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Heterodonty is a hallmark of early mammal evolution that
originated among the non-mammalian therapsids by the Middle
Permian. Nonetheless, the early evolution of heterodonty in basal
synapsids is poorly understood, especially in the mandibular
dentition. Here, we describe a new synapsid, Shashajaia bermani
gen. et sp. nov., based on a well-preserved dentary and jaw
fragments from the Carboniferous–Permian Halgaito Formation
of southern Utah. Shashajaia shares with some sphenacodontids
enlarged (canine-like) anterior dentary teeth, a dorsoventrally
deep symphysis and low-crowned, subthecodont postcanines
having festooned plicidentine. A phylogenetic analysis of
20 taxa and 154 characters places Shashajaia near the
evolutionary divergence of Sphenacodontidae and Therapsida
(Sphenacodontoidea). To investigate the ecomorphological
context of Palaeozoic sphenacodontoid dentitions, we performed
a principal component analysis based on two-dimensional
geometric morphometrics of the mandibular dentition in 65
synapsids. Results emphasize the increasing terrestrialization of
predator–prey interactions as a driver of synapsid heterodonty;
enhanced raptorial biting (puncture/gripping) aided prey
capture, but this behaviour was probably an evolutionary
antecedent to more complex processing (shearing/tearing) of
larger herbivore prey by the late Early to Middle Permian. The
record of Shashajaia supports the notion that the predatory
feeding ecology of sphenacodontoids emerged in palaeotropical
western Pangea by late Carboniferous times.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.211237&domain=pdf&date_stamp=2021-12-15
mailto:ahuttenlocker@gmail.com
https://doi.org/10.6084/m9.figshare.c.5730981
https://doi.org/10.6084/m9.figshare.c.5730981
http://orcid.org/
http://orcid.org/0000-0002-7335-3208
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:211237
2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

10
 M

ay
 2

02
2 
1. Introduction
The fossil record of non-mammalian synapsids archives changes in tooth morphology that would
eventually give rise to mammal-like heterodonty—size-shape differences across the toothrow,
organized into distinct incisor, canine and postcanine dentitions [1,2] (figure 1). Importantly, the
shapes and sizes of teeth allow inference of ancient predator–prey interactions, and investigations of
size-shape variation along the toothrow in synapsids may therefore unveil patterns in the expansion
of terrestrial vertebrate dietary niches. Notably, the Carboniferous–Permian (C–P) transition
(ca 298.9 Ma) coincided with the proliferation of Earth’s first herbivore-dominated communities,
a trophic structure that is the basis for today’s terrestrial ecosystems [4]. Changes observed in lower
jaw structure from Carboniferous–Triassic times likewise reflected a diversification of food capture,
manipulation and mastication processes among the earliest terrestrial herbivores and carnivores [5,6].

The definition of ‘heterodonty’ remains problematic. Classically, Simpson [1] discerned two arbitrary
categories of heterodonty: (i) ‘incipient heterodonty’, which he limited to therapsids, noting foremost the
size variations among the maxillary canines and their corresponding dentary teeth (figure 1b) and
(ii) ‘advanced heterodonty’, signifying further differentiation in cusp patterns of the postcanine teeth
in some premammalian cynodonts (premolars versus molars) [1,2]. Nevertheless, significant
methodological challenges limit such categorical definitions. First, functional heterodonty has evolved
numerous times in vertebrates, including within fishes [7,8] and various tetrapod groups [2,9–16].
As such, non-mammalian heterodont dentitions often do not form tooth families homologous to those
of mammals, which has made quantitative morphometric approaches preferable to categorical
approaches when describing size-shape variation among reptile dentitions, including in varanids and
crocodylians [15,16]. Second, there have been relatively few attempts to quantify size-shape variation
in simple, conical dentitions compared with the more complex multicusped dentitions of mammals
(e.g. [17,18]) and some saurian groups (e.g. [19]).

Among synapsids, the earliest group to exhibit marked size-shape variation along the mandibular
toothrow was probably the Sphenacodontoidea (figure 1b)—the common ancestor of the sail-backed
sphenacodontids (e.g. Dimetrodon), therapsids and all their descendants. Whereas Permian
sphenacodontids like Dimetrodon are widely regarded as the first large-bodied terrestrial apex
carnivores [20–22], sphenacodontians were initially small-bodied faunivores during late Carboniferous
and earliest Permian times (approx. 1–10 kg), including the Carboniferous Haptodus and Ianthodon,
and the Permian Palaeohatteria and Pantelosaurus [3,23–28]. Spindler [29] added to these the
Kasimovian-aged Kenomagnathus scottae, a possible congener of Haptodus garnettensis which is from
the same locality in eastern Kansas. Cutleria wilmarthi from the undivided Cutler of western Colorado
[30] was previously suggested to be a basal sphenacodontian akin to these forms [3,24,31] but has
since been shown to be the basalmost sphenacodontid [28,32]. Recently, Brink et al. [21,33]
demonstrated an underappreciated dental diversity among these early sphenacodontians, including
variations in dental histology, serrations and cusp patterns that underlie important taxonomic
differences and ecological diversity in the group. However, significant gaps in their fossil record and
the rarity of Carboniferous sphenacodontians limit our interpretation of their ancestral dentition and
its ecological context.
1.1. Present study
Here, we describe the sphenacodontian Shashajaia bermani gen. et sp. nov. from the C–P Halgaito
Formation (Cutler Group) of southern Utah, USA and investigate its implications for the early
evolution of mandibular heterodonty in synapsids. The material was collected from a conglomerate at
the base of a multitaxic bonebed preserving faunal elements shared with Carboniferous assemblages
in New Mexico [34,35], including Sagenodus copeanus, Edaphosaurus, Ophiacodon navajovicus, Eryops,
Sphenacodon and limnoscelid diadectomorphs, among others. The vertebrate assemblages of the Cutler
Group were some of the first terrestrial assemblages that included large-bodied vertebrate herbivores
and specialist predators [36–38]. The dental morphology of the new taxon supports an expansion
of tooth morphospace and pronounced size-shape heterodonty in the common ancestor of
sphenacodontids and therapsids during late Carboniferous times. This ecomorphological
diversification coincided with the late Palaeozoic remodelling of land-based food webs, new
vertebrate dietary guilds, and fills a crucial gap in the synapsid fossil record.
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Figure 1. Evolution of mandibular and dental features in C–P synapsids. (a) Comparison of the mandible and dentition in a
Carboniferous sphenacodontian (i) and a Middle Permian therapsid (ii). (i) Based on Haptodus (redrawn from [3]); (ii) based on
Biarmosuchus (composite restoration of PIN 1758/2, 7, 8, and 307). (b) Time-calibrated phylogeny of the major clades of non-
mammalian synapsids based on the parsimony analysis. Coloured internal and terminal nodes represent selected fossil
calibration points that are tied to reliable geochronological ages. Star shows the position of the new taxon. Numbers 49–154
represent phylogenetically informative characters in the electronic supplementary material and their inferred DELTRAN state
changes (in parentheses). Abbreviations: Artinsk, Artinskian; Assel, Asselian; Capit, Capitanian; Chx, Changxingian; Gzhel,
Gzhelian; Kasim, Kasimovian; Loping, Lopingian; Miss, Mississippian; Moscov, Moscovian; Road, Roadian; Sakmar, Sakmarian;
Tr, Triassic; Word, Wordian; Wuch, Wuchiapingian.
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2. Material and methods
2.1. Fossil specimens
The fossils herein referred to Shashajaia bermani were collected from the basal conglomerate at the Birthday
Bonebed locality in Valley of the Gods, SE Utah, Carnegie Museum (CM) locality no. 3345 [35]. The
specimens consist of a well-preserved left dentary with dentition collected in 2019 and an unassociated
dentary fragment collected from the same lens by the authors in 2015 [39,40]. The fossils were initially
prepared mechanically using pneumatic tools and pin vice and were further inspected using computed
tomography at the University of Southern California Molecular Imaging Center. The fossils were µCT-
scanned on a GE Phoenix Nanotom at 22 µm (CM 96529) and 36 µm (CM 91209) resolution at 120 kV and
100 µA.
2.2. Ecomorphological analyses

2.2.1. Tooth size-shape heterodonty

Variations in mandibular tooth size and shape were assessed in Shashajaia bermani and 65 synapsids that
lived from the Carboniferous–Triassic using the Type II landmark-based approach modified from
D’Amore [15] and D’Amore et al. [16]. Major sampled groups included: Caseasauria (N = 7),
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Varanopidae (N = 4), Ophiacodontidae (N = 3), Edaphosauridae (N = 3), non-therapsid sphenacodontians
(N = 11, including Shashajaia); and the therapsid clades: Biarmosuchia (N = 8), Dinocephalia (N = 6),
Anomodontia (N = 4), Gorgonopsia (N = 4), Therocephalia (N = 11) and Cynodontia (N = 4) (electronic
supplementary material, tables S1 and S2). For each complete/undamaged mandibular tooth in each
specimen, two-dimensional landmarks were digitized separately using high-resolution images of the
mandible in lateral view with scale bar. In order to deal with the uncertainty of homologous landmarks,
we applied two fixed landmarks at the base of each tooth and interpolated a curve comprising 28 semi-
landmarks outlining each crown (electronic supplementary material, figure S5). Fixed landmarks were
digitally applied in tpsDig2 [41] and semi-landmarks designated using tpsRelW [42]. A Procrustes
alignment was then performed using tpsRelW [42] to standardize differences in image size and tooth
orientation and to generate aligned coordinate data. The aligned landmark coordinate data were
exported to R [43] for principal component analysis (PCA) using the geomorph package [44] to identify
the principal axes of shape variation (see electronic supplementary material, Text). The resulting
principal components (PCs) were used to examine patterns of variation along the toothrow and by clade.
PC1 represents the majority of the variation, so its variance along the toothrow in each specimen was
calculated and used as a measure of functional heterodonty.

2.2.2. Body size evolution

Because the canine dentition is interpreted to have facilitated carnivory in large predators like Dimetrodon
and early therapsids [20], we tested whether therapsid-like heterodonty was driven in part by the
expansion of large synapsid prey (especially herbivores) during the C–P transition. We estimated body
size from a subset of 127 synapsids in which relatively complete linear measurements of skull and
femur lengths were possible (electronic supplementary material, table S2). Body mass was estimated
using a power function relationship between femur length and body mass (in kg) derived from a
dataset of extant non-mammalian tetrapods published by Campione and Evans [45]. Resulting body
size data were then compared with the tooth morphometric results in time series (figure 3d ).
3. Description and discussion
3.1. Systematic palaeontology
Synapsida [46]
Eupelycosauria [47]
Sphenacodontia [20]
Shashajaia bermani gen. et sp. nov. (figure 2; electronic supplementary material, figures S1–S3).
Etymology—’Berman’s Bear heart.’ The genus name derives from the Navajo ‘shash’ (=bear) and ‘ajai’ (= heart).
The species name honours David S Berman for his decades of research on fossils of sphenacodontians and
others from the Bears Ears region of southern Utah, and which laid the foundation for the present study.

Holotype—CM 96529 (Carnegie Museum of Natural History, Pittsburgh), an isolated left dentary
preserving the dentition (figure 2; electronic supplementary material, figures S1 and S2).

Referred specimen—CM 91209, partial dentary preserving portion of the postcanine toothrow
(electronic supplementary material, figure S3).

Diagnosis—Small non-mammalian sphenacodontian that can be distinguished from others by the
unique combination of characters: slender, gently bowed dentary that deepens slightly anteriorly near
symphysis; shallow, lateral groove positioned posterodorsally on dentary just below the postcanine
toothrow; at least 24 lower tooth positions; anterior incisor- and canine-like dentary teeth
consecutively increase in size posteriorly, with the fourth lower tooth separated by a short, concave
diastema and positioned on a raised buttress; the remaining postcanine teeth are greatly reduced in
height relative to the depth of the dentary (as in basal therapsids). Shares with Haptodus, Ianthodon
and Palaeohatteria triangular, anteroposteriorly wide posterior cheek teeth that lack mesiodistal cutting
edges. Shares with the sphenacodontids Sphenacodon and Dimetrodon festooned infolding of plicidentine.

3.2. Detailed description and discussion
The more complete of the two dentaries (CM 96529) is 12 cm long as preserved, with an estimated total
jaw length of about 15 cm assuming similar proportions to Palaeohatteria and Pantelosaurus [28]. The main
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Figure 2. Shashajaia bermani gen. et sp. nov. Interpretive drawings of the holotypic mandible (CM 96529) in left lateral (a) and
medial (b) views. (c) High-magnification photograph of postcanine teeth in oblique anteromedial view. (d ) Horizontal tomographic
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body is gently bowed and shallowest at mid-length so that the mid-level of the alveolar margin is
substantially lower than either the incisiform teeth or the coronoid eminence. As in sphenacodontids and
some therapsids, the dentary deepens dorsoventrally toward the symphysis and the anterior teeth are
elevated on a thickened platform above the level of the postcanines [48]. The lateral surface of the
dentary is textured with numerous large neurovascular pits that connect to an internal canal—the
inferior alveolar nerve canal—which spans most of the length of the dentary to about the level of the
caniniform tooth. The posterior portion of the ramus bears a shallow but distinctive lateral groove just
ventrolateral to the alveolar margin in both specimens. The medial surface bears a smooth, elongated
fossa below the alveolar shelf that would have contributed to the Meckelian canal, and an anteroventral
facet that would have accepted the splenial (figure 2b; electronic supplementary material, figure S2). As
in Cutleria and therapsids, but unlike sphenacodontines, the splenial exposure probably would have
been limited near the symphysis (based on its facet on the medial surface of the dentary).

Among the more striking features of Shashajaia are the prominent heterodont dentition, with well-
developed anterior canine-like teeth that are up to 2.5 times taller than the postcanines. There are at
least 24 preserved tooth positions in total. All of the teeth appear to exhibit a subthecodont
implantation, seated slightly deeper on the medial side than on the lateral side, and with festooned
infolding of plicidentine at the attachment site forming a ‘four-leaf clover’ cross-sectional shape of the
pulp cavity as in Sphenacodon and Dimetrodon limbatus [21] (figure 2d ). Similar festooned plicidentine
has been reported in indeterminate materials from the late Carboniferous Ada Formation of
Oklahoma (Ghzelian stage) ([39]: fig. 11). The first three dentary teeth in Shashajaia consecutively
increase in size so that the third is the tallest, reminiscent of the pattern in Sphenacodon in which the
third tooth position usually accommodates the largest tooth (electronic supplementary material,
figure S9) [49,50]. There is a short diastema (less than 1 cm) between the third and fourth tooth
positions (caniniforms). A diastema has been observed previously between the third and fourth tooth
positions in some specimens of Haptodus garnettensis ([3]: fig. 10) and an indeterminate
sphenacodontian from the Sangre de Cristo Formation ([51]: fig. 4). The fourth (caniniform) tooth is
situated on a raised buttress of alveolar bone and is at least twice the height of the succeeding
postcanine teeth. As in sphenacodontids and therapsids, the postcanines are greatly reduced in height
relative to the dorsoventral depth of the dentary (less than 40%). The more posterior cheek teeth lack
the typical ‘teardrop’ shape of sphenacodontids and are instead more similar in outline to those of
Haptodus, Ianthodon and Palaeohatteria. The teeth are triangular with a slightly crooked tip and
anteroposteriorly wide bases that nearly come into contact with preserved neighbouring teeth (see
[28]: fig. 4 and [27]: fig. 16). However, in Shashajaia, the crowns are comparatively lower in aspect ratio
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and have a wider base, hyperbolic in outline. Distally, the teeth are medially compressed but are only
weakly carinated and thus without mesiodistal cutting edges or serrations (figure 2c), suggesting they
were probably not important for shearing or tearing.

3.2.1. Phylogenetic analysis

Comparisons to other sphenacodontians were further evaluated by parsimony analysis of 20 synapsid
taxa and 154 morphological characters, updated from Fröbisch et al. [31] and Spindler et al. [28] and
executed in PAUP 4.0a (build 167) [52]. The analysis recovered eight most parsimonious trees of 308
steps (consistency index, 0.6526; retention index, 0.8126) (see electronic supplementary material, Text).
In the consensus tree, Shashajaia bermani resolves among the anatomically derived Sphenacodontoidea
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in a polytomy with Sphenacodontidae and Therapsida (figure 1b). The taxon shares with all other
sphenacodontians in the analysis: marginal teeth that are robust and sharp rather than peg-like (char.
49); and enlarged anterior dentary teeth more than 30% taller than the average tooth height (char. 60).
Unlike the more basal sphenacodontians, Shashajaia shares with sphenacodontids and therapsids:
splenial mostly exposed only medially (as in Cutleria and therapsids; char. 121); bases of the lower
anterior (incisiform) teeth are on a raised bony platform elevated above the level of the more posterior
teeth (char. 145); an enlarged caniniform tooth present on a separate buttress of alveolar bone (char.
148); and absolute crown heights of posterior dentary teeth are reduced to less than 40% the
dorsoventral depth of the mandible (char. 153). Notably, the oldest geochronologically constrained
sphenacodontid fossils are found in the approximately coeval late Carboniferous Janesville Formation
(Admire Group) of the midcontinental USA [53] (figure 1b; electronic supplementary material, figure
S4). Thus, Shashajaia fills an important morphologic and temporal gap between the basal haptodont-
grade sphenacodontians and Sphenacodontoidea (figure 1b).

3.3. Morphometric results
The phylogenetic position of Shashajaia among Sphenacodontoidea presents an opportunity to assess the
diversification of tooth morphospace in synapsids prior to the origin of therapsid-like heterodonty.
Results of the morphometric analysis indicate that the first two PCs represent the overwhelming
majority of tooth shape variation (71%) and were therefore used in subsequent plots to distinguish both
(i) morphological variation along the toothrow (figure 3a; electronic supplementary material, figure S6)
and (ii) overall variation within different taxonomic groups (figure 3c; electronic supplementary material,
figures S7 and S8). PC1 encompassed the majority of tooth shape variation (58.2%) and chiefly reflects
variation in tooth aspect ratio, which forms a continuum ranging from tall, slender (more negative) to
short, stout (more positive) tooth crowns (figure 3b). This continuum along PC1 generally marks the
sequential change in tooth shape from the front to the back of the toothrow (electronic supplementary
material, figure S7) and shows a weak but negative correlation with tooth size in sphenacodontians
(electronic supplementary material, figure S8). PC2 (12.8%) reflects overall tooth curvature, illustrating
whether the curve manifests across the entire crown (more negative) or is concentrated towards the apex
(more positive) (figure 3b). Overall, therapsids occupy a greater area of morphospace than more basal
(pelycosaur-grade) synapsids (figure 3a,b). Dinocephalians exhibit the greatest morphospace occupation
of all subclades, although therocephalians are more widely distributed across PC2 (electronic
supplementary material, figure S7). Although sphenacodontians display the greatest dental disparity of
all pelycosaur-grade synapsids, Shashajaia’s morphospace corresponds even more closely with therapsids
as it shows a similarly broad distribution across PC1 (electronic supplementarymaterial, figures S6 and S7).

In addition to filling a greater portion of the tooth morphospace, therapsids generally exhibited more
positive PC1 values throughout the toothrow and with a significant increase (lower aspect ratio) toward
the back of the row than in the more basal pelycosaur-grade synapsids where the teeth are comparatively
more homodont (figure 3a; electronic supplementary material, figure S6). Variance in PC1 across an
individual toothrow—a quantitative index for shape heterodonty—was therefore also greater in most
therapsid clades than in basal synapsid groups (figure 3c); the highest therapsid PC1 variance was
found among biarmosuchians, dinocephalians, gorgonopsians and cynodonts, and the lowest
therapsid PC1 variance among non-dicynodont anomodonts and small therocephalian insectivores
(e.g. Tetracynodon). Remarkably, PC1 variance in Shashajaia substantially overlapped the greatest
therapsid values, probably reflecting the strong functional heterodonty of the tall, slender incisor and
canine teeth versus the short, triangular postcanines. Size variation was loosely associated with
variations in tooth aspect ratio, with the anterior teeth on average having a larger relative size than
the more posterior teeth in both basal synapsids and therapsids. Primitively, the lower postcanine
field of therapsids is known to show a marked decrease in tooth height relative to the overall jaw
depth [48] beginning at about the level of the fifth or sixth tooth position (electronic supplementary
material, figure S6), although sphenacodontids also exhibit comparatively short postcanine crowns
relative to the dentary depth. Nevertheless, in the majority of basal synapsids, a functional tooth in
any given position is not significantly smaller than its preceding tooth, but Shashajaia with its
diminutive postcanines is more similar to the therapsids in this respect (electronic supplementary
material, figures S6 and S7).

Time-series data (figure 3d ) show a discordance between patterns of dental morphology and body
size evolution in Palaeozoic synapsids. Mean body size gradually increased in both synapsid
herbivores and carnivores from the late Carboniferous to Middle Permian with a short-term decrease
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at the Early–Middle Permian boundary (figure 3d ‘Olson’s extinction’), corroborating similar findings by
Brocklehurst & Brink [22] and Brocklehurst et al. [54]. Though initially lower on average than sympatric
carnivores, mean herbivore size surpassed that of carnivores during the Early Permian, a possible
ecological consequence of predator pressure on C–P herbivores and overall greater numbers of large
herbivores during the late Early Permian. Nevertheless, expansion of body size disparity was not
accompanied by similar increases in PC1 variance. In fact, mean PC1 variance was relatively stable or
slightly decreased for each geologic stage from the Kasimovian to the Kungurian. Among late
Carboniferous taxa, Shashajaia showed the highest PC1 variance (0.026). Among all of the taxa
sampled, comparable PC1 variance was only re-encountered later in the Middle Permian therapsids
(Capitanian stage), which included the largest known Palaeozoic synapsid herbivores and carnivores:
the dinocephalians (100–1000 kg). Given this temporal lag and the inversion of large herbivores
relative to carnivores, it is unlikely that regional specialization of tooth function in Shashajaia and the
first therapsids were influenced by the same ecological factors. Moreover, the Halgaito assemblage
from which Shashajaia originated includes abundant aquatic and semi-terrestrial taxa that
proportionately outnumbered the fully terrestrial taxa (in contrast with the assemblage of the Permian
Organ Rock Formation which was progressively more terrestrial) [35,55].

The comparisons outlined above bring into focus the ecological backdrop under which therapsid-like
heterodonty evolved. During the C–P transition, herbivore richness and body size disparity dramatically
increased [56] which, in addition to climate change, may have impacted plant species richness during
Permian times [54]. Simultaneously, synapsid predators like the sphenacodontians showed increasing
body size disparity [22,23], and functional innovations in their marginal dentition suggest
underappreciated dietary diversity among the group ranging from generalist faunivores to more
specialized apex predators [21]. While it is often assumed that sphenacodontids preyed on large
synapsid herbivores, like Edaphosaurus [20], there is ample evidence that sphenacodontids originated
as small-bodied faunivores—as in a documented predator–prey association between Dimetrodon milleri
and the amphibian Zatrachys [20]. Shashajaia reflects this early sphenacodontian ecology, with its
relatively gracile, upwardly curved dentary (figure 2) suggesting low stress, low power jaw
functionality focused on speed and unsuited to extended struggles with prey during feeding [57]. The
dental modification in Shashajaia probably compensates for the low-biting efficiency at the tip of the
dentary, using instead the high velocity at this part of the jaw [6,7] alongside the enlarged anterior
teeth to maximize the impact on the prey and penetrate deep into its flesh [40,58]. Given pelycosaur-
grade synapsids were not particularly agile [20], this likely jaw function suggests Shashajaia was an
ambush predator that fed on smaller animals, which could be quickly caught and swallowed without
struggle. Thus, prior to the establishment of large herbivore-dominated tetrapod communities, as
consumers shifted from aquatic to terrestrial feeding, C–P sphenacodontoids like Shashajaia most likely
used their enlarged anterior dentition primarily for gripping and puncturing small to mid-sized prey,
including perhaps small reptiles, amphibians and fishes [4,59,60]. Though the dentitions of
Carboniferous taxa appear to have relatively smooth mesiodistal edges, the canine and antecanine
dentition became modified at a later stage with serrations and denticles, forming a ‘ziphodont’
dentition. Ziphodonty in some large-bodied Dimetrodon species [21] and numerous therapsids [61]
might indicate more efficient processing of protein in active terrestrial animals that had relatively
greater metabolic requirements than the earliest sphenacodontians. Prior to this, the emphasis on prey
capture may reflect increasing environmental heterogeneity as the Carboniferous drew to a close
[62,63], with seasonal fluvial palaeoenvironments like that of the Birthday Bonebed [35] providing an
ideal mix of terrestrial and semi-aquatic prey that allowed basal synapsid faunivores to experiment
with varying their exposure to aquatic resources, enabling their trophic ecologies to become more
firmly planted in the terrestrial realm.
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