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Understanding electronic transport properties is important for designing devices for applications.11

Many studies rely on the semi-classical Boltzmann approach within the relaxation time approxima-12

tion. This method delivers a graphic physical picture of the scattering process, but in some cases it13

lacks full quantum-mechanical effects. Here, we use a non-equilibrium Green’s function Korringa-14

Kohn-Rostoker (KKR) method with phase-breaking scattering via virtual Büttiker terminals as a15

fully quantum mechanical approach to transport phenomena. With this, we assess the validity of16

the relation of the self-energy Σ to the scattering time τ , often used in literature in the case of17

constant relaxation time approximation. We argue that the scattering time does not affect the18

thermopower in the Boltzmann approach and thus should take no effect either on the thermopower19

calculated via the Keldysh approach. We find a nearly linear relation for the transmission function20

TS(EF ,Σ) of free electrons and Cu with respect to 1
Σ
. However, we find that this is not the case for21

Pd. We attribute this to neighboring states contributing due to the additional broadening via the22

self-energy Σ. These findings suggest that a simple identification of scattering time and self-energy23

is not sufficient. Finally, we discuss the benefits and limits of the application of the virtual terminal24

approach.25

I. INTRODUCTION26

In the past years, electronic devices have become sig-27

nificantly smaller. Further shrinking the sizes, leads to28

quantum mechanical effects, that dominate the transport29

properties1–4. There are several approaches from classi-30

cal to fully quantum mechanical to characterize trans-31

port quantities. Scattering can be accounted for in each32

of these approaches and of course, the type of scattering33

has huge influences on the transport properties. While34

there are full quantum mechanical formalisms like the35

Kubo formalism5–9 or the steady-state Keldysh10–12 for-36

malism, often semi-classical approaches are used to de-37

scribe transport properties. The physical picture in these38

semi-classical approaches, mainly the Boltzmann formal-39

ism13–17, is quite intricate since it enables an intuitive40

understanding in terms of scattering processes. One of41

the principal quantities for understanding this scattering42

picture is the scattering or relaxation time τ , which gives43

the mean time between two scattering events.44

Often, first-principle methods rely on the averaging over45

many configurations of lattice distortions or impuri-46

ties to obtain semi-classical like features18,19. How-47

ever, room-temperature like features can also be estab-48

lished by introducing a dephasing mechanism by means49

of Büttiker probes (or virtual terminals)20,21. In our50

purely quantum-mechanical Keldysh approach including51

dephasing virtual terminals, it is not the scattering time,52

which is the primary determining quantity, but a broad-53

ening of the states given by the negative imaginary part54

Σ of the complex self-energy Σ, which is often directly55

related to the scattering time in angle-resolved photoe-56

mission spectroscopy (ARPES) experiments22,23. In such57

scenarios the scattering time is often identified with the58

lifetime of the state, τscat = τlife = !
2Σ

24. For ARPES59

experiments it was discussed that the single-particle life-60

time can be related to the self-energy in this way, but that61

this single-particle lifetime differs from the lifetime of an62

excited photoelectron population25. The discrepancies63

were supported by experimental findings26–28. Hence, a64

simple identification of scattering time and self-energy65

seems non-trivial. However, even in a single particle de-66

scription, this simple relationship between lifetime and67

self-energy might fail.68

In this work, we test the relation of the scattering time69

and the scattering self-energy in a single particle de-70

scription but for real materials. We give an example71

where such a direct identification is questionable, even72

for simple, pure metals. This is shown by comparing the73

theory of the Boltzmann approach with results from a74

Keldysh non-equilibrium Green’s function approach11,2975

in the framework of a Korringa-Kohn-Rostoker (KKR)3076

density functional theory (DFT), in which we use virtual77

terminals (also known as Bttiker probes) to describe inco-78

herent elastic scattering10. We discuss the limit of appli-79

cability of virtual terminals by comparing the results of80

the KKR implementation with a simple finite differences81

method (FDM) for the case of free electrons29.82
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Figure 1. Schematic depiction of the contributing transmis-
sion functions: contact transmission Tc(EF ) (dashed, black),
contributions due to scattering TS(EF ,Σ) (blue), and result-
ing effective transmission Teff(EF ,Σ) (red) via Eq. (7).

II. THEORY83

In order to evaluate transport properties, the following84

moments Ln are used3185

Ln =
2

h

!
dE

!
d"k‖ (E − µ)n

"
−∂f(E, µ, θ)

∂E

#
T (E,"k‖),

(1)86

where h is Planck’s constant, E is the energy, µ is the87

chemical potential, θ the temperature, f(E, µ, θ) is the88

Fermi-Dirac distribution and T (E,"k‖) the "k‖ = (kx, ku)89

dependent transmission function. Normally, these mo-90

ments are written as tensors. Here, since we are look-91

ing at cubic systems only, we restrict ourselves to the92

Ln = Ln,zz component of the full tensor Ln. From these93

moments, the conductivity σ, thermopower S, and heat94

conductivity of the electrons κe can be calculated as3295

σ = e2L0, (2)96

S =
1

eθ

L1

L0
, (3)97

and98

κe =
1

θ

"
L2 −

L2
1

L0

#
, (4)99

where e is the electron charge.100

A. Keldysh formalism101

In the Keldysh formalism, the general transmission102

function T (E) = Teff(E;Σ) is an effective transmission103

function, which results from contributions of different ori-104

gins. The system is divided into three parts, left, center,105

and right, where the left and right sides serve as semi-106

infinite leads and the center region serves as scattering107

region. Certain scattering events can be realized in the108

Keldysh formalism by placing virtual terminals, which109

are also known as Büttiker probes33, in the scattering re-110

gion. The virtual terminals absorb and reemit electrons111

with different phases, thus simulating a phase-breaking112

scattering event.29,33 Further details of the implementa-113

tion are documented in our previous work10. The neces-114

sary transmission functions are calculated for every pos-115

sible terminal configuration via a coherent approach at116

each in-plane "k‖ point as117

TXY (E,"k‖) = Tr
$
ΓY (E,"k‖)G(E,"k‖)ΓX(E,"k‖)G

†(E,"k‖)
%
,

(5)118

where X,Y ∈ S∧{L,R} are virtual terminals or the con-
tacting left (L) and right (R) terminals. S is the set of
all virtual terminals in the scattering region. The matrix
Γα = i

&
Σ̄α(E)Iα − Σ̄∗

α(E)Iα
'
= −2ImΣ̄αIα = 2ΣαIα

is the broadening function due to self-energy Σα at site
α. The matrix Iα is 1 only for one site-index α and 0
elsewhere. For α ∈ S, Σα is the broadening due to scat-
tering. However, ΣL and ΣR describe the contact to the
semi-infinite leads and are solely given by the lead mate-

rial. The partial transmissions TXY (E,"k‖) are integrated
over the in-plane Brillouin zone to obtain TXY (E). From

this "k‖ integrated partial transmissions between the ter-
minals, the resulting effective transmission function Teff

through the whole system can be calculated as

Teff(E) = TLR(E) +
(

α∈S

TLα(E)TαR(E)

Sα(E)

+

α ∕=β(

α,β∈S

TLα(E)Tαβ(E)TβR(E)

Sα(E)Sβ(E)
+ . . . .

(6)

Here, Sα = TLα(E) + TαR(E) +
)β ∕=α

β∈S Tαβ(E), α ∈ S119

is the renormalisation sum of the probability measure.120

Note that all TXY (E) also depend on all Σα (α ∈ S),121

because the Green’s function G(E,"k‖) depends on all Σα122

(α ∈ S). Thus, TXY (E) will change even when a Σα with123

α ∕= X,Y will change. In the following we assume that124

Σα ≡ Σ ∀α ∈ S. Consequently, we will write the effective125

transmission as a function of E and Σ, that is Teff(E;Σ).126

One has to be careful since, in the Keldysh formalism,127

the resistance arises not only from scattering but also128

from the system’s contacts to the leads. This contact129

resistance Rc is due to the contact of an ideal lead to a130

scattering region, where only a limited number of trans-131

port modes per area exist and contribute to the transport132

of an electron. The scattering part of the resistance RS is133

due to scattering alone. While RS naturally depends on134

the length of the system and on Σ, Rc does not. Rc solely135

depends on the type of the contact. Since the two types136
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of resistances form a series circuit and since R ∝ T−1,137

the full transmission can be split up as138

1

Teff(E,Σ)
=

1

Tc(E)
+

1

TS(E,Σ)
. (7)139

Here, the contact transmission Tc(E) is the transmission140

of a system without virtual terminals, and TS(E;Σ) is141

the contribution due to scattering. Tc is a transmission142

function that contributes either 0 or 1 at each "k-point for143

each band and thus is a measure for the number of trans-144

port modes. The contribution due to scattering TS is a145

probability measure to what extent an electron can tra-146

verse the scattering region without being scattered. Thus147

it is not bounded between 0 and 1. TS , therefore, can148

rise to infinity, if no scattering occurs, that is TS → ∞149

if τ → ∞, as it takes infinitely long to scatter. In the150

Keldysh formalism, the additional contact resistance en-151

sures that the effective transmission function does not152

rise to infinity.153

As depicted schematically in Fig. 1, the influence of the154

contact resistance is the main contribution for small scat-155

tering self-energies Σ (large 1/Σ). The contact resistance156

limits the transmission function to a constant value. The157

scattering contribution is rising to infinity as one would158

expect for decreasing scattering. Increasing the scatter-159

ing self-energy (reducing 1/Σ), TS(E;Σ) and Teff(E;Σ)160

start to overlap and this leads to a decreasing contribu-161

tion of the contact resistance in the reciprocal addition162

of Eq. (7). Thus in the limit of a very long scattering re-163

gion or strong scattering, the behavior is of only Ohmic164

nature and the contact resistance does not contribute sig-165

nificantly. We use the term contact resistance for the re-166

sistance which is due to the contact of semi-infinite leads167

that serve as an electronic reservoir in equilibrium to a168

scattering region. Here, we consider no contact resistance169

from surface roughness, etc., like it would be the case in170

experiments. Unless stated otherwise, we consider only171

the contribution due to scattering TS(E;Σ) in the fol-172

lowing as this is the quantity making contact with the173

Boltzmann approach.174

B. Boltzmann formalism175

The Boltzmann transmission function contains con-176

tributions due to scattering only and no contribution177

from the contact resistance. The transmission function178

in the Boltzmann approach corresponds to T (E,"k) =179

TS(E,"k; τ) = v2z(
"k)τ#kδ(E − ε("k)), where vz is the group180

velocity in transport direction, τ#k the "k dependent scat-181

tering time, δ(E − ε("k)) is the Dirac delta distribution,182

and ε("k) is the electronic energy dispersion.183

In the case of free electrons, mapping this transmis-184

sion function onto the "k‖-plane, which in accordance to185

Keldysh is equivalent to integrating the kz-components,186

one arrives at TS(E,"k‖; τ) = 2
√
2τ

!
√
m

*
E − !2

2m

&
k2x + k2y

'
.187

Here, we consider the isotropic relaxation time approxi-188

mation, where τ is independent of "k34–38. Thus, the mo-189

ments Ln after Eq. (1) are proportional to τ and there-190

fore S is independent of τ . That is ∂S
∂τ = 0, as seen by191

Eq. (3). Therefore, scattering has no effect on the ther-192

mopower in the Boltzmann approach. Consequently, the193

thermopower can be used as a theoretical test system of194

the relation between Σ and τ . Furthermore, if there is a195

direct relation such as τ ∝ 1/Σ, the thermopower should196

be independent of a "k‖-independent self-energy within197

the Keldysh formalism. In other words, as long as the re-198

lation Σ ∝ 1/τ holds, the transmission function TS(E;Σ)199

within the Keldysh approach should linearly depend on200

1/Σ, because in the Boltzmann-approach the transmis-201

sion function TS(E; τ) is proportional to the relaxation202

time.203

C. Finite differences method204

To compare the results obtained with our KKR-205

Keldysh formalism, we use a three-dimensional finite dif-206

ferences method (FDM) for the system of free electrons.207

Thereby, we can exclude possible numerical shortcom-208

ings in our implementation and more importantly, we can209

check the applicability of the virtual terminals in KKR,210

as we are limited to one virtual terminal at each atom211

at maximum. In contrast, in FDM the number of virtual212

terminals is unbound.213

For one dimension, the finite differences method (FDM)214

is described in Ref. 29. We expand on this description215

to describe free electrons in three dimensions in an, in-216

principle, exact manner. The Schrödinger equation for217

free electrons can be separated for each spatial dimen-218

sion. The Hamiltonian is discretized in transport direc-219

tion and Fourier transformed in the in-plane direction.220

The Fourier transformation yields corrections for the in-221

plane directions converting the three dimensional prob-222

lem to an effective one dimensional problem via an ef-223

fective energy in z direction (transport direction), that224

is Ez = E − !2

2m

&
k2x + k2y

'
. The Greens function is cal-225

culated for the effective one-dimensional problem at the226

effective energy for each in-plane "k‖ point in the circle227

described by !2

2m

&
k2x + k2y

'
≤ E and integrated over all "k228

points. The transmission out of this range is zero. Fur-229

ther details calculating the transmission can be found in230

Ref. 10.231

III. COMPUTATIONAL DETAILS232

For evaluation, we consider three different systems.233

The first system are free electrons serving as a simple234

model system. The transport parameters of the free235

electrons are calculated with the DFT-KKR-Keldysh for-236

malism and compared to FDM-Keldysh formalism. As a237

second system we consider Cu within KKR, because the238
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Fermi surface is very similar to that of free electrons. Fi-239

nally, as a third system we consider Pd with a rather240

complex Fermi surface also in KKR.241

The potential for the transport calculation in case of242

free electrons (fe) is a constant potential set to 0. The243

potentials for Cu and Pd are self-consistently calculated244

as bulk systems and then used in the transport geometry.245

Each system is calculated as fcc lattice, where the trans-246

port direction is the [001] direction. For the lattice con-247

stants we use afe = aCu = 6.8311736aB , aPd = 7.3524aB .248

Unless stated otherwise, each system has an effective249

length of d = 25alat, which means that 50 virtual ter-250

minals are placed inside the scattering region. Within251

the KKR method, the transport calculations are done252

with 400× 400 "k‖-points, ℓmax = 3 and an energy broad-253

ening of 0.054 meV to ensure convergence of TS(E;Σ) to254

be better than 1%. In FDM we use 2000 lattice points255

and 400× 400 "k‖-points for the free electrons to ensure a256

convergence of TS(E;Σ) better than 1%257

IV. RESULTS AND DISCUSSION258

A. KKR results259

First in Fig. 2, we compare the thermopower of three260

different systems with increasing complexity of the Fermi261

surface, namely free electrons, Copper (Cu), and Palla-262

dium (Pd). We assume a "k independent scattering time263

τ and thus use a "k independent self-energy Σ for the264

Keldysh formalism with virtual terminals. In this sim-265

ple case of a constant scattering time approximation, the266

thermopower generally should show no dependence on τ267

following the direct linear scaling of the moments L0 and268

L1 with respect to τ when considering the Boltzmann269

theory. If the identification τ ∝ 1/Σ is true, it should270

also give an independence of the thermopower on Σ cal-271

culated within the KKR-Keldysh formalism.272

1. KKR Thermopower273

For free electrons, the thermopower, as a function of274

temperature θ at an arbitrarily chosen value of EF =275

E1 = 0.75 Ry, shows exactly this behavior, at least for276

Σ roughly below 8× 10−2 Ry (see Fig. 2 (a)). For higher277

values of Σ, it starts to deviate (shown in red).278

For Cu, shown in Fig. 2 (b), the behavior of the ther-279

mopower is qualitatively the same as for free electrons.280

However, the deviation from the expected behavior is281

already stronger at smaller self-energies Σ compared to282

free electrons. For Pd, shown in Fig. 2 (c), the ther-283

mopower shows a distinct temperature dependence for284

each self-energy, which clearly deviates from the expec-285

tation within the relaxation time approximation. This286

result suggests, that a simple identification of τ ∝ 1/Σ is287

not suitable. To get a better understanding, we compare288

the transmission function for these systems in terms of289

the self-energy. After the comparison of the transmis-290

sion function, we also check the free electrons against the291

FDM and discuss the limits of the model in Sec. IVC.292

2. KKR Transmission function293

In Fig. 3 (a) we show the "k‖ integrated, energy-294

dependent transmission function TS(E;Σ) for different295

scattering self-energies Σ at the Fermi energy for free296

electrons. At EF = E1 = 0.75 Ry we find a good linear297

behavior, especially for high values of 1/Σ, i.e. in the low298

scattering regime. This result suggests, that for free elec-299

trons, the identification of τ with the energy broadening300

self-energy Σ via τ = !
2Σ is correct at least for small Σ up301

to around 10−1 Ry. But even for free electrons TS(E;Σ)302

shows deviations from the linear behavior for small values303

of 1/Σ, i.e. in the case of strong scattering.304

This deviation from the linear behavior for large Σ305

directly relates to the deviation of the thermopower in306

Fig. 2 (a). We attribute the deviation in TS(E;Σ) to an307

insufficient discretization of the scattering events. This308

will be discussed further in Section IVC by means of the309

FDM.310

The same behavior of TS(EF ;Σ) can be observed for311

Cu in Fig. 3 (b). Here, compared to TS(EF ;Σ) of free312

electrons, the deviation from the linear behavior starts313

at smaller self-energies already. Again, this deviation is314

in accordance with the deviation of the thermopower of315

Cu discussed before.316

When considering Pd in Fig. 3 (c). with a more com-317

plicated electronic structure and complex Fermi surface,318

the linear fitting of TS(EF ,Σ) in Fig. 3 (c) becomes un-319

tenable suggesting, that the relationship τ ∝ 1/Σ does320

not hold at all. Again, the complete deviation from the321

linear behavior is in accordance with the distinct behav-322

ior of the thermopower for each self-energy.323

So far, we have used the constant scattering time ap-324

proximation to assess the validity of the identification of325

Σ = !
2τ . For free electrons and Cu, this identification326

holds true if Σ is small enough, but it is clearly not valid327

in the case of Pd. The fact that even for simple, pure328

metals in combination with the simple approximation329

of a constant scattering time20 the identification of the330

single-particle scattering time τ and self-energy Σ fails,331

suggests that for systems with a more complex topology332

of the Fermi surface and a "k-dependent scattering time333

τ , the identification of Σ and τ becomes even more diffi-334

cult. The main ingredient to the KKR-Keldysh approach335

is the retarded Green’s function defined in the upper half336

of the complex plane in the limit of real energies. At337

the real energy axis it possesses poles at the eigenener-338

gies of the eigenstates and each eigenstate is represented339

by a δ-distribution on the real energy axis. Adding an340

imaginary part to the real energy causes these states to341

broaden into a Lorentzian shape. If we consider, as it is342

the case throughout this work here, a purely imaginary343
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Figure 2. Thermopower S(θ) as function of temperature θ for (a) free electrons, (b) Cu, and (c) Pd at different Σ calculated
with KKR. Note, that in (a) and (b) the blue coloured lines overlap.

Figure 3. TS(EF ,Σ) vs. 1/Σ for (a) free electrons, (b) Cu, (c) Pd in KKR with linear fits.

self-energy of the same value at each atomic site, the real344

energy and the imaginary self-energy can be seen as a345

new complex energy, which causes the broadening of the346

states. This broadening of states, however, causes contri-347

butions from neighboring states (neighbors with respect348

to energy) to an existing state at one particular energy349

due to the overlap. Also for the transmission at one par-350

ticular energy, the broadening can cause contributions351

from neighboring electronic states.352

In the Boltzmann theory, the transport properties at353

one particular energy are determined solely by the band354

structure properties of the considered state, and no addi-355

tional broadening of states is considered. This may cause356

inaccuracies when translating one quantity into the other357

and vice versa. Consequently, we attribute the deviations358

from the linear behavior of Pd to effects caused by the359

energy broadening.360

B. FDM results361

In order to test the numerical implementation of the362

KKR method, we compare it to the thermopower calcu-363

lated via the FDM method in Fig. 4. We see a similar364

trend for the deviation of thermopower, namely a devi-365

ation of the thermopower for high self-energies. We will366

explain this deviation for high self-energies in Sec. IVC.367

In the Boltzmann approach, considering free electrons,368

the "k-integrated TS(E; τ) can be shown to be propor-369

tional to τE3/2. The proportionality to E3/2 holds true370

to some extent for the Keldysh version of TS(E;Σ). For371

comparison, TS(E;Σ) for free electrons is shown in Fig. 5372

calculated with FDM and KKR. The transmission func-373

tions between the two methods match quite well. In374

Fig. 6 the "k‖ integrated transmission TS(EF ;Σ) is shown375
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Figure 4. Thermopower S(θ) as a function of temperature θ
for free electrons calculated with FDM at different Σ.

Figure 5. Scattering contribution to the transmission
TS(E,Σ) for different self-energies Σ for free electrons in KKR
(blue) and FDM (red).

for the FDM method for different scattering self-energies376

Σ. Comparing Fig. 6 with Fig. 3 (a) we find for both377

methods, KKR and FDM, a good linear behavior, espe-378

cially for high values of 1/Σ, i.e. less scattering events.379

The deviation from the linear behavior appears at smaller380

self-energies for a lower energy of E0 = 0.01 Ry. While381

both methods give results that deviate from linear be-382

havior in the strong scattering regime, the precise form383

is different (cf. Fig. 2 (a) and Fig. 3 (a)). We discuss384

this in Sec. IVC. The different characteristic of the de-385

viating thermopower in Fig. 2 (a) and Fig. 4 are a direct386

consequence of different deviations of TS(E;Σ) in Fig. 3387

(a) and Fig. 6 in the strong scattering regime.388

In the strong scattering regime, both methods overesti-389390391

mate TS(E;Σ) relative to the linear fit. We attribute this392

to low-energy contributions at the edge of the broadened393

Figure 6. TS(Ei,Σ), i = 1, 2, as function of 1/Σ for free
electrons in FDM with linear fits at E0 = 0.01 Ry and E1 =
0.75 Ry.

"k-dependent transmission. Such a transmission is shown394

in Fig. 7. In Fig. 7 (a) the contact transmission is shown395

for the first Brillouin zone. The values of Tc(EF ,"k‖) are396

restricted to 1 inside the circle defined by the Fermi en-397

ergy and 0 outside this circle. The overlapping occurs due398

to back folding to the Brillouin zone. In Fig. 7 (b), the399

scattering part of the transmission function TS(EF ,"k‖)400

is shown. The smearing due to scattering at the edges is401

visible. In Fig. 8, TS(E2;Σ) at E2 = 0.25 Ry is shown402

for different integration radii in "k‖-space. TS(E2;Σ) is403

normalized to the result for Σ = 10−4 Ry, as the overall404

area changes for each curve.405

At the Γ point, the transmission function shows linear406

behavior. Integrating only 10% of the radius determined407

by
√
E, the behavior stays mostly linear. Integration up408

to 90% or more shows the deviation from the linear be-409

havior. We attribute this deviation to edge parts of the410

transmission, where the effective energy for transport in411

z-direction becomes very small such that the discretiza-412

tion of scattering events through the virtual terminals is413

not sufficient. We elaborate more on this topic in the414

next section.415

C. Limits of the model416

Since there are apparent deviations of TS(E;Σ) (see417

Fig. 3 (a) and Fig. 6) from the linear behavior, we inves-418

tigate this problem in terms of the number and placement419

of virtual terminals. For this we use the FDMmodel since420

it provides more freedom to test the placement of virtual421

terminals compared to the KKR method. In contrast422

to the continuous FDM or Boltzmann theory, within the423

KKR framework, the highest possible number of virtual424

terminals that can be placed in the scattering region is425

the number of atoms in the cell as the virtual terminals426
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Figure 7. #k‖ dependent transmission function of free electrons calculated with KKR. (a) contact transmission function, (b)

scattering part of transmission TS(EF ,#k‖,Σ) for Σ = 3× 10−2 Ry.

Figure 8. Normalized transmission function
TS(E2;Σ)/TS(E2; 10

−4 Ry) of free electrons calculated
with FDM at E2 = 0.25 Ry. TS(E2,Σ) shows linear behavior
at the Γ point (blue). Integrating up to 80%, 90%, and 100%
(warm colors) of the radius of the broadened transmission

circle #k‖ space shows overestimations from the expected
linear behavior.

are placed at the atomic positions.427

In the FDM model, the space in z-direction is dis-428

cretized. The corresponding discretization parameter429

a = dz/(n−1) can be chosen arbitrarily small in principle430

and must be chosen reasonably small to achieve conver-431

gence for the effective transmission. On each of these n432

discretized lattice points, it is possible to place a virtual433

terminal.434

Fig. 9 shows ∆TS/TS for E0 = 0.01 Ry and E1 =435

0.75 Ry (blue, red), respectively, for different values of436

Σ. Starting from 2000 lattice points, a virtual terminal437

is located at every lattice point. To test the discretization438

Figure 9. Relative deviation of TS(Ei,Σ) vs. number of vir-
tual terminals for free electrons. As the number of virtual
terminals inside the constant scattering region decreases, the
distance between the virtual terminals increases. The sin-
gle Σi has to be scaled accordingly, to meet the condition!

i∈S Σi = const.

of the scattering events, we reduce the number of virtual439

terminals. The placement is uniform, such that a virtual440

terminal is added to every i-th lattice point. To achieve441

the same total amount of scattering, the self-energy Σi442

of the i-th individual virtual terminal is scaled so that443

the sum
)

i∈S Σi stays constant. The actual number of444

virtual terminals is shown on the x-axis.445

With this test, it is possible to show that for a certain446

number of virtual terminals at a certain self-energy Σ, the447

obtained result for TS(Ei;Σ) deviates significantly from448

the value of TS(Ei;Σ) when it is discretized to the max-449

imum at 2000 lattice points. The deviation increases as450
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Figure 10. Relative deviation of TS(Ei,Σ) for free electrons
vs. 20 different distributions of a constant number of 20 vir-
tual terminals, which are placed randomly over the scattering
region.

Figure 11. TS(EF ,Σ) vs. 1/Σ for free electrons for different
discretizations of the scattering potential barrier. The actu-
ally used self-energy Σ′ has to be scaled to meet the “effective”
self-energy Σ.

the number of virtual terminals decreases, going beyond451

1% for less than about 10 terminals for E = 0.01 Ry.452

We attribute this to multiple-scattering effects with a453

very high number of scattering events that cannot be ac-454

counted for due to the lack of the necessary number of455

virtual terminals. Thus, the discretization to describe all456

scattering events is insufficient.457

For larger Σ or smaller E this starts to happen for458

a higher number of virtual terminals, i.e. a finer dis-459

cretization, as the number of scattering events, that460

should occur is anti-proportional to the mean free path461

λ = vτ =
*

2E
m

!
2Σ . Transferring this result to the KKR462

method implies that at very high self-energies, the dis-463

cretization of the scattering events is not sufficient any-464

more. Thus, interatomic positions for virtual terminals465

would have to be utilized to overcome this deficiency.466

To test whether this effect is related to the actual dis-467

tance of virtual terminals, we randomly placed 20 virtual468

terminals in the transport cell. Fig. 10 shows∆TS/TS for469

different random distributions of virtual terminals. For470

larger self-energies, some distributions show larger devi-471

ations. The results suggest that, virtual terminals can472

actually be placed randomly but yield the same result473

within 1% deviation as long as the self-energy is small474

enough for the scattering events to be accounted for. This475

means, the effective strength of the scattering region is476

not determined by the region covered with virtual ter-477

minals but only by the overall strength of self-energies478 )
i∈S Σi. The distance between the virtual terminals is479

not crucial since the transmission between two terminals480

Tαβ is calculated coherently. With these restrictions in481

mind, a description of a macroscopic experimental thin482

film should be possible. The practical route is to calcu-483

late a microscopic, down-sized version of the thin film.484

In order to account for the same scattering strength, the485

self-energies have to be scaled according to the length of486

the scattering region. Here it is crucial to introduce a487

sufficient number of virtual terminals to account for all488

necessary multiple-scattering events.489

Finally, let us explain the observed deviation of490

TS(EF ,Σ) for large self-energies in the KKR approach.491

In Fig. 11, TS(EF ,Σ) for the KKR method, where a492

virtual terminal is attributed to each atomic position is493

compared to the FDM method with a changing number494

of virtual terminals. The FDM method for 2000 virtual495

terminals is considered as the exact converged result. De-496

pending on the number of virtual terminals, TS(EF ;Σ)497

over- or underestimates the correct result in the strong498

scattering regime. Additionally, since the KKR uses dif-499

ferent approximations than the FDM, e.g. atomic sphere500

potentials and expansion of functions in spherical har-501

monics with ℓ cut-offs, deviations are expected to occur,502

while not necessarily with the same numerical value.503

V. CONCLUSION504

We calculated the thermopower S(θ) and the trans-505

mission function TS(E;Σ) for free electrons, Cu, and506

Pd with scattering events realized by virtual terminals.507

The thermopower S(θ) for the free electrons and Cu508

shows no dependence on the self-energy Σ, if it is be-509

low a specific value of Σ. This is directly related to510

the linear scaling of TS(E;Σ) with 1/Σ in that regime511

for the two systems. For free electrons, we can explain512

the deviations from the linear behavior in terms of in-513

sufficient discretization of scattering events. Further, we514

show that the distance between virtual terminals plays515

no role, as long as enough scattering events are consid-516

ered. For Pd, however, we find a non-linear behavior in517

TS(E;Σ) even for small self-energies Σ and a distinct be-518
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havior of the thermopower S(θ) for each self-energy Σ.519

This result suggests that τ may not be easily identified520

with !/(2Σ) for more complex Fermi surfaces. We con-521

clude that even in the simple constant relaxation time522

approximation with "k-independent τ the identification523

of the scattering time with the lifetime associated with524

"k-independent Σ is not true in general. For the case525

of a "k dependent τ or the energy-dependent self-energy526

function Σ(E) obtained from rigorous many-body treat-527

ment, this identification would become even more prob-528

lematic. We have shown possible errors in the KKR ap-529

proach when using virtual terminals to describe scatter-530

ing, namely using too large self-energies, and low-energy531

contributions at the edge of the Fermi surface. These er-532

rors however, are very small when considering practical533

self-energies for Cu and Pd. For Cu, values for Σ rang-534

ing from 7 × 10−4 − 3.7 × 10−3 Ry were calculated39 in535

good agreement with the referenced experiment therein.536

For Pd, values ranging from 3.7× 10−4 − 1.1× 10−2 Ry537

were calculated depending on temperature and surface538

state40,41. Considering the limits of the virtual terminal539

approach, it should be possible to calculate macroscopic540

thin films, which opens up the way to describe real ex-541

perimental structures. As we have shown in an earlier542

work42 that it is possible to calculate the spin accumula-543

tion in clean systems within the Keldysh formalism, ex-544

tending it to scattering via virtual terminals could make545

it possible to also calculate the spin diffusion length for546

such systems or to consider additional contributions to547

the accumulation.548
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