉
+2

〈
|IΩ|2

∫ Ω ∫ Ω ∫ ∫
α(µ)α(µ)∗ x̂θ(ν−µ)x̂θ(ν−µ)†dµdµdνdν

〉 ]
= 4q4R2

[ 〈|IΩ|4〉+4〈|IΩ|2〉α2ΦB+8α2Φ

∫ Ω ∫ Ω

〈|IΩ|2R[h(ν−ν)]〉dνdν

+4α2Φ

∫ Ω ∫ Ω ∫
〈|IΩ|2h(µ)∗h(µ+ν−ν)〉dµdνdν

]
.

Here, only terms of order O(α6) and above have been kept, and further simplification was
made by neglecting terms for which the quantum expectation value vanishes. This leads to
a result for the variance of the sideband power given by

(B.20) Var(pΩ)= 〈p2
Ω〉−〈pΩ〉2 ≈ 4q4R2[

〈|IΩ|4〉−〈|IΩ|2〉2 +2〈|IΩ|2〉α2ΦB]

≈ 4q4R2
[

1
16
δ4

mδ
4α8

∫ Ω ∫ Ω

〈R[h(ν−Ω)]R[h(ν−Ω)]〉dνdν

+ 1
4
δ2

mδ
2α4

∫ Ω ∫ Ω

〈R[ne(ν)]R[ne(ν)]〉dνdν+ 1
8
δ2

mδ
2α6ΦB

]
.

Using the notation H = ∫ B
2

−B
2

h(ν)dν and N = ∫ Ω ne(ν)dν as before, with δ= 1−η and for M

spectral averages, this gives
(B.21)

Var(pΩ)= R2

M

[
1
2

qδ2
m(1−η)2 i3

0ΦB+ 1
4
δ4

m(1−η)4 i4
0Var(R[H])+ q2δ2

m(1−η)2 i2
0Var(R[N ])

]
.

For η ≈ 1 and δm ≈ 1, the contribution of classical noise relative to quantum noise is sim-
ilar to the result for the detection of small amplitude modulation given by Equation A.32.
Therefore, it is expected that squeezing should provide a precision advantage for static
transmission estimation for a small optical loss.
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