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Aim: In silico screening approaches were performed to discover novel InhA inhibitors. Methods: Candidate
InhA inhibitors were obtained from the combination of virtual screening and pharmacokinetic prediction.
In addition, molecular mechanics Poisson–Boltzmann surface area, molecular mechanics Generalized Born
surface area and WaterSwap methods were performed to investigate the binding interactions and binding
energy of candidate compounds. Results: Four candidate compounds with suitable physicochemical,
pharmacokinetic and antibacterial properties are proposed. The crucial interactions of the candidate
compounds were H-bond, pi–pi and sigma–pi interactions observed in the InhA binding site. The binding
affinity of these compounds was improved by hydrophobic interactions with hydrophobic side chains
in the InhA pocket. Conclusion: The four newly identified InhA inhibitors reported in this study could
serve as promising hit compounds against Mycobacterium tuberculosis and may be considered for further
experimental studies.
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Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tuberculosis) is one of the most widespread diseases in the
world. The upturn of TB as a public health threat was mainly due to the appearance of drug-resistant TB (DR-TB).
In 2021, the WHO reports suggested that around 10 million individuals were infected with, and 1.2 million people
died from, TB [1]. Enoyl-ACP reductase (InhA) catalyses the nicotinamide adenine dinucleotide (NADH)-specific
reduction of 2-trans-enoyl-ACP in the elongation cycle of mycolic acid, the major component of the mycobacterial
cell wall in the fatty acid synthase type II (FAS II) pathway [2,3]. Isoniazid (INH), the first-line drug for TB treatment,
acts by inhibiting the function of InhA. INH is a prodrug that requires activation by M. tuberculosis catalase-
peroxidase (KatG) to form a covalent bond with NAD+ in an InhA-inhibiting, INH-NAD adduct. However,
the activity of INH is reduced by mutations of KatG that prevent its activation. Nevertheless, InhA remains a
validated chemotherapeutic target for the development of direct InhA inhibitors that do not require activation
by KatG [4]. Some novel classes of these inhibitors have been reported, such as rhodanines [5–7], thiadiazoles [8,9],
triazoles [10] and 4-hydroxy-2-pyridones [11]. However, the direct InhA inhibitors exhibit good in vitro inhibition
against the InhA enzyme but lack activity against M. tuberculosis growth [12]. In the present work, ligand-based
and structure-based virtual screening has been applied to select candidate InhA inhibitors from the Specs database,
using the similarity search method with a previously reported active compound as a template. The physicochemical
and pharmacokinetic properties of selected candidates were employed, and molecular docking calculations were
applied, to filter hit compounds. Furthermore, the binding interactions of candidate inhibitors in the InhA
binding pocket were analyzed and compounds showing the same binding interaction as the template molecule were
selected. Antibacterial models were applied to predict the anti-mycobacterial activity of hit compounds and their
pharmacokinetic properties were predicted. Molecular dynamics (MD) simulations followed by binding energy
calculations were applied to understand the interactions, binding modes and binding energy of these novel candidate
inhibitors in the InhA binding site. The integrated findings could provide a protocol that improves the effectiveness
of screening for novel InhA inhibitors by in silico means.

Materials & methods
The identification of novel InhA inhibitors was conducted using ligand-based virtual screening by the similarity
search method against the Specs database. Adherence to Lipinski’s rule of five (RO5) [13], druglikeness properties
and absorption, distribution, metabolism, excretion and toxicity (ADMET) predictions were calculated using the
SwissADME [14], PreADMET [15,16] and PkCSM [17] programs and used as filters to screen new compounds. Then,
structure-based virtual screening against the substrate binding site of InhA using Glide XP [18] was applied to filter
the hit compounds via their docking scores and their interactions with InhA compared with those of the template
molecule. Next, antibacterial activity models, including PASS prediction [19,20], AntiBac-Pred [21] and MycoCSM
prediction [22], were used to identify safe and potent candidates with favorable activity against mycobacteria and
acceptable values for, % caseum fractions unbound (% caseum FU) and maximum recommended tolerated dose
(MRTD), respectively. Hit compounds were evaluated against the PubChem database [23] to confirm the novelty of
both their structures and the biological testing results. The binding of candidate compounds to InhA was further
investigated using MD simulations of their complexes, starting from the dock coordinates, using AMBER20 [24],
and their binding energies were calculated using the molecular mechanics Poisson–Boltzmann surface area (MM-
PBSA), molecular mechanics generalized Born surface area (MM-GBSA) [25] and WaterSwap methods [26,27].

Ligand-based virtual screening
First, (2∼{S})-1-(benzimidazol-1-yl)-3-(2,3-dihydro-1∼{H}-inden-5-yloxy)propan-2-ol (AP-124/43238118)
was selected [28] as the template molecule, which was subsequently used for similarity search from Specs database.
The similarity search with the cut-off value of 60% was used for screening novel InhA inhibitors. The free software
SwissADME [14] was used to explore physicochemical parameters. Hit compounds which passed RO5 were then
cut off by Ghose value [29]. This evaluation for WlogP with the range from -0.4 to 5.6 and for MW with the range
from 160 g/mol to 480 g/mol were considered. Moreover, molar refractivity (MR) was identified with the range
from 40 to 130, and numbers of atoms with the range from 20 to 70. According to the cutoff values by Veber [30] for

718 Future Med. Chem. (2022) 14(10) future science group



Discovery of novel & potent InhA inhibitors Preliminary Communication

topological polar surface area (TPSA), the values should be ≤140 Å2 and ≤10 Å2, respectively. Compounds that
met all criteria were further investigated by docking calculations and simulations to estimate the binding affinity
in the InhA binding site.

Structure-based virtual screening
The screened compounds were docked into InhA using the Glide program in the extra precision (XP) mode [18] to
search for novel InhA inhibitors. The X-ray structure of InhA in complex with the relevant template compound
was extracted from the Protein Data Bank (PDB code: 6R9W) [28]. The protein preparation wizard workflow was
employed to prepare the receptor with PROPKA at pH 6.8 for amino acid protonation assignment. The structure
was optimized using the OPLS-2005 force field [31,32] by minimization with heavy atoms restrained, giving a
root-mean-square deviation (RMSD) of 0.3 Å. Finally, the optimized coordinates of InhA were placed in a box of
20 × 20 × 20 Å3. Grid box was set by the default protocol and centered by the ligand. After sorting the compounds
as described above (ligand-based virtual screening), hit compounds were used in ligand preparation for docking
calculations with the Ligprep module. All conformations were minimized and a maximum of 32 conformations per
ligand produced using the OPLS-2005 force field. The missing hydrogen atoms were added, and the protonation
states of candidate compounds were generated with Epik at pH of 7.0 ± 2.0. For docking calculations, the InhA
structure was fixed, while the compounds were freely relaxed. The threshold distance of 1 Å for clustering these
binding modes was set for molecular docking calculations. Complexes with a docking score better than that of the
template compound were selected as hits. Then, hit compounds were analyzed to identify their binding mode and
binding interaction.

ADMET & toxicity predictions
The pharmacokinetic or ADMET properties of small molecules were calculated using SwissADME [14], PreAD-
MET [15,16] and PkCSM [17] software and used to select novel InhA inhibitors.

Antibacterial predictions
All selected compounds predicted to be active as potential anti-TB agents using the antibacterial prediction software
were collected as hit compounds for future investigations. The descriptions of active compounds for each prediction
tool are provided below. In addition, biological activity against M. tuberculosis and InhA, as reported in the PubChem
database, was investigated to ensure that the collected compounds from this virtual screening are novel and possess
good biological activity. The first prediction is the PASS prediction of anti-mycobacterial activity, where compounds
showing values of probability of being active (Pa) greater than the probability of being inactive (Pi) are regarded as
possibly active candidates [19,20]. The second method, AntiBac-Pred, was applied to predict the anti-mycobacterial
and anti-non-tuberculous mycobacteria (NTM) activity with confidence values [21]. The compounds that showed
higher confidence values than those of the template compound were selected as candidates for future analysis.
The third method was MycoCSM prediction [22]. In this study, the value of anti-mycobacterial activity, anti-NTM
activity, % caseum FU and MRTD for candidate compounds were elucidated.

MD simulations
MD simulations were performed with the AMBER20 package [24] to predict the binding energy, binding modes
and binding interactions of hit compounds in the InhA binding pocket. The ff03 force field was used for InhA [33].
The general Amber force field (GAFF) [34] was used to generate parameters for hit compounds; those for NAD+

cofactor were generated by the Antechamber module. Restrained electrostatic potential (RESP) [35] partial charges
were calculated at HF/6-31G* for atomic charges of NAD+ cofactor and hit compounds using Gaussian09 [36]. The
TIP3P water model [37] and five Na+ ions were chosen to represent water, for solvating, and ions, for neutralizing
the system, respectively. Nine complexes, including those of the template and hit compounds in the InhA binding
pocket, were first minimized by 5000 steps with the restraint force constant of 500 kcal/mol Å2 using the steepest
descent method, followed by the conjugate gradient method. The threshold value of the energy gradient for
convergence was set as 0.001 kcal/mol Å2. Then, the systems were gradually warmed from 0 to 300 K in the first
30 ps, followed by maintaining the temperature at 300 K for the last 10 ps with 2 fs simulation steps in a constant
volume boundary. The selected candidates complexed with InhA were restrained to their initial coordinate structures
with a weak force constant of 10 kcal/mol Å2 during these changes in temperature. This was followed by 270 ps
of position-restrained dynamics simulation with a restraint weight of 2 kcal/mol Å2 at 300 K under an isobaric
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condition. Finally, 100 ns MD simulations without any restraints were performed using the same conditions.
Long-range electrostatic interactions were applied using the particle mesh Ewald (PME) method [38]. The cut-off
distance for van der Waals interaction was set to 8 Å. The SHAKE method [39] was applied to constrain the bond
lengths of hydrogen atoms attached to heteroatoms. The RMSDs of InhA, NAD+ and candidate compounds
were calculated over the simulation times to show the stability of the system. To evaluate the binding affinity
of hit compounds bound to the InhA binding site, binding energies were employed. A representative binding
mode of InhA/NAD+/ligand complexes was obtained from clustering analysis combined with H-bond analysis to
investigate the crucial interactions among the ligand, NAD+ cofactor and amino acid in the InhA binding site.

Binding energy calculations
MM-PBSA & MM-GBSA calculations
MM-PBSA and MM-GBSA methods [25] were employed to calculate the binding energies (�Gbind) of eight hit
compounds and the template molecule complexed with InhA. The atomic radii developed by Onufriev and co-
workers (igb = 5) were chosen for all GB calculations [40]. The various energy terms of complexes, receptors and
ligands derived from snapshots were calculated by the MM-PBSA and MM-GBSA methods. In this calculation,
1750 snapshots after equilibration had been reached (last 70 ns) were used as the coordinates for MM-PBSA and
MM-GBSA calculations to get more reliable predictions of binding affinity in the InhA binding site. The binding
energy (�Gbind) was calculated from Equation 1.

�Gbind = �Gcom − (�Grec + �Glig) (Equation 1)

where �Gcom, �Grec and �Glig are the free energies of complexes, receptors and ligands for InhA complexed with
hit compounds, respectively.

WaterSwap calculations
WaterSwap calculations were performed to estimate the binding energies of eight candidate compounds in the
InhA binding pocket using the Sire program [26,27]. The structures of complexes obtained from the final snapshot
of position-restrained MD simulations were used as the starting structure for WaterSwap calculations. Default
parameters were set up to calculate the binding energy. A total of 1000 iterations were performed using sampling
size for Monte Carlo simulation set to 1.6 × 109 with a replica exchange thermodynamic integration. Four highly
efficient binding free energy methods, including Bennett’s ratio, free energy perturbation (FEP), thermodynamic
integration (TI) and quadrature-based integration of TI, were used. Agreement of <1 kcal/mol among these is
regarded as reasonable and indicates the highly stable nature of the complex.

Results & discussion
Virtual screening workflow
The virtual screening protocol is summarized in Figure 1. The similarity search on the freely available commercial
Specs database with the cut-off value of 60% compared with the template compound (the x-ray ligand) from
the literature was applied for screening novel InhA inhibitors, and 421 compounds were obtained. Then, all
compounds were filtered by RO5, Ghose and Veber using SwissADME software. In addition, ADMET parameters
were applied to filter compounds using PreADMET and PkCSM free software. Consequently, 310 compounds
were obtained. Molecular docking calculations of these candidate compounds were performed using Glide XP to
provide the docking scores, binding modes and binding interactions of the candidate compounds in the InhA
binding pocket. The docking score of the template molecule was -10.3 kcal/mol, but few candidate compounds
possessed docking scores lower than that of the template molecule. Therefore, to obtain the diversity and novelty
of the structures, the docking score was selected at -9.0 kcal/mol as a criterion to filter the candidate compounds.
45 candidate compounds with docking scores ranging from -9.1 to -10.7 kcal/mol were selected. The binding
modes and crucial interactions in the InhA active site, including H-bond (a water-mediated H-bond to the backbone
carbonyl of Ala211) and hydrophobic interactions, of these 45 candidate compounds were analyzed. Accordingly,
17 compounds with high docking scores and the same crucial interactions as the template molecule were selected.
Anti-TB activity predictions were performed using PASS prediction, AntiBac-Pred and MycoCSM prediction. In
addition, the PubChem database was used to check the anti-TB activity and to confirm the novelty of the candidate
compounds in terms of their structures and biological activities. The results indicated that eight compounds would
be expected to show biological activity against M. tuberculosis. MD simulations and binding energy calculations
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Figure 1. Virtual screening workflow used here to identify
molecules as potential InhA inhibitors.
ADMET: Adsorption, distribution, metabolism, excretion and
toxicity; MD: Molecular dynamics.
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Figure 2. Structures of four potential candidates.

were performed, and the results, based on compound binding, showed that four candidate compounds met the
criteria and were collected as novel candidate InhA inhibitors and anti-TB agents. The structures of these candidate
compounds are summarized in Figure 2.

Physicochemical property prediction
The physicochemical properties of the eight hit compounds with predicted biological activity are summarized in
Table 1. All hit compounds agreed well with RO5, with their MWs in the range from 282 to 411 g/mol. The
partition coefficients (logP) were in the range from 1.8 to 3.2. The maximum numbers of hydrogen bond donors
(HBD) and hydrogen bond acceptors (HBA) were 1 and 5, respectively. In addition, Ghose filter and Veber rule
were also elucidated. One important parameter for the oral bioavailability is MR described by the Ghose filter.
In this study, the MR values of candidate compounds showed moderate oral bioavailability, which were in the
range from 82.2 to 112.0. The predicted TPSA for eight candidate compounds ranged from 47.3 to 84.0 Å2.
According to the cut-off values set for TPSA (≤140 Å2) by Veber, in comparison with the template molecule
(TPSA = 47.3 Å2), the candidate compounds showed TPSA values higher than that of the template molecule.
These predicted TPSA values appear acceptable. The candidate compounds in this study are thus likely to have
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Table 1. Summary of physicochemical properties of hit compounds.
ID number Docking score

(kcal/mol)
Physicochemical properties

MW
(g/mol)

Rotatable
bonds

Hydrogen
bond
acceptors

Hydrogen
bond donors

logP Topological
polar surface
area
(Å2)

Molar
refractivity

AP-124/43238118
(template)

-10.3 308 5 3 1 2.6 47.3 90.4

AE-848/34504008 -9.4 282 6 3 1 1.8 47.3 82.2

AG-690/13705356 -10.7 354 8 5 0 2.2 76.4 112.0

AG-690/14006355 -10.8 370 6 5 1 2.5 84.0 105.7

AP-845/40876825 -9.8 314 5 4 1 2.7 47.3 87.7

AP-845/40876827 -10.3 397 5 3 1 3.2 47.3 103.0

AP-845/40876828 -9.9 411 5 3 1 3.4 47.3 108.0

AP-845/40876832 -10.6 324 6 3 1 2.8 47.3 97.3

AS-871/41615872 -9.2 338 7 4 1 1.9 64.4 97.8

MW: Molecular weight.

Table 2. Summary of absorption, distribution, metabolism, excretion and toxicity predictions of hit compounds.
ADMET parameters AP-

124/43238118
(template)

AE-
848/34504008

AG-
690/13705356

AG-
690/14006355

AP-
845/40876825

AP-
845/40876827

AP-
845/40876828

AP-
845/40876832

AS-
871/41615872

BBB 0.8 0.3 0.2 0.5 0.9 0.7 0.9 1.6 0.1

Caco-2 cell 41.1 35.6 49.4 12.3 56.5 45.4 46.5 42.4 38.1

MDCK cell 90.8 169.9 0.1 4.7 4.0 0.1 0.1 3.8 27.8

HIA 96.3 96.2 95.8 96.6 96.2 97.1 97.1 96.4 96.3

CYP3A4 Inhibitor Inhibitor None Inhibitor Inhibitor Inhibitor Inhibitor Inhibitor Inhibitor

CYP2D6 None None None None None None None None None

CYP2C9 Inhibitor Inhibitor Inhibitor Inhibitor Inhibitor Inhibitor Inhibitor Inhibitor Inhibitor

CYP2C19 Inhibitor Inhibitor Non Inhibitor Inhibitor Inhibitor Inhibitor Inhibitor Inhibitor

Ames test Mutagen Mutagen Mutagen Mutagen Mutagen Mutagen Mutagen Mutagen Mutagen

Carcino-mouse Negative Negative Negative Negative Negative Negative Negative Negative Negative

Carcino-rat Negative Positive Negative Negative Positive Positive Positive Negative Negative

Hepatotoxicity Yes Yes Yes Yes Yes Yes Yes Yes Yes

ADMET: Absorption, distribution, metabolism, excretion and toxicity; BBB: Blood–brain barrier; HIA: Human intestinal absorption; MDCK: Madin–Darby canine kidney.

a high probability of oral bioavailability. Overall, the eight hit compounds can be considered to fall within a
reasonable range of physicochemical properties.

ADMET prediction
In the present study, pharmacokinetic properties (ADMET) were predicted using the PreADMET tool. In addition,
the hepatotoxicity of the candidate compounds was obtained from PkCSM calculations. All ADMET parameters
of these eight hit compounds are summarized in Table 2. For Caco-2 cells, five hit compounds showed higher
values than that of the template molecule. This demonstrates that these compounds are expected to moderate per-
meability. All candidate compounds showed a lower number of Madin–Darby canine kidney (MDCK) cells than
that of the template molecule, except for compound AE-848/34504008. This indicates that the candidate com-
pounds should have good oral drug absorption and skin permeability. In addition, all eight candidate compounds
showed Human intestinal absorption (HIA) values close to that of the template molecule. Higher HIA values
indicate that the compounds are better absorbed from the intestinal tract upon oral administration. For distribu-
tion, the blood–brain barrier (BBB) prediction illustrated that five hit compounds, including AG-690/14006355,
AP-845/40876825, AP-845/40876827, AP-845/40876828 and AP-845/40876832, showed BBB values higher
than that of the template molecule. This indicates that these compounds possess moderate adsorption proper-
ties, while AE-848/34504008, AG-690/13705356 and AS-871/41615872 have lower adsorption properties. For
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Table 3. Antibacterial activities of hit compounds.
Compounds Antibacterial activities

PASS prediction AntiBac-Pred MycoCSM

Anti-mycobacterial Antibacterial Confidence M. tuberculosis Caseum FU (%) Maximum recommended tolerated
doseLog (mg/kg/day)Pa Pi

AP-124/43238118
(template)

0.2 0.2 M. tuberculosis
H37Rv

0.1 -4.9 4.1 0.6

AE-848/34504008 0.4 0.1 M. tuberculosis
H37Rv

0.2 -5.1 5.1 0.9

AG-690/13705356 0.3 0.1 M. tuberculosis
H37Rv

0.1 -5.4 1.8 0.4

AG-690/14006355 None None None None -4.4 0.4 0.3

AP-845/40876825 0.3 0.1 M. tuberculosis
H37Rv

0.1 -4.9 4.9 0.9

AP-845/40876827 None None None None -4.9 0.6 0.6

AP-845/40876828 None None None None -4.7 0.4 0.5

AP-845/40876832 0.3 0.1 None None -4.8 1.0 0.8

AS-871/41615872 0.3 0.1 M. bovis 0.1 -4.9 2.6 0.3

metabolism properties, activity toward cytochrome P450s, including CYP3A4, CYP2D6, CYP2C9 and CYP2C19,
was predicted. The results indicated that most candidate compounds passed the CYP3A4 and CYP2C19 inhibition
screening, except for compound ID AG-690/13705356, which is inactive toward these families. For CYP2D6, all
candidate compounds showed non-inhibitory activity. For the Ames test, all candidate compounds exhibited mu-
tagenicity, which means that all candidate compounds are mutagenic. When focusing on Carcino-rat and Carcino-
mouse, all compounds were predicted to be negative, except compounds AP-845/40876825, AP-845/40876827
and AP-845/40876828, which that showed the positive prediction for the Carcino-mouse model. In addition,
hepatotoxicity prediction indicated that all hit compounds and the template molecule have the predicted liver
toxicity effects.

Antibacterial predictions
The predicted biological activities of hit compounds based on anti-TB and anti-NTM predictions are summarized
in Table 3, Table S1 & Table S2. The anti-mycobacterium activity results of the PASS prediction suggested that
five hit compounds, excepting compounds AG-690/14006355, AP-845/40876827 and AP-845/40876828, were
classified as active compounds (Table 3). Based on AntiBac-Pred, the results revealed that three hit compounds
showed M. tuberculosis H37Rv activity with higher confidence values than that of the template molecule. Moreover,
compounds AS-871/41615872 (Mycobacterium bovis) and AP-845/40876832 (Mycobacterium avium complex) were
predicted to have anti-NTM activity (Table 3 & Table S1). MycoCSM software was also used to identify compounds
likely to be active against M. tuberculosis and NTM (Table 3 & Table S2). Five hit compounds were predicted to
have higher activity against M. tuberculosis than the template molecule, the exceptions being AP-845/40876827,
AP-845/40876828 and AG-690/14006355. In addition, six compounds, AS-871/41615872, AP-845/40876827,
AP-845/40876828, AP-845/40876832, AG-690/13705356 and AG-690/14006355, showed higher anti-NTM
activity than the template molecule against Mycobacterium smegmatis. For % caseum FU, low value showed good
fraction unbound and more potent anti-TB agents. The % caseum FU predictions (Table 2) suggested that all eight
compounds were more potent anti-TB agents than the template compound. Based on these results, the MRTD
values of three candidate compounds, including AG-690/13705356, AG-690/14006355 and AS-871/41615872,
passed the acceptable criteria while being lower than that of the template molecule. Therefore, the integrated results
could provide specific information to get more specific InhA inhibitors with high potential as anti-TB agents.

The binding energies of novel InhA inhibitors
The calculated RMSD value for each solute species (InhA, NAD+ and ligand) during MD simulations, compared
with the initial docked coordinates, was calculated and plotted as shown in Figure S1. MD simulations of all
systems reached the equilibrium state after 30 ns of MD simulations. The average RMSD values during the last
70 ns of the simulations ranged from 2.7 ± 0.1 Å to 3.1 ± 0.4 Å for InhA, 1.5 ± 0.2 Å to 2.0 ± 0.3 Å for NAD+
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Table 4. The binding energies of InhA inhibitors calculated by molecular mechanics Poisson–Boltzmann surface area,
molecular mechanics Generalized Born surface area and WaterSwap methods.
Compounds � Gbind (kcal/mol)

MM-PBSA MM-GBSA WaterSwap

AP-124/43238118 (template) -11.8 ± 3.0 -33.6 ± 3.4 -25.7 ± 0.5

AE-848/34504008 -17.3 ± 4.0 -32.1 ± 3.9 -21.0 ± 0.7

AG-690/13705356 -21.4 ± 2.9 -37.1 ± 3.8 -27.0 ± 0.4

AS-871/41615872 -15.8 ± 3.5 -32.8 ± 3.9 -19.3 ± 0.2

AG-690/14006355 -18.6 ± 5.3 -35.4 ± 6.9 -30.1 ± 0.8

AP-845/40876825 -11.6 ± 3.1 -30.9 ± 4.4 -21.8 ± 1.1

AP-845/40876827 -14.6 ± 4.3 -27.0 ± 6.5 -30.2 ± 0.7

AP-845/40876828 -12.3 ± 3.3 -33.6 ± 6.6 -28.5 ± 0.2

AP-845/40876832 -20.1 ± 3.3 -35.7 ± 3.8 -26.3 ± 0.6

MM-GBSA: Molecular mechanics Generalized Born surface area; MM-PBSA: Molecular mechanics Poisson–Boltzmann surface area.

and 2.4 ± 0.6 Å to 3.0 ± 0.3 Å for ligands. Eight hit compounds and the template molecule were investigated for
their binding energies in the InhA binding pocket by MM-PBSA, MM-GBSA and WaterSwap methods as shown
in Table 4. The lowest binding energies were those of AG-690/13705356 (-21.4 ± 2.9 kcal/mol for MM-PBSA
and -37.1 ± 3.8 kcal/mol for MM-GBSA) and AP-845/40876827 (-30.2 ± 0.7 kcal/mol for WaterSwap),
respectively. Thus, these candidate compounds showed binding energies lower than that of the template. Therefore,
four compounds, AG-690/13705356, AG-690/14006355, AP-845/40876828 and AP-845/40876832, with
binding energies lower than that of the template compound were selected to investigate the binding mode and
binding interactions.

Binding mode & binding interaction of candidate compounds
Various factors, including physicochemical and pharmacokinetic properties, docking scores, and binding ener-
gies, compared with those of the template molecule were considered and four candidate compounds, including
compounds AG-690/13705356, AG-690/14006355, AP-845/40876828 and AP-845/40876832, were further
utilized for investigation of their InhA interactions and binding affinity. Schematic representations of the candidate
compounds in the InhA binding site, as derived from MD simulations, are shown in Figures 3 & 4. Based on
pharmacophore analysis by means of automated structure-based model generation using LigandScout [42] of the
template molecule and candidate compounds, it was found that H-bond interactions and hydrophobic interactions
were crucial for binding in the InhA binding site (Figure 4). The hydroxy group (OH) of the propan-2-ol moiety
played an important role in the H-bond interaction with water, NAD+ and amino acids in the InhA binding site.
H-bond interactions of the template and candidate compounds derived from MD simulations are summarized
in Table S3. For example, the OH of the template molecule, whose binding to InhA was established by X-ray
crystallography as described in our previous report, showed a water-mediated H-bond to the backbone carbonyl of
Ala211 (Figure 4A) [28]. On the other hand, the H-bond between the template and Ala211 via a water-mediated
interaction was lost after MD simulation. The OH of the template interacted with an oxygen atom of the py-
rophosphate group of NAD+, as shown in Figures 3A & 4B. This H-bond was occupied for more than 80% of
the simulation. The average distances were 2.60 Å and 2.68 Å from the OH of ligand to O1N (79.5% occupancy)
and O2A (13.8% occupancy) on the pyrophosphate group of NAD+, respectively. In addition, the equivalent
OH group of compounds AG-690/14006355 and AP-845/40876828 formed H-bond interactions with Gln214
(24.0% occupancy, 2.70 Å) (Figures 3C & 4D) and the NAD+ cofactor (44.4% occupancy, 2.63 Å) (Figures 3E
& 4F), respectively. The average distances from the OH of AG-690/14006355 and AP-845/40876828 to the
NH side chain of Gln214 were 2.89 Å and 2.63 Å, respectively. These findings suggested that the OH on the
propan-2-ol moiety of the candidate compounds was important for binding in the InhA binding site. Only two
compounds, AG-690/13705356 and AP-845/40876832, showed different H-bond interactions with amino acids
in the InhA binding site. A carbonyl oxygen of AG-690/13705356 contacted the NH side chain of Gln214 with
an average distance value of 2.89 Å (24.2% occupancy), and the nitrogen atom in the benzimidazole ring of
AP-845/40876832 formed H-bond interactions with the side chain of Gln214 with an average distance value
of 2.92 Å (5.4% occupancy). Due to the hydrophobic properties of the InhA binding site (66% hydrophobic
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Figure 3. (A) Binding mode of the template molecule. (B) AG-690/13705356. (C) AP-845/40876832.
(D) AG-690/14006355. (E) AP-845/40876828 complexed with InhA. InhA–ligand complexes were modeled by
molecular dynamics simulations. Red and pink dashed lines indicate H-bond and pi–pi interactions, respectively.

residues in the substrate binding site) [41], the results from both x-ray crystallography and MD simulations showed
that the bicyclic indane of the template is bound in an extended hydrophobic pocket contacting residues Phe149,
Met155, Ala157, Tyr158, Ile215 and Leu218, while the benzimidazole ring contacts residues Met103, Ala198,
Ala201 and Ile202 (Figure 3A & B). The same hydrophobic features were observed for all candidate compounds
in the InhA binding site, as displayed in yellow on the benzimidazole ring and phenyl scaffold in the modeled
complexes after MD simulations. Based on the hydrophobic features of the benzimidazole and phenyl rings of the
candidate compounds from 2D pharmacophore analysis, additional interactions potentially crucial for the binding
of the candidate compounds were analyzed. Both pi–pi and sigma–pi interactions contribute to the binding affinity
of the candidate compounds. The benzimidazole ring of AG-690/13705356 formed a sigma–pi interaction with
the Leu218 side chain (2.83 Å) (Figure 3B). The phenyl ring on the 4′-cyano-biphenyl of AG-690/14006355
contacted the Tyr158 side chain via pi–pi interactions (4.08 Å) (Figure 3D). As mentioned earlier, all candidate
compounds were found to form strong interactions in the InhA binding pocket and to show promising proper-
ties with respect to interaction with InhA and suitability to act as anti-TB agents based on the physicochemical
properties, antibacterial activities and pharmacokinetic predictions.

Conclusion
In conclusion, new potential InhA inhibitors were identified by ligand-based and structure-based virtual screening of
a commercial database. The validated models were exploited for virtual screening and the candidate compounds were
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Figure 4. The 2D pharmacophore features of candidate compounds generated from LigandScout. (A) Template x-ray conformation.
(B) Molecular dynamics simulation conformation. (C) AG-690/13705356. (D) AP-845/40876832. (E) AG-690/14006355 (F) AP-845/40876828.

filtered and scored by employing pharmacokinetic and physicochemical property filters and docking studies. Their
antibacterial activities were also predicted. In addition, binding energy calculations using MM-PBSA, MM-GBSA
and WaterSwap methods were performed for the screened compounds. Four candidate compounds, including
AG-690/13705356, AG-690/14006355, AP-845/40876828 and AP-845/40876832, are predicted to bind to
InhA and to have anti-mycobacterial activity. The binding affinity calculations indicated the selected compounds
(AG-690/13705356, AG-690/14006355, AP-845/40876828 and AP-845/40876832) better to InhA than the
template compound. The interactions of the candidate compounds with the InhA binding pocket include H-bond,
pi–pi, sigma–pi and hydrophobic interactions. These data suggest that the compounds identified in this study may
have anti-TB activities through the targeting of InhA and are consequently worthy of experimental study.

Future perspective
Nowadays, the development of multidrug-resistant TB and extensively drug-resistant TB is a big challenge in the
control of TB infections. Therefore, the development of novel anti-TB drugs is urgently required. This study
successfully applied the virtual screening approach to screening for novel InhA inhibitors. The results identify
promising candidates as anti-TB compounds. These integrated computational methods are reliable tools for
screening for hit compounds against InhA that warrant further experimental studies. The results could provide
important guidelines and design insights for future studies for the development of novel selective direct InhA
inhibitors.

Summary points

• Candidate compounds were screened from the Specs database by ligand- and structure-based virtual screening.
• Glide XP docking, molecular mechanics Generalized Born surface area, molecular mechanics Poisson–Boltzmann

surface area and WaterSwap methods were used to investigate the binding mode, binding interaction and
binding energy of candidate compounds in the InhA binding site.

• Four candidates are potential hit compounds, exhibiting binding energies lower than that of the template
molecule (i.e., higher binding affinity) and are worthy of further experimental investigation.
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