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1  |   CEREBROVASCU LAR DISEASE 
A N D A LZH EIM ER'S DISEASE

Alzheimer's disease (AD) and vascular dementia (VaD) 
account for approximately 60%–80% and 5%–10% 
of patients with dementia, based on clinical [1] and 

neuropathologic diagnosis [2]. Most patients, including 
the majority with AD, have mixed pathologies that in-
clude pathological evidence of cerebrovascular disease 
[3–5]. Ischaemic damage to the white matter, attributed 
to small vessel disease (SVD), is associated with an in-
creased risk of developing AD [6], and over 90% of AD 
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Abstract

Cerebrovascular disease underpins vascular dementia (VaD), but structural and 

functional changes to the cerebral vasculature contribute to disease pathology 

and cognitive decline in Alzheimer's disease (AD). In this review, we discuss 

the contribution of cerebral amyloid angiopathy and non-amyloid small vessel 

disease in AD, and the accompanying changes to the density, maintenance and 

remodelling of vessels (including alterations to the composition and function of 

the cerebrovascular basement membrane). We consider how abnormalities of 

the constituent cells of the neurovascular unit – particularly of endothelial cells 

and pericytes – and impairment of the blood-brain barrier (BBB) impact on the 

pathogenesis of AD. We also discuss how changes to the cerebral vasculature 

are likely to impair Aβ clearance – both intra-periarteriolar drainage (IPAD) 

and transport of Aβ peptides across the BBB, and how impaired neurovascular 

coupling and reduced blood flow in relation to metabolic demand increase 

amyloidogenic processing of APP and the production of Aβ. We review the 

vasoactive properties of Aβ peptides themselves, and the probable bi-directional 

relationship between vascular dysfunction and Aβ accumulation in AD. Lastly, 

we discuss recent methodological advances in transcriptomics and imaging that 

have provided novel insights into vascular changes in AD, and recent advances 

in assessment of the retina that allow in vivo detection of vascular changes in 

the early stages of AD.
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patients have cerebral amyloid angiopathy (CAA; Figure 
1E) [7–9]. In VaD, cerebral ischaemia is the defining 
pathological process, usually secondary to non-amyloid, 
arteriolosclerotic small vessel disease (NA-SVD; Figure 
1A-B) [10, 11], though also linked to ischaemic stroke in-
jury [12]. There is also evidence of NA-SVD comorbid-
ities in AD cases [13–15] and the presence of NA-SVD 
may be a risk factor for the development of AD [16].

A large scale multifactorial analysis of brain images 
from the Alzheimer's Disease Neuroimaging Initiative 
(ADNI) and modelling of late-onset AD (LOAD) sug-
gest that vascular dysregulation is an early and possi-
bly an initial pathological event in AD [17, 18]. Cerebral 
hypoperfusion [19, 20] and blood-brain barrier (BBB) 
breakdown [21, 22] precede the clinical presentation of 
dementia. Though BBB breakdown does occur in nor-
mal ageing, it is exacerbated in the early stages of AD, 
particularly within the hippocampus [21], and is associ-
ated with cognitive decline independently of changes in 
Aβ and Tau [23, 24]. In familial AD, reduction in cerebral 
blood flow (CBF) and glucose uptake occur soon after 
initial Aβ deposition and well before clinical disease [25–
27]. There is also increasing evidence that malfunction of 
the neurovascular unit, partly related to injury to peri-
cytes, is an early contributor to the development of AD 
[21, 28, 29].

Pathological changes to the cerebral vasculature in-
fluence several processes involved in the progression 
of AD. Damage to the vasculature impairs periarteri-
olar clearance of Aβ (reviewed here Refs. [30–33]) and 
receptor-mediated removal of Aβ peptides across the BBB 
(reviewed here Refs. [34–37]), accelerating Aβ deposition. 
Reduced cerebral oxygenation as a result of diminished 
blood flow and impaired neurovascular coupling enhance 
amyloidogenic processing of APP (Figure 2; reviews of in 
vitro and in vivo evidence here [5, 38]). Aβ peptides them-
selves are vasoactive, inducing contraction of pericytes 
[39] and vascular smooth muscle cells [40] which exacer-
bates hypoperfusion [39], and impairs BBB function [41]. 
Strong relationships have also been reported between 
measures of vascular dysfunction and the accumulation 
of phospho-tau [42–45] and TDP-43 [11, 46] indicating 
that vascular dysfunction extends beyond Aβ pathology. 
Several therapeutic interventions have been proposed for 
the prevention or treatment of AD through improving ce-
rebral hypoperfusion; these include the administration of 
vascular growth factors (reviewed here Ref. [47]).

Here we review the literature and provide an up-
date on the structural, morphological, and functional 
changes to the cerebral vasculature in AD and discuss 
novel methods for investigating the cerebral vasculature 
in AD including examination of the retina.

F I G U R E  1   Common vasculopathies 
in AD. (A–D) Haematoxylin and 
eosin staining of fixed brain tissue 
sections with (A) normal white matter 
arterioles; (B) arterioles and artery 
with severe sclerosis; (C) artery with 
microatheroma, (D); non-amyloid 
SVD-associated microhaemorrhages 
– old (arrows) and more recent (double 
arrow) and a microinfarct (arrowheads). 
(E) Immunoperoxidase labelling 
of Aβ revealing Type-2 CAA. (F) 
Immunofluorescent labelling of collagen 
(green) with DAPI (blue) nuclear stain 
reveals a string vessel (white arrow) 
connecting adjacent capillaries. Scale bars: 
(A) 100 µm (B) 100 µm (C) 200 µm (D) 
100 µm (E) 50 µm (F) 50 µm.
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2  |   COM MON VASCU LAR 
PATHOLOGIES IN A D: CEREBRA L 
A M Y LOID A NGIOPATH Y, 
A N D NON-A M Y LOID SM A LL 
VESSEL DISEASE

Cerebral small vessel disease (SVD) is a major contribu-
tor to cognitive impairment in VaD (including post-
stroke dementia), and a frequent co-pathology in AD [6, 
10, 48–53]. Neuroimaging features of SVD include white 
matter hyperintensities, infarcts, lacunae, haemorrhage, 
microbleeds and enlarged perivascular spaces – com-
monly reported in VaD and AD [52, 54–57]. There are 

several types of SVD, the two most common being cer-
ebral amyloid angiopathy (CAA) and non-amyloid SVD 
(NA-SVD) [51, 52].

2.1  |  Cerebral amyloid angiopathy

Aβ deposits not only in the brain parenchyma as plaques, 
but also in the walls of blood vessels, particularly arte-
rioles, causing CAA. CAA affects 30%–40% of elderly 
people without dementia, the proportion increasing with 
age from about 65 years [58, 59], and over 80% of people 
with AD [7–9, 60, 61, ]. CAA is associated with increased 

F I G U R E  2   Vascular dysfunction and Aβ homeostasis. Aβ transport. Depletion of receptors involved in the transport of Aβ out of the brain 
parenchyma such as LRP-1, upregulation of RAGE which transports Aβ into the parenchyma, impaired perivascular drainage, reduction of Aβ 
degradation, and BBB breakdown all contribute to Aβ accumulation in the brain in AD. Increased Aβ exacerbates BBB breakdown and CVBM 
alterations, constituting a vicious pathological cycle. Blood flow. Ischaemia elevates BACE-1 activity which increases the processing of APP 
to Aβ, leading to oxidative stress, and upregulation of the vasoconstrictors angiotensin-II (Ang-II) and endothelin-1 (EDN1). These stimulate 
pericyte constriction, lowering blood flow and exacerbating ischaemia. Similar pathological cycles may exist not only for Aβ but for other 
proteins associated with AD such as tau and TDP-43
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risk of dementia, and more rapid cognitive decline in AD 
[62]. The severity of CAA has been assessed using a vali-
dated semiquantitative protocol [63] or by counting the 
number of neuroanatomical regions affected by CAA 
[64]. Arteriolar CAA and capCAA are most prevalent in 
the occipital lobe (>92% and 35%–47% of AD cases; 86% 
and 21% of non-AD controls [63]).

APOE influences the risk of developing sporadic 
CAA [56, 65]. The severity of arteriolar CAA is increased 
by possession of APOE ε4 [7–9, 66, 67] which is also 
strongly associated with capillary CAA [63, 68, 69]. CAA 
is less prevalent in APOE ε2 suggestive of protection [63, 
68, 69].

Sporadic CAA has been subdivided into two types. 
CAA-Type 1 is more commonly associated with APOE 
ε4 and is characterised by Aβ deposition in cortical 
capillaries (capCAA) in addition to larger cortical and 
leptomeningeal vessels. In CAA-Type 2, associated less 
strongly with APOE ε4 but also with ε2, Aβ accumulates 
in arteries, arterioles, veins and venules but not capil-
laries [63, 68, 70, 71] (Figure 1E). Parenchymal plaques 
consist of Aβ isoforms that tend to terminate at the 42nd 
amino acid, often modified with pyroglutamate [72]. 
Arteriolar deposits in CAA are mostly shorter Aβ1-40 and 
Aβ2-40 [72–76], though Aβ1-42 predominates in capillary 
CAA [72, 77, 78]. Vascular Aβ peptides are likely to be 
of neuronal origin, and their deposition in the walls of 
blood vessels is probably promoted by impaired perivas-
cular clearance (see below).

CAA can be familial or sporadic. Familial CAA is 
rare but often more severe, manifesting clinically at an 
earlier age than sporadic CAA [79]. Familial Aβ-CAA 
is associated with APP mutations or duplications, or 
mutations in PSEN1 or PSEN2 [56]; several APP-linked 
mutations are used in transgenic animals to model CAA 
(reviewed here Refs. [80, 81]). Rarer forms of familial 
CAA are caused by vascular deposition of other amyloid 
proteins, including cystatin C, transthyretin, gelsolin, 
prion protein and BRI2-gene products [82].

Arteriolar deposition of Aβ commences in the extra-
cellular matrix of the tunica media but may progress to 
replace all SMCs and other tissue elements within the ves-
sel wall [83]. Several additional vasculopathic abnormal-
ities may complicate CAA, including fibrinoid necrosis, 
microaneurysms, concentric splitting of the vessel wall, 
and hyaline vessel wall thickening and arteriolar degen-
eration, and formation of glomeruloid capillary clusters 
[55, 63, 84, 85]. These vasculopathies likely underlie the 
cerebrovascular dysfunction found in CAA, several of 
which have been directly associated with microbleeds 
and haemorrhage [84–88]. APOE ε2 is associated with 
both fibrinoid necrosis and CAA-associated haemor-
rhage [89]. Another rarer but increasingly recognised 
vasculopathy is CAA-related inflammation (CAA-RI), 
which can be subtyped into inflammatory CAA (ICAA) 
and Aβ-related angiitis (ABRA), often treatable with im-
munosuppressive therapy (reviewed here Refs. [90, 91]). 

Clinicoradiological criteria allow diagnosis of probable 
CAA-RI, avoiding the need for biopsy in most cases [92].

A recent in vivo imaging study of APP/PS1 mice with 
CAA found microhaemorrhages mostly at vessel bifur-
cations or bends without amyloid deposition [93]. The 
authors posited that altered flow dynamics within CAA-
affected vessels cause blood leakage. In capCAA, Aβ 
accumulation in the vascular basement membrane leads 
to degeneration of endothelial cells, loss of TJs and BBB 
breakdown [94], often associated with severe AD pathol-
ogy [71, 78]. As sometimes occurs in severe “dyshoric” 
arteriolar CAA [9], Aβ deposits in capCAA tend to ex-
tend into the adjacent brain parenchyma where they 
are associated with neuroinflammation and hyperphos-
phorylated tau [68, 95, 96].

CAA increases the risk of cerebral haemorrhage and 
infarction [9, 56]. Common clinical MRI imaging features 
include lobar intracerebral haemorrhage, microhaem-
orrhages, siderosis, and white matter hyperintensities 
(WMHs) [56, 88, 97–99, ]. CAA progressively decreases 
vascular reactivity [100–103], increasing the probability 
of hypoperfusion and ischaemic brain damage. CAA 
is associated with cortical atrophy independent of AD 
[104]. Functional brain connectivity was shown to be at-
tenuated in Dutch type hereditary CAA [105].

Sporadic CAA probably results from impaired 
clearance of perivascular Aβ from the brain [106, 107]. 
Diminished intra-mural periarterial drainage (IPAD) 
and perivascular CSF influx [6, 83, 106, 108–110], endo-
thelial transport across the BBB [68, 70, 111, 112], or en-
zymatic degradation of Aβ [113, 114] may all contribute. 
By impairing vasomotion, Aβ-mediated dysfunction of 
vascular smooth muscle may impede intramural clear-
ance of Aβ within the interstitial fluid [115].

2.2  |  Non-amyloid small vessel disease

NA-SVD, sometimes referred to as ‘hypertensive angi-
opathy’, typically affects the small perforating arteries of 
the deep grey and white matter [51, 52]. Half of VaD cases 
are preceded by mild vascular cognitive impairment, 
which is also associated with NA-SVD [15, 116, 117]. 
There is debate as to whether NA-SVD may increase the 
likelihood of developing AD [16]. Age, smoking, diabetes 
and hypertension are risk factors for NA-SVD [5, 15, 51, 
52]. The genetic risk factors for NA-SVD are still unclear 
but variation at several gene loci has been associated 
with its typical clinical and radiological manifestations 
[118]. We proposed previously that hypertension could be 
not only a cause but also a consequence of NA-SVD: a 
cardiovascular response that is induced to maintain cer-
ebral perfusion in the face of increasing cerebral vascular 
resistance [15]. This presents the possibility of a vicious 
cycle between hypertension and NA-SVD, a possibility 
supported by our recent demonstration that although 
late-life hypertension was associated with markers of 
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vascular damage (SVD severity and BBB breakdown), it 
was also associated with evidence of better cerebral per-
fusion and lower insoluble Aβ42 levels in AD and mixed 
dementia [119].

The core pathology of NA-SVD is arteriolosclerosis 
(Figure 1B): collagenous thickening of the vessel wall, 
narrowing of the vessel lumen and loss of SMCs. NA-SVD 
can be further categorised by the presence or absence of 
distal atherosclerosis (microatheroma; Figure 1C), lipo-
hyalinosis, fibrinoid necrosis or microaneurysms [11, 51, 
52, 120–125, ]. Histopathological measures of NA-SVD 
usually rely on semiquantiative scoring of arteriolo-
sclerosis, for example using the criteria in the Vascular 
Cognitive Impairment Neuropathology Guidelines 
(VCING). Another metric, the sclerotic index, also been 
used as a measure of NA-SVD pathology in brain tissue 
[126–129].

We have previously scored the severity of NA-SVD 
pathology in tissue sections using a semiquantitative 
scale that was incorporated into VCING and based 
on the extent of thickening of the arteriolar walls and 
narrowing of the lumens [119, 130, 131]. We showed that 
individuals with severe NA-SVD had reduced levels of 
vWF in the white matter, indicative of vessel loss [15, 
130]. Perivascular drainage is likely to be impaired (as 
suggested by the enlarged perivascular spaces [52, 132, 
133]). Like CAA, NA-SVD is associated with lacunar in-
farcts, haemorrhage and microbleeds but their distribu-
tion varies between these two forms of SVD [33, 52, 134, 
135] (Figure 1D). Microbleeds tend to be lobar in CAA, 
and non-lobar (basal ganglia, internal capsule, thalami) 
in NA-SVD [52]. Microbleeds are demonstrable in up 
to one-third of AD patients [15, 136–138, ], and mostly 
lobar in distribution; however a substantial number are 
also non-lobar and associated with WMHs, reflecting 
the high prevalence of both major types of SVD in AD 
[13–15]. It seems likely NA-SVD reduces cerebrovas-
cular reactivity but supporting data is scarce [33, 139]. 
Independently of cerebral infarction and CAA, arteri-
olosclerosis has been linked with limbic predominant 
age-related TDP-43 pathology [11, 46, 140–144, ], a pro-
teinopathy that often coexists with AD [144, 145].

3  |   VASCU LAR DENSITY A N D 
REMODELLING IN AD

3.1  |  Changes in vascular density

Most studies on human brain tissue have reported re-
duced or no significant changes in vascular density 
(Table 1). Reported reductions in vascular density have 
tended to be region-specific and related to disease pro-
gression and the presence of disease pathology (Table 1). 
A reduction in retinal vascular density has also been re-
ported in AD (see section 7 and Table 2). In transgenic 
mouse and rat models of Aβ accumulation, vascular 

density is generally decreased (Table 2), though two re-
cent studies reported a transient increase in vascularity, 
mostly hippocampal, in early disease but a subsequent 
decline in vascular density with disease progression 
[146, 147]. This may indicate an early stage angiogenic 
response that is ultimately ineffective as disease pro-
gresses. A few human post-mortem studies found in-
creased vascular density in AD within the hippocampus 
[148–150] (Table 1) and the frontal cortex [151], though 
several other studies found either no significant change 
or a reduction in vascularity in these regions (Table 1).

Advanced age is associated with a decline in vascular 
density (reviewed here Ref. [152]), making it important to 
use age-match controls when assessing vascular changes 
in the context of AD. The reduced vascular density in AD 
reported by Fischer and colleagues (1990) may have been 
confounded by the younger age of the controls (mean 
60.8 years) compared to AD cases (mean 84.8 years) [153]. 
Advanced age is also associated with cerebral atrophy, 
but in most brain regions this is more marked in AD. 
Brain atrophy may reduce separation of blood vessels, 
increasing vascular density without the generation of 
new vessels. Meier-Ruge and colleagues (1985) attributed 
an increase in vascular density in the AD brains they 
studied to tissue atrophy [154]. However, Hunter and col-
leagues (2012) reported no change in vascular density in 
AD, despite tissue atrophy [155], and Kirabali and col-
leagues (2020) found no difference in vascular density 
in the frontal cortex and hippocampus in AD despite 
a reduction in the nearest distance between capillaries, 
perhaps reflecting parenchymal atrophy [156]. Kitaguchi 
et al. (2007) observed lower vascular density in AD de-
spite greater atrophy than in controls [157].

Discrepant data on vascular density in AD probably 
reflect differing methods, metrics, brain regions, disease 
stage, and confounders such as comorbidity or age. The 
heterogeneous distribution of tissue atrophy across the 
brain and between individuals [158–160] further compli-
cates comparison of vascular density measurements in 
AD.

3.2  |  Morphological changes in the 
vasculature

Numerous morphological abnormalities have been re-
ported in AD and animals modelling aspects of the dis-
ease. These include increased vascular tortuosity and 
looping and kinking in AD [153, 161] and transgenic mice 
overexpressing APP [162, 163]; irregularities in capillary 
diameter in AD [157, 161, 164] and APP/PS1 mice [165]; 
abnormal patterns of branching, fusion and budding of 
vessels in AD [161] and APP23  mice [157, 163]; and an 
increase in degenerated ‘string’ vessels in AD [155, 166]. 
Raspberry-like clusters of cerebrocortical microvessels 
that probably reflect an angiogenic response to brain 
ischaemia were found to be most numerous in VaD but 
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also more numerous in frontotemporal lobar degenera-
tion and AD than in controls [167].

Accumulation of tau may also contribute to vascular 
abnormalities. Overexpression of tau in mice caused a 
range of vessel abnormalities including reductions in 
diameter, the formation of vascular spirals, and altered 
vascular density [42].

3.3  |  Non-productive angiogenesis in AD

The causes of most of the above changes to vascular 
morphology in AD remain unclear. Brain atrophy is 
likely to have deformed the morphology of some ves-
sels [168]; however looping, budding, fusion and tapering 
of vessels may be secondary to angiogenic stimulation 
[163, 169]. String vessels in AD have been suggested to 
reflect a cycle of pathological angiogenesis and subse-
quent endothelial retraction [170] (Figure 1F). Recently 
reported ‘raspberries’ likely form through angiogenesis 
in response to tissue hypoxia [167].

Despite evidence of pro-angiogenic signalling in AD, 
there is scant evidence of increased vascularization, pos-
sibly owing to anti-angiogenic properties of Aβ [5, 171, 
172]. In AD and animal models of Aβ accumulation, 
non-productive angiogenesis was shown near amyloid 
plaques, with an abnormal accumulation of IB4-positive 
tip cells and reduced NOTCH signalling. The angio-
genic vessels were disassembled by microglial phagocy-
tosis. Non-productive angiogenesis also occurred in the 
absence of plaques in mice with inhibited γ-secretase 
activity [173].

4  |   A LTERATIONS IN TH E 
CEREBRA L VASCU LAR BASEM ENT 
M EM BRA N E IN AD

The ECM provides structural stabilisation to the neuro-
vascular unit by binding cell-adhesion molecules. It also 
supports cell migration and differentiation, and facili-
tates cell signalling [174]. The cerebral vascular basement 
membrane (CVBM) is a specialised ECM composed of 
laminin, collagen IV, nidogen, heparan sulphate and 
proteoglycans. It encloses endothelial cells and pericytes 
and supports interactions between them, and with astro-
cytes through their endfeet [175]. Changes to the CVBM 
in AD have adverse consequences for vascular function 
and Aβ efflux (reviewed here Refs. [31, 174–178]). The 
major alterations to the CVBM in AD include thicken-
ing, changes in composition, and Aβ deposition [175].

4.1  |  CVBM thickening

The CVBM thickens with age, but this process is exacer-
bated in AD and in animal models of Aβ accumulation A
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[168, 179–186], tending to be most severe in regions of the 
brain with higher levels of AD pathology [180, 186]. It 
is attributable mostly to increased collagen IV [94, 182, 
183, 187–189], although perlecan and fibronectin are also 
increased [186, 190]. One study found elevated collagen 
I and III but reduced collagen IV [191]. A few reports 
describe CVBM thinning in AD microvessels, though 
those studies focussed on agrin and may reflect decreases 
in that particular component [192–194]. Thickening in-
creases the stiffness of the BM, and probably attenu-
ates vascular compliance and neurovascular coupling. 
Reduced contact between endothelial cells and pericytes 
[195] may also affect BBB function and the stability of 
capillaries as a result of CVBM thickening.

4.2  |  CVBM compositional changes

In addition to the deposition of collagen, increases in 
perlecan and fibronectin were found in AD microves-
sels [186] (although not in APOE ε4  mice [196]). These 
constituents contribute to maintaining the endothelial 
barrier and mediating cell attachment and function 
[197, 198]. Plasma fibronectin was increased in AD but 
reduced in MCI [199, 200]. Laminin α1, β1 and γ1 expres-
sion was increased in brain tissue and astrocytes in AD 
[201, 202] and small laminin peptides were elevated in the 
CSF [203]. Laminin and other components of the CVBM, 
including collagen IV and heparan sulphate proteogly-
can, also colocalise with amyloid plaques, which reflect 
CVBM damage [204, 205]. However, both collagen IV 
and laminin were reportedly reduced in microvessels 
from AD brain tissue, while laminin was elevated in mi-
crovessels with CAA. The same study found that levels 
of perlecan and fibronectin were unchanged in AD and 
CAA [206].

Intramural perivascular drainage (IPAD) of inter-
stitial fluid in the brain takes place along the vascular 
CVBM, particularly those that define the concentric lay-
ers of smooth muscle cells and is an important mecha-
nism of Aβ clearance [207, 208]. Pathological remodelling 
of the CVBM can interfere with this process (Figure 2). 
Reduced compliance of vessels with thickened CVBMs 
in normal ageing may explain reduced cardiovascular 
pulse propagation [209], thought to drive perivascular 
transport in the brain via its reflection wave [31, 210, 211]. 
Additionally, elevated levels of perlecan, and fibronec-
tin, owing to normal aging may facilitate the aggrega-
tion of soluble Aβ [180]. Additionally, CVBM laminin, 
which is reduced in ageing and CAA, binds APOE-Aβ 
complexes and assists in the efflux of Aβ from the brain. 
This binding is weaker for APOE ε4-Aβ than APOE ε3-
Aβ complexes [212]. Astrocytes from ε4-positive indi-
viduals secreted less laminin and collagen IV, and more 
fibronectin when forming the CVBM [213]. Conversely, 
ECM laminin and collagen were increased in ε2 carri-
ers [214]. These differences in composition of the CVBM 

may influence the efficiency of intramural periarterial 
drainage. Changes in CVBM and ECM composition can 
also affect Aβ fibrillation and stability. For instance, col-
lagen IV, laminin and nidogen can disrupt the formation 
of Aβ fibrils [215, 216]. Conversely, proteoglycans such as 
perlecan and agrin aid Aβ fibril formation and stability 
[217–219].

Caution is warranted in interpreting some of the 
data on immunolabelling components of the CVBM, 
which is highly cross-linked. The detection of CVBM 
components is affected by variability in antigen affinity 
and accessibility (e.g. in a study on formalin-fixed tis-
sue, laminin antibodies labelled neurons but not the   
CVBM unless extensively damaged [220]), in addition to 
autofluorescence [221].

5  |   TH E N EU ROVASCU LAR U N IT 
IN AD

Endothelial cells, mural cells, astrocytes and neurons 
work in concert in the healthy brain to form the neu-
rovascular unit (NVU), which regulates neurovascular 
coupling and consequently CBF through the brain (re-
viewed here Refs. [222, 223]). The CVBM and endothelial 
tight junctions are important non-cellular structures of 
the BBB, which sits within the NVU (Figure 3). NVU 
dysfunction and BBB barrier disruption in AD are 
closely associated with one another [223]. Below, we de-
scribe various pathologies and dysfunction with a focus 
on the vascular components of the NVU in AD. Glial 
cells are also important in the normal function of the 
NVU and contribute to its disruption in AD. Astrocytes 
are important for glymphatic drainage of Aβ [224, 225] 
and microglial neuroinflammation has multiple effects 
on vascular function, as reviewed elsewhere [226, 227]. 
However, detailed consideration of the roles of astro-
cytes and microglia in AD is beyond the scope of the 
present review.

5.1  |  Endothelial cells

Reported abnormalities of endothelial cells in AD in-
clude mitochondrial damage, increased pinocytic vesi-
cles and lipofuscin [161, 170]; upregulated receptor for 
advanced glycation end products (RAGE), respon-
sible for transporting Aβ into the brain parenchyma 
[228–230]; and downregulated low density lipoprotein 
receptor-related protein 1 (LRP-1) receptor, involved in 
Aβ clearance into the bloodstream [228, 231] (Figure 2). 
Lower LRP-1 levels may reflect diminished expression of 
MEOX2 [232].

Glucose transport across the endothelium and BBB 
is impaired in AD. Expression of glucose transporter 
proteins GLUT-1 and GLUT-3 is reduced in the en-
dothelium of microvessels in the cerebral cortex, and 
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hippocampus in AD [233–237], and GLUT-1  levels are 
reduced in circulating brain endothelial cells in mild AD 
[238]. This may exacerbate Aβ and cerebrovascular pa-
thology. A fall in GLUT-1 and retraction of astrocytic 
endfeet preceded widespread Aβ pathology in arcAβ 
mice [184]. Knockdown of GLUT-1 in zebrafish caused 
BBB breakdown and impaired cerebral circulation [239]. 
In mice over-expressing APP, GLUT-1 deficiency led to 
early cerebral microvascular degeneration, BBB break-
down, reduced CBF, impaired neurovascular coupling, 
accelerated Aβ accumulation and neurodegeneration 
[240].

Endothelial cells in AD patients and 5xFAD mice 
have shortened tight junctions (TJs) [161, 241], import-
ant for maintaining BBB integrity. Additionally, there is 
loss of TJ proteins occludin, claudin-5 and ZO-1 in CAA; 
in vitro experiments suggested that this results from Aβ 
toxicity to endothelial cells, mediated by the binding 
of Aβ to endothelial RAGE and induction of oxidative 
stress [242, 243]. Other studies showed an association of 
RAGE, Ca2+-calcineurin signalling and MMP expres-
sion, with a decrease in TJ protein levels in endothelial 
cells [41, 241]. Hypoxia, hypoglycaemia and oxidative 
stress – conditions prevalent in AD brain tissue – all de-
crease TJ protein levels in endothelial cells in vitro [244–
246]. Disruption of TJs in AD brains is associated with 
BBB breakdown and increased immune cell infiltration 
[247] and in Tg2576 mice, disrupted TJs were linked to 
angiogenesis [248].

Markers of endothelial activation, including inter-
cellular adhesion molecule-1 (ICAM-1) and vascular 
adhesion molecule-1 (VCAM-1), have been reported to 
be elevated in AD and in animal models of disease [249–
253], either as a result of inflammation or direct exposure 

to Aβ [253, 254]. This facilitates entry of immune cells 
into the brain parenchyma where they can exacerbate 
neuroinflammation and AD pathology [253]. Neutrophil 
depletion in 3xTg-AD mice was shown to decrease AD 
pathology and improve memory [253]. Elevated expres-
sion of cell adhesion molecules may also contribute to 
neutrophil blockage of capillaries observed in APP/
PS1 mice [255]. Treatment of these mice with antibody to 
the neutrophil marker Ly6G increased CBF, possibly by 
inhibiting the migration of neutrophils towards endothe-
lial inflammation [255].

The glycocalyx on the luminal surface of the endothe-
lium of the brain is an important component of the BBB 
that shows signs of damage in AD and CAA (reviewed 
here Ref. [177]). Levels of glycocalyx components hyal-
uronan and TSG-6 were increased in microvessels from 
brain tissue with AD or CAA, which is characteristic of 
endothelial inflammation and injury [206].

5.2  |  Pericytes

Pericytes are recruited by endothelial cells in nascent 
microvessels by signalling between platelet-derived 
growth factor-BB (PDGF-BB) and its cognate pericyte 
receptor PDGFRβ. Pericytes regulate an array of pro-
cesses including BBB functioning, TJ formation, ECM 
remodelling, angiogenesis, metabolite clearance, and co-
ordinate signalling between other cell types of the NVU 
[223, 256–262]. Mice deficient in PDGFRβ-signalling 
experience early loss of pericytes, and BBB breakdown 
[263]. Pericytes can also clear Aβ aggregates via LRP1/
ApoE [264] and regulate local CBF through constriction 
or relaxation of their processes, modulating capillary 

F I G U R E  3   Structure of the microvascular NVU in health and AD. (A) Structure of NVU in the microvasculature. Endothelial cells form 
tight junctions that limit the transport of blood constituents. The tight junctions are a major component of the BBB, the integrity of which is 
further enforced by the basement membrane and pericytes surrounding the endothelium. Astrocytic endfeet cover most of the surface of the 
microvessel, and form water channels important for glymphatic transport and homeostasis within the brain. Neurons and astrocytes can signal 
to pericytes to modulate their state of constriction, linking regional CBF to neuronal activity. (B) NVU pathology and dysfunction in AD. 
Numerous changes in the function and physiology of the NVU have been described in the context of AD (outlined here), many of which are also 
seen to a lesser extent in normal aging
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diameter [265–267]. Pericyte relaxation is stimulated by 
neuronal activity, positioning pericytes as important 
mediators of neurovascular coupling, the process in 
which CBF is linked to neuronal activity [261, 268, 269]. 
Embedded within the CVBM, pericytes are able to com-
municate with endothelial cells through small gaps in 
the CVBM where the plasma membranes of both cells 
come into contact [270]. Pericytes can differentiate into 
various components of the NVU following ischaemic 
damage [271, 272], suggesting an important role in tissue 
repair. However, ischaemia was also shown to cause per-
icyte death ‘in rigor’, irreversibly constricting microves-
sels and leading to BBB damage [261].

5.2.1  |  Pericyte dysfunction and loss

Pericyte-deficient mice manifest an age-dependent de-
crease in brain perfusion and neurovascular coupling, 
associated with BBB breakdown, neurodegeneration and 
cognitive impairment [260]. These mice also display ac-
celerated Aβ deposition when crossed with animal mod-
els of Aβ accumulation [29, 259, 273].

Reduction in pericyte coverage of capillaries was re-
ported in neocortex and hippocampus from AD patients, 
correlating with BBB breakdown [29, 156, 274]. However, 
in some studies, capillary pericyte counts were stable 
in the frontal cortex in AD [151, 275]. This discrepancy 
could reflect a loss of pericyte processes rather than of 
pericytes themselves in AD. The number of pericytes was 
reduced in the frontal white matter in AD, VaD, post-
stroke dementia and mixed dementia [276]. We found a 
reduction in the pericyte marker PDGFRβ in the precu-
neus, a region hypoperfused early in AD; the reduction 
correlated with an increase in fibrinogen indicating BBB 
breakdown, and with hypoxia and Aβ plaque load [277]. 
We did not observe a reduction of PDGFRβ in white 
matter underlying the precuneus. Bourassa et al., mea-
sured mural cell markers – PDGFRβ, CD13 and α-SMA, 
in microvessels extracted from the parietal cortex of 60 
participants in the Religious Orders study and found the 
marker levels to be reduced in AD in association with 
TDP-43 levels [278].

Electron microscopy of the hippocampus, visual, au-
ditory and parietal cortices in AD revealed mitochon-
drial abnormalities and increased numbers of pinocytic 
vesicles in pericytes along with a reduction in their over-
all number; this coincided with a shortening of TJs [161]. 
In patients with MCI, injury to brain pericytes, assessed 
by measuring sPDGFRβ in the CSF, was associated 
with evidence of BBB breakdown on dynamic contrast-
enhanced MRI, and elevated CSF albumin [21, 24, 279]. 
Pericyte degeneration and BBB breakdown are acceler-
ated in APOE ε4 carriers [280].

Pericytes accumulate Aβ in mouse models of AD, and 
Aβ1-40 fibrils reduced pericyte viability and proliferation 
in vitro [264, 274] (interestingly, Aβ1-40 monomers had the 

opposite effect on pericytes, suggesting that the effect of 
Aβ on pericyte function is aggregation-dependent, as 
it is with endothelial cells [274]). Aβ oligomers induced 
constriction of capillaries by pericytes in human ex vivo 
tissue and animal models of AD, a process dependent 
on ROS generation and EDN1 [39]. Capillaries from AD 
patients were constricted specifically at pericyte loca-
tions, with no concomitant change in the diameters of 
distal arterioles or venules. Pericyte constriction may 
therefore be chiefly responsible for reduced CBF in AD 
[39]. BACE-1  levels increase under hypoxia, owing to a 
hypoxia-responsive element in the BACE-1 promoter, 
which leads to increased processing of APP into Aβ 
[281, 282]. This probably results in further pericyte con-
striction and reduced CBF, forming a vicious cycle [38] 
(Figure 2). We recently showed that exposure to Aβ inter-
feres with EDN1-mediated constriction and relaxation of 
pericytes in vitro [283], which would be expected to im-
pair neurovascular coupling. It is also possible that this 
interference in the rhythmic constriction and relaxation 
of mural cells may reduce the effectiveness of clearance 
of Aβ through IPAD.

6  |   TH E BLOOD -BRA IN BARRIER 
IN AD

The structure and function of the BBB have been exten-
sively reviewed [284–288], as has its disruption in AD 
[23, 289–291]. Damage of the BBB was detected preclini-
cally in AD within the hippocampus, independently of 
the progression of Aβ and tau pathology [24, 289]. BBB 
breakdown occurs in animal models of Aβ (reviewed 
here Ref. [292]) and tau accumulation [293], and in AD 
patients [23, 170, 289]. Blood constituents, including 
thrombin, fibrinogen, IgG, albumin, and haemoglobin-
derived proteins, can be detected in the brain paren-
chyma in AD, often in association with amyloid plaques 
[29, 194, 277, 280, 294–297]. Albumin levels tend to be 
elevated in the CSF in MCI and AD [21, 23, 277, 298–
301]. Within the brain parenchyma, plasmin, fibrinogen, 
thrombin, and albumin can cause neurovascular dam-
age, inflammation, oedema, and ECM degradation [23]. 
The pathology resulting from plasmin leakage alone was 
demonstrated by the markedly reduced inflammation 
and Aβ deposition that followed depletion of plasmino-
gen in Tg6799 mice [302].

An age-dependent increase in BBB permeability 
correlates with a rise in the CSF level of a cleaved, sol-
uble form of platelet-derived growth factor receptor β 
(sPDGFRβ) shed from damaged pericytes; this is exac-
erbated in MCI [21]. We found that BBB breakdown (evi-
denced by accumulation of fibrinogen in post-mortem 
tissue from individuals with AD, VaD and mixed de-
mentia) was associated with increased endothelin-1 
(EDN1), more severe hypoperfusion (lower myelin-
associated glycoprotein:proteolipid-1 ratio), SVD,   
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Aβ and tau [119]. BBB breakdown in AD patients is 
associated with a reduction in CBF [23, 28, 303–305]. 
Tau-PET imaging revealed a negative correlation be-
tween tau pathology and CBF in the temporoparietal 
regions, exacerbated by the presence of amyloid [43]. 
APOE ε4 carriers are at increased risk of early BBB 
breakdown and degeneration of pericytes [193, 194, 
280, 297, 306].

Inappropriate activation of MMPs can cause BBB 
disruption (e.g. following cerebral ischaemia [307]). 
MMP-9 knockout mice had reduced infarct volume, neu-
rological deficits and mortality after focal cerebral isch-
aemia associated with the protection of the BBB [308]. 
Aβ-induced activation of MMPs may damage the BBB in 
AD. In vitro, Aβ1–42 oligomers increased production of 
RAGE, MMP-2, MMP-9, and decreased levels of TJ pro-
teins in bEnd.3 cells [41, 241]. The ensuing BBB disrup-
tion could be fully reversed by addition of an anti-RAGE 
antibody and partially reversed by a general MMP in-
hibitor. Similarly, breakdown of the blood-CSF barrier 
in mice after exposure to Aβ1–42 oligomers did not occur 
in the presence of MMP inhibitor or in MMP-3-deficient 
mice [309]. APOE ε4 also drives BBB breakdown, by ac-
tivating the cyclophilin A-MMP-9 pathway in mice and 
non-symptomatic human carriers [214, 260, 280, 298]. In 
vitro, pericytes produced MMP-9 and migrated in re-
sponse to TNF-α [310] (a mediator of neuroinflamma-
tion in AD [311]); this could be blocked by anti-MMP-9 
antibody [310].

Increased activity of MMPs may also contribute 
to non-productive angiogenesis in AD (see above). 
Proteolysis of CVBM components by MMPs is neces-
sary for endothelial migration and sprouting, and tube 
formation [312–314].

7  |   NOVEL INSIGHTS A N D 
M ETHODS FOR STU DY ING TH E 
CEREBRAL VASCU LATURE IN AD

7.1  |  Retinal studies

The study of the retina in AD research was recently 
reviewed by Shi et al. (2021) [315]. In a mouse model of 
Aβ accumulation, Shi and colleagues found vascular 
pathology and pericyte loss alongside retinal Aβ accu-
mulation [316]. They also reported pericyte apoptosis 
and reduction in PDGFRβ and LRP-1 associated with 
Aβ deposition in retinas examined post-mortem from 
donors with MCI and AD, mirroring cerebral find-
ings in AD [316]. Additionally, venular abnormalities, 
microglial activation and astrogliosis were recently 
demonstrated in the retina coinciding with accumula-
tion of Aβ in an APPNL-G-F knock-in transgenic mouse 
model [317].

Optical coherence tomography angiography 
(OCTA) uses laser light reflectance off the surface of 

haemocytes in motion to produce a map of the mi-
crovessels in the retina [318]. Several OCTA studies 
found a decline in retinal vascular density in AD and 
MCI (Table 1), associated with morphological anom-
alies of the vasculature and an increased foveal avas-
cular zone (FAZ) [319–328]. Two studies reported no 
difference in retinal vascular density in AD [329, 330] 
although one did find a thinner choroid in mild AD 
[330]. Patients with MCI showed a decline in retinal 
vascular density [319, 321, 325–327, 331] (with one ex-
ception [320]), though to a lesser extent than in AD. 
Van der Kreeke et al. (2020) reported an increase in 
retinal vascular density in preclinical AD diagnosed 
by amyloid-PET [332]. Changes in retinal vascular den-
sity, tortuosity, FAZ area and inner retinal layer thick-
ness are being reported with increasing consistency in 
AD and other dementias [333, 334]. However, further 
studies, particularly in preclinical AD and MCI, and 
with correlative neuropathology, are needed to deter-
mine the diagnostic and prognostic value of OCTA in 
AD [335, 336].

7.2  |  Single-cell transcriptomic studies of the 
cerebral vasculature

Single cell or nuclear RNA-Seq (snRNA-Seq) is a pow-
erful tool for transcriptomic analysis of human tissue. 
Gene studies and snRNA-Seq profiling have implicated 
microglia as having a central role in AD pathogenesis (re-
viewed here Refs. [337–340]). Of recent snRNA-Seq stud-
ies in AD [171, 341–343], few have focused on the cerebral 
vasculature, although recent findings include increased 
transcription of cytokines [343], angiogenic markers and 
proteins involved in endothelial antigen presentation in 
AD [171]. Two recent RNA-Seq studies were performed 
specifically on cerebral vascular cells. Song et al. 2020 
used laser capture microdissection to isolate microves-
sels from tissue sections prior to RNA extraction and 
sequencing [344]. As this study was not snRNA-Seq, it 
relied on subsequent analysis to delineate cell-type spe-
cific changes [344]. Yang and colleagues used density 
centrifugation and strainer capture to enrich microves-
sels from brain tissue, followed by mashing to release cell 
nuclei for RNA extraction in a technique they refer to 
as Vessel Isolation and Nuclei Extraction for Sequencing 
(VINE-Seq) [345]. Both of these transcriptomic analy-
ses identified novel putative markers enriched in human 
pericytes, and documented changes in AD and striking 
differences between expression of genes in human brain 
tissue and of their homologs in mice [344, 345]. The 
VINE-Seq study found that the expression of many risk 
genes for AD, identified by GWAS, are highly enriched 
within vascular cell types in humans whereas in mice 
most of the homologous genes are expressed by micro-
glia [345]. A post-GWAS analysis of previous snRNA-
Seq data also found GWAS gene expression to be highly 
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enriched in endothelial cells and pericytes in addition to 
microglia [346, 347]. These studies highlight the pivotal 
role of vasculature dysfunction in AD.

7.3  |  Novel imaging methods in animal models

The numerous recent advances in the imaging of 
human brains in AD have been well reviewed [23, 348]. 
Advances in the imaging of the mouse brain vasculature 
have yielded detailed whole brain atlases of the cerebral 
vasculature in experimental models of Aβ and tau ac-
cumulation. These include the use of iterative sectioning 
and imaging of the brains of APP/PS1 mice to provide 
a 3D reconstruction of cerebral vasculature [165, 349], 
and the demonstration of reduced hippocampal vas-
cular density in a triple-transgenic mice (PS1M146V, 
tauP301L, and APPSwe), by ultrasound measurement of 
cerebral blood flow [162]. Whole brain imaging using tis-
sue clearing methods such as CLARITY has been shown 
to be effective [350, 351]. Recently, multiphoton imag-
ing and optogenetic manipulation of mural cells in the 
live mouse brain was demonstrated as a technique for 
investigating the role of these cells in regulating rCBF 
and their dysfunction in the context of AD and cerebral 
ischaemia [352]. Recently, 2D-optical imaging spectros-
copy (2D-OIS) was used in a J20-hAPP mouse model of 
AD to investigate cerebral haemodynamics while meas-
uring neuronal activity with an inserted electrode [353]. 
In vivo experimental methods such as these are likely to 
be increasingly important for mechanistic studies of cer-
ebral vascular abnormalities in AD, and for testing novel 
therapies.

8  |   CONCLUSION

There is mounting evidence that blood vessels within 
the brain have altered structure and function from a 
very early preclinical stage of AD. Structural changes to 
the larger microvessels (particularly arterioles) include 
CAA and arteriolosclerosis, but there are also numer-
ous, less immediately obvious, changes to endothelial 
cells, pericytes and the basement membrane of the mi-
crovasculature that reflect the influence of genetic fac-
tors, inflammatory mediators, vasoactive peptides, 
and both direct and indirect endothelial and pericyte 
responses to Aβ and tau. These structural and physi-
ological alterations to the cerebral vasculature affect 
vessel maintenance and regeneration, vessel calibre and 
responsiveness to neuronal metabolic demand, integrity 
of the BBB, and the metabolism, transport and clearance 
of many molecules including Aβ. The consequences are a 
worsening of the reduction and mismatch of brain perfu-
sion in AD, breakdown of the BBB, accumulation of Aβ, 
parenchymal brain damage, and further damage to the 
vasculature itself. Transcriptomics of cerebrovascular 

cells and improved imaging methods of the brain vas-
culature further highlight the pivotal role of vasculature 
dysfunction in the development and progression of AD, 
and the use of the retina as a ‘window into the brain’ 
may change the way we monitor development and pro-
gression of the disease.
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