
                          Stern, J., & Castaldo, L. (2022). KF, PKF, and Reinhardt's Program.
Review of Symbolic Logic.
https://doi.org/10.1017/S1755020322000089

Publisher's PDF, also known as Version of record
License (if available):
CC BY
Link to published version (if available):
10.1017/S1755020322000089

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via CUP at
https://doi.org/10.1017/S1755020322000089 .Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1017/S1755020322000089
https://doi.org/10.1017/S1755020322000089
https://research-information.bris.ac.uk/en/publications/5a5df414-a68c-46a6-9de2-98e31040b8f9
https://research-information.bris.ac.uk/en/publications/5a5df414-a68c-46a6-9de2-98e31040b8f9


The Review of Symbolic Logic, Page 1 of 26

KF, PKF, AND REINHARDT’S PROGRAM

LUCA CASTALDO

University of Bristol and King’s College London
and

JOHANNES STERN

University of Bristol

Abstract. In “Some Remarks on Extending and Interpreting Theories with a Partial Truth
Predicate”, Reinhardt [21] famously proposed an instrumentalist interpretation of the truth
theory Kripke–Feferman (KF) in analogy to Hilbert’s program. Reinhardt suggested to view
KF as a tool for generating “the significant part of KF”, that is, as a tool for deriving sentences of
the form Tr�ϕ�. The constitutive question of Reinhardt’s program was whether it was possible “to
justify the use of nonsignificant sentences entirely within the framework of significant sentences”.
This question was answered negatively by Halbach & Horsten [10] but we argue that under a
more careful interpretation the question may receive a positive answer. To this end, we propose
to shift attention from KF-provably true sentences to KF-provably true inferences, that is, we
shall identify the significant part of KF with the set of pairs 〈Γ,Δ〉, such that KF proves that if
all members of Γ are true, at least one member of Δ is true. In way of addressing Reinhardt’s
question we show that the provably true inferences of suitable KF-like theories coincide with
the provable sequents of matching versions of the theory Partial Kripke–Feferman (PKF).

§1. Introduction. Kripke’s theory of truth [12] is a cornerstone of contemporary
research on truth and the semantic paradoxes. The theory provides us with a strategy
for constructing, that is defining, desirable interpretations of a self-applicable truth
predicate as the fixed points of a certain monotone operator (so-called Kripke Jump).
These fixed points can serve as interpretations of the truth predicate within non-
classical models of the language, as in Kripke’s original article, but can also be used in
combination with classical models, so-called closed-off models.1 Feferman [6] devised
an elegant axiomatic theory of the Kripkean truth predicate of these closed-off fixed-
point models. The theory is known as Kripke–Feferman (KF) and is still one of the
most popular axiomatic truth theories in the literature formulated in classical logic.2
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1 This was also suggested by Kripke (cf. [12, p. 715]).
2 In the literature the label KF is used for different theories. In particular, Reinhardt [20, 21]

and Halbach & Horsten [10] use KF to include the axiom (Cons) while Halbach & Nicolai
[11] and Nicolai [14] (see also [9]) use KF to refer to the theory Ref(PA) introduced by
Feferman [6] that dispenses of (Cons). Moreover, Cantini [2] uses KF to denote a theory with
a restricted form of induction (usually called internal induction). From Section 3 onward we
commit to the latter use of KF, but at this point we allow KF to stand for either theory unless
we refer to particular results in which case we defer to the conventions of the relevant author.

© The Author(s), 2022. Published by Cambridge University Press on behalf of The Association for Symbolic
Logic. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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2 LUCA CASTALDO AND JOHANNES STERN

Nonetheless, KF displays a number of unintended and slightly bizarre features, which
it inherits from the behavior of the truth predicate in the closed-off fixed-point models.
While in the non-classical fixed-point models the truth predicate is transparent, i.e., ϕ
and Tr�ϕ� will always receive the same semantic value (if they receive any), this no
longer holds in the closed-off models. Rather, for each closed-off model there will be
sentences ϕ, e.g., the Liar sentence, such that either ϕ and ¬Tr�ϕ� will be true in the
model, or ¬ϕ and Tr�ϕ� will be true in the model. As a consequence one can prove
this counterintuitive disjunction in KF for the Liar sentence �, i.e.,

KF � (� ∧ ¬Tr���) ∨ (¬� ∧ Tr���). (∗)

Since the transparency of truth seems to be one of the basic characteristics of the truth
predicate, the aforementioned asymmetry puts the idea of understanding the closed-off
models as suitable models of an intuitively acceptable truth predicate under some stress
and alongside casts doubt on KF as an acceptable theory of truth. However, reasoning
within the non-classical logic of the Kripkean fixed-points seems a non-trivial affair or,
as Feferman [5, p. 95] would have it, “nothing like sustained ordinary reasoning can be
carried on” in these non-classical logics. Giving up on KF thus hardly seems a desirable
conclusion.

In reaction to the counterintuitive consequences of KF, Reinhardt [20, 21] proposed
an instrumentalist interpretation of the theory in analogy to Hilbert’s program.
Famously, Hilbert proposed to justify number theory, analysis and even richer math-
ematical theories by finitary means. Without entering into Hilbert-exegesis, the main
idea was of course to provide consistency proofs for these mathematical theories in a
finitistically acceptable metatheory. From a finitist perspective this would turn the math-
ematical theories into useful tools for producing mathematical truths. But the fate of
Hilbert’s program, at least on its standard interpretation, is well known: Gödel’s incom-
pleteness theorems are commonly thought to be the program’s coffin nail. Nonetheless
Reinhardt [20, 21] was optimistic that his own program had greater chances of success.3

Reinhardt proposed to view KF as a tool for deriving Kripkean truths in the same
way Hilbert viewed, say, number theory as a tool for deriving mathematical truths. A
Kripkean truth is a sentence that is true from the perspective of the Kripkean fixed
points: if KF � Tr�ϕ� (Tr�¬ϕ�), then ϕ is true (false) in all non-classical fixed-point
models, that is, we are guaranteed thatϕ receives a semantic value from the perspective
of Kripke’s theory of truth. This is not a general feature of the theorems of KF but
peculiar to those sentences that KF proves true (false). The latter sentences Reinhardt
called “the significant part of KF” [21, p. 242] and labelled the set of KF-significant
sentences KFS := {ϕ | KF � Tr�ϕ�}.4 In light of this terminology the constitutive
question of Reinhardt’s program is whether it is possible “to justify the use of nonsignif-
icant sentences entirely within the framework of significant sentences” [21, p. 225].

3 On page 225 Reinhardt [21] writes:

“I would like to suggest that the chances of success in this context, where
the interpreted or significant part of the language includes such powerful
notations as truth, are somewhat better than in Hilbert’s context, where the
contentual part was very restricted.”

4 KFS is sometimes also called the inner logic of KF (cf. [10, p. 638]). We decided to stick with
Reinhardt’s original terminology.
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KF, PKF, AND REINHARDT’S PROGRAM 3

But what would such a successful instrumentalist interpretation of KF and the use
of non-significant sentences amount to? Reinhardt himself is scarce on the exact details
and does not commit to a particular answer to this question. However, at the end of
[20], without explicitly addressing the question of an instrumentalist interpretation of
KF, Reinhardt asks the following question:

If KF � Tr�ϕ� is there a KF-proof

ϕ1, ... , ϕn,Tr�ϕ�

such that for each 1 ≤ i ≤ n, KF � Tr�ϕi�? (cf. [20, p. 239])5

If we were to answer this question positively, we could justify each Kripkean truth
provable in KF by appealing solely to the significant fragment of KF: even though we
have reasoned in KF, each step of our reasoning is part of KFS and hence remains
“within the framework of significant sentences.” It is then suggestive to take the above
question to be constitutive of Reinhardt’s program. Indeed, this interpretation of
Reinhardt’s program is adopted by Halbach & Horsten [10], who called the question
Reinhardt’s Problem. Unfortunately, as Halbach and Horsten convincingly argue, if
understood in this way the instrumentalist interpretation of KF will fail. We refer to
[10] for details but, in a nutshell, the reason for this failure is that the truth-theoretic
axioms of KF will not be true in the non-classical fixed-point models and hence not
be part of KFS, e.g., if ϕi := ∀x(StTr(x) → (Tr(x) ↔ Tr(¬. ¬. x))),6 then ϕi 
∈ KFS.
Indeed, Halbach & Horsten [10, p. 684] take this to show “that Reinhardt’s analogue
of Hilbert’s program suffers the same fate as that of Hilbert’s program”.

However, we think that this conclusion is premature and argue that, to the contrary,
if suitably understood Reinhardt’s program has good chances of succeeding. Our key
point of contention is that Halbach & Horsten [10], arguably following Reinhardt,
employ the perspective of classical logic when theorizing about the significant part of
KF. But the logic of the significant part of KF is not classical logic but the logic of the
non-classical fixed-point models, that is, a non-classical logic. This observation has two
interrelated consequences for Reinhardt’s program. First, contra Reinhardt, and contra
Halbach and Horsten, we should not identify the significant part of KF exclusively with
the set of significant sentences. Rather it also seems crucial to ask which inferences are
admissible within the significant part of KF.7 Of course, in classical logic this difference

5 To be precise, Reinhardt [20] asked whether there was a KF-proof ϕ1, ... , ϕn, ϕ rather than
a KF-proof ϕ1, ... , ϕn,Tr�ϕ�. But this presupposes that all KF-provably true sentences are
also theorems of KF. While this is true in the variants of KF Reinhardt considers, this is not
the case in all versions of KF discussed in the literature. However, all remarks concerning
our version of the question generalize to Reinhardt’s original question.

6 See Section 2 for details on notation.
7 An anonymous referee suggests that since Reinhardt identifies the significant part of KF with

the set of significant sentences and not with the set of admissible inferences, our proposal is
not a different version of Reinhardt’s program but a different project altogether. This really
depends on what one takes Reinhardt’s program to be, as Reinhardt himself remains rather
vague and unspecific in this respect. On our view, Reinhardt’s program is the project of
giving an instrumentalist justification of KF. Whilst Reinhardt might not have thought of
the particular instrumentalist justification we provide, there is nothing to suggest that our
proposal is incompatible with the general outlines of the program sketched by Reinhardt
and that it is a new project altogether. However, nothing hinges on this and readers who tend
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4 LUCA CASTALDO AND JOHANNES STERN

collapses due to the deduction theorem but not necessarily so in non-classical logics.
For example, the three-valued logic Strong Kleene, K3, has no logical truth, but many
valid inferences—if, in this case, we were to focus only on the theorems of the logic,
there would be no logic to discuss. Moreover, since the significant sentences can be
retrieved from the significant inferences, that is the provably true inferences, we should
focus on the latter rather than the former in addressing Reinhardt’s Problem.8 To
this end, it is helpful to conceive of KF as formulated in a two-sided sequent calculus.
Let Γ,Δ be finite sets of sentences and let Tr�Γ� be short for {Tr��� | � ∈ Γ}. The
admissible inferences of the significant part of KF, which we label KFSI, can then be
defined as follows:9

KFSI := {〈Γ,Δ〉 | KF � Tr�Γ� ⇒ Tr�Δ�}.
Second, Reinhardt’s Problem, according to the formulation of Halbach & Horsten
[10], which admittedly was inspired by Reinhardt’s [20] original question, conceives
of KF-proofs as sequences of theorems of KF. But by focusing on sequences of
theorems, we cannot fully exploit the significant part of KF, that is, KFSI for precisely
the reasons Halbach & Horsten [10] used to rebut Reinhardt’s program: while double
negation introduction is clearly a member of KFSI, proving this fact by a sequence
of theorems would take us outside of KFS since it would use the truth-theoretic
axiom ∀x(StTr(x) → (Tr(x) ↔ Tr(¬. ¬. x))), which is not a member of the significant
part of KF. This suggests a reformulation of Reinhardt’s Problem in terms of a
notion of proof that focuses on inferences rather than theorems. To this end, it proves
useful again to formulate KF in a two-sided sequent calculus and to conceive of
proofs as derivation trees, where each node of the tree is labeled by a sequent. As a
matter of fact, in this case we can distinguish between two versions of Reinhardt’s

Problem:

(1) For every KF-theorem of the form Tr�ϕ�, is there a KF-derivation D of
∅ ⇒ Tr�ϕ� such that every node d of D is a significant inference?

(2) For every KF-derivable sequent of the form Tr�Γ� ⇒ Tr�Δ�, is there a KF-
derivation D of Tr�Γ� ⇒ Tr�Δ� such that every node d of D is a significant
inference?

The first question is a reformulation of Halbach & Horsten’s [10] Reinhardt’s

Problem.10 The second question, which we label Generalized Reinhardt Problem,
asks whether all provably true inferences can be justified by appealing to the significant
inferences only. Arguably, to deem Reinhardt’s program successful one needs to give

to agree with the referee should understand our version of “Reinhardt’s program” as a new
project inspired by Reinhardt.

8 The provable true sentences can be viewed as inferences where the truth of the sentence
follows from an empty hypothesis.

9 Notice that moving to a two-sided sequent formulation of KF is not essential. Due to the
deduction theorem we can also define KFSI by appeal to KF formulated in an axiomatic
Hilbert-style calculus. In this case, the definition would amount to

KFSI := {〈Γ,Δ〉 | KF �
∧

Tr�Γ� →
∨

Tr�Δ�}.
10 Admittedly, our reformulation amounts to a proper weakening of the original formulation

of Reinhardt’s Problem, that is, the question asked in [20]. An affirmative answer to latter
question implies an affirmative answer to its reformulation but not vice versa (for precisely
the reasons given in the main text).
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KF, PKF, AND REINHARDT’S PROGRAM 5

an affirmative answer to the Generalized Reinhardt Problem.11 Otherwise, a proof
of Tr�ϕ� could still rely on inferences that, whilst part of KFSI, cannot themselves be
justified by appealing only to the significant inferences of KF. In this paper, we shall
argue that on this more careful formulation, Reinhardt’s program has good prospects
of succeeding. We corroborate our assessment by giving an affirmative answer to the
Generalized Reinhardt Problem for versions of KF with internal and restricted
induction.

Arguably, giving an affirmative answer to the Generalized Reinhardt Problem

is at best a partial completion of Reinhardt’s program: what is still required is an
independent axiomatization of the significant part of KF, for only this would prove
KF dispensable. We will now take a fresh look at the question of an independent
axiomatization, which Halbach and Horsten called Reinhardt’s Challenge [10, p.
689]. This will prove instrumental in answering Generalized Reinhardt Problem

for the aforementioned versions of KF. Reinhardt [20] asked for an independent
axiomatization of the significant part of KF. More precisely, Reinhardt [20, p. 239]
asked:

(a) “Is there an axiomatization of {� | KF � Tr���} which is natural and
formulated entirely within the domain of significant sentences,....”

(b) “Similarly for the relation Γ �S � defined by KF + {Tr��� | � ∈ Γ} �
Tr���.”

Halbach & Horsten [10] proposed their theory Partial Kripke–Feferman (PKF) in way
of answering Reinhardt’s Challenge. PKF is formulated in a non-classical, two-sided
sequent calculus and thus fits neatly with our observation that one should focus on the
provably true inferences of KF rather than the provably true sentences. Moreover, PKF
is arguably a natural axiomatization of Kripke’s theory of truth. However, Halbach &
Horsten [10] observed that there are sentences ϕ such that KF � Tr�ϕ� but PKF 
� ϕ,
which led them to conclude that Reinhardt’s Challenge cannot be met. The reason
for this asymmetry is due to the difference in proof-theoretic strength of KF and PKF:
while KF proves transfinite induction for ordinals below ε0, PKF only proves transfinite
induction for ordinals smaller than �� . As a consequence, there will be arithmetical
sentences that KF proves true that PKF cannot prove. The story does not end there
however. First, as Halbach & Nicolai [11] observe, the discrepancy between KF and
PKF arises only if the rule of induction is extended beyond the arithmetical language,
that is, if we restrict induction to the language of arithmetic—call the resulting theories
KF– and PKF–—then KF– � Tr�ϕ� if, and only if, PKF– � ϕ. This highlights that the
asymmetry between KF and PKF is not due to the truth-specific principles but the
amount of induction that is assumed in the respective theories. Second, corroborating
the latter observation, Nicolai [14] showed that the asymmetry between KF and PKF
is indeed solely due to the amount of induction available within the respective theories:
Nicolai shows that if transfinite induction up to< ε0 is added axiomatically to PKF—
call this theory PKF+—then KF � Tr�ϕ� if, and only if, PKF+ � ϕ. Moreover, Nicolai
[14] shows that independently of which version of induction is assumed in KF there
will be a suitable PKF-style theory that has exactly the provably true sentences of

11 An affirmative answer to Generalized Reinhardt Problem also would also yield a positive
answer to our reformulation of Reinhardt’s Problem, as Γ is allowed to be empty.
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6 LUCA CASTALDO AND JOHANNES STERN

the relevant KF-style theory as theorems. Nicolai took these results to “partially
[accomplish] a variant of a program sketched by Reinhardt” [14, p. 103].

However, the work by Halbach and Nicolai provides at best a positive answer to
Question (a). It does not—at least not immediately—yield an answer to Question
(b). Indeed, it seems as if, despite working in a non-classical, two-sided sequent
calculus, Halbach & Horsten [10] have largely neglected Question (b) of Reinhardt’s

Challenge and so have subsequent publications on this issue. Indeed the version of
PKF originally proposed by Halbach & Horsten [10] failed to yield a positive answer
to Question (b) for rather banal reasons—even for theories with restricted induction:
the version of KF Halbach & Horsten [10] consider assumes the truth predicate to be
consistent, which, as we shall explain in due course, means that the logic of KFSI is
K3. But Halbach and Horsten formulate PKF in symmetric strong Kleene logic KS3
and as a consequence KF � Tr�ϕ�,Tr�¬ϕ� ⇒ Tr��� while PKF 
� ϕ,¬ϕ ⇒ �. The
main technical contribution of this paper is to clarify the situation and to show how
a positive answer to Question (b) of Reinhardt’s Challenge can be provided for
KF-variants with restricted, or internal induction. To this end, we show how to pair
the different variants of KF with a suitable PKF-style theory such that the provable
sequents of the latter theory constitute exactly the significant inferences of the former
theory. Moreover, it turns out that once we have an independent axiomatization of
the set of significant inferences of the KF-variant under consideration, an affirmative
answer to the Generalized Reinhardt Problem for the particular KF-variant will
be nothing but a corollary. What remains then to be shown to give a complete
answer to the Generalized Reinhardt Problem and bring Reinhardt’s program to
a successful completion is to show that PKF+—or, possibly, some other non-classical
truth theory—amounts to a positive answer to Question (b) in the case of KF with
full induction. While to date we lack a proof to this effect, it seems very likely that
our results can be extended to pair KF-variants with full induction with a suitable
PKF+-theory.12 This would show that PKF+ amounts indeed to a positive answer to
Question (b) for KF with full induction and that Reinhardt’s program, on our proposed
understanding, can be brought to a successful completion.13 Indeed, the results for KF-
variants with restricted or internal induction proved in this paper show that there is
an alternative (and arguably more adequate) understanding of Reinhardt’s program.
Taken together, these considerations shed new light on Reinhardt’s instrumentalism
and vindicate Reinhardt’s optimism in regard to his program.

1.1. Plan of the paper. The paper starts by fixing some basic terminology and
notation. More specifically, Section 2 introduces the language and the logical systems
underlying PKF and its variants. That is, we introduce the logics FDE, KS3, K3 and
LP. In the next section, Section 3, we introduce the relevant families of KF- and PKF-
like theories and observe some basic properties of these PKF-systems. In Section 4
we prove the central technical results of this paper. We show that for each KF-like
theory with restricted or internal induction we can find a PKF-counterpart such that
the latter is an independent axiomatization of the significant inferences of the former.

12 The main problem in providing such a result is that the techniques used by Nicolai [14] to
show that KF and PKF+ prove the same sentences true cannot be straightforwardly applied
to deal with sequents.

13 One might take issue with this claim by questioning whether PKF+ is indeed an independent
axiomatization of KFSI. We will come back to this issue in the conclusion of the paper.
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KF, PKF, AND REINHARDT’S PROGRAM 7

In other words, we show that the set of pairs 〈Γ,Δ〉 such that Tr�Γ� ⇒ Tr�Δ� is
derivable in a KF-like theory coincides with the set of pairs 〈Γ,Δ〉 such that Γ ⇒ Δ
is derivable in a corresponding PKF-like theory. As mentioned, a positive answer
to Generalized Reinhardt Problem is but an immediate corollary of the existence
of such an independent axiomatization. In the conclusion (Section 5) we reevaluate
Reinhardt’s program, that is, the prospect of an instrumentalist interpretation of KF
in light of our technical results.

§2. Logics and formal notation.

2.1. Language and notation. The language LPA denotes the language of first-order
Peano arithmetic (PA) in the signature {0,′ ,+,×} expanded by finitely many function
symbols for suitable primitive recursive (p.r.) functions. The language L–

Tr expands
LPA by a unary truth-predicate Tr. Terms and formulae are generated by closing off
under ¬,∧,∀ (∨,∃,→,↔ are defined according to the conventions of classical logic).
By an L–

Tr-expression we mean a term or a formula of L–
Tr. We let n be the numeral

corresponding to the number n ∈ �. We fix a canonical Gödel numbering of L–
Tr-

expressions. If e is an L–
Tr-expression, the Gödel number (= gn) of e is denoted by #e

and �e� is the term representing #e in LPA. The sets of terms, closed terms, variables,
formulae, and sentences of L–

Tr are p.r., and our language contains function symbols
representing them. In practice, we take the following L–

Tr-predicates to abbreviate the
equations for the (p.r.) characteristic functions for such sets. For example, Ct(x)
abbreviates fCt(x) = 1, where fCt is the characteristic function of the set of codes of
closed terms:

Tm(x) (Ct(x)) := x is the gn of a (closed) term;

Var(x) := x is the gn of variable;

FmlnTr(x) (StTr(x)) := x is the gn of a formula with at most n (0) free distinct

variables;

Eq(x) := x is the gn of an equality between closed terms;

Ver(x) := x is the gn of true closed equality.

Additionally, L–
Tr contains function symbols for the following p.r. operations on Gödel

numbers:

Operation Function symbol

#t,#s �→ #(t = s) =.
#ϕ �→ #(¬ϕ) ¬.
#ϕ,#� �→ #(ϕ ∧ �) ∧.
#vk,#ϕ �→ #(∀vkϕ) ∀.
n �→ #n num

#e,#t,#vk �→ #e[t/vk] sb

The expression e[t/vk] is the result of replacing, in the expression e, each free occurrence
of vk by the term t. SinceL–

Tr contains only finitely many function symbols, there exists a
p.r. evaluation function VAL on codes of closed terms of L–

Tr, such that VAL(#t) �→ tN,
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8 LUCA CASTALDO AND JOHANNES STERN

where tN is the value of the closed term t in the standard model. We let LTr be the
language L–

Tr augmented by a unary function symbol val(x), which represents VAL.14

We will make use of the following abbreviations:

x(u/y) := sb(x, u, y) x(t) := x(t/y) ϕ(�v) := ϕ(v1, ... , vk)
x=. y := =. (x, y) x ∧. y := ∧. (x, y) ∀.u.x := ∀. (u, x)
x(ż) := sb(x, num(z), y) �ϕ(ẋ)� := sb(�ϕ(v)�, num(x), �v�) x◦ := val(x).

When it is clear from the context which variable is being replaced, we write sb(x, t)
instead of sb(x, t, v). The abbreviation �ϕ(ẋ)� extends to the case of multivariables in
the obvious way, and we write �ϕ( �̇x)� for �ϕ(ẋ1, ... , ẋn)�. The Gödel numbering is
canonical, so in particular we require that the following are provable in (a fragment
of) PA expanded by defining axioms for additional function symbols:

PA � val(num(x)) = x ∧ Ct(num(x)),

PA � Fml1Tr(x) → ∀zStTr(x(ż)),

PA � Ct(x) ∧ Ct(y) → (Ver(x=. y) ↔ x◦ = y◦).

2.1.1. Terminology and notation for Gentzen-systems. A sequent is an expression
of the form Γ ⇒ Δ, where Γ and Δ are finite sets of LTr-formulae. Γ is called the
antecedent; Δ is called the succedent. They are both referred to as cedents. Given a
cedent Γ := {�1, ... , �n}, we set ¬Γ := {¬�i | �i ∈ Γ} and Tr�Γ� := {Tr��� | � ∈ Γ}.
For t free for v in Γ (i.e., t is free for v for all members ϕ1, ... , ϕn of Γ), we write Γ[t/v]
for {ϕ1[t/v], ... , ϕn[t/v]}.

A derivation of a sequent Γ ⇒ Δ is a tree with nodes labeled by sequents. The height
of a derivation D is the maximum length of the branches in the tree, where the length
of a branch is the number of its nodes minus 1.

In the rules of inference displayed below,

• formulae in Γ,Δ are called side formulae, or context,
• the formulae not in the context in the conclusion are called principal formulae,

and
• the formulae in the premises from which the conclusion is derived (i.e., the

formulae in the premises not in the context) are called active formulae.

A literal is an atomic formula or the negation of an atomic formula. The cut rank of a
formula which is eliminated in a cut-rule is the positive complexity of the formula. The
supremum of the cut ranks of a derivation D is called the cut rank of D. The expression

14 Note that the L–
Tr-predicates StTr(x),Ct(x), etc., represent the sets of codes of sentences,

closed terms, etc., of the language L–
Tr. Moreover, observe that the function VAL is p.r. for

L–
Tr contains only finitely many function symbols (if L–

Tr had function symbols for all p.r.
functions, then VAL would be recursive and PA-definable, but it would not be p.r.). For more
details on the representation of syntax within PA, we refer the reader to [2] and [9, sec. 5]. Let
us also mention that, in order to have a syntax theory, one can treat the additional function
symbols as abbreviations for suitable LPA-formulae representing the respective PA-definable
predicates and operations (see [8] for more details and for a discussion of some subtle issues
related to this). However, for our purposes it proves convenient to have function symbols as
part of the language, as this facilitates both statement and proof of our Main Lemma 4.5.
We thank an anonymous referee for urging us to be more explicit on this issue.
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S m
n

Γ ⇒ Δ denotes that Γ ⇒ Δ is derivable in S with a derivation of height ≤ n and
cut rank ≤ m.

2.2. Sequent calculi for FDE and some of its extensions. In this section we introduce
the various logics underlying the systems of truth employed in the paper. We start
with the two-sided sequent calculus of First Degree Entailment (FDE). For a general
overview of the different non-classical logics employed in this section see [19].

Definition 2.1 (FDE). The logic of FDE consists of the following axioms and rules.

Ax ϕ,Γ ⇒ Δ, ϕ
Γ ⇒ Δ, ϕ ϕ,Γ′ ⇒ Δ′

Cut
Γ′,Γ ⇒ Δ,Δ′

ϕ,�, Γ ⇒ Δ
∧L

ϕ ∧ �, Γ ⇒ Δ
Γ ⇒ Δ, ϕ Γ ⇒ Δ, �

∧R
Γ ⇒ Δ, ϕ ∧ �

ϕ[t/v], Γ ⇒ Δ
∀L∀xϕ, Γ ⇒ Δ

Γ ⇒ Δ, ϕ[u/v]
∀R

Γ ⇒ Δ,∀xϕ

ϕ, Γ ⇒ Δ
¬¬L¬¬ϕ, Γ ⇒ Δ

Γ ⇒ Δ, ϕ
¬¬R

Γ ⇒ Δ,¬¬ϕ

¬ϕ, Γ ⇒ Δ ¬�, Γ ⇒ Δ
¬∧L

¬(ϕ ∧ �), Γ ⇒ Δ

Γ ⇒ Δ,¬ϕ,¬�
¬∧R

Γ ⇒ Δ,¬(ϕ ∧ �)

¬ϕ[u/v], Γ ⇒ Δ
¬∀L¬∀xϕ, Γ ⇒ Δ

Γ ⇒ Δ,¬ϕ[t/v]
¬∀R .

Γ ⇒ Δ,¬∀xϕ

Conditions of application: ϕ literal in Ax; u eigenparameter.

Remark 2.2. By means of a standard induction, one can show that the sequentsϕ,Γ ⇒
Δ, ϕ are derivable for all ϕ ∈ LTr.

FDE is the base logic of PKF. Semantically, models of this logic admit both truth-
value gluts (sentences which are both true and false) and truth-value gaps (sentences
which are neither true nor false). Other PKF-variants are based on extensions of FDE,
obtained by adding one additional rule which restricts the class of models. These
additional rules are introduced below, and the extensions of FDE are the defined in
Definition 2.4.

Definition 2.3. Let ϕ be an atomic LTr-sentence. Then

Γ ⇒ Δ, ϕ
¬L¬ϕ, Γ ⇒ Δ

ϕ, Γ ⇒ Δ
¬R

Γ ⇒ Δ,¬ϕ
�, Γ ⇒ Δ ¬�, Γ ⇒ Δ

GG.
ϕ,¬ϕ, Γ ⇒ Δ

The rule ¬L (¬R) restricts the class of models to those in which there is no glut
(gap). The label GG stands for “gaps or gluts,” as via this rule we can deriveϕ,¬ϕ,Γ ⇒
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Δ, �,¬�, thereby excluding the simultaneous occurrence of gaps and gluts.15 The FDE
extensions are then defined as follows:

Definition 2.4 (Extensions of FDE).

• Classical Logic, CL, is the system given by FDE without ¬◦M, for ◦ ∈
{¬,∧,∀},M ∈ {L,R}, and with the addition of unrestricted ¬L and ¬R.16

• Strong Kleene, K3, is the system FDE + ¬L.
• Logic of Paradox, LP, is the system FDE + ¬R.
• Kleene’s Symmetric Logic, KS3, is the system FDE + GG.17

We now extend the base logics with rules for identity.

Definition 2.5 (Identity rules). Let ϕ be a literal. Then

t = t, Γ ⇒ Δ
Ref

Γ ⇒ Δ

ϕ(t), Γ ⇒ Δ
RepL

s = t, ϕ(s), Γ ⇒ Δ

Γ ⇒ Δ, ϕ(t) Γ ⇒ Δ, s = t
RepR

Γ ⇒ Δ, ϕ(s)

Each of the logic introduced in Definition 2.4 will now be extended with rules
axiomatizing the identity predicate.

Definition 2.6 (Logics with identity). We set

• CL= is CL + Ref + RepL.
• FDE= is FDE + Ref + RepL.
• K3= is K3 + Ref + RepL.
• LP= is LP + Ref + RepR.
• KS3= is KS3 + Ref + RepL.

Remark 2.7.

• (RepL) and (RepR) are equivalent over FDE, and they both yield the replacement
schema

s = t, ϕ(s),Γ ⇒ Δ, ϕ(t),

for all ϕ ∈ LTr.
• The reason for formulating K3= and KS3= with RepL, and LP with RepR, is to

obtain a syntactic proof of full Cut elimination. Restrictions on ¬L, ¬R, and GG

15 By induction on ϕ, one first shows that GG is admissible for all ϕ. For example, assuming
by i.h. that from �,Γ ⇒ Δ and ¬�,Γ ⇒ Δ we can infer ϕ(u),¬ϕ(u),Γ ⇒ Δ for some
u /∈ Γ ∪ Δ, we obtain ∀xϕ,¬∀xϕ,Γ ⇒ Δ by applying ∀L and ¬∀L (in this order). One then
obtains ϕ,¬ϕ,Γ ⇒ Δ, �,¬� by applying (the unrestricted version of) GG to the sequents
�,Γ ⇒ Δ, �,¬� and ¬�,Γ ⇒ Δ, �,¬�. We thank an anonymous referee for spotting an
important typo in the definition of GG.

16 By “unrestricted” ¬L and ¬R, we mean rules formulated without the provisio that ϕ be an
atomic sentence.

17 For similar calculi defining the same logic see, for instance, [1, 22].
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are justified in the same way.18 Unrestricted versions of these rules can be shown
to be admissible in the respective system by induction on the positive complexity
on ϕ.19

• It can easily be shown that FDE (KS3) and BDM (SDM), that is, the system(s)
defined by Nicolai [14], are equivalent.20 The system KS3, however, has the
advantage of enjoying a cut elimination theorem. Note, though, that the same does
not hold for systems extended with identity, that is, FDE= (KS3=) and BDM=
(SDM=) are not equivalent. This is so because, via contraposition, identity behaves
classically in BDM= (SDM=).

§3. KF-like and PKF-like theories. This section introduces the KF-like and PKF-
like truth theories we are going to investigate. The theory KF, developed by Feferman
in the 1980s and published in [6], has been studied extensively, e.g., by Reinhardt [20,
21], McGee [13], and Cantini [2, 3]. As mentioned in the Introduction, in this article we
concentrate on KF-variants with induction restricted on the arithmetical vocabulary,
and on KF-variants with internal induction. These were both introduced by Cantini
[2]. The theory Partial Kripke–Feferman (PKF) may be seen as the non-classical
counterpart to KF. It was developed by Halbach & Horsten [10], and variants of PKF
have been introduced and studied by, e.g., Halbach & Nicolai [11], Nicolai [14], and
Fischer & Gratzl [7].21

We begin by introducing different rules of induction employed in the formulation of
the theories. To this end we fix a standard notation system of ordinals up to Γ0.22 We
use a, b, c, ... to denote the code of our notation system whose value is α, 
, �, ... ∈ On

18 We remark that Cut elimination holds for the sequent calculi introduced above. The key
observation is that the calculi defined in this article are designed so that if the cut formula is
principal in both premises of Cut, then the complexity ofϕ is> 0, i.e.,ϕ cannot be a literal. In
fact, In FDE=,K3=, and KS3=, there is no rule introducing a literal on the right—that is the
reason why we formulated K3= and KS3= with RepL, as they both have one rule introducing
literals on the left, i.e., ¬L and GG, respectively—in LP= there is no rule introducing a literal
on the left—that is the reason why we formulated LP= via (RepR), as this calculus has one
rule introducing literals on the right, i.e., ¬R. Two points are worth emphasizing. The first is
that, as far as we know, the rule GG excluding the simultaneous occurrence of gaps and gluts
is new and KS3 is the first sequent calculus for symmetric Strong Kleene logic admitting
a syntactic proof of Cut elimination. The second is that we are also not aware of Gentzen
style calculi for first-order FDE, K3, LP, or KS3 using so-called geometric rules for identity;
hence the calculi above might be the first (at least in literature on truth and paradoxes)
axiomatizing identity with rules instead of axioms. A notable exception is [16, 17], where a
cut-free calculus for a logic of formal inconsistency extending LP is defined.

19 The argument for the admissibility of GG has already been sketched (see footnote 15). Also
for ¬L and ¬R one can reason by induction on ϕ. For the quantifier-free fragment, one can
use inversion and Cut. For quantified sentences, one first operates a proof-search to obtain
a quasi-inversion. For example, to show that ¬R is admissible for ∀xϕ in LP, assume that
∀xϕ,Γ ⇒ Δ is derivable. By induction on the height of derivations, one first shows that if
n ∀xϕ,Γ ⇒ Δ, then

n
ϕ(t1), ... , ϕ(tn),Γ ⇒ Δ for some terms t1, ... , tn (which of course

need not be unique). One then derives Γ ⇒ Δ,¬ϕ(t1), ... ,¬ϕ(tn) by i.h. on ϕ, and finally
Γ ⇒ Δ,¬∀xϕ by n-applications of ¬∀R.

20 The equivalence between KS3 and SDM follows from the fact that via GG one can derive
the sequents ϕ,¬ϕ ⇒ �,¬�, as remarked in footnote 15.

21 See [9] for a presentation and discussion of both theories.
22 See, for instance, [4, 18].
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(with the exception of � and ε-numbers, for which we use the ordinals themselves),
and we use ≺ to denote a standard primitive recursive ordering defined on codes
of ordinals. The expression ∀z ≺ y(ϕ[z/v]) is short for ∀z(¬(Ord(z) ∧ Ord(y) ∧ z ≺
y) ∨ ϕ[z/v]), where Ord represents the set of codes of ordinals. For α < Γ0 and a
formula ϕ(v) ∈ LTr we let TI<α(ϕ) denote the schemata of transfinite induction up to
any ordinal below α:

∀z ≺ y ϕ(z), Γ ⇒ Δ, ϕ(y)

Γ ⇒ Δ,∀x ≺ b ϕ(x)
(TI<α)¬ϕ(y), Γ ⇒ Δ,¬∀z ≺ y ϕ(z)

¬∀x ≺ b ϕ(x), Γ ⇒ Δ

for 
 < α and y eigenvariable.
We are going to use three additional schemata of induction. First, we have full

induction:
ϕ(u), Γ ⇒ Δ, ϕ(u′)

ϕ(0), Γ ⇒ Δ, ϕ(s)
(IND)

for ϕ ∈ LTr and u eigenvariable. Second, we have internal induction:

Tr sb(t, num(u)), Γ ⇒ Δ,Tr sb(t, num(u)′)

Tr sb(t, num(0)), Γ ⇒ Δ,Tr sb(t, num(z))
(INDint)

for u eigenvariable. Third, we have restricted internal induction:

Tr�ϕ(u̇)�, Γ ⇒ Δ,Tr�ϕ(u̇′)�
Tr�ϕ(0)�, Γ ⇒ Δ,Tr�ϕ(s)�

(INDint
LPA

)

for ϕ ∈ LPA and u eigenvariable.
We now introduce the basic truth principles employed in the systems of truth we

discuss in the paper.

Definition 3.1 (Truth-axioms and truth rules). The following are truth-theoretic initial
sequents (or truth axioms ). TrReg is often called regularity axiom .23

Tr= Ct(t),Ct(s), t◦ = s◦,Γ ⇒ Δ,Tr(t=. s)

Ct(t),Ct(s),Tr(t=. s),Γ ⇒ Δ, t◦ = s◦

Tr¬= Ct(t),Ct(s),¬(t◦ = s◦),Γ ⇒ Δ,Tr(¬. (t=. s))

Ct(t),Ct(s),Tr(¬. (t=. s)),Γ ⇒ Δ,¬(t◦ = s◦)

¬Tr¬(i) StTr(t),Tr(¬. t),Γ ⇒ Δ,¬Tr(t)

(ii) StTr(t),¬Tr(t),Γ ⇒ Δ,Tr(¬. t)
TrStLTr Tr(t),Γ ⇒ Δ, StTr(t)

¬StTr(t),Γ ⇒ Δ,¬Tr(t)

TrReg Fml1LTr
(r),Ct(t),Ct(s), t◦ = s◦,Tr r(t) ⇒ Tr r(s)

Fml1LTr
(r),Ct(t),Ct(s), t◦ = s◦,¬Tr r(t) ⇒ ¬Tr r(s).

23 TrReg was dropped in Feferman’s formulation of KF since it is derivable by IND. It was
introduced by Cantini [2] since it is not derivable in systems without full induction.
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The following rules are called truth rules:

Tr(t), Γ ⇒ Δ
TrTrL

Tr(sb(�Tr(v0)�, num(t))), Γ ⇒ Δ

Γ ⇒ Δ,Tr(t)
TrTrR

Γ ⇒ Δ,Tr(sb(�Tr(v0)�, num(t)))

Tr(¬. t), Γ ⇒ Δ ¬StTr(t), Γ ⇒ Δ
Tr¬TrL

Tr(sb(¬. �Tr(v0)�, num(t))), Γ ⇒ Δ

Γ ⇒ Δ,Tr(¬. t),¬StTr(t)
Tr¬TrR

Γ ⇒ Δ,Tr(sb(¬. �Tr(v0)�, num(t)))

Tr(t), Γ ⇒ Δ
Tr¬¬L

StTr(t),Tr(¬. ¬. t), Γ ⇒ Δ

Γ ⇒ Δ,Tr(t)
Tr¬¬R

StTr(t), Γ ⇒ Δ,Tr(¬. ¬. t)

Tr(t),Tr(s), Γ ⇒ Δ
Tr∧L

StTr(t ∧. s),Tr(t ∧. s), Γ ⇒ Δ

Γ ⇒ Δ,Tr(t) Γ ⇒ Δ,Tr(s)
Tr∧R

StTr(t ∧. s), Γ ⇒ Δ,Tr(t ∧. s)

Tr(¬. t), Γ ⇒ Δ Tr(¬. s), Γ ⇒ Δ
Tr¬∧L

StTr(t ∧. s),Tr(¬. (t ∧. s)), Γ ⇒ Δ

Γ ⇒ Δ,Tr(¬. t),Tr(¬. s)
Tr¬∧R

StTr(t ∧. s), Γ ⇒ Δ,Tr(¬. (t ∧. s))

Tr(t(ż)), Γ ⇒ Δ
Tr∀L

StTr(∀.v.t),Tr(∀.v.t), Γ ⇒ Δ

Γ ⇒ Δ,Tr(t(u̇))
Tr∀R

StTr(∀.v.t), Γ ⇒ Δ,Tr(∀.v.t)

Tr(¬. t(u̇)), Γ ⇒ Δ
Tr¬∀L

StTr(∀.v.t),Tr(¬. ∀.v.t), Γ ⇒ Δ

Γ ⇒ Δ,Tr(¬. t(ż))
Tr¬∀R .

StTr(∀.v.t), Γ ⇒ Δ,Tr(¬. ∀.v.t)

Conditions of application: u eigenvariable.

We begin by introducing the relevant variants of KF, and we then define their
non-classical counterparts, i.e., the PKF-like systems.

Definition 3.2 (KF). KF is obtained from CL= by adding initial sequents of PA (see
[23, Definition 9.3]); defining axioms for additional function symbols; IND; truth axioms
and truth rules of Definition 3.1, except the initial sequents ¬Tr¬.

Definition 3.3 (KF-variants).

(i) KFcs is obtained from KF by adding the initial sequent

StTr(t),Tr(¬. t),Γ ⇒ Δ,¬Tr(t). (Cons)

(ii) KFcp is obtained from KF by adding

StTr(t),¬Tr(t),Γ ⇒ Δ,Tr(¬. t).24 (Comp)

(iii) KFS is obtained from KF by adding

StTr(t), StTr(s),Tr(t),Tr(¬. t),Γ ⇒ Δ,Tr(s),Tr(¬. s). (GoG)

For KF� ∈ {KF,KFcs,KFcp,KFS},

24 Note that Cons is (¬Tr¬)(i) and Comp is (¬Tr¬)(ii). Of course, over the non-classical
logics studied in this chapter, (¬Tr¬) does not imply that the truth predicate is consistent
and complete. (¬Tr¬) is just axiomatizing the well-known property of fixed-point models
that the anti-extension A can be defined via the extension E as A := {ϕ | ¬ϕ ∈ E}.
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(iv) KF–
� is obtained from KF� by replacing IND with INDint

LPA
.

(v) KFint
� is obtained from KF� by replacing IND with INDint.

In what follows, theories introduced via items (iv) and (v) of Definition 3.3 will be
referred to as KF-like theories (or systems) or as KF-variants.

Remark 3.4. Let KF◦ ∈ {KFint,KFint
cs ,KFint

cp ,KF–,KF–
cs,KF–

cp}. Every axiom of
KF◦ has the form Θ,Γ ⇒ Δ,Λ. Formulae in Θ,Λ are called active. Every active formula
has positive complexity 0.

Let us remark that our formulation of KF–
� deviates from the standard formulation.

Typically, the systems KF–
� are defined by restricting the induction schema IND to

the arithmetical vocabulary, as, e.g., in [2, 9]. The reason why we have introduced
this different—yet equivalent, as shown in Observation 3.6—formulation is that our
arguments below rely on partial Cut elimination, which fails in presence of induction,
but which can be restored for KF-systems with internal induction, as well as for
KF-systems with restricted internal induction.25 In order to state this precisely, call
a derivation D quasi-normal if D has cut rank 0; then, by application of standard
techniques for Cut elimination we obtain:

Proposition 3.5. Let KF◦ ∈ {KFint
� ,KF–

�}, where KFint
� and KF–

� are as in Definition
3.3. Then every KF◦-derivation D can be effectively transformed into a quasi-normal
derivation D′ of the same end sequent.

Observation 3.6. Let KFint
� be as in Definition 3.3, and let KF�[IND� LPA] be the

theory obtained from KFint
� by replacing INDint with the schema IND restricted to

LPA-sentences. Then KF–
� and KF�[IND� LPA] are equivalent.

Proof Idea. Following [2], one first shows that both KF�[IND� LPA] and KF–
� prove

the T-Schema on arithmetical formulae. That is to say one shows that both theories
prove the sequents

ϕ(x),Γ ⇒ Δ,Tr�ϕ(ẋ)�,
Tr�ϕ(ẋ)�,Γ ⇒ Δ, ϕ(x),

if ϕ does not contain Tr. The proof then continues by induction on the height of
derivations. Since KF�[IND� LPA] and KF–

� only differ for the employed induction
schema, the just mentioned interderivability between Tr�ϕ(ẋ)� and ϕ(x) immediately
yields, via Cut, the desired conclusion.

We can now move on to PKF-like theories.

Definition 3.7 (PKF). PKF is obtained from FDE= by adding: sequents Γ ⇒ Δ for
Γ ⇒ Δ an initial sequent of PA (see [23, Definition 9.3(1)]); defining axioms for additional

25 The same strategy has been used by Fischer & Gratzl [7] for defining PKF, that is to say,
they replace PKF’s full induction by the schema

Tr�ϕ(u̇)�, Γ ⇒ Δ,Tr�ϕ(u̇′)�
Tr�ϕ(0)�, Γ ⇒ Δ,Tr�ϕ(t)�

,

for ϕ ∈ LTr, in order to obtain a system equivalent to PKF which however enjoys partial cut
elimination.
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function symbols; IND; truth axioms and truth rules of Definition 3.1; and the following
two rules requiring identity statements to behave classically:

Γ ⇒ Δ, s = t
=¬L

¬(s = t), Γ ⇒ Δ
s = t, Γ ⇒ Δ

=¬R .
Γ ⇒ Δ,¬(s = t)

Definition 3.8 (PKF-variants). We introduce variants of PKF

(i) PKFcs is obtained by adding ¬L to PKF.
(ii) PKFcp is obtained by adding ¬R to PKF.
(iii) PKFS is obtained by adding GG to PKF.

For PKF� ∈ {PKF,PKFcs,PKFcp,PKFS},

(iv) PKF–
� is obtained by replacing IND with INDint

LPA
.

(v) PKF+
� is obtained by extending PKF� with TI<ε0 .26

Since our formulation of PKF deviates from the formulation in [10], we now show
that PKF behaves classically on the Tr-free fragment ofLTr and that�(�x) and Tr��( �̇x)�
are interderivable.

Lemma 3.9. Let PKF◦ be one of the PKF-like theories introduced in Definition 3.8,
ϕ ∈ LPA, and �(�x) ∈ LTr. Then

(i) PKF◦ � Γ ⇒ Δ, ϕ,¬ϕ and PKF◦ � ϕ,¬ϕ,Γ ⇒ Δ;
(ii) PKF◦ � Γ ⇒ Δ, �(�x) iff PKF◦ � Γ ⇒ Δ,Tr��( �̇x)�;
(iii) Unrestricted ¬L and ¬R are admissible in PKF◦ for ϕ ∈ LPA.

Proof. (i) and (ii) are shown by a straightforward induction on ϕ. For (iii), observe
more generally that, if ϕ,¬ϕ,Γ ⇒ Δ and Γ ⇒ Δ, ϕ,¬ϕ are both derivable, then ¬L
and ¬R are derived rules

Γ ⇒ Δ, ϕ ϕ,¬ϕ, Γ ⇒ Δ
Cut¬ϕ, Γ ⇒ Δ

Γ ⇒ Δ,¬ϕ,ϕ ϕ, Γ ⇒ Δ
Cut

Γ ⇒ Δ,¬ϕ

Finally, to complete the picture we note that contraposition is admissible in PKF
and PKFS.

Lemma 3.10 (Contraposition). Contraposition, i.e., the rule

Γ ⇒ Δ
¬Δ ⇒ ¬Γ

is admissible in PKF(PKF–,PKF+) and PKFS(PKF–
S,PKF+

S ).

Proof. The proof is by induction on the height of derivations. If Γ ⇒ Δ is an axiom
of PA, the conclusion follows from Lemma 3.9(iii). For truth-theoretic initial sequents,
the initial sequent ¬Tr¬ plays a central role. For derivations of height > 0, we show
three crucial cases involving the rules GG, RepL, and IND. Suppose the derivation

26 The idea of extending PKF with transfinite induction up to < ε0 is due to [14].
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ends with

D0

�, Γ ⇒ Δ

D1

¬�, Γ ⇒ Δ
GG

ϕ,¬ϕ, Γ ⇒ Δ

To begin with, using induction on D1 we first form

D′
1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i.h.

¬Δ ⇒ ¬Γ,¬¬�
�,¬Δ ⇒ ¬Γ, �

¬¬L¬¬�,¬Δ ⇒ ¬Γ, �
Cut¬Δ ⇒ ¬Γ, �

We then continue as follows:

i.h. on D0

¬Δ ⇒ ¬Γ,¬�

D′
1

¬Δ ⇒ ¬Γ, �
ϕ,¬Δ ⇒ ¬Γ, ϕ,¬ϕ ¬ϕ,¬Δ ⇒ ¬Γ, ϕ,¬ϕ

GG
�,¬�,¬Δ ⇒ ¬Γ, ϕ,¬ϕ

Cut¬�,¬Δ ⇒ ¬Γ, ϕ,¬ϕ
Cut¬Δ ⇒ ¬Γ, ϕ,¬ϕ

¬¬R¬Δ ⇒ ¬Γ,¬ϕ,¬¬ϕ

If the derivations ends with

ϕ(t), Γ ⇒ Δ
RepL

s = t, ϕ(s), Γ ⇒ Δ

we reason as follows. We first derive

i.h.

¬Δ ⇒ ¬Γ,¬ϕ(t)

¬ϕ(s),¬Δ ⇒ ¬Γ,¬ϕ(s)
RepL

s = t,¬ϕ(t),¬Δ ⇒ ¬Γ,¬ϕ(s)
Cut

s = t,¬Δ ⇒ ¬Γ,¬ϕ(s)
=¬R

¬Δ ⇒ ¬Γ,¬ϕ(s),¬(s = t)

If the derivation ends with

ϕ(u), Γ ⇒ Δ, ϕ(u + 1)

ϕ(0), Γ ⇒ Δ, ϕ(t)
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with u eigenvariable, we apply Parsons’ [15] trick. By induction, we have

¬ϕ(u + 1),¬Γ ⇒ ¬Δ,¬ϕ(u).

Replacing t – (u + 1) for u,

¬ϕ((t – (u + 1)) + 1),¬Γ ⇒ ¬Δ,¬ϕ(t – (u + 1)).

Since (t – (u + 1)) + 1 = t – u, by replacement of identicals we obtain

¬ϕ(t – u),¬Γ ⇒ ¬Δ,¬ϕ(t – (u + 1)),

and hence by IND

¬ϕ(t – 0),¬Γ ⇒ ¬Δ,¬ϕ(t – t), i.e.,

¬ϕ(t),¬Γ ⇒ ¬Δ,¬ϕ(0).

§4. Reinhardt’s challenge. In this section we address Reinhardt’s Challenge and
show that, given any KF-like theory with a restricted form of induction, there is a
corresponding PKF-like theory such that the set of inferences Tr�Γ� ⇒ Tr�Δ�provable
in the PKF-like theory coincides with the set of significant inferences of the KF-like
theory. This observation may be considered as a positive answer to Question (b)
discussed in the Introduction with respect to the particular KF-like theories under
consideration, that is, as providing an independent axiomatization of the significant
inferences of the particular KF-like theories. Moreover, by axiomatizing the set of
significant inferences of these KF-like theories, we obtain a positive answer to the
Generalized Reinhardt Problem as an immediate corollary. More precisely, we
show in Proposition 4.11 that every significant inference of a KF-like theory with
a restricted form of induction has a significant derivation, i.e., whenever the theory
proves Tr�Γ� ⇒ Tr�Δ�, we can find a derivation D of Tr�Γ� ⇒ Tr�Δ� such that every
node of D is itself a significant inference.

To begin with, we introduce the notion of significant inference.

Definition 4.1 (Significant Inferences). Let Th be an axiomatic truth theory formulated
in LTr, and Γ,Δ be finite sets of LTr-sentences. The set of significant inferences of Th is
defined as

ThSI := {〈Γ,Δ〉 | Th � Tr�Γ� ⇒ Tr�Δ�}.

Since the truth predicate of PKF-like theories is transparent (cf. Lemma 3.9(ii)) the
significant inferences of any PKF-like theory will simply amount to the set of provable
inferences of the theory. We also note in passing that the significant part of a truth
theory (ThS) in the sense of [20, 21], that is the provably true sentences of the theory,
can be retrieved from ThSI by setting

ThS := {ϕ ∈ StLTr | 〈∅, {ϕ}〉 ∈ ThSI}.

Let us now show that for every KF-like theory there is a PKF-like theory such that
the provable sequents of the latter constitute exactly the significant inferences of the
former.
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Definition 4.2 (PKF◦,KF◦). The pair (PKF◦,KF◦) is a variable ranging over the
following theory-pairs:

(PKF�,KF�), (PKFcs�,KFcs�), (PKFcp�,KFcp�), (PKFS�,KFS�)
(PKF,KFint), (PKFcs,KFint

cs ), (PKFcp,KFint
cp ), (PKFS,KFint

S ).

Moreover, let Th ∈ {KFint,KF�,PKF�}. Then Th� ∈ {Th,ThS,Thcs,Thcp}.
Unless otherwise specified, we let (PKF◦,KF◦) be as in Definition 4.2.
We can now start proving the principal result of this section, i.e., we can prove that

PKF◦ = KF◦SI. We first show that PKF◦ ⊆ KF◦SI.

Proposition 4.3. If PKF◦ � Γ(�x) ⇒ Δ(�y), then KF◦ � Tr�Γ( �̇x)� ⇒ Tr�Δ(�̇y)�.

Proposition 4.3 is essentially due to Halbach & Horsten [10], Halbach & Nicolai
[11], and Nicolai [14], who proved the claim for theories without index cs or cp, that
is, for pairs of theories that do not assume the truth predicate to be consistent or
complete. It thus suffices to extend their result to these theories.

Proof of Proposition 4.3. The proof is straightforward.27 For pairs extended with a
consistency principle, it suffices to show that the KF-theory “internalizes” the sound-
ness of ¬L. That is, it suffices to show that, e.g., if KFcs � Tr�Γ� ⇒ Tr�Δ�,Tr�ϕ�,
then KFcs � Tr�¬ϕ�,Tr�Γ� ⇒ Tr�Δ�. Symmetrically for theories extended with a
completeness principle one needs to show that the KF-theory “internalizes” the
soundness of ¬R.

In light of the definition of KF◦SI, Proposition 4.3 immediately yields that the
provable inferences of PKF◦ are a subset of KF◦SI:

Corollary 4.4. PKF◦ ⊆ KF◦SI.

4.1. From KF◦-significant inferences to PKF◦-provable sequents. The proof of the
converse directions of Proposition 4.3 and Corollary 4.4 constitutes the main technical
contribution of this article. The basic idea underlying the proof is to show that if
KF◦ � Tr�Γ� ⇒ Tr�Δ� then PKF◦ � Tr�Γ� ⇒ Tr�Δ�. This will be shown by proving
a stronger claim, i.e., it will be shown that, whenever Γ,Δ contain only literals, then

KF◦ � Γ ⇒ Δ implies PKF◦ � Γ+,Δ– ⇒ Γ–,Δ+,

where for a set of sentences Θ, and At the set of atomic sentences,

Θ+ := {ϕ ∈ At | ϕ ∈ Θ} Θ– := {ϕ ∈ At | ¬ϕ ∈ Θ}.28

This transformation is motivated by (i) the fact that identity behaves classically in
PKF◦ and (ii) the following semantic consideration: if a formula of the form ¬Tr(t)
is classically false (true), then Tr(t) is either true (false) or both (neither) from the
perspective of the non-classical theory of truth. As a consequence, moving Tr(t) in
the succedent (antecedent) of the sequent will not interfere with the validity of the
sequent from the perspective of the non-classical logics at stake. Moreover, if Γ ⇒ Δ is
of the form Tr�Γ′� ⇒ Tr�Δ′�, the transformation leaves the sequent unaltered; hence,

27 Notice that the use of rules for identity instead of identity axioms does not impact the
arguments due to [10, 11, 14].

28 In other words, for � atomic, � ∈ Θ– iff ¬� ∈ Θ.

https://doi.org/10.1017/S1755020322000089 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020322000089


KF, PKF, AND REINHARDT’S PROGRAM 19

if we prove that for each KF◦-provable sequent its transformation is PKF◦-provable,
we obtain our desired result as a corollary.

We first consider KF-systems with internal induction.

Lemma 4.5 (Main Lemma). For Γ,Δ sets of literals, for all �

KFint
� � Γ ⇒ Δ implies PKF� � Γ+,Δ– ⇒ Γ–,Δ+.

In the following proof, we implicitly use the fact that the replacement schema s =
t, ϕ(t),Γ ⇒ Δ, ϕ(s) is derivable in each PKF-like system of Definition 3.8. Also, let us
recall that active formulae in truth-axioms and truth rules are literals.

Proof of Lemma 4.5. The proof is by induction on the height n of KFint
� -derivations.

Suppose first that n = 0, and that Γ ⇒ Δ is a KFint
� -initial sequent. For the pair KFint-

PKF, we first notice that every axiom of KFint is an axiom of PKF. Hence for initial
sequents not involving negated atomic formulae, the proof is immediate. The only
truth-theoretic axiom of KFint involving a negated atomic formula is Tr¬=. We obtain
the desired conclusion by Lemma 3.9(iii), e.g., from

Ct(t),Ct(s),¬(t◦ = s◦),Γ+,Δ– ⇒ Γ–,Δ+,Tr(¬. (t=. s)),

which is an initial sequent of PKF, via =¬R, ¬¬L, and Cut, we can derive

Ct(t),Ct(s),Γ+,Δ– ⇒ Γ–,Δ+,Tr(¬. (t=. s)), t◦ = s◦.

As for theories with specific Tr-axioms, we want to show that PKFcp, PKFcs, and PKFS

derive, respectively, the transformation of Cons, Comp, and GoG. That is to say, we
have to show (we omit context for readability)

PKFcp � StTr(t) ⇒ Tr(t),Tr(¬. t), (1)

PKFcs � StTr(t),Tr(t),Tr(¬. t) ⇒ ∅, (2)

PKFS � StTr(t), StTr(s),Tr(t),Tr(¬. t) ⇒ Tr(s),Tr(¬. s). (3)

For (1)

StTr(t),¬Tr(t) ⇒ Tr(¬. t) ¬R
StTr(t) ⇒ Tr(¬. t),¬¬Tr(t)

StTr(t),Tr(t) ⇒ Tr(t)
¬¬L

StTr(t),¬¬Tr(t) ⇒ Tr(t)
Cut

StTr(t) ⇒ Tr(t),Tr(¬. t)

For (2) we have

StTr(t),Tr(¬. t) ⇒ ¬Tr(t)
StTr(t),Tr(t) ⇒ Tr(t)

¬L
StTr(t),Tr(t),¬Tr(t) ⇒ ∅

Cut
StTr(t),Tr(t),Tr(¬. t) ⇒ ∅

Finally, for (3)

StTr(t),StTr(s),Tr(s) ⇒,Tr(s),¬Tr(y) StTr(t),StTr(s),¬Tr(s) ⇒ Tr(s),¬Tr(y)
GG

StTr(t),StTr(s),Tr(t),¬Tr(t) ⇒ Tr(s),¬Tr(s)
¬Tr¬

StTr(t),StTr(s),Tr(t),Tr(¬. t) ⇒ Tr(s),Tr(¬. s)
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In the last inference we have been sloppy. The double line indicates that from the
upper sequent we can derive the lower sequent via some obvious additional steps
involving the truth-theoretic initial sequents ¬Tr¬Tr and Cut.

Now suppose that n = m + 1 and that Γ ⇒ Δ has been derived. We distinguish two
cases:

Case 1: Γ ⇒ Δ contains no principal formula. In this case, the last inference of the
derivation of Γ ⇒ Δ must be either Ref or Cut. If the former, we obtain our desired
conclusion by i.h. and Ref in PKF�. Otherwise, the derivation ends with

D0

Γ ⇒ Δ, ϕ

D1

ϕ,Γ ⇒ Δ
Cut

Γ ⇒ Δ

For this to work, it is crucial that we are dealing with quasi-normal derivations. In
this case, we can assume the cut formula to be a literal and thus apply i.h. and Cut on
PKF�. For example, if ϕ ≡ ¬� for � ∈ At, then we reason as follows:

i.h. on D1

Γ+,Δ– ⇒ Γ–,Δ+, �

i.h. on D0

�,Γ+,Δ– ⇒ Γ–,Δ+

Cut
Γ+,Δ– ⇒ Γ–,Δ+

If ϕ ∈ At, then we use i.h. and cut on ϕ.

Case 2: Γ ⇒ Δ contains a principal formula. We reason by subcases, according to the
last inference of the derivation. Logical rules for∧ and ∀ need not be taken into account
as they cannot be the last rule of a quasi-normal derivation D that has only literals in
the end-sequent. The rules having literals as principal formulae are the following: ¬L,
¬R, RepL, INDint, and truth rules.

Case 2.1: The last inference is¬L or¬R. Here the conclusion is immediate, e.g., suppose
the KFint

� -derivation ends with

Γ′ ⇒ Δ, ϕ
¬L¬ϕ,Γ′ ⇒ Δ

If ϕ ∈ At, then by induction we have PKF� � Γ′+,Δ– ⇒ Γ′–,Δ+, ϕ, which is
our desired conclusion. The case where ϕ ≡ ¬� for � atomic need not be taken
into account, as we are dealing with derivations containing only literals in the
end-sequent.
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Case 2.2: The last inference is RepL. Suppose the KFint
� -derivation ends with

ϕ(t),Γ′ ⇒ Δ
RepL

s = t, ϕ(s),Γ′ ⇒ Δ

Assume first ϕ ∈ At. For the pairs KFint-PKF, KFint
cs -PKFcs, and KFint

S -PKFS, we
just apply i.h. and RepL in each PKF-variant. For the pair KFint

cp -PKFcp, since PKFcp

does not have RepL, but RepR instead, we reason in PKFcp as follows, omitting context
for readability:29

s = t, ϕ(s) ⇒ ϕ(s)
Symmetry of =

s = t, ϕ(s) ⇒ t = s
RepR

s = t, ϕ(s) ⇒ ϕ(t)

i.h.

ϕ(t) ⇒ ∅
Cut

s = t, ϕ(s),⇒ ∅

For ϕ ≡ ¬� with � atomic, we reason in an arbitrary PKF�:

i.h.

Γ′+,Δ– ⇒ Γ′–,Δ+, �(t)
Replacement Schema

s = t, �(t),Γ′+,Δ– ⇒ Γ′–,Δ+, �(s)
Cut

s = t,Γ′+,Δ– ⇒ Γ′–,Δ+, �(s)

Case 2.3: The last inference is INDint. Suppose the KFint
� -derivation ends with

Tr(t(u̇)), Γ ⇒ Δ,Tr(t(u̇′))
INDint

Tr(t(num(0)/v)), Γ ⇒ Δ,Tr(t(ż))

with u eigenvariable. We use IND in PKF� as follows:

Tr(t(u̇)),Γ+,Δ– ⇒ Γ–,Δ+,Tr(t(u̇′))
IND

Tr(t(num(0)/v)),Γ+,Δ– ⇒ Γ–,Δ+,Tr(t(ż))

Case 2.4: The last inference is a truth-rule. Finally, suppose the derivation ends with an
application of a truth-rule. In this case, it essentially suffices to notice that each active
formula of each truth-rule is an atomic formula. Hence, the desired conclusion follows
by i.h. and the rule itself in PKF�. As an example, we consider the truth-rule Tr∀R. So

29 Of course, since each PKF variant proves the replacement schema, then each PKF variant
proves that identity is symmetric.

https://doi.org/10.1017/S1755020322000089 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020322000089


22 LUCA CASTALDO AND JOHANNES STERN

suppose the derivation ends with

Γ ⇒ Δ′,Tr(t(u̇))
Tr∀R

StTr(∀.v.t),Γ ⇒ Δ′,Tr(∀.v.t)

The conclusion follows immediately by i.h., i.e., we reason in PKF� as follows:

Γ+,Δ′– ⇒ Γ–,Δ′+,Tr(t(u̇))
Tr∀R

StTr(∀.v.t),Γ+,Δ′– ⇒ Γ–,Δ′+,Tr(∀.v.t)

By inspecting the proof of the Main Lemma, it can be observed that we can
immediately lift it to the pair (KF–

�, PKF–
�), thus obtaining the following.

Corollary 4.6. For Γ,Δ sets of literals, for all �

KF–
� � Γ ⇒ Δ implies PKF–

� � Γ+,Δ– ⇒ Γ–,Δ+.

This immediately yields that the set of significant inferences of KF-like theories is
contained in the set of provable sequents of appropriate PKF-like theories.

Lemma 4.7. KF◦SI ⊆ PKF◦.

Proof. If KF◦ � Tr�Γ� ⇒ Tr�Δ�, then PKF◦ � Tr�Γ� ⇒ Tr�Δ� by Lemma 4.5
and Corollary 4.6. But the truth predicate of PKF◦ is transparent and thus
PKF◦ � Γ ⇒ Δ.

Lemma 4.7 along with Corollary 4.4 shows that PKF◦ yields precisely the significant
sentence of KF◦. In other words we have answered Question (b) of Reinhardt’s

Challenge.

Theorem 4.8 (Reinhardt’s Challenge). PKF◦ = KF◦SI.

We remark that an answer to Reinhardt’s Question (b) yields an answer to Question
(a) as a corollary, that is, our result subsumes parts of the results provided by Halbach
& Horsten [10], Halbach & Nicolai [11], and Nicolai 14].

Corollary 4.9. {ϕ ∈ SentLTr | PKF◦ � ϕ} = KF◦S.

Of course, this result also implies that, by means of a very simple observation
connecting provably true KF-sequents to provable PKF-sequents, we have reduced
questions regarding the proof-theoretic strength of PKF-like theories to questions
regarding the proof-theoretic strength of KF-like theories.

Corollary 4.10. KF◦ and PKF◦ are proof-theoretically equivalent, i.e.,

KF◦ ≡ PKF◦.

Concluding, we promised to give a positive answer to the Generalized Reinhardt

Problem for KF-variants with restricted forms of induction, that is, the question
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whether for any pair 〈Γ,Δ〉 ∈ KF◦SI there is a KF◦-derivation such that each node
of the derivation is a member of KF◦SI. However, as anticipated in the Introduction
(Section 1) to this paper, a positive answer to Generalized Reinhardt Problem

follows rather immediately, once we have an independent axiomatization of KF◦SI:

Corollary 4.11 (Generalized Reinhardt Problem). If 〈Γ,Δ〉 ∈ KF◦SI, then
there is a KF◦-derivation D of Γ ⇒ Δ such that for each node d of D, d ∈ KF◦SI.

Proof. If 〈Γ,Δ〉 ∈ KF◦SI, then by Proposition 4.8 PKF◦ � Γ ⇒ Δ and hence
PKF◦ � Tr�Γ� ⇒ Tr�Δ�. Now let D′ be an arbitrary KF◦-derivation of Tr�Γ� ⇒
Tr�Δ�.

In order to obtain our desired derivationD, it suffices to replace each node (including
the leaves)

Θ ⇒ Λ

of D′ by

Tr�Γ�,Θ ⇒ Λ,Tr�Δ�.
Let D be the derivation resulting from this transformation. Since KF◦ is closed

under weakening, D is a KF◦-derivation of Tr�Γ� ⇒ Tr�Δ�. But each node of D is
also derivable in PKF◦, too, since PKF◦ is closed under weakening. Hence every node
of D is in PKF◦ = KF◦SI.

Let us put our partial answer to the Generalized Reinhardt Problem in
perspective: we have shown that for every significant inference there is a way to
classically derive the sequent such that every node of the derivation is itself a significant
inference and hence that every node of the proof is acceptable to the significant reasoner,
i.e., the non-classical logician. This does not imply that the non-classical logician can
follow the classical reasoning, i.e., that the KF◦-proof is also a PKF◦-proof. Our
result only shows that KF-style theories with restricted forms of induction can be used
instrumentally. It does not show that one can always reason non-classically within
KF◦. But if the latter were the case, it seems that KF◦ would deliver an independent
axiomatization of its significant part in its own right.30 Surely—while it is certainly
an interesting question whether for every KF◦-significant inference there is a KF◦-
derivation, which is also a PKF◦-derivation—such a result is not required for an
instrumental interpretation of KF◦ and left for future research.

§5. Conclusion. In this paper, we had a fresh look at Reinhardt’s program and we
proposed to focus on the provably true inferences of KF-like theories rather than on
the provably true sentences only. We showed that if we conceive of the significant part
of KF-like theories as the set of provably true inferences, then Reinhardt’s program
can be deemed successful for variants of KF with a restricted form of induction:
we can remain within the significant part of the theories in proving their significant
inferences. This answers the Generalized Reinhardt Problem for the aforementioned
KF-variants and also shows that we need not step outside the significant part in

30 We note that even in the original formulation of Reinhardt’s Problem due to [10] an
affirmative answer would not have implied that the reasoning as such is non-classically
acceptable.
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proving theorems of the form Tr�ϕ�, which was the content of the original formulation
of Reinhardt’s Problem. The use of the nonsignificant part of KFint and KF–

is dispensable, and, in this sense, both theories can be given an instrumentalist
interpretation as suggested by Reinhardt. Moreover, building on results by Halbach
& Horsten [10], Halbach & Nicolai [11], and Nicolai [14], we have shown how to
provide independent axiomatizations of the significant part of KF-like theories with
restricted forms of induction in non-classical logic. This was precisely the content of
Reinhardt’s challenge. Our results thus get us some way to completing Reinhardt’s
program and, at least as far as the KF-theories with restricted forms of induction
are concerned, they fully “justify the use of nonsignificant sentences entirely within the
framework of significant sentences” [21, p. 225].

However, to complete Reinhardt’s program and prove it successful will require
answering Reinhardt’s challenge for KF-like theories with full induction. To this
effect one needs to pair KF-like theories with suitable non-classical truth theories. In
light of Nicolai’s [14] work, it seems very likely that these non-classical theories will be
versions of PKF+, although a proof of this conjecture is left for future research. Let
us assume for now that PKF+-like theories indeed answer Reinhardt’s Challenge

for KF theories with full induction. Should we conclude that we have justified the
use of nonsignificant sentences entirely within the framework of significant sentences?
Should we deem Reinhardt’s program successful? In contrast to the case of KF-like
theories with restricted forms of induction, an answer to this question seems to be
less straightforward, as one may query whether PKF+ amounts to an independent
axiomatization of the significant part of KF. The crucial question is whether the rule
TI<ε0 is available from within the significant framework. Ultimately, an answer to this
question will depend on the role the theory of truth is supposed to play within one’s
theoretical framework. If, for instance, one takes the theory to play an important role
in the foundations of mathematics and an important role in singling out the limits of
predicativity Feferman [6], then one should arguably refrain from thinking that TI<ε0

can be assumed without further justification from within the significant framework.
But, to the contrary, if the theory of truth is to play no role in the foundations of
mathematics and classical mathematical theorizing is freely available from within the
significant framework, then it is hard to see why TI<ε0 should not be considered as
fully justified from within the significant perspective.31 In this case it would seem
that Reinhardt’s program needs to be deemed successful once Theorem 4.8 has been
extended to the theory pair

〈
KF,PKF+〉

. Of course, such a generalization of Theorem
4.8 is yet to be provided, but the understanding of Reinhardt’s program developed in
this paper together with the results for KF-variants with restricted forms of induction
suggests there is no principled obstacle in way of a successful completion of Reinhardt’s
program. Thus, after all, it seems that Reinhardt was right in claiming that “the
chances of success in this context (··· ) are somewhat better than in Hilbert’s context”
[21, p. 225].
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