
 Lin, T., & McIntosh-Smith, S. N. (2021). Comparing Julia to
Performance Portable Parallel Programming Models for HPC. In 2021
International Workshop on Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems (PMBS) Institute
of Electrical and Electronics Engineers (IEEE).
https://doi.org/10.1109/PMBS54543.2021.00016

Peer reviewed version

Link to published version (if available):
10.1109/PMBS54543.2021.00016

Link to publication record in Explore Bristol Research
PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online
via IEEE at 10.1109/PMBS54543.2021.00016. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1109/PMBS54543.2021.00016
https://doi.org/10.1109/PMBS54543.2021.00016
https://research-information.bris.ac.uk/en/publications/68ddbe55-6837-4b34-b33c-7b956d171f68
https://research-information.bris.ac.uk/en/publications/68ddbe55-6837-4b34-b33c-7b956d171f68

Comparing Julia to Performance Portable Parallel
Programming Models for HPC

Wei-Chen Lin
Department of Computer Science

University of Bristol
Bristol, UK

wl14928@bristol.ac.uk

Simon McIntosh-Smith
Department of Computer Science

University of Bristol
Bristol, UK

S.McIntosh-Smith@bristol.ac.uk

Abstract—Julia is a general-purpose, managed, strongly and
dynamically-typed programming language with emphasis on high
performance scientific computing. Traditionally, HPC software
development uses languages such as C, C++ and Fortran, which
compile to unmanaged code. This offers the programmer near
bare-metal performance at the expense of safety properties that
a managed runtime would otherwise provide. Julia, on the other
hand, combines novel programming language design approaches
to achieve high levels of productivity without sacrificing perfor-
mance while using a fully managed runtime.

This study provides an evaluation of Julia’s suitability for HPC
applications from a performance point of view across a diverse
range of CPU and GPU platforms. We select representative
memory-bandwidth bound and compute bound mini-apps, port
them to Julia, and conduct benchmarks across a wide range
of current HPC CPUs and GPUs from vendors such as Intel®,
AMD®, NVIDIA®, Marvell®, and Fujitsu®. We then compare and
characterise the results against existing parallel programming
frameworks such as OpenMP®, Kokkos, OpenCL™, and first-
party frameworks such as CUDA®, HIP™, and oneAPI™ SYCL™.
Finally, we show that Julia’s performance either matches the
competition or is only a short way behind.

Index Terms—Julia, OpenMP, OpenCL, Kokkos, CUDA, HIP,
Performance Portability, Programming Models, GPUs

I. INTRODUCTION

A. Background

HPC programming traditionally revolves around compiled
languages that generate native (i.e. unmanaged) code. Unsafe
programming languages such as C, C++ and Fortran have
been used extensively in this field due to their excellent porta-
bility and performance characteristics; language constructs
frequently map directly to the underlying hardware features.
The ubiquity of C/C++ also extends to discrete accelerators
such as GPUs, which typically execute code compiled from
C/C++-derived kernels. These properties are highly desirable
in an HPC setting where using all allocated hardware resources
optimally is critical.

Unsafe languages such as C and C++ suffer from produc-
tivity pain points such as the lack of memory safety and a
minefield of undefined behaviours. Programmers are required
to manage memory use explicitly which is a common source of
bugs, and debugging memory corruption issues is often highly
challenging in large applications. In addition, for legacy and
performance reasons, the compiler is unable to reject programs

with illegal runtime behaviours, thus causing hard-to-catch
behavioural bugs. There are existing solutions such as various
compiler-supported sanitisers [1]; these work by instrumenting
memory allocation for the whole program, and as such, are
usually intended only for debugging due to the high runtime
overhead. Recent iterations of C++ have made advances in
offering better compile-time guaranteed safety, we also see
new languages that directly address memory safety at the type-
level, as seen in Rust. However, many of these advancements
are a calculated tradeoff between runtime performance and
programmer productivity.

By having a managed runtime that performs bounds check-
ing and automatic memory management, we eliminate an
entire class of bugs without sacrificing programmer produc-
tivity. For years, the HPC community has dismissed the
use of languages that require a managed runtime from the
outset. Most existing implementations, such as the Java Virtual
Machine, were unable to produce code that could directly
compete with C/C++ or Fortran in terms of performance.
In Java’s case, language semantics such as reflection and
the lack of value types make it prohibitively difficult to
generate optimal machine code. Beyond language semantics,
the added layer of indirection also complicates support for
custom accelerator hardware, as the runtime must also be able
to generate accelerator-specific machine code.

B. Julia

Julia was first released in 2012 as a new dynamically-typed,
general-purpose, multi-paradigm programming language de-
signed with high performance scientific computing in mind [2].
Julia is a managed programming language featuring an LLVM-
backed JIT engine. The language combines many novel ideas
that are not usually found in traditional bare-metal languages
such as C and C++. As a dynamically typed language, Julia
supports parametric polymorphism (generics) through optional
typing. Paired with multiple dispatch, these features allow
enough type information to be encoded at runtime for the JIT
compiler to specialise and create optimal code.

Many of the features and restrictions of the language are
guided by the potential for net performance gains even after the
overhead of JIT compilation. Julia only selectively included
features from Object-Oriented and Functional paradigms to

avoid creating situations like Java where the language seman-
tics inhibit high performance code generation. In addition,
Julia also provides excellent metaprogramming and staging
features along with runtime-supported foreign function inter-
face (FFI) capabilities. With these features, Julia is in a unique
position where pure Julia code can be staged and transformed
to native accelerator code at runtime for execution on GPUs.
Currently, all major accelerator vendors, including NVIDIA,
AMD, and Intel are supported under the JuliaGPU initiative.

C. Contribution

This study provides an evaluation of Julia’s readiness for
use in implementing HPC applications. We accomplish this
by porting HPC mini-apps, ones originally written in C/C++
or derivatives, to idiomatic Julia. We then compare the per-
formance achieved in Julia to the original and provide an
analysis of the results. For the best possible platform coverage,
we select frequently used hardware in typical HPC clusters
(as shown in Table II) to conduct our benchmarks against.
CPU platforms include traditional x86 vendors Intel and AMD,
and also emerging Arm platforms from Fujitsu, Marvell, and
Apple®. For GPUs, we select from current vendors such
as NVIDIA, AMD, and Intel. We include both HPC and
consumer models as there has been a constant interest in using
lower-cost consumer-grade hardware for HPC use cases.

This study makes the following contributions:
• We survey the state of the art for implementing HPC

applications in Julia for both CPUs and GPUs.
• We present Julia ports of memory-bandwidth bound (Ba-

belStream) and compute-bound (miniBUDE) benchmark
mini-apps for a representative performance portability
evaluation of HPC applications in Julia.

• We benchmark Julia ports of the HPC mini-apps on a
wide range of representative HPC hardware platforms
against first party solutions and other established parallel
programming frameworks.

II. RELATED WORK

Performance portability is an important quality for HPC
applications. Our previous work on surveying performance
portability over a diverse range of HPC hardware showed
that many languages and frameworks based on C/C++ achieve
a high level of performance portability [3, 4]. This work
attempts to evaluate Julia in the same way using HPC-style
mini-apps. As Julia is an emerging programming language and
considerably different from traditional unmanaged languages,
we take a more fine-grained approach to the ecosystem and
performance analysis in this study.

Julia, while being a relatively new language to the HPC
scene, already has several case studies on implementing full-
scale HPC applications. Regier et al. experimented with imple-
menting bayesian inference for large datasets using Julia that
runs on a cluster of 8192 Xeon Phi nodes [5]. Based on the
new work of Besard et al. on bringing Julia to GPUs [6], we
have seen several successful HPC application implementations
in Julia. Ramadhan et al. have demonstrated an efficient fluid

flow solver, Oceananigans.jl, that runs on both CPUs and
NVIDIA GPUs [7]. In the same vein, Clements et al. have
implemented a toolkit, SeisNoise.jl, for noise cross-correlation
on both GPUs and CPUs [8].

On the machine learning side, thanks to Julia’s expres-
siveness, an abstraction layer implemented by Innes, Flux.jl,
showed that Julia is capable of realising a fully functional
ML stack [9]. For traditional HPC applications, Ram et al.
explored performance characteristic of implementing a mesh-
free CDF solver in Julia [10] on the GPU, among other
languages like Python and C++. Finally, Hunold et al. have
explored the performance of the STREAM benchmark on
CPUs implemented in Julia along with a characterisation of
MPI communication overheads in Julia [11].

However, we have yet to see a comprehensive charac-
terisation on the performance portability properties of Julia
on contemporary HPC platforms. In particular, many case-
studies only focus on a specific Julia package and lack direct
comparison across either platform or language, or both. This
study hopes to address this gap to show whether Julia is ready
for production use in the HPC domain.

III. JULIA ECOSYSTEM

Julia provides first class support for threads through high
level OpenMP-like macros. Fig. 1 shows a side-by-side com-
parison of a simple parallel copy. On the right, the loop is
executed in parallel with OpenMP pragmas. On the left, Julia
provides the Threads.@threads macro that transforms the
loop block into a statically scheduled [12] parallel loop. The
@inbounds macro here simply hints that it is safe to elide
bound checks at runtime.

xs = Vector{Float32}(undef, N)
ys = fill(42f0, N)
Threads.@threads for i = 1:N
@inbounds xs[i] = ys[i]

end

std::vector<float> xs(N, 0);
std::vector<float> ys(N, 42.f);
#pragma omp parallel for
for (int i = 0; i < N; i++)
xs[i] = ys[i];

Fig. 1. Threaded copy. Left: Julia, right: C++ w/ OpenMP

if ascribed: a::AbstractArray{T}, b::AbstractArray{T}, s::T
function mul(b, c, s) # type annotation optional
i = (blockIdx().x - 1) * blockDim().x + threadIdx().x
@inbounds b[i] = scalar * c[i]
return

end

template <typename T>
__global__ void mul(T* b, const T* c, const T s) {
const int i = blockDim.x * blockIdx.x + threadIdx.x;
b[i] = s * c[i];

}

Fig. 2. Polymorphic multiply kernel. Top: Julia (CUDA.jl), bottom: CUDA

Julia’s support for GPU offload is provided by third-party
packages. This is possible due to its highly flexible metapro-
gramming facilities along with the runtime’s performant FFIs.
The JuliaGPU umbrella implements support for CUDA, HIP
and oneAPI with separate packages that wrap the native

interfaces provided by the respective offload solution. Table I
gives an overview of the constructs employed by each of the
GPU packages that provide support for writing kernels in
Julia directly. Fig. 2 shows a comparison between a simple
polymorphic multiply kernel written in Julia (via the CUDA.jl
package) and CUDA, the Julia CUDA kernel shown here can
be easily ported to other implementations using Table I. Note
the high level of similarity between the two implementations:
Julia is a C-influenced imperative language at heart.

CUDA.jl, as the package name suggests, provide CUDA
support for running on NVIDIA GPUs. The kernel API
surface here closely follows the CUDA nomenclature. The
package acts as a runtime for kernel submission and memory
management and is responsible for generating PTX assemblies
for kernels.

Similar to CUDA.jl, AMDGPU.jl provides HSA support for
running on AMD GCN GPUs. The API surface follows HSA
nomenclature, although the package provides function aliases
for CUDA nomenclature to ease transition.

OneAPI.jl provides Level Zero support for running on Intel
GPUs. It largely follows the OpenCL and SYCL nomenclature.
At the current state, oneAPI.jl only supports Level Zero as an
offload target (i.e. Intel GPU only) as it does not mirror the full
functionality of Intel’s oneAPI distribution. Both AMDGPU.jl
and oneAPI.jl have stated that the projects are still under
development, although core functions such as kernel execution
are available for testing.

Finally, KernelAbstractions.jl (abbreviated as KA.jl here-
after) is a kernel portability abstraction layer where kernels
written in KA.jl can be executed on NVIDIA, AMD and
CPU platforms without source changes. Currently, the pack-
age warned that no specific tuning has been done for CPU
and AMD platforms so performance may be suboptimal. In
addition, oneAPI for the Intel platform is a notable omission
as it is considerably newer than CUDA.jl and AMDGPU.jl.

In all cases, compute kernels are implemented as plain Julia
functions with some restrictions on supported types within
the kernel. In this regard, Julia’s GPU support is similar to
OpenMP Target or Kokkos in that the driver and the kernel
share the same language in a single-source format. However,
for optimal performance, Julia uses different packages for
each vendor. As each package is developed independently, the
kernels are not directly portable because the packages expose a
different kernel API, not unlike the native first-party solutions.
Nevertheless, all GPU packages adhere closely to idiomatic
Julia; the porting effort required to go from one API to another
typically only involves mechanical substitution of the API calls
by using a cross-reference table like Table I.

IV. MINI-APPS IN THE STUDY

We used two existing HPC mini-apps, BabelStream and
miniBUDE, to cover both memory-bandwidth bound and com-
pute bound scenarios respectively. These two mini-apps are
specifically designed for performance portability studies. The
codebase contains multiple implementations of the same com-

pute kernels implemented in different parallel programming
frameworks.

A. BabelStream

BabelStream is a memory bandwidth benchmark that im-
plements the standard McCalpin STREAM benchmark [13]
for both CPUs and GPUs for a wide variety of programming
models. By implementing STREAM in many programming
models, BabelStream has been invaluable in helping us inves-
tigate performance portability properties of common parallel
programming frameworks [14]. The benchmark implements
five different memory-bandwidth bound kernels: Copy, Mul,
Add, Triad, and Dot. The pseudocode for these kernels are
shown in Algorithm 1. The benchmark measures the execution
time for each kernel and derives the average bandwidth with
respect to the array size of each input using the best performing
iteration.

The BabelStream codebase is designed to be an exemplar
in demonstrating each framework’s approach in achieving
parallelism: constructs are specifically chosen to be idiomatic
and generic. By comparing the different implementations side
by side, one can make rough estimates on the potential
productivity advantages of each framework.

Algorithm 1 BabelStream kernels
1: procedure COPY(A[n], C[n], n)
2: for i← 0, n do
3: C[i]← A[i]

4: procedure MUL(A[n], B[n], C[n], scalar, n)
5: for i← 0, n do
6: B[i]← scalar ∗ C[i]

7: procedure ADD(A[n], B[n], C[n], n)
8: for i← 0, n do
9: C[i]← A[i] +B[i]

10: procedure TRIAD(A[n], B[n], C[n], scalar, n)
11: for i← 0, n do
12: A[i]← B[i] + (scalar ∗ C[i])

13: procedure DOT(A[n], B[n], scalar, n)
14: for i← 0, n do
15: R← R+ (A[i] ∗B[i])

return R

For this benchmark, we create an idiomatic Julia port of
BabelStream, named JuliaStream.jl. JuliaStream.jl implements
support for multicore CPUs via Julia’s Threads.@thread
macro in a straightforward manner as shown in Fig. 1. As
Julia’s threading macro lacks support for reductions, we have
implemented the Dot kernel reduction by first summing the
results to a thread local variable. We then complete the
summation for each thread at the end in serial.

For GPUs, we have created implementations using CUDA.jl
for CUDA, AMDGPU.jl for HIP, oneAPI.jl for SYCL, and
finally KA.jl for cross-platform programming models. Each of
these separate implementations is directly derived from their
respective BabelStream implementations. For Julia to perform

TABLE I
JULIA GPU KERNEL API CROSS-REFERENCE

CUDAjl AMDGPU.jl oneAPI.jl KernelAbstractions.jl
Global size blockDim().x*gridDim().x gridDim().x get_global_size(0) (Not exposed)
Group count gridDim().x gridDimWG().x get_num_groups(0) (Not exposed)
Group size blockDim().x workgroupDim().x get_local_size(0) @groupsize()[1]

Index (global)
(blockIdx().x - 1) *
blockDim().x +
threadIdx().x

(workgroupIdx().x - 1) *
workgroupDim().x +
workitemIdx().x

get_global_id(0) @index(Global)

Index (group) blockIdx().x workgroupIdx().x get_group_id(0) @index(Group)

Index (local) threadIdx().x workitemIdx().x get_local_id(0) @index(Local)

Synchronise sync_threads() sync_workgroup() barrier() @synchronize
Memory (register)
size=N , type=T

data =
MArray{Tuple{N},T}

data =
MArray{Tuple{N},T}

data =
MArray{Tuple{N},T}

data =
MArray{Tuple{N},T}

Memory (private)
size=N , type=T

data =
@cuStaticSharedMem(T, N)

data =
ROCDeviceArray((N,),
alloc_local(:data,T, N))

data =
@LocalMemory(T, (N,))

data =
@localmem T N

Kernel launch &
Mem. allocation
Groups=GN ,
Blocks=BN ,
size=N ,
type=T

data =
CuArray{T}(undef, N)

@cuda
blocks=N÷GN
threads=GN
kernel(data)

data =
ROCArray{T}(undef, N)

@roc
groupsize=GN
gridsize=GN*BN
kernel(data)

data =
oneArray{T}(undef, N)

@oneapi
items=GN
groups=BN
kernel(data)

device= # one of :
CPU()
CUDADevice()
ROCDevice()

data= # one of :
Array{T}
CuArray{T}
ROCArray{T}

kernel(device, GN)(
data, ndrange=N)

well, we require it to achieve a bandwidth similar to the
original BabelStream versions for each of the platforms we
conduct the benchmark on.

BabelStream accepts the array size, array type, and iteration
count as parameters. Array size determines how large each of
the three arrays (A, B, C) in Algorithm 1 will be. We selected
229(≈12.9GB) elements for CPUs. This size was selected
based on experiences using BabelStream on processors with
very large L3 caches [3]. We selected a smaller 225(≈0.8GB)
for GPUs as some devices do not support allocating arrays
much larger than this value. The remainder of BabelStream’s
parameters are left at the defaults (FP64 array type at 100
iterations for each kernel). We make use of the built-in
statistics reporting to collect our results: BabelStream includes
result validation, warmup iterations, and automatically derives
bandwidth of the best and worst performing iterations at the
end of the benchmark.

Julia will be compared against the OpenMP and Kokkos
implementations from BabelStream for all CPUs. For NVIDIA
GPUs, we compare CUDA.jl and KA.jl implementations to
CUDA, Kokkos and OpenCL. For AMD GPUs, we compare
AMDGPU.jl and KA.jl implementations to HIP, Kokkos and
OpenCL. For Intel GPUs, we compare oneAPI.jl implementa-
tions to oneAPI SYCL and OpenCL.

B. miniBUDE

MiniBUDE is a compute bound HPC mini-app derived
from the full-scale Bristol University Docking Engine (BUDE)
molecular dynamics application [15]. The core virtual-
screening algorithm computes the charge interactions between
molecules when docked in different poses, a process used for
drug discovery.

Algorithm 2 miniBUDE Fasten Kernel
1: procedure FASTEN(const i, const xform3×3[],

const proteins[ps], const ligands[ls], out energy[])

▷ Values R,DSLV,DSLVR, NZ,DST1, DST,HRD, T
are part of the simulation constants

2: for il← 0, ls do
3: lpos1×3 ← xform · ligands[il].pos1×3

4: for ip← 0, ps do
▷ Compute distance between atoms

5: dist← distance(lpos, proteins[ip].pos1×3)
▷ Compute the sum of the sphere radii

6: d← dist−R
▷ Compute steric energy

7: energy[i]← energy[i]+
(1− dist ∗ (1/R))∗
(d < 0?2 ∗HRD : 0)

▷ Compute formal and dipole charge interactions
8: e← init∗

(d < 0.f?1 : (1− d ∗DST1))∗
(d < DST?1 : 0)

9: energy[i]← energy[i]+
(typeE?− |e| : e) ∗ T

▷ Compute Nonpolar-Polar repulsive interactions
10: dslvE = dslvInit∗

((d < DSLV ∧NZ)?1 : 0.f)∗
(d < 0?1 : (1− d ∗DSLVR))

11: energy[i]← energy[i] + dslvE ∗ 0.5

TABLE II
PLATFORM DETAILS

Vendor Name Architecture Abbreviation Device Type
Theoretical Peak
Mem. Bandwidth
(GB/s)

Theoretical Peak
FP32 FLOP/s
(GFLOP/s)

Intel Xeon Gold 6230 Cascade Lake Xeon HPC CPU (20C*2, 2S) 281.6 4096
AMD EPYC 7742 Zen2 (Rome) EPYC HPC CPU (64C*2, 2S) 409.6 9216
Marvell ThunderX2 Vulcan TX2 HPC CPU (32C*2, 2S) 288 2560
Fujitsu A64FX (Custom ARMv8) A64FX HPC CPU (48C*2, 2S) 1024 5530
NVIDIA Tesla A100 (SXM 80GB) Ampere A100 HPC GPU 2039 19490
NVIDIA Tesla V100 (PCIe 16GB) Volta V100 HPC GPU 900 14130
NVIDIA RTX2080Ti Turing 2080Ti Consumer GPU 616 13800
AMD Instinct MI100 CDNA MI100 HPC GPU 1228 23100
AMD Instinct MI50 GCN (Vega 20GL) MI50 HPC GPU 1024 13300
AMD Radeon VII GCN (Vega 20) RadeonVII Consumer GPU 1024 13800
Intel UHD P630 (Xeon E2176G) Gen9.5 UHD Server iGPU 42.6 460
Intel IrisPro 580 (i7 6670HQ) Gen9 IrisPro Consumer iGPU 34 1094
Apple M1 Firestorm+Icestorm M1 Consumer CPU(4+4, 1S) 68.25 673

MiniBUDE is a highly condensed application; the main
(only) compute kernel attempts to dock a Cartesian set of
protein and ligand atoms together using an array of predefined
transformation poses, as detailed in Algorithm 2. The kernel
requires computing the euclidean norm between atoms and 3D
matrix transformations for positions of atoms in a tight loop.
These operations involve heavy use of single-precision square
roots, trigonometric functions, and absolute values.

The miniBUDE mini-app was designed with similar objec-
tives to BabelStream, albeit with a smaller set of program-
ming models. Similar to the JuliaStream.jl port, we create a
miniBUDE.jl port for miniBUDE to compare performance. As
miniBUDE contains all the ports needed (Kokkos, OpenMP,
CUDA, HIP, OpenCL, SYCL) to achieve the same implemen-
tation coverage for BabelStream as described in Section IV-A,
we conduct the same set of comparative benchmarks with
miniBUDE.jl.

MiniBUDE accepts an input deck, number of poses, and the
iteration as parameters. We left everything as default, using
the bm1 deck at 65536 poses for 8 iterations for the results to
be consistent with our previous work in [15]. The mini-app
contains built-in validation procedures where the computed
values are checked against the known correct values of the
input deck. The benchmark also includes additional warm-
up iterations and procedures to derive the final arithmetic
intensity.

V. RESULTS

For each mini-app, we conduct benchmarks on a diverse set
of platforms selected to represent the cutting edge of CPU and
GPU architectures available at the time of writing. These are
listed in Table II.

A. Platform software setup

For all x86 CPU platforms, we select the latest version of
Julia: 1.6.2. For the Arm 64 bit (AArch64) machines, we use
Julia 1.7.0 on the Apple M1, since that is the first release
that supports this platform without Rosetta (Apple’s x86 to
AArch64 translation layer), while for the TX2 and A64FX

we used both Julia 1.6.2 and 1.7.0. As Julia 1.7.0 is not yet
officially released at the time of writing, we select the beta 4
release of this version.

For Julia’s GPU support, we provide isolated
Project.toml build files for each platform in both
BabelStream and miniBUDE. By doing this, we reduce the
chance of each implementation’s transient dependencies from
preventing the latest possible version being selected. At the
time of writing, by inspecting Manifest.toml, we got 3.4.2
for CUDA.jl, 0.2.12 for AMDGPU.jl, 0.2.0 for oneAPI.jl,
and 0.7.0 for KA.jl.

We used LLVM11 to compile OpenMP and Kokkos for
all of our CPUs. This matches the version used internally in
Julia 1.6.2. For A64FX, we use Arm’s distribution of Clang
(Arm Compiler for Linux), version 21.0, which is based on
LLVM11. For Kokkos, we select the latest publicly available
version, 3.4.01 (released May 2021), across all platforms.

Every effort has been made to match up driver and software
versions on GPU platforms. However, many of these platforms
are production clusters that operate on a time-sharing basis so
we do not have the appropriate permissions to change driver
versions.

For Nvidia’s V100 GPU, the driver is reported as version
460.32 with CUDA 11.2. For A100, we got version 470.57
with CUDA 11.4, and finally, for 2080Ti we got 418.39 with
CUDA 10.1.

For AMD’s MI50 and MI100 GPU, the system uses version
4.2.0 of the ROCm stack. For RadeonVII, the system uses a
slightly older ROCm 3.10.

For Intel’s IrisPro GPU, the driver self-reported as version
20.49.18626. For UHD, we get version 21.28.20343. For
compiling SYCL implementations, we used oneAPI version
2021.3.0 on UHD and 2021.1.0 for IrisPro.

B. BabelStream

In this section we present performance results for the
BabelStream benchmark.

Early on in the porting process, it was discovered that KA.jl
has a bug with private memory use in for-loops when used in

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
0

20

40

60

E
PYC

 7742

OpenMP Kokkos Julia

1 4 8 12 16 20 24 28 32 36 40
0

20

40

60 Xeon 6230
1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

0

20

40

60

ThunderX2

1 4 8 12 16 20 24 28 32 36 40 44 48
0

20

40

60 A64FX

%
 p

ea
k

m
em

or
y

ba
nd

w
id

th
, h

ig
he

r
is

 b
et

te
r

Threads

Fig. 3. BabelStream CPU scaling (Triad kernel)

conjunction with @synchronize, though only on CPUs. The
bug occurred at macro-expansion time so we were unable to
collect any results for BabelStream’s KA.jl implementation on
the CPU [16].

The overall porting process is straightforward compared to
other C/C++ based BabelStream implementations. All GPU
packages share the same semantics for memory management
and kernel execution; the kernels themselves are identical
across ports if we simply substitute the kernel API calls by
referencing Table I. In addition, for GPUs, we find that we
are still able to write idiomatic Julia with no major syntactical
changes from the CPU port. Because of Julia’s execution
model, testing a new GPU port only requires an additional
entry in the project’s dependency declaration. This is a sharp
contrast to the native solutions where compiling the kernels in
a separate compiler is the norm.

1) CPUs: For CPUs, Julia on x86 platforms showed an
impressive, near-identical performance, compared to OpenMP
and Kokkos implementations, as shown in Fig. 4.

On the AArch64 CPU platforms, Julia’s performance is
again very similar to the OpenMP and Kokkos results.

While benchmarking, we observed an anomaly with Julia,
OpenMP, and Kokkos results for the Dot kernel on A64FX,

0
10
20
30
40
50
60
70
80
90

100

47
.4

46
.0 51

.0

51
.3

74
.5

47
.4

46
.0 51

.1

51
.5

74
.9

47
.1

45
.7 51

.3

51
.5

73
.2 E

PYC
 7742

OpenMP Kokkos Julia

0
10
20
30
40
50
60
70
80
90

100

49
.1

48
.8 55

.1

55
.1

81
.5

48
.7

48
.3 54

.5

54
.1

80
.7

49
.1

49
.3 55

.4

55
.6

80
.4

Xeon 6230

0
10
20
30
40
50
60
70
80
90

100

76
.5

73
.8

75
.0 79

.4

79
.0

76
.7

72
.6 78

.0

74
.6 79

.1

53
.9

72
.6 76
.2

72
.5 76

.6 ThunderX2

0
10
20
30
40
50
60
70
80
90

100
52

.5

52
.4 57

.9

57
.5

81
.8

52
.1

52
.1 57

.6

57
.1

82
.3

50
.2

50
.2 56

.1

56
.1

80
.6

A64FX (Julia 1.7.0b4)

Copy Mul Add Triad Dot
0

10
20
30
40
50
60
70
80
90

100

66
.9

66
.9

69
.3

69
.2

81
.1

67
.0

66
.9

69
.3

69
.3

81
.1

67
.5

68
.2

69
.3

69
.3

82
.4

Apple M
1 (Julia 1.7.0b4)

%
 p

ea
k

m
em

or
y

ba
nd

w
id

th
, h

ig
he

r
is

 b
et

te
r

Kernel

Fig. 4. BabelStream CPU results

and to a lesser extent, TX2. As the Dot kernel implements a
reduction, it is unique from the rest of the four kernels.

Experimenting with several reduction implementations
showed that, for OpenMP, the compiler was unable to re-
order the summation and multiplications in the hot-loop in
presence of OpenMP’s reduction clause, thus inhibiting vec-
torisation. We verified this by adding the following com-
piler flags: -fno-signed-zeros -fno-trapping-math
-fassociative-math which showed performance similar to
what we got on x86 platforms. As adding these unsafe math
flags changes semantic for the whole program, we opted to
add a Clang pragma that controls floating point associativity

fp
-r

ea
ss

oc
ia

te #pragma clang fp reassociate(on)
template <class T>
T OMPStream<T>::dot(){
...

}

D
ot

I

partial = zeros(T, nthreads())
@threads for i = 1:N
tid = threadid()
@inbounds partial[tid] += a[i] * b[i]

end
return sum(partial)

D
ot

II

partial = Vector{T}(undef, nthreads())
regions = # compute region, ex:
T = nthread() # threads
S = N / T # stride
R = [(g, (g-1)*S, g*S) for g in 1:T]
@threads for (g,x,y) in groups
acc = zero(T)
@inbounds @simd for i = x:y
acc += a[i] * b[i]

end
@inbounds partial[g] = acc

end
return sum(partial)

O
pe

nM
P

O
pe

nM
P+

fp
-r

ea
ss

oc
ia

te

Ju
lia

 1
.6

.2
, D

ot
 I

Ju
lia

 1
.6

.2
, D

ot
 II

Ju
lia

 1
.7

.0
b4

, D
ot

 I

Ju
lia

 1
.7

.0
b4

, D
ot

 II

0

10

20

30

40

50

60

70

80

90

100

14
.3

81
.8

10
.0

52
.9

9.
9

80
.6

Fig. 5. CPU Dot performance on A64FX.
Top: C++ fast w/ Clang pragma
Centre: Original Julia implementation
Bottom: Fast Julia implementation

of a specific block. The pragma and effect of this change is
shown in Fig. 5. Kokkos inherited OpenMP’s behaviour and
using the same pragma resolved the issue as Kokkos delegates
to OpenMP for parallelism here too.

For Julia, we experimented with adding localised
@fastmath macros but with no meaningful improvement. In
the end, we rewrote the reduction to expose the dot product
reduction as a thread private operation as shown in the Dot II
implementation in Fig. 5. With the help of the @simd macro,
Julia was able to successfully produce vectorised code. When
tested on version 1.7.0 of Julia, we were able to match the
performance of ArmClang on A64FX.

Another anomaly we have identified is the suboptimal
performance of the Copy kernel on the TX2 as shown in Fig. 4.
The issue is corrected by inserting additional arithmetic opera-
tions (e.g. c[i] = a[i] + 0) in the assignment expression.
Looking at the generated ARM assembly, we suspect LLVM’s
cost model failed to emit optimal code.

We present scaling results in Fig. 3 on CPU platforms,
the M1 platform is omitted here because the cores are not
symmetrical due to the use of Arm’s big.LITTLE architecture.
Here, Kokkos and OpenMP results use the spread placing
(via OMP_PROC_BIND=spread) for the best possible memory
bandwidth utilisation. It seems that Julia, by default (with only
the following environment variables: JULIA_EXCLUSIVE=1
and JULIA_NUM_THREADS=$(nproc)) scales similarly to the
effect of using the close placing in OpenMP where threads are
allocated close to the parent thread. Looking into the source
of the Threads.@threads macro, we find that it invokes the
C function jl_set_task_tid inside a for-loop to initialise
each thread; threads are assigned a linear id hence similar to
OpenMP’s close binding. It is not clear whether Julia currently

0
10
20
30
40
50
60
70
80
90

100

84
.0

81
.5

83
.3

83
.4

67
.3

82
.7

80
.1

83
.0

83
.2

74
.8

52
.5

52
.5

78
.7

77
.4

58
.6

82
.7

80
.0

82
.4

82
.6

65
.869
.4

67
.6 73

.0

73
.0

58
.3 A100

CUDA OpenCL Kokkos CUDA.jl KA.jl

0
10
20
30
40
50
60
70
80
90

100

87
.1

86
.6 91

.2

91
.3

94
.1

87
.4

86
.8 91

.0

91
.3

92
.8

70
.6

70
.5

91
.1

91
.1

71
.6

86
.7

86
.2 90

.8

91
.0

92
.1

70
.9

71
.4 79

.1

79
.1

66
.6

V100

Copy Mul Add Triad Dot
0

10
20
30
40
50
60
70
80
90

100

86
.6

86
.1

88
.1

88
.1

90
.7

86
.2

85
.7

87
.8

87
.8

89
.8

86
.4

86
.0

88
.0

88
.0

91
.0

86
.1

85
.7

87
.8

87
.8

88
.9

80
.3

79
.7 83

.6

83
.6

80
.0

R
TX 2080Ti

%
 p

ea
k

m
em

or
y

ba
nd

w
id

th
, h

ig
he

r
is

 b
et

te
r

Kernel

Fig. 6. BabelStream Nvidia GPU results

implements any mechanism for configuring thread affinity
policies, tools like numactl may be able to counteract this
as a workaround.

2) GPUs: For GPUs, both CUDA.jl (Fig. 6) and oneAPI.jl
(Fig. 8) managed to match the first-party implementation.
This is particularly impressive for oneAPI.jl which is still
in early stages of development. For KA.jl on Nvidia GPUs,
the performance achieved is only a small step behind (~13%)
Kokkos even for the worst case. For AMD GPUs, AMDGPU.jl
performed slightly worse (~20%) than the HIP and OpenCL
implementation for simple kernels, as shown in Fig. 7. The
dot kernel presented a challenge even for HIP; we see sim-
ilar levels of reduction in performance going from HIP to
AMDGPU.jl and KA.jl. We attribute this to AMDGPU.jl’s
development status, as the project is still under heavy de-
velopment and not ready for production use. For KA.jl on
AMDGPUs, the performance is identical to the vendor-specific
AMDGPU.jl package, indicating KA.jl’s API surface maps
more directly to AMDGPU.jl, and in turn, HSA semantics.
Independent of programming language and framework, there
appears to be a lack of optimisation on AMD’s software stack
as the overall performance is slightly lower than on Nvidia
and Intel platforms.

C. miniBUDE

In this section we present performance results for the
miniBUDE benchmark.

Porting miniBUDE to Julia showed just how close the
mapping is from Julia to the underling LLVM semantics. In

0
10
20
30
40
50
60
70
80
90

100

77
.5

77
.7

76
.0

76
.0

73
.678

.3

78
.7

76
.9

76
.8

58
.6

77
.1

77
.3

75
.8

75
.9

57
.363

.6

64
.3

66
.9

67
.2

37
.5

64
.7

64
.5

67
.5

67
.4

38
.1

M
I100

OpenCL HIP Kokkos AMDGPU.jl KA.jl

0
10
20
30
40
50
60
70
80
90

100

75
.0

75
.0

74
.3

74
.3

70
.176

.4

76
.3

74
.6

74
.7

53
.3

75
.4

75
.3

71
.6

71
.7

53
.861

.6

61
.3

63
.6

58
.4

28
.8

59
.9

59
.6

62
.1

57
.0

28
.6

M
I50

Copy Mul Add Triad Dot
0

10
20
30
40
50
60
70
80
90

100

80
.2

80
.4

78
.5

78
.5

77
.280
.6

80
.8

77
.5

77
.5

64
.7

80
.3

80
.3

75
.2

75
.1

54
.1

67
.4

65
.1

67
.2

66
.5

39
.1

64
.1

62
.0 66

.2

66
.2

39
.0

R
adeon VII

%
 p

ea
k

m
em

or
y

ba
nd

w
id

th
, h

ig
he

r
is

 b
et

te
r

Kernel

Fig. 7. BabelStream AMD GPU results

0
10
20
30
40
50
60
70
80
90

100

86
.2

85
.8

81
.6

80
.6

68
.5

87
.1

85
.8

79
.3

79
.6

68
.9

85
.8

84
.7

80
.3

82
.1

61
.8

U
H

D
 P630

SYCL OpenCL oneAPI.jl

Copy Mul Add Triad Dot
0

10
20
30
40
50
60
70
80
90

100

89
.4

75
.8

76
.4

79
.2

68
.7

89
.4

76
.2

72
.0 75
.6

68
.7

89
.2

74
.9

73
.6

76
.1

65
.4

IrisPro 580

%
 p

ea
k

m
em

or
y

ba
nd

w
id

th
, h

ig
he

r
is

 b
et

te
r

Kernel

Fig. 8. BabelStream Intel GPU results

the extreme case, certain optimisations used in optimising
C/C++ code remain effective in Julia. For example, the use of
unsigned integers for induction in the hot loop still produces
suboptimal kernels for both CPUs and GPUs. As a side effect
of this proximity to LLVM internals, performance is easily
affected by the lack of type annotations, something that is
handled by the Julia runtime with dispatches based on dynamic
types.

1) CPUs: For CPUs, Julia performed relatively well for the
x86 architecture, as shown in Fig. 9. On EPYC, upon inspect-
ing the generated native code via the @code_native macro,

O
pe

nM
P

Ko
kk

os
Ju

lia
KA

.jl

0

10

20

30

40

50

41
.0 42

.9

34
.8

3.
7

EPYC 7742

O
pe

nM
P

Ko
kk

os
Ju

lia
KA

.jl

42
.4

42
.7

29
.1

9.
1

Xeon 6230

O
pe

nM
P

Ko
kk

os
Ju

lia
KA

.jl

27
.3

25
.6

12
.0

4.
5

ThunderX2

O
pe

nM
P

Ko
kk

os
Ju

lia
KA

.jl

7.
3

7.
3

2.
2

1.
4

A64FX

O
pe

nM
P

Ko
kk

os
Ju

lia
KA

.jl

32
.1 34

.0

19
.8

12
.8

Apple M1

%
 p

ea
k

FL
O

P/
s,

 h
ig

he
r

is
 b

et
te

r

Fig. 9. miniBUDE CPU results

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
0

10

20

30

40

E
PYC

 7742

OpenMP Kokkos Julia

1 4 8 12 16 20 24 28 32 36 40
0

10

20

30

40

Xeon 6230

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

10

20

30

40

ThunderX2

1 4 8 12 16 20 24 28 32 36 40 44 48
0

10

20

30

40

A64FX

%
 p

ea
k

FL
O

P/
s,

 h
ig

he
r

is
 b

et
te

r

Threads

Fig. 10. miniBUDE CPU scaling results

Julia successfully emitted AVX2 instructions. Comparing this
with LLVM’s assembly, we see highly similar structure with
only a handful of cases where Julia uses the packed version
of the vector instructions. After further investigation, it is not
clear why Julia showed a ~15% reduction in performance com-
pared to the OpenMP implementation. For Xeon, we identified
that Julia did not emit AVX512 instructions. On OpenMP,
and by extension, Kokkos, both implementations successfully
emitted AVX512 instructions when compiled using the correct
set of optimisation flags. We were able to confirm that the lack
of AVX512 contributed to the significantly lower performance
(>30% difference) by replacing -march=skylake-avx512
-mprefer-vector-width=512 with just -march=skylake
on both the OpenMP and Kokkos implementation. With the
non-AVX512 version of OpenMP and Kokkos, Julia showed
nearly identical performance.

KA.jl on CPUs for miniBUDE achieved much lower per-
formance though KA.jl mentioned in the documentation that
execution on CPUs is not currently a priority. At the time of
writing, KA.jl states that no specific optimisation has been
done for CPUs beyond verification that the code produces the
correct results. The inability for KA.jl to correctly compile
JuliaStream.jl’s Dot kernel due to the use of synchronisations
as discussed in Section V-B further solidifies the untested state
of running KA.jl kernels on CPUs.

For AArch64 platforms, both LLVM and Julia performed
poorly on A64FX whereas Julia is significantly slower than
LLVM on TX2 and M1. For A64FX and TX2, ArmClang’s
optimisation report and Julia assembly output showed no
obvious issues, both implementations were emitting vectorised
code. Testing with the non-Arm variant of LLVM and also
Julia 1.7.0 also showed no major improvement. Investigating
this further, we found that in A64FX’s case, only Fujitsu’s
compiler was able to produce performance that is closer to the
40% theoretical FP32 performance obtained on x86 platforms.
We understand that the coming LLVM 13 will support auto
vectorisation with SVE on AArch64 platforms, and we expect
that LLVM 13 will perform much better on A64FX, though
this is yet to be validated.

For miniBUDE, there is a third level of for-loop after the
cartesian iteration of proteins and ligands; this is done to
facilitate vectorisation and not part of the algorithm shown
in Algorithm 2. This structure is highly sensitive to missed
optimisations as the effects are further amplified by the
workgroup size. Given that both Julia and LLVM had some
quirks on optimising BabelStream’s Dot kernel on AArch64,
we suspect this structure, along with the math operations in
the miniBUDE kernel, contributed in making optimisation for
miniBUDE even more challenging. This problem is also made
worse on newer platforms such as A64FX. In general, we find
that current compilers still produce less optimised code for
AArch64 compared to the more ubiquitous x86 platform.

We present scaling results in Fig. 10 on CPU platforms, M1
is omitted for the same reason as discussed in Section V-B. As
miniBUDE is compute bound, Julia scales similarly to Kokkos
and OpenMP, demonstrating Julia’s mature threading support.

C
U

D
A

O
pe

nC
L

Ko
kk

os

C
U

D
A.

jl

KA
.jl

0

10

20

30

40

50

30
.0

25
.3

18
.9

24
.8

17
.3

A100

C
U

D
A

O
pe

nC
L

Ko
kk

os

C
U

D
A.

jl

KA
.jl

49
.9

41
.6

32
.5 36

.0

25
.4

V100

C
U

D
A

O
pe

nC
L

Ko
kk

os

C
U

D
A.

jl

KA
.jl

45
.9

38
.4

26
.6

31
.8

23
.0

RTX 2080Ti

%
 p

ea
k

FL
O

P/
s,

 h
ig

he
r

is
 b

et
te

r

Fig. 11. miniBUDE Nvidia GPU results

O
pe

nC
L

H
IP

Ko
kk

os

AM
D

G
PU

.jl

KA
.jl

0

10

20

30

40

50

10
.2

6.
3

4.
5

13
.6

10
.1

MI100

O
pe

nC
L

H
IP

Ko
kk

os

AM
D

G
PU

.jl

KA
.jl

20
.3

12
.4

9.
0

19
.7

17
.5

MI50

O
pe

nC
L

H
IP

Ko
kk

os

AM
D

G
PU

.jl

KA
.jl

21
.9

13
.3

6.
5

19
.8

16
.0

Radeon VII

%
 p

ea
k

FL
O

P/
s,

 h
ig

he
r

is
 b

et
te

r

Fig. 12. miniBUDE AMD GPU results

SYCL OpenCL oneAPI.jl
0

10

20

30

40

50

42
.4

37
.5 38
.9

UHD P630

SYCL OpenCL oneAPI.jl

43
.2

34
.3

34
.6

IrisPro 580

%
 p

ea
k

FL
O

P/
s,

 h
ig

he
r

is
 b

et
te

r

Fig. 13. miniBUDE Intel GPU results

2) GPUs: For GPUs, CUDA.jl is within ~30% of the first-
party implementations, as shown in Fig. 11. In this case,
Julia was able to produce code that achieved performance
between Kokkos and OpenCL, two C/C++ derived third-party
frameworks. Although slower than all other implementations,
KA.jl is only slightly behind Kokkos.

Results for AMD GPUs are shown in Fig. 12 where
AMDGPU.jl was able to outperform most other implemen-
tations, tying with OpenCL. This is surprising given that
AMDGPU.jl fell short of first-party results from Section V-B.

We again attribute this to the immaturity of the ROCm
platform as the best performing framework was only able to
achieve 20% of the theoretical FP32 performance, in contrast
to Intel and Nvidia where 40% ~50% is the norm. As expected,
KA.jl followed closely behind AMDGPU.jl thanks to the close
mapping.

Finally, Julia performed similarly to both SYCL and
OpenCL on Intel GPUs, as shown in Fig. 13. This is partic-
ularly encouraging for the oneAPI.jl project as performance
seems to be on-par with first-party implementations across
memory-bandwidth bound (as shown in Fig. 8) and compute
bound scenarios.

VI. CONCLUSION

We ported two mini-apps to Julia to show how it is effective
at achieving high performance on a range of devices for both
memory-bandwidth and compute bound applications.

For BabelStream, we observed nearly identical performance
to the OpenMP and Kokkos versions on the CPU, with the
exception of the Dot kernel on A64FX. As A64FX is a
relatively new platform, even LLVM required extra compiler
options for optimal performance. We were able to verify that
with the latest beta release of Julia, along with a transformation
of the reduction kernel to expose the dot product expression,
Julia was able to match LLVM’s performance. For GPUs,
Julia’s various GPU packages again performed very close
(~15%) to first-party frameworks. On AMD platforms, Julia’s
AMDGPU.jl package is about 40% slower than the best
performing framework, we attribute this to the ROCm stack’s
immaturity and AMDGPU.jl’s beta status.

For miniBUDE, we get a better view on how well Julia
handles floating point optimisations. In general, x86 CPU
platforms performed well, although Julia was not able to
emit AVX512 on platforms that support it. On AArch64, we
observe difficulties for both LLVM and Julia to achieve a
high percentage of the theoretical FP32 performance with Julia
significantly slower than LLVM results. We believe compiler
backends targeting AArch64 have yet to reach the same level
of maturity for x86 platforms at the current stage. On GPUs,
Julia performed similarly to what OpenCL is getting and it
is usually less than 25% difference from the best performing
framework. Which is to say, Julia is competitive for compute
bound applications on GPUs.

Julia largely follows Python’s batteries included motto
when it comes to productivity. Many of the GPU packages
even handle downloading software dependencies and config-
uring the host system for use with Julia’s GPU support. For
example, CUDA.jl retrieves the appropriate CUDA SDK from
Nvidia on first launch.

In addition, because of Julia’s JIT execution model, along
with an ergonomic package system, creating a program
that supports multiple accelerators from different vendors is
straightforward. Traditionally, mixing frameworks that require
different host compilers (e.g. nvcc for CUDA or hipcc for
HIP) requires special attention to the overall project design
to avoid compilation issues; programmers frequently have

to resort to compiler-specific workarounds in the codebase
and implement fragile and complex build scripts. In fact, the
Kokkos framework was designed specifically to abstract this
complexity away with highly sophisticated build scripts. Julia
was able to avoid all this.

Currently, except KA.jl, Julia’s kernel portability is tied to
each of the GPU packages. In effect, writing optimised kernels
for multiple vendors still requires a manual port. However, as
each of the GPU packages share similar capabilities, the effort
required is usually limited to basic API call substitutions. We
look forward to seeing KA.jl support more platforms under
the JuliaGPU umbrella.

Thanks to Julia’s approach on reusing large parts of the
LLVM project, Julia programs enjoys comparable performance
to native C/C++ solutions. And thanks to the concentrated
effort from the open-source communities on improving LLVM,
Julia gets the unique opportunity to provide best-in-class
performance on some of the latest hardware platforms. In
general, we find Julia’s language constructs map closely to
the underlying LLVM Intermediate Representation under ideal
conditions with precisely ascribed types; various conventional
optimisation techniques and pitfalls in C/C++ still hold.

To this end, Julia offers us a glimpse of what is possible
in terms of performance for a managed, dynamically-typed
programming language. Given the overall performance-guided
design of Julia, the LLVM-backed runtime, and comparable
performance results shown here, we think Julia is a strong
competitor in achieving a high level of performance portability
for HPC use cases.

ACKNOWLEDGMENT

This work used Intel’s DevCloud online cluster for de-
velopers (https://intelsoftwaresites.secure.force.com/devcloud/
oneapi). This work used the Isambard UK National Tier-2 HPC
Service (https://gw4.ac.uk/isambard) operated by GW4 and
the UK Met Office, and funded by EPSRC (EP/P020224/1).
This work used the HPC Zoo, a multi-platform research
cluster managed by the High-Performance Computing Group
at the University of Bristol (https://uob-hpc.github.io/zoo).
This work used the DiRAC@Durham facility managed by
the Institute for Computational Cosmology on behalf of the
STFC DiRAC HPC Facility (www.dirac.ac.uk). The equip-
ment was funded by BEIS capital funding via STFC cap-
ital grants ST/P002293/1,ST/R002371/1 and ST/S002502/1,
Durham University and STFC operations grant ST/R000832/1.
This work was also performed using resources provided by
the Cambridge Service for Data Driven Discovery (CSD3)
operated by the University of Cambridge Research Computing
Service (www.csd3.cam.ac.uk), provided by Dell EMC and
Intel using Tier-2 funding from the Engineering and Physical
Sciences Research Council (capital grant EP/P020259/1), and
DiRAC funding from the Science and Technology Facilities
Council (www.dirac.ac.uk). DiRAC is part of the National e-
Infrastructure.

https://intelsoftwaresites.secure.force.com/devcloud/oneapi
https://intelsoftwaresites.secure.force.com/devcloud/oneapi
https://gw4.ac.uk/isambard
https://uob-hpc.github.io/zoo
www.dirac.ac.uk
www.csd3.cam.ac.uk
www.dirac.ac.uk

REFERENCES

[1] K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov, “AddressSanitizer: A Fast Address Sanity
Checker,” in Proceedings of the 2012 USENIX Con-
ference on Annual Technical Conference, ser. USENIX
ATC’12. USA: USENIX Association, 2012, p. 28.

[2] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman,
“Julia: A Fast Dynamic Language for Technical
Computing,” CoRR, vol. abs/1209.5145, 2012. [Online].
Available: http://arxiv.org/abs/1209.5145

[3] T. Deakin, A. Poenaru, T. Lin, and S. McIntosh-Smith,
“Tracking Performance Portability on the Yellow Brick
Road to Exascale,” in Proceedings of the Performance
Portability and Productivity Workshop P3HPC. United
States: Institute of Electrical and Electronics Engineers
(IEEE), Sep. 020.

[4] T. Deakin, S. McIntosh-Smith, J. Price, A. Poenaru,
P. Atkinson, C. Popa, and J. Salmon, “Performance
portability across diverse computer architectures,” in
2019 IEEE/ACM International Workshop on Perfor-
mance, Portability and Productivity in HPC (P3HPC).
IEEE, 2019, pp. 1–13.

[5] J. Regier, K. Fischer, K. Pamnany, A. Noack, J. Revels,
M. Lam, S. Howard, R. Giordano, D. Schlegel,
J. McAuliffe, R. Thomas, and Prabhat, “Cataloging
the visible universe through Bayesian inference in
Julia at petascale,” Journal of Parallel and Distributed
Computing, vol. 127, pp. 89–104, 2019. [Online].
Available: https://www.sciencedirect.com/science/article/
pii/S0743731518304672

[6] T. Besard, C. Foket, and B. De Sutter, “Effective
extensible programming: Unleashing julia on gpus,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 4, pp. 827–841, 2019.

[7] A. Ramadhan, G. L. Wagner, C. Hill, J.-M. Campin,
V. Churavy, T. Besard, A. Souza, A. Edelman, R. Ferrari,
and J. Marshall, “Oceananigans.jl: Fast and friendly
geophysical fluid dynamics on GPUs,” Journal of Open

Source Software, vol. 5, no. 53, p. 2018, 2020. [Online].
Available: https://doi.org/10.21105/joss.02018

[8] T. Clements and M. A. Denolle, “SeisNoise.jl: Ambient
Seismic Noise Cross Correlation on the CPU and GPU
in Julia,” Seismological Research Letters, 09 2020.
[Online]. Available: https://doi.org/10.1785/0220200192

[9] M. Innes, “Flux: Elegant Machine Learning with Julia,”
Journal of Open Source Software, 2018.

[10] N. R. Mamidi, K. Prasun, D. Saxena, A. Nemili,
B. Sharma, and S. M. Deshpande, “On the performance
of GPU accelerated q-LSKUM based meshfree solvers
in Fortran, C++, Python, and Julia,” 2021.

[11] S. Hunold and S. Steiner, “Benchmarking Julias Commu-
nication Performance: Is Julia HPC ready or Full HPC?”
in 2020 IEEE/ACM Performance Modeling, Benchmark-
ing and Simulation of High Performance Computer Sys-
tems (PMBS), 2020, pp. 20–25.

[12] JuliaLang, “Multi-Threading.” [Online]. Available:
https://docs.julialang.org/en/v1/base/multi-threading/
#Base.Threads.@threads

[13] J. D. McCalpin et al., “Memory bandwidth and machine
balance in current high performance computers,” IEEE
computer society technical committee on computer ar-
chitecture (TCCA) newsletter, vol. 2, no. 19-25, 1995.

[14] T. Deakin, J. Price, M. Martineau, and S. McIntosh-
Smith, “Evaluating attainable memory bandwidth of par-
allel programming models via BabelStream,” Interna-
tional Journal of Computational Science and Engineer-
ing, vol. 17, no. 3, pp. 247–262, 2018.

[15] A. Poenaru, W.-C. Lin, and S. McIntosh-Smith, “A
performance analysis of modern parallel programming
models using a compute-bound application,” in High
Performance Computing, B. L. Chamberlain, A.-L. Var-
banescu, H. Ltaief, and P. Luszczek, Eds. Cham:
Springer International Publishing, 2021, pp. 332–350.

[16] JuliaGPU, “@synchronize inside while loops doesn’t
work on CPUs,” https://github.com/JuliaGPU/
KernelAbstractions.jl/issues/262, 2021.

http://arxiv.org/abs/1209.5145
https://www.sciencedirect.com/science/article/pii/S0743731518304672
https://www.sciencedirect.com/science/article/pii/S0743731518304672
https://doi.org/10.21105/joss.02018
https://doi.org/10.1785/0220200192
https://docs.julialang.org/en/v1/base/multi-threading/#Base.Threads.@threads
https://docs.julialang.org/en/v1/base/multi-threading/#Base.Threads.@threads
https://github.com/JuliaGPU/KernelAbstractions.jl/issues/262
https://github.com/JuliaGPU/KernelAbstractions.jl/issues/262

APPENDIX

Artifact Description

We ran the BabelStream and miniBUDE mini-app on a wide
range of hardware platforms listed in Table II.

Artifacts Available: Source code for JuliaStream.jl is cur-
rently in the process of being merged into BabelStream.
The Pull Request, along with reviews from members of the
Julia community is available at https://github.com/UoB-HPC/
BabelStream/pull/106. Source code for miniBUDE.jl is now
part of the miniBUDE benchmark, available at https://github.
com/UoB-HPC/miniBUDE.

We have created scripts to help make the results in
this paper reproducible. The source code can be found
at https://github.com/UoB-HPC/performance-portability/tree/
2021-benchmarking.

Experimental setup: See Table II for a list of hardware
platforms used and Section V-A for versions on the software
stack.

Artifact Evaluation

Performed verification and validation studies: Each mini-
app contains built-in verification for correctness. For Babel-
Stream, the results are validated against a simple host version
that implements all the kernels. Benchmark measurements uses
the best result over 100 runs. For miniBUDE, the results are
validated against the known values of the input deck. Bench-
mark measurements contains warm-up and measurements are
derived over an 8 iteration average.

Validated the accuracy and precision of timings: For Babel-
Stream, benchmark measurements use the best result over 100
runs. We also cross-check results with existing literature where
possible. For miniBUDE, benchmark measurements contain
warm-up and measurements are derived over an 8 iteration
average. We also cross-check results with existing literature
where possible.

Used manufactured solutions or spectral properties: N/A
Quantified the sensitivity of your results to initial conditions

and/or parameters of the computational environment: Both
BabelStream and miniBUDE contained warm-up iterations or
equivalent.

Describe controls, statistics, or other steps taken to make the
measurements and analyses robust to variability and unknowns
in the system: N/A

https://github.com/UoB-HPC/BabelStream/pull/106
https://github.com/UoB-HPC/BabelStream/pull/106
https://github.com/UoB-HPC/miniBUDE
https://github.com/UoB-HPC/miniBUDE
https://github.com/UoB-HPC/performance-portability/tree/2021-benchmarking
https://github.com/UoB-HPC/performance-portability/tree/2021-benchmarking

	Introduction
	Background
	Julia
	Contribution

	Related work
	Julia ecosystem
	Mini-apps in the study
	BabelStream
	miniBUDE

	Results
	Platform software setup
	BabelStream
	CPUs
	GPUs

	miniBUDE
	CPUs
	GPUs

	Conclusion

