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ABSTRACT

The prediction of NMR parameters through machine learning was investigated and several highly
accurate prediction algorithms developed. Prediction models sensitive to 3-Dimensional structure
in small molecules are presented for chemical shifts and scalar coupling constants, several of
which outperform current state-of-the-art algorithms. Several large, high quality DFT datasets
were also produced, their construction and composition are detailed in this work. Finally the
application of the newly developed prediction algorithms to a realistic diastereomer discrimination
task is explored, along with the adaptation of one of the machine learning frameworks to the
prediction of binding affinities.
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INTRODUCTION

1.1 NMR Spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy is used extensively in multiple scientific fields,

medicine (primarily through magnetic resonance imagery; MRI) and some industrial processes.

Likely the best known use of NMR to the general public is the MRI scan, a common diagnostic

tool which generates a map of the water and fat in the body, distinguishable due to the relative

difference hydrogen NMR signals which arise from the difference in water content in various

parts of the body. One of the key benefits of the MRI scan is the fact that it is non-invasive, this

aspect of NMR spectroscopy in general has made it a popular technique in several industrial

applications, including the analysis of flow in oil pipelines [2], imaging of solid rocket fuel without

disturbing the packing [3] and the imagine of internal features in wood [4]. [5]

Specifically in chemistry, the applications of NMR spectroscopy are still wide-ranging. NMR

has been used to improve detection Fentanyl in cocaine samples [6], in reaction monitoring [7–9],

and protein binding in drug discovery [10–12].

1.1.1 NMR spectroscopy in structure elucidation

NMR spectroscopy is central to the elucidation of molecular structures in solution[13–15], and

the accurate prediction of NMR parameters plays a key role in modern structure elucidation

techniques [16–18]. Predicted NMR parameters allow the construction of multiple theoretical
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NMR spectra (or derived information from such a spectrum) from known structures. Matching

the NMR parameters from the real NMR spectrum to one of the constructed sets of parame-

ters identifies the unknown structure as that which was used to produced the predicted NMR

parameters.

The measurement of NMR spectra yields important atom and atom-pair based properties:

chemical shifts and scalar coupling constants. Chemical shift is the resonant frequency of a

nucleus relative to a standard in a constant magnetic field. More specifically it is related to

the Larmor procession frequency of the magnetic moment of a nucleus in a static magnetic

field, the chemical shift being the difference between the measured frequency and a reference

frequency, divided by the frequency of the instrument in which the measurement was made. For

Carbon and Hydrogen nuclei the most commonly used reference frequency are those measured

for tetramethylsilane (TMS). Chemical shift is given in parts per million for convenience ( ppm ,

δ), as the frequency differences have units of Hz, whereas the spectrometer frequency will be of

the order of MHz. The chemical shift of a particular nucleus is affected by the arrangement of

electrons in the molecule, which provide a shielding effect acting against the external magnetic

field, and as such is highly sensitive to the 3-dimensional arrangement of the molecule.

Indirect or scalar coupling between nuclear spins of nuclei connected by bonds leads to the

appearance of multiple resonant frequencies for a single nucleus. This is the result of limited

combinations of accessible spin states between the two nuclei. The magnitude of this splitting,

visible in certain measured NMR spectra, is referred to as a scalar coupling constant, or J coupling

constant, measured in Hz. Scalar coupling constants can be measured for nuclei connected by any

number of bonds, but 1, 2 and 3 bonds couplings are the most commonly used. Coupling constants

can be measured for the same nuclei (homonuclear) or different nuclei (heteronuclear), and the

common notation nJXY is used where n is the number of bonds connecting the two nuclei X and

Y. E.g. a 3 bond proton-carbon coupling would be described as a 3JCH coupling. Like chemical

shifts, coupling constants are sensitive to the 3-dimensional arrangement of electrons in the

surrounding molecule.

1.1.2 NMR parameters and molecular structure

NMR parameters of nuclei are intrinsically linked to the composition and conformation of the

surrounding molecule. Chemical shifts take different values in different functional groups [19],
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for example methyl protons on carbon atoms typically have chemical shifts around 0.9 ppm,

whereas aromatic protons typically have chemical shifts between 6.5 ppm and 8.2 ppm. 13C

chemical shifts in methyl carbons, as part of an alkyl group, typically have values around 10-30

ppm, whereas in aromatic carbons the chemical shift is typically around 100-160 ppm.

Scalar coupling constants display similar relationships with structural features, with aromatic

or alkenyl 1JCH coupling constants typically taking values of 155-170 Hz, compared with 155-

170 Hz for alkyl 1JCH coupling constants, and 240-250 Hz for alkyne 1JCH coupling constants.

Similarly aromatic 3JHH coupling constants typically take values of 6-10 Hz, Alkene 3JHH take

values of 6-12 Hz (cis) or 12-18 Hz (trans).

Due to the variety and complexity of chemical structures the identification of functional groups

from single chemical shifts or coupling constants is rarely possible, but the important point is

that chemical shift has a fixed relationship with chemical structure; two 13C atoms in identical

molecules measured under reasonably similar conditions will give the same chemical shift value.

The complex but reliable relationship between NMR parameters and the 3-dimensional structure

of molecules creates the ability to predict the NMR parameter of a given atom (chemical shift) or

pair of atoms (scalar coupling constant) given the relevant structural information.

1.2 Computational NMR

The methods used to compute NMR parameters from structural information can be as simple as

a linear equation (the Karplus equation[20]), or as complex as the evaluation of the Schrodinger

equation in density functional theory calculations [21]. A chemical structure can be described

mathematically through different features such as Cartesian coordinates, inter-atomic distances,

or atomic numbers. These features can then be used to calculate some target value, such as the

chemical shift or scalar coupling constant for a given atom or pair of atoms.

1.2.1 Empirical equations

The Karplus equation [20] is one of the most popular and successful NMR-based empirical

equations, which relates the value of the 3JHH coupling in vicinal protons to the dihedral angle

between them.
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(1.1) 3JHH = A+Bcosφ+cos2φ

Where A, B, and C are constants given values 4.22 Hz, -0.5 Hz, and 4.5 Hz respectively in

the original work. φ is the dihedral angle. These constants are reported for a bond length of

1.543Åbetween sp3 hybridised carbons, and an average energy (δE) of 9 e.v. In this sense the

original karplus relation is not very general, however extensions to the original equation have

successfully expanded its generality to substituted ethanes [22, 23], and with greater accuracy

[24–26]. Similar relationships have been published for 1JCH [27–29], 2JCH[30] and 3JCH[30, 31]

couplings.

Similar methods for chemical shifts come in the form of additivity rules for δ1H [32] and

δ13C [33]. These work on the principle of assigning a base value to a chemical shift in a given

substructure, then applying a series of additive rules for substitutions within that substructure.

The HOSE (Hierarchically Ordered Spherical Description of Environment) code and associated

algorithms [34] can be seen as either the furthest expansion of empirical NMR prediction, or the

most simplified version of a machine learning prediction model. Designed for the prediction of

δ13C, HOSE codes describe a chemical environment through a series of concentric spheres. 13C

environments can be matched to environments with known chemical shift values through these

HOSE codes.

Empirical equations provide fast and accurate estimations of NMR parameters, however even

in the most complex equations the accuracy is restricted to a very limited region of chemical space.

Efforts to expand the generality of empirical equations invariably tend towards the production of

large numbers of equations, one for each new type of environment.

1.2.2 Density Functional Theory

NMR calculation algorithms which utilise density functional theory (DFT) are far more accurate

and more general than any empirical equation, though this accuracy comes at a much higher

computational cost. DFT calculations go far beyond the scope of empirical equations in terms of

atomic environment features to work with the density of electrons at each point in the molecule,

though this is still derived from the 3D atom coordinates and types. The DFT calculation primarily

consists of a functional to approximate the true electron density function, and a basis set of

wavefunctions to approximate the true molecular orbitals.
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There is an approximate hierarchy of functionals in terms of their chemical accuracy [35], with

less accurate functionals utilising more approximations in an attempt to reduce computational

cost. The relationship between functional accuracy and cost is complicated by the vast and

complex cancellation of errors which occurs through the the use of multiple approximations in

the same calculation. Therefore choice of functional for a given calculation can be difficult, and

often made on subjective grounds. Ideally benchmark work can be performed to test a range

of functionals on a similar problem with known target results, such as was available in this

work [1]. Functionals are named arbitrarily, with names arising variously from abbreviations

of author names, or titles of papers, or features of the functionals themselves. For example the

name of one of the most popular DFT functionals, B3LYP [36][37], is short for Becke, 3-parameter,

Lee–Yang–Parr, where Becke, Lee, Yang and Parr are the surnames of authors of functional, and

3-parameter refers to the fact that three fitted parameters are used in the functional. The PBE

functional [38] is similarly named after the three authors of the functional Perdew, Burke, and

Ernzerhof.

The hierarchy of basis sets is more straightforward; larger basis sets provide a more accurate

approximation of the molecular orbitals, but are more computationally expensive. The target in

selecting a basis set for a calculation is to use the smallest basis set possible which still provides

enough complexity to accurately model the molecular orbitals, where the required accuracy

is dependent on the purpose of the calculations. Smaller basis sets can be used for geometry

optimisations than would be used for energy calculations, for example. Once again benchmarking

work is incredibly useful in selecting basis sets for calculations.

There are several different types of basis set, ranging from the minimal basis sets which use

Slater-Type Orbitals (STO) and n Gaussian primitive functions to describe each orbital (labelled

STO-nG [39]) which are the fastest but least accurate basis sets, to the correlation consistent

basis sets [40] designed for Post-Hartree Fock methods (and the similar polarisation consistent

basis sets for DFT [41]) which are highly accurate but extremely computationally expensive as

they converge towards the complete basis set limit. Existing in a cost-benefit region between these

two types of basis set are the split-valence or Pople basis sets[42], identified in benchmarking

work as providing an optimal trade-off between computational expense and accuracy for NMR

prediction across several parameters [1].

Standard notation for the naming of Pople basis sets is of the form X-YZg[42] where Z is

5



CHAPTER 1. INTRODUCTION

the number of primitive gaussian functions comprising each core atomic orbital basis function,

Y and Z give the number of primitive gaussian functions which form the basis functions for

the valence orbitals. If there are two numbers, each valence orbital is comprised of two basis

functions each, termed a double-zeta basis set. Triple-zeta and quadruple-zeta basis sets are

also common. Additional polarisation and diffuse functions can be specified in brackets after the

X-YZg notation, for example the notation 6-31G(d,p) would be the 6-31G basis set supplemented

by one set of d functions on heavy atoms, and one set of p functions on hydrogens.

NMR magnetic shielding tensors are calculated through DFT via the gauge-independent

atomic orbital framework (GIAO) [43–45], which calculates the components (9 components

accounting for interactions between x,y, and z components of the magnetic field and magnetic

moment of the nucleus) of the shielding tensor from the electronic energy of the molecule, external

magnetic field and magnetic moment of the nucleus. The isotropic shielding, commonly used to

calculate chemical shift, is defined as one-third of the trace of the shielding tensor.

The scalar coupling constant is calculated as the sum of several components: the Fermi

contact term, the paramagnetic spin-orbit term, the diamagnetic spin-orbit term (DSO), and

the spin-dipolar term. In general, the Fermi contact term dominates, and so often this term is

used alone as the scalar coupling constant as this saves computational expense. All terms were

computed and used for DFT calculations in this project. The only notable exception to this is

couplings involving 19F nuclei, which are rarely of interest. [46, 47]

One of the most common computational chemistry software packages available is the Gaussian

(09 [48] or 16 [49]) software package. Most NMR DFT data available in literature, and all data

produced for this report, are calculated using this software. Several keywords can be used in the

NMR command line for gaussian NMR calculations. ’Tight’ or ’VeryTight’ refer to the optimisation

threshold for the SCF calculation, ’Tight’ sets the convergence threshold at 1×10−6 Hartree,

’Verytight’ sets this as 2×10−9 Hartree, often the stricter ’VeryTight’ criteria is used to ensure

the structure is fully optimised. These energy values are approximations, the convergence is

assessed in terms of both force and displacement. ’Tight’ is the default value [50]. ’Fine’ or

’Ultrafine’ refer to the density of the integration grids in the optimisation, increasing the density

through the ’Ultrafine’ keyword allows further optimisation of the structure as under the ’Fine’

integral grids the actual minimum may lie between points on the grid. The default grid for

Gaussian09 calculations was ’Fine’ which uses a grid with 75,302 points, in Gaussian16 the
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Figure 1.1: Structure elucidation workflow

default is ’Ultrafine’ which raises this number to 99,590.

1.2.3 Computational NMR and Structure elucidation

The use of calculated NMR parameters in structural elucidation problems takes many forms,

but for the purposes of this work it is useful to lay out one particular example. A compound for

which some element of the 3D structure is unknown is synthesised or obtained, and the necessary

NMR spectra measured to obtain a set of NMR parameters for the compound in solution. A

set of candidate structures is produced which, in the ideal case, contains the correct structure.

A Computational method is used to generate the NMR parameters for the set of candidate

structures, and these are compared against the experimentally obtained values. Molecules

with computationally derived NMR parameters which closely match those obtained from the

real NMR spectra are more likely to be the true structure of the molecule. The methods for

generating candidate structures (such as torsional angle searching and molecular mechanics

[51, 52], predicting NMR parameters (discussed in this section), and comparing them to the

experimental values [53, 54] are numerous and the optimal set of methods to use varies by

application.

Limiting factors in this process are the accuracy of the predicted NMR parameters relative to

the difference in those NMR parameters between each candidate structure, and the computational

cost of obtaining those predictions. Inaccurate NMR parameters can lead to an incorrectly chosen
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structure or an inconclusive result. High computational cost can lead to the use of less accurate

methods, or limiting the candidate pool of structures upon which the calculations are carried out.

Limiting the set of candidate structures can result in an incorrectly assigned structure, as the

true structure may be inadvertently excluded from the comparison.

1.3 Artificial intelligence and Machine learning

Artificial intelligence (AI) is an extremely broad term used to refer to the recreation of human

cognitive process in machines. Machine learning is a technique used to achieve outcomes desirable

in AI systems, such as the detection of properties in datasets and prediction of outcomes based

on input information. Machine learning is broadly split into two categories: supervised and

unsupervised learning. Supervised is a term used to refer to the presence (or absence) of labelled

data. In supervised learning (the type of learning used in this work) the training data is provided

with labels, which are the information the machine will be expected to predict in the testing

phase. Supervised learning is common in developing machines to predict values or properties.

The applications of supervised machine learning are wide-ranging, and have been used to

perform tasks as diverse as the prediction of house prices [55], the analysis of tweets [56] and the

classification of flowers [57].

Further to the distinction between supervised and unsupervised, most machine learning

models can be described as being either a classification or a regression machine. Classification

machines assign one of a discrete number of labels in each case, whereas regression machines

assign a floating point value. The prediction of NMR parameters is a supervised regression

machine learning task.

Even within supervised regression tasks there are as many different machine learning

algorithms as there are applications, however two of the most popular categories are kernel

methods and neural networks. All of the machine learning models discussed and generated in

this work fall into one of these two categories.

Kernel methods define a distance between all input data points in the training dataset, two of

the most popular kernel distances are laplacian and gaussian kernels. This matrix of distances is

used to define a mapping between the distance from an input point to all other input points and

the correct value assigned to the focus input point. New predictions are then made by calculating

the distance from the new input point to all existing points, then via regression the predicted
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value of the new point is determined. The key advantage of kernel methods is in dimensionality

reduction, as an input vector of arbitrarily many feature dimensions is converted to a 1-D vector

of distances. This drastically simplifies the regression task, making it much faster to perform.

The disadvantage here is that as the size of the training dataset increases, so does the size of the

model, which limits the improvement of the model through new training data.

Neural network is a general term for machine learning algorithms which use connected

networks of nodes. Data is passed through a network, which can contain any number of nodes,

and they can be configured in nearly any way in terms of their connections with each other. In

one of the most simple cases, an input point could consist of several numbers, which are passed

to different input nodes in the network, these are combined via addition into a single number,

which is the output value. For the case where there are 3 input features, this network would

have 3 input nodes, and a single output node. In order for this network to learn, the connections

between the input nodes and output node will have variable weights, which affect the value of

the output node. This could also very simple be described by the equations:

(1.2) Output= I0W0 + I1W1 + I2W2

Where In are the input features, and Wn are the weights. In the training process for this network,

a series of inputs, each with 3 features, would be used to calculate the predicted value using the

current values of the weights. In each iteration, the difference between the predicted value and

the true value will be calculated, this is called the loss in the model. There are many different

loss functions used in machine learning but one of the most simple is the L1 loss or absolute loss,

calculated by:

(1.3) loss=|Output−Truth |

Finally in order for the model to learn, the weights must be adjusted such that this loss value

decreases. This is done via an optimisation algorithm, again of which there are many. Gradient

descent is one of the most popular and easy to understand optimisation algorithms. Gradient

descent works by adjusting the weights in the direction of steepest negative gradient across the

set of weights.

If there is a simple relationship between the three input values which will yield the required

output value, then this solution should be found in a reasonably short number of training steps,

given appropriate training data. To solve more complex problems which have more complex
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solutions, larger networks are used, with varying architectures and mathematical functions in

the nodes. To obtain the correct weights in these more complex networks usually requires many

more input examples. This increase in complexity and training data can however yield incredibly

accurate predictions. The term deep learning has been used to describe networks with many

layers of nodes, rather than just the two layers described here.

1.4 Machine learning in NMR

The issues apparent in highly expensive DFT calculations or inaccurate and restricted empirical

equations, alongside the enormous popularity and increasing availability of machine learning

(ML) methods, has given rise to a growing field in ML NMR prediction.

Machine learning is a sub-genre of artificial intelligence which refers to algorithms which im-

prove through experience or example data. Machine learning can be supervised or unsupervised,

this refers to whether the correct answer to a given problem is shown to the algorithm during

training. All of the ML methods discussed and presented in this work are supervised algorithms,

in which training examples (chemical structures) are shown to the algorithm alongside the correct

answer (target value: chemical shift, etc).

The implementation, success and limitations of recent publications in ML NMR prediction

are discussed here, covering a range of ML techniques. Machine learning techniques for NMR

prediction have been developed for decades, however a model capable of predicting properties for

3-dimensional structures (as opposed to 2D structures, or smiles strings) had not been published

until 2018, (Paruzzo et al. [58]). NMR parameters depend on the 3D arrangement of electrons,

and so models which take into account 3-dimensional data will be more accurate, and such

models would theoretically be able to distinguish between environments which differ in ways

only apparent in 3 dimensions, such as diastereomers. Recent advances in neural network

architectures, most notably the advent of graph based neural networks, have also provided

improvements in accuracy. One of the most recent machine learning models for chemical shift

prediction (Jonas et al. [59]) still relies upon 2 dimensional structural data, but through the use

of a graphical neural network (GNN) and a large experimental training set, outperforms density

functional theory calculations for a limited set of test structures.

The QM9 dataset is a very popular dataset in machine learning applications [60–63] as it

contains a complete exploration of chemical space for H/C/N/O/F atoms in configurations up to
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9 heavy atoms (non-H). The 133,885 molecule QM9 dataset is based on smiles strings taken

from the GDB17 chemical universe [64], a construction of smiles strings representing all 166

billion organic small molecules with up to 17 atoms containing only C/N/O/F/S/Cl/Br/I/At atoms.

QM9 has become the standard benchmark for machine learning in chemistry, and validation

scores against QM9 are regarded generally as rigorous and transferable. One of the first NMR

prediction model trained using QM9 is presented by Gupta et al ([65] in their 2021 publication

using a kernel ridge regression model to predict δ13C.

Machine learning models which predict scalar coupling constants are rare, and in fact the

publication which arose as a part of this thesis included one of the first ML models to predict

coupling constant in 3D-molecules, in that case 1JCH [66]. More recently Shibata et al [67] have

presented a set of machine learning models using the popular LightGBM framework [68] and the

QM9 dataset which are capable of predicting 8 different scalar coupling constants.

These key publications are discussed in further detail below, and together present the advent

of 3D NMR prediction [58], the most recent developments in 2D NMR prediction [59], the

application of QM9 to train and validate models for chemical shift [65] and scalar coupling[67]

prediction. Furthermore these publications present the benchmark and target accuracy against

which the work in this thesis can be compared.

1.4.1 Paruzzo et al 2018: Chemical shifts in molecular solids by machine

learning

The work by Paruzzo et al [58] in 2018 presented a machine learning model to predict chemical

shifts for solid state NMR. Due to the very limited amount of published experimental data,

training a model to directly predict experimental values is not practical. Techniques to accurately

calculate chemical shifts in solid-state NMR through DFT calculations however allow the develop-

ment of a training set with at least good agreement with the experimental values. They also note

in this work that the availability of experimental data would bring with it further challenges as

these reported values also depend on the dynamics and conditions of a real system, introducing

ambiguity into the structure to target value relationship. The DFT calculations used differ from

those described in this thesis, as they relate specifically to the calculation of solid-state NMR

chemical shifts. To calculate the chemical shifts the Gauge Including Projector Augmented Waves

method (GIPAW) [69] is used, as opposed to the gauge-independent atomic orbital framework
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(GIAO) [43–45] used for solution state chemical shifts.

For this study, a set of 61,000 structures were obtained from the Cambridge Structural

Database of X-ray crystal structures, comprising structures matching the following criteria:

• Fewer than 200 atoms.

• Containing C and H atoms.

• Possibly containing N and/or O atoms.

A random subset of 500 structures is selected from this set to act as the testing dataset. A set of

2000 structures is selected by farthest point sampling to act as the training dataset. Farthest

point sampling (FPS) algorithms [70, 71] define a distance between objects (in this case a smooth

overlap of atomic positions (SOAP) Kernel [72]) and select the set of objects which are least similar

to each other. In this way the training set for this work was selected to evenly cover as broad a

range of chemical environments as possible. Environments were removed from the training set

using a cross-validation procedure: predictions were made using 40 models trained on random

subsets of the full training set (in each case excluding the environments to be predicted), if the

average deviation in predictions to the reference DFT calculation was greater than three times

the variance across the predictions themselves, then the environment was discarded. Finally all

symmetrically equivalent environments were removed from the training set. No such pruning

procedures were carried out for the testing set. DFT NMR calculations were carried out using

the program Quantum ESPRESSO [73], using the functional PBE [38], after a DFT geometry

relaxation step. In terms of computational time cost, an estimation is given of 62-150 CPU hours

for a DFT chemical shift calculation for a structure containing 86 atoms

The machine learning model is based on a gaussian process regression framework using the

smooth overlap of atomic positions (SOAP) Kernel [72]. Each chemical environment is represented

as a 3-dimensional superposition of gaussian functions centered on the surrounding atoms which

fall within a cutoff radius. This approach is similar to the Kernel Ridge Regression framework

reported in this work in Chapter 3.

The models achieve an accuracy of 0.49 ppm for 1H, 4.3 ppm for 13C, and 13.3 ppm for 15N

relative to the DFT calculated values. The reported DFT chemical shift accuracy to experiment

for their method is around 0.4 ppm for 1H, 2.0 ppm for 13C, and 5.4 ppm for 15N. This work

is comparable to elements of this report in terms of the ML framework (Chapter 3) and the
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training/testing structures (Chapters 3 and 4), and so suggests a reasonable benchmark accuracy

of between 20% and 250% worse than the accuracy of the underlying DFT method.

1.4.2 Jonas et al 2019: Rapid prediction of NMR spectral properties with

quantified uncertainty

The work by Jonas et al [59] in 2019 reports a Graphical Neural Network (GNN) [74] approach to

predicting solution state 1H and 13C chemical shifts. Training and testing data were obtained

from the nmrshiftdb2 [75] database of 43,468 molecules with experimental NMR data. Molecules

were included which match the following criteria:

• Molecule contains no more than 64 atoms.

• Molecule contains only H/C/N/O/F/P/S/Cl atoms.

• Molecule must pass the ’sanitize’ process in RDKit [51]

This resulted in a dataset of 32,538 molecules with an average size of 29 atoms. They note that

several thousand nuclei had multiple measurements and, taking the average of the measurements

as the ’True’ value, they calculate a mean absolute error of 0.51 ppm for δ13C and 0.09 ppm for

δ1H. They suggest that this reflects the intrinsic error in the experimental measurement itself.

Multiple values for a single nucleus were included in the training and testing datasets, however

it was ensured that no molecule in the test set had the same SMILES string as any molecule in

the training set. 80% of this data was used for training and 20% for testing.

In order to compare DFT calculated chemical shifts as well, they calculated these values for

a set of 177 molecules which had the greatest number of independent spectral measurements

in nmrshiftdb. For each structure, a conformational search was carried out using macromodel

[52] to identify the most probably conformers by molecular mechanics calculated energy. Each

conformer then underwent a DFT geometry optimisation using the functional B3LYP [36] and

the basis set 6-31+G(d,p). The isotropic shielding tensors were calculated using the functional

mPW1PW91 and basis set 6-311+G(2d,p), using a PCM solvent model with chloroform solvent.

All DFT calculations were carried out using the Gaussian16 software [49]. The resulting shielding

values were Boltzman weighted using the calculated molecular energies from the DFT NMR

calculation. The isotropic shielding values were then converted to chemical shift through a linear

13



CHAPTER 1. INTRODUCTION

fit to experimental data. They note that calculating the fit parameters using the intended test

data, rather than an independent set, may result in an over-estimation of the accuracy of their

DFT method.

The reported mean absolute error of the machine learning model in predicting experimental

chemical shift values is 1.43 ppm/0.97 ppm for δ13C and 0.28 ppm/0.29 ppm for δ1H for the 20%

test set and 177 molecule subset respectively. The reported accuracy of their DFT method is 1.92

ppm MAE for δ13C and 0.37 ppm MAE for δ1H for the 177 molecule subset. This work is most

comparable to the Graph transformer network reported in Chapter 4, although the molecules

used for testing here are on average 10-20 atoms smaller and the largest molecules more than

50 atoms smaller than those used in the main test sets in this work. The accuracy presented

the work by Jonas et al therefore represents a good target for the accuracy in chemical shift

prediction in this work, especially if it can be achieved for a much larger variety of chemical

environments.

1.4.3 Gupta et al 2021: Revving up 13C NMR shielding predictions across

chemical space: Benchmarks for atoms-in-molecules kernel machine

learning with new data for 134 kilo molecules

Gupta et al [65] present a Kernel Ridge Regression framework (KRR) [76] trained using the QM9

dataset [77] to predict δ13C. A 50,000 molecule test set was obtained at random from QM9, and

up to 100,000 molecules were used for training, also randomly selected. A further validation

dataset was obtained by taking 8 subsets of 25 molecules containing 10-17 heavy atoms from the

GDB17 dataset, a total of 200 molecules.

Minimum energy geometries were obtained for all 134k molecules using the functional B3LYP

and basis set 6-31G(2df,p). Structures were excluded which fragment during the optimisation,

3,054 in total. NMR shielding tensors were calculated using the functional mPW1PW91 and basis

set 6-311+G(2d,p). Calculations were carried out using the Gaussian16 software package [49].

For all DFT calculations the ’ultrafine’ integration grid was used, along with a ’VeryTight’ SCF

threshold (discussed above). This procedure was also followed for the 200 molecule validation

dataset. Further NMR shielding values were calculated at a lower level of theory; functional

B3LYP and basis set STO-3G, with geomtries optimised at the PM7 level using the MOPAC

software package. The calculated 13C isotropic shielding tensors were converted to chemical
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shifts using a reference value calculated for tetramethylsilane (TMS).

Models were trained using Kernel Ridge Regression and one of three kernels; CM [78], SOAP

[72], FCHL [79]. The model which used the FCHL kernel performed best, achieving a mean

absolute error of 1.88 ppm against the 50k test set. Further accuracy was obtained by learning the

difference between the lower theory DFT calculated values and the target, higher theory values,

with a mean absolute error of 1.36 ppm. On the larger set of molecules this model performed much

worse, with an MAE of around 3 ppm. This highlights a potentially key issue in models trained

using QM9, that generalising prediction accuracy to larger molecules is not straightforward, and

results in Chapter 4 will support this conclusion.

1.4.4 Shibata et al 2021: Prediction of spin–spin coupling constants with

machine learning in NMR

Shibata et al [67], present a set of machine learning models to predict eight types of scalar

coupling: 1JNH , 1JCH , 2JHH , 2JNH , 2JCH , 3JHH , 3JCH , 3JNH . The models use LightGBM[68], a

decision tree algorithm, with a set of molecular descriptors either calculated directly or obtained

through RDKit. The model uses the QM9 dataset for both training and testing, making a single

70/30 split in the dataset. This resulted in a training dataset of 59,502 molecules and a testing

dataset of 25,501 molecules. The DFT calculated values were obtained from work by Bratholm

et al[80], in which the structures were optimised using the functional B3LYP [36] and basis set

6-31g(2df,p). The DFT NMR coupling constants were calculated using the same functional and

basis set.

The model achieved a root mean squared deviation of 1.82 Hz in the prediction of the DFT

calculated 1JCH , and 0.67 Hz for 3JHH on the 25k molecule test set, full results in Table 1.1[67].

Although utilising a ML architecture not used in this work, these prediction errors give a useful

benchmark for the coupling constant prediction described in Chapters 3 and 4. The prediction

accuracy reported here is for molecules from QM9 which are limited to 9 heavy atoms and, as

observed in the work by Gupta et al [65], it would be expected that the model performance would

deteriorate when tested against larger molecules.
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NMR Parameter RMSD [Hz]
1JNH 0.98
1JCH 1.82
2JHH 0.48
2JNH 0.51
2JCH 0.82
3JHH 0.67
3JCH 1.07
3JNH 0.37

Table 1.1: Summary of RMSE results from Shibata et al.

1.4.5 Summary

The publications presented above form an overview of recent work in the machine learning pre-

diction of NMR parameters. Kernel based and neural network based methods both demonstrate

the potential to provide highly accurate NMR parameters in a fraction of the computational time

their underlying DFT methods take to run. Direct comparisons between the accuracy of different

methods is not straightforward due to the lack of a universally accepted benchmark dataset, and

the limited chemical space covered by the current most popular testing dataset (QM9). Despite

this, reported accuracy in these publications provides some target and benchmark values for the

prediction models presented in this report.

1.4.6 Licensed Software: ACD Labs

Several companies have also developed software to predict NMR parameters using machine learn-

ing models, especially proton and carbon chemical shifts for structures based on 2D coordinates.

The most popular of these are the ACD labs NMR prediction tools for carbon and proton chemical

shifts [81], published accuracy data is limited, and further testing could not be performed due

to the lack of a license for the software, however the carbon NMR predictions are reported as

having an accuracy of 2.9 ppm standard deviation [82]. ACD labs themselves report the accuracy

of the carbon chemical shift predictor on a subset of shifts from NMRShiftDB [83] as 1.79 ppm

absolute deviation and 3.22 ppm standard deviation [84]. The reported accuracy for the proton

chemical shift prediction tool is 0.22 ppm standard deviation, though this has since been removed

from the ACD labs website, the value is reported in a 2008 paper by Kuhn et al [85]. There are

issues with the reported accuracies for these tools due to the limit variety of compounds used
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in the comparison made by Meiler et al, and the fact that the prediction accuracy is based on

making predictions from molecules drawn in 2D. Whilst this can provide accurate chemical shifts

for many compounds, the focus of this work is on 3D prediction, and so comparisons between the

methods are difficult. It is expected that models based on 3D prediction will likely forfeit some

accuracy on simple molecules which are accurately depicted in 2D, in exchange for much greater

accuracy on more complex molecules. Without the ability to directly input coordinates into a

given model it is not possible to test where and how this affects accuracy for different subsets of

molecules, but should this become feasible it would represent a very useful piece of analysis.

Furthermore, as is noted by Meiler at al. in a later published addendum to their original

work referenced above [86], without knowing the compounds which form the training dataset it

is not possible to evaluate the suitability of any validation dataset which may be used to test the

accuracy of a prediction tool. It is of course understandable that commercial companies cannot

make this information public, but this severely limits the ability to draw comparisons between

the accuracy of their tools and other published work. This same issue extends to other vital

factors in assessing the value of a machine learning solution to NMR prediction such as the

cost of obtaining the training parameters, cost of training (and crucially retraining) the machine

learning model, and the cost and speed of making predictions. All of these factors are readily

comparable in the fully published models discussed in this section, but not commercial software.

1.4.7 Open Source Software: NMRShiftDB

The final NMR prediction algorithm worth noting is that provided by NMRShiftDB [83, 87].

Primarily a database of exprerimental NMR spectra and assignments, the website also offers

an NMR prediction tool based on a neural network algorithm. This is the most readily available

NMR prediction tool, accessible via a simple google search and drawing a molecule, or uploading

a structure. As such it is a good point of reference for the outcomes in this work, due to its ease of

use and availability, any method developed as a part of this work must be substantially more

accurate in order to provide a benefit to the average user.

One important factor to note is the errors present in the experimental data used to produce

the NMRShiftDB predictions, it is estimated that the experimental database contains around

8% errors through mis-assignments, transcription errors and incorrect structures [84]. Using

DFT calculated data as in this work avoids this issue entirely. This also however makes the
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comparison below and in Chapter 4 difficult, as the comparison is being made between a model

trained to predict experimental values and a model trained to predict DFT values. This means

there will be some inaccuracy to this comparison, however given the accuracy of the DFT method

to experimental values, it is minor enough to mean the comparison is still useful.

The performance of NMRShiftDB was investigated by selecting 20 molecules at random from

the CHEMBL test dataset (described in later sections) and attempting to make Carbon and

Proton chemical shift predictions using the NMRShiftDB web server. As can been seen in the

results in table 1.2, many of the compounds uploaded to NMRShiftDB returned an error, in some

cases the specific reason was given that the molecule contained atoms the system considered

invalid, it is assumed the neural network was only trained for a certain subsection of nuclei.

In many other cases however simply a generic error was reported, the predictions for these

molecules were attempted multiple times, and on multiple different days to rule out genuine

server issues, so there must be some further criteria being enforced, or bug in the prediction code,

which means these predictions are not available or possible.

The error in chemical shift prediction is generally good and comparable to the methods

outlined above, however there are some larger errors, especially for molecule CHEMBL6889

which has a mean absolute error in carbon chemical shift prediction of 9.89 ppm. The performance

of the NMRShiftDB prediction tool is discussed in more detail in Chapter 4, where it is also

compared to the performance of the models produced as part of this work.
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Molecule ID Result

Carbon
Chemical

Shift MAE
[ppm]

Proton
Chemical

Shift MAE
[ppm]

CHEMBL1075841 Site Error N/A N/A
CHEMBL1084953 Success 2.85 0.22
CHEMBL1086530 Invalid atom(s) N/A N/A
CHEMBL1094672 Site Error N/A N/A
CHEMBL1096781 Success 4.04 0.75
CHEMBL1213982 Success 3.71 0.53
CHEMBL174668 Site Error N/A N/A

CHEMBL4116108 Success 1.88 1.76
CHEMBL4116148 Success 2.49 0.79
CHEMBL437851 Site Error N/A N/A
CHEMBL501943 Site Error N/A N/A
CHEMBL507540 Site Error N/A N/A
CHEMBL538928 Success 3.27 0.33
CHEMBL573427 Site Error N/A N/A
CHEMBL574221 Invalid Atom(s) N/A N/A
CHEMBL579584 Success 2.73 0.87
CHEMBL595793 Success 5.36 1.01
CHEMBL608847 Success 3.01 1.05
CHEMBL6225 Success 5.46 0.71
CHEMBL6889 Success 9.86 0.77

Table 1.2: Results of NMRShiftDB testing. MAE = Mean Absolute Error.

1.5 Aims and objectives

The purpose of this work is to investigate the ability of machine learning methods to replicate the

accuracy of DFT calculations in the prediction of NMR parameters for small organic molecules.

The underlying hypothesis of the project is that this is possible, and that the loss in accuracy

in using a machine learning model over a DFT calculation is more than compensated for by a

significant decrease in computational cost. Accuracy is treated in relative terms throughout; the

accuracy of machine learning predicted NMR parameters are judged relative to the parameters

given by the DFT method used to train the machine learning model. The accuracy of the un-

derlying DFT method relative to experimentally measured values is also discussed, as well as

the accuracy of the machine learning models to the experimental values, but this discussion is

secondary to the core aims of the research. In an ideal case the DFT method chosen to calculate

the NMR parameters in this work would already be exceptionally accurate and provide values
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nearly indistinguishable from the experimental values, however the computational cost of such

DFT calculations was not feasible as part of this research. The assumption here is that if a

method could be identified which enabled the training of machine learning models which can

accurately reproduce DFT calculations, such a model could be trained on any DFT method, and

so improvements in affordable and highly accurate DFT calculations will inevitable filter down

into the results of work such as this, improving the accuracy of the machine learning models

predictions relative to experiment, but crucially having no impact on the accuracy of the model

with respect to the DFT calculated values, this is expected to remain relatively consistent.

There are several smaller objectives which make up the project, not all of which were apparent

at the start. The first of which is to obtain high quality training and testing datasets of DFT

calculated NMR parameters, this is discussed in further detail in Chapter 2 and below. Secondly

several models needed to be designed, developed and tested in order to identify an improvement

on existing methods, this is again discussed further in Chapters 3 and 4. A further objective

which developed as a result of the prevalence of QM9 trained models in the literature was to

investigate the accuracy of QM9 trained models using the machine learning frameworks already

developed as a part of this research, and evaluate the accuracy of these models on molecules

outside of the QM9 dataset. Finally an extension to this research was developed in partnership

with Astrazeneca, in which one of the machine learning models was adapted for the prediction of

binding affinity, the objective here was to determine how easily the successful machine learning

frameworks identified could be adapted to perform tasks outside of NMR parameter prediction.

1.5.1 Machine learning datasets

The cornerstone of this work, and indeed all machine learning applications, is the underlying

data used for training and evaluating the model. Training datasets define the performance limit

for the model in terms of the accuracy of predictions, and the space in which that accuracy will

hold. The testing and validation datasets define what properties of the model can be proved, they

define the space for which one can claim the model to be accurate, and to what degree.

The core purpose of this work is to demonstrate the ability to predict experimental NMR

parameters using machine learning techniques. This presents a major challenge however, as high

quality, reliable experimental NMR data is scarce. Obtaining a dataset on the scale required for

this project was therefore not feasible, and unless the issues around reliability and consistency
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could be resolved, not desirable.

The accurate prediction of experimental NMR parameters using DFT [54, 88–91] is a com-

monly used tool [92–95] and the accuracy of such calculations will only improve in the future. If

the relationship between DFT and experimental values can therefore be assumed to be readily

solvable, if not solved in some cases, then the primary purpose of the models developed in this

work should be to predict the NMR parameters of a reasonable DFT method, where reasonable

will be defined in section 2.2. This better isolates the scientific question being posed thus making

it easier to solve, and the quality of the proposed solution easier to evaluate. The strategy in this

work therefore is to develop models capable of accurately predicting the output of a reasonable

DFT method, and then introduce some limited experimental data as validation of this approach.
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DATASET PRODUCTION

2.1 Dataset requirements

For the purposes of this work several datasets were developed. The development of new datasets

was driven by limitations of the existing datasets or by a desired expansion of the prediction

models applicability. The requirements for datasets in this work can be easily divided into the

following desired characteristics: Size, Breadth, Depth, Quality, and Credibility.

2.1.1 Overfitting

An important issue in machine learning which directly impacts dataset development is the

potential for overfitting. Often treated as an issue in model training, it is in reality a combination

of bad dataset and model design. Overfitting is when a model is trained to make highly accurate

predictions for a certain, limited set of input cases, however this prediction accuracy does not

generalise beyond this set. Avoiding overfitting can be thought of as an exercise in balancing the

resolution of the information a model is capable of extracting with the size and breadth of the

dataset. A model which is capable of identifying only relatively simple relationships between the

input features and desired outputs will not require a very large dataset. More complex models,

such as those used in most modern machine learning applications, are capable of identifying

extremely complex patterns in data as a result often of the large number of tunable parameters

in the model itself. Such a model is naturally more likely to overfit than a simple model, and so
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care must be taken to select a dataset of sufficient size and breadth so as to avoid overfitting and

retain good generalisation/

2.1.2 Dataset Size

The size of the training set of is one of the biggest limiting factors in the accuracy of any model

[58, 79, 96, 97]. More accurate DFT calculations are more expensive [98], and molecule size

(which further increases calculation time, commonly proportional to the square of the increase in

number of electrons) is an important factor in obtaining breadth in the dataset. Increasing the

size of a high quality dataset can therefore take weeks to months of time. Well trained machine

learning models improve their accuracy by an order of magnitude if the size of the dataset is

also improved by the same order of magnitude [79], increasing the size of the dataset therefore

becomes an increasingly less important factor in a models performance, the bigger the dataset

has become.

2.1.3 Dataset Breadth and Depth

The selection of molecules for both the training and testing datasets dictate the accuracy of the

model, the range of structures for which that accuracy holds true, and importantly the extent

to which that accuracy can be demonstrated [99]. A deep dataset, i.e. one with a huge amount

of information for a limited region of chemical space, will be accurate for molecules similar

to those in the training set, but a broad dataset, in terms of variety in chemical composition

and conformation, will be less accurate but will hold that accuracy for a much larger variety of

molecules. A testing set with either of the same weaknesses will unnecessarily devalue the trained

model by failing to show specificity of prediction over small changes (dataset not sufficiently deep)

or the range over which the model holds accuracy (dataset not sufficiently broad). The balance

between these two properties is primarily limited by the selection pool from which structures are

obtained, and the method of selection from the pool.

2.1.4 Dataset Quality

Quality in this context refers to the presence of errors in the dataset. This could be an incorrectly

measured or transcribed value, a missing value, atom or bond, a mistake in the structure reported

alongside the data, or any of a vast array of problems which impede the ability of a model to learn
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information from the dataset. Many of these issues can be avoided by calculating data from initial

starting structures ourselves, rather than relying on external sources, however this shifts the

burden onto the computational workflow which produces the final optimised structure coordinates

and NMR parameters. Measures taken to address sources of error in the processing workflow

will be discussed in section 2.3. Producing DFT datasets reduces the reliance on external data

to the source of the initial structures, however this is still important. High quality sources of

initial structures include public repositories [100, 101] which have their own advantages and

disadvantages.

2.1.5 Dataset Credibility and bias

The credibility of a model is an often overlooked but important factor. This primarily relates to

statements made about a given model in a publication, and has several contributory factors. If a

given accuracy is reported for a specific model on a specific set of test molecules, the implication

is that this accuracy holds for some molecules not included in this test set. The extent to which

this accuracy generalises is often not discussed explicitly, however it depends on how the training

and testing data were selected, and how the model was trained.

Care must be taken to avoid limiting the training and testing dataset to too narrow a chemical

space (where ’narrow’ can be seen in terms of the size of molecules, variety of constituent elements,

complexity of structure, or any other feature), which can allow a model to train to a relatively

high accuracy, which will not hold outside of this space. For example a training set consisting

exclusively of molecules with Carbon and Hydrogen atoms only will potentially achieve a good

accuracy for similar molecules, but would not be expected to predict to a similar accuracy the

chemical shift of a carbon atom bonded (or nearby to) an oxygen or nitrogen atom. Typically

this can be avoided by selecting structures at random from a suitably large and diverse source

relative to the diversity of molecules in the intended application. In terms of credibility it is

more important to scrutinise the breadth of the testing set, as an overly narrow training set will

reveal itself given a suitable validation procedure . It is also the case that models do generalise

beyond the scope of the training data provided, therefore the breadth of the training dataset is

not necessarily an issue in all cases.

It is also of vital importance that correct procedures are followed to avoid data leakage during

training; data leakage refers to the model gaining access during training to information in the
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testing set by any means, which may produce an unrealistically accurate model (when tested on

the same testing set). Whilst simple mistakes such as including test molecules in the training

dataset are rarely found in published work, more subtle examples can be harder to avoid. For

example, if multiple model architectures are being developed in parallel (such as in this work),

it can be easy to select the best model based on its performance on the testing set. Even if best

practices have been followed during the training of each model, selection based on the testing

dataset performance undermines the credibility of the model, unless a further independent

dataset reinforces this selection.

Bias in models is related to credibility but refers to issues with the training set. Bias in this

context refers to a model being more or less accurate for a specific class of molecule or chemical

environment. All models are fundamentally biased in some way, as no training set can claim

to cover all of known chemical space, however bias becomes an issue if not identified. A biased

training set combined with a similarly biased testing set can produce a model which appears

highly general and accurate, but which will perform poorly in further application. An example of

this would be a model trained on molecules with a maximum of 7 atoms, which may perform well

given a testing set containing only similarly small molecules, but in a dataset containing a wider

range of molecule sizes, the model will be biased towards the environments that are common

in the smaller molecules, and so will potentially perform poorly on environments in the larger

molecules.

2.1.6 Testing Datasets: relevance.

Most of the above criteria apply to all data gathered for the testing and training of models. There

are however, differences in the aims of training and testing data which are important. Whilst

it may appear desirable to select a testing set which covers the largest area of chemical space

possible, this can be counter-productive to demonstrating the efficacy of a given model. Covering

more chemical space requires inclusion of structures, nuclei, and parameter values which are

rarely seen in the real world. If the aim of a testing set is to prove the predictive ability of a

model in application, then the testing set should be as representative of the real world tasks the

model is likely to be asked to perform. The relevance of the testing set to a given problem is an

important quality, and one which need not always be considered for training data.
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2.2 DFT NMR Calculation

In order to demonstrate the ability of a model to predict the outcome of DFT NMR calculations,

the calculated DFT NMR values must be sufficiently linked to chemical space to enable suitably

complex relationships to be learned by the model. Even if these relationships are incorrect in

terms of the ultimately desired experimental value, a model which can learn relationships of the

necessary complexity will be able to learn the correct relationship given the necessary data.

To that end a DFT method was selected based on the ability to predict several NMR parame-

ters of interest (initially δ1H, δ13C and 3JHH scalar couplings) to a sufficient accuracy, within a

reasonable time-scale. The chosen method was identified by (unpublished) benchmarking work

performed by Claire Dickson [1]. For optimising the structures the DFT functional mPW1PW91

was used with the basis set 6-311g(d,p). For calculating the NMR parameters the functional

ωb97xd was used with the same basis set [102–106]. The ’tight’ optimisation criteria and ultrafine

integral grids were used in the optimisations (details of which are discussed in section 1.2.2). No

solvent model was used in the calculations. For machine learning prediction and DFT calculations

the lack of a solvent model should make little or no difference to the qualitative outcome of the

comparison. In the case of the comparison to experimental values, the choice to not use a solvent

model will decrease the accuracy of the DFT calculated and machine learning predicted values

relative to experiment, whilst this is not ideal, the focus of this research is on the re-production of

DFT calculated NMR parameters, and so it was of equal interest whether the machine learning

models could match the DFT predicted values for the compounds where experimental values were

available. In order for this to be evaluated the DFT calculated values needed to be calculated in

the same way as for the other datasets used for comparison. For this reason the DFT calculations

for the molecules for which experimental NMR parameters were obtained were also performed

without any solvent model.

The DFT calculations were performed on one of several high performance computing clusters

available at the University of Bristol. The calculations were run using 8 Intel CPUs with 26GB of

available RAM, the exact CPU used for each calculation varied by the cluster used.

2.2.1 ’Mixed’ Keyword Calculation Issue

The intention was to use the ’mixed’ option to calculate the scalar coupling constants in all

calculations, which improve the accuracy of these calculations by using an uncontracted basis
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Figure 2.1: a) 1JCH Coupling constant distributions for QM9 molecules calculated with and
without mixed. b) 1JCH Coupling constant distributions for QM9 molecules calculated with and
without mixed, scaled according to calculated scaling factors available from reference [1].

set and adding tight polarisation functions for the core orbitals in the calculation of the Fermi

contact term [106]. Unfortunately it was discovered during the writing of this thesis that this

option has not been used in the NMR calculations for some calculations in QM9 (discussed below),

in benchmarking work on strychnine the use of the mixed option improved the mean absolute

error in experimental 1JCH prediction from 11.7 Hz to 3.20 Hz [1], and so not using this option

may have had a significant impact on the quality of the calculated coupling constants.

Scaling factors were available between DFT calculated and experimentally measured values

for DFT calculations with and without mixed for strychnine [1], these were applied to the values

calculated for the QM9 molecules, but made only a marginal improvement to the accuracy of

the coupling constants in all cases, as is shown for 1JCH in Figure 2.1. The coupling constants

calculated without the mixed option were therefore left as calculated, and the effects of this on

the accuracy of predictions is discussed where appropriate.

The most desirable solution is to re-calculate the coupling constants in all cases where mixed

was not used, and re-train each model using this data. This represents several months of real

time for the calculations to be performed and the models retrained, and so is not feasible within

the scope of this work. Considering the only use of the QM9 data is for benchmarking this work

relative to other publications, and that the only likely effect of this error is to reduce the apparent
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quality of the models and predictions, using the dataset as it has been constructed appears

reasonable.

2.2.2 Chemical Shift Scaling

The magnetic shielding tensors calculated through DFT were converted to chemical shifts using

reference calculations, using the linear scaling method reported by Tantillo et al [93]. For 13C

and 1H chemical shifts, reference compounds available from the CHESHIRE Chemical shift

repository [107] were used, for 15N experimental data was obtained from separate published

work [108]. The scaling method requires DFT calculations to be carried out according to the

proposed method, then a linear regression fit made between the calculated magnetic shielding

tensors and the reported experimental values. The regression parameters can then be used

to calculate chemical shifts from the shielding tensors produced by that DFT method for any

molecule, according to the following equation.

(2.1) Chemical Shift= Intercept− Isotropic Shielding
−Slope

The linear regression fits (shown in Fig. 2.2) are as follows:

δ1H : y=−1.0209x+31.9947

δ13C : y=−1.0401x+187.9351

δ15N : y=−1.0876x−161.7067

(2.2)

where y is the DFT calculated shielding value, and x is the chemical shift in ppm.

2.2.3 Computational Timing

The entire purpose of developing machine learning models to predict NMR parameters is to

replace, in certain circumstances, the more expensive DFT calculations in order to obtain the

same scientific outcome in a vastly reduced time-frame.

To that end it is important to have an understanding of the time scales involved in the

different calculations, the time taken for a calculation is highly dependent on the size of the

molecule involved, however general ranges are still useful. For the geometry optimisation method

used in this thesis, the calculations took between 1 and 100 CPU hours, with a mean time of

15 CPU hours for the 772 molecules in dataset 4 (discussed below). The NMR calculations took

between 1 and 200 CPU hours, with a mean time of 42 CPU hours for the molecules in dataset 4.
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Figure 2.2: Linear regression fit between magnetic shielding tensors calculated by DFT and
experimentally measured chemical shifts. RMSD values for each plot: δ1H = 0.26, δ13C = 2.32,
δ15N = 12.15

The CPU time cost for all of the machine learning algorithms is less than 1 minute per

molecule, and often less than 1 second when calculating NMR parameters for multiple molecules

at once. As such the specific timings are less relevant than the general statement that the

machine learning predictions presented in this thesis are obtainable in a few minutes at most,

relative to the several hours required for the DFT calculation.

The geometry optimisation is required prior to both the DFT and machine learning NMR

calculations, however the level of optimisation required to calculate experimentally relevant

NMR parameters is an open scientific question, and beyond the scope of this thesis. It is clear that

geometry affects the NMR parameters which are calculated by a given DFT NMR calculation, and

that poorly optimised geometries are capable or providing highly inaccurate NMR parameters. It

is less straightforward to evaluate the improvement obtained in terms of the accuracy relative

to experiment of DFT calculated NMR parameters when the quality of geometry optimisation

is significantly improved, and this theoretical improvement could potentially only be obtained

through a significantly more expensive calculation. It is also worth noting that the accuracy of

the chosen DFT NMR method has a bearing on the relative worth of using a more expensive

geometry optimisation, and in order to see an improvement in terms of NMR parameter accuracy,

the DFT NMR method would have to be sufficiently accurate. "Sufficiently accurate" here is a

vague term, and deliberately so, it would not be possible to evaluate the required accuracy until

tens of thousands of CPU hours had been spent calculating datasets to test the combination of
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methods.

The geometry optimisation calculation here was chosen as it was known to provide, in

combination with the chosen NMR calculation method, experimentally accurate NMR parameters.

The method is then also used for the molecules prior to machine learning prediction in order to

give a fair comparison of the NMR prediction methods.

2.3 Dataset Workflow

For all of the DFT calculated NMR parameters used in this project the same process was followed:

1. (for non-experimental data) The candidate pool of starting structures is obtained from the

external data source, applying some selection criteria to reduce the size of the pool.

2. (for non-experimental data) Structures are chosen from the selection pool according to the

relevant selection criteria and sampling algorithm.

3. (for non-experimental data) Checks are performed on the chosen structures to identify

mistakes or structures unlikely to optimise.

4. The 3D atom coordinates of the initial structures are optimised using the DFT method

described above.

5. Successfully optimised structures are passed to DFT NMR calculations using DFT method

described above.

6. The NMR calculated shielding tensors are converted to Chemical shifts using reference

calculations.

The reliable execution of this workflow relies upon scripts and packages either publicly avail-

able or written specifically for this project. The open-source package ’mol_translator’ [109] was

written to handle conversion between different chemical structure file formats, set up DFT calcula-

tions, and prepare the datasets for use with the machine learning algorithms. The mol_translator

package was derived from the autoenrich set of scripts and modules initially written to perform

this function which are referred to in the IMPRESSION generation 1 publication [66]. The

mol_translator package is written in python 3, and makes extensive use of functions available

through the numpy[110], rdkit , openbabel[111] and pybel[112] python packages.
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2.3.1 Molecule Screening

A key part of the dataset production workflow is the scripts which screen structures for potential

mistakes or undesirable properties. Some properties are straightforward to avoid: checking atom

types are within the allowed values (the CSD search algorithm does not do this 100% accurately),

and checking molecule size can be performed by loading the molecule into rdkit or pybel and

checking the relevant molecule object properties.

A more complex issue is avoiding mistakes where there are missing atoms from the structure,

or molecules that are charged. The primary method of detecting these issues is to iterate through

a molecule and count the number of bonds connected to each atom, simple rules can then be used

to calculate if each atom has the correct number of bonds, and therefore detect if the molecule

may be charged or have an atom missing. The issue with this approach is it relies upon the

bonds between atoms being a fixed property, however in several cases the CSD record, rdkit, and

pybel all disagreed upon the correct set of bonds in a molecule. Also in some cases a molecule

was not recorded as charged because of a counterion which would subsequently be lost due to

the workflow removing disconnected parts of molecules. Furthermore when dealing with 2D

structures and converting them to 3D, the optimisation step is relatively expensive and so ideally

mistakes would be screened out prior to this, however the rdkit package can change bonds and

bond order in its optimisation routine.

The approach taken in this work was to perform checks for missing atoms through counting

bonds as described, check for disconnected molecules through recursive path-searching based on

pybel determined bonds, and to assess datasets at the post-DFT stage to look for unusual NMR

values in order to manually remove bad structures. Far more attention was paid to molecules in

testing sets in this regard, as models may gain useful chemical-space information from unrealistic

structures, but in testing sets they will only devalue the performance of the model.

2.4 The Datasets

2.4.1 Dataset 1 and 2: Initial random sets

Datasets 1 and 2 were used for very early initial testing, and were inherited from previous

unpublished work [1]. No calculations or data from these datasets have been used for the models

referenced in this work, however it is necessary to explain their existence to justify the naming
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conventions for the remaining datasets.

2.4.2 Dataset 3: Random Testing Set (DT3)

Referring to the criteria set out in section 2.1, a suitable testing set was desired to evaluate

models’ ability to predict NMR parameters. Published work on Machine-learning solid-state

NMR predictions [58] included a set of 500 compounds chosen at random from the Cambridge

Structural Database (CSD) [100]. Using the same structures from Reference [58] would allow

a direct comparison with this work, and the accuracy reported in Reference [58] appeared to

generalise well.

The set of 500 structures were obtained from the CSD as X-ray crystal structures. The atomic

coordinates were then optimised using the DFT method in section 2.2. 70 structures failed to

optimise (as a result of mistakes in the obtained structure such as missing atoms or physically

unrealistic geometries) and so were discarded from the set. The NMR parameters were calculated

for the remaining structures and the shielding tensors converted to chemical shifts according to

the method above. A further 84 structures were found to contain two separate molecules, and 20

were found with missing protons, these were also removed from the dataset.

The resulting dataset 3 (DT3) contains 326 molecules, consisting of 6236 1H, 5569 13C, 450

15N, and 1,012 17O environments. The distribution of molecule sizes is shown in Figure 2.8,

the distribution of chemical shift values for δ1H, δ13C, and δ15N, as well as 1JCH , and 3JHH

coupling constants are shown in Figure 2.7.

This dataset represents the core testing set against which all models will be evaluated. One

of the advantages of this set is in its relevance to the tasks the IMPRESSION models are likely to

be used in. Considering the CSD is comprised of X-ray crystal structures submitted by research

scientists to the database, it should be biased towards the types of structures which form solids

and are commonly the subject of scientific research. Whilst still being a very broad range of

structures, this is a useful bias for a testing set in this case.

2.4.3 Dataset 4: Adaptive sampling training set (DT4)

Referring to the criteria set out in section 2.1, a suitable training set was required for the

first attempt at developing NMR prediction models. Due to the testing set having already been

determined (Dataset 3), the training set was also obtained from the Cambridge structural
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database. Whilst selecting structures from different sources could produce a more general model,

at the initial stage it was thought this would introduce a unnecessary additional variable. In

order to develop a training set which optimised the model performance across the parameters of

interest at this stage (Generation 1: δ1H, δ13C, 1JCH), an adaptive sampling scheme was used.

A superset of organic structures which matched the following criteria was obtained from the

CSD.

• H/C/N/O/F atoms only.

• 3D Coordinates available.

• Molecule is not charged.

• No reported Errors in the structure.

Charged molecules were excluded from all datasets in this work, on the basis that DFT NMR

calculations can be less accurate on charged molecules, especially without explicit solvent, and

that this would introduce an unnecessary additional variable to the intended analysis.

A total of 75,382 were downloaded in this superset. An initial set of 100 structures was taken

at random from dataset 3 and used to train 5 kernel ridge regression models (details in section

3) each using 80% of the dataset. These models were used to make predictions on the entire

75,382 molecule superset, and the variance calculated across the 5 predictions. The 100 molecules

with the highest variance in each of the three parameters of interest (δ1H, δ13C, 1JCH) were

selected, and processed according to the workflow in section 2.2. The initial set of 100 structures

was discarded after the first round of selection, and in all rounds molecules any from Dataset 3

were not eligible for selection. The set of 300 molecules was then used to train another 5 models,

and the process repeats. In total 4 rounds were performed, for a total of 1200 molecules selected.

Due to this process deliberately selecting molecules with unusual structures, a higher than

normal amount of structures failed to optimise, 428 in total. As in the calculation of dataset 3,

these molecules which were discarded failed to optimise due to a combination of missing atoms,

physically unrealistic structures, or other structure defects.

The resulting dataset 4 (DT4) contains 772 molecules, consisting of 16,187 1H, 14,984 13C,

1,284 15N, 2,733 17O, and 213 19F environments. Several molecules in this dataset were found to

contain multiple disconnected fragments, however these were retained in the dataset in this case.

34



2.4. THE DATASETS

The distribution of molecule sizes is shown in Figure 2.8, the distribution of chemical shift values

for δ1H, δ13C, and δ15N, as well as 1JCH , and 3JHH coupling constants are shown in Figure 2.7.

2.4.4 Dataset 5: ChEMBL (DT5a and DT5b)

In an attempt to improve both the generality of models produced, and the relevance of data

available for validation, a set of molecules was obtained from the ChEMBL database of drug-like

molecules. The molecules were chosen which matched the following criteria:

• H/C/N/O/F/Si/P/S/Cl/Br atoms only.

• Number of heavy (non-H) atoms greater than 9 and less than 70.

• Molecule is not charged.

• Molecule contains at least 1 H and at least 1 C atom.

Molecules were chosen at random from the set of 1,941,404 small molecules available from

ChEMBL. The molecules were available as 2D structures, therefore it was necessary to generate

a 3D conformer for each structure using RDKit. The generated 3D structures were submitted to

the same workflow described above in section 2.2. 2001 structures were selected initially, one

of which failed to optimise. The resulting set was split into a training set (Dataset 5a, 1600

molecules) and a testing set (Dataset 5b, 400 molecules). It is noted here that significantly fewer

molecules failed to optimise for this dataset than for datasets 3 and 4, due to the fact that the

compounds were obtained as 2D structures, and then converted into 3D using RDKit, this almost

entirely removes the presence of physically unrealistic structures.

The resulting training dataset 5a (DT5a) contains 1600 molecules, consisting of 50,618 1H

and 41,365 13C environments as well as others (full data in Tables 2.1, 2.2). The testing set 5b

(DT5b) contains 400 molecules, consisting of 11,885 1H and 9,912 13C environments.

The distribution of molecule sizes is shown in Figure 2.8, the distribution of chemical shift

values for δ1H, δ13C, and δ15N, as well as 1JCH , and 3JHH coupling constants are shown in

Figure 2.7.
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2.4.5 QM9 Subsets: QM91k and QM960k

The QM9 dataset[77] is a popular dataset used to benchmark machine learning algorithms in

chemistry [60, 79, 80, 113, 114]. The dataset production workflow was also performed on 74,391

molecules chosen at random from the 133,885 molecule QM9 dataset. A testing dataset of 1,000

molecules was selected at random from the 74,391 molecules to act as a comparative test set to

datasets 3 and 5b. The testing dataset is referred to as dataset QM91k. The remaining 63,391

molecules form the QM960k training dataset.

The resulting training dataset (QM960k) contains 63,391 molecules, consisting of 565,420 1H

and 404,484 13C environments as well as N, O, and F Nuclei (full data in Tables 2.1, 2.2).

As mentioned previously, the calculations for some molecules QM9 were run without the

mixed option for the coupling constants, which may have had an effect on the accuracy of the

coupling constant calculations. The majority of the calculations in this case were run without the

mixed option, and so to simplify the analysis of the model performance, those (248) molecules

in the testing dataset QM91k for which coupling constants were calculated using mixed were

removed.

The resulting testing set (still referred to as QM91k) contains 752 molecules, consisting of

6,949 1H and 4,751 13C environments. The distribution of molecule sizes is shown in Figure 2.8,

the distribution of chemical shift values for δ1H, δ13C, and δ15N, as well as 1JCH , and 3JHH

coupling constants are shown in Figure 2.7.

2.4.6 Experimental Datasets

2.4.6.1 1H and 13C Data (Experimental Dataset 1: DTe1a and DTe1b)

Experimental data was available from previous (unpublished) work [1], for a set of 12 compounds

for which 154 1H and 216 13C chemical shifts had been experimentally measured. This data was

used to calculate the necessary linear scaling factors to convert magnetic shielding tensors from

DFT into chemical shifts. This dataset is referred to as experimental dataset 1a.

Further experimental data was obtained from the work by Smith and Goodman [53], a

set of 46 structures containing 906 1H and 654 13C chemical shifts, this dataset functions

as an experimental validation set for δ1H and δ13C prediction. This dataset is referred to as

experimental dataset 1b. The structures from both datasets were also processed according to the
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Figure 2.3: Distribution of molecule size, δ1H Chemical shift and δ13C Chemical shift values in
the experimental dataset 1a.
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Figure 2.4: Distribution of molecule size, δ1H Chemical shift and δ13C Chemical shift values in
the experimental dataset 1b.

processing workflow 2.3, in order to obtain DFT calculated NMR parameters.

The size distributions in Figures 2.3 and 2.4 indicate a range of structure sizes, covering

the majority of the size range of the DFT based training and testing sets (Figure 2.8). Both

δ13C distributions appear similar to each other, and the DFT based distributions in Figure 2.3.

The δ1H chemical shift distributions are similar, however the linear scaling dataset covers a

more limited range, with no values above 8 ppm. Overall therefore the linear scaling dataset

(1a) should enable the calculation of good scaling factors for both δ13C and δ1H chemical shifts,

although more data in the 8-12 ppm range would be advantageous. Furthermore the validation
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Figure 2.5: Distribution of molecule size and δ15N Chemical shift values in the experimental
dataset.

dataset (1b) should provide a reasonable and fair test of the machine learning models ability to

predict NMR parameters for structures from a different source, and how accurate both DFT and

machine learning are to the experimental data for δ13C and δ1H.

2.4.6.2 15N Data (Experimental dataset 2: DTe2)

Experimental data for a set of 23 compounds with 35 measured 15N chemical shifts was obtained

from published work [108].

2.4.6.3 1JCH Data (Experimental dataset 3: DTe3)

Experimental data for a set of 131 compounds with 721 measured 1JCH Scalar coupling constants

was obtained from published work [115]. In comparison to the DFT methods used in this work,

the experimental data obtained here was found to have a consistent 10.91 Hz offset, in published

work the correction was made to the DFT data [66], and so this has also been applied in this

thesis.
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Figure 2.6: Distribution of molecule size and 1JCH Coupling constant values in the experimental
dataset.

2.5 Dataset Comparison

There are clear similarities between datasets 3, 4, and 5 in terms of size and chemical shift

distribution. The two QM9 subsets are composed of much smaller molecules as expected, however

there is a stark difference in the distribution of NMR parameters between the QM9 and non-QM9

datasets. In the δ1H distribution (Figure 2.7a) there are few values above 5 ppm relative to

the other datasets, despite following a similar pattern in the rest of the distribution. Similarly

in the δ13C distribution (Figure 2.7b) there are few values above 100 ppm, whereas the peak

of the distribution for all other datasets is between 100 and 150 ppm. The differences in the

δ15N distribution (Figure 2.7c) appear more subtle as here the CSD and ChEMBL datasets

diverge from one another as well, however there is still a clear reduction in higher ppm values

relative to the other datasets. Whilst some change in the distributions is to be excepted with

such a reduction in molecule size, the extent of the difference suggests models trained on QM9

data should struggle to accurately predict chemical shifts with values around these differences.

Further comparison to the distribution of experimental data obtained for δ13C highlights this

issue further, as there is a substantial number of values in the 100-150 ppm range.

The variations between the CSD derived datasets (3 and 4) and the ChEMBL derived datasets

(5a, 5b) are much smaller, though the significant difference in δ15N distribution, especially in

the -50 to 0 ppm range suggests there is type of environment which is common in the ChEMBL

datasets, but relatively rare in the CSD. This highlights the potential benefits of using data
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Dataset 3 Dataset 4 Dataset 5a Dataset 5b
Dataset
QM91K

Dataset
QM960K

Size 306 772 1600 400 752 63391
Nuclei

H 5,905 16,187 50,618 11,885 6,949 565,420
C 5,262 14,984 41,365 9,912 4,751 404,484
N 387 1,284 5,029 1,285 761 60,241
O 960 2,733 8,009 1,943 1,085 86,374
F 0 213 477 125 4 321
Si 0 0 2 0 0 0
P 0 0 69 20 0 0
S 0 0 481 136 0 0
Cl 0 0 308 79 0 0
Br 0 0 67 20 0 0

Table 2.1: Dataset size and constituent atoms summary.

Parameter Dataset 3 Dataset 4 Dataset 5a Dataset 5b
Dataset
QM91K

Dataset
QM960K

1H 5,905 16,187 50,618 11,885 6,949 565,418
13C 5,262 14,984 41,365 9,912 4,751 404,484
15N 387 1,284 5,029 1,285 761 60,241

1JCH 5,608 30,324 91,112 10,641 6,284 1,022,650
3JHH 3,954 20,714 75,964 8,727 5,111 817,740

Table 2.2: Number of NMR parameters in each dataset for the NMR parameters of interest in
this thesis.

from multiple sources, as a model trained purely on CSD data is likely to perform worse on such

environments.

As mentioned previously, the NMR calculations for dataset 5 and the QM9 were missing

the ’mixed’ option which improves the accuracy of the coupling constant calculations. In the

distributions of coupling constants for both 1JCH and 3JHH clear differences between the dataset

5 datasets, the QM9 subsets and the CSD derived datasets (dataset 3 and 4) can be seen,

indicating that although there may be a difference due to the missing ’mixed’ option, there are

also significant differences in the distributions due underlying differences in the sources of the

structures in each case.
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3.1 Model Architecture and Training

3.1.1 Kernel Ridge Regression

The first generation NMR prediction model [66] is based on Kernel Ridge Regression (KRR),

a popular and straightforward machine learning architecture [76]. KRR algorithms can map

molecular information onto a target space for a given observable, in this case NMR parameters.

The model consists of an input representation of the molecule, which can take several forms

[116–121] and a kernel function to calculate a similarity between these representations, which

again can take several forms [122, 123].

Taking the example of δ1H chemical shift prediction, the chemical shift (yi) for a proton

in a given chemical environment (Ei) is estimated as a linear combination of the chemical

environments’ similarity to all other (observed) chemical environments for which the chemical

shift is known:

(3.1) ypred
i =

N∑
j
α jk

(
Ei,E j

)
Where N is the number of chemical environments in the training dataset, k is a kernel

function, α are the regression parameters calculated to map the training environments to
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chemical shift values. The regression parameters are calculated by regularised least-squares

optimisation:

(3.2) minimise α;
N∑
i

(
yexp

i − ypred
i

)2 +λ
N∑
i
α2

i

where ypred
i is given by equation 3.1. λ is the regularisation coefficient, which controls

the strength of the regularisation penalty on the α parameters to prevent overfitting. The l2

regularisation (where l2 refers to the use of the squared term in the penalty) penalises solutions

where α contains large, less uniform values.

3.1.2 Chemical Environment Representation

The kernel function, and atomic representation, used for the first generation models are based

on the work by Faber et al [118]. Their ’FCHL’ representation and kernel (acronym derived

from authors initials) divides the terms usually included in a atomic representation into M-body

terms: 1-body terms account for chemical composition, the 2-body terms account for interatomic

distances, the 3-body terms introduce the angles between pairs of atoms. Each of these terms is

constructed by Gaussian functions with tunable width. In a more common atomic representation

such as a coulomb matrix[116], terms such as these would be calculated and flattened into a

vector, a kernel function would then calculate the distance between each pair of vectors. In

contrast, the FCHL approach keeps them separate, and calculates the kernel distance on each

term separately before combining the separate distances into the final kernel distance:

(3.3) k(E i,E j)=
∫

N
dχ1...dχN (E i,E j)

Where each dχn is a term such as those discussed above.

In order to predict scalar coupling constants, a pair-wise property, this approach to atomic

representation and kernel distance was augmented to take into account pairs of atoms linked

to a single NMR parameter. For the prediction of 1JCH values, the kernel distance between two

1JCH environments was evaluated as the product of the kernel distances between the 1H and

13C environments:

(3.4) k
(
ECH

i ,ECH
j

)
= k

(
EH

i ,EH
j

)
k

(
EC

i ,EC
j

)
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3.1.3 Hyper-parameter Optimisation

For the architecture defined, three hyper-parameters were altered in order to achieve an optimised

model: The cutoff distance C, the kernel width σ, and the regularisation coefficient λ. For all of

the terms beyond 1-body interactions in the FCHL representation, the cutoff defines at what

distance from the central atom other atoms are included in the representation. Effectively terms

involving atoms beyond this cutoff are reduced to zero. The kernel width in a traditional kernel

defines how quickly the similarity between two vectors falls to zero, in the FCHL formulation

this kernel width is present across multiple terms, but has the same effect. The regularisation

coefficient, discussed above, reduces overfitting in the model by penalising large or non-uniform

regression parameters in α.

There are many strategies for hyper-parameter optimisation, the primary theme among them

being to test multiple sets of values to find the optimal combination. Basic strategies such as

random and grid search retain popularity due their ease of implementation, but more complex

search methods can provide better optimised hyper-parameters in shorter time [124]. A Bayesian

optimisation algorithm was used to optimise the hyper-parameters for the first generation models.

Bayesian hyper-parameter optimisation involves creating a surrogate model which maps the

hyper-parameters onto the desired optimisation criteria, in this case the mean absolute error

(MAE) over cross-validation. This is calculated by training 5 separate models on 80% subsets

of the training dataset, for each subset model the target values are predicted for the remaining

20%. In this way the mean absolute error is calculated across the entire training dataset using

predictions from models where the test environment was not part of the training dataset. The

surrogate model is trained on each point evaluated in the optimisation. An acquisition function

then searches the remaining hyper-parameter space to identify new points to evaluate, using a

tunable balance of exploration and exploitation. The most common surrogate model is a gaussian

process, which was also used in this work. The python package BayesianOptimisation was used

to perform the hyper-parameter searching for the generation 1 models [125].

3.1.4 Uncertainty Estimation

The adaptive sampling algorithm used to generate Dataset 4 (Section 2.4.3) relies upon using

the variance in predictions made across several drop-out models on the same environment. This

exact same methodology can be used to provide an estimation of the uncertainty in any given
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prediction. For each model, 5 more models are trained using 80% random subsets of the training

dataset, predictions are made using each drop-out model, and the variance calculated.

This pre-prediction variance correlates with the prediction error (see below), however many

predictions with low variance will still have high error, and high variance predictions can still

have seemingly correct values. To illustrate how these two situations might occur a vastly

simplified situation can be envisaged (Figure 3.1) where the environments can be placed on

just 2 dimensions in chemical space. The training dataset consists of three subsets (1-3) in all

cases, three drop-out models are trained to calculate the pre-prediction variance, with each model

having one of the three subsets removed from the training set.

The ideal situation is shown in Figure 3.1a, in which the target environment exists in a well

mapped region of chemical space, and so different subsets of the training environments should

produce models which predict the value for this target environment equally well. Figure 3.1c

illustrates the same training data, but a target environment that exists in a non-mapped region

of chemical space, here the drop-out models would be expected to provide similar predictions for

this target environment, but for them all to be relatively inaccurate compared to Figure 3.1a. A

situation which yields high variance but low error relies on the target environment existing in a

region of chemical space which is well mapped but only by a very small number of structures.

The result of this, visualised in Figure 3.1b, is that the predictions from one of the dropout

models (in this case the model which has subset 3 removed) will be highly inaccurate, giving

a large pre-prediction variance but the model trained on the entire dataset will still provide

an accurate prediction. The situations visualised in Figures 3.1a and 3.1b are the worst case

scenarios, as in these cases the pre-prediction variance provides no useful information. Using the

same distribution of training environments as 3.1b, the equivalent high error situation is shown

in Figure 3.1d. In this case the target environment is equally far from the regions of chemical

space mapped by the different subsets, but the subsets themselves occupy very different regions.

Therefore the predictions from each drop-out model will be very different, and the predictions

from the full model highly inaccurate.

Using the the pre-prediction variance it is possible identify environments which fit into the

situations described in 3.1a and 3.1d, and so highlight predictions which may be less accurate.

This provides a benefit in the application of prediction models to real-world tasks, where the true

value is not known. The pre-prediction variance will however be unable to discriminate between
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Figure 3.1: Illustrative plots of different situations and their potential effect on both pre-prediction
variance and prediction error. a) Low variance with low error. b) High variance with low error. c)
Low variance with high error. d) High variance with high error.

the situations described in 3.1a and 3.1c, or between situations 3.1b and 3.1d. The prevalence of

environments which match the conditions described in 3.1b and 3.1c will therefore reduce the

effectiveness of the pre-prediction variance as a predictor of prediction error.
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3.2 Results

3.2.1 Model Training and Summary

Initial models were trained using dataset 4 (DT4) to predict δ1H, δ13C, and δ15N Chemical

shifts, as well as 1JCH Coupling constants. The models were optimised through Bayesian hyper-

parameter optimisation, for a minimum of 40 epochs, though most models converged to an optimal

set of hyper-parameters after roughly 10 epochs. The optimised model in each case was selected

based on the minimisation of the cross-validation loss. The cross-validation loss is the mean

absolute error in prediction of NMR parameters for the entire training dataset, where through

the cross-validation drop-out procedure, predictions for each molecules are made using a model

that did not have that molecule in its training dataset.

The models accurately predict each NMR parameter with a mean absolute error (MAE) of

between 1% and 3% of the total range of values for testing dataset 3 (DT3). The performance on

testing dataset 5b (DT5b) is comparatively worse for each NMR parameter, with MAEs between

1.5% and 6% of the total range of values. The initial accuracy values here indicate that DT5b

presents a more difficult test of the machine learning model trained using DT4, rather than

DT3. This is likely due to DT3 and DT4 sharing the Cambridge Structural Database (CSD) as

their source repository, whilst DT5b was obtained from ChEMBL. Furthermore DT5b contains

molecules with nuclei not found in DT3 and DT4, though this will be looked at in further detail

below. The performance of the models across the four NMR parameters is shown in Figure 3.2.

3.2.1.1 Computational Timing

Training each model on the DT4 dataset takes approximately 20-40 minutes, giving a total

training time of 100 hours for the 40 epoch, 5-fold cross-validated hyper-parameter optimisation.

The time taken to predict one NMR parameter for the entire DT3 testing dataset is about

40 minutes, including making multiple predictions for variance calculation. This increases

significantly for coupling parameters to around 2 hours.

This means that the NMR parameter prediction for all predicted NMR parameters for each

molecule takes less than a minute.
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Figure 3.2: Mean absolute error in NMR parameter prediction, relative to the range of values for
that NMR parameter, for the models trained using dataset 4 (DT4), for parameters δ1H, δ13C,
δ15N, and 1JCH , for both dataset 3 (DT3) and dataset 5b (DT5b).

3.2.2 δ1H Prediction

3.2.2.1 Performance relative to DFT

The IMPRESSION generation 1 model for δ1H prediction, trained using DT4 (772 molecules,

16,187 1H environments, Section 2.4.3) achieved a mean absolute error (MAE) of 0.24 ppm and

a root mean squared deviation (RMSD) of 0.39 ppm against the CSD derived test set DT3 (306

molecules, 5905 1H environments, Section 2.4.2). The maximum error (MaxE) in this set of

predictions was 4.27 ppm. On the ChEMBL derived test set DT5b (400 molecules, 11885 1H

environments, Section 2.4.4) the model achieved an accuracy of 0.34 ppm MAE, 0.54 ppm RMSD

with a maximum error of 8.78 ppm.

The two molecules with absolute errors greater than 8 ppm in the DT5b dataset, responsible

for the outlying values in Figure 3.3a, are shown in the same Figure. The four protons which

cause these very large errors are attached to sulphur atoms, a type of nuclei which is poorly

represented in any of the available training datasets. This lack of training data readily explains

the poor prediction of these chemical shift values. The other significant outlying values on this

plot from DT5b are caused by the same issue.

The IMPRESSION model provides reasonably accurate predictions for both the testing sets

relative to the range of values contained in the testing dataset. The model performed better on
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Figure 3.3: a) IMPRESSION predicted and DFT calculated δ1H for dataset 3 (DT3) and dataset
5b (DT5b). DT3 fit statistics: 0.24 ppm MAE, 0.39 ppm RMSD and 4.27 ppm MaxE, DT5b fit
statistics: 0.34 ppm MAE, 0.54 ppm RMSD, 8.78 ppm MaxE. b) Error distributions between
IMPRESSION predicted and DFT calculated δ1H for the DT3 and DT5b testing sets, 12 (DT3) and
50 (DT5b) values excluded from graph for clarity. Results for models trained using dataset 4 (DT4).
Structures responsible for the outlying values in (a) also depicted in 2D (IDs: CHEMBL154357,
H1 and CHEMBL6320, H5).
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the CSD derived testing set (DT3), than the ChEMBL derived testing set (DT5b) which is likely a

marker of poor generalisation in the model. The difference between the testing datasets could be

due to true chemical diversity or simply differences intrinsic to the source of structures (CSD

vs ChEMBL). In either case this suggests the need for a model with better generalisation. The

difference in error distributions (Figure 3.3) highlights the differences between predictions, with

little noticeable difference in quality of prediction on either dataset with chemical shift value,

i.e. higher chemical shifts are predicted as well as lower values. There are significant outliers in

the DT5b predictions, with several values badly underpredicted (by 5-10 ppm) in the 5-10 ppm

chemical shift range.

3.2.2.2 Uncertainty Estimation

The pre-prediction variance correlates with the prediction error (Figure 3.4), and many large

errors are associated with a higher variance. Tables 3.1 and 3.2 show the effect of variance cutoffs

on datasets DT3 and DT5b. In both cases a very high variance cutoff, relative to the range of

variance values, still produces a significant improvement in terms of the maximum error, whilst

removing only 1 and 10 environments for a 0.7 ppm and 2.5 ppm reduction in maximum error
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Figure 3.4: a) Error in predicted δ1H for populations with different maximum variance for dataset
3 (DT3) and dataset 5b (DT5b). b) IMPRESSION predicted and DFT calculated δ1H for DT3 and
DT5b, with variance values highlighted. Results for models trained using dataset 4 (DT4)
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Max Variance
No. Envs.
Removed

MAE [ ppm] RMSD [ ppm] MaxE [ ppm]

MAE of 100
largest
errors[
ppm]

0.0001 5468 0.109 0.154 0.877 0.263
0.0005 3830 0.132 0.195 1.700 0.587
0.001 2879 0.150 0.222 1.794 0.749
0.005 737 0.208 0.318 3.278 1.240
0.01 323 0.222 0.338 3.304 1.329
0.05 36 0.239 0.375 3.384 1.598
0.1 12 0.241 0.379 3.384 1.630
0.5 1 0.242 0.384 3.579 1.668
1 1 0.242 0.384 3.579 1.668
5 0 0.243 0.388 4.268 1.699

Table 3.1: Effect on prediction error of removing environments with pre-prediction variance above
a cutoff value for IMPRESSION δ1H predictions against DFT calculations for dataset 3 (DT3).
(Total δ1H environments in DT3: 5,905)

Max Variance
No. Envs.
Removed

MAE [ ppm] RMSD [ ppm] MaxE [ ppm]

MAE of 100
largest
errors[
ppm]

0.0001 11441 0.115 0.160 0.862 0.279
0.0005 9562 0.154 0.219 1.663 0.656
0.001 7958 0.188 0.268 2.363 0.892
0.005 2965 0.264 0.380 3.364 1.536
0.01 1542 0.289 0.416 3.364 1.774
0.05 283 0.322 0.474 3.364 2.222
0.1 136 0.329 0.491 4.573 2.367
0.5 29 0.337 0.514 6.196 2.610
1 13 0.339 0.519 6.196 2.678
5 11 0.339 0.523 6.196 2.737
10 10 0.340 0.525 6.196 2.758
50 0 0.343 0.542 8.785 2.972

Table 3.2: Effect on prediction error of removing environments with pre-prediction variance above
a cutoff value for IMPRESSION δ1H predictions against DFT calculations for dataset 5b (DT5b).
(Total δ1H environments in DT5b: 11,885)
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Figure 3.5: a) Error distributions for both IMPRESSION predicted and DFT calculated δ1H
relative to the experimentally measured values for experimental dataset 1b (DTe1b). DTe1b fit
statistics: 0.44 ppm MAE, 0.61 ppm RMSD, 2.61 ppm MaxE. b) IMPRESSION predicted and
experimentally measured δ1H for DTe1b with variance highlighted. Results for models trained
using dataset 4 (DT4)

respectively. It is difficult to suggest a general cutoff for the variance that might be imposed on a

prediction model such as this, nor is that the intention of demonstrating its utility. Instead the

pre-prediction variance can be used as a measure of relative uncertainty in any given prediction,

and in a practical application special attention would be paid to high variance values relative to

the whole set of predictions.

3.2.2.3 Performance relative to experiment

Predictions were also made for the molecules for the 46 molecules from experimental dataset 1b

(DTe1b, Section 2.4.6.1) containing 906 δ1H. The error between the IMPRESSION predicted and

the experimentally measured values is 0.44 ppm MAE, 0.61 ppm RMSD, with a maximum error

of 2.61 ppm. This must be considered in the context of the error between DFT and experiment

(0.33 MAE, 0.50 RMSD, 2.22 MaxE).

The accuracy of IMPRESSION predicted δ1H to DFT for DTe1b is 0.25 ppm MAE, 0.36 ppm

RMSD, 2.57 MaxE. This accuracy is in line with the expectations set by validation on DT3 and

DT5b, which demonstrates a degree of generalisation for this prediction accuracy. The prediction
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error relative to experiment is encouraging, as the accuracy is similar to that of the underlying

DFT method, suggesting the IMPRESSION predictions could be used in place of the DFT method

in some circumstances. From the error distributions in Figure 3.5a there is a clear increase in

the prediction error relative to the DFT error distribution, and the scatter plot (Figure 3.5b)

highlights the presence of a significant number predictions with large error along the whole range

of experimental values. Disappointingly in this case the pre-prediction variance is not indicative

of prediction error, with the outlier values being associated with a wide range of variance values,

indicated by the darker colored points in in Figure 3.5b.

3.2.3 δ13C Prediction

3.2.3.1 Performance relative to DFT

The IMPRESSION generation 1 model for δ13C prediction, trained on DT4 (772 molecules, 14,984

13C environments, Section 2.4.3), achieved a mean absolute error (MAE) of 3.50 ppm and a

root mean squared deviation (RMSD) of 7.05 ppm against the CSD derived test set DT3 (306

molecules, 5262 13C environments). The maximum error in this set of predictions was 106.5

ppm. On the ChEMBL derived test set DT5b (400 molecules, 9912 13C environments) the model

achieved an accuracy of 6.34 ppm MAE, 17.1 ppm RMSD with a maximum error of 271.7 ppm.

The error distributions in Figure 3.6b indicate that for DT3 and the vast majority of DT5b the

prediction accuracy is very good, however Figure 3.6a shows a significant number of environments

from DT5b which have a large prediction error. These environments have DFT calculated δ13C

in the 100-200 ppm range, yet the IMPRESSION predictions range from 150 ppm to almost 400

ppm. Upon further inspection of the molecules containing these poorly predicted environments,

nearly all were found to contain nuclei not present in the DT4 training set used for this model.

As shown in Table 2.1 in Chapter 2, DT5b contains P, S, Cl, and Br atoms, and clearly the

model could not generalise to environments in molecules containing these nuclei. Reducing the

dataset DT5b so that is just contains H/C/N/O/F atoms (233 remaining molecules), the prediction

accuracy improves significantly to 4.62 ppm MAE, 8.97 ppm RMSD, 151.3 ppm MaxE (from 6.34

ppm MAE, 17.07 ppm RMSD, 271 ppm MaxE) and is comparable to the prediction accuracy on

DT3. The same restriction improves the δ1H prediction accuracy for DT5b from 0.34 ppm to 0.31

ppm MAE, a much more modest improvement. The accuracy for model predictions on molecules

from DT5b containing different subsets of nuclei is shown in Table 3.3. The molecules with the

54



3.2. RESULTS

0 100 200 300 400
DFT Calculated 13C Chemical Shift [ppm]

0

50

100

150

200

250

300

350

400

IM
P 

Pr
ed

ict
ed

 13
C 

Ch
em

ica
l S

hi
ft 

[p
pm

]

a)
DT5b
DT3

150 125 100 75 50 25 0 25
Error (IMP vs DFT) in predicted 13C Chemical Shift [ppm]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

De
ns

ity

b)
DT5b:
Total = 9912
DT3:
Total = 5262

Figure 3.6: a) IMPRESSION predicted and DFT calculated δ13C for dataset 3 (DT3) and dataset
5b (DT5b). DT3 fit statistics: 3.50 ppm MAE, 7.05 ppm RMSD, 106.5 ppm MaxE, DT5b fit
statistics: 6.34 ppm MAE, 17.1 ppm RMSD, 271.7 ppm MaxE. b) Error distributions between
IMPRESSION predicted and DFT calculated δ13C for the DT3 and DT5b testing sets, 1 (DT3)
and 97 (DT5b) values excluded from graph for clarity. Results for models trained using dataset 4
(DT4)

worst prediction accuracy contain multiple nuclei not seen in DT4, the four worst groups contain

bromine and either sulphur or chlorine. The inclusion of phosphorous nuclei on the other hand

appears to be handled well by the model, with molecules with H,C,N,O,P having a prediction

accuracy of 4.39 ppm MAE. This demonstrates that some degree of extrapolation to nuclei outside

of those in the training set is possible.

The model predictions for the reduced dataset 5b (Figure 3.7a) are of similar accuracy across

the whole range of chemical shift values. The most noticeable feature of the predictions is that

very few environments are significantly over-predicted, with almost all the large errors coming

from a significant under-prediction. Furthermore the error distributions in Figure 3.7b highlight

how well the model generalises to the ChEMBL dataset (DT5b) once unknown nuclei are removed,

with error distributions for both the reduced version of DT5b and DT3 having similar width and

shape.
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Nuclei in Mol. No. Envs MAE [ ppm] RMSD [ ppm] MaxE [ ppm]

H C N 240 3.0652 4.8742 26.9215
H C O F 15 3.1983 4.0920 8.1488
H C N F 47 3.8384 6.2041 21.1505
H C N O F 567 4.0845 7.6795 69.4293
H C N O 3,840 4.1468 7.7657 107.6203
H C N O P 133 4.3905 6.8692 38.7524
H C N F S 22 5.2208 14.7653 67.1240
H C N O F S 437 5.8393 12.9635 78.5049
H C O 1,505 6.3066 12.2997 151.3202
H C N O S 1,183 7.2477 17.7931 144.4553
H C N O F P 63 7.6190 16.1977 99.5085
H C O Cl 67 7.7959 24.0347 186.4014
H C N O Br 65 8.4812 30.6364 173.9277
H C N O F S Cl 64 9.0489 23.3926 121.0222
H C N O F Cl 221 9.2859 26.2200 137.6577
H C N O Cl 554 9.9827 27.2952 168.0625
H C N Br 27 10.6124 38.1049 192.3585
H C O F S 17 11.0331 23.7265 78.3847
H C O S 99 11.6066 24.6860 140.7824
H C N S Cl 61 11.8357 29.4008 135.6957
H C N S 80 12.3328 29.3434 146.7029
H C N O F Br 71 12.5806 39.4500 214.7623
H C N O S Cl 278 14.3237 33.7088 152.4494
H C N Cl 36 14.4097 36.6224 130.7861
H C N O S Br 150 14.7205 41.9168 209.6141
H C N S Br 16 18.1613 45.6814 175.6439
H C N O Cl Br 34 22.2818 55.9204 208.5456
H C N O F Cl Br 20 29.0670 72.0087 271.6684

Table 3.3: δ13C prediction accuracy for sets of molecules in testing dataset 5b containing different
sets of nuclei
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Figure 3.7: a) IMPRESSION predicted and DFT calculated δ13C for molecules containing only
H/C/N/O/F atoms in dataset 3 (DT3) and dataset 5b (DT5b). DT3 fit statistics: 3.50 ppm MAE,
7.05 ppm RMSD, 106.5 ppm MaxE, DT5b fit statistics: 4.62 ppm MAE, 8.97 ppm RMSD, 151.3
ppm MaxE. b) Error distributions between IMPRESSION predicted and DFT calculated δ13C for
molecules containing only H/C/N/O/F atoms in the DT3 and DT5b testing sets, 44 (DT3) and 109
(DT5b) values excluded from graph for clarity. Results for models trained using dataset 4 (DT4)

3.2.3.2 Uncertainty Estimation

The pre-prediction variance values for the δ13C predictions correlate well with the prediction error

for both DT3 and DT5b (Figure 3.8a). The pre-prediction variance also allows clear identification

of the structures in DT5b with nuclei not present in the training set, discussed above, as

these are highlighted with significantly higher variance values (brighter yellow points, Figure

3.8b). This example demonstrates the key utility of the pre-prediction variance metric, as the

poor predictions in this dataset could have been readily identified without the true values for

comparison. In a blind use-case where the target value is unknown, and so the prediction error is

unknown, these poor predictions would still have been disregarded on the basis of unusually high

variance. Applying even a relatively high filter on the pre-prediction variance of 100 removes 219

environments from DT5b and improves the MAE to 4.51 ppm (from 6.34 ppm), the RMSD to 8.43

ppm (from 17.1 ppm) and nearly halves the maximum error from 272 ppm to 151 ppm. The same

variance cutoff for DT3 removes only 3 environments but does reduce the MAE from 3.50 ppm to

3.46 ppm, which is significant for such a small percentage of the dataset (< 0.1%). A summary of

57



CHAPTER 3. IMPRESSION GENERATION 1

10 1 101 103

Variance Cutoff

1

2

3

4

5

6

M
ea

n 
ab

so
lu

te
 e

rro
r i

n 
13

C 
pr

ed
ict

io
n

a)
DT3
DT5b

0 100 200 300 400
DFT Calculated 13C Chemical Shift [ppm]

0

50

100

150

200

250

300

350

400

IM
P 

Pr
ed

ict
ed

 13
C 

Ch
em

ica
l S

hi
ft 

[p
pm

]

b)

DT3
DT5b 8

6

4

2

0

2

4

6

8

Lo
g 

Pr
e-

Pr
ed

ict
io

n 
Va

ria
nc

e

Figure 3.8: a) Error in predicted δ13C for populations with different maximum variance for
dataset 3 (DT3) and dataset 5b (DT5b). b) IMPRESSION predicted and DFT calculated δ13C for
the DT3 and DT5b testing sets, with variance values highlighted. DT3 fit statistics: 3.50 ppm
MAE, 7.05 ppm RMSD, 106.5 ppm MaxE, DT5b fit statistics: 6.34 ppm MAE, 17.1 ppm RMSD,
271.7 ppm MaxE. Models trained using dataset 4 (DT4)

these results, and the accuracy for further variance cutoff values is shown in Tables 3.4 and 3.5.
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Max Variance
No. Envs.
Removed

MAE [ ppm] RMSD [ ppm] MaxE [ ppm]

MAE of 100
largest
errors[
ppm]

0.001 5,220 0.243 0.437 1.553 0.243
0.005 5,057 0.464 0.653 1.979 0.830
0.01 4,846 0.575 0.867 7.123 1.447
0.05 4,046 0.831 1.271 12.146 3.195
0.1 3,560 0.992 1.535 12.146 4.414
0.5 2,192 1.557 2.527 44.059 8.664
1 1,573 1.854 2.984 44.059 10.913
5 415 2.730 4.603 55.562 19.121
10 159 3.096 5.599 73.216 25.433
50 10 3.419 6.590 78.009 32.327

100 3 3.462 6.826 105.720 33.698
500 1 3.494 7.050 106.515 35.075
1000 0 3.496 7.052 106.515 35.075

Table 3.4: Effect of difference maximum variance cutoffs on accuracy metrics for IMPRESSION
δ13C predictions against DFT calculations for dataset 3. (Total δ13C environments in DT3: 5,262)

Max Variance
No. Envs.
Removed

MAE [ ppm] RMSD [ ppm] MaxE [ ppm]

MAE of 100
largest
errors[
ppm]

0.005 9,746 0.482 0.830 6.055 0.736
0.01 9,561 0.536 0.858 6.055 1.267
0.05 8,650 0.961 1.523 12.878 4.064
0.1 7,944 1.198 1.866 12.878 5.701
0.5 5,293 2.125 3.219 21.047 11.698
1 3,878 2.537 3.898 65.649 15.156
5 1,121 3.562 5.854 73.104 30.247
10 599 3.977 6.845 107.620 38.399
50 255 4.445 8.264 151.320 49.814

100 219 4.510 8.438 151.320 51.333
500 98 5.294 12.130 152.450 89.558
1000 36 5.874 14.652 168.503 112.797
5000 0 6.336 17.069 271.668 132.253

Table 3.5: Effect of difference maximum variance cutoffs on accuracy metrics for IMPRESSION
δ13C predictions against DFT calculations for dataset 5b. (Total δ13C environments in DT5b:
9,912)
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3.2.3.3 Performance relative to experiment

Predictions were also made for the 46 molecules in experimental dataset e1b (DTe1b, Section

2.4.6.1), for which 654 experimentally measured δ13C chemical shifts were available. The error

between the IMPRESSION predicted and the experimentally measured values was 4.76 ppm

MAE, 6.82 ppm RMSD, with a maximum error of 35.0 ppm. This must be considered in the

context of the error between DFT and experiment (2.18 ppm MAE, 2.80 ppm RMSD, 15.9 ppm

MaxE). The accuracy of the IMPRESSION predictions relative to the DFT calculated values for

this dataset is 3.57 ppm MAE, 3.63 ppm RMSD, 25.5 ppm MaxE.

The IMPPRESSION to DFT prediction accuracy is similar the accuracy achieved on DT3 and

the reduced set from DT5b. The accuracy relative to the experimental values is relatively good,

as some reduction in accuracy is expected but the error is less than the combined IMPRESSION

to DFT and DFT to experiment errors and holds well over the range of chemical shift values

(Figure 3.9). A noticeable feature of these predictions is the appearance of an offset in both the

error distributions (a) and scatter plot (b) in Figure 3.9, especially in the 75-130 ppm region. This

could indicate that the scaling factors are not optimal, or that environments in this region are

10 5 0 5 10 15 20
Error in predicted 13C Chemical Shift [ppm]

0.00

0.05

0.10

0.15

0.20

0.25

De
ns

ity
 [T

ot
al

 =
 5

49
]

a)
IMP-Exp
DFT-Exp

0 50 100 150 200
Experimental 13C Chemical Shift [ppm]

0

50

100

150

200

Pr
ed

ict
ed

 13
C 

Ch
em

ica
l S

hi
ft 

[p
pm

]

b)
ML vs Exp

6

4

2

0

2

Lo
g 

Pr
e-

Pr
ed

ict
io

n 
Va

ria
nc

e

Figure 3.9: (a) error distributions for both IMPRESSION predicted and DFT calculated δ13C
relative to the experimentally measured values in experimental dataset 1b (DTe1b). (b) IMPRES-
SION predicted and experimentally measured δ13C for DTe1b with variance highlighted. Fit
statistics for DTe1b: 4.76 ppm MAE, 6.82 RMSD, 35.0 ppm MaxE. Models trained using dataset
4 (DT4)
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Figure 3.10: (a) error distributions for IMPRESSION predicted δ13C relative to DFT calculated
and experimentally measured values in experimental dataset 1b (DTe1b). (b) IMPRESSION
predicted and DFT calculated δ13C against experimentally measured δ13C for DTe1b with
variance highlighted. Fit statistics for ML to DTe1b: 4.76 ppm MAE, 6.82 ppm RMSD, 35.0 ppm
MaxE. Fit statistics for DFT to DTe1b: 2.18 ppm MAE, 2.80 ppm RMSD, 15.9 ppm MaxE. Models
trained using dataset 4 (DT4)

under-predicted.

Overlaying the IMPRESSION to DFT error distribution on to the IMPRESSION to experiment

distribution (Figure 3.10a) suggests that the issue is at least in part due to the scaling, as the

IMP-DFT distribution is nearly centered on zero. Furthermore, overlaying the DFT calculated

values for DT1eb on to Figure 3.10b indicates that there is, at worst, only a minor scaling issue as

the DFT-EXP points lie close to the y= x line. It is therefore clear that the offset in IMPRESSION

predictions is caused by both an underprediction in some chemical shift values, and a small

scaling issue. Both are small issues, but combine to a significant offset in the predicted values in

Figure 3.9.

The pre-prediction variance provides some benefit in this case by identifying the two worst

predicted values in DTe1b, which can be seen at 200 ppm in Figure 3.9b. Applying a variance

filter of 10 ppm to this data removes 10 values (out of 654) and reduces the maximum error from

35 ppm to 25 ppm (MAE reduces from 4.76 ppm to 4.58 ppm, RMSD reduces from 6.82 ppm to

6.43 ppm).
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Figure 3.11: a) IMPRESSION predicted and DFT calculated δ15N for dataset 3 (DT3) and dataset
5b (DT5b). Fit statistics for DT3: 11.4 ppm MAE, 15.9 ppm RMSD, 67.9 ppm MaxE, Fit statistics
for DT5b: 12.1 ppm MAE, 18.5 ppm RMSD, 216.5 ppm MaxE. b) Error distributions between
IMPRESSION predicted and DFT calculated δ15N for the DT3 and DT5b testing sets, 2 DT5b
values excluded from graph for clarity. Models trained using dataset 4 (DT4)

3.2.4 δ15N Prediction

3.2.4.1 Performance relative to DFT

The IMPRESSION generation 1 model for δ15N prediction trained on DT4 (772 molecules, 1284

15N environments, Section 2.4.3) achieved a mean absolute error (MAE) of 11.4 ppm and a root

mean squared deviation (RMSD) of 15.9 ppm against the CSD derived test DT3 (306 molecules,

387 15N environments, Section 2.4.2). The maximum error in this set of predictions was 67.9

ppm. On the ChEMBL derived test DT5b (400 molecules, 1285 15N environments, Section 2.4.4)

the model achieved an accuracy of 12.1 ppm MAE, 18.5 ppm RMSD with a maximum error of

216.54 ppm. As shown in Figure 3.2, this accuracy compares reasonably well with the accuracy

for δ13C when the relative ranges of the parameters are taken into account, with a percentage

mean absolute error of 2.36% (DT3) and 2.23% (DT5b) which is higher than the corresponding

value for δ13C on DT3 (1.66%), but lower than that for DT5b (2.90%). The range of δ13C values is

from roughly 0 ppm to 250 ppm, whereas the range of δ15N is from -400 ppm to 200 ppm, a 450

ppm larger range. In a practical application this means the δ15N prediction model discriminates

equally well between environments across the chemical shift range as the the δ13C model.
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The model performs similarly on DT3 and DT5b with similar error distributions (Figure 3.11b)

and little difference in the distribution and magnitude of individual large errors in the scatter

plot (Figure 3.11a), indicating that the extra nuclei present in DT5b which cause issues with the

δ13C, and to a lesser extent δ1H prediction, do not affect the accuracy in δ15N in the same way.

There is variation in the accuracy across different subsets of nuclei for DT5b, ranging from the

best predicted subset (the 4 environments in molecules containing H,C,N,O,Cl and Br) MAE of

2.99 ppm to the worst predicted subset (the 5 environments in molecules containing H,C,N,S, and

Br) MAE of 22.93 ppm, but there is no significant difference between subsets containing only

nuclei present in DT4 and those with extra nuclei.

3.2.4.2 Uncertainty Estimation

The pre-prediction variance correlates with the prediction error for DT5b, and to some degree

for DT3, although this correlation is only seen for the lowest variance values (Figure 3.12a).

The absence of a stronger correlation between prediction error and pre-prediction variance for

DT3 could be due to the limited dataset size (387 environments) relative to the other datasets

discussed in this chapter, which means the MAE for any one variance subset can be dominated

by small number of values.

For DT5b the pre-prediction variance enables the identification of a significant number of

the worst errors in the predictions (brighter yellow points in Figure 3.12b). Applying a variance

filter of 0.01 ppm removes 195 environments and reduces the MAE from 12 ppm to 11 ppm,

and reduces the maximum error from 217 ppm to 98 ppm (3.7). Applying a similar filter to the

results from DT3 removes 65 environments and reduces the MAE from 11.43 ppm to 11.07 ppm,

and the RMSD from 15.92 ppm to 15.78 ppm, and has no effect on the maximum error (3.6).

The pre-prediction variance metric therefore provides some ability to identify poorly predicted

environments as intended.

3.2.4.3 Additional Training Data

When compared to the number of available δ1H and δ13C values in the training dataset (DT4),

there are significantly fewer δ15N environments. To address this, dataset 5a (DT5a) is used

in addition to DT4 for the training dataset for an additional IMPRESSION generation 1 δ15N

prediction model. The combined dataset (4+5a, labeled DT45) of 1967 molecules contains 6313
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Figure 3.12: a) Error in predicted δ15N for populations with different maximum variance for
dataset 3 (DT3) and dataset 5b (DT5b). b) IMPRESSION predicted and DFT calculated δ15N for
the DT3 and DT5b testing sets, with variance values highlighted. Fit statistics for DT3: 11.4 ppm
MAE, 15.9 ppm RMSD, 67.9 ppm MaxE, Fit statistics for DT5b: 12.1 ppm MAE, 18.5 ppm RMSD,
216.5 ppm MaxE. Models trained using dataset 4 (DT4)

Max Variance
No. Envs.
Removed

MAE [ ppm] RMSD [ ppm] MaxE [ ppm]

5e-05 384 0.563 0.652 0.978
0.0001 380 5.451 11.624 30.507
0.0005 326 9.282 14.848 58.361
0.001 297 10.323 15.849 67.908
0.005 124 11.420 16.499 67.908
0.01 65 11.070 15.782 67.908
0.05 1 11.434 15.937 67.908
0.1 0 11.426 15.922 67.908

Table 3.6: Effect of difference maximum variance cutoffs on accuracy metrics for IMPRESSION
δ15N predictions against DFT calculations for dataset 3. (Total δ15N environments in DT3: 387)

15N environments. Including additional training data for the prediction models for carbon and

proton chemical shift, or 1 bond proton-carbon coupling constants was investigated but due

to the size of the FCHL representation used, the resulting training set size was too large and

exceeded the available RAM during the training process. This is a key limitation of the KRR

model architecture, as all of the training representations must be held in memory at the same

time, this is not true of most neural network architectures.
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Max Variance
No. Envs.
Removed

MAE [ ppm] RMSD [ ppm] MaxE [ ppm]

MAE of 100
largest
errors[
ppm]

0.0005 1,110 8.370 12.133 48.790 13.142
0.001 937 9.385 13.545 97.499 20.670
0.005 370 10.545 15.368 97.499 34.319
0.01 195 11.004 15.890 97.499 37.656
0.05 13 11.883 18.124 216.542 45.375
0.1 4 12.008 18.369 216.542 46.405
0.5 0 12.071 18.521 216.542 46.995

Table 3.7: Effect of difference maximum variance cutoffs on accuracy metrics for IMPRESSION
δ15N predictions against DFT calculations for dataset 5b. (Total δ15N environments in DT5b:
1,285)

The δ15N model trained using both datasets 4 and 5a (DT45) achieved an accuracy of 7.72

ppm MAE, 11.20 ppm RMSD, 77.8 MaxE for DT3 and 5.64 ppm MAE, 9.07 RMSD, 92.6 ppm

MaxE for DT5b. The model trained on DT45 far outperforms the original model trained on DT4

(11.4 ppm and 12.1 ppm MAE for DT3 and DT5b respectively), and this improvement is reflected

in the decreased number of outlying predictions for DT3 and DT5b (Figure 3.13a) as well as

decreased error distribution width (Figure 3.13b). The model now performs better on DT3 than on

DT5b, likely due to the fact that the majority of the training data now comes from the ChEMBL

database (DT5a contains 5,029 15N environments to the 1,284 in DT4), and so is more similar to

DT5b than DT3, where the structures were obtained from the CSD. The significant improvement

in accuracy across both datasets is expected due to the vastly increased training dataset size,

increasing from 1,284 δ15N values in DT4 to 6,313 values in the combined dataset DT45. A

summary of the relative prediction accuracy for both training and both testing datasets is shown

in Table 3.8.

Unfortunately the pre-prediction variance for the DT45 trained model shows a much weaker

correlation with the prediction error (Figure 3.14a). Apart from at very small variance values,

there is little to no difference between predictions with different pre-prediction variances, pre-

dictions with high pre-prediction variance are not associated with higher prediction error and

vice versa. The number of outlying values has reduced compared to the model trained on DT4

alone (Figure 3.15), however the values that remain are not associated with high pre-prediction

variance (outlying values not highlighted brighter yellow in Figure 3.14b).
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Figure 3.13: Model trained on both dataset 4 and 5a. a) IMPRESSION predicted and DFT
calculated δ15N for the DT3 and DT5b testing sets. Fit statistics for DT3: 7.72 ppm MAE, 11.20
ppm RMSD, 77.8 MaxE, fit statistics for DT5b: 5.64 ppm MAE, 9.07 RMSD, 92.6 ppm MaxE. b)
Error distributions between IMPRESSION predicted and DFT calculated δ15N for the DT3 and
DT5b testing sets.

10 4 10 3 10 2 10 1

Variance Cutoff

5.0

5.5

6.0

6.5

7.0

7.5

8.0

M
ea

n 
ab

so
lu

te
 e

rro
r i

n 
15

N
 p

re
di

ct
io

n

a)

DT3
DT5b

400 300 200 100 0 100
DFT Calculated 15N Chemical Shift [ppm]

400

300

200

100

0

100

IM
P 

Pr
ed

ict
ed

 15
N

 C
he

m
ica

l S
hi

ft 
[p

pm
]

b)

DT3
DT5b

14

12

10

8

6

4

2

Lo
g 

Pr
e-

Pr
ed

ict
io

n 
Va

ria
nc

e

Figure 3.14: Model trained on both dataset 4 and 5a. a) Error in predicted δ15N for populations
with different maximum variance for the DT3 and DT5b testing sets. b) IMPRESSION predicted
and DFT calculated δ15N for the DT3 and DT5b testing sets, with variance values highlighted.
Fit statistics for DT3: 7.72 ppm MAE, 11.20 ppm RMSD, 77.8 MaxE, fit statistics for DT5b: 5.64
ppm MAE, 9.07 RMSD, 92.6 ppm MaxE.
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Training
Dataset

Testing
Dataset

MAE [ ppm]
RMSD [

ppm]
MaxE [
ppm]

% of Range
[ ppm]

DT4 DT3 11.426 15.922 67.908 2.362
DT4 DT5B 12.071 18.521 216.542 2.226
DT45 DT3 7.729 11.203 77.801 1.598
DT45 DT5B 5.640 9.074 92.622 1.040

Table 3.8: Summary of model accuracy in δ15N prediction for dataset 3 (DT3) and dataset
5b (DT5b) for the IMPRESSION generation 1 models trained using dataset 4 (DT4) and a
combination of dataset 4 a 5a (DT45)

3.2.4.4 Performance relative to experiment

Predictions were also made for the molecules in the experimental dataset 2 (DTe2). For the model

trained on DT4, the error between the IMPRESSION predicted and the experimentally measured

values is 33.04 ppm MAE, 46.43 ppm RMSD, with a maximum error of 141.3 ppm. For the model

trained using DT45, the accuracy is 27.02 ppm MAE, 37.3 ppm RMSD, 110.7 ppm MaxE. The

error between DFT and experiment for DTe2 is 8.73 ppm MAE, 11.17 ppm RMSD, 23.09 ppm

MaxE. Unsurprisingly the model trained using the larger training dataset performs better again,

however the accuracy to DFT for this model is 23.5 ppm MAE (31.9 ppm RMSD, 90.6 ppm MaxE)

which is significantly worse than the accuracy for DT3 and DT5b. These predictions are relatively

poor compared to the experimental predictions for δ1H and δ13C, both in terms of the MAE

relative to the range of experimental values and in terms of the accuracy relative to the accuracy

of the DFT method. The MAE in δ15N prediction as a percentage of the total range of values is

11.7% for the DT45 trained model, the corresponding percentages for δ1H and δ13C are 4.7% and

2.28%. This is however affected by the fact that the experimental δ15N dataset (DTe2) is smaller

(35 values) than those for δ1H and δ13C (906 and 654 values respectively) and so the range of

values for δ15N will be relatively smaller. A summary of these results is shown in Table 3.9.

Interestingly, the correlation between prediction error and pre-prediction variance is in this

case not observed for the model trained on DT4 (higher error predictions are not colored brighter

yellow in Figure 3.15b), but is observed for the model trained on DT45 (Several outlying points

are coloured brighter yellow in Figure 3.16b). Applying a variance filter of 0.001 removes just 3

environments but improves the MAE from 27 ppm to 21 ppm, the RMSD from 37 ppm to 28 ppm,

and the MaxE from 111 ppm to 87 ppm. The ability to identify poorly predicted environments

does not improve the accuracy of the model, but their identification allows them to be removed
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Target Training Dataset MAE RMSD MaxE % of Range
1H DT4 0.437 0.609 2.615 4.728
1H DFT 0.326 0.496 2.218 3.525
13C DT4 4.758 6.817 35.046 2.281
13C DFT 2.183 2.798 14.866 1.047
15N DT4 33.040 46.434 141.313 14.298
15N DT45 27.024 37.315 110.709 11.694
15N DFT 11.745 14.459 37.794 5.083

Table 3.9: Accuracy in NMR prediction for chemical shift, for the experimental datasets DTe1b
(δ1H and δ13C) and DTe2 (δ15N) for DFT, IMPRESSION trained on DT4 and IMPRESSION
trained on DT45 for δ15N
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Figure 3.15: For the model trained using dataset 4 only. a) error distributions for both IMPRES-
SION predicted and DFT calculated δ15N relative to the experimentally measured values in
experimental dataset 2 (DTe2). b) IMPRESSION predicted and experimentally measured δ15N
with variance highlighted. Fit statistics for DTe2: 33.04 ppm MAE, 46.43 ppm RMSD, 141.3 ppm
MaxE.

from an analysis where the accuracy of the predictions is important, and some loss of data is

acceptable. An example of an analysis such as this is given in Chapter 5, and these issues are

discussed further.
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Figure 3.16: For the model trained on both dataset 4 and 5a. a) error distributions for both
IMPRESSION predicted and DFT calculated δ15N relative to the experimentally measured values
in experimental dataset 2 (DTe2). b) IMPRESSION predicted and experimentally measured δ15N
with variance highlighted. Fit statistics for DTe2: 27.02 ppm MAE, 37.3 ppm RMSD, 110.7 ppm
MaxE

3.2.5 1JCH Prediction

3.2.5.1 Performance relative to DFT

The IMPRESSION generation 1 model trained on DT4 (772 molecules, 30,324 1JCH environments,

Section 2.4.3) achieved a mean absolute error (MAE) of 1.12 Hz and a root mean squared

deviation (RMSD) of 1.71 Hz against the CSD derived test set DT3 (306 molecules, 5,262 1JCH

environments, Section 2.4.2). The maximum error in this set of predictions was 60.9 Hz. On the

ChEMBL derived test set dataset 5b (400 molecules, 10,641 1JCH environments, 2.4.4) the model

achieved an accuracy of 1.83 Hz MAE, 3.20 Hz RMSD with a maximum error of 19.3 Hz.

The accuracy of the 1JCH predictions are also affected by the inclusion of nuclei not seen in

the training dataset, as can be seen from the reduction in outlying values for DT5b in Figure

3.18a and the increase in height of the peak in Figure 3.18b.
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Figure 3.17: a) IMPRESSION predicted and DFT calculated 1JCH for the DT3 and DT5b testing
sets. Fit statistics for DT3: 1.12 Hz MAE, 1.71 Hz RMSD, 60.9 Hz MaxE, fit statistics for DT5b:
1.83 Hz MAE, 3.20 Hz RMSD, 19.3 Hz MaxE. b) Error distributions between IMPRESSION
predicted and DFT calculated 1JCH for the DT3 and DT5b testing sets, 1 (DT3) and 129 (DT5b)
values excluded from graph for clarity. Models trained using dataset 4 (DT4)
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Figure 3.18: Molecules containing H,C,N,O,F atoms only. a) IMPRESSION predicted and DFT
calculated 1JCH for the DT3 and DT5b testing sets. Fit statistics for DT3: 1.12 Hz MAE, 1.71 Hz
RMSD, 60.9 Hz MaxE, fit statistics for DT5b: 1.43 Hz MAE, 2.26 Hz RMSD, 19.3 Hz MaxE. b)
Error distributions between IMPRESSION predicted and DFT calculated 1JCH for the DT3 and
DT5b testing sets, 2 (DT3) and 159 (DT5b) values excluded from graph for clarity. Models trained
using dataset 4 (DT4)
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3.2.5.2 Uncertainty Estimation

For the IMPRESSION model trained using DT4 to predict 1JCH , the pre-prediction variance

correlates with the prediction error for both DT3 and DT5b (with linear correction applied)

(Figure 3.19a), and the two largest errors from DT3 and DT5b are associated with a higher

variance (bright yellow points, Figure 3.19b). Many of the environments for the molecules in

dataset 5b which contain atom types not present in the training set were also identified, as the

region in Figure 3.19b highlighted in orange at 130-140 ppm (DFT calculated 1JCH) corresponds

with the region missing from the graph showing the reduced testing set in Figure 3.18. Once

again the pre-prediction variance provides a method of identifying poorly predicted environments

at the point of prediction.
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Figure 3.19: Linear correction applied to DT5b DFT values. a) Error in predicted 1JCH for popu-
lations with different maximum variance for the DT3 and DT5b testing sets. b) IMPRESSION
predicted and DFT calculated 1JCH for the DT3 and DT5b testing sets, with variance values
highlighted. Fit statistics for DT3: 1.12 Hz MAE, 1.71 Hz RMSD, 60.9 Hz MaxE, fit statistics for
DT5b: 1.83 Hz MAE, 3.20 Hz RMSD, 19.3 Hz MaxE. Models trained using dataset 4 (DT4)
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Max Variance
No. Envs.
Removed

MAE [Hz] RMSD [Hz] MaxE [Hz]
MAE of 100

largest
errors[Hz]

0.001 5,475 0.746 0.838 1.673 0.921
0.005 4,936 0.659 0.812 2.977 1.490
0.01 4,448 0.705 0.897 3.416 1.992
0.05 2,688 0.865 1.124 4.696 3.120
0.1 1,694 0.953 1.247 5.797 3.693
0.5 331 1.064 1.406 7.840 4.352
1 95 1.092 1.457 9.987 4.726
5 11 1.113 1.499 11.814 5.004
10 4 1.116 1.507 11.814 5.071
50 0 1.127 1.713 60.920 5.641

Table 3.10: Effect of difference maximum variance cutoffs on accuracy metrics for IMPRESSION
1JCH predictions against DFT calculations for dataset 3. Total number of 1JCH environments in
DT3: 5,608

Max Variance
No. Envs.
Removed

MAE [Hz] RMSD [Hz] MaxE [Hz]
MAE of 100

largest
errors[Hz]

0.005 10,098 0.802 1.607 11.626 2.268
0.01 9,614 0.909 1.683 11.626 3.616
0.05 7,047 1.182 1.936 18.824 8.329
0.1 5,014 1.322 2.094 18.824 10.375
0.5 1,300 1.540 2.328 18.824 11.474
1 602 1.583 2.377 18.824 11.579
5 185 1.618 2.436 18.824 11.950
10 85 1.708 2.716 26.928 14.441
50 4 1.809 3.058 35.431 18.047

100 1 1.819 3.117 40.978 18.710
500 1 1.819 3.117 40.978 18.710
1000 1 1.819 3.117 40.978 18.710
5000 0 1.825 3.198 73.556 19.308

Table 3.11: Effect of difference maximum variance cutoffs on accuracy metrics for IMPRESSION
1JCH predictions against DFT calculations for dataset 5b. Total number of 1JCH environments
in DT5b: 10,641
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3.2.5.3 Performance relative to experiment

The error between the IMPRESSION predicted and the experimentally measured values in

experimental dataset 2 (DTe2) is 6.01 Hz MAE, 11.18 Hz RMSD, with a maximum error of

54.3 Hz. The error between the DFT values and experiment is 2.16 Hz MAE, 3.23 Hz RMSD,

20.05 Hz MaxE for this same dataset. The error between IMPRESSION and DFT is 5.85 Hz

MAE, 10.77 Hz RMSD, 54.8 Hz MaxE. This accuracy is disappointing relative to the accuracy

achieved on DT3 and DT5b (post-correction), however this lack of accuracy is almost exclusively

due to the poor prediction of the DFT values in this case, as the prediction error relative to

experiment is only slightly higher than that relative to the DFT values. The error distribution

(Figure 3.20a) between the IMPRESSION model and the experimental values shows that for

the bulk of the predictions the accuracy is good, but a considerable number of environments the

value is overpredicted by 10 Hz to 20 Hz.

Most of these large errors are associated with high pre-prediction variance (brighter yellow

points in Figure 3.20b), and applying a modest variance filter of 10, removing 100 out of 721

environments, reduces the MAE to 3.12 Hz, the RMSD to 5.70 Hz and the maximum error to

29 Hz. Comparing the accuracy for DTe2, DT3 and DT5b for environments with pre-prediction

variance less than 10, the results are much more similar. Though this does not improve the

accuracy of the model, it at least achieves similar accuracy for environments that the model is

similarly confident in predicting, if the pre-prediction variance is equated to a confidence in this

situation.
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Figure 3.20: (a) error distributions for both IMPRESSION predicted and DFT calculated 1JCH
relative to the experimentally measured 1JCH values for experimental dataset 2 (DTe2). (b)
IMPRESSION predicted and experimentally measured 1JCH for DTe2 with variance highlighted.
Fit statistics for DTe2: 6.01 Hz MAE, 11.18 Hz RMSD, 54.3 Hz MaxE. Models trained using
dataset 4 (DT4)

3.3 Conclusion

The first generation IMPRESSION models predict δ1H, δ13C, δ15N, and 1JCH DFT NMR para-

meters to an accuracy of between 0.5% and 3% of the range of the respective parameter, when

tested against the DT3 and DT5b testing datasets.

The predictions are sufficiently accurate relative to experimentally measured values to be

used in place of the underlying DFT method in certain circumstances. Furthermore the use of

pre-prediction variance to highlight potentially innacurate predictions increases the utility of the

predictions in practical applications.

The 1JCH prediction model in particular presents a unique improvement on existing models in

the literature, being one of the first models to predict scalar coupling constants for 3-Dimensional

molecules. The δ15N model is also the first of its kind, and the δ1H and δ13C prediction models

are competitive with the best and most recently published machine learning models in the

literature.

Attempts to design a new generation of models, detailed in the next chapter, comprised the

majority of the remainder of the work for this thesis.
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4.1 Model Architecture and Training

The second generation NMR prediction model is based on recent advances in neural network

architecture, and solutions generated by competition participants as part of a Kaggle competition

to predict scalar coupling constants, and published in recent work by Bratholm et al [80]. The

model is best described as a Graph Transformer Network (GTN) where molecules are represented

as fully connected graphs. The transformer architecture is based on a mechanism called attention,

originally developed for natural language processing [126]. Attention allows learnable weighting

of different parts of the input data, effectively allowing a model to create its own input represen-

tation. In this case attention offers a clear advantage, as the best method of representing small

molecules in machine learning problems is an unsolved problem, and so a machine-constructed

representation may outperform existing methods.

4.1.1 Kaggle Competition

Kaggle is a popular website through which machine learning competitions are organised. The

competitions cover a diverse range of subjects, training models to do everything from distin-

guishing ships and icebergs to predicting annual sales figures for restaurants. Lars Bratholm

organised a kaggle competition in 2019 where the task was to accurately predict scalar coupling

constants in molecules in the QM9 dataset, given training data from a subset of the same dataset.
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The competition yielded many excellent solutions, with some central themes. Most of the top

10 solutions used some form of graph representation for the molecules, and many of them used

some form of an attention mechanism to adaptively learn the representation of the molecules.

Several of the highest scoring models are described in a recent publication [80].

The top solutions provided an initial starting point for the models produced as the second

generation of IMPRESSION models. The crucial limitation of the solutions presented in the

kaggle competition is that they were designed to train on and predict very small molecules (from

QM9), and so required significant adaptation to work on larger molecules.

4.1.2 Molecules as Graphs

In a GTN, molecules can be represented as computational graphs, with each atom represented

by a node. The graphs used in the models in this chapter are fully connected; there is an edge

between every pair of nodes in the graph. The graph also contains node and edge features which

are vectors associated with each node or edge in the graph. The only node feature used in this

case was the atom type. The edge features used were the distance between and the number of

bonds connecting the two atoms, as well as a numeric label representing the type of coupling the

edge represents. The numeric label, referred to as the coupling type, is constructed by creating a

list of all possible coupling constant labels (1JCH , 2JHH , 3JHH , etc) then assigning integer values

to each item in the list, for example a coupling type label ’0’ refers to a 1JCH coupling. Due to the

fact that edges are directional within the deep graph python library [127] used, each coupling

is represented as a pair of edges. The feature vectors are combined into a single vector for each

node and edge.

4.1.3 Graph Transformer Network (GTN)

The model architecture used in the second generation of IMPRESSION models is most similar to

the Graph attention network [128] with gated residual connections [129], presented as solution 4

in the work by Bratholm et al [80]. A significant portion of the code from that solution was used

to create the model, along with significant help from the original authors of the model.

Despite the models excellent performance in the prediction of NMR parameters for QM9

molecules, several important structural features in the model needed to be adapted to improve

the performance on larger molecules. This came at the expense of some accuracy on the QM9
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Figure 4.1: Simplified graph transformer network diagram.

molecules. Firstly it was found that fully connected graphs performed better than the graphs

connected by only 1, 2 and 3 bond edges in the original model. Secondly fewer edge and node

features were used in the IMPRESSION model (as described above), more similar to the model

in solution 2[80], the original model from solution 4 utilised electronegativity, first ionization

energy, and electron affinity for each atom type, as well as atom Mulliken charge. For the edges

bond length, bond angle, and the dihedral angle were all used. Several more minor architectural

features and parameters were altered in order to improve performance, as part of hyper-parameter

tuning common in machine learning model production.

The network itself consists of the following sequential layers:

1. Embedding layer

2. Attention layer

3. Gated (Parametric) Residual Connection (PReLU) layer (GraphLambda)

4. Gated Residual Attention Layer

5. PReLU Layer (GraphLambda)

6. Gated Residual Attention Layer

7. PReLU Layer (GraphLambda)
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8. Gated Residual Attention Layer

9. PReLU Layer (GraphLambda)

10. Linear Layer operating on edges only

11. PReLU Layer (GraphLambda)

12. Linear Layer operating on edges only

Where the embedding layer (1) creates the feature vector for the nodes from the atom type

embedding and for the edges as a linear concatenation of the NMR coupling type embedding,

distance vector, and path length vector. The attention layers (2,4,6,8) apply multiple independent

attention mechanisms (multi-head attention, described in reference [128]) to the feature vectors

in each node and vector. The results of each separate attention mechanism k are concatenated to

give the new node feature vector using the feature vectors of all other nodes, and edges from the

current node to every other node. ε and η are the input feature vectors, n and e are the output

feature vectors for edges and nodes respectively. The new node vector n is given:

(4.1) ni =∥K
k=1 σ

(∑
j

(
αi jkηik

)
εi jk

)

where

(4.2) αi j = softmax j
(
σ

(
A[ηi‖εi j‖η j]

))
σ is the Leaky Rectified Linear Unit (LReLU), a linear activation function which allows for very

small negative values. Above 0 the LReLU returns the input value, below 0 a slope is applied to

reduce the magnitude of the negative value. In this model a slope value of 0.2 was used. ηi is the

vector for the i-th node in the graph, εi j is the vector for the edge connecting nodes i and j. A is a

learnable weight vector. The edge vectors are updated based on the concatenation of the source

node, edge node, and destination node feature vectors.

(4.3) e i j =Wi j
[
ni‖εi j‖n j

]
where W is a learnable weight vector. The Gated residual connection applied to each of the

attention layers (4,6,8) is applied as described in [129], and provides a shortcut layers of the

network for information to pass through. The Gated (Parametric) Residual Connection PReLU
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is applied to the outputs of the residual connection [130], similar to the LReLU, the PReLU

randomly varies the slope of the function below zero in each iteration. The two final linear layers

are fully connected across all edge feature vectors. The tunable weights in each layer of the

network affect the values stored in the embedding tensor in each graph, the predicted chemical

shift and scalar coupling values are extracted from these tensors (chemical shift from node

embedding, scalar coupling from edge embedding). The embedding in each model in each pass

contains values for all nodes and edges, therefore effectively containing information for each

chemical shift and scalar coupling value in the molecule. Far more accurate predictions were

however obtained by training separate models to predict separate properties, and discarding

the other properties in each model. The flow of information through the various layers is shown

schematically in Figure 4.1

Relative to the reported model by Bratholm [80], fewer layers (3 from 6), layer dimension

(24 from 48), and attention heads (12 from 24) were used. This was primarily to account for

the increase in size of the molecules used for this work, with molecules of up to 150 atoms as

opposed to a maximum atom count of 29 in the QM9 dataset used in the original work. With the

dimensions used in the original model, the number of molecule graphs used in each iteration of

the network training (batch size) needed to be reduced too much in order to fit the model into

memory on the GPU units available, which had a maximum available memory of 12GB. A batch

size of 16 with the above model dimensions was used.

4.1.4 Model Training

The tunable parameters in all layers were optimised using the modified version of the LAMB

optimiser [131] reported in [80] where the weight decay term is decoupled from the trust region

calculations similarly to the AdamW modification to the Adam optimiser [132]. The target values

for all parameters are scaled and normalised prior to training, and the conversion factors stored

for prediction output and to report a scaled training loss. The loss function uses the mean absolute

error across all NMR parameter targets: δ1H, δ13C, δ15N, δ17O, δ19F, 1JCH , 1JCC, 2JCH , 2JCC,

2JHH , 3JCH , 3JCC, 3JHH . Models were trained concurrently on all NMR parameter targets. The

training utilised a cyclical learning rate scheduler for the optimiser for the first 35 epochs of

training, cycling between values of 0.001 and 0.01. At epoch 35 the learning rate is fixed at 0.001

for a further 65 epochs, for a total of 100 training epochs. Models were trained using training
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dataset 4 (described in Section 2.4.3, dataset 4 and 5a (described in Section 2.4.4) combined

(hereon referred to as DT45), and the QM960k dataset.

4.2 Results

4.2.1 Model Training

The models trained on DT4, DT45 and QM960k optimised well within the 100 epoch optimisation,

with a reasonably stable loss for the final 50 epochs for both in-sample and out-of-sample

loss (Figure 4.2). The in-sample loss is the mean of the mean absolute errors across all NMR

parameters, all values having been scaled and normalised prior to training, across the molecules

used in training. The out of sample loss is the same loss calculated for the testing dataset

DT3 (Section 2.4.2). The models optimise equally well for all target NMR parameters (with the

exception of δ15N in the QM960k model training), as is clear from the out of sample loss, plotted

by target parameter (Figure 4.3). Different NMR parameters achieve a different loss value, this

is expected as some parameters will be more difficult to predict.

For the models trained on DT4 and DT45, the out of sample loss is lower than the in sample

loss for the entire training process (Figure 4.2a and 4.2b). This is generally unusual in machine

learning models, however here this can be readily explained by the complexity of environments

in dataset 4 (a result of the adaptive sampling process) and the therefore relatively simple set of

environments in the dataset 3 testing dataset. This result is not seen in the model trained on

QM960k (Figure 4.2c), as the model trained on the smaller molecules clearly struggles to predict

parameters for the relatively larger molecules in dataset 3.

The learning curve for δ15N in the QM960k trained model (Figure 4.3c) shows a clear

difference to the curves for all other parameters and in all other models. In repeated model

training curves this was also seen, and occasionally also seen for the δ17O curve as well, though

not in the final training runs. This would likely be solved by specific fine-tuning on this parameter

alone, and this is recommended as part of future work.
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Figure 4.2: Out of sample for dataset 3 (DT3) and in sample loss during training for models
trained on datasets 4 (DT4: a), 4 and 5a combined (DT45: b), and QM960k (c)
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Figure 4.3: Out of sample for dataset 3 (DT3) loss split by target NMR parameter during training
for models trained on datasets 4 (DT4: a), 4 and 5a combined (DT45: b), and QM960k (c)
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4.2.2 Model Accuracy Summary

Figure 4.4 shows the accuracy in machine learning prediction across the three machine learning

models trained (DT4, DT45, QM960k), against the three testing datasets (DT3: 4.4a, DT5b:

4.4b, QM91k: 4.4c) for two chemical shift parameters (δ1H and δ13C) and two scalar coupling

parameters (1JCH and 3JHH). Firstly, a consistent pattern is observed in terms of the accuracy

across the different NMR parameters, with δ1H being the most or nearly the most accurately

predicted parameter relative to the range of values for each model across all testing datasets.

The 3JHH couplings were the least accurately predicted for each model.

The QM9 trained model performed significantly worse in predicting the DT3 and DT5b

datasets, but significantly better at predicting the QM91k dataset. Perhaps more surprisingly, the

DT4 and DT45 models show the reverse pattern, performing worse on the QM91k dataset. The

DT4/DT45 predictions on the QM91k dataset (Figure 4.4c) are more accurate than the QM960k

trained predictions are on the DT5b datasets (Figure 4.4b), suggesting that the models trained on

larger, drug-like, molecules appear to generalise better to the smaller molecule dataset than the

models trained on smaller molecules generalise to the larger drug-like molecule testing dataset.

The expected result would have been the DT4 and DT45 models performing similarly or better on

the QM91k dataset than on the DT3 or DT5b testing datasets. The assumption is that QM91k

contains smaller molecules and so covers a smaller region of chemical space, the type of structures

in QM91k being also regularly found as part of larger molecules in the DT4 and DT5a datasets,

and so the larger molecule datasets should allow a model to generalise to smaller molecules.

What is clear from these results is that the absence of nearby atoms in a representation is an

important structural feature, and so the inclusion of smaller molecules in a training set would be

beneficial if prediction accuracy for smaller molecules is desired.

Whilst the QM960k trained model presents an excellent predictive accuracy on the QM91k

test set (Figure 4.4c), surpassing results from recent publications in both δ13C prediction [65] and

3JHH [67] (despite the issue with the ’mixed’ option highlighted in Chapter 2), this accuracy is not

replicated on the larger molecule datasets. Even though the performance of the QM960k trained

model on DT3 (Figure 4.4a) is comparable to the DT4 and DT45 trained models performance on

QM91k (Figure 4.4c), the accuracy of the QM960k trained model is 10 to 50 times worse on the

larger datasets. This highlights the issue with using QM9 as a benchmark dataset, as molecules

with fewer than 30 atoms (including H) are not regularly the subject of NMR studies, and the
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accuracy achieved for QM9 trained models on QM9 datasets does not generalise to larger, more

relevant molecules.

Due to the fact that the DT45 trained model attained a significantly better or similar accuracy

than the DT4 trained model for every parameter in every testing dataset, analysis will be

restricted to the DT45 and QM960k trained models for the remainder of this chapter. The

QM960k trained models are not the best performing models, but represent the benchmark model

considering the significant number of QM9 trained models presented in recent literature.
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Figure 4.4: Comparison in model accuracy for testing datasets 3(DT3, a), 5b(DT5b, b), and
QM91k(c). Bar height represents the mean absolute error as a percentage of the full range of
values for that NMR parameter, each bar is annotated with the raw MAE values. The 1JCH and
2JCC bars for the model trained using QM9 in (b) are cut off for clarity, the relative MAE values
are 42% and 28% respectively.
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4.2.2.1 Uncertainty estimation

Following the same technique used for the generation 1 models (Chapter 3), 5 drop-out models

were trained for each model and the variance across predictions in these 5 models appears to

correlate well with the prediction error, specifically in terms of the reduction in large errors

(Figure 4.5). The variance across the QM960k trained drop-out models tested against the QM91k

dataset shows the weakest correlation, which is unsurprising due to both the high accuracy in

these predictions, and the lack of chemical diversity within the QM9 dataset.

There is little variation between the correlation between pre-prediction variance and the

largest prediction errors. The utility of the pre-prediction variance for each parameter will be

discussed below, as the important factor not shown in Figure 4.5 is what percentage of the

dataset needs to be removed in order to achieve the improvement in error shown. The important

point here is that there is a correlation between poorly predicted NMR parameters and their

pre-prediction variance, however whether this correlation can be utilised effectively depends

on several factors including the number of large errors associated with a small pre-prediction

variance relative to those with a large pre-prediction variance (discussed further in this chapter),

and the nature of the specific task the models are being used for (discussed further in Chapter 5).
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Figure 4.5: Mean absolute error for the worst predicted 100 environments for selected NMR
parameters: δ1H, δ13C, 1JCH , 3JHH . Errors presented for models trained on datasets 4 and 5
combined (DT45) and QM960k, tested on datasets 3 (DT3), 5b (DT5b), and QM91k.

4.2.3 δ1H prediction

4.2.3.1 Performance relative to DFT for δ1H prediction

The generation 2 model trained using DT45 (combination of dataset 4: Section 2.4.3 and dataset

5a: Section 2.4.4, 2,372 molecules, 66,805 δ1H values) model achieves an accuracy of 0.22/0.25

ppm MAE, 0.36/0.36 ppm RMSD, 8.0/6.0 ppm MaxE when tested on the DT3 (306 molecules,
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5,905 δ1H values, Section 2.4.2) and DT5b (400 molecules, 11,885 δ1H values, Section 2.4.4)

testing datasets respectively (Figures 4.6a and 4.8a). When tested against the QM91k testing

dataset (752 molecules, 6,949 δ1H values, Section 2.4.5), the accuracy is 0.64 ppm MAE, 1.00

ppm RMSD, 6.30 ppm MaxE (Figures 4.6b and 4.8b. These results are summarised in Table

4.1. The predictions for this model slightly improve on those of the KRR based IMPRESSION

generation 1 prediction model (Trained on DT4 only) where the mean absolute error was 0.24

ppm and 0.34 ppm for DT3 and DT5b respectively. Whilst this accuracy improvement can be

explained primarily by the increase in training dataset size, rather than by any improvement

in architecture, the ability to use larger datasets is one of the key advantages of using neural

network type architectures over kernel ridge regression.

Training Dataset
Testing
Dataset

MAE [ ppm] RMSD [ ppm] MaxE [ ppm]
MAE as %
of Range

DT4 (Gen 1) DT3 0.243 0.388 4.268 1.044
DT4 (Gen 1) DT5b 0.343 0.542 8.785 1.480

DT45 DT3 0.221 0.355 8.007 1.124
DT45 DT5B 0.246 0.364 5.957 1.224
DT45 QM91K 0.628 0.982 6.290 5.295

QM960k DT3 0.670 1.001 9.053 3.399
QM960k DT5B 1.645 1.973 9.683 8.196
QM960k QM91K 0.059 0.085 1.561 0.494

Table 4.1: Accuracy in δ1H prediction across the three testing datasets, for the DT45 and QM960k
trained models. as well as the generation 1, KRR model

The QM960k trained model achieves an accuracy of 0.06 ppm MAE, 0.09 ppm RMSD, 1.6

ppm MaxE when tested against the QM91k test set (Figures 4.7b and 4.9b), and 0.67/1.65 ppm

MAE, 1.00/1.97 ppm RMSD, 9.05/9.68 ppm MaxE when tested against the DT3 and DT5b testing

datasets respectively (Figures 4.7a and 4.9a). The accuracy of the QM960k trained model is, as

expected, far better than the DT45 trained model on the QM91k dataset, this can be seen most

clearly in the difference between figures 4.6b and 4.7b.

The performance of the QM960k trained model on the DT3 testing dataset is significantly

worse than the DT45 trained model, with a mean absolute error 3-4 times larger (0.67 ppm vs

0.22 ppm MAE). The performance on DT5b is even worse, where the mean absolute error is 7-8

times larger. The difference in performance against DT3 and DT5b is especially clear in the error

distribution in Figure 4.8a, when contrasted with the relatively similar error distributions across
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all three datasets for the model trained on DT45 (Figure 4.8).

This demonstrates that, for δ1H, using larger molecules, even in a smaller training dataset

presents a clear advantage over using a larger dataset of smaller molecules. The QM960k training

dataset contains 565,420 δ1H values, compared to only 66,805 values in DT45, yet the prediction

accuracy for the the DT45 trained model generalises better to QM91k than the QM960k model

generalised to DT3 or DT5b. It is also important to note that the molecules in ChEMBL represent

drug-like molecules, for which the accuracy in NMR prediction is of far more use than for the

QM9 molecules, and so the accuracy of the models on DT5b is of more importance in real-world

applications.

4.2.3.2 Uncertainty estimation for δ1H prediction

Both the QM960k and DT45 trained models were able to identify poorly predicted environments

on the basis of the pre-prediction variance, as shown by the outlying values highlighted in

brighter yellow in Figures 4.6a, 4.6b, and 4.7a. This correlation is not seen for the QM960k

trained model predictions on QM91k, though there are almost no outlying values to identify,

primarily due to the lack of diversity in the chemistry of QM9 molecules. The DT45 trained model

displays a correlation between pre-prediction variance and the δ1H value (Figure 4.6), with

higher values being predicted just as accurately, but with higher associate variance. Furthermore

the largest error (DFT calculated δ1H approximately -4.5 ppm) is associated with a relatively low

variance. These two factors reduce the effectiveness of the pre-prediction variance in this case. It

is clear from the distribution of points with very low variance (dark blue points in Figure 4.6)

that the correlation between prediction error and pre-prediction variance is much stronger for the

lowest pre-prediction variance values, as these are highly accurate. Unfortunately the practical

application of the pre-prediction variance requires a strong correlation for high pre-prediction

variance values, and so it is unlikely to be of use for the DT45 trained model in δ1H prediction.

For example, a variance cutoff of 5 ppm reduces the mean absolute error in δ1H prediction

from 0.221 ppm to 0.215 ppm for predictions on dataset 3, however this requires removing 852

environments, 14% of the total.

The QM960k trained model shows a stronger correlation between pre-prediction variance

and prediction error for DT3 and DT5b, with no variation across the chemical shift range. The

largest error in the dataset 3 predictions is removed as one of 3 environments removed with a 5
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ppm variance filter, lowering the maximum error from 3.5 ppm to 3.3 ppm. The distribution in

Figure 4.7 shows that pre-prediction variance can identify highly accurate predictions, however

these make up a relatively small subset of the total. For environments in DT3 and DT5b with

pre-prediction variance less than 0.1 (391 environments in DT3 and 194 environments in DT5b,

3.2% of the combined dataset), the QM960k model prediction error (0.24 ppm MAE, 0.47 ppm

RMSD, 4.19 ppm MaxE) is comparable to that for the predictions for the DT45 model on the

entirety of DT5b (0.25 ppm MAE, 0.36 ppm RMSD, 6.0 ppm MaxE). The QM960k model is

therefore capable of defining environments at the point of prediction for which its accuracy will

match those of the DT45 trained model. The effect of variance cutoffs on the accuracy of both

models against both testing datasets are shown in Tables 4.2, 4.3, 4.4, and 4.5.

Max Variance
No. Envs.
Removed

MAE [ ppm] RMSD [ ppm] MaxE [ ppm]

MAE of 100
largest
errors [
ppm]

0.05 5571 0.183 0.240 0.884 0.380
0.1 5163 0.191 0.260 1.503 0.532
0.5 3580 0.190 0.263 1.646 0.766
1 2873 0.198 0.309 8.007 0.935
5 852 0.215 0.338 8.007 1.396
10 55 0.220 0.350 8.007 1.567
50 0 0.221 0.355 8.007 1.617

Table 4.2: For the model trained using DT45. Effect of difference maximum variance cutoffs on
accuracy metrics for IMPRESSION δ1H predictions against DFT calculations for dataset 3. Total
δ1H environments in DT3: 5905
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Max Variance
No. Envs.
Removed

MAE [ ppm] RMSD [ ppm] MaxE [ ppm]

MAE of 100
largest
errors [
ppm]

0.05 11122 0.177 0.232 1.050 0.467
0.1 10232 0.198 0.274 2.191 0.711
0.5 5424 0.225 0.310 2.191 1.215
1 3150 0.234 0.322 2.389 1.311
5 144 0.252 0.361 5.211 1.721
10 26 0.256 0.372 5.211 1.853
50 0 0.258 0.377 5.211 1.923

Table 4.3: For the model trained using DT45. Effect of difference maximum variance cutoffs on
accuracy metrics for IMPRESSION δ1H predictions against DFT calculations for dataset 5b.
Total δ1H environments in DT5b: 11,885

Max Variance
No. Envs.
Removed

MAE [ ppm] RMSD [ ppm] MaxE [ ppm]

MAE of 100
largest
errors [
ppm]

0.05 5677 0.088 0.156 1.687 0.155
0.1 5514 0.113 0.191 1.687 0.277
0.5 4397 0.248 0.426 5.277 1.244
1 3081 0.435 0.735 5.277 2.604
5 3 0.668 0.994 6.819 3.288
10 0 0.670 1.001 9.053 3.349

Table 4.4: For the model trained using QM960k. Effect of difference maximum variance cutoffs
on accuracy metrics for IMPRESSION δ1H predictions against DFT calculations for dataset 3.
Total δ1H environments in DT3: 5905

Max Variance
No. Envs.
Removed

MAE [ ppm] RMSD [ ppm] MaxE [ ppm]

MAE of 100
largest
errors [
ppm]

0.05 11794 0.161 0.230 0.700 0.161
0.1 11691 0.242 0.467 4.192 0.413
0.5 10859 0.530 0.810 4.192 2.029
1 8762 1.145 1.513 9.683 3.549
5 0 1.645 1.973 9.683 4.838

Table 4.5: For the model trained using QM960k. Effect of difference maximum variance cutoffs
on accuracy metrics for IMPRESSION δ1H predictions against DFT calculations for dataset 5b.
Total δ1H environments in DT5b: 11,885
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Figure 4.6: For the model trained using DT45: IMPRESSION predicted and DFT calculated δ1H,
with pre-prediction variance highlighted, for the DT3 (a), DT5b (b) and the QM91k (c) testing
datasets. DT3 fit statistics: 0.22 ppm MAE, 0.36 ppm RMSD, 8.0 ppm MaxE, DT5b fit statistics:
0.25 ppm MAE, 0.36 ppm RMSD, 6.0 ppm MaxE, QM91k fit statistics: 0.64 ppm MAE, 1.00 ppm
RMSD, 6.30 ppm MaxE.
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Figure 4.7: For the model trained using QM960k: IMPRESSION predicted and DFT calculated
δ1H, with pre-prediction variance highlighted, for the DT3 (a), DT5b (b) and the QM91k (c)
testing datasets. DT3 fit statistics: 0.67 ppm MAE, 1.00 ppm RMSD, 9.05 ppm MaxE, DT5b fit
statistics: 1.65 ppm MAE, 1.97 ppm RMSD, 9.68 ppm MaxE, QM91k fit statistics: 0.06 ppm MAE,
0.09 ppm RMSD, 1.56 ppm MaxE.
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Figure 4.8: For the model trained using DT45: Error distribution between IMPRESSION predicted
and DFT calculated δ1H, for the DT3, DT5b (a) and the QM91k (b) testing datasets. DT3 fit
statistics: 0.22 ppm MAE, 0.36 ppm RMSD, 8.0 ppm MaxE, DT5b fit statistics: 0.25 ppm MAE,
0.36 ppm RMSD, 6.0 ppm MaxE, QM91k fit statistics: 0.64 ppm MAE, 1.00 ppm RMSD, 6.30 ppm
MaxE.
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Figure 4.9: For the model trained using QM960k: Error distribution between IMPRESSION
predicted and DFT calculated δ1H, for the DT3, DT5b (a) and the QM91k (b) testing datasets.
DT3 fit statistics: 0.67 ppm MAE, 1.00 ppm RMSD, 9.05 ppm MaxE, DT5b fit statistics: 1.65 ppm
MAE, 1.97 ppm RMSD, 9.68 ppm MaxE, QM91k fit statistics: 0.06 ppm MAE, 0.09 ppm RMSD,
1.56 ppm MaxE.
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4.2.3.3 Prediction accuracy and molecule size for δ1H prediction

The QM91k dataset contains considerably smaller molecules than the DT5b dataset, it is also

the case that DT4 and DT5a contain considerably larger molecules than the QM960k dataset.

Therefore a key factor affecting the performance of the DT45 trained model on QM91k and the

performance of the QM960k trained model on DT5b is likely to be the size of the molecules.

Dividing the testing sets into subsets of molecules with number of atoms within a certain range,

and plotting the rolling average of mean absolute error against the mean molecule size for

each subset highlights the effect of molecule size on the prediction accuracy (Figure 4.10). The

accuracy in predictions made by the DT45 trained model decrease as the molecule size reduces

below 25 atoms, however is relatively stable for molecules with more than 30 atoms. For the

QM960k trained model the opposite pattern is observed, with the prediction accuracy decreasing

as molecule size increases for testing datasets 3 and 5b, but remaining stable for the molecules

in testing dataset QM91k, where the maximum number of atoms is around 25.

This demonstrates that the prediction accuracy between the two models is more similar for

similarly size molecules, however there is still a difference between the prediction accuracy for

models trained on DT45 or QM960k, in predicting molecules from DT3, DT5b, or QM91k. This is

visible in Figure 4.10 as the mean absolute errors for the subset with a mean molecule size of 20

atoms are different for each testing and training dataset combination.
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Figure 4.10: Accuracy in δ1H prediction across the three testing datasets (DT3, DT5b, QM91k)
for subsets of molecules with different size. For the model trained using DT45 (a) and the model
trained using QM960k (b)

4.2.3.4 Performance relative to experiment for δ1H prediction

The predictions on the δ1H experimental dataset 1b (DTe1b, 46 molecules, 906 δ1H values,

2.4.6.1) follow the pattern observed above for molecules with more than 20 atoms, namely that

the DT45 trained model significantly outperforms the QM960k trained model. The accuracy for

the DT45 trained model in predicting experimental δ1H is 0.39 ppm MAE, 0.58 ppm RMSD,

2.86 ppm MaxE. This is more accurate than the generation 1 model trained on DT4 (0.44 ppm

MAE, 0.61 ppm RMSD) however the maximum error is higher, it was 2.61 ppm in that case.

The QM960k trained model accuracy is 0.78 ppm MAE, 1.10 ppm RMSD, 3.88 ppm MAE. The

accuracy of the underlying DFT calculations in calculating the experimental δ1H values is 0.33

ppm MAE, 0.50 ppm RMSD, 2.22 ppm MaxE. A summary of the prediction accuracy for DTe1b is

shown in Table 4.6.

The DT45 trained model demonstrates a very good prediction accuracy relative to the experi-

mental results in this case, with accuracy similar to the underlying DFT method. This suggests

that this prediction model could replace the DFT NMR calculations and provide similarly accurate

predictions in a fraction of the time. The similarity in prediction accuracy between the DT45

trained IMPRESSION model and the DFT calculations is highlighted by the similarity in error
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distributions in Figure 4.11a.

Target Training Dataset MAE [ ppm] RMSD [ ppm] MaxE [ ppm]

δ1H DT45 0.388 0.580 2.861
δ1H QM960k 0.776 1.098 3.879
δ1H DFT 0.326 0.496 2.218

Table 4.6: Accuracy of DFT calculations as well as predictions from the DT45 and QM960k trained
models relative to the experimental values from the δ1H experimental test set (DTe1b).

For the DT45 trained model, the effectiveness of the pre-prediction variance in indicating

prediction error is again hampered by the apparent correlation between variance and δ1H value.

Despite this it is clear from Figure 4.11b that a significant number of environments with high pre-

prediction variance are associated with high error, however applying any variance filter removes

too many accurate predictions to prove useful. The pre-prediction variance functions significantly

better for the QM960k trained model, as indicated by Figure 4.11b. Removing environments with

a variance greater than 1 (235 environments, approximately 30% of the dataset) improves the

accuracy to 0.55 ppm MAE, 0.87 ppm RMSD, 1.76 ppm MaxE, which is a significant improvement,

albeit at the cost of removing almost a third of the environments.

The poor performance of the QM960k trained model is highlighted by the increased width

in the error distribution in Figure 4.12a, and the large number of outlying values in the scatter

plot in Figure 4.11b. The relatively poor prediction accuracy can be partially explained by the

size of the molecules in the test dataset (DTe1b). The prediction accuracy on those molecules

from the test set with fewer than 40 atoms is 0.36 ppm MAE, 0.56 ppm RMSD, 2.73 ppm MaxE

(307 environments). Conversely the prediction accuracy on those with greater than 40 atoms

is 1.04 ppm MAE, 1.33 ppm RMSD, 3.88 ppm MaxE (486 environments). The accuracy on the

smaller molecules is nearly identical to the accuracy of the DT45 trained model: 0.36 ppm MAE,

0.57 ppm RMSD, 2.86 ppm MaxE. The majority of the outlying values are also associated with

a higher pre-prediction variance (brighter yellow points in Figure 4.11b), and the removal of

prediction with pre-prediction variance higher than 0.5 improves the mean absolute error from

0.78 ppm to 0.40 ppm, similar to the prediction accuracy of the DT45 model. This variance cutoff

does however remove 415 out of the 906 values in DTe1b.

Further to this, the two molecules shown in Figure 4.12 highlight the issues with training on

small molecules. These two molecules are representative of an issue which causes the vertical line
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of similar points at around 7.3ppm on the X-axis in Figure 4.12. The cause of the vast majority

of these errors are aromatic protons in structures with complex 3D shape, which causes other

parts of the molecule to be close in space to these protons. Such structures are highly unlikely

to occur in the QM9 dataset due to the limited number of atoms in each structure. As a result,

the representation which has been learned through training is incapable of dealing with these

types of structures, and so incorrectly alters the prediction value based on some aspects of the

structure which, as is clear from the experimental data, do not significantly affect the chemical

shift of these protons.

The models therefore are similarly accurate in δ1H prediction on molecules with size between

20 and 40 atoms, when these molecules are obtained from a different source to any of those

used for training in either model. The models are also similarly accurate for environments

with a similar pre-prediction variance. The advantage of the DT45 trained model is however

clearly demonstrated here, as over the entire, unfiltered dataset it achieves a significantly better

accuracy, nearly matching the accuracy of the DFT calculations used to train the model.
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Figure 4.11: For the DT45 trained model predictions on the δ1H experimental testing dataset
DTe1b. Error distributions between IMPRESSION and Experiment and between DFT and Exper-
iment (a). IMPRESSION predicted against experimentally measured δ1H, with pre-prediction
variance highlighted (b). Fit statistics for DTe1b: 0.39 ppm MAE, 0.58 ppm RMSD, 2.86 ppm
MaxE.
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Figure 4.12: For the QM960k trained model predictions on the δ1H experimental testing dataset.
Error distributions between IMPRESSION and Experiment and between DFT and Experiment
(a). IMPRESSION predicted against experimentally measured δ1H, with pre-prediction variance
highlighted (b). Fit statistics for DTe1b: 0.78 ppm MAE, 1.10 ppm RMSD, 3.88 ppm MaxE. The
two structures are representative of the structures which cause the similar set of errors around
7.3ppm in (b).

4.2.4 δ13C prediction

4.2.4.1 Performance relative to DFT for δ13C prediction

The generation 2 model trained using DT45 (combination of dataset 4: Section 2.4.3 and dataset

5a: Section 2.4.4, 2,372 molecules, 56,349 δ13C values) achieves an accuracy of 4.41/4.31 ppm

MAE, 6.71/6.31 ppm RMSD, 90.8/64.1 ppm MaxE when tested on the DT3 (306 molecules, 5,262

δ13C values, Section 2.4.2) and DT5b (400 molecules, 9,912 δ13C values, Section 2.4.4) testing

datasets respectively (Figure 4.13a, and Figure 4.15a).
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The accuracy for the IMPRESSION generation 1 model (trained on DT4) is 3.5/6.34 ppm MAE,

7.05/17.1 ppm RMSD, 106.5/271 ppm MaxE for DT3 and DT5b respectively. The DT45 generation

2 model performs considerably better against the DT5b testing set than the generation 1 model,

which is an expected result due to the inclusion of training data from DT5a, which contains

molecules similar to those in DT5b. The generation 2 model trained using DT45 performs worse

against DT3 than the generation 1 model trained using DT45 in terms of mean absolute error,

but presents a small improvement in the root mean squared error and maximum error. This

similarity suggests the change in model architecture between the two generations (KRR to GTN)

provides no benefit in the prediction of δ13C for DT3, however the fact that the generation 2

model retains similar accuracy on DT3 whilst now providing significantly improved predictions

for DT5b demonstrates the advantage of the GTN framework. The GTN framework used in the

generation 2 models allows for increased training dataset sizes, in this case via the inclusion of

DT5a. This increase in training set size has produced a model capable of nearly replicating the

predictions on DT3 for the generation 1 model, whilst expanding the same prediction accuracy to

a far wider range of structures.

When tested against the QM91k testing dataset (752 molecules, 4,751 δ13C values, Section

2.4.5), the accuracy for the DT45 trained generation 2 model is 14.8 ppm MAE, 22.3 ppm RMSD,

103.0 ppm MaxE (Figure 4.13b and Figure 4.15b). This follows the pattern seen across all

predicted NMR parameters in this section, where the models trained using larger molecules

struggle to provide accuracy predictions for the smaller molecules in QM91k. It is clear however

that the DT45 trained model generalises better across the three testing datasets than the QM960k

trained model, as is visible by the similarity in error distributions across Figure 4.15, and the

relative dissimilarity between the three distributions in Figure 4.16.

The QM960k trained model achieves an accuracy of 0.88 ppm MAE, 1.26 ppm RMSD, 25.4

ppm MaxE when tested against the QM91k test set (Figure 4.14b and Figure 4.16b), potentially

surpassing the accuracy (1.88 ppm MAE) reported in recent work on δ13C prediction on QM9

molecules [65], though for a much larger QM9 testing dataset. The model performs poorly

on testing DT3 and DT5b with accuracy of 11.39/32.27 ppm MAE, 19.56/45.90 ppm RMSD,

120.4/150.5 ppm MaxE (Figure 4.14a and Figure 4.16a). These results follow the pattern seen

in the δ1H predictions above, where the QM960k trained model achieves a very high accuracy

on the QM91k testing dataset, but this model fails to generalise to the larger molecules. As
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mentioned previously the larger molecules are more relevant to the practical application of these

molecules, and so this suggests the QM960k trained model would be of little use in applications

on larger molecules, though this will be discussed further in Chapter 5. The results for both

models are summarised in Table 4.7.

Training Dataset
Testing
Dataset

MAE [ ppm] RMSD [ ppm] MaxE [ ppm]
MAE as %
of range

DT4 (Gen 1) DT3 3.496 7.052 106.5 1.523
DT4 (Gen 1) DT5B 6.336 17.069 271.7 2.870

DT45 DT3 4.413 6.713 90.819 2.089
DT45 DT5B 4.305 6.312 64.130 1.970
DT45 QM91K 14.455 21.934 97.783 6.683

QM960k DT3 11.388 19.559 120.392 5.391
QM960k DT5B 32.269 45.902 150.470 14.762
QM960k QM91K 0.891 1.286 25.411 0.412

Table 4.7: Accuracy in δ13C prediction across the three testing datasets, for the DT45 and QM960k
trained models. as well as the generation 1, KRR model

4.2.4.2 Uncertainty estimation for δ13C prediction

The correlation between pre-prediction variance and prediction error shows a similar pattern as

in δ1H prediction, namely that there is a strong correlation for the most accurate predictions

(darker blue points in Figures 4.13 and 4.14), but the relationship is less useful at identifying

the largest errors (Outlying values are not consistently highlighted brighter yellow in Figures

4.13 and 4.14). The pre-prediction variance would likely be of little use in the application of the

generation 2 δ13C models, based on these results. The effect of variance cutoffs on the accuracy

of both models against both testing datasets are shown in Tables 4.8, 4.9, 4.10, and 4.11.
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Max Variance
No. Envs.
Removed

MAE [ ppm] RMSD [ ppm] MaxE [ ppm]

MAE of 100
largest
errors[
ppm]

10 5260 1.805 1.981 2.622 1.805
50 5246 3.109 3.941 9.135 3.109

100 5203 3.482 4.457 12.048 3.482
500 4815 3.773 5.253 22.400 9.321
1000 4448 4.159 5.745 28.044 12.368
5000 2995 4.483 6.618 78.920 19.873

10000 2207 4.495 6.603 78.920 21.838
50000 217 4.446 6.637 78.920 26.724
1e+08 0 4.413 6.713 90.819 27.755

Table 4.8: For the model trained using DT45. Effect of difference maximum variance cutoffs on
accuracy metrics for IMPRESSION δ13C predictions against DFT calculations for dataset 3. Total
δ13C environments in DT3: 5,262

Max Variance
No. Envs.
Removed

MAE [ ppm] RMSD [ ppm] MaxE [ ppm]

MAE of 100
largest
errors[
ppm]

5 9910 4.594 4.594 4.665 4.594
10 9901 2.756 3.223 4.902 2.756
50 9788 2.880 3.898 11.789 3.480

100 9504 3.102 4.396 30.748 7.219
500 6931 3.326 4.689 43.259 14.768
1000 4915 3.572 5.096 58.377 19.019
5000 1006 4.096 6.137 64.729 30.147

10000 333 4.217 6.335 66.176 31.407
50000 5 4.289 6.437 66.176 31.829
1e+08 0 4.290 6.437 66.176 31.829
5e+08 0 4.290 6.437 66.176 31.829

Table 4.9: For the model trained using DT45. Effect of difference maximum variance cutoffs on
accuracy metrics for IMPRESSION δ13C predictions against DFT calculations for dataset 5b.
Total δ13C environments in DT5b: 9,912
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Max Variance
No. Envs.
Removed

MAE [ ppm] RMSD [ ppm] MaxE [ ppm]

MAE of 100
largest
errors[
ppm]

0.5 5259 0.966 1.134 1.779 0.966
1 5251 0.703 0.818 1.779 0.703
5 5212 0.890 1.204 3.307 0.890
10 5177 1.276 2.341 16.369 1.276
50 5017 2.653 6.518 78.169 5.449

100 4823 3.988 9.230 78.169 12.765
500 3562 7.707 14.930 100.454 51.313
1000 2459 10.040 18.882 120.392 73.536
5000 39 11.395 19.607 120.392 80.662

10000 0 11.388 19.559 120.392 80.662

Table 4.10: For the model trained using QM960k. Effect of difference maximum variance cutoffs
on accuracy metrics for IMPRESSION δ13C predictions against DFT calculations for dataset 3.
Total δ13C environments in DT3: 5,262

Max Variance
No. Envs.
Removed

MAE [ ppm] RMSD [ ppm] MaxE [ ppm]

MAE of 100
largest
errors[
ppm]

5 9903 1.185 1.432 2.880 1.185
10 9888 2.789 4.641 18.153 2.789
50 9779 15.907 35.278 119.606 20.987

100 9569 29.632 49.789 143.785 89.171
500 6325 43.430 56.941 150.470 116.360
1000 3593 39.282 52.696 150.470 118.021
5000 6 32.283 45.915 150.470 118.178

10000 0 32.269 45.902 150.470 118.178

Table 4.11: For the model trained using QM960k. Effect of difference maximum variance cutoffs
on accuracy metrics for IMPRESSION δ13C predictions against DFT calculations for dataset 5b.
Total δ13C environments in DT5b: 9,912
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Figure 4.13: For the model trained using DT45: IMPRESSION predicted and DFT calculated
δ13C, with pre-prediction variance highlighted, for the DT3 (a), DT5b (b) and the QM91k (c)
testing datasets. Fit statistics for DT3: 4.41 ppm MAE, 6.71 RMSD, 90.82 MaxE, fit statistics
for DT5b: 4.31 ppm MAE, 6.31 ppm RMSD, 64.13 ppm MaxE, fit statistics for QM91k: 14.5 ppm
MAE, 21.9 ppm RMSD, 97.8 ppm MaxE.
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Figure 4.14: For the model trained using QM960k: IMPRESSION predicted and DFT calculated
δ13C, with pre-prediction variance highlighted, for the DT3 (a), DT5b (b) and the QM91k (c)
testing datasets. Fit statistics for DT3: 11.4 ppm MAE, 19.6 RMSD, 120.4 MaxE, fit statistics
for DT5b: 32.3 ppm MAE, 45.9 ppm RMSD, 150.5 ppm MaxE, fit statistics for QM91k: 0.89 ppm
MAE, 1.29 ppm RMSD, 25.4 ppm MaxE.
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Figure 4.15: For the model trained using DT45: Error distribution between IMPRESSION
predicted and DFT calculated δ13C, for the DT3 (a), DT5b (b) and the QM91k (c) testing datasets.
Fit statistics for DT3: 4.41 ppm MAE, 6.71 RMSD, 90.82 MaxE, fit statistics for DT5b: 4.31 ppm
MAE, 6.31 ppm RMSD, 64.13 ppm MaxE, fit statistics for QM91k: 14.5 ppm MAE, 21.9 ppm
RMSD, 97.8 ppm MaxE.
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Figure 4.16: For the model trained using QM960k: Error distribution between IMPRESSION
predicted and DFT calculated δ13C, for the DT3 (a), DT5b (b) and the QM91k (c) testing datasets.
Fit statistics for DT3: 11.4 ppm MAE, 19.6 RMSD, 120.4 MaxE, fit statistics for DT5b: 32.3 ppm
MAE, 45.9 ppm RMSD, 150.5 ppm MaxE, fit statistics for QM91k: 0.89 ppm MAE, 1.29 ppm
RMSD, 25.4 ppm MaxE.
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4.2.4.3 Prediction accuracy and molecule size for δ13C prediction

Similarly to the δ1H predictions, the accuracy in predictions for δ13C for each model depends on

the size of the molecule (Figure 4.17). The DT45 trained model performs poorly on the smallest

molecules (from QM91k) with an accuracy of 27.0 ppm MAE, 32.3 ppm RMSD, 60.1 ppm MaxE on

the 30 environments from molecules with fewer than 10 atoms. Conversely the QM960k trained

model performs poorly on the largest molecules (from DT5b) with an accuracy of 41.8 ppm MAE,

55.4 ppm RMSD, 150 ppm MaxE on the 4237 environments from molecules with greater than 80

atoms. As in the case of δ1H prediction, both models fail to generalise successfully to molecules

with significantly different size than those in their respective training datasets, however due to

the nature of the DT45 training dataset, the DT45 trained model retains its prediction accuracy

over a much larger range of molecule sizes.

It is also clear that the size of the molecules is not the only factor affecting model prediction

accuracy, as there is still a difference in MAE for each of the two models across the three testing

datasets, even when this difference is accounted for. This is visible in the mean absolute error of

molecule subsets with mean number of atoms equal to 20 in Figure 4.17. There remains a clear

bias in prediction accuracy towards molecules from the same source as the training data for a

given model.
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Figure 4.17: Accuracy in δ13C prediction across the three testing datasets for subsets of molecules
with different size, for the models trained using DT45 (a), and QM960k (b).
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4.2.4.4 Performance relative to experiment for δ13C prediction

The DT45 trained model obtains an accuracy of 3.76 ppm MAE, 5.25 ppm RMSD, 25.5 ppm MaxE

on the experimentally measured δ13C values from experimental testing dataset 1 (DTe1b, 46

molecules, 654 δ13C values, 2.4.6.1). This is significantly better than the generation 1 model

trained using DT4: 4.76 ppm MAE, 6.82 ppm RMSD, MaxE 35.0 ppm. The QM960k trained model

achieves a considerably worse accuracy: 7.15 ppm MAE, 11.92 ppm RMSD, 57.270 ppm MaxE.

The accuracy of the underlying DFT method relative to the experimental values is 2.18 ppm MAE,

2.80 ppm RMSD, 14.9 ppm MaxE. A summary of these results is shown in Table 4.7. The DT45

trained model provides a much closer prediction accuracy to the underlying DFT method than

the QM960k trained model, this is highlighted by the similarity in error distributions relative

to experiment in Figure 4.18a and the relative dissimilarity between the error distributions in

Figure 4.19a. The QM960k model predictions also contain several more large errors than the

DT45 model predictions, visible in Figure 4.19b.

The pre-prediction variance provides a small but useful filter for the predictions for both

models, in contrast to the results for the DFT testing datasets above. Removing environments

with a variance of greater than 5000 for the QM960k trained model, and greater than 50,000 for

the DT45 trained model removes just 5 (DT45) and 23 (QM960k) environments, but improves the

mean absolute error from 3.76 ppm to 3.69 ppm for the DT45 trained model, and from 7.15 ppm

to 6.78 ppm for the QM960k trained model. This is a small improvement, but demonstrates the

potential utility of the pre-prediction variance in identifying unreliable predictions.

When splitting the test dataset into molecules with fewer or more than 40 atoms, the difference

between the prediction accuracy of the two models displays the same pattern as in the δ1H

predictions. For the 208 environments from molecules with fewer than 40 atoms, the prediction

accuracy of both models is similar (3.45/4.15 ppm MAE, 4.59/5.78 ppm RMSD, 17.8/19.2 ppm

MaxE for models trained on DT45 and QM960k respectively). For the 341 environments from

molecules with more than 40 atoms however, the accuracy of the two models diverge (9.41/3.52

ppm MAE, 14.7/4.89 ppm RMSD, 57.2/25.5 ppm MaxE for models trained on DT45 and QM960k

respectively).

The QM960k trained model provides an advantage over the DT45 trained model in the

prediction of environments from smaller molecules, however this difference is relatively small

compared to the difference between prediction accuracy for larger molecules. This again suggests

105



CHAPTER 4. IMPRESSION GENERATION 2

that the DT45 trained model will perform better in the prediction of δ13C in the practical

application of these models, as the molecules of interest in such an application are likely to be

larger than 30 atoms, and for smaller molecules the difference between the model prediction

accuracy is minor.

Target Training Dataset MAE [ ppm] RMSD [ ppm] MaxE [ ppm]

δ13C DT45 3.759 5.245 25.448
δ13C QM960k 7.151 11.922 57.270
δ13C DFT 2.183 2.798 14.866

Table 4.12: Accuracy of DFT calculations as well as predictions from the DT45 and QM960k
trained models relative to the experimental values from the δ13C experimental test set (DTe1b).
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Figure 4.18: For the DT45 trained model predictions on the δ13C experimental testing dataset.
Error distributions between IMPRESSION and Experiment and between DFT and Experiment
(a). IMPRESSION predicted against experimentally measured δ13C, with pre-prediction variance
highlighted (b). Fit statistics for DTe1b: 3.76 ppm MAE, 5.25 ppm RMSD, 25.45 ppm MaxE.

106



4.2. RESULTS

20 0 20 40 60
Error in predicted 13C Chemical Shift [ppm]

0.00

0.05

0.10

0.15

0.20

0.25

De
ns

ity
 [T

ot
al

 =
 5

49
]

a)
IMP-Exp
DFT-Exp

0 50 100 150 200
Experimental 13C Chemical Shift [ppm]

0

50

100

150

200

Pr
ed

ict
ed

 13
C 

Ch
em

ica
l S

hi
ft 

[p
pm

]

b)
ML vs Exp

0

2

4

6

8

Lo
g 

Pr
e-

Pr
ed

ict
io

n 
Va

ria
nc

e

Figure 4.19: For the DT45 trained model predictions on the δ13C experimental testing dataset.
Error distributions between IMPRESSION and Experiment and between DFT and Experiment
(a). IMPRESSION predicted against experimentally measured δ13C, with pre-prediction variance
highlighted (b). Fit statistics for DTe1b: 7.15 ppm MAE, 11.9 ppm RMSD, 57.3 ppm MaxE

4.2.5 1JCH prediction

4.2.5.1 Performance relative to DFT for 1JCH prediction

The generation 2 model trained using DT45 (combination of dataset 4: Section 2.4.3 and dataset

5a: Section 2.4.4, 2,372 molecules, 121,436 1JCH values) achieves an accuracy of 3.41/2.92 Hz

MAE, 4.79/3.82 Hz RMSD, 51.6/23.4 Hz MaxE when tested on the DT3 (306 molecules, 5,608 1JCH

values, Section 2.4.2) and DT5b (400 molecules, 10,641 1JCH values, Section 2.4.4) respectively

(Figure 4.20a, and Figure 4.20a).

This accuracy is significantly worse for DT3 than the IMPRESSION generation 1 model

trained using DT4 (1.29 Hz MAE, 2.16 Hz RMSD, 114.6 Hz MaxE), and significantly better

for DT5b (7.29 Hz MAE, 8.02 Hz RMSD, 152.8 Hz MaxE). This could be a result of differences

between molecules in DT4 and molecules in DT5a, which now dominate the training dataset,

causing the model to prioritise prediction accuracy for molecules similar to those in DT5b, at the

expense of accuracy on molecules in DT3.

When tested against the QM91k testing dataset (752 molecules, 6,284 1JCH values, Section

2.4.5), the accuracy for the DT45 trained model is 7.01 Hz MAE, 8.69 Hz RMSD, 45.2 Hz MaxE
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(Figure 4.20b and Figure 4.22b). The poor accuracy against the QM91k testing dataset follows

the same pattern as observed for the chemical shift results above, the models trained using the

larger structures from DT4 and DT5a lose a significant amount of accuracy in generalising to the

smaller molecules in QM9.

The QM960k trained model achieves an accuracy of 0.54 Hz MAE, 0.77 Hz RMSD, 8.72 Hz

MaxE when tested against the QM91k test set (Figure 4.21b and Figure 4.23b, and 7.51/26.7 Hz

MAE, 10.5/31.6 Hz RMSD, 43.0/69.7 Hz MaxE when tested against the DT3 and DT5b testing

datasets respectively 4.21a and Figure 4.23a. A summary of the accuracy for both models on the

three testing sets is shown in Table 4.13.

Training Dataset
Testing
Dataset

MAE [Hz] RMSD [Hz] MaxE [Hz]
MAE as %
of Range

DT4 (Gen 1) DT3 1.127 1.713 60.92 0.861
DT4 (Gen 1) DT5B 1.825 3.198 73.556 1.098

DT45 DT3 3.408 4.789 51.622 2.981
DT45 DT5B 2.918 3.823 23.401 1.925
DT45 QM91K 7.011 8.693 45.183 5.070

QM960k DT3 7.514 10.544 43.017 6.573
QM960k DT5B 26.708 31.600 69.688 17.620
QM960k QM91K 0.541 0.769 8.721 0.391

Table 4.13: Accuracy in 1JCH prediction across the three testing datasets 3 (DT3), 5b (DT5b) and
QM91k, for the DT45 and QM960k trained models, as well as the generation 1, KRR model.

The accuracy of the QM960k trained model is also worse than the reported accuracy for

the LightGBM based model [67] (1.82 Hz RMSD against a larger subset of QM9 molecules),

however even if the improvement in accuracy for the LightGBM model also leads to an equivalent

improvement in prediction accuracy on datasets such as DT3 and especially DT5b, the DT45

trained model is likely to provide significantly more accurate predictions for larger molecules.

4.2.5.2 Uncertainty Estimation for 1JCH prediction

The pre-prediction variance for the DT45 trained model follows a similar pattern as seen above

for δ1H prediction, as the pre-prediction variance appears to correlate more with the value of

the NMR parameter than with the error in prediction (Figure 4.20). This is unsurprising as the

environments for the δ1H prediction are also a part of the 1JCH prediction, and so the relative

dissimilarity of environments relative to both parameters will share some features.
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The pre-prediction variance for the QM960k trained model is again unhelpful in the identifica-

tion of large errors in the QM91k testing dataset, largely due to the lack of any large errors (Lack

of outlying values in Figure 4.21b). In the prediction of DT3 and DT5b the largest outlying values

above 225 Hz (DFT value) are identified, (brighter yellow points in Figure 4.21a). In this case a

variance filter of 500 for the QM960k trained model improves the MAE relative to DT5b from

26.7 Hz to 26.3 Hz, removing 200 (less than 2% of the dataset). As can be seen by the majority of

the points in 4.21a and Table 4.17 however, a very large proportion of the dataset needs to be

discounted for the accuracy to begin to match that of the DT45 trained model. This indicates that

the QM960k trained model will likely not be useful in the prediction of 1JCH values for larger

molecules, even with a pre-prediction variance filter. The effect of variance cutoffs on the accuracy

of both models against both testing datasets are shown in Tables 4.14, 4.15, 4.16, and 4.17.

Max Variance
No. Envs.
Removed

MAE [Hz] RMSD [Hz] MaxE [Hz]
MAE of 100

largest
errors[Hz]

5 4673 2.813 3.916 28.404 8.498
10 3810 2.903 3.935 28.404 10.112
50 1129 3.204 4.395 29.639 13.966

100 362 3.303 4.567 32.337 15.409
500 21 3.395 4.769 51.622 17.064
1000 4 3.404 4.782 51.622 17.152
5000 0 3.408 4.789 51.622 17.196

Table 4.14: For the model trained using DT45. Effect of difference maximum variance cutoffs
on accuracy metrics for IMPRESSION 1JCH predictions against DFT calculations for dataset 3.
Total 1JCH environments in DT3: 5,608
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Max Variance
No. Envs.
Removed

MAE [Hz] RMSD [Hz] MaxE [Hz]
MAE of 100

largest
errors[Hz]

1 10385 7.753 8.549 15.433 11.174
5 8274 7.567 8.407 21.082 14.255
10 5531 6.964 7.790 24.509 15.531
50 540 6.781 7.602 29.440 18.295

100 303 6.814 7.646 29.440 18.664
500 33 6.873 7.729 30.131 19.486
1000 0 6.886 7.746 30.131 19.589

Table 4.15: For the model trained using DT45. Effect of difference maximum variance cutoffs on
accuracy metrics for IMPRESSION 1JCH predictions against DFT calculations for dataset 5b.
Total 1JCH environments in DT5b: 10,641

Max Variance
No. Envs.
Removed

MAE [Hz] RMSD [Hz] MaxE [Hz]
MAE of 100

largest
errors[Hz]

5 5480 5.900 6.380 13.622 6.650
10 5262 5.501 6.068 17.214 8.288
50 3977 4.900 6.002 30.732 14.000

100 2621 6.083 8.457 40.268 29.188
500 9 7.522 10.552 43.017 35.059
1000 0 7.514 10.544 43.017 35.059

Table 4.16: For the model trained using QM960k. Effect of difference maximum variance cutoffs
on accuracy metrics for IMPRESSION 1JCH predictions against DFT calculations for dataset 3.
Total 1JCH environments in DT3: 5,608

Max Variance
No. Envs.
Removed

MAE [Hz] RMSD [Hz] MaxE [Hz]
MAE of 100

largest
errors[Hz]

50 9808 6.136 8.606 37.112 19.046
100 8378 13.299 18.328 53.549 42.502
500 200 26.320 31.178 69.639 62.754
1000 0 26.708 31.600 69.688 63.448

Table 4.17: For the model trained using QM960k. Effect of difference maximum variance cutoffs
on accuracy metrics for IMPRESSION 1JCH predictions against DFT calculations for dataset 5b.
Total 1JCH environments in DT5b: 10,641
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Figure 4.20: For the model trained using DT45: IMPRESSION predicted and DFT calculated
1JCH , with pre-prediction variance highlighted, for the DT3 (a), DT5b (b) and the QM91k (c)
testing datasets. Fit statistics for DT3: 3.41 Hz MAE, 4.79 Hz RMSD, 51.6 Hz MaxE, fit statistics
for DT5b: 2.92 Hz MAE, 3.82 Hz RMSD, 23.4 Hz MaxE, fit statistics for QM91k: 7.01 Hz MAE,
8.69 Hz RMSD, 45.2 Hz MaxE
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Figure 4.21: For the model trained using QM960k: IMPRESSION predicted and DFT calculated
1JCH , with pre-prediction variance highlighted, for the DT3 (a), DT5b (b) and the QM91k (c)
testing datasets. Fit statistics for DT3: 7.51 Hz MAE, 10.5 Hz RMSD, 43.0 Hz MaxE, fit statistics
for DT5b: 26.7 Hz MAE, 31.6 Hz RMSD, 69.7 Hz MaxE, fit statistics for QM91k: 0.54 Hz MAE,
0.77 Hz RMSD, 8.72 Hz MaxE
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Figure 4.22: For the model trained using DT45: Error distribution between IMPRESSION
predicted and DFT calculated 1JCH , for the DT3 (a), DT5b (b) and the QM91k (c) testing datasets.
Fit statistics for DT3: 3.41 Hz MAE, 4.79 Hz RMSD, 51.6 Hz MaxE, fit statistics for DT5b: 2.92
Hz MAE, 3.82 Hz RMSD, 23.4 Hz MaxE, fit statistics for QM91k: 7.01 Hz MAE, 8.69 Hz RMSD,
45.2 Hz MaxE
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Figure 4.23: For the model trained using QM960k: Error distribution between IMPRESSION
predicted and DFT calculated 1JCH , for the DT3 (a), DT5b (b) and the QM91k (c) testing datasets.
Fit statistics for DT3: 7.51 Hz MAE, 10.5 Hz RMSD, 43.0 Hz MaxE, fit statistics for DT5b: 26.7
Hz MAE, 31.6 Hz RMSD, 69.7 Hz MaxE, fit statistics for QM91k: 0.54 Hz MAE, 0.77 Hz RMSD,
8.72 Hz MaxE
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4.2.5.3 Prediction accuracy and molecule size for 1JCH prediction

Similarly to the chemical shift predictions, the accuracy in 1JCH predictions for each model

depends on the size of the molecule (Figure 4.24), although the effect is different for dataset 3 in

this case.

The DT45 trained model performs poorly on the smallest molecules (from QM91k) with an

accuracy of 13.0 Hz MAE, 18.5 Hz RMSD, 40.5 Hz MaxE on the 11 environments from molecules

with fewer than 10 atoms. Conversely the QM960k trained model performs poorly on the largest

molecules (from DT5b) with an accuracy of 45.1 Hz MAE, 46.5 Hz RMSD, 75.6 Hz MaxE on the

5075 environments from molecules with greater than 80 atoms.

For molecules with fewer than 25 atoms in DT3 and QM91k, the prediction accuracy from the

QM960k trained model increases for smaller molecules. The QM960k model accuracy peaks for

molecules with between 20 and 40 atoms in both DT3 and QM91k, with a mean absolute error of

4.73 Hz for DT3 and 0.42 Hz for QM91k. The accuracy for the QM960k trained model for datasets

3 and QM91k for each molecule size subset is shown in Tables 4.18 and 4.19.

The prediction accuracy for the DT45 trained model appears to decrease for the smallest

molecules and largest molecules in dataset 3, with the peak accuracy occurring for molecules

with between 10 and 20 atoms. It is uncertain what the cause of this is. The increase in prediction

error for larger molecules is not seen for the DT45 trained models for chemical shift prediction

(Figures 4.15 and 4.8).

Min Size Max Size No. Envs. MAE [Hz] RMSD [Hz] MaxE [Hz]

5 10 11 1.084 1.507 3.484
10 20 5203 0.572 0.808 8.721
20 40 1959 0.422 0.576 2.866

Table 4.18: QM960k trained model predictions on testing dataset QM91k, split by molecule size.

Min Size Max Size No. Envs. MAE [Hz] RMSD [Hz] MaxE [Hz]

5 10 10 9.734 10.961 17.334
10 20 99 7.848 8.411 14.338
20 40 2279 4.727 5.625 24.404
40 80 3306 8.255 11.403 43.017
80 160 175 25.280 26.426 40.268

Table 4.19: QM960k trained model predictions on testing dataset 3, split by molecule size.
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Figure 4.24: Accuracy in 1JCH prediction across the three testing datasets for subsets of molecules
with different size, for the model trained using DT45 (a) and QM960k (b).

4.2.5.4 Experimental Validation for 1JCH prediction

The DT45 trained model achieves an accuracy of 6.69 Hz MAE, 10.59 Hz RMSD, 73.2 Hz MaxE

against the 721 experimentally measured values in the 1JCH experimental dataset 3 (DTe3, 131

molecules, Section 2.4.6.3) (Figure 4.25). This compares well with the accuracy of the generation

1 model: 6.01 Hz MAE, 11.18 Hz RMSD, MaxE 54.3 Hz. The pre-prediction variance on the

experimental predictions identifies several of the largest errors, and removing just 53 of the

environments (around 7% of the dataset) reduces the MAE to 6.50 Hz, the RMSD to 10.22 and

the MaxE to 55.8 Hz. The accuracy of the DFT calculations compared to the experimental values

is 2.16 Hz MAE, 3.23 Hz RMSD, 20.1 Hz MaxE. The IMPRESSION predictions are relatively

much poorer compared to the underlying DFT method in this case than in the chemical shift

predictions.

The model trained on QM960k performs roughly as well as the DT45 trained model, with an

accuracy of 6.45 Hz MAE, 10.13 Hz RMSD, and 60.8 Hz MaxE (Figure 4.26). Although neither of

the models perform as well as hoped (similar accuracy to the underlying DFT model, as seen in

chemical shift prediction), the fact that the QM960k trained model achieves a similar accuracy

as the DT45 trained model is significant, though likely this is emphasised due to the small size of

the molecules in the DTe3 dataset, with the majority being smaller than 20 atoms.
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As with the DT45 trained model, a modest improvement to the QM960k prediction accuracy

can be made by removing environments with high pre-prediction variance. Removing 232 envi-

ronments (all with variance above 10) lowers the mean absolute error to 5.4 ppm. This is however

a large proportion of the dataset (over 30%).

Target Training Dataset MAE [Hz] RMSD [Hz] MaxE [Hz]
1JCH DT45 6.694 10.594 73.182
1JCH QM960k 6.449 10.134 60.801
1JCH DFT 2.158 3.226 20.050

Table 4.20: Accuracy of DFT calculations as well as predictions from the DT45 and QM960k
trained models relative to the experimental values from the 1JCH experimental test set DTe3.
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Figure 4.25: For the DT45 trained model predictions on the 1JCH experimental testing dataset.
Error distributions between IMPRESSION and Experiment and between DFT and Experiment
(a). IMPRESSION predicted against experimentally measured 1JCH , with pre-prediction variance
highlighted (b). Fit statistics for DTe3: 6.69 Hz MAE, 10.6 Hz RMSD, 73.2 Hz MaxE
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Figure 4.26: For the QM960k trained model predictions on the 1JCH experimental testing dataset.
Error distributions between IMPRESSION and Experiment and between DFT and Experiment
(a). IMPRESSION predicted against experimentally measured 1JCH , with pre-prediction variance
highlighted (b). Fit statistics for DTe3: 6.50 Hz MAE, 10.1 Hz RMSD, 60.8 Hz MaxE.

4.2.6 Further Scalar Coupling Prediction

The generation two models are trained to predict further scalar coupling constants: 1JCC, 2JCH ,

2JCC, 2JHH , 3JCH , 3JCC, 3JHH . These parameters were not investigated as a part of the genera-

tion 1 IMPRESSION prediction models, and the experimental validation of these parameters is

beyond the scope of this thesis, however some analysis can be made of the quality of predictions

for these NMR parameters relative to the underlying DFT method and relative to the performance

on other parameters.

The accuracy of each parameter relative to the range of DFT calculated values across the

three testing datasets (3, 5, QM91k) for models trained on DT45 and QM960k are shown in

Figure 4.27. In general the parameters follow the same pattern as those discussed above (1H and

13C chemical shifts, and 1JCH coupling constants) , where the predictions for the DT45 model

are reasonably accurate for the DT3 and DT5b testing datasets (MAE 3% or less of the range of

DFT calculated values), but less accurate for the QM91k testing dataset (MAE greater than 3%

in most cases, greater than 5% in 4 out of 7 parameters). Conversely the QM960k trained model

predictions are less accurate for the DT3 and DT5b testing datasets (MAE greater than 5% of the

range of DFT calculated values) and more accurate on the QM91k dataset (MAE less than 2% for
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NMR Parameter
Reported RMSD

[Hz] against QM9
[67]

QM960k trained
model against
QM91k RMSD

[Hz]
2JCH 0.82 0.20
2JHH 0.48 0.18
3JCH 1.07 0.40
3JHH 0.67 0.17

Table 4.21: Accuracy comparison between recent published work and the QM960k trained model

all parameters).

The accuracy of the QM960k trained model against the QM91k testing dataset is better than

the reported accuracy from the most recent work on prediction of several coupling constants:

2JCH , 2JHH , 3JCH , 3JHH (Table 4.21) [67]. It is important to note that the reported accuracy in

this case was for testing against a much larger subset of molecules from QM9, however both

that dataset and the one used in this work were selected at random from molecules in the QM9

dataset. It is reasonable to suggest that the accuracy of the QM960k trained model on the DT3

and DT5b testing datasets is as good or better than the accuracy of the reported model from

Shibata et al.

There are currently no reported machine learning models which predict the remaining

13C −13 C coupling constants predicted by the generation 2 models. The percentage accuracy

for these coupling constants ( 1JCC, 2JCC, 3JCC) is however similar to those of the other scalar

coupling constants, and so the prediction accuracy on these parameters is also representative of

the accuracy in recently published work if they were adapted for the prediction of these coupling

constants.

The DT45 trained model therefore represents the most accurate predictions for the coupling

constants: 1JCC, 2JCH , 2JCC, 2JHH , 3JCH , 3JCC, 3JHH on molecules similar to those in datasets

3 and 5b. Considering datasets 3 and 5b were chosen to be representative (in terms of size,

structural diversity and constituent atoms) of organic molecules frequently targeted by NMR

studies, the predictions from this model are likely to prove useful in practical applications, where

predictions from QM9 based models are not.
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Figure 4.27: Comparison in model accuracy for testing datasets 3(a), 5b(b), QM91k(c). Bar height
represents the mean absolute error as a percentage of the full range of values for that NMR
parameter, each bar is annotated with the raw MAE values.
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4.3 Comparison to NMRShiftDB

As discussed in Chapter 1, NMRShiftDB provides an open source NMR prediction tool [83]. The

performance of this prediction tool is assessed relative to the two main models produced as a part

of this project (IMPRESSION generation 1 and IMPRESSION generation 2) on a set of randomly

selected compounds from DT5b (dataset 5b, discussed in section 2.4.4). The full results are shown

below in tables 4.22 and 4.23.

The results for δ13C prediction show no clear indication of whether the NMRShiftDB model

provides better predictions than either of the two models produced, with the NMRShiftDB

model outperforming the two IMPRESSION models in roughly half of the molecules for which

predictions were available. The inability for the NMRShiftDB model to produce predictions for

almost half of the submitted molecules however provides an indication that the IMPRESSION

models drastically increase the range of molecules for which a similar accuracy can be achieved.

For δ1H prediction there is a far clearer picture, with both IMPRESSION models providing

significantly more accurate predictions for every molecule tested, in most cases with a mean

absolute error of better than half that obtained from the NMRShiftDB predictions. As noted in

1, the NMRShiftDB model is designed to predict experimental chemical shifts and so there is

some advantage provided to the IMPRESSION models here (all of these errors are relative to

the DFT computed values), however even adjusting for a possible increase in the NMRShiftDB

accuracy (the error between the chosen DFT method and experimental values can be estimated

at around 0.2-0.3ppm) the IMPRESSION models are significantly more accurate, and provide

accurate predictions for a much wider range of molecules than the NMRShfitDB model.
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Molecule ID Result
MAE NMR-

ShiftDB
[ppm]

MAE
IMPGen1

[ppm]

MAE
IMPGen2

[ppm]
CHEMBL1075841 Site Error N/A 4.07 3.34
CHEMBL1084953 Success 2.85 2.17 3.93
CHEMBL1086530 Invalid atom(s) N/A 13.00 4.08
CHEMBL1094672 Site Error N/A 4.68 4.02
CHEMBL1096781 Success 4.04 7.08 3.52
CHEMBL1213982 Success 3.71 2.53 4.68
CHEMBL174668 Site Error N/A 3.44 4.13
CHEMBL4116108 Success 1.88 4.54 6.23
CHEMBL4116148 Success 2.49 3.50 4.18
CHEMBL437851 Site Error N/A 9.87 2.53
CHEMBL501943 Site Error N/A 2.58 3.52
CHEMBL507540 Site Error N/A 2.98 3.36
CHEMBL538928 Success 3.27 11.03 6.96
CHEMBL573427 Site Error N/A 5.59 2.86
CHEMBL574221 Invalid Atom(s) N/A 18.16 6.03
CHEMBL579584 Success 2.73 4.30 5.32
CHEMBL595793 Success 5.36 5.08 6.29
CHEMBL608847 Success 3.01 3.83 4.04
CHEMBL6225 Success 5.46 5.32 8.32
CHEMBL6889 Success 9.86 3.09 2.92

Table 4.22: Comparison between NMRShiftDB, IMPRESSION generation 1, and Impression
generation 2 for δ13C chemical shift. MAE = Mean Absolute Error.
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Molecule ID Result
MAE NMR-

ShiftDB
[ppm]

MAE
IMPGen1

[ppm]

MAE
IMPGen2

[ppm]
CHEMBL1075841 Site Error N/A 0.23 0.23
CHEMBL1084953 Success 0.22 0.13 0.16
CHEMBL1086530 Invalid atom(s) N/A 0.34 0.22
CHEMBL1094672 Site Error N/A 0.39 0.29
CHEMBL1096781 Success 0.75 0.33 0.27
CHEMBL1213982 Success 0.53 0.21 0.31
CHEMBL174668 Site Error N/A 0.33 0.25
CHEMBL4116108 Success 1.76 0.39 0.38
CHEMBL4116148 Success 0.79 0.20 0.28
CHEMBL437851 Site Error N/A 0.32 0.20
CHEMBL501943 Site Error N/A 0.26 0.31
CHEMBL507540 Site Error N/A 0.35 0.23
CHEMBL538928 Success 0.33 0.26 0.23
CHEMBL573427 Site Error N/A 0.41 0.24
CHEMBL574221 Invalid Atom(s) N/A 0.59 0.58
CHEMBL579584 Success 0.87 0.31 0.24
CHEMBL595793 Success 1.01 0.20 0.51
CHEMBL608847 Success 1.05 0.22 0.23
CHEMBL6225 Success 0.71 0.50 0.33
CHEMBL6889 Success 0.77 0.20 0.22

Table 4.23: Comparison between NMRShiftDB, IMPRESSION generation 1, and Impression
generation 2 for δ1H prediction. MAE = Mean Absolute Error.
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4.4 IMPRESSION Generation 1 vs IMPRESSION Generation 2

The primary purpose of the further development of machine learning models is to make improve-

ments upon the first generation of machine learning models. For the purposes of this section the

IMPRESSION generation 1 model trained on DT4 (Dataset 4, derived from the CSD, discussed

in section 2.4.3) and the IMPRESSION generation 2 model trained on DT45 (the combination of

both datasets 4 and 5) are treated as the final output of the two model development processes.

In the development of the generation 2 models (based on graph transformer network architec-

ture), the aims were to improve the prediction accuracy for the molecules in DT5b (dataset 5b,

derived from ChEMBL structures, discussed in section 2.4.4) in particular. It was also hoped that

an improved architecture and a larger training set may also yield improved predictions on DT3

(dataset 3, derived from CSD structures, discussed in section 2.4.2), however this is clearly not

the case.

Firstly, looking at δ1H prediction, the relative error distributions of the two models for DT3

and DT5b are shown in Figure 4.29, the four error distributions shown here are all relatively

similar, indicating that the accuracy of both models is comparable across both datasets for this

parameter. The mean absolute errors in predictions are similar, for DT3 the MAE is 0.24 ppm

for generation 1 and 0.22 for generation 2, for DT5 the MAEs are 0.34 ppm and 0.36 ppm

respectively. There is therefore little advantage in the generation 2 model in terms of accuracy

for δ1H prediction, however the other advantages of the generation 2 model, in terms of further

Target Generation Testing dataset MAE RMSD MaxE

δ1H 1 DT3 0.24 ppm 0.39 ppm 4.27 ppm
δ1H 2 DT3 0.22 ppm 0.36 ppm 8.01 ppm
δ1H 1 DT5b 0.34 ppm 0.54 ppm 8.78 ppm
δ1H 2 DT5b 0.27 ppm 0.36 ppm 5.96 ppm

δ13C 1 DT3 3.50 ppm 7.05 ppm 106.5 ppm
δ13C 2 DT3 4.41 ppm 6.71 ppm 90.1 ppm
δ13C 1 DT5b 6.34 ppm 17.1 ppm 271.7 ppm
δ13C 2 DT5b 4.31 ppm 6.31 ppm 64.1 ppm
1JCH 1 DT3 1.12 Hz 1.71 Hz 60.9 Hz
1JCH 2 DT3 3.41 Hz 4.79 Hz 51.6 Hz
1JCH 1 DT5b 1.83 Hz 3.20 Hz 19.3 Hz
1JCH 2 DT5b 2.92 Hz 3.80 Hz 23.4 Hz

Table 4.24: Caption
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development and speed of prediction, are still applicable.

For δ13C prediction, the generation 1 model shows a significant difference in performance

when making predictions on the two datasets DT3 and DT5b, with MAEs of 3.5 ppm and 6.3 ppm

respectively. The generation 2 model however produces similar accuracy against both datasets,

with MAEs of 4.41 ppm and 4.31 ppm for DT3 and DT5b respectively. These differences in error

distributions are clear in Figure 4.30, and indicate that whilst the generation 2 model has worse

accuracy on DT3 than the first generation, there is clearly an improvement in the generalisation

of the model. This is arguably one of the most important qualities in a machine learning system,

and so this represents a significant improvement from the first to the second generation.

The results in the comparison of predictions for 1JCH prediction are different again, as can be

clearly seen from the error distributions in Figure 4.31. The generation 2 model performs worse

against both datasets, with MAEs between 2 and 3 times worse than the generation 1 model.

This is a disappointing result from a model development perspective, however it is interesting

that the new architecture and increased training dataset has yielded different results across

the three main parameters investigated. The potential solution for improving 1JCH prediction

in generation 2 lies clearly in the expansion of the training datasets, which is one of the main

advantages of moving from a kernel ridge regression architecture to a neural network style model.

The practical limits of the training dataset size of generation 1 have been nearly realised in the

model discussed here, however the training dataset for the generation 2 model can be vastly

increased, and relative to recent work in neural network prediction models, the existing dataset

here is very small.

In terms of the pre-prediction variance performance, both generations suffer from a similar

issue in most cases, namely that in most circumstances, the correlation between pre-prediction

variance and prediction error breaks down at low errors. In other words the pre-prediction

variance is a good indicator of very poor predictions, however identifying predictions with even 2

or 3 times worse prediction accuracy does not seem possible with the pre-prediction variance as

it is implemented here. This effect can be clearly seen in Figure 4.28, where the flatness of the

curve for low variance percentiles shows the lack of correlation between this value and the mean

absolute error. Furthermore these results show that in several cases the generation 2 model

shows little to no correlation between the two values, and in fact for the prediction of δ13C for

DT3 it appears to show a small negative correlation (Figure 4.28c).
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In the cases where there is at least a correlation for high variance values, there is still a

significant utility in using the pre-prediction variance, as it does effectively exclude the largest

errors, especially in the generation 1 model. A hypothetical situation could be imagined where,

for the generation 1 model, values are labelled with the pre-prediction variance percentile (to

make this comparable across different parameters), and this value used to weight comparisons

such as those discussed in Chapter 5. It would be highly important in these cases to determine

the percentiles based on an independent test dataset, and to assign new values into the existing

percentiles, otherwise the labels would be tightly dependent on the quality of predictions for the

given molecule being analysed.

The results here are promising in terms of the potential utility of the generation 2 model, as

they already show a significant improvement in δ13C prediction accuracy, and successfully im-

prove the generalisation of δ1H prediction. However the poor 1JCH prediction accuracy indicates

this is not a simple improvement in prediction model across all metrics. It is likely that through

expanding the training dataset for the generation 2 model that the accuracy can be significantly

increased, beyond that of the generation 1 model.
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Figure 4.28: Comparison between IMPRESSION generation 1 trained using DT4 and IMPRES-
SION generation 2 trained using DT45, in terms of the correlation between the mean absolute
error and the pre-prediction variance. For three NMR parameters against both testing datasets:
δ1H for DT3 (a), δ1H for DT5b (b), δ13C for DT3 (c), δ13C for DT5b (d), 1JCH for DT3 (e), 1JCH
for DT5b (f).
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Figure 4.29: Comparison between IMPRESSION generation 1 model (trained using DT4) and
IMPRESSION generation 2 model (trained using DT45) for δ1H prediction. Tested against DT3
and DT5b. Fit statistics for Generation 1, DT3: 0.24 ppm MAE, 0.39 ppm RMSD, 4.27 ppm MaxE,
DT5b: 0.34 ppm MAE, 0.54 ppm RMSD, 8.78 ppm MaxE. Fit statistics for Generation 2, DT3:
0.22 ppm MAE, 0.36 ppm RMSD, 8.01 ppm MaxE, DT5b: 0.27 ppm MAE, 0.36 ppm RMSD, 5.96
ppm MaxE.
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Figure 4.30: Comparison between IMPRESSION generation 1 model (trained using DT4) and
IMPRESSION generation 2 model (trained using DT45) for δ13C prediction. Tested against DT3
and DT5b. Fit statistics for Generation 1, DT3: 3.50 ppm MAE, 7.05 ppm RMSD, 106.5 ppm
MaxE, DT5b: 6.34 ppm MAE, 17.1 ppm RMSD, 271.7 ppm MaxE. Fit statistics for Generation 2,
DT3: 4.41 ppm MAE, 6.71 ppm RMSD, 90.12 ppm MaxE, DT5b: 4.31 ppm MAE, 6.31 ppm RMSD,
64.1 ppm MaxE.
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Figure 4.31: Comparison between IMPRESSION generation 1 model (trained using DT4) and
IMPRESSION generation 2 model (trained using DT45) for 1JCH prediction. Tested against DT3
and DT5b. Fit statistics for Generation 1, DT3: 1.12 Hz MAE, 1.71 Hz RMSD, 60.9 Hz MaxE,
DT5b: 1.83 Hz MAE, 3.20 Hz RMSD, 19.3 Hz MaxE. Fit statistics for Generation 2, DT3: 3.41 Hz
MAE, 4.79 Hz RMSD, 51.6 Hz MaxE, DT5b: 2.92 Hz MAE, 3.8 Hz RMSD, 23.4 Hz MaxE.
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4.5 QM9 models and overfitting

The results in this section for models trained using molecules taken from QM9 dataset [77] are

intended to test a specific hypothesis, namely whether the incredibly impressive NMR parameter

prediction accuracy reported in recent literature is a genuine result, and easily expandable to

molecules of more genuine scientific interest, or a result of overfitting on a relatively simple

dataset.

Overfitting is discussed in general terms in Section 2.1.1, and there is significant evidence

in the results produced to suggest that the QM9 models reported suffer from overfitting. The

QM960k trained generation 2 model analysed in this chapter produces accuracy similar to that

of several recently published models [80][67][65] when tested against the QM91k dataset (1000

molecule subset of QM9, discussed in section 2.4.5). However, this accuracy does not generalise

to the two other datasets (DT3 and DT5b, discussed in sections 2.4.2 and 2.4.4 respectively).

The prediction accuracy is over 10x worse across the three main parameters investigate (δ1H,

δ13C, and 1JCH). This combined with the fact that the same architecture and training procedure

is capable of producing good quality predictions on datasets DT3 and DT5b when trained on

appropriate molecules, strongly suggests that the QM9 trained models produced here and in the

literature are examples of significant overfitting, and are of little use beyond extremely simple

molecules. It should be noted here that the work into QM9 trained models both here and in other

work, still serves to demonstrate the potentially highly significant improvements possible in

chemical property prediction through the use of more complex machine learning architectures.

It would not be possible to demonstrate the hypothetical possibility of δ1H prediction accuracy

better than 0.1 ppm without producing such models, and more realistic training datasets are

unlikely to be produced (due to the high cost) unless their potential benefit is demonstrated. The

analysis provided here merely suggests that the work needed to produce a genuinely useful model

capable of that level of accuracy is potentially greater than suggested in other recent work.

4.6 Conclusion

Overall, the success of the generation 2 IMPRESSION models is largely in the expansion of

accurate predictions to a greater variety of NMR parameters, whilst marginally improving the

accuracy for most of parameters currently predicted by the generation 1 models. The GTN
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architecture also has distinct advantages over the KRR method used in generation 1, making

significantly faster predictions and removing the memory restrictions which limit the potential

training dataset size for kernel ridge regression models.

The notable exception to the improvement in accuracy is the prediction of 1JCH coupling

constants, where the IMPRESSION generation 1 model is significantly better (2-3x smaller MAE)

than the generation 2 model, including on ChEMBL derived testing dataset DT5b. This clearly

demonstrates some advantage in the generation 1 architecture and or molecular representation

in predicting 1JCH coupling.

The pre-prediction variance results for generation 2 are disappointing, and the loss of this

tool greatly diminishes the utility of the models in general application, some work is needed to

either adjust the training of the model or calculation of this parameter so that it does provide

some uncertainty estimation, or other ways of obtaining this information investigated.

The generation 2 models trained using DT45, as presented above, are likely the most accurate

machine learning NMR prediction models available for the types of molecules found in DT5b,

i.e. large (30+ atoms), drug like molecules. This is likely due to the fact that the equivalent

model trained using QM960k outperformed several of the current-best prediction models in the

literature on predicting parameters for QM9 molecules, and the DT45 model far outperformed the

QM960k trained model in the prediction of DT5b molecules. Whilst a more accurate comparison

would be preferable, that would require all of the published models to be recreated in order to

make predictions on DT5b. This is beyond the scope of the work for this thesis and so is left as

potential future work, though it is hoped that more relevant testing datasets will be adopted in

the literature in future, making this work unnecessary.
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STRYCHNINE PREDICTION TASK

Three of the machine learning models presented in this thesis will be compared further in

this section: the generation 1 kernel ridge regression model trained using dataset 4 (Chapter

3 describes the model architecture and performance, section 2.4.3 in Chapter 2 describes the

training dataset), the generation 2 graph transformer network trained using datasets 4 and 5, as

well as the generation 2 graph transformer model trained using the QM960k dataset (Chapter 4

describes the model architecture and performance, sections 2.4.3 and 2.4.4 in Chapter 2 describe

the training datasets). The three models will be assessed in their performance of a prediction

task similar to one in which these models may be used in practice.

The polycyclic alkaloid strychnine has a naturally occurring stereoisomer (structure 1 in

Figure 5.1). A set of 12 other energetically viable diastereomers can be constructed (structures

2-13 in Figure 5.1), and a hypothetical situation imagined in which a strychnine sample had been

obtained but the stereoisomeric form of the sample is unknown. The 13C and 1H chemical shifts,

along with 13C-1H and 1H-1H coupling constants have been obtained from experimental NMR

spectra. It is then the task of the prediction models developed to identify which diastereomer is

in the sample, by making predictions of the NMR parameters for all 13 structures and finding

those which match the experimentally obtained values the closest. It should be noted that this

is a particularly difficult test of the models’ performance, considering none of the models have

been trained using multiple diastereomers of the same structure, and so the ability to distinguish
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CHAPTER 5. STRYCHNINE PREDICTION TASK

between such subtle variations in structure is hoped for but not necessarily expected.

Beuvich et al previously demonstrated the ability of DFT calculated 1JCH values to perform

this task, identifying the correct diasteromer from 12 other diasteromers along with a second

(less populated) conformer of the correct diasteromer [133]. The dominant conformer of the

correct diastereomer is labelled structure 1, then the 12 other diasteromers labelled 2-13, the non-

dominant conformer of the correct diastereomer is labeled structure 14. The ’dominant’ conformer

here refers to the fact that this conformer represents 97% of the population in solution, and so

best represents the structure in the sample, whereas the less-favourable conformer represents

3%. This labelling system will be used for the analysis in this chapter.

In an ideal solution, the structure with the lowest mean absolute error relative to the

experimental values would be assumed to be the correct structure. This can be quantified through

the mean absolute error itself, but also through applying a ’Softmin’ function to the mean absolute

errors, e, across all structures i:

(5.1) Softmin(e i)= exp(−e i)∑ j
i=0 exp(−e i)

The values returned by the softmin function sum to 1, and so the values can be interpreted in

this case as a crude percentage probability for each structure. This approach emphasises the

difference in how closely the parameters match for each structure, which is helpful, but can

be potentially misleading. It is important in problems such as this to not over-rely on a binary

classification of the correct structure, this will become clearer through examples in this analysis,

but it is of more scientific utility to accept that the chosen prediction method does not provide a

clear identification that any structure is correct, than it is to allow the model to incorrectly assign

the wrong structure as the correct structure.

Further to this point, using models such as those produced in this work as a method of

identifying the single correct structure of a compound is likely to produce incorrectly assigned

structures more often than not, largely due to the current error in NMR prediction models

being significantly greater than the difference in the value of parameters between very similar

structures. The use of models in this way is detailed in other work [53], however the intention

in this work is to produce models which act as a screening tool for structural assignment, as a

complementary source of information to DFT calculations. As such the relative errors on different

compounds have not been converted to a concrete recommendation of a given structure over

another, and it is strongly recommended that models such as these should not be used in this
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NMR Parameter Gen1 DT4 Cutoff Gen2 DT45 Cutoff Gen2 QM960k Cutoff
δ1H 0.1 1.0 1.0
δ13C 5.0 10,000 1,000
1JCH 1.0 20 500
2JCH ∞ 200 50
2JHH ∞ 1.0 20
3JCH ∞ 20 20
3JHH ∞ 50 10

Table 5.1: Variance cutoff values used for each model for each parameter in the strychnine
prediction task.

way unless it could be demonstrated that the error in predicting the given NMR parameter was

far lower than the difference in that parameter between the structures being analysed.

5.0.1 Uncertainty estimation

In both the generation 1 and generation 2 machine learning models, a 5-fold variance across

drop-out models has been used as a measure of uncertainty in the core model prediction. The

pre-prediction variance correlates with prediction error across different datasets in some cases

however there still remain many environments which are poorly predicted, but which retain low

pre-prediction variance values, this is discussed in detail in Section 3.1.4.

In the strychine prediction task, the pre-prediction variance provides a much more meaningful

advantage than it does in the simple comparison between prediction error of different models.

The discrimination between structures in problems such as these can be clouded by environments

with high error, and so if any of these can be identified and removed from the analysis this

presents an advantage. Limiting the number of environments involved in the comparison will

potentially make it harder to discriminate between structures, and so a balance must be struck

between removing unreliably predicted environments, whilst retaining enough environments to

make meaningful distinctions between structures.

For the purpose of this task, variance cutoffs for the parameters predicted in each case were

set in advance of the task being performed, so as to not bias the results. The maximum allowed

variance for an environment for each parameter was set through analysis of the distributions in

variance across testing datasets 3 and 5b, and attempting to balance the priorities mentioned

above. The choice of variance cutoffs is intrinsically arbitrary to some extent. The chosen cutoffs

are shown in Table 5.1.
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Figure 5.1: The structure of the natural occurring structure of strychnine (1), along with 12
energetically viable diastereomers (2-13).
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5.1 1JCH comparison

DFT provides the best discrimination between the structures as expected, identifying the correct

structure (1) with a mean absolute error in 1JCH prediction of 1.25 Hz relative to the next closest

match (6) of 2.01 Hz. The second best performing prediction method is the generation 1 model

trained using DT4, identifying the correct structure with an MAE of 2.43 Hz relative to the

next closest match (structure 2) of 2.63 Hz, a smaller difference than for the DFT predictions.

Neither of the generation 2 trained models correctly identified the correct structure in this case,

with structure 1 being ranked second for both models with MAEs of 6.73 Hz and 11.81 Hz for

the DT45 and QM960k trained models respectively. Figures 5.2 and 5.3 show the results across

all 14 structures, and highlights that for all models there is a correlation between the DFT

prediction error and the machine learning prediction error for each structure. There is a clear

difference in the MAE across the three models, with the generation 1 model producing predictions

which match the experimental values to within 4.5 Hz for all structures, not just the correct

diastereomer. In contrast the DT45 trained generation 2 model produces MAEs of 6 Hz and 10

Hz, and the QM960k trained generation 2 model produces MAEs between 11 Hz and 16 Hz.

Whilst the DT4 trained generation 1 model obtains the correct result and the other 2 models do

not, the difference in the discriminatory power between the models is minor. This is particularly

clear in the errors adjusted using the softmin function (Figure 5.3), where the relative rankings

of the structures appear similar, with the exception of the incorrectly chosen structures for the

generation 2 models.

These results highlight two important factors in the task; the absolute prediction accuracy of

each model on the target parameter being used to discriminate, and the degree of discrimination

achieved between the structures. The gen 2 DT45 model is hampered by the fact it reports an

even closer match for the predicted NMR parameters for structure 2. The ideal model for tasks

such as this would provide predictions that are only accurate for the correct structure.

Despite these issues, there is clear utility in the predictions from these models. It is per-

haps easier to imagine this utility in cases where the cost of the DFT predictions may become

prohibitive, such as where the pool of possibly structures contains thousands of molecules. In

this scenario the machine learning models could rapidly narrow the selection down to a handful

of structures for which DFT calculations could be performed to obtain the final result. For all

three models, if the machine learning results were used to select just 2 of the structures to take
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for further analysis through DFT, the correct final assignment would be found. In a practical

application the number of molecules to select would be dependent on the results of further testing

of these models and the available CPU time, however it would be easy to see how reducing

a potential dataset to the best 5-10% of structures as determined by machine learning could

significantly improve a workflow, either through reducing overall computational cost, or allowing

significantly higher quality of DFT calculation on the final structures.
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Figure 5.2: Mean absolute error between experimentally measured 1JCH for structure 1 and
those predicted by impression generation 1 trained on DT4 (labeled DT4, green), impression
generation 2 trained on DT45 (labeled DT45, pink), impression generation 2 trained on QM960k
(labeled QM960k, yellow), and DFT (labeled DFT, black) for all structures. Structures ordered by
mean absolute error in DFT prediction
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Figure 5.3: Mean absolute error, adjusted using a softmin function, between experimentally
measured 1JCH for structure 1 and those predicted by impression generation 1 trained on DT4
(labeled DT4, green), impression generation 2 trained on DT45 (labeled DT45, pink), impression
generation 2 trained on QM960k (labeled QM960k, yellow), and DFT (labeled DFT, black) for all
structures. Structures ordered by softmin of the mean absolute error in DFT prediction

5.2 Geometric mean of δ1H, δ13C, and 1JCH comparison

Improvements to the discrimination between the structures can be made by included multiple

NMR parameters in the analysis. In this case the geometric mean across the mean absolute error

in the parameters δ1H, δ13C, and 1JCH is used instead of just the mean absolute error in 1JCH .

With the inclusion of the additional NMR parameters, the DFT predicted values for structure

1 have a geometric mean mean absolute error (GMMAE) relative to experiment of 0.95 Hz,

whereas the values for structure 2 have a GMMAE of 1.62 Hz (the second lowest GMMAE), this

is a smaller difference than for 1JCH alone. Furthermore the difference in softmin probability

between structures 1 (0.18) and 2 (0.12) is smaller in this case than it is for 1JCH alone (0.41 and

0.19 respectively). The inclusion of the extra NMR parameters therefore provides no benefit to the

discriminatory power of the DFT method, though the results still provide a clear identification of

the correct structure. For the DFT predictions the inclusion of δ1H appears to have a negative

effect on the accuracy, whilst the inclusion of δ13C has a positive effect, the optimal results for

the DFT method are obtained by using a combination of the two NMR parameters: δ13C and

1JCH . This is discussed at the end of this chapter.
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For the machine learning models the inclusion of extra NMR parameters does show an

improvement. For the gen 1 DT4 trained model, structure 1 is again identified as the correct

structure with a GMMAE of 1.65 Hz, the next closest match is structure 6 in this case with a

GMMAE of 1.94 Hz. This is a bigger difference than the 0.2 Hz difference between the two lowest

MAE values for 1JCH alone. This also produces a clearer difference in the softmin probability

with structure 1 now having a softmin value of 0.130, as opposed to 0.136, and the second best

structure having a value of 0.10, as opposed to 0.11 for 1JCH alone. The improvement is more

clearly seen in Figure 5.4 where the machine learning GMMAE values more strongly correlate

with the DFT GMMAE values than they do in the equivalent 1JCH Figure (5.2.

The results for the generation 2 DT45 trained model are also improved in that now structure

1 is identified as the correct structure, though the relative discrimination between the structures

is now marginally worse (Figure 5.2). The QM960k trained generation 2 model results change

in the opposite way, with a stronger discrimination between different structures (Figure 5.2),

correlating with the DFT results in terms of the order of closest match for most structures, but

an incorrect structure is now assigned with even greater confidence (Figure 5.3).

For all three models the inclusion of further NMR parameters presents an improvement in

the quality of predictions, especially if used in a situation where the cost of performing DFT

calculations on the entire molecule candidate pool was prohibitive. All three models would include

the correct structure in the top two structures by correlation to the experimental results. If the

DFT calculations in this case were taken to be prohibitively costly, and it was desirable to limit

them to only two or three structures, the machine learning results presented here would enable

the selection of the most likely structures.
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Figure 5.4: Geometric mean across the mean absolute error between experimentally measured
δ1H, δ13C, and 1JCH for structure 1 and those predicted by impression generation 1 trained
on DT4 (labeled DT4, green), impression generation 2 trained on DT45 (labeled DT45, pink),
impression generation 2 trained on QM960k (labeled QM960k, yellow), and DFT (labeled DFT,
black) for all structures. Structures ordered by mean absolute error in DFT prediction
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Figure 5.5: Geometric mean across the mean absolute error, adjusted using a softmin function,
between experimentally measured δ1H, δ13C, and 1JCH for structure 1 and those predicted by
impression generation 1 trained on DT4 (labeled DT4, green), impression generation 2 trained
on DT45 (labeled DT45, pink), impression generation 2 trained on QM960k (labeled QM960k,
yellow), and DFT (labeled DFT, black) for all structures. Structures ordered by softmin of the
mean absolute error in DFT prediction
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5.3 Inclusion of further NMR parameters

The generation 2 models also possess the ability to predict further NMR parameters, and so the

comparison between structures could be performed using any combination of δ1H, δ13C, 1JCH ,

2JCH , 2JHH , 3JCH , 3JHH , those being the values for which experimental data is available for

strychnine in this case. This yields a total of 127 possible metrics for the generation 2 models,

making a detailed comparison between all possible metrics unfeasible.

To simplify this analysis the comparison was reduced to two key metrics which indicate the

performance of the model and metric combination in the strychnine prediction task. Both metrics

used here rely on the softmin populations of the mean or geometric mean, calculated through

equation 5.1, the potential pitfalls of using these values having already been discussed. Firstly

the difference in softmin population between the correct structure and the next closest matching

structure is used to indicate the magnitude of the identification of the correct structure, and to

highlight cases where the correct structure is not identified. Secondly the difference between the

softmin population of the correct structure and the mean population of the remaining structures,

to highlight how well the correct structure is identified relative to the majority of the incorrect

structures.

Using these two metrics, all possible combinations of parameters for all models and DFT were

assessed (the generation 1 model has 7 possible metrics due to the limited range of parameters,

the generation 2 models and DFT have 127 possible metrics) and optimal combinations identified.

Across all models no benefit was found in including more than 3 parameters in the comparison

metric,

For DFT predicted values, the best performing single metrics are δ13C and 1JCH (Figure

5.6), and the best metric overall is the combination of these two parameters (Figure 5.10). The

additional inclusion of 2JCH , 3JCH , or 3JHH produced a similar result in terms of both the

separation from the second closest matching structure and the mean of the incorrect structures.

For the generation 1 model trained using dataset 4, the best metric is δ13C with 1JCH

providing minimal benefit and the inclusion of δ1H reducing the quality of the results (Figure

5.7). The single metric δ13C is therefore used in the final comparison in Figures 5.10 and 5.11.

The best metrics for the generation 2 models were a combination of three NMR parameters

including δ13C and 1JCH , with 3JHH providing further benefit for the DT45 trained model,

and 2JHH providing the same for the QM960k trained model. These metrics were used in the
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5.3. INCLUSION OF FURTHER NMR PARAMETERS

final comparison in Figures 5.10 and 5.11. The best singular metric for the DT45 trained model

was 3JHH , with no other single metric assigning the correct structure (Figure 5.8). For the

QM960k trained model, the best singular metric was δ13C, again with with no other single metric

assigning the correct structure (Figure 5.9).

Overall it is unsurprising that each method of prediction performs best using a different set

of metrics, considering the different training datasets and architectures being used, but the scale

of the difference in performance on certain metrics between models is notable. The results for

using δ1H alone are similarly poor for all prediction methods, even DFT, and δ13C is one of the

best performing metrics across all the methods except the machine learning predictions from

the generation 2, DT45 trained model, where it performs poorly. The MAE using 3JHH alone

provides poor discrimination for the QM960k trained model whereas it is the best performing

metric for the DT45 trained model. The complex differences between the performance of different

combinations of NMR parameters in the comparison metric makes assigning an optimal metric

difficult, and there is no reason to assume that the performance of these metrics in this task will

generalise to other, even similar, tasks.

0.0 0.1 0.2 0.3 0.4
Difference in softmin population

 1H

 13C

 1JCH

 2JCH

 2JHH

 3JCH

 3JHH

Correct to Highest Incorrect
Correct to Mean Incorrect

Figure 5.6: For the NMR parameters calculated by DFT. Difference in softmin calculated pop-
ulation, for different single NMR parameter metrics, between the correct structure (1) and
the highest population incorrect structure, and between the correct structure and the mean
population of the incorrect structures.
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Figure 5.7: For the NMR parameters predicted by the generation 1 model trained using dataset 4.
Difference in softmin calculated population, for different single NMR parameter metrics, between
the correct structure (1) and the highest population incorrect structure, and between the correct
structure and the mean population of the incorrect structures.
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Figure 5.8: For the NMR parameters predicted by the generation 2 model trained using datasets
4 and 5. Difference in softmin calculated population, for different single NMR parameter metrics,
between the correct structure (1) and the highest population incorrect structure, and between the
correct structure and the mean population of the incorrect structures.
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Figure 5.9: For the NMR parameters predicted by the generation 2 model trained using dataset
QM960k. Difference in softmin calculated population, for different single NMR parameter metrics,
between the correct structure (1) and the highest population incorrect structure, and between the
correct structure and the mean population of the incorrect structures.
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The final comparison graphs in Figures 5.10 and 5.11 give an indication of the optimal

performance of each of the prediction methods in a task such as this, as in each case the

combination of NMR parameters used in the comparison was selected based on performance

on the same task. Qualitatively the generation 1 model trained on dataset 4 performs the best

in this task relative to the DFT results, providing nearly the same degree of certainty in the

identification of structure 1 as the correct structure. Surprisingly, for the generation 2 models,

the QM960k trained model outperforms the DT45 trained model in terms of discrimination

between the correct and incorrect structures as well as the correlation to DFT. The fact the DT45

trained generation 2 model performs the worst in this task is an unexpected result considering it

achieved the best accuracy across datasets 3 and 5b (Chapter 4) across all parameters compared

to the QM960k trained model, and outperformed, or performed very similarly to, the generation

1 model in terms of prediction accuracy on DT3 and DT5b for δ1H, δ13C, and the experimental

datasets for δ1H, δ13C, and 1JCH .

Figures 5.10 highlights the fact that good performance in the benchmark prediction task

does not correlate to good performance in this task, as the DT45 trained generation 2 model

provides accurate predictions, but is clearly less sensitive to the small changes in structure than

the other two models. Conversely the DT4 trained generation 1 model accuracy is the worst of

the three models in terms of overall GMMAE, but the predictions are clearly sensitive to the

subtle differences in structure between the diastereomers and off-equilibrium structure.

It is unclear why the generation 1 model performs worst in terms of the mean absolute error

on the correct structure, but best in terms of the differentiation between the correct and incorrect

structures. It should perform worse due to the fact it has a smaller training dataset than either

of the other molecules, and that that dataset suffers from the same limitations as the training

datasets for the generation 2 DT45 trained model. The remaining factor which must therefore

be responsible for this success is the model architecture and representation. The kernel ridge

regression architecture with the FCHL representation is clearly providing an advantage to this

model in this prediction task.

Further work is required to identify the extent to which these results generalise to similar

tasks, however as an initial assessment of performance these results highlight both the potential

utility of machine learning models as a cost-effective alternative to large-scale DFT calculations in

tasks like this, at least in the initial stages, and the fact that performance in accuracy benchmark
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tasks does not translate to performance in tasks like this in a straightforward way.
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Figure 5.10: Score metric between experimentally measured NMR parameters for structure
1 and those predicted by impression generation 1 trained on DT4 (labeled DT4, green, using
the MAE in δ13C prediction), impression generation 2 trained on DT45 (labeled DT45, pink,
using the geometric mean across δ13C, 1JCH , and 3JHH), impression generation 2 trained on
QM960k (labeled QM960k, yellow, using the geometric mean across δ13C, 1JCH , and 2JHH), and
DFT (labeled DFT, black, using the geometric mean across δ13C and 1JCH) for all structures.
Structures ordered by mean absolute error in DFT prediction
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Figure 5.11: Relative softmin populations between experimentally measured NMR parameters
for structure 1 and those predicted by impression generation 1 trained on DT4 (labeled DT4,
green, using the MAE in δ13C prediction), impression generation 2 trained on DT45 (labeled
DT45, pink, using the geometric mean across δ13C, 1JCH , and 3JHH), impression generation 2
trained on QM960k (labeled QM960k, yellow, using the geometric mean across δ13C, 1JCH , and
2JHH), and DFT (labeled DFT, black, using the geometric mean across δ13C and 1JCH) for all
structures. Structures ordered by mean absolute error in DFT prediction
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IMPRESSION FOR BINDING AFFINITY PREDICTION

6.1 Predicting Binding Affinity

One of the most important tasks in the development of novel drug compounds is the evaluation

of how well the new compound binds to the target. Binding affinity assays over large compound

libraries are regularly carried out to find promising compounds which bind well to a given target

molecule. Performing binding assays in vivo in such a situation is very expensive and so cheaper,

computational methods are often used [134–136]. Computational techniques can accurately

predict the binding affinity of compounds to a given target, in particular free-energy perturbation

[137] calculations which rely on molecule dynamics simulations is one of the most popular

and widely used methods. Like DFT NMR calculations, these techniques are computationally

expensive, and so machine learning methods again offer a potentially significant improvement

to the process [138]. Machine learning techniques to predict binding affinity often generalise to

the prediction of binding affinity for any ligand-target pair [138–140], however the focus of this

application is to predict the binding affinity relative to a specific target, where the target is not a

part of the input representation.

Free energy perturbation (FEP) methods predict the free energy difference between the

unbound and bound states of a given ligand-target complex using molecular dynamics and

computational force fields to simulate the movement of the molecules and calculate the energy of

the system. [141–143] The improvement of these calculations both in terms of speed and accuracy
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is a desireable aim, however a far simpler problem to solve is how to quickly obtain accurate

predictions for the binding affinity for a given set of compounds to a specific target, using binding

affinity calculations for a subset of these compounds to the desired target. This approach provides

a balance between the expense of binding affinity calculations and the inaccuracy of pure machine

learning models.

In an industrial setting, the purpose of a given study is to identify the compounds in a large

pool of potential candidates which have the highest binding affinity to the chosen target. To

do this, sets of compounds are chosen from the compound pool and the binding affinity to the

target calculated through an FEP calculation. These FEP calculations are then used to train

a model to predict the value for the remaining compounds in the pool. These predictions are

used to select the next batch of compounds for calculations, usually selecting the best predicted

binders, typically up to 5 rounds are performed, at which point most of the best binding molecules

should have been identified. The results of this are that the binding affinity values have been

calculated for the best binding compounds in the pool. Work was undertaken as a part of this

project to identify whether improvements could be made to the selection process of each batch of

compounds through active learning, and whether an adapted IMPRESSION model could provide

better FEP predictions for each round than a reference model.

6.1.1 pChEMBL

The target values which the machine learning models will be trained to predict are the pChEMBL

values obtained from the ChEMBL database. The pChEMBL value is the negative logarithm of

one of several values (IC50, EC50, Kd, etc), and makes comparisons across these measures of

half-maximal response concentration/potency/affinity possible. This means that throughout this

chapter the values presented as pChEMBL are comprised by any number of these quantities,

the purpose of the conversion to pChEMBL is to make them comparable for the purposes of

evaluating relative binding affinity of different compounds. [101]
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6.2 Model Architecture

6.2.1 ECFP4 neural network reference model

In order to provide a representative example of current techniques in FEP prediction [144, 145], a

model was constructed based on a simple neural network architecture with Extended Connectivity

Fingerprints (ECFPs, [146]) as the input. The model was designed and the code written in part

by Calvin Yiu, a PhD student in the Butts research group.

The model consists of 3 linear feed-forward network layers with trainable weights, each

being followed by the rectified linear unit function [147]. The input features for the model are

extended connectivity or Morgan fingerprints [148], a 2-dimensional representation, representing

the surrounding chemical structure through circular atom neighborhoods, with variable diameter

(which affects the length of the fingerprint). The most commonly used diameter is 4, and is

referred to then as the ECFP4 fingerprint [149]. This model is referred to as the ECFP4 model

for the remainder of this chapter.

6.2.2 IMPRESSION for molecular properties

A relatively straightforward adaptation of the IMPRESSION Generation 2 architecture yields

a model which can learn one property per molecule rather than per atom or per bond. A global

attention pooling step is added to the end of the graph transformer network model architecture

(outlined in Chapter 4), which allows information to pass between all nodes/edges of the molecular

graph. Two linear model layers then converge to a single output value for each graph. This model

is referred to as the IMPRESSION model for the remainder of this chapter.

6.3 Active Learning

In order to obtain the best predictions for the majority of the dataset, different strategies can be

used to select molecules for the training set. Active learning selection strategies use predictions

from the current or previously trained models to inform the selection of new molecules for the

training set. This is similar to the method used to select the DFT NMR training dataset 4 (section

2.4.3). Several strategies were investigated, labelled F1-5. The selection of molecules at random

is labelled scheme A, and acts as the reference scheme in this case:
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• Select molecules at random (A)

• Select molecules with the lowest predicted pChEMBL values (F1(low))

• Select molecules with the highest predicted pChEMBL values (F2(high))

• Select molecules such that the range of predicted pChEMBL values over the entire dataset

is covered evenly by the predictions for the selected molecules (F3(range))

• Select molecules such that the distribution of predicted pChEMBL over the entire dataset

is matched by the predictions for the selected molecules (F4(distribution))

• Select molecules such that the inverse of the distribution of predicted pChEMBL over the

entire dataset is matched by the predictions for the selected molecules (F5(inverse))

Selection schemes F1(low) and F2(high) are straightforward in their implementation, the first

or last n molecules in a dataframe sorted by predicted pChEMBL value are selected (where n is

the number of molecules to be selected in each round). Scheme F2(high) is equivalent to what is

referred to as an enrichment scheme, where molecules likely to be good binders are preferentially

selected, if the initial predictions are relatively accurate this results in more, better predicted

good binding molecules in the final dataset. For selection scheme F3(range), n evenly spaced

values are generated between the minimum and maximum predicted pChEMBL values, the n

molecules with pChEMBL values closest to these values are selected. For scheme F5(inverse)

the probability of selection for each molecule is calculated as the sum of the differences between

its pChEMBL value and all other predicted pChEMBL values, for scheme F4(distribution) the

inverse of this probability is used. For both F4(distribution) and F5(inverse), n molecules are

then chosen at random, weighted by the calculated probability.

6.3.1 Identification of Binders

In the practical application of these models, the ability of the model to accurately predict any one

value is secondary to its ability to distinguish the few molecules with the highest binding affinity

from the rest of the molecule pool. As such the model performance is evaluated as a classification

task. The most common way to evaluate classification models such as this is through a Receiver

Operating Characteristic (ROC) curve [150], whereby the discriminatory power of the model

is highlighted, and is comparable across different models, datasets and applications. The ROC
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curve is constructed by evaluating the model predictions for a continuous series of classification

cutoff values, where the cutoff in this case is the difference between a pChEMBL value being

assigned as a high binding affinity or a low binding affinity. For each value of the classification

cutoff, the true positive rate is calculated, given by:

(6.1) True Positive Rate= True Positives
True Positives+False Negatives

and the false positive rate is calculated, given by:

(6.2) False Positive Rate= False Positives
False Positives+True Negatives

The area under the curve (AUC) is a common metric used to compare classification models

[151], calculated as the area under the ROC curve. A model with no discriminatory power, i.e. it

predicts all molecules to have a pChEMBL of 0.0 would have an AUC value of 0.5, as it would

present a straight line in an ROC plot: y= x. In order to simplify the comparison between each

model and each selection scheme, a set of binary labels were assigned to the molecules based on

the pChEMBL binding affinity obtained from ChEMBL. Molecules with pChEMBL greater than

7 were assigned as ’good’ binding molecules, and molecules with pChEMBL less than or equal to

seven assigned as ’bad’ binding molecules. This simplifies the analysis of the ROC curves as the

in this case the number of True and False positives does not change with the classification cutoff.

The two different binding targets will naturally produce a different binding affinity from

different compounds to each other. The best binding molecules (according to pChEMBL score) are

shown for each target in Figures 6.1 and 6.2. There are clear differences in the molecules which

possess the highest binding affinity for each structure. Furthermore this makes clear another

aspect of the ChEMBL database, namely that whilst it contains a very wide range of molecules,

it also contains many molecules which are extremely similar to one another, many of the best

binding molecules are merely the same molecule with one or two atoms substituted. The only

significant difference in these sets of molecules which may make one dataset harder to predict

than the other, is the prevalence of sulphur and fluorine nuclei in the best binding molecules for

CDK2. Assuming the pattern from previous work is extended to the models trained to predict

binding affinity, the model will be worse at making predictions for compounds which contain

nuclei that are otherwise rare in the dataset. This could potentially lead to the CDK2 trained

models having a poorer prediction accuracy on the highest binding molecules, as these are more

likely to contain rarer nuclei.
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Figure 6.1: The 5 best binding molecules for the HSD11 target, as ranked by pChEMBL
value. Molecule IDs: CHEMBL1098145 CHEMBL1096451 CHEMBL1098130 CHEMBL1096870
CHEMBL1098131
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Figure 6.2: The 5 best binding molecules for the CDK2 target, as ranked by pChEMBL
value. Molecule IDs: CHEMBL462385 CHEMBL191003 CHEMBL364370 CHEMBL184510
CHEMBL317703
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6.4 Results

6.4.1 Training and Testing Datasets

Two test datasets were obtained from ChEMBL with the associated pChEMBL binding affinities:

a set of 2,698 molecules targeting the enzyme 11-beta-dehydrogenase HSD11, and a set of 1,362

molecules with associated binding affinity to the cyclin-dependent kinase CDK2. The size of

molecule in the datasets vary between 8 and 77 atoms, the mean molecule size for both datasets

is between 26 and 28 atoms, and there are very few molecules with more than 45 atoms (Figure

6.4, left). The distribution of pChEMBL values is similar between the two datasets, though the

values are higher on average in the HSD11 dataset than in the CDK2 dataset. Both datasets

contain a large number of molecules with pChEMBL greater than 7.0 which will be used as the

classification threshold, discussed below.

To identify whether the HSD11 and CDK2 datasets are biased towards a particular class of

molecules the distribution of Tanimoto similarity (based on the ECFP4 fingerprint) between each

pair of molecules in the datasets was compared to those from a random selection of molecules (of

similar molecular weight) taken from ChEMBL. Figure 6.3 clearly shows that there are only a

very small number of pairs of molecules in the HSD11 and CDK2 datasets with similarity higher

than any pairs in the random set. This can be seen from the very similar tails on the right side of

all three distributions. This means that the molecules in the HSD11 or CDK2 datasets are no

more similar to each other than a random pair of molecules from the ChEMBL dataset, therefore

these are suitable test sets and results established for these datasets should hold reasonably well

for other molecules across the entire ChEMBL database.
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Figure 6.3: Plots of the tanimoto similarity for HSD11, CDK2 and random datasets from CHEMBL
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Figure 6.4: Distribution of pChEMBL values (a), and distribution of molecules sizes (b) for the
HSD11 and CDK2 datasets
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6.4.2 Model Training and regression performance

The initial validation for both models was performed by training on 1000 molecules selected at

random, this was performed separately for both the HSD11 and CDK2 datasets. The models were

trained for 100 epochs, however the prediction accuracy on molecules outside of the training set

saw minimal improvement beyond 40 epochs (Figure 6.5) for the IMPRESSION based model, and

beyond 20 epochs for the ECFP4 model. Models were only trained to 40 epochs in all subsequent

training runs, in order to save computation time. Each training epoch for the 1000 molecule

training set for the IMPRESSION model takes around 10 seconds to perform, for the ECFP4

model it is around 2 seconds (both run on a single Quadro K620 nvidia GPU). The time saving for

training a single model is therefore modest but for two models, across two datasets for 6 different

selection schemes this adds up to hours of unnecessary computational time.
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Figure 6.5: Out of sample learning curves for the IMPRESSION model (a) and ECFP4 neural
network (b), for datasets HSD11 and CDK2. The out of sample error is the mean absolute error
in prediction of pChEMBL for molecules not in the training dataset (1000 molecules).
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The performance of the models is assessed firstly as a regression task. The size of the training

set is 1000 molecules, which leaves 1698 molecules in the testing set for HSD11 and 362 molecules

in the testing set for CDK2. The IMPRESSION model achieves a mean absolute error (MAE) of

0.78 and 0.75 for the HSD11 and CDK2 testing datasets respectively. The ECFP4 model achieves

an MAE of 1.05 and 1.13 on the HSD11 and CDK2 testing datasets, considerably worse than the

IMPRESSION model. The root mean squared deviation (RMSD) and maximum error (MaxE) are

also higher across both datasets for the ECFP4 model. A summary of these results is shown in

Table 6.1.

The IMPRESSION model shows a clear advantage in prediction accuracy over the ECFP4

model, and this is further supported by the shape of the error distributions (Figures 6.6a and

6.8a), with the IMPRESSION model showing a sharper peak better centered towards zero than

the equivalent error distribution for the ECFP4 model. The ECFP4 model predictions contain

a far greater number of large errors than the IMPRESSION model predictions, the difference

being most clear in the scatter plots in Figures 6.6b and 6.8b. Furthermore the 2D histograms in

Figures 6.7 and 6.9 highlight how the IMPRESSION predictions show a much better correlation,

many more predictions lie on or near the x = y line for both datasets, however this is especially

clear for the CDK2 dataset.

The ECFP4 model appears to suffer most through the under prediction of pChEMBL values

in both datasets, however it is clear that the IMPRESSION model fails to predict any pChEMBL

value below 5.5 for the HSD11 dataset, despite a considerable number of these values being

present in the dataset. This will have an affect on the models performance in the classifica-

tion tasks as the bias towards higher predicted pChEMBL values will increase the number of

molecules identified with high binding affinity, but equivalently increase the false positive rate.

The consistent under prediction of values will have the opposite effect.

Model Dataset Train/Test MAE RMSD MaxE

IMPRESSION HSD11 1000/1698 0.78 0.99 3.38
IMPRESSION CDK2 1000/362 0.75 0.93 3.32

Base Model HSD11 1000/1698 1.05 1.29 4.39
Base Model CDK2 1000/362 1.13 1.41 4.29

Table 6.1: Model performance for IMPRESSION and the base model in the prediction of pChEMBL
for the HSD11 and CDK2 datasets
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Figure 6.6: Prediction error on the remaining 1698 molecules in the dataset for the IMPRESSION
and ECFP4 models trained on 1000 randomly selected molecules, for the HSD11 dataset. Errors
displayed as error distributions (a) and scatter plots (b). Fit statistics for IMPRESSION: 0.78
MAE, 0.99 RMSD, 3.38 MaxE, fit statistics for ECFP4: 1.05 MAE, 1.29 RMSD, 4.39 MaxE.
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Figure 6.7: Prediction error on the remaining 1698 molecules in the dataset for the IMPRESSION
and ECFP4 models trained on 1000 randomly selected molecules, for the HSD11 dataset. Errors
displayed as 2D Histograms. Fit statistics for IMPRESSION: 0.78 MAE, 0.99 RMSD, 3.38 MaxE,
fit statistics for ECFP4: 1.05 MAE, 1.29 RMSD, 4.39 MaxE.
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Figure 6.8: Prediction error on the remaining 1698 molecules in the dataset for the IMPRESSION
and ECFP4 models trained on 1000 randomly selected molecules, for the CDK2 dataset. Errors
displayed as error distributions (a) and scatter plots (b). Fit statistics for IMPRESSION: 0.75
MAE, 1.29 RMSD, 4.39 MaxE, fit statistics for ECFP4: 1.13 MAE, 1.41 RMSD, 4.29 MaxE.
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Figure 6.9: Prediction error on the remaining 1698 molecules in the dataset for the IMPRESSION
and ECFP4 models trained on 1000 randomly selected molecules, for the CDK2 dataset. Errors
displayed as 2D Histograms. Fit statistics for IMPRESSION: 0.75 MAE, 1.29 RMSD, 4.39 MaxE,
fit statistics for ECFP4: 1.13 MAE, 1.41 RMSD, 4.29 MaxE.
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6.4.3 Classification performance

The IMPRESSION model also performs better than the ECFP4 model when the task is converted

to a classification task (i.e. a binary assignment of good or bad binding, based on a cutoff

value). The receiver operating characteristic (ROC) curve for the IMPRESSION model shows a

significantly better True to False positive ratio than the ECFP4 model across the entire range

of classification cutoff values, for both datasets (Figure 6.10). The area under the curve (AUC)

values for the IMPRESSION model are significantly higher than for the ECFP4 model, 0.76 and

0.82 (IMPRESSION) compared with 0.65 and 0.65 (ECFP4) for the HSD11 and CDK2 datasets

respectively.

The IMPRESSION model therefore demonstrates significantly better discriminatory power

in identifying higher or lower binding affinities against the reference model. This translates to

an ability to select better candidate molecules for binding to a specific target, with higher binding

affinity and fewer false positives.
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Figure 6.10: Receiver operating characteristic (ROC) plots for the IMPRESSION and ECFP4
models, for the HSD11 (a) and CDK2 (b) datasets.
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Model Dataset Train/Test AUC Score

IMPRESSION HSD11 1000/1698 0.7648
IMPRESSION CDK2 1000/363 0.8181

ECFP4 HSD11 1000/1698 0.6511
ECFP4 CDK2 1000/365 0.6494

Table 6.2: AUC scores for both models trained using 1000 molecules from each dataset, tested on
the remaining molecules.

6.4.4 Active learning molecule selection

In order to improve the model performance several strategies in active learning were investigated.

Each selection scheme (A, F1-5) is evaluated based on its performance over 9 selection rounds

selecting 100 molecules in each round according to the selection scheme criteria. For each

round the predictions generated on the remaining, unseen molecules, are used to generate

an ROC curve, and the AUC value is calculated for that curve. Both models were used for

each selection scheme, with the ECFP4 model showing little difference between the selection

schemes, and little improvement in performance with further training rounds for the HSD11

dataset (Figure 6.11b). The same pattern is observed for the CDK2 dataset with the exception

of the F4(distribution) selection scheme which shows a significant improvement over the 9

selection rounds, and outperforms the random selection scheme from round 4 onwards. Scheme

F4(distribution) selected molecules according to the distribution of predicted pChEMBL values,

molecules with commonly predicted pChEMBL values were more likely to be chosen. Scheme

F4(distribution) is also the top performing scheme for the ECFP4 model in the HSD11 test case,

achieving the highest AUC score in rounds 1-8. For the IMPRESSION model, a much greater

improvement is seen over the 9 selection rounds for selection schemes A, F4(distribution) and

F5(inverse).

The active learning selection schemes provide no clear advantage over the random selection of

molecules, however the manner in which molecules are selected does appear to have a significant

effect on the model performance, as the poor performance of selection schemes F1(low) and

F2(high) demonstrate (Figure 6.11a). It is possible therefore that the success of the random

selection scheme is an artifact of the use of a small selection pool, and the schemes F4(distribution)

and F5(inverse) may yet present an advantage in selection molecules from selection pools of

10,000 or more molecules as is commonly the case in real binding affinity studies. To perform the
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above analysis for such a pool would require the calculation of 10,000 binding affinities to a single

target, in order to verify the results, and so is not feasible in the timescale of this thesis work.

The IMPRESSION model shows a clear advantage over the reference model in all cases,

demonstrating a significantly improved ability to identify higher binding molecules than the

ECFP4 model. Models similar to the ECFP4 model are used frequently in industrial applications,

and so these results suggest improvements to these processes could be made with the use of a

graph transformer network based model.
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Figure 6.11: AUC at each selection round for the IMPRESSION (a) and ECFP4 (b) models, for
each selection scheme, for the HSD11 dataset. Select schemes: F1(low), F2(high), F3(range),
F4(distribution), F5(inverse)
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Figure 6.12: AUC at each selection round for the IMPRESSION (a) and ECFP4 (b) models,
for each selection scheme, for the CDK2 dataset. Select schemes: F1(low), F2(high), F3(range),
F4(distribution), F5(inverse)
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7
SUMMARY AND FUTURE WORK

The prediction of several NMR parameters has been investigate through the use of two architec-

tures, and several different training and testing datasets. The efficacy of the predictions from

each model was demonstrated in a prediction task similar to those in which machine learning

models are commonly applied in practice. Finally the adaptation of the second generation machine

learning framework to the prediction of binding affinity was explored. Across these areas of

research, several common themes warrant further discussion.

7.1 Training and Testing datasets

One of the most important aspects of the work in this thesis is the creation of datasets for use in

training and testing the machine learning models. The goals and considerations which informed

the choices around the selection of databases to draw molecules from, the method of DFT NMR

calculation used, and other factors are discussed in Chapter 2. The results in later chapters have

emphasised the need to select suitable molecules for the intended application, especially when

looking at the comparison between QM9 molecules and those from the CSD or ChEMBL.

The prediction accuracy of models trained using QM9 data perform exceptionally well in the

prediction of molecules also taken from the QM9 dataset. In this thesis the model trained using

60,000 molecules chosen at random (QM960k, Section 2.4.5) achieved an accuracy on the 1,000

further randomly selected QM9 molecules (QM91k, Section 2.4.5) of up to 10 times better than
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the accuracy of any other model presented on the same dataset (Section 4.2.2). The accuracy of

the QM960k trained model presented in Chapter 4 also surpasses several of the leading NMR

prediction models in the literature in terms of prediction accuracy against QM9 data [65, 67].

The issue with the QM960k trained model is the equally exceptionally poor accuracy they achieve

against the molecules from the CSD (dataset 3, DT3, 2.4.2) or ChEMBL (dataset 5b, DT5b,

2.4.4), as is also demonstrated in Section 4.2.2. The molecules in DT3 and DT5b are much larger,

having been drawn from X-ray crystal structures (DT3) or drug-like molecules (DT5b), than the

molecules in QM9, which were constructed algorithmically to fully cover chemical space for up to

9 heavy atoms (H,C,N,O,F). There is clear evidence that models trained on QM9 in this case, and

in the other work referenced above, are significantly overfitted to small molecules, and do not

generalise very well. It is suggested here that in the application of machine learning models for

NMR prediction, accuracy on the type of molecules found in the CSD and ChEMBL is of far more

relevance to the practical application of these models, than the accuracy on the QM9 structures.

The caveat to this suggestion is found in the final analysis of the Strychnine prediction task

in Chapter 5, where the QM960k trained generation 2 model demonstrates a better sensitivity to

smaller structural changes than the model with the same architecture trained using datasets 4

(DT4, Section 2.4.3) and 5a (DT5a, Section 2.4.4), collectively referred to at DT45. The QM960k

trained model achieves a worse mean absolute error in the prediction of the experimental NMR

parameters than the DT45 trained model, supporting the argument that QM9 trained models do

not generalise well to larger molecules, however clearly the QM9 training dataset presents an

advantage in learning the relationship between NMR parameter values and very small structural

changes. Future work in this field could attempt to replicate the dense coverage of a small

chemical space provided by QM9 in larger datasets by making small modifications to the larger

molecules and training using multiple similar molecules for each structure.

7.2 Model Architecture

Two distinct model architectures are presented in this thesis: the Kernel Ridge Regression (KRR)

framework (Chapter 3, and the Graph Transformer Network (GTN) (Chapter 4). When the same

training dataset is used (DT4), the KRR model performs similarly or better than the GTN model,

suggesting that there is little advantage to the more complex GTN architecture purely in terms

of the extraction of the relationship between chemical features and NMR parameters.
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GTN models do however allow the use of much larger training datasets than the KRR models.

This is a result of the fundamental architecture in each case, the KRR model relies on the

calculation of kernel distances between all environments (feature vectors) in the training dataset,

which requires all training feature vectors to be held in memory at the same time, and the kernel

matrix (of size <number of training environments> by <number of training environments>) stored

to make further predictions. The GTN architecture on the other hand exists as a set of learnable

weight vectors, and a theoretically infinite amount of training data can be fed through the model,

adjusting the values of these weights, without increasing the size of the model in memory.

The use of further training data, in this case through the addition of the DT5a dataset,

significantly improves the prediction accuracy across some NMR parameters relative to the

KRR model trained using a smaller dataset. The GTN architecture therefore presents a major

advantage over the KRR architecture and the improvement available by using larger training sets

in the GTN models is unlikely to be outperformed by modifying the KRR algorithm or obtaining

different datasets of the same size. As such future work in this field is likely to focus on neural

network style architectures over kernel based methods.

7.3 Estimation of uncertainty

The use of pre-prediction variance through Chapters 3 and 4 presents an important, if variable,

advantage to the prediction models. The pre-prediction variance in this case is calculated by

training 5 drop-out models using 80% subsets of the total training set for any given model.

Predictions are then made for each environment using each drop-out model, and the variance

calculated across them. The pre-prediction variance shows a consistent correlation with prediction

error across the generation 1 models for most NMR parameters, however the effectiveness of

the metric in improving prediction quality varies between parameters, and does not appear to

function very well for the generation 2 models.

The pre-prediction variance is most useful in situations like the Strychnine prediction task

described in Chapter 5, where a comparison is being made across multiple sets of similar data and

the important outcome is a classification rather than the regression of specific values. In situations

such as this poorly predicted environments can negatively impact the outcome of the task, and

so identification of these environments at the point of prediction is advantageous. Removing

environments from the comparison in such cases reduces the quality of the comparison, by
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reducing the dimensionality, but this is outweighed by the advantage of removing exceptionally

high errors, which will dominate the comparison if left. For this identification to be useful

therefore, the correlation between prediction error and pre-prediction variance must be good for

the worst predicted environments (usually much less than 10% of the available data), however in

several examples in Chapter 4 this was not the case.

The most effective use of the pre-prediction variance therefore is to set a value of the variance

for each model for each parameter where the associated prediction is highly likely to be inaccurate.

This was done in Chapter 5 using the data presented in Chapters 3 and 4. Setting the value

of the variance to a higher value limits the impact it will have on a given task, but avoids the

removal of too much data in the comparison.
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Training Data CSD Reference Names
ABIVIQ

ABOTOC

ACALIZ

ACTOLD05

ADAZUB

ADIDUN

ADOXEZ

AFIFAX01

AFIGIG

AFIHOO

AFUNAR

AGAVOU

AHMVAL

AHUHUH

AHUYUX

AJAPIL01

AKIGAE

AMMCHC11

AMUVIP

ANIZUT

APUREI01

AQUWOY

ARIWAB

ATEZOO

ATOGIB

ATUJEF

AVALAM

AWIZUB

AWOTAH

AXADAF

AXADUZ

AXEHAO01

AXMQOL

AYEROL

AZIWUD

BAFDIV

BAJYOB

BANJOQ

BAPQOA

BAPYAU

BASDOO

BASHUA

BATVEY

BAVZEE

BAYZUW

BEDJOM

BEFJAY

BEJTEP

BELHAB01

BEMZAV

BEXNUO

BEZREF

BIBXIT02

BICVIS01

BIFFAZ

BIWZOX

BOAYPI

BOCHIL

BOGFUA

BOMBEK


BOPKAS

BOTMUT

BOVCEW

BOVJOL

BUBPAQ

BUCLUI

BUDHOZ

BUGKIX01

BUGMOG

BULHIZ

BULKID

BUYZUQ01

BZCPRO

BZPHAN01

CACWAG

CAGMIJ

CAHBUL

CANPEM

CASTEV

CATKAL

CAXLIX

CBUDCX02

CEBKEZ

CEBKEZ06

CEBQIK

CEFBOH

CEGREL

CEHZIY

CEKPIR

CEKYAS

CELRAP

CEMBED

CEPKIS

CIBFEA

CIFSIV

CIGJUX

CIKBUU

CIPBAF

CIQHOA

CIQYAD

CIRGOB

CISXOT

CITQAY

CIXGOF

CMXMCH

COCPAN

COFGUA

COFNUI

COGMOB

COLYIN

COMXOR

CONNUP

COTMEE

COWLUX

COXXIY

COYREO

COYSIS

CTOGBS20

CTPROL10

CUDDUB


CUDSAX

CUGLIA

CUKCAM21

CUKSEG

CUSFEC

CUVBIF

CUZPAP

CYTOSM13

DAFLIH

DAJXUI

DAQJOV

DAWYEI

DEBDIX04

DEBGIB

DEGREM

DENPUH

DETLAQ

DETPAU

DEVCIR

DEYTIL01

DIBENZ13

DIBNEH

DICRUD

DIFQEP

DIGGOP

DIKFEJ

DISJEW

DIZMOQ

DLALNI14

DLHTDA10

DLTYRS

DMTCUN10

DMXNPY

DNPHOL

DODWOI

DOFGEK

DOKVUV01

DOPSAC

DOQDET

DOSZES

DOTPOS

DOVGUR

DOYVUK

DUCWAA

DUDDOV

DUDKUJ

DUFVEG

DULJEA

DUNLAA

DUNSAH

DUNTOV

DUSJAD

DUSWIY

DUTTAN10

EBIWEU

ECASAC

ECIPIR

ECMPCA

EDEKOQ

EFIKOT01


EFUMUP

EGAXAL

EGOTAW

EGUQAY

EHAJUS

EHIYID

EHNPRG

EKAHOO01

ELENEQ

ELOKIB

ELUGOI

EMAQEQ

ENIJIV

EREVUS

ERISII

ESTILO03

ESUQOZ

ESUROZ

ETIROQ

EVAWEE

EVAWIJ

EVICUJ

EVIMUR

EVOGOM

EVOJIK

EWODEA01

EXOQEO

EYIKUS

EYOGEG

EZUJIU

EZUTIC

FABVUC

FACQUV

FACWUC

FAFXUF

FAHPAH

FAMFII

FASZOP

FATBEI

FAVYIN

FAZRED

FECQAF

FEFYEX

FEGFIG

FEHLEL

FEKDUU

FEQFIT

FERTON

FESNOG

FESQAX

FEVHEV

FEWSEH

FICLEK

FICTOC

FIHNUH01

FIJQAQ

FIKCAE

FIYBEU

FNPEYO

FOCBEF


FOFQOG

FOGBIN

FOGKIW

FOLQUT

FOMZUD

FOQNUV

FOTYAP

FOVVIV01

FOWPOW

FRANAC04

FUCVOO

FUGXIO

FULJON

FULZIV

FUMTOY

FUNGAX

FUQZEY

FUTWAU

GAMLOV

GAQLOB

GASNEU03

GATVED

GAZPII

GEFLEK

GEFQIS

GEHXEZ

GELDEI01

GENFUA

GEYTIN

GICCEA

GILKIW01

GIMGIU

GITNEE

GIVHOJ

GOCCOS

GODSOH

GOJVUY

GUFXOV

GUHXOY01

GUKXIT

GULDIA

GUMMOZ01

GUYBOR01

HAFDIC

HAHVIY

HAKWUN

HALNEP

HALVAT

HAMDOP

HATXIJ

HAWTEF

HDPDXZ

HELYOM01

HEQWOQ

HEVDIW

HEXVAI

HIFGEJ

HIFPIX

HIFQET

HIGCIK


Training Data CSD Reference Names
HIYHAY

HMCNSP

HNOBCH

HOCPUL

HOMCOD

HOPKUT

HOQSIQ

HOVFUT

HOWWOH

HOZBII

HOZGAG

HURLAI

HXMTAM10

HXOCTM

IBUYIQ

ICAPOR07

ICEMIO01

ICOYEE

IDILUD01

IGENOZ

IHANAG

IHOQUT

IJIHOA

ILAJIQ

ILIMEV02

IMUXOF

INACET03

IQIDIV

IQIZAK

IQOROW

IQUFUX01

ITAFEP

ITIKEB

ITUVOI

IVAKAS

IVEREH

IVIDAS

IVIHAY

IXOYEA

IYASUW

JABKUV

JAPBIO

JAWCIW

JAXHEW

JECNUD

JEDTIV

JEGTUN

JEXBOE

JINHET

JOCDAG

JONQOU

JOTBAV

JOYGEJ

JOZYUU

JUMCEB

JUNJIN

JUPJAH

JUSQUL

KABHED

KACNIN


KADDIE

KAGZIE

KAMROH

KATKIA

KAVCOC

KAYHIE

KEDRER

KEMHAL

KESTAD

KIBKAJ

KIGQIA

KIHXUW

KIMSUU01

KINGUJ

KIXROA

KIZVEV

KOCKET01

KOKLIH

KONTIQ01

KOPBAS

KOTJAE

KOVFUW

KOWCAC

KOXBEE

KUGKAZ

KUKCUP

KUQFUY

KUVBEI

KUVKES

KUVWON01

KUWZOS

KUXJIY

KUYNOH

LACVAM

LAFHEH

LAVCET

LEGXUS

LEHJAM

LEMVEH

LEPPIF

LERJAV

LESCET

LEZJUV

LGLUAC13

LIHMOG

LILDEP

LILJOG

LIWFEC

LIYPEO

LOCVEE

LOKDEW

LOMHOK

LOMNUY

LOSMOW

LOVCAC

LUPGAG

LUQSOG

LUQYIG

LURVUR

LUVPEX


MAMKAO

MAPLIZ01

MAQWIM16

MATGOG

MATPEC

MATVAE

MAXDUL

MECZID

MEDLEN

MEGNES

MEHPIB

MELVAA

MENNAV

MENSEE

MEQFAS

MESYIS

METAMI02

MEWROX

MEYCIC

MEYTUH

MEYWOC

MEZHEG

MIDXIH

MIHZUZ

MIMREG

MIMTAE

MINGAR

MIPYAL

MIQNEF

MIVTUG

MIWQIS

MIXWEX

MNPYDO10

MOBXAC

MOFCOA

MOGYIR

MOLQUB

MOYKUG

MTHPRG

MTYROS01

MUGDID

MUHZUM

MUKBUR

MULBIE

MUNWUP

MUVCAI

MVAHIV

NACGOP

NADVIX

NAFHOR

NAMZAC

NAMZEG

NAPHTA23

NAPTYR11

NASRUV

NATNAA

NAXRUC

NAYPAF

NAYZOD

NEDYEA


NEFHOY

NEMZAG

NEPXIR06

NEPXOX

NESZOB

NETIND01

NEWREN

NEXMOT

NIFBEJ

NIFJOB

NIFRAX

NIHNEY

NIJKEX

NINWEO

NIPYAZ

NISMAD

NIVJAE

NIVMIQ

NIYWID

NOFYEM

NOQBUQ

NOVDOR

NUBLOL

NUHFEB

NUKJIO

NUKXEX

NUPQEU

NUQHIR

NUYWIP

OBOWOU

OCEHIP01

OCOPOL

OGOXEP

OHIWUX

OJAQOH

OLOJAB

OLOREM

OMCHDO

OMOMOS

ONILAZ

OPOZAW

OQUHEP

ORIDAW

OTAKEB01

OWOHAL01

OXOFMB

OZICAC

PABBIF

PADTIX

PADXOJ

PAFGUA

PAGLEO

PAGWIG

PAJDOU

PAJVOO

PARHAR

PAXCEX

PAYJEH

PEFSID

PEGLUL


PENBUH

PENTYN

PEPGEW

PEXFUT

PEXLAH

PEZFEG01

PHTHAC02

PHTHAC06

PIBGOX

PIGROM01

PIGTAC

PINVOX

PINYIW

PIPINE01

PIPINE11

PITQIS01

POBDER

POBSAB

POQVUO

POQWOJ

PORROE

POSJAI

POVJAL

POZWUW

PUDDUP

PUQNUK

PUQTAW

PUYTAE

QACVAT

QAHSOI

QAJBUZ

QAKJUJ

QAKMOG

QALZUA

QANQUR

QAPJIA

QAPNAZ

QAPVOT

QATVIS

QAZMIP

QEBBUW

QECHEO

QEPNUW

QEYRER

QIKJIF

QIMKIG03

QIQYIA

QIRLUA

QIWGEJ

QIWMUG

QOVREZ01

QUDREM

QUVPOO

QUWJOJ

QUYJUQ

RAFINO01

RALQUR

RAMZEL

RAYXEU

RAYXOH
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Training Data CSD Reference Names
REBXON

REDYAB

REGFER

REGKIX01

REGYEJ

RELCUH

REYCII

REZJUC

RIFBUE

RIGVEJ

RIQWIZ

RIWNEQ

RIXXOM

RIZWUS

ROLVEV

ROSLAO

RUCFAX

RUGCED

RUGQOA

RUJQOE

RUJSAS

RURRAY

RUVSAC

RUWJAU

RUWMAX

RUWQIK

RUZXIU

SADJEM

SADXOL

SAGQUO

SAHCOV

SAHZAF

SAKJUM

SANWEJ

SAPHAU

SARJED

SAWHUV

SAWJUX

SAYTAN

SAYWOG

SAZLAH

SECTIF

SEDMOD

SEHNAW01

SEJWOT

SELKEB

SEQREN

SIQQEP

SITCUU

SIVJOY

SIWDEH

SIYYUU

SOPLEO

SOXHAQ

SUCACB12

SUCANH12

SUCROS47

SUCTAN

SUFGAB

SUHYIE


SUPKET

SUSYAI01

SUVCUJ

SUXCAQ

SUXROS

SUZJAZ

TABBOQ

TABNIV

TACRIB02

TAHMOE

TALHAR

TALNAV01

TAMLID

TANBEP

TANTEK

TAPCIW

TARGEB

TARGUO

TATNEI

TECQEX

TEGVUW

TEJREG

TEKSOR

TELKAZ

TENMIK

TEPHME02

TEVLIQ

TICBUD

TIHBAO

TIMHED

TIQNIQ

TIQWOG

TIXPOF

TMXSTQ10

TOHVIW

TOPROG

TOPSEW

TOVSUS02

TPHETY01

TUCJEI

TUCNUC

TUJJEP

TULDAH

TUNCOW

TUNTUT

TUSQUU

TUWCEU

UBEBAG

UBUPEM

UCOMOO

UCOQAE

UCUZOJ

UDEHER

UFAGOY

UHADOX

UKUTUP

UPACUK

UPADOG

UQIMUE

URAHIF


URAWEQ

URESOB

USUZUF

UTAGAZ

UTEJIO

UTIHOV

UVIMES

UWACEB

UXICAH

UYIREB

UYUDUO

UZUHED

VACLAM02

VAJVOU

VAPCEW

VAWJAG

VAXLAJ

VEBWEH

VECSAZ

VEFPIF

VESHUX

VEXCUW

VEZNOF

VIBZUB

VIDFEV

VIGWOY

VIGXAK

VIHBIZ

VOFSEP

VOKXOJ

VOLKIS

VUDKIP

VUFGEI01

VUFSEU

VUFWAV

VUKFOY

VUNFUF

VUPHIZ

VUTBUI

VUTNAB

VUZQOX

WABTAU

WACZUX

WADGEO01

WADQID

WAGBEO

WALNEC

WANVEP

WAQNUZ01

WAZMAL

WECXUZ

WESVIZ

WEWTUP

WIBWIN

WIBXUA

WIFZOC

WIPHAG

WIVYUV

WIYDUF

WIZZAI


WOBLAA

WOBWUF01

WOGQEO

WOJGUX

WOJHAG

WOKPER05

WOLNIW

WOZPUW

WUCJOV

WUKLAP

WUSQUY

WUWMEG

WUYMUZ

XAKLUR

XAVMUE

XAVZOJ

XAXHOW

XAYDIK

XAZQOF

XAZROH

XEBYUA

XEDNAX

XEDTEG

XEHTUZ

XEMDAX

XENLAE

XETMAL

XEVCEH

XEWNES

XEXQOH01

XEYRIE

XEZYIK

XIJFEB

XIMCOL

XIMJAE

XINJIN

XISHOY

XIVVAA

XIWREA02

XOBGAY

XOGWAR

XOGXEX

XOMJIS

XOWDAQ

XUHPIB

XUPYIR

XUVSUE

XUYZIC

YAGJEX

YAMHID01

YAPBUO

YAPZEU

YAQWAR

YARDUQ

YAWWAU01

YAYDIN

YEJPAG

YEJZES

YEKVEQ

YENLAF


YEXZIM01

YIDPEG

YIDPIM

YIFWAM

YIGSUE

YIHHON16

YILYOJ

YOGSIY

YOKYOO

YONBOT

YOPLIY10

YOWRAF

YOXGIB

YUCQUJ

YUDLAM

YUDMOZ

YUDPAQ

YUFYED

YUHTEA03

YUHTOK

YUNTOR

YUNYIR

YUQCUJ

YUQMED

ZAJHOH

ZAJVAK

ZETHUD

ZEWPUM

ZIFKEG

ZILQOA01

ZIYSIL

ZODXEV

ZOFCUU

ZOLBUX

ZONYUY

ZOZTOX

ZUPGIA10

ZUPGUM

ZUPHAT

ZUQVOY

ZZZLUK05

ZZZMBS02
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AFIQUC COYBOJ FAJDEC JIPCUG10 NEZFON RIMHEC VEQMUA ZATDOP
AHATEK CUTCUQ FELDOR JOQTUE NIQTAJ RIZBAF VEZCUY ZAYPOE
AHOWOL CXMTUN FEPTID JULGOO NORFUW ROGRIQ VIDDAO ZEMNAG
AHOXOL DAFTAF FEZLUT KAHJEK NUKSAO ROHJED VIDMAX02 ZIGBAS
AJIXUM DASNIV FIHLEO KEMFIS NURZOP ROJHOP VILPUB ZIKQIT
AKUBIT DENXUP02 FOSLEG KOFKAR OCATOC ROJXOD VOCHUR ZIWMOJ
ALOSEZ DILDUZ FUPWES KOGWUZ OCAWOF RUCNOU VOGDIE ZOFNUD
AMEXOH DILKIT GADVAJ KOJTOT OCIPAR RUKTAU VONNOB ZOSVEI
ANAHII DITZOX GASXON KOTMUB OFEVOL RULDAF VOXNOL ZOXYOA
ANOSAY DIWWEN GAWFEQ KUJZIY OGIMIC RULHOX VUDDUV ZZZBPY10
APODUG DOHPEV GIDHUW KUTKAL OJICUF SAJCAJ VUHZEE ZZZFFY01
APUPIK DOLBIR10 GIXKOP KUZJIA OMABEK SATPEI02 WAWQUH
AQAGII DOMNEY GIZRUE KUZQIG OMSTER01 SATPUZ WECZEJ
AQEYAW DORKOK GUCJUK LADNEL ONBZAM SAVREN WEVVEZ
AROKUN DOVWAM GUFYOX LAVSIL OPIZAQ SAWVET WIFQEI
ARONOM DUTKOU GUJGEX LEVSIO OXAROV SAZFOO WIHBEW
AWAVEZ DUZLUF GUTZOM LILDEP OXUJUN SEBVAW WIQZOL
AXADAF EABZBU HABNED LIXQEO PACWAU SEFNOG WOKJOV
AXAWIG EBAXOW HAMTIZ LIZHEJ PANLEZ10 SENKUR WUCVIB

AXOSOW03 EBOVEX HECNOS LOPLUZ PEDHAJ SEYCUU XAQTUF
AYUNEO ECODUV HIMSUS LUDZIT PETRAH SIGSAD XASHUW
AZIDES EDAXOW HISNII LUQDOS PEXPEN SIHCES XAZYIG
BAJCIY03 EDIZUM HIWYIV MALSOH PIHBOZ SIHZAM XIMGAB
BAPPUF EFIBAX HIZHOP MAQWIM23 PIJREF SOGCUN XINHIL
BAQNEM EKAHOP HODKEQ MATQOO PILFIB SORFIQ XIYTIJ
BASNOZ EKAWAQ HODLOC MEHLER POHCAS SUHFEH XIZVAD
BAYPAT EKOGAO HOMKIF MEHNAP POLJEF SUKNIW02 XOFFEF

BEDLEB01 ELAWIX HOMZUG MEJDOU PRMDIN05 SUWKEC XOHMAI
BEGDIB01 EMIPUM HONKEC MEJQEY PUMQEV TAJSOM XOWJUP
BEHWER EMISUQ HUDHEU MELAMI05 PUNFAH TAVJAD XUJKUK
BERSOG EMODUG HUVWOL MENDAL01 PUPBAD01 TEMKAZ XULNOI
BIKNUE ENIMET HUYYOP MESQOR PUWNIG THYDIN05 XUVBAT
BIXQEF EPHEDR01 IDUJEW MISDAT PYAZAC TOPRIB YAZDEI
BOLGOZ EVIHUM02 IJEZUS MOBNUM QAKDAJ TOPXUT YEGGIA
BUGQUQ EVINII INAVIC MOSLAI QAMKEW UBUXOG YEHWUD
BUMNOM EVIQEF IQIKOI MOTNUF QECNAP UCANIV YERTIZ01
BUZJIR EWOBIB IQIZEO MUJGEE QEPRIO UJUKIT YIDTIQ

BZAMID08 EXEWEJ IQUBZA MUTWON QEXKUA UMUKUJ YIMPOB
BZTROP11 EXEYUD IQULUC NAJLUF QOMVUK UNAMOL YIXPUR
CBMZPN21 EXUVUP IROZIY NANJIW QUFCEZ UNURIF YOCWUK
CIKSAQ EYASAZ ITINEG NASZAJ QUFJUY UNUVEF YODPAJ

CINCHO10 EZISUC ITIREI NBZOAC11 QUWFIZ UQOLIW YOFTOE
COCYAW FACZIU IVEZAK NCUBEB10 RAKTOO UWOCAM YOWYOY02
COLBAG FAHLAB IYASUW NEQPEG RICTIG VANFEV YOXRIO
COWPUZ FAHXUH JESHIZ NEVDOH RIHFIY VASLOR YUNYUC
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CHEMBL1075643 CHEMBL1075666 CHEMBL1075668 CHEMBL1075679 CHEMBL1075723
CHEMBL1075761 CHEMBL1075834 CHEMBL1075839 CHEMBL1075878 CHEMBL1075896
CHEMBL1075993 CHEMBL1076030 CHEMBL1076072 CHEMBL1076074 CHEMBL1076077
CHEMBL1076081 CHEMBL1076088 CHEMBL1076098 CHEMBL1076101 CHEMBL1076110
CHEMBL1076128 CHEMBL1076131 CHEMBL1076212 CHEMBL1076214 CHEMBL1076217
CHEMBL1076221 CHEMBL1076265 CHEMBL1076268 CHEMBL1076286 CHEMBL1076290
CHEMBL1076294 CHEMBL1076357 CHEMBL1076408 CHEMBL1076419 CHEMBL1076477
CHEMBL1076491 CHEMBL1076555 CHEMBL1076577 CHEMBL1076587 CHEMBL1076637
CHEMBL1076668 CHEMBL1076712 CHEMBL1076741 CHEMBL1076755 CHEMBL1076769
CHEMBL1076775 CHEMBL1076790 CHEMBL1076792 CHEMBL1076799 CHEMBL1076803
CHEMBL1076814 CHEMBL1076905 CHEMBL1076906 CHEMBL1076925 CHEMBL1076999
CHEMBL1077002 CHEMBL1077081 CHEMBL1077125 CHEMBL1077257 CHEMBL1077261
CHEMBL1077272 CHEMBL1077276 CHEMBL1077282 CHEMBL1077287 CHEMBL1077333
CHEMBL1077336 CHEMBL1077343 CHEMBL1077360 CHEMBL1077368 CHEMBL1077381
CHEMBL1077407 CHEMBL1077476 CHEMBL1077485 CHEMBL1077528 CHEMBL1077609
CHEMBL1077648 CHEMBL1077686 CHEMBL1077805 CHEMBL1077878 CHEMBL1078134
CHEMBL1078223 CHEMBL1078396 CHEMBL1078513 CHEMBL1078741 CHEMBL1078833
CHEMBL1079031 CHEMBL1079125 CHEMBL1079127 CHEMBL1079305 CHEMBL1079618
CHEMBL1080664 CHEMBL1081781 CHEMBL1082274 CHEMBL1082278 CHEMBL1082437
CHEMBL1082532 CHEMBL1082636 CHEMBL1082898 CHEMBL1082938 CHEMBL1083224
CHEMBL1083240 CHEMBL1083248 CHEMBL1083268 CHEMBL1083537 CHEMBL1083541
CHEMBL1083543 CHEMBL1083581 CHEMBL1083593 CHEMBL1083863 CHEMBL1083881
CHEMBL1084042 CHEMBL1084425 CHEMBL1084477 CHEMBL1084482 CHEMBL1084510
CHEMBL1084974 CHEMBL1085225 CHEMBL1085285 CHEMBL1085658 CHEMBL1085713
CHEMBL1085980 CHEMBL1086063 CHEMBL1086190 CHEMBL1086220 CHEMBL1086312
CHEMBL1086439 CHEMBL1086459 CHEMBL1086527 CHEMBL1086694 CHEMBL1086957
CHEMBL1087095 CHEMBL1088145 CHEMBL1088172 CHEMBL1088204 CHEMBL1088217
CHEMBL1088309 CHEMBL1088337 CHEMBL1088344 CHEMBL1088591 CHEMBL1088641
CHEMBL1088782 CHEMBL1088958 CHEMBL1088966 CHEMBL1088978 CHEMBL1088980
CHEMBL1088996 CHEMBL1089152 CHEMBL1089238 CHEMBL1089317 CHEMBL1089574
CHEMBL1089576 CHEMBL1089583 CHEMBL1089585 CHEMBL1089592 CHEMBL1089598
CHEMBL1089667 CHEMBL1089674 CHEMBL1089958 CHEMBL1089969 CHEMBL1090006
CHEMBL1090111 CHEMBL1090248 CHEMBL1090356 CHEMBL1090597 CHEMBL1090649
CHEMBL1090651 CHEMBL1090660 CHEMBL1090668 CHEMBL1090695 CHEMBL1091275
CHEMBL1091285 CHEMBL1091319 CHEMBL1091334 CHEMBL1091340 CHEMBL1091359
CHEMBL1091391 CHEMBL1091402 CHEMBL1091420 CHEMBL1091501 CHEMBL1091561
CHEMBL1091683 CHEMBL1091740 CHEMBL1091753 CHEMBL1091763 CHEMBL1092024
CHEMBL1092041 CHEMBL1092059 CHEMBL1092090 CHEMBL1092134 CHEMBL1092443
CHEMBL1092453 CHEMBL1093288 CHEMBL1093316 CHEMBL1093521 CHEMBL1093605
CHEMBL1093624 CHEMBL1093640 CHEMBL1093669 CHEMBL1093690 CHEMBL1093989
CHEMBL1094237 CHEMBL1094324 CHEMBL1094354 CHEMBL1094608 CHEMBL1094634
CHEMBL1094663 CHEMBL1094671 CHEMBL1094701 CHEMBL1094708 CHEMBL1094711
CHEMBL1094870 CHEMBL1094912 CHEMBL1094998 CHEMBL1095005 CHEMBL1095033
CHEMBL1095192 CHEMBL1095336 CHEMBL1095378 CHEMBL1095653 CHEMBL1095821
CHEMBL1095900 CHEMBL1096263 CHEMBL1096298 CHEMBL1096328 CHEMBL1096330

Training Dataset ChEMBL Reference Names

A.2. CHEMBL STRUCTURES

A.2 ChEMBL Structures

173



CHEMBL1096337 CHEMBL1096579 CHEMBL1096583 CHEMBL1096640 CHEMBL1096673
CHEMBL1096822 CHEMBL1096890 CHEMBL1097210 CHEMBL1097293 CHEMBL1097360
CHEMBL1097634 CHEMBL1097664 CHEMBL1097899 CHEMBL1097906 CHEMBL1097916
CHEMBL1097992 CHEMBL1098259 CHEMBL1098265 CHEMBL1098309 CHEMBL1098866
CHEMBL1099227 CHEMBL1099299 CHEMBL1099329 CHEMBL1159434 CHEMBL1159451
CHEMBL1159458 CHEMBL1159483 CHEMBL1159511 CHEMBL1159526 CHEMBL1159610
CHEMBL1159637 CHEMBL1159641 CHEMBL1160112 CHEMBL1160274 CHEMBL1160275
CHEMBL1160322 CHEMBL1160429 CHEMBL1160667 CHEMBL1160680 CHEMBL1160711
CHEMBL1160741 CHEMBL1160771 CHEMBL1161178 CHEMBL1161220 CHEMBL1161558
CHEMBL1161567 CHEMBL1161839 CHEMBL1161852 CHEMBL1161924 CHEMBL1161944
CHEMBL1162038 CHEMBL1162080 CHEMBL1162102 CHEMBL1162104 CHEMBL1162169
CHEMBL1162174 CHEMBL1162204 CHEMBL1162209 CHEMBL1162315 CHEMBL1162403
CHEMBL1162462 CHEMBL1163060 CHEMBL1163069 CHEMBL1163095 CHEMBL1163139
CHEMBL1163140 CHEMBL1163145 CHEMBL1163148 CHEMBL1163149 CHEMBL1163153
CHEMBL1163186 CHEMBL1163197 CHEMBL1163200 CHEMBL1163203 CHEMBL1163213
CHEMBL1163214 CHEMBL1163216 CHEMBL1163233 CHEMBL1163234 CHEMBL1163239
CHEMBL1163275 CHEMBL1163390 CHEMBL1163392 CHEMBL1163408 CHEMBL1163427
CHEMBL1163473 CHEMBL1164909 CHEMBL1164921 CHEMBL1164922 CHEMBL1164952
CHEMBL1165018 CHEMBL1165220 CHEMBL1165401 CHEMBL1165404 CHEMBL1165423
CHEMBL1165499 CHEMBL1165530 CHEMBL1165739 CHEMBL1165741 CHEMBL22
CHEMBL1165801 CHEMBL1169603 CHEMBL1170005 CHEMBL1170046 CHEMBL1170054
CHEMBL1170234 CHEMBL1170644 CHEMBL1170659 CHEMBL1170662 CHEMBL1170828
CHEMBL1171068 CHEMBL1171111 CHEMBL1171133 CHEMBL1171139 CHEMBL1171146
CHEMBL1171471 CHEMBL1171525 CHEMBL1171643 CHEMBL1171705 CHEMBL1171794
CHEMBL1171953 CHEMBL1172056 CHEMBL1172204 CHEMBL1172222 CHEMBL1172235
CHEMBL1172569 CHEMBL1172581 CHEMBL1173577 CHEMBL1173726 CHEMBL1179555
CHEMBL1179567 CHEMBL1179704 CHEMBL1180192 CHEMBL1180347 CHEMBL1181431
CHEMBL1181953 CHEMBL1181959 CHEMBL1183203 CHEMBL1183536 CHEMBL1184248
CHEMBL1184883 CHEMBL1184894 CHEMBL1185211 CHEMBL1185294 CHEMBL1185408
CHEMBL1185871 CHEMBL1186057 CHEMBL1186068 CHEMBL1186096 CHEMBL1186159
CHEMBL1186168 CHEMBL1186195 CHEMBL1186245 CHEMBL1186290 CHEMBL1186537
CHEMBL1186606 CHEMBL1187270 CHEMBL1187588 CHEMBL1187616 CHEMBL1187750
CHEMBL1187868 CHEMBL1187911 CHEMBL1187952 CHEMBL1187970 CHEMBL1188172
CHEMBL1188238 CHEMBL1188474 CHEMBL1188581 CHEMBL1189068 CHEMBL1189598
CHEMBL1189963 CHEMBL1190414 CHEMBL1191207 CHEMBL1195116 CHEMBL1195488
CHEMBL1195988 CHEMBL1196830 CHEMBL1198796 CHEMBL26565 CHEMBL1199124
CHEMBL1199159 CHEMBL1199171 CHEMBL1199236 CHEMBL1199618 CHEMBL1199633
CHEMBL1199671 CHEMBL1199724 CHEMBL1200037 CHEMBL1200285 CHEMBL1200656
CHEMBL1200714 CHEMBL1201295 CHEMBL1201356 CHEMBL1201843 CHEMBL1203155
CHEMBL1204461 CHEMBL1204470 CHEMBL1204471 CHEMBL1204670 CHEMBL1205279
CHEMBL1205372 CHEMBL1205595 CHEMBL1205641 CHEMBL1205646 CHEMBL1205733
CHEMBL1205831 CHEMBL1206474 CHEMBL1206530 CHEMBL1206588 CHEMBL1206631
CHEMBL1206762 CHEMBL1207158 CHEMBL1207360 CHEMBL1207397 CHEMBL1207533
CHEMBL1207835 CHEMBL1207867 CHEMBL1207937 CHEMBL1207940 CHEMBL1207979
CHEMBL1207983 CHEMBL1207998 CHEMBL1208034 CHEMBL1208314 CHEMBL1208419
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CHEMBL1209290 CHEMBL1209501 CHEMBL1209731 CHEMBL1209733 CHEMBL1209811
CHEMBL1209991 CHEMBL1210111 CHEMBL1210341 CHEMBL1210347 CHEMBL1210356
CHEMBL1210364 CHEMBL1210578 CHEMBL1210789 CHEMBL1210852 CHEMBL1213094
CHEMBL1213147 CHEMBL1213185 CHEMBL1213309 CHEMBL1213497 CHEMBL1213498
CHEMBL1213533 CHEMBL1213701 CHEMBL1213767 CHEMBL1213854 CHEMBL1214058
CHEMBL1214092 CHEMBL1214096 CHEMBL1214259 CHEMBL1214400 CHEMBL1214443
CHEMBL1214455 CHEMBL1214513 CHEMBL1214515 CHEMBL1214531 CHEMBL1214569
CHEMBL1214612 CHEMBL1214724 CHEMBL1214847 CHEMBL1214854 CHEMBL1214894
CHEMBL1215356 CHEMBL1215485 CHEMBL1215684 CHEMBL1215831 CHEMBL1215838
CHEMBL1221917 CHEMBL1222016 CHEMBL1222580 CHEMBL1222581 CHEMBL1222611
CHEMBL1222706 CHEMBL1222790 CHEMBL1222867 CHEMBL1223009 CHEMBL1223111
CHEMBL1223703 CHEMBL1223923 CHEMBL1223924 CHEMBL1223976 CHEMBL1223978
CHEMBL1223980 CHEMBL1224265 CHEMBL1224292 CHEMBL1224447 CHEMBL1224732
CHEMBL1224734 CHEMBL1224737 CHEMBL1224854 CHEMBL1224864 CHEMBL1229215
CHEMBL1237043 CHEMBL146675 CHEMBL153086 CHEMBL153534 CHEMBL153717
CHEMBL153812 CHEMBL154192 CHEMBL154209 CHEMBL154228 CHEMBL154288
CHEMBL154314 CHEMBL154341 CHEMBL154360 CHEMBL154392 CHEMBL154414
CHEMBL154463 CHEMBL154556 CHEMBL154609 CHEMBL154714 CHEMBL154771
CHEMBL154789 CHEMBL154818 CHEMBL154832 CHEMBL154837 CHEMBL154940
CHEMBL154997 CHEMBL155331 CHEMBL155374 CHEMBL155439 CHEMBL155451
CHEMBL155459 CHEMBL155478 CHEMBL155537 CHEMBL155636 CHEMBL155780
CHEMBL155896 CHEMBL155979 CHEMBL156224 CHEMBL156363 CHEMBL156555
CHEMBL156735 CHEMBL157042 CHEMBL157232 CHEMBL157236 CHEMBL157367
CHEMBL157397 CHEMBL157446 CHEMBL157450 CHEMBL404 CHEMBL157834
CHEMBL158175 CHEMBL158217 CHEMBL158960 CHEMBL159567 CHEMBL159668
CHEMBL160210 CHEMBL160738 CHEMBL161573 CHEMBL161838 CHEMBL1620719
CHEMBL162280 CHEMBL162786 CHEMBL163579 CHEMBL163819 CHEMBL163871
CHEMBL163965 CHEMBL164375 CHEMBL164518 CHEMBL164817 CHEMBL165039
CHEMBL165476 CHEMBL165532 CHEMBL165949 CHEMBL167929 CHEMBL167990
CHEMBL170493 CHEMBL177285 CHEMBL1782891 CHEMBL180233 CHEMBL180716
CHEMBL182355 CHEMBL196395 CHEMBL199468 CHEMBL2094221 CHEMBL217730
CHEMBL2369103 CHEMBL258525 CHEMBL260909 CHEMBL260970 CHEMBL261102
CHEMBL261894 CHEMBL262244 CHEMBL262267 CHEMBL262399 CHEMBL262664
CHEMBL262819 CHEMBL262924 CHEMBL263193 CHEMBL263329 CHEMBL263555
CHEMBL263614 CHEMBL263810 CHEMBL263956 CHEMBL264055 CHEMBL264137
CHEMBL264472 CHEMBL264812 CHEMBL264899 CHEMBL265024 CHEMBL265130
CHEMBL265174 CHEMBL265216 CHEMBL265362 CHEMBL265564 CHEMBL265732
CHEMBL265763 CHEMBL265830 CHEMBL265900 CHEMBL266873 CHEMBL266902
CHEMBL266960 CHEMBL267740 CHEMBL267832 CHEMBL268086 CHEMBL268339
CHEMBL269191 CHEMBL269289 CHEMBL316793 CHEMBL3309261 CHEMBL3309266
CHEMBL3309270 CHEMBL3309273 CHEMBL3309279 CHEMBL3309284 CHEMBL3309287
CHEMBL3309295 CHEMBL3309302 CHEMBL3309304 CHEMBL3309323 CHEMBL3309324
CHEMBL3309336 CHEMBL3309345 CHEMBL3309352 CHEMBL3309375 CHEMBL3309383
CHEMBL3309396 CHEMBL3309423 CHEMBL3309436 CHEMBL3309440 CHEMBL3309451
CHEMBL3309458 CHEMBL3309460 CHEMBL3309461 CHEMBL3309471 CHEMBL3309480
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CHEMBL3309490 CHEMBL3309491 CHEMBL3309496 CHEMBL3309504 CHEMBL3309505
CHEMBL3309508 CHEMBL3309531 CHEMBL3309538 CHEMBL3309541 CHEMBL3309555
CHEMBL3309561 CHEMBL3309654 CHEMBL3309661 CHEMBL3309763 CHEMBL3309767
CHEMBL3309775 CHEMBL3309860 CHEMBL3309867 CHEMBL3309871 CHEMBL3347285
CHEMBL3347288 CHEMBL3347298 CHEMBL3347310 CHEMBL3347320 CHEMBL3348817
CHEMBL360291 CHEMBL383917 CHEMBL385384 CHEMBL386654 CHEMBL403325
CHEMBL405225 CHEMBL405398 CHEMBL405416 CHEMBL405667 CHEMBL406648
CHEMBL408 CHEMBL409208 CHEMBL409297 CHEMBL409812 CHEMBL410788
CHEMBL410790 CHEMBL4115984 CHEMBL4115992 CHEMBL4116000 CHEMBL4116001
CHEMBL4116005 CHEMBL411601 CHEMBL4116085 CHEMBL4116089 CHEMBL4116090
CHEMBL4116091 CHEMBL4116092 CHEMBL4116093 CHEMBL4116095 CHEMBL4116096
CHEMBL4116099 CHEMBL4116100 CHEMBL4116102 CHEMBL4116104 CHEMBL4116107
CHEMBL4116109 CHEMBL4116111 CHEMBL4116112 CHEMBL4116114 CHEMBL4116118
CHEMBL4116119 CHEMBL4116120 CHEMBL4116121 CHEMBL4116122 CHEMBL4116123
CHEMBL4116124 CHEMBL4116129 CHEMBL4116130 CHEMBL4116131 CHEMBL4116132
CHEMBL4116133 CHEMBL4116137 CHEMBL4116140 CHEMBL4116141 CHEMBL4116143
CHEMBL4116146 CHEMBL4116152 CHEMBL4116153 CHEMBL4116155 CHEMBL4116157
CHEMBL4116158 CHEMBL4116162 CHEMBL4116164 CHEMBL4116168 CHEMBL412007
CHEMBL413611 CHEMBL414319 CHEMBL414339 CHEMBL414380 CHEMBL414390
CHEMBL414958 CHEMBL415391 CHEMBL415423 CHEMBL415615 CHEMBL438024
CHEMBL438132 CHEMBL438139 CHEMBL438301 CHEMBL438327 CHEMBL438807
CHEMBL438839 CHEMBL439138 CHEMBL439267 CHEMBL439400 CHEMBL439520
CHEMBL439542 CHEMBL441131 CHEMBL441569 CHEMBL441620 CHEMBL441948
CHEMBL442595 CHEMBL442894 CHEMBL443462 CHEMBL443597 CHEMBL443598
CHEMBL443602 CHEMBL443682 CHEMBL443886 CHEMBL444024 CHEMBL444145
CHEMBL444231 CHEMBL444233 CHEMBL444368 CHEMBL444432 CHEMBL444434
CHEMBL444506 CHEMBL444522 CHEMBL444736 CHEMBL444924 CHEMBL444987
CHEMBL445000 CHEMBL445025 CHEMBL445172 CHEMBL445258 CHEMBL460994
CHEMBL462274 CHEMBL468771 CHEMBL470546 CHEMBL476536 CHEMBL490449
CHEMBL494682 CHEMBL498846 CHEMBL498849 CHEMBL498861 CHEMBL498871
CHEMBL498905 CHEMBL498921 CHEMBL498936 CHEMBL498962 CHEMBL498970
CHEMBL498979 CHEMBL498986 CHEMBL499101 CHEMBL499517 CHEMBL499520
CHEMBL499523 CHEMBL499529 CHEMBL499532 CHEMBL499543 CHEMBL499563
CHEMBL499568 CHEMBL499809 CHEMBL499823 CHEMBL499846 CHEMBL499943
CHEMBL499959 CHEMBL499961 CHEMBL500007 CHEMBL500021 CHEMBL500054
CHEMBL500056 CHEMBL500079 CHEMBL500085 CHEMBL500088 CHEMBL500090
CHEMBL500097 CHEMBL500105 CHEMBL500109 CHEMBL500111 CHEMBL500179
CHEMBL500195 CHEMBL500202 CHEMBL500206 CHEMBL500207 CHEMBL500246
CHEMBL500249 CHEMBL500257 CHEMBL500286 CHEMBL500308 CHEMBL500346
CHEMBL500357 CHEMBL500370 CHEMBL500372 CHEMBL500377 CHEMBL500437
CHEMBL500450 CHEMBL500467 CHEMBL500474 CHEMBL500495 CHEMBL500519
CHEMBL500527 CHEMBL500540 CHEMBL500548 CHEMBL500627 CHEMBL500704
CHEMBL500709 CHEMBL500730 CHEMBL500734 CHEMBL500738 CHEMBL500758
CHEMBL500769 CHEMBL500790 CHEMBL500805 CHEMBL500809 CHEMBL501070
CHEMBL501130 CHEMBL5 CHEMBL501132 CHEMBL501136 CHEMBL501251
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CHEMBL501256 CHEMBL501274 CHEMBL501276 CHEMBL501280 CHEMBL501315
CHEMBL501326 CHEMBL501328 CHEMBL501493 CHEMBL501507 CHEMBL501508
CHEMBL501517 CHEMBL501542 CHEMBL501587 CHEMBL501589 CHEMBL501593
CHEMBL501597 CHEMBL501610 CHEMBL501618 CHEMBL501647 CHEMBL501650
CHEMBL501665 CHEMBL501671 CHEMBL501674 CHEMBL501682 CHEMBL501687
CHEMBL501689 CHEMBL501691 CHEMBL501694 CHEMBL501758 CHEMBL501763
CHEMBL501766 CHEMBL501801 CHEMBL501828 CHEMBL501858 CHEMBL501871
CHEMBL501877 CHEMBL501918 CHEMBL501922 CHEMBL501923 CHEMBL501925
CHEMBL501940 CHEMBL501957 CHEMBL501958 CHEMBL501963 CHEMBL501964
CHEMBL501968 CHEMBL502048 CHEMBL502052 CHEMBL502053 CHEMBL502166
CHEMBL502181 CHEMBL502183 CHEMBL502187 CHEMBL502192 CHEMBL502200
CHEMBL502201 CHEMBL502203 CHEMBL502208 CHEMBL502210 CHEMBL502212
CHEMBL502243 CHEMBL502296 CHEMBL502307 CHEMBL502312 CHEMBL502354
CHEMBL502357 CHEMBL502411 CHEMBL502423 CHEMBL502429 CHEMBL502438
CHEMBL502441 CHEMBL502456 CHEMBL502486 CHEMBL502490 CHEMBL502494
CHEMBL502613 CHEMBL502624 CHEMBL502626 CHEMBL502640 CHEMBL502652
CHEMBL502653 CHEMBL502655 CHEMBL502658 CHEMBL502660 CHEMBL502983
CHEMBL6208 CHEMBL502990 CHEMBL503028 CHEMBL503046 CHEMBL503058
CHEMBL503221 CHEMBL503232 CHEMBL503237 CHEMBL503252 CHEMBL503258
CHEMBL503266 CHEMBL503289 CHEMBL503304 CHEMBL503330 CHEMBL503340
CHEMBL503345 CHEMBL503350 CHEMBL503357 CHEMBL503391 CHEMBL503411
CHEMBL503422 CHEMBL503430 CHEMBL503434 CHEMBL503449 CHEMBL503451
CHEMBL503452 CHEMBL503459 CHEMBL503469 CHEMBL503474 CHEMBL503501
CHEMBL503508 CHEMBL503539 CHEMBL503548 CHEMBL503549 CHEMBL503551
CHEMBL503559 CHEMBL503606 CHEMBL503616 CHEMBL503619 CHEMBL503623
CHEMBL503634 CHEMBL503643 CHEMBL503670 CHEMBL503685 CHEMBL503698
CHEMBL503702 CHEMBL503713 CHEMBL503725 CHEMBL503802 CHEMBL503814
CHEMBL503818 CHEMBL503828 CHEMBL503838 CHEMBL503845 CHEMBL503870
CHEMBL503973 CHEMBL503977 CHEMBL503986 CHEMBL503991 CHEMBL504035
CHEMBL504045 CHEMBL504052 CHEMBL504055 CHEMBL504067 CHEMBL504086
CHEMBL504142 CHEMBL504150 CHEMBL504162 CHEMBL504164 CHEMBL504168
CHEMBL504184 CHEMBL504192 CHEMBL504216 CHEMBL6209 CHEMBL504249
CHEMBL504250 CHEMBL504252 CHEMBL504254 CHEMBL504333 CHEMBL504349
CHEMBL504357 CHEMBL504363 CHEMBL504372 CHEMBL504374 CHEMBL504397
CHEMBL504398 CHEMBL504425 CHEMBL504429 CHEMBL504440 CHEMBL504451
CHEMBL504800 CHEMBL505023 CHEMBL505033 CHEMBL505036 CHEMBL505038
CHEMBL505126 CHEMBL505127 CHEMBL505139 CHEMBL505140 CHEMBL505397
CHEMBL505403 CHEMBL505405 CHEMBL505806 CHEMBL505819 CHEMBL505923
CHEMBL505924 CHEMBL505930 CHEMBL505943 CHEMBL506057 CHEMBL506068
CHEMBL506069 CHEMBL506071 CHEMBL506077 CHEMBL506403 CHEMBL506407
CHEMBL506415 CHEMBL506560 CHEMBL506637 CHEMBL506640 CHEMBL506649
CHEMBL506660 CHEMBL507116 CHEMBL507127 CHEMBL507207 CHEMBL507223
CHEMBL507226 CHEMBL507303 CHEMBL507307 CHEMBL507538 CHEMBL507542
CHEMBL507700 CHEMBL507764 CHEMBL507884 CHEMBL507896 CHEMBL507897
CHEMBL508095 CHEMBL508099 CHEMBL508100 CHEMBL508159 CHEMBL508166
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CHEMBL508212 CHEMBL508213 CHEMBL508215 CHEMBL6210 CHEMBL508224
CHEMBL509195 CHEMBL509250 CHEMBL509252 CHEMBL509348 CHEMBL520435
CHEMBL522887 CHEMBL523218 CHEMBL524158 CHEMBL524317 CHEMBL525153
CHEMBL525206 CHEMBL525228 CHEMBL525413 CHEMBL525418 CHEMBL525443
CHEMBL525627 CHEMBL525672 CHEMBL525765 CHEMBL525924 CHEMBL526157
CHEMBL526183 CHEMBL526313 CHEMBL526346 CHEMBL526377 CHEMBL526543
CHEMBL526702 CHEMBL526882 CHEMBL527552 CHEMBL527864 CHEMBL529058
CHEMBL529450 CHEMBL530034 CHEMBL530730 CHEMBL531135 CHEMBL532261
CHEMBL533122 CHEMBL534251 CHEMBL534280 CHEMBL538188 CHEMBL538195
CHEMBL538380 CHEMBL538385 CHEMBL538453 CHEMBL538457 CHEMBL538460
CHEMBL538627 CHEMBL538670 CHEMBL538686 CHEMBL538692 CHEMBL538895
CHEMBL538901 CHEMBL539151 CHEMBL539179 CHEMBL539185 CHEMBL539191
CHEMBL539203 CHEMBL539383 CHEMBL539434 CHEMBL539442 CHEMBL539921
CHEMBL540153 CHEMBL540167 CHEMBL540195 CHEMBL540214 CHEMBL540215
CHEMBL540227 CHEMBL540242 CHEMBL540427 CHEMBL540674 CHEMBL540696
CHEMBL540947 CHEMBL540973 CHEMBL541005 CHEMBL541013 CHEMBL541435
CHEMBL541483 CHEMBL541686 CHEMBL541693 CHEMBL6211 CHEMBL541740
CHEMBL541754 CHEMBL541947 CHEMBL541967 CHEMBL541969 CHEMBL542011
CHEMBL546744 CHEMBL547008 CHEMBL547407 CHEMBL548124 CHEMBL548334
CHEMBL549249 CHEMBL550693 CHEMBL552187 CHEMBL552528 CHEMBL552766
CHEMBL552993 CHEMBL553669 CHEMBL553689 CHEMBL553887 CHEMBL553904
CHEMBL553918 CHEMBL553933 CHEMBL554494 CHEMBL554551 CHEMBL554586
CHEMBL555367 CHEMBL555454 CHEMBL555469 CHEMBL555916 CHEMBL556060
CHEMBL557754 CHEMBL557954 CHEMBL557964 CHEMBL558162 CHEMBL558352
CHEMBL558543 CHEMBL558556 CHEMBL558744 CHEMBL558759 CHEMBL558954
CHEMBL559128 CHEMBL559228 CHEMBL559340 CHEMBL559342 CHEMBL562776
CHEMBL563301 CHEMBL563935 CHEMBL564205 CHEMBL564427 CHEMBL564926
CHEMBL568607 CHEMBL568755 CHEMBL568776 CHEMBL568973 CHEMBL569690
CHEMBL569907 CHEMBL569918 CHEMBL570025 CHEMBL570151 CHEMBL570155
CHEMBL570399 CHEMBL570602 CHEMBL570634 CHEMBL570855 CHEMBL571523
CHEMBL571967 CHEMBL572199 CHEMBL572203 CHEMBL572517 CHEMBL572573
CHEMBL572743 CHEMBL572762 CHEMBL572999 CHEMBL573078 CHEMBL573208
CHEMBL573234 CHEMBL573437 CHEMBL573444 CHEMBL573459 CHEMBL573461
CHEMBL6214 CHEMBL573674 CHEMBL573919 CHEMBL574025 CHEMBL574253
CHEMBL574347 CHEMBL574570 CHEMBL574797 CHEMBL574851 CHEMBL574928
CHEMBL574932 CHEMBL575155 CHEMBL575370 CHEMBL575372 CHEMBL575374
CHEMBL575375 CHEMBL576313 CHEMBL576493 CHEMBL576512 CHEMBL576519
CHEMBL576723 CHEMBL577349 CHEMBL577467 CHEMBL577535 CHEMBL577685
CHEMBL577777 CHEMBL577782 CHEMBL578346 CHEMBL578483 CHEMBL578823
CHEMBL579790 CHEMBL580443 CHEMBL580660 CHEMBL581077 CHEMBL581501
CHEMBL581928 CHEMBL582415 CHEMBL582554 CHEMBL582852 CHEMBL582854
CHEMBL582894 CHEMBL583071 CHEMBL583100 CHEMBL583284 CHEMBL583299
CHEMBL583305 CHEMBL583319 CHEMBL583567 CHEMBL583568 CHEMBL583726
CHEMBL583727 CHEMBL583920 CHEMBL583947 CHEMBL584146 CHEMBL584341
CHEMBL584356 CHEMBL584384 CHEMBL584399 CHEMBL584401 CHEMBL584402
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CHEMBL584554 CHEMBL584574 CHEMBL584766 CHEMBL584773 CHEMBL584783
CHEMBL584972 CHEMBL584981 CHEMBL584990 CHEMBL585377 CHEMBL588329
CHEMBL589268 CHEMBL589524 CHEMBL589736 CHEMBL589753 CHEMBL589985
CHEMBL590000 CHEMBL590067 CHEMBL590259 CHEMBL6215 CHEMBL590478
CHEMBL590751 CHEMBL590853 CHEMBL590981 CHEMBL591201 CHEMBL591437
CHEMBL591703 CHEMBL591773 CHEMBL591912 CHEMBL592393 CHEMBL592409
CHEMBL592623 CHEMBL592631 CHEMBL592632 CHEMBL592870 CHEMBL592890
CHEMBL592975 CHEMBL593201 CHEMBL593625 CHEMBL593668 CHEMBL593669
CHEMBL593671 CHEMBL593672 CHEMBL593674 CHEMBL593676 CHEMBL593911
CHEMBL593912 CHEMBL593933 CHEMBL594331 CHEMBL595064 CHEMBL595080
CHEMBL595083 CHEMBL595330 CHEMBL595526 CHEMBL595820 CHEMBL596211
CHEMBL600052 CHEMBL600373 CHEMBL600456 CHEMBL601070 CHEMBL601080
CHEMBL601082 CHEMBL601104 CHEMBL601115 CHEMBL601469 CHEMBL601490
CHEMBL602107 CHEMBL602514 CHEMBL602709 CHEMBL603059 CHEMBL603312
CHEMBL603409 CHEMBL603735 CHEMBL604009 CHEMBL604773 CHEMBL605173
CHEMBL605451 CHEMBL606119 CHEMBL606548 CHEMBL606709 CHEMBL606771
CHEMBL607213 CHEMBL607364 CHEMBL607490 CHEMBL607833 CHEMBL608190
CHEMBL608407 CHEMBL608409 CHEMBL608687 CHEMBL608706 CHEMBL608826
CHEMBL608971 CHEMBL609497 CHEMBL609524 CHEMBL609992 CHEMBL610050
CHEMBL610272 CHEMBL610275 CHEMBL610474 CHEMBL6216 CHEMBL610484
CHEMBL610757 CHEMBL610765 CHEMBL610892 CHEMBL611044 CHEMBL611047
CHEMBL611115 CHEMBL611732 CHEMBL611973 CHEMBL612001 CHEMBL612129
CHEMBL612143 CHEMBL612215 CHEMBL6217 CHEMBL6218 CHEMBL6220
CHEMBL6221 CHEMBL6224 CHEMBL6226 CHEMBL6229 CHEMBL6230
CHEMBL6231 CHEMBL6233 CHEMBL6234 CHEMBL6235 CHEMBL6236
CHEMBL6237 CHEMBL6239 CHEMBL6240 CHEMBL6242 CHEMBL6244
CHEMBL6257 CHEMBL6258 CHEMBL6259 CHEMBL6282 CHEMBL6283
CHEMBL6284 CHEMBL6286 CHEMBL6287 CHEMBL6304 CHEMBL6305
CHEMBL6306 CHEMBL6307 CHEMBL6308 CHEMBL6310 CHEMBL6312
CHEMBL6314 CHEMBL6316 CHEMBL6321 CHEMBL6322 CHEMBL6328
CHEMBL6330 CHEMBL6334 CHEMBL6335 CHEMBL6347 CHEMBL6348
CHEMBL6349 CHEMBL6350 CHEMBL6352 CHEMBL6370 CHEMBL6371
CHEMBL6376 CHEMBL6393 CHEMBL6395 CHEMBL6396 CHEMBL6398
CHEMBL6399 CHEMBL6402 CHEMBL6403 CHEMBL6404 CHEMBL6407
CHEMBL6409 CHEMBL6411 CHEMBL6413 CHEMBL6414 CHEMBL6415
CHEMBL6416 CHEMBL6417 CHEMBL6418 CHEMBL6422 CHEMBL6423
CHEMBL6424 CHEMBL6425 CHEMBL6440 CHEMBL6441 CHEMBL6444
CHEMBL6445 CHEMBL6446 CHEMBL6447 CHEMBL6463 CHEMBL6464
CHEMBL6465 CHEMBL6466 CHEMBL6468 CHEMBL6484 CHEMBL6486
CHEMBL6487 CHEMBL6489 CHEMBL6496 CHEMBL6497 CHEMBL6498
CHEMBL6499 CHEMBL6503 CHEMBL6504 CHEMBL6505 CHEMBL6508
CHEMBL6509 CHEMBL6510 CHEMBL6511 CHEMBL6512 CHEMBL6514
CHEMBL6516 CHEMBL6517 CHEMBL6519 CHEMBL6521 CHEMBL6534
CHEMBL6535 CHEMBL6538 CHEMBL6560 CHEMBL6562 CHEMBL6565
CHEMBL6566 CHEMBL6583 CHEMBL6584 CHEMBL6615 CHEMBL6619
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CHEMBL6620 CHEMBL6623 CHEMBL6624 CHEMBL6626 CHEMBL6698
CHEMBL6699 CHEMBL6788 CHEMBL6789 CHEMBL6790 CHEMBL6791
CHEMBL6792 CHEMBL6888 CHEMBL6938 CHEMBL6939 CHEMBL6940
CHEMBL6941 CHEMBL6942 CHEMBL78310 CHEMBL8 CHEMBL9
CHEMBL1208484 CHEMBL1208485 CHEMBL1208835 CHEMBL1209153 CHEMBL1209155
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CHEMBL1075841 CHEMBL1076027 CHEMBL1076047 CHEMBL1076054 CHEMBL1076248
CHEMBL1076255 CHEMBL1076341 CHEMBL1076614 CHEMBL1076770 CHEMBL1076895
CHEMBL1076911 CHEMBL1077021 CHEMBL1077089 CHEMBL1077098 CHEMBL1077248
CHEMBL1077270 CHEMBL1077303 CHEMBL1077330 CHEMBL1077410 CHEMBL1077444
CHEMBL1079027 CHEMBL1084170 CHEMBL1084615 CHEMBL1084953 CHEMBL1086372
CHEMBL1086503 CHEMBL1086530 CHEMBL1088207 CHEMBL1089276 CHEMBL1089589
CHEMBL1090397 CHEMBL1090670 CHEMBL16498 CHEMBL1091345 CHEMBL1091702
CHEMBL1091719 CHEMBL1091752 CHEMBL1091854 CHEMBL1092016 CHEMBL1092064
CHEMBL1092426 CHEMBL1093647 CHEMBL1094665 CHEMBL1094672 CHEMBL1095673
CHEMBL1095988 CHEMBL1095997 CHEMBL1096236 CHEMBL1096572 CHEMBL1096781
CHEMBL1096892 CHEMBL1097356 CHEMBL1097917 CHEMBL1098688 CHEMBL1099016
CHEMBL20226 CHEMBL1099322 CHEMBL1159426 CHEMBL1159612 CHEMBL1159639
CHEMBL1159835 CHEMBL1160256 CHEMBL1160450 CHEMBL1160541 CHEMBL1161970
CHEMBL1162071 CHEMBL1162097 CHEMBL1162109 CHEMBL1162123 CHEMBL1162197
CHEMBL1162300 CHEMBL1162317 CHEMBL1162464 CHEMBL1163147 CHEMBL1163207
CHEMBL1163477 CHEMBL1165348 CHEMBL1165737 CHEMBL1169618 CHEMBL1170061
CHEMBL1170642 CHEMBL1170648 CHEMBL1170714 CHEMBL1170815 CHEMBL1171136
CHEMBL1171366 CHEMBL1171716 CHEMBL1172041 CHEMBL1172740 CHEMBL1173565
CHEMBL1178041 CHEMBL1182827 CHEMBL1184967 CHEMBL1185850 CHEMBL1188857
CHEMBL1189498 CHEMBL1189651 CHEMBL1198802 CHEMBL1198965 CHEMBL1199062
CHEMBL1199367 CHEMBL1201754 CHEMBL1205123 CHEMBL1205150 CHEMBL1207005
CHEMBL1207408 CHEMBL1207630 CHEMBL1208039 CHEMBL1209204 CHEMBL1209874
CHEMBL1210336 CHEMBL1213982 CHEMBL2 CHEMBL1215108 CHEMBL1215753
CHEMBL1215806 CHEMBL1222793 CHEMBL1222975 CHEMBL1223621 CHEMBL1224871
CHEMBL1229187 CHEMBL154170 CHEMBL154357 CHEMBL154655 CHEMBL154687
CHEMBL155263 CHEMBL155656 CHEMBL156263 CHEMBL156703 CHEMBL156901
CHEMBL157267 CHEMBL157459 CHEMBL158232 CHEMBL158670 CHEMBL159389
CHEMBL160341 CHEMBL160417 CHEMBL162493 CHEMBL162495 CHEMBL164857
CHEMBL174668 CHEMBL2070335 CHEMBL216546 CHEMBL2310848 CHEMBL259626
CHEMBL260023 CHEMBL260906 CHEMBL262299 CHEMBL264521 CHEMBL265282
CHEMBL305803 CHEMBL405 CHEMBL3309292 CHEMBL3309314 CHEMBL3309327
CHEMBL3309334 CHEMBL3309338 CHEMBL3309390 CHEMBL3309411 CHEMBL3309413
CHEMBL3309427 CHEMBL3309443 CHEMBL3309512 CHEMBL3309524 CHEMBL3309670
CHEMBL3347277 CHEMBL3347280 CHEMBL3347290 CHEMBL385868 CHEMBL402708
CHEMBL407362 CHEMBL4116103 CHEMBL4116106 CHEMBL4116108 CHEMBL4116113
CHEMBL4116117 CHEMBL4116125 CHEMBL4116128 CHEMBL4116136 CHEMBL4116144
CHEMBL4116145 CHEMBL4116147 CHEMBL4116148 CHEMBL4116154 CHEMBL4116156
CHEMBL4116160 CHEMBL4116167 CHEMBL418 CHEMBL437851 CHEMBL438329
CHEMBL438822 CHEMBL443179 CHEMBL443332 CHEMBL443686 CHEMBL443992
CHEMBL444524 CHEMBL444748 CHEMBL445177 CHEMBL454492 CHEMBL498858
CHEMBL498966 CHEMBL499583 CHEMBL499917 CHEMBL499990 CHEMBL500234
CHEMBL500267 CHEMBL500269 CHEMBL500534 CHEMBL501513 CHEMBL501544
CHEMBL501701 CHEMBL501770 CHEMBL501821 CHEMBL501874 CHEMBL501943
CHEMBL501969 CHEMBL502172 CHEMBL502237 CHEMBL502461 CHEMBL502582
CHEMBL502985 CHEMBL502986 CHEMBL503030 CHEMBL503044 CHEMBL503204
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CHEMBL503315 CHEMBL503376 CHEMBL503400 CHEMBL503419 CHEMBL503454
CHEMBL503463 CHEMBL503466 CHEMBL503467 CHEMBL503523 CHEMBL503535
CHEMBL503541 CHEMBL503644 CHEMBL503660 CHEMBL503770 CHEMBL503846
CHEMBL503860 CHEMBL503865 CHEMBL503902 CHEMBL503907 CHEMBL503982
CHEMBL503994 CHEMBL504059 CHEMBL504077 CHEMBL504237 CHEMBL504331
CHEMBL504332 CHEMBL504351 CHEMBL504410 CHEMBL504419 CHEMBL504420
CHEMBL504560 CHEMBL504907 CHEMBL504909 CHEMBL505029 CHEMBL505283
CHEMBL505285 CHEMBL505400 CHEMBL505686 CHEMBL505936 CHEMBL506058
CHEMBL506162 CHEMBL506172 CHEMBL506308 CHEMBL506642 CHEMBL506982
CHEMBL506998 CHEMBL507224 CHEMBL507305 CHEMBL507459 CHEMBL507464
CHEMBL507540 CHEMBL507756 CHEMBL507894 CHEMBL507903 CHEMBL508600
CHEMBL524910 CHEMBL525428 CHEMBL525996 CHEMBL526134 CHEMBL526533
CHEMBL526908 CHEMBL527081 CHEMBL528112 CHEMBL529327 CHEMBL532920
CHEMBL533010 CHEMBL535264 CHEMBL538639 CHEMBL538928 CHEMBL539138
CHEMBL539714 CHEMBL540943 CHEMBL541185 CHEMBL541498 CHEMBL541676
CHEMBL541695 CHEMBL541956 CHEMBL547542 CHEMBL547643 CHEMBL552742
CHEMBL553645 CHEMBL554546 CHEMBL557764 CHEMBL563918 CHEMBL564260
CHEMBL569031 CHEMBL569917 CHEMBL570152 CHEMBL570853 CHEMBL570872
CHEMBL571980 CHEMBL572530 CHEMBL572625 CHEMBL573427 CHEMBL573664
CHEMBL574027 CHEMBL574221 CHEMBL574800 CHEMBL574930 CHEMBL576264
CHEMBL576309 CHEMBL577321 CHEMBL577964 CHEMBL578763 CHEMBL579584
CHEMBL579880 CHEMBL583126 CHEMBL583519 CHEMBL584197 CHEMBL584397
CHEMBL584784 CHEMBL584792 CHEMBL585178 CHEMBL588522 CHEMBL589825
CHEMBL590003 CHEMBL590250 CHEMBL591228 CHEMBL592411 CHEMBL593658
CHEMBL593812 CHEMBL593909 CHEMBL594149 CHEMBL595765 CHEMBL595793
CHEMBL595990 CHEMBL600867 CHEMBL601272 CHEMBL602115 CHEMBL602507
CHEMBL603145 CHEMBL604582 CHEMBL606769 CHEMBL608847 CHEMBL609157
CHEMBL609878 CHEMBL609929 CHEMBL610191 CHEMBL610630 CHEMBL610879
CHEMBL611662 CHEMBL611935 CHEMBL6219 CHEMBL6222 CHEMBL6225
CHEMBL6232 CHEMBL6243 CHEMBL6245 CHEMBL6261 CHEMBL6309
CHEMBL6311 CHEMBL6317 CHEMBL6320 CHEMBL6323 CHEMBL6324
CHEMBL6332 CHEMBL6369 CHEMBL6378 CHEMBL6400 CHEMBL6401
CHEMBL6437 CHEMBL6442 CHEMBL6462 CHEMBL6467 CHEMBL6500
CHEMBL6502 CHEMBL6518 CHEMBL6564 CHEMBL6582 CHEMBL6586
CHEMBL6618 CHEMBL6625 CHEMBL6696 CHEMBL6887 CHEMBL6889
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A.3. FULL GAUSSIAN REFERENCE

A.3 Full Gaussian Reference

Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,

J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.

Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A.

F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B.

Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng,

W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.

Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro,

M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J.

Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M.
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[128] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention

networks,” arXiv preprint arXiv:1710.10903, 2017.

[129] X. Bresson and T. Laurent, “Residual gated graph convnets,” arXiv preprint

arXiv:1711.07553, 2017.

[130] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint

arXiv:1607.06450, 2016.

196

https://github.com/fmfn/BayesianOptimization


BIBLIOGRAPHY

[131] Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song, J. Demmel, K. Keutzer,

and C.-J. Hsieh, “Large batch optimization for deep learning: training bert in 76

minutes,” arXiv preprint arXiv:1904.00962, 2019.

[132] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv preprint

arXiv:1711.05101, 2017.

[133] A. V. Buevich, J. Saurí, T. Parella, N. De Tommasi, G. Bifulco, R. T. Williamson, and G. E.

Martin, “Enhancing the utility of 1 j ch coupling constants in structural studies through

optimized dft analysis,” Chem. Comm., vol. 55, 2019.

[134] V. Kairys, L. Baranauskiene, M. Kazlauskiene, D. Matulis, and E. Kazlauskas, “Binding

affinity in drug design: experimental and computational techniques,” Expert Opin. Drug

Discov., vol. 14, 2019.

[135] J. P. Hughes, S. Rees, S. B. Kalindjian, and K. L. Philpott, “Principles of early drug

discovery,” Br. J. Pharmacol., vol. 162, 2011.

[136] L. M. Mayr and P. Fuerst, “The future of high-throughput screening,” J. Biomol. Screen,

vol. 13, 2008.

[137] R. W. Zwanzig, “High-temperature equation of state by a perturbation method. i. nonpolar

gases,” J. Chem. Phys., vol. 22, 1954.

[138] G. S Heck, V. O Pintro, R. R Pereira, N. MB Levin, W. F de Azevedo, et al., “Supervised

machine learning methods applied to predict ligand-binding affinity,” Curr. Med. Chem.,

vol. 24, 2017.

[139] P. J. Ballester and J. B. Mitchell, “A machine learning approach to predicting protein–ligand

binding affinity with applications to molecular docking,” Bioinform., vol. 26, 2010.

[140] M. H. Seifert, “Robust optimization of scoring functions for a target class,” J. Comput.

Aided Mol. Des., vol. 23, 2009.

[141] F. Deflorian, L. Perez-Benito, E. B. Lenselink, M. Congreve, H. W. van Vlijmen, J. S. Mason,

C. d. Graaf, and G. Tresadern, “Accurate prediction of gpcr ligand binding affinity with

free energy perturbation,” J. Chem. Inf. Model., vol. 60, 2020.

197



BIBLIOGRAPHY

[142] B. J. Williams-Noonan, E. Yuriev, and D. K. Chalmers, “Free energy methods in drug

design: prospects of “alchemical perturbation” in medicinal chemistry: miniperspective,”

J. Med. Chem., vol. 61, 2018.

[143] K. Vanommeslaeghe and A. D. MacKerell Jr, “Automation of the charmm general force field

(cgenff) i: bond perception and atom typing,” J. Chem. Inf. Model., vol. 52, 2012.

[144] S. Kumar and M.-h. Kim, “Smplip-score: predicting ligand binding affinity from simple and

interpretable on-the-fly interaction fingerprint pattern descriptors,” J. Cheminformatics,

vol. 13, 2021.

[145] C. D. Parks, Z. Gaieb, M. Chiu, H. Yang, C. Shao, W. P. Walters, J. M. Jansen, G. McGaughey,

R. A. Lewis, S. D. Bembenek, et al., “D3r grand challenge 4: blind prediction of protein–

ligand poses, affinity rankings, and relative binding free energies,” J. Comput. Aided

Mol. Des., vol. 34, 2020.

[146] D. Rogers and M. Hahn, “Extended-connectivity fingerprints,” J. Chem. Inf. Model., vol. 50,

2010.

[147] K. Hara, D. Saito, and H. Shouno, “Analysis of function of rectified linear unit used in deep

learning,” in 2015 Proc. Int. Jt. Conf. Neural Netw., IEEE, 2015.

[148] H. L. Morgan, “The generation of a unique machine description for chemical structures-a

technique developed at chemical abstracts service.,” J. Chem. Doc., vol. 5, 1965.

[149] A. Cereto-Massagué, M. J. Ojeda, C. Valls, M. Mulero, S. Garcia-Vallvé, and G. Pujadas,

“Molecular fingerprint similarity search in virtual screening,” Methods, vol. 71, 2015.

[150] A. P. Bradley, “The use of the area under the roc curve in the evaluation of machine learning

algorithms,” Pattern Recognit., vol. 30, 1997.

[151] J. Huang and C. X. Ling, “Using auc and accuracy in evaluating learning algorithms,” IEEE

Trans. Knowl., vol. 17, 2005.

198


	List of Tables
	List of Figures
	Introduction
	NMR Spectroscopy
	NMR spectroscopy in structure elucidation
	NMR parameters and molecular structure

	Computational NMR
	Empirical equations
	Density Functional Theory
	Computational NMR and Structure elucidation

	Artificial intelligence and Machine learning
	Machine learning in NMR
	Paruzzo et al 2018: Chemical shifts in molecular solids by machine learning
	Jonas et al 2019: Rapid prediction of NMR spectral properties with quantified uncertainty
	Gupta et al 2021: Revving up 13C NMR shielding predictions across chemical space: Benchmarks for atoms-in-molecules kernel machine learning with new data for 134 kilo molecules
	Shibata et al 2021: Prediction of spin–spin coupling constants with machine learning in NMR
	Summary
	Licensed Software: ACD Labs
	Open Source Software: NMRShiftDB

	Aims and objectives
	Machine learning datasets


	Dataset Production
	Dataset requirements
	Overfitting
	Dataset Size
	Dataset Breadth and Depth
	Dataset Quality
	Dataset Credibility and bias
	Testing Datasets: relevance.

	DFT NMR Calculation
	'Mixed' Keyword Calculation Issue
	Chemical Shift Scaling
	Computational Timing

	Dataset Workflow
	Molecule Screening

	The Datasets
	Dataset 1 and 2: Initial random sets
	Dataset 3: Random Testing Set (DT3)
	Dataset 4: Adaptive sampling training set (DT4)
	Dataset 5: ChEMBL (DT5a and DT5b)
	QM9 Subsets: QM91k and QM960k
	Experimental Datasets

	Dataset Comparison

	IMPRESSION Generation 1
	Model Architecture and Training
	Kernel Ridge Regression
	Chemical Environment Representation
	Hyper-parameter Optimisation
	Uncertainty Estimation

	Results
	Model Training and Summary
	1H Prediction
	13C Prediction
	15N Prediction
	1JCH Prediction

	Conclusion

	IMPRESSION Generation 2
	Model Architecture and Training
	Kaggle Competition
	Molecules as Graphs
	Graph Transformer Network (GTN)
	Model Training

	Results
	Model Training
	Model Accuracy Summary
	1H prediction
	13C prediction
	1JCH prediction
	Further Scalar Coupling Prediction

	Comparison to NMRShiftDB
	IMPRESSION Generation 1 vs IMPRESSION Generation 2
	QM9 models and overfitting
	Conclusion

	Strychnine Prediction Task
	Uncertainty estimation
	1JCH comparison
	Geometric mean of 1H, 13C, and 1JCH comparison
	Inclusion of further NMR parameters

	IMPRESSION for Binding Affinity Prediction
	Predicting Binding Affinity
	pChEMBL

	Model Architecture
	ECFP4 neural network reference model
	IMPRESSION for molecular properties

	Active Learning
	Identification of Binders

	Results
	Training and Testing Datasets
	Model Training and regression performance
	Classification performance
	Active learning molecule selection


	Summary and Future Work
	Training and Testing datasets
	Model Architecture
	Estimation of uncertainty

	Dataset Structures Reference
	CSD and ChEMBL Structure Reference Names
	ChEMBL Structures
	Full Gaussian Reference

	Bibliography

