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Abstract— Deep-learning is an effective method for ultrasonic 

crack characterization due to its high level of automation and 

accuracy. Simulating the training set has been shown to be an 

effective method of circumventing the lack of experimental data 

common to non-destructive evaluation applications. However, a 

simulation can neither be completely accurate, nor capture all 

variability present in the real inspection. This means that the 

experimental and simulated data will be from different (but 

related) distributions, leading to inaccuracy when a deep learning 

algorithm trained on simulated data is applied to experimental 

measurements. This paper aims to tackle this problem through the 

use of Domain Adaptation (DA).  

A convolutional neural network is used to predict the depth of 

surface-breaking defects, with inline pipe inspection as the 

targeted application. Three DA methods across varying sizes of 

experimental training data are compared to two non-DA methods 

as a baseline. The performance of the methods tested is evaluated 

by sizing 15 experimental notches of length 1-5 mm and inclined 

at angles of up to 20° from the vertical. Experimental training sets 

are formed with between 1 and 15 notches. Of the DA methods 

investigated, an adversarial approach is found to be the most 

effective way to use the limited experimental training data. With 

this method, and only three notches, the resulting network gives a 

Root Mean Square Error (RMSE) in sizing of 𝟎. 𝟓 ± 𝟎. 𝟎𝟑𝟕 mm 

whereas with only experimental data RMSE is 𝟏. 𝟓 ± 𝟎. 𝟏𝟑 mm 

and with only simulated data it is 𝟎. 𝟔𝟒 ± 𝟎. 𝟎𝟒𝟒 mm. 

 
Index Terms— Domain adaptation, deep-learning, neural 

networks, plane wave imaging, simulation, ultrasound, defect 

characterization 

 

I. INTRODUCTION 

ON-Destructive Evaluation (NDE) techniques are used 

to assess the integrity of a component with the aim of 

extending its lifespan, reducing manufacturing costs and 

improving overall safety. The NDE application targeted in this 

paper is ultrasonic inline-pipe inspection in which transducers 

mounted on a ‘pig’ (pipeline inspection gauge) are used to 

detect defects as the pig travels along the pipeline, in the flow 

of the product, capturing data every 1-10 mm. When onboard 
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processing detects a defect, the data is compressed and stored 

for offline analysis with the parameter of interest usually being 

the remaining thickness of intact pipe. Inferring the health of a 

component from its response to a stimulus, such as ultrasound 

or x-ray, is commonly called the inverse problem. For inline 

pipe-inspection (as in most NDE applications), this is 

classically solved by a skilled human operator inspecting the 

data. However, the success of machine learning in related fields 

such as medical imaging [1] has drawn the attention of NDE 

researchers to the possibility of using data driven methods to 

improve defect characterisation, relative to classical methods. 

Automated data analysis such as this can provide significant 

cost savings by reducing required operator time and thus the 

changes of incorrect sentencing caused by human factors [2]. 

While this emerging field has seen a large number of 

successes, with machine learning techniques demonstrating 

human-level NDE data interpretation [3]–[10], there are still 

essential challenges to overcome. The three most important of 

these are choosing effective parameters to learn from (feature 

engineering), the scarcity of data, and mistrust in the ‘black 

box’ nature of machine learning [11]. The first of these 

challenges can be solved by inputting raw data to the machine 

learning algorithm, therefore tasking it with performing both 

feature engineering and inference. This approach is commonly 

called ‘deep-learning’. However, whilst solving the first 

problem, deep-learning exacerbates the second, as vast amounts 

of data (order 104) are required to train deep networks. In some 

very niche NDE applications enough experimental data is 

available [12], but this is not often the case as the data of interest 

is usually from defective components, which are expensive to 

manufacture. One solution to this problem is to increase the size 

of the training set via data augmentation methods such as 

cropping, translating, flipping, etc. [9], [13]–[15]. However, 

while these augmentations produce realistic examples for 

photographic images (where these methods are commonly used 

[16]) this is not necessarily true for NDE modalities. Recent 

research explores NDE specific data augmentation methods 

such as shifting signals in the time domain, coupled with 

random amplitude multipliers [17]. However, as both the 
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indication’s shape and amplitude can change with defect size, 

effective data augmentation still remains an unsolved problem 

for large and complex defect types. Another solution to the data 

shortage problem is to use a physics-based model to simulate 

the deep-learning training set. This approach has been used 

recently to train modern deep learning architectures for defect 

detection using X-ray data [18] as well as for ultrasonic sizing 

of surface breaking defects using a Convolutional Neural 

Network (CNN) [19], demonstrating sizing almost four times 

better than the conventional ‘6dB drop’ method [20]. 

However, while simulating a training set is an attractive 

approach, simulated NDE data can never perfectly match real 

data as it invariably contains simplifications and assumptions. 

This means that a model trained only with simulated data may 

not accurately size experimental data. This paper looks to solve 

this problem by including a small pool of experimental data in 

the training process. This is a ‘Transfer Learning’ (TL) [21] 

problem in that it aims to train a network using data from a 

‘source’ domain (i.e. simulation), that is intended to perform a 

task in a different, but related, ‘target’ domain (i.e. experiment). 

TL for problems with the same task in both domains, as in this 

paper, is called Domain Adaptation (DA). Note that to avoid 

confusion ‘model’ is used exclusively to refer to physics-based 

forward models while ‘network’ is used to refer to machine 

learning predictors. For machine learning terminology and 

definitions see [22]. 

In this paper three DA approaches are presented and 

compared against two baseline cases in their ability to improve 

the sizing accuracy of a CNN by adding a small amount of 

experimental data to the simulated training set. Building on the 

work in [20] the same CNN architecture, inspection set up, 

simulation methodology and imaging protocol are used here. 

Also, as with [20], the DA methods presented are applicable to 

any NDE application and modality but their effectiveness is 

demonstrated here by considering inline pipe inspection. The 

pig considered uses a ring of ultrasonic arrays to induce plane 

waves in the pipe that travel at both 45° and -45° to the surface. 

From the received data four distinct ultrasonic array images are 

created for each surface breaking defect and used as input to the 

CNN to predict the through thickness extent of the defect (from 

here on referred to as ‘crack depth’). The effectiveness of the 

baseline and DA methods to improve the CNN’s sizing 

accuracy is explored in this paper by training with a simulated 

training set size of 14,343 and a varying size of experimental 

training set (54-729, from measurements on 1-14 physical 

defect samples). The sizing accuracy of the resulting network is 

assessed using an experimental test set formed of 756 image 

sets from 15 physical defect samples not included in the training 

set.  

The rest of this paper is structured as follows. Section II 

outlines previous, relevant research, Section III describes the 

inspection setup and data sets, Section IV details the deep-

learning architecture, Section V describes the DA methods 

used, Section VI provides results and discussion and Section 

VII the conclusion. 

 

II. RELEVANT RESEARCH 

Outside of NDE, TL has found success in a broad range of 

applications such as multilingual text classification, WiFi-

based localization, speech recognition across different 

speakers, object recognition across different cameras, human 

motion parsing from videos, facial recognition and 3D pose 

estimation [21], [23], [24]. A major reason for this widespread 

usage of TL in recent years is the availability of large, free to 

access, source domain data, such as ImageNet [25] and CIFAR-

10 [26] for natural image classification, IMdB reviews [27] and 

WordNet [28] for natural language processing, and LibriSpeech 

[29] for English speech recognition. For NDE there is a small, 

but insufficient, amount of work towards creating an equivalent 

data set [30]. But where source data is available, promising 

results with TL for NDE have been found. For example, a 

database of NDE X-ray images [31] has been used to train a 

CNN for inclusion detection in composites and unsupervised 

(i.e. without labeled target data) DA using the Case Western 

Reserve University bearing data set has been used to train a 

CNN for bearing inspections across different rotation speeds 

and load conditions. However, for most NDE applications, a 

training set large enough to function as source data for deep-

learning is not available. Shallow-learning methods (i.e. 

predicting on hand selected features) require much less training 

data than deep-learning and have been used in structural health 

monitoring to train a hidden Markov model with source and 

target data from different transducer placements [32] and a K-

Nearest Neighbors (KNN) method used to detect defects with 

source and target data from different carbon fiber composite 

samples [33]. A KNN model has also been used for structural 

health monitoring of buildings from the first three natural 

frequencies trained on source data from an analytical beam-

bending model [34].  

To find the most effective DA methods for use with labeled 

target data, as used in the current paper, research was conducted 

into popular deep learning DA methods proposed in recent 

published papers. During initial testing, some of the methods 

[35], [36] were found to produce lower sizing accuracy than 

networks trained without any target data at all, and are not 

presented here. The authors’ believe that the poor performance 

of these methods is largely due to the fact that they are 

optimized for the ‘semi-supervised’ case where there is both 

unlabeled and labeled target data. Research specifically into 

supervised DA (i.e. where all data is labeled)  methods has 

attracted little recent attention as most modern DA applications 

are motivated by lack of labeled data [24]. The authors found 

only two recently published methods specifically designed for 

supervised DA. These are Regression and Contrastive Semantic 

Alignment (RCSA) and Adversarial. RCSA uses an extra loss 

function to encourage proximity in the embedding space (the 

output of the convolutional layers) for data of the same label 

[37] while Adversarial optimally confuses a domain classifier 

to force the embedding space to be domain independent [38], 

[39]. These two DA methods are presented in the current paper 

along with a simpler DA approach, MixedSet, where training is 

performed with a mixed experimental/simulated set with 

sample weightings used to make up for the lack of experimental 



 3 

data. As noted in [40] most DA research has focused on 

‘classification’ tasks where the desired parameter is a discrete 

label. RCSA and Adversarial as originally presented in [37], 

[39] are consistent with this observation as they do not function 

with continuous labels. Because of this they have been adapted 

for the regression setting in this work; this is explained further 

in Section V. To the author’s knowledge the only prior work in 

using simulated NDE data as a source domain for domain 

adapted deep-learning is [41] in which phased array data 

generated using a finite element model is used as source data to 

locate and size defects in an aluminum block. The authors of 

[41] use a basic DA approach in which they train on simulated, 

then experimental data. This method is similar to MixedSet in 

terms of its effect on the network. 

 

III. INSPECTION SETUP AND DATA SET CREATION 

This section describes the experimental acquisition and 

simulation of Plane Wave Capture (PWC) data and how it is 

imaged. The reader is directed to [20] for further detail. An 

outline of the resulting data set’s size and parameter space is 

also given in this section. 

A. Inspection Setup, Imaging and Simulation 

Detecting and sizing cracks in the pipe wall is a major 

objective in inline-pipe inspection. These are usually caused by 

manufacturing faults such as weld toe cracks or in-service 

mechanisms, such as stress corrosion cracking, and most 

commonly occur at the outer surface of the pipe. Accurately 

sizing these surface-breaking cracks, once detected, is the 

objective of this work. As access to an oil pipeline was not 

available for this work, a representative inspection set up is 

used. As shown in Fig. 1a, an Imasonic (Voray-sur-l'Ognon, 

France) 5MHz, 0.3mm pitch, 40 element phased array in 

immersion is used to induce shear plane waves in 10mm thick 

stainless-steel plate (approximating a large diameter pipe wall). 

The array is operated using a Peak NDT (Derby, UK) 

MicroPulse 5 array controller and receives on all elements 

individually, with a sample rate of 50MHz, to form PWC data. 

Data is collected with the array positioned on both sides of the 

defect to mimic acquisition from a pair of arrays within the 

circumferential ring of arrays used on the pig. Each array fires 

 
Fig. 1. a) A diagram of the inspection scenario using a plane wave at angle 𝜓 to the vertical transmitted in the sample with a standoff and thickness of 𝜍 and 

𝛤 where 𝐿, 𝜃 and 𝑃 represent the crack length, angle and position respectively, b) all half-skip shear (S) and longitudinal (L) mode ray-paths used in 

this paper where 𝑥, 𝑧 are the co-ordinates of the imaging point and 𝑥𝑜𝑢𝑡, 𝜍 the co-ordinates of the returning ray on the front wall, c) an example set of 

simulated images for a defect with 𝑃 = 19 𝑚𝑚, 𝐿 = 3 𝑚𝑚 and 𝜃 = 8° and d) a fully experimental set of images for a defect of the same parameters. 

Note that the black lines show the true extent of the defects and all images are on the same dB color scale, normalized to the maximum intensity in the 

experimental set. Figure reproduced from [20]. 
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a vertical 0° wave, which is used only to calculate standoff (𝜍) 

and pipe wall thickness (Γ). An angled wave at ±19° inducing 

±45° shear plane waves in the sample is used to size the defects. 

PWC data is focused on reception to create images, with the 

overall process referred to as Plane Wave Imaging (PWI) [42]. 

When different ray-paths are considered, these images are 

named ‘views’ and are categorized by the modality(s) of waves 

in their transmit and receive legs (L for longitudinal and S for 

shear). As half-skip modes have been shown to produce the 

strongest responses for surface-breaking defects [43] the SS-S 

and SS-L (Fig. 1b) views are used throughout. Each defect is 

imaged by an array on either side of it, ultimately producing 

four PWI images per defect. The region of interest is 12-22 mm 

from the array centre in the X-direction, and the full 10 mm of 

plate thickness in the Z-direction. A resolution of half a 

wavelength is used for imaging to minimize the data volume 

while preserving all information above the diffraction limit. 

This means that each image set input to the network is of size 

32x32x4. 

The simulated image sets are created by a hybrid Finite 

Element (FE) and ray-based model. As there is minimal 

transmission through the experimental defects they are 

modelled as rectangular, 0.3mm wide, perfect reflectors. Local 

FE analysis is used to calculate the response of a defect to a uni-

modal plane wave. The FE model outputs scattering matrices 

[44] for each relevant length, 𝐿, and orientation, 𝜃, of defect. 

These scattering matrices are then input into an analytical ray-

based model [45] to form PWC data for each combination of 𝐿, 

𝜃, and horizontal position, 𝑃. The structural and grain noise is 

included by summation with one of 36 experimental, defect-

free PWC sets [46]. The PWC data is then filtered to remove 

data outside the frequency range of the transducer using a 

Gaussian filter centered at 5 MHz with a -40 dB half width of 

4.5 MHz before, finally, it is imaged to form the four relevant 

PWI images. An example set of experimental and simulated 

images is given in Fig. 1c,d. 

B. Data Set Summary 

While the target is the extent of the defect perpendicular to 

the surface, 𝐷 = 𝐿 cos 𝜃, the parameter space of defects 

considered is defined by 𝐿, 𝑃 and 𝜃. All experimental defects 

used are 0.3 mm wide notches on the lower surface of the 

stainless-steel plate, manufactured using Electrical Discharge 

Machining (EDM). As described in Table I, the experimental 

data is from 1-5 mm in 𝐿, -20° to 20° in 𝜃 and 13-21mm in 𝑃. 

Negative 𝜃 data is obtained by positioning the array on the other 

side of the defect and variation in 𝑃 achieved by moving the 

array relative to the defect. With negative and positive 𝜃 

considered separately, this results in a total of 𝑁𝜃 × 𝑁𝐿 × 𝑁𝑃 =
11 × 5 × 27 = 1485 image sets from the 30 manufactured 

defects. 𝑁𝑥 indicates the number of possible values of 𝑥. 

To ensure the trained network functions across the full 

parameter space the simulated set covers lengths and angles 

beyond that of the experimental set. This is described in Table 

II. Lengths above 5mm have not been considered as they are 

larger than the imaging domain, hence will be sized at 5mm. As 

critical crack depth is usually considered to be ~4 mm, sizing 

defects with 𝐷 > 5 mm to �̂� = 5 mm is not an issue for this 

inspection. The simulated data totals 16,875 image sets. For 

machine learning purposes the data sets are split into a further 

four categories: 

Simulated, training: 85% (14,343) of simulated data used 

as ‘source’ data to iteratively update the weights and biases of 

the network. 

Simulated, validation: 15% (2,532) of simulated data used 

to qualitatively ensure the network is not overfitting to the 

training set. 

Experimental, training: 3% to 49% (54-729) of 

experimental data used as ‘target’ in the DA methods to 

iteratively update the weights and biases of the network. The 

size of this set varies to investigate the effect on network 

accuracy. 

Experimental, testing: 51% (756) of experimental data used 

to measure the sizing accuracy of the resulting network on 

previously unseen data. 

Tables I and II describes how these sets are formed from the 

available experimental and simulated data. The split of data 

used for testing is fixed for all methods, meaning that this data 

is never used by any method during the training stage. As this 

work is motivated by creating an accurate sizing network with 

a minimum amount of NDE samples, the effect of the amount 

TABLE I 

Experimental Data Set Summary 

 
𝑇𝑟𝑖 represents the experimental training data for DA methods. When testing 

the effect of training set size these are iteratively combined together in 

ascending order of 𝑖. 
𝑁𝑥,𝑦 indicates the number of possible pairs of values 𝑥 and 𝑦. 

 

Range Step Count

Crack Position, P (mm) 13 to 21 0.3 27

All Training = = 27 27 = 729 image sets

Testing = = 28 27 = 756 image sets

Crack Length, L (mm)

1 2 3 4 5

C
ra

ck
 A

n
g

le
, 

(
)

0 Tr2 Test Tr6 Test Tr3

2 Test Tr11 Test Tr10 Test

5 Test Test Test Test Tr7

8 Tr8 Tr14 Tr5 Tr15 Test

15 Test Tr12 Test Tr13 Test

20 Tr4 Test Tr9 Test Tr1

TABLE II 

Simulated Data Set Summary 

 

 

Parameter Range Step Count

Crack Length, L (mm) 0.2 to 5 0.2 25

Crack Position, P (mm) 13 to 21 0.3 27

Crack Angle, ( ) -24 to 24 2 25

Non-Defect Scan - - 36

Total = 25 27 25 = 16,875 image sets
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of experimental training data is explored. This requires a way 

of systematically increasing the size of the experimental 

training set in a way that optimally covers the parameter space. 

To achieve this, the 5x6 parameter space of lengths and angles 

is considered as a Cartesian grid of potential data points with 

axes normalised to span the range [0,1]. The first training point 

is added at (1,1). Additional training data points are 

progressively added to the vacant sites in the grid, with each 

new training data point added at the vacant site that has the 

maximum Euclidean distance to the nearest existing training 

data point in the normalised axes. This method is referred to as 

‘uniform sampling’ in the current paper. The resulting sampling 

regime is given in Table I where Tr𝑖  relates to 𝑖th point added. 

The remaining 15 points are used as the test set. This method 

has the added benefit of ensuring that all data relating to any 

given defect is placed in either the training or test set, and 

cannot be spread across both. Because of this, any test set 

accuracy gained from the DA methods should generalize across 

the {𝐿, 𝜃} space and is not due to parameters covered by the 

experimental training data. 

 

IV. NETWORK ARCHITECTURE 

As in [20] the CNN architecture used here is loosely based 

on image recognition architectures such as AlexNet and VGG-

19 due to their widespread success in both classification and 

regression tasks. An off-the-shelf architecture is not optimal 

due to the difference in input size and the dissimilarity between 

NDE data and natural images. As illustrated in Fig. 2a, the 

network’s input is made up of the four 32×32 PWI images 

stacked in a third dimension, akin to how natural image CNNs 

treat red, green and blue channels. The network is made up of 

repeating blocks of convolution and max pooling layers for 

feature extraction, followed by a pair of fully connected layers 

for regression, with ReLU activation used throughout. 

Hyperparameters are set by testing networks with varying 

depth, number of filters, size of filters and number of neurons 

in the dense layers. Adding complexity to the network increased 

sizing accuracy but with diminishing returns for very large 

networks. The design illustrated in Fig. 2a is set at the point 

where adding further complexity only gives marginal accuracy 

gains. Further detail on the design process for this architecture 

can be found in [20]. Small architecture changes have been 

made between the two separate networks defined in [20] (that 

predicted L and 𝜃 individually) and the current paper where 

only a single network is required to predict 𝐷. The single 

network used here matches the structure of the 𝐿 prediction 

network in [20] other than an increase in dropout rate from 0.1 

to 0.3 which results in ~4% better prediction accuracy on the 

validation set at the cost of needing ~200 more epochs to reach 

convergence. The Adversarial DA method requires an 

additional domain classifier network, which is illustrated in Fig. 

2b and comprises a single hidden layer of 128 neurons. This 

design was also obtained by adding layers until accuracy 

improvement was minimal. The purpose of the domain 

classifier is explained further in Section V.E. 

Training the sizing network with all methods presented in 

this paper is achieved using the state-of-the-art Adam optimizer 

[47]. A learning rate of 1 × 10−3 is used unless otherwise stated 

in Section V. This value is used as increasing it created 

instabilities during training and decreasing it did not improve 

the performance of the converged network. A mini-batch size 

 

 

Fig. 2. Illustrations of a) the sizing CNN and b) the domain classifier used by Adversarial and c) the aggregated sizing error results for 20 initialisations of 

SimOnly applied to the experimental and simulated test sets. 
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of 64 is used unless the training set size is less than 64, in which 

case the entire set is processed at once. This is the case for 

ExpOnly, RCSA and Adversarial when the experimental 

training set contains only one defect. The number of epochs the 

network is trained for varies for each method and has been set 

to ensure convergence of the validation loss. Experimental and 

simulated 𝐷 sizing errors for this network, trained only with 

simulated data, are illustrated in Fig. 2c. While a RMSE of 

0.64 mm is significantly better than the performance of 6dB 

drop on this data set [20], the ~7.5 times lower simulated 

RMSE again motivates the need for DA when training using 

primarily simulated data. Example graphs of losses throughout 

training are given in the supplementary material. 

 

V. DOMAIN ADAPTATION AND BASELINE 

METHODOLOGIES 

This section describes the two baseline cases and three DA 

methodologies compared in this paper. As described in Section 

2 these are the only DA methods the authors found in the 

literature specifically designed for the supervised setting. The 

baseline approaches train the CNN on the available data sets in 

isolation while the DA methodologies make use of both sets. 

The simplest of the DA approaches (MixedSet) trains on a 

mixture of the weighted experimental and simulated data while 

RCSA and Adversarial use different mechanisms to find an 

embedding space where the distributions of the data sets appear 

similar. As the output of the convolutional layers is the best 

approximation to the ‘features’ that the network is using to 

determine its final output [48], [49], this is selected as the 

embedding space. 

A. Simulated Data Only (SimOnly) 

This method makes no use of experimental data, except for 

testing. The network is trained with only the simulated training 

set, for 600 epochs, using Mean Square Error (MSE) as the loss 

function (ℒ𝑅
𝑠 ). 

B. Experimental Data Only (ExpOnly) 

This method makes no use of simulated data, training the 

network with only the experimental training set, for 600 epochs, 

using MSE as the loss function (ℒ𝑅
𝑒 ). 

C. Mixture of Experimental and Simulata Data (MixedSet) 

The training set for MixedSet is formed by shuffling together 

the 𝑀 experimental and 𝑁 simulated training image sets. The 

experimental data’s contribution to the loss function is 

weighted by 
𝑁+𝑀

2𝑀
 and the simulated by 

𝑁+𝑀

2𝑁
 to ensure the large 

size of the simulated set does not swamp the effect of the 

experimental data [50]. The sizing network is trained on the 

combined set, using MSE as the loss function (ℒ𝑅
𝑒,𝑠), for 600 

epochs 

D. Regression and Contrastive Semantic Alignment (RCSA) 

[37] 

RCSA combines the standard ‘Regression’ loss (MSE in this 

paper) with a ‘Contrastive Semantic Alignment’ loss that aims 

to force data with the same label (equivalent to the value of 𝐷 

in this paper) to be close in the embedding space, regardless of 

the domain. If this is achieved effectively it ensures that the 

features used by the fully connected layers to predict 𝐷, are 

domain independent. This means prediction accuracy learnt 

from simulated data should generalize well to experimental 

data, even if the particular {𝐿, 𝜃} combination tested was not 

present in the experimental training set. 

RCSA functions by training a pair of networks with shared 

weights, one of which takes source domain data and the other 

target domain data. The distance metric used to define nearness 

in the embedding space must be selected. For this paper this has 

been set as the mean 𝐿1 distance as lower orders of 𝐿𝑛 caused 

instabilities in training and higher orders produced worse 

results. The Contrastive Semantic Alignment (CSA) loss was 

originally presented in [37] for classification of data with 

discrete labels where it is logical to cluster the same-label data 

into groups. Because of this, the CSA loss is formulated in [37] 

by penalizing distance between samples with the same label and 

rewarding distance between samples with different labels. To 

facilitate regression, it is more logical to have embedding 

distance be proportional to label difference. To this end the loss 

has been reformulated in this paper to encourage the distance 

between samples in the embedding space to scale with absolute 

difference in 𝐷. The 𝐿1 norm is chosen to define the embedding 

space distance as it usually performs better than higher order 

norms for high-dimensional data [51]. The new CSA loss 

(ℒ𝐶𝑆𝐴) is therefore described by 

 
ℒ𝐶𝑆𝐴 =  

1

𝑀
∑ {|𝐷𝑖

𝑠 − 𝐷𝑖
𝑒| −

∑ |𝐸𝑖,𝑗
𝑠 − 𝐸𝑖,𝑗

𝑒 |𝜅
𝑗=1

𝜅
}

𝑀

𝑖=1

 (1) 

where 𝑀 is the size of the training set, 𝐷𝑖
𝑠 and 𝐷𝑖

𝑒  the 

simulated and experimental crack depths of the 𝑖𝑡ℎ image set, 

𝐸𝑖
𝑠 and 𝐸𝑖

𝑒 the simulated and experimental embedding 

activations and 𝜅 the dimensionality of the embedding (𝜅 =
4 × 4 × 192 = 3072 in this paper). The full RCSA loss (ℒ𝑅𝐶𝑆𝐴) 

is given by 

ℒ𝑅𝐶𝑆𝐴 =  ℒ𝑅
𝑠 + ℒ𝑅

𝑒 + 𝛼ℒ𝐶𝑆𝐴  (2) 

where ℒ𝑅
𝑠  and ℒ𝑅

𝑒  are the regression losses (i.e. MSE) for the 

simulated and experimental data respectively and 𝛼 is a tunable 

parameter that adjusts the relative importance of ℒ𝐶𝑆𝐴. The 

performance of the resulting network was found to be 

insensitive to the choice of 𝛼 for the values tested (between 0.05 

and 20) so, for simplicity, it is set to 1 in this work. 

The training set for this method is formed by randomly 

pairing the experimental data with a sample of the simulated 

data meaning that 𝑀 is equal to the size of the experimental 

training set. Both the pairings and the simulated data chosen are 

shuffled every 5 epochs to stop the network overfitting to any 

particular combination/subset. Training instabilities due to this 

overfitting occurred without implementing shuffling, but the 

resulting validation set accuracy was found to be insensitive to 

the choice of the frequency of shuffling provided it was <100 

epochs. The network is trained for 5,000 epochs in total. Many 

more epochs are required to achieve convergence than for 



 7 

SimOnly as each epoch only contains a small subset of the 

simulated data and an even smaller subset of all possible 

pairings. 

E. Adversarial Domain Classifier (Adversarial) [38], [39] 

A potentially impactful issue for RCSA is that in very high 

dimensional space, conventional distance metrics find most 

points to be equally far away from each other; this is a product 

of the ‘curse of dimensionality’ [52]. Adversarial DA bypasses 

the problem of finding a useful distance metric by training a 

separate neural network which aims to infer the domain of the 

data from embedding space activations (i.e. a domain 

discriminator). Once this is achieved, domain independent 

embeddings are achieved by maximally confusing the domain 

classifier. 

As stated in [39], training a two-class domain discriminator 

with very little target data is difficult. The task is made easier 

by distinguishing between four cases: 1) Same label, same 

domain; 2) different label, same domain; 3) same label, 

different domain; and 4) different label, different domain). This 

approach does not have a natural reformulation for regression 

as the definition of ‘same’ and ‘different’ labels for continuous 

values is not clear. The equivalent proposed here is to say that 

if |𝐷𝑠 − 𝐷𝑒| ≤ 𝜅 then the labels are the same, where 𝜅 is a 

tolerance that depends on the application and availability of 

data. Here 𝜅 =1 mm is used, as this is the smallest value that 

can form ‘same label, same domain’ cases for the experimental 

data used in this paper. 

The training process for Adversarial can be broken into three 

stages. These are illustrated in Fig. 3 and described in the 

following:  

1. Train the sizing network with only the simulated data, 

minimizing MSE. As with the baseline methods, this is run 

for 600 epochs. 

2. Form a weight shared pair of the convolutional blocks from 

stage 1. These convolutional blocks output into a domain 

classifier to predict which of the four groups a pair of data 

belong in. The architecture for the classifier is shown in 

Fig. 2b. This classifier is trained by freezing the weights 

and biases of the convolutional layers and minimizing the 

Categorical Cross Entropy (ℒ𝐶𝐶𝐸) which is described by 

 
ℒ𝐶𝐶𝐸 =  −

1

𝑀
∑ 𝑦𝑖,1 log �̂�𝑖,1 + 𝑦𝑖,2 log �̂�𝑖,2

𝑀

𝑖=1

+ 𝑦𝑖,3 log �̂�𝑖,3 + 𝑦𝑖,4 log �̂�𝑖,4 

(3) 

where 𝑦𝑖,𝑗 is the binary class label for the 𝑖𝑡ℎ image set and 

𝑗𝑡ℎ class and �̂�𝑖,𝑗 the output of the domain classifier. This 

is run for 2400 epochs. 

3. Both the convolutional and dense layers of the sizing 

network are trained whilst confusing the domain classifier 

with the weights and biases of the domain classifier frozen. 

The confusion loss (ℒ𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛)  

 
ℒ𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 = −

1

𝑀
∑ 𝑦𝑖,1 log �̂�𝑖,3 + 𝑦𝑖,2 log �̂�𝑖,4

𝑀

𝑖=1

+ 𝑦𝑖,3 log �̂�𝑖,1 + 𝑦𝑖,4 log �̂�𝑖,2 

(4) 

means that any changes made to the convolutional layers 

must maintain the domain classifiers label prediction 

accuracy whilst decreasing its domain prediction accuracy. 

The full adversarial loss (ℒ𝐴𝑑𝑣) is a trade-off between 

accurate sizing and domain independent embeddings and 

is defined by 

 ℒ𝐴𝑑𝑣 =  ℒ𝑅
𝑠 + ℒ𝑅

𝑒  +  𝛽ℒ𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛  (5) 

where 𝛽 is a tunable parameter that adjusts the relative 

importance of ℒ𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛. The performance of the resulting 

network was found to be insensitive to the choice of 𝛽 for 

the values tested (between 0.05 and 20) so, for simplicity, 

it is set to 1 in this work. This is run for 2400 epochs. 

 

The training set for stages two and three are formed in a 

similar fashion to RCSA, with pairs of experimental and 

simulated data. However, while for RCSA all data pairs are from 

different domains, for Adversarial some must be from the same 

domain so after pairing the sets they are shuffled across the 

domains. As with RCSA this pairing and shuffling is redone 

each 5 epochs. Learning rate for stage 3 is reduced to 

 

 

Fig. 3. An illustration of the three stages of training used in the Adversarial DA method. 
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0.2 × 10−3 to avoid gradient ‘explosion’ instabilities during 

training. 

 

VI. RESULTS AND DISCUSSION 

The success of both the baseline and DA methods is 

measured by the sizing accuracy of the resulting networks on 

the unseen experimental test set. The mean error, and standard 

deviation of error (STDE) for varying experimental training set 

sizes is given in Fig. 4. The graphics at the top of Fig. 4 

represent the {𝐿, 𝜃} space covered by the experimental training 

set. As the final network is affected by the initialisation of the 

weights and the train/validation shuffles, every point has error 

bars representing ± one standard deviation, based on results 

from 20 initialisations. For SimOnly, RCSA and Adversarial 

these error bars are shown as variable width lines for visual 

clarity. SimOnly produces networks with a STDE of 0.63 ±
0.04mm and a small negative mean of −0.10 ± 0.06mm, 

indicating a slight bias towards undersizing. As SimOnly makes 

no use of experimental training data these results are displayed 

as a constant  grey band across Fig. 4.  

 

The second baseline method, ExpOnly, is heavily reliant on 

having a large experimental training set. While it demonstrates 

greater accuracy than SimOnly with 13 or more defects in the 

training set, below this point, the STDE and mean increase 

quickly due to the network overfitting to the small set of 

training data. Overfitting, rather than more generalized 

learning, can be demonstrated by considering ExpOnly 

networks’ performance on simulated data across the same {𝐿, 𝜃} 

space as the experimental test set. When trained with all 15 

experimental defects, ExpOnly has a STDE of 1.02mm on 

simulated data, whereas the STDE of SimOnly on the 

experimental test set is 0.65mm. This asymmetry shows that 

while SimOnly can generalize reasonably well across the 

domain shift from simulated to experimental data, ExpOnly 

cannot do the reverse, and as a result, is unlikely to generalize 

well to even minor changes in inspection conditions (e.g. slight 

array movement, sound speed changes or crack roughness). 

This overfitting is likely caused by the significantly smaller 

training set available to ExpOnly compared to SimOnly. 

MixedSet outperforms both of the baseline methods with 5 or 

more defects in the experimental training set but still suffers 

from inaccuracies due to overfitting when experimental data is 

scarce. The two other DA methods are given the same training 

data as MixedSet but perform better at all points. In terms of 

 

 

Fig. 4. a) The standard deviation in error (STDE) and b) the mean of the sizing error for the experimental test set across varying sizes of experimental training 

set. The error bars represent ± standard deviation over 20 independent initialisations. The graphics above the plots represent the {𝐿, 𝜃} coverage of the 

experimental training set. 

 

 

Fig. 5. a) Simulated and b) experimental SS-S PWI images for a defect with 

𝑃 = 19𝑚𝑚, 𝐿 = 5𝑚𝑚 and 𝜃 = 8°, and c) an experimental SS-S PWI 

image for a defect with with 𝑃 = 19𝑚𝑚, 𝐿 = 4𝑚𝑚 and 𝜃 = 0°. 
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STDE, RCSA performs slightly worse than SimOnly with only 

one experimental training defect but at every other point 

outperforms both baseline methods and MixedSet. Adversarial 

gives the lowest STDE of all methods with 5 or less 

experimental training defects and has similar performance to 

RCSA above this point. The absolute mean for RCSA and 

Adversarial is negligible in most cases, becoming slightly 

larger for RCSA with low numbers of experimental training 

defects. This is likely due to uneven coverage of the {𝐿, 𝜃} 

parameter space.  

It is clear from Fig. 4 that the two DA methods: RCSA and 

Adversarial, make better use of limited experimental data than 

MixedSet. This can be explained by their differing objectives. 

Rather than aiming for accurate experimental sizing directly, 

which is difficult with limited data, RCSA and Adversarial 

focus on extracting domain independent embeddings. This is an 

easier task to achieve with limited data. Also, if domain 

invariant embeddings are found between the {𝐿, 𝜃} examples in 

the experimental training set and the full simulated training set 

they are likely to generalize to all {𝐿, 𝜃} of interest as these are 

all present in the simulated training set. 

The negative mean for SimOnly is caused by undersizing of 

5 mm defects. This is because the far-field assumption of the 

simulation is inaccurate for defects larger than 4 mm as their 

tips enter the array’s near-field. This inaccuracy is exampled in 

Fig. 5a where it can be seen that the simulation overestimates 

the amplitude of the tip reflection in comparison to the 

experimental data in Fig. 5b. SimOnly sizes the PWI data from 

the 𝐷 = 5 mm defect shown in Fig. 5b to be of �̂� = 4.4 mm 

which makes intuitive sense as, visually, the image appears 

closer to the experimental 𝐷 = 4 mm defect in Fig. 5c (which 

SimOnly sizes as �̂� = 4.0 mm) than the simulated 𝐷 = 5 mm 

defect in Fig. 5a. This kind of simulation deficiency is a good 

example of the need for DA. 

The effect of the position of the training data points in {𝐿, 𝜃} 

space is investigated by using RCSA and Adversarial with four 

experimental training defects but rather than using uniform 

sampling to optimally choose the {𝐿, 𝜃} combination, they are 

picked at random. The mean Euclidean distance between the 

training set examples in terms of normalised {𝐿, 𝜃} is used as an 

indication of how well sampled the parameter space is. The 

random selection of the training data points is repeated 8 times 

with different random number generator seeds (training shuffle 

number = 1-8). The results of this experiment are shown in Fig. 

 

 

Fig. 6. The Root Mean Square Error (RMSE), mean error (𝜇), standard deviation of error (STDE) and mean Euclidean distance between points in normalised 

{𝐿, 𝜃} space for a) RCSA and b) Adversarial methods with varying choices of experimental training set. The graphics above the plots represent the {𝐿, 𝜃} 

coverage of the four experimental defects. 
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6. Root Mean Squared Error (RMSE) is reported alongside 

STDE and mean error to provide a single metric with which 

sizing accuracy can be easily compared across shuffle numbers.  

In Fig. 6, the results are presented in order of decreasing 

mean distance between points in {𝐿, 𝜃} space as a measure of 

parameter space coverage. A reduction in parameter space 

coverage might intuitively be expected to lead to increased 

RMSE, but no correlation is discernible in Fig. 6. However, 

both methods produce the lowest errors in the uniformly 

sampled case (training shuffle number = 0), compared to other 

possibilities. For both methods, the most poorly sampled case 

(training shuffle number = 8) offered no accuracy increase over 

SimOnly. This demonstrates the importance of sampling the 

defect’s parameter space as evenly as possible with the 

available experimental training data. 

 

VII. CONCLUSIONS 

This paper has demonstrated the ability of modern DA 

methods to improve the accuracy of deep networks for defect 

sizing, trained on simulated data, with even a very limited 

amount of experimental data. The key metrics for comparison 

of the methods considered are illustrated in Fig. 7. Adversarial 

and RCSA produced the most accurate networks for all sizes of 

experimental training set with Adversarial outperforming 

RCSA with less than 6 experimental training defects. With only 

4 experimental defects RCSA and Adversarial reduced STDE 

on the experimental test set by 13% and 17% respectively, 

compared to SimOnly. However, RCSA is the easier method to 

implement as it only introduces one extra tunable parameter 

(loss function scaling factor, 𝛼) while Adversarial requires 

tuning of 𝛽, design of the architecture for the domain classifier, 

and takes almost ~10 times longer to train than RCSA when the 

experimental training set is small. The success of both modern 

DA methods was shown to be sensitive to coverage of the {𝐿, 𝜃} 

parameter space by the experimental training set. The results of 

this paper suggest that uniform sampling, starting at the corners 

of the parameter space, is an effective way of designing a small 

experimental training set. Optimal sampling for higher 

dimensional parameter spaces needs further investigation.  

Future research should be carried out to investigate the 

impact of larger gaps in the distributions of source and target 

domains. For example, testing if ultrasonic data from a different 

inspection or even natural images would be useful source 

domains. The possibility for using NDE specific data 

augmentation alongside the DA methods presented here to 

further increase the usefulness of small pools of experimental 

data should also be investigated. Another major improvement 

would be to use probabilistic methods to add values of 

uncertainty to the predictions of the deep learning network. The 

modern DA methods presented in this paper are shown to be 

successful for improving the accuracy of deep learning for in-

line pipe inspection and, as they are agnostic to the structure of 

the data, are expected to be applicable to other NDE inspections 

and modalities. 

APPENDIX 

Supporting code and data will be made available at the 

University of Bristol data repository, data.bris prior to 

publication. 
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SUPPLEMENTARY MATERIAL 

  

 

 

Fig. 8. Training and validation losses through training for SimOnly. 

 

 

Fig. 9. Training and validation losses through training for ExpOnly with all 14 defects. 

 

 

Fig. 10. Training and validation losses through training for MixedSets with all 14 defects. 
 

 

Fig. 11. Training and validation losses through training for RCSA with all 14 defects. 
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Fig. 12. Training and validation losses for Adversarial, with all 14 defects, through training for step a) training on simulated data b) training the domain 

classifier and c) training on simulated and experimental data while confusing the domain classifier. 


