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COMPARISON OF SOME TIME-
DOMAIN-SYSTEM IDENTIFICATION
TECHNIQUES USING APPROXIMATE
DATA CORRELATIONS

by J.E. Cooper, Royal Aircraft Establishment

ABSTRACT—Most time-domain methods used for modal analysis
perform a curve fit to impulse-response data and use the least-
squares method as an integral part of their formulations. It is
well known that when the data are corrupted, least squares leads
to biased parameter estimates, with the damping values being
especially sensitive, A number of noniterative techniques that
attempt to eliminate the bias—instrumental matrix with delayed
observations, double least squares, correlation fit and total least
squares—are compared with least squares in terms of the
approximate data autocorrelations used in the curve fit. The
theoretical comparison is complemented by statistical comparisons
upon simple simulated systems. As well as the ability of the
methods to reduce the bias on damping estimates, ease of
implementation and computational requirements are also
investigated.

List of Symbols

a; = difference equation coefficient

e; = error upon measurement value
I =+(-1)
j,k = Integer counters
M = number of system modes
N = number of data points

NA = number of autocorrelation rows used

p = number of rows missed out
R,,(k) = R, = output autocorrelation at lag £
R,.(k) = crosscorrelation of output and residual at
lag &
r = vector of autocorrelations
s = time delay for IMDO method

y(jAt),y; = output value at time jAz
vector of output values
sampling interval

¢; = residual value
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= vector of residuals

damping ratio

matrix of output values

matrix of time shifted output values
vector of a; coefficients
eigenvalues of TLS method

roots of characteristic polynomial
matrix of output autocorrelations
vector of residual crosscorrelations
delayed observation matrix
natural frequency

= damped natural frequency
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Introduction

Recently there has been a lot of interest in finding struc-
tural modal parameters using time-domain methods rather
than the more traditional frequency-domain approaches. The
majority of time-domain techniques perform a curve fit to
impulse-response data, though free-decay response data
could be used as well. It can be shown that the techniques
are effectively finding the coefficients of an autoregressive
difference equation, from which the modal parameters are
calculated.

The least-squares method is an integral part in the formula-
tion of a large number of techniques. It is well known that
when the data are corrupted, least squares leads to biased
parameter estimates, with the damping values being especially
sensitive [1]. Blas is defined as the statistical error on the
estimates. To counteract the bias, overspecification of the
model order is usually used; however this leads to spurious
modes that have to be distinguished from the system modes.

Various other methods have been developed in order to
eliminate the bias in the parameter estimates. Those developed
in the system field tend to try and model the noise and are
iterative in nature. Often they have been considered too
computationally intensive to employ on the multi-input/multi-
ouptut (MIMO) data encountered in modal testing. A num-
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ber of noniterative techniques exist which attempt to avoid
the terms that give rise to the bias. These methods will be
considered in this work.

In this paper the curve fit in terms of output data auto-
correlation points will be investigated. Using this approach
it is possible to illustrate how the bias in the least-squares
method originates and how the other rechniques artemprt to
avoid the bias. The methods will also be compared statistically
on simulated data corrupted with measurement noise in
order to corroborate the theoretical findings. Only the
damping values will be considered in the comparison as they
are particularly sensitive to noise.

1. Mathematical Model

The model will be developed in terms of single input/
siagle output (SISO) although it can be easily extended for
multiple responses. The decaying response of a damped M
degree of freedom system at a particular point can be written
as the summation of M exponentially damped sinusoids. An
alternative representation to this is the 2Mth-order auto-
regressive equation:

Yi = T Y1 @ Y2 = dom Yi-am (1)
whose coefficients are related to the modal parameters via
the roots of the characteristic polynomial

M+ apt + Aapgmr o+ Gae = 0 (2)

For the underdamped case considered here the roots of the
above polynomial occur in M complex conjugare pairs y; and
u; where for each mode p = ¢™' with « = — {w + fwa. By
finding the coefficients of the difference equation it is possible
to calculate the system frequencies and dampings. The ampli-
tude and phase terms follow from a separate procedure that
will not be considered here. Some methods find a system
matrix whose eigenvalues lead to frequencies and dampings
and whose eigenvecrors lead to the mode shapes.
In this work the crosscorrelation between the data se-
quences y; and ¢; will be taken as
‘ 1 N-k
Ry (k) = N—k ot} Vi€ (3)

However slight changes in the limits of summations will be
ignored. This is a valid approximation to make when there
are a large number of data points. For ease of notation let
Re = Ry, (k).

2. Correlations Being Fitted by
Each Method

It is usual to model any corruption occuring on the data
by the residual sequence ¢; [2] so that

VS — Yoy — - Ty Yjam t & )

or, in terms of approximate correlations,

Ry(k)+aRy(k—1)+ ... +amR,(k—2M) = R,.(k)

(5)

Biased estimates are obtained when the correlation curve fit
includes points containing errors from the residual sequence.
For the case where the noise sequence is ‘white’ it can be
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shown that the output autocorrelations are all uncorrupted
except for Ro which has an error value of R,,(0) added to it.

A single degree of freedom (DOF) response will be taken
as an example in order to compare which correlation lag
values each method uses for the curve fit. From eq (1) it can
be seen that a second-order difference equation model is
required.

(a) Least Squares (LS)

Extending eq (4) in a column-wise direction,
Ya =1 ) bJ) - d +1 &
Ya Ya Yz — a2 €4
v Ywv-1 Vw2 En
or

y=¢0+e (6)

Least squares [2] minimizes the function e¢7e which gives a
solution for the system parameters as

g =1(¢70) 07y (7)

In terms of approximate correlations this can be written as

R, R, R, 8
I B A B
R, Ry Re
so it is seen that the number of correlations used is dependent
upon the order of the mathematical model rather than the
number of data points used. A collocation fit is performed,
as the minimum number of points needed is being used, so
the curve goes through every point and no smoothing occurs.
Any corruption on the correlation values, for instance a
‘spike’ at R, will result in erroneous parameter estimates. [t
can also be noted that if the sampling interval is very small,
the curve fit will be more sensitive to corruption. This is why

decimating the data [3] (increasing At) provides better
estimates.

(b) Instrumental Matrix with Delayed
Observations (IMDO)

There are a number of instrumental-variables [2] methods
which work by essentially wrying to find a sequence that is
uncorrelated with the residual sequence. Most of the tech-
niques are iterative in nature. However the IMDO [4]
approach considered here is not. Instead of attempting to
generate the sequence of ‘instrumental variables’, observation

“values at a delayed time s At are taken.

Taking the system equation and multiplying by matrix ¥7

where
¥ = [y2~s Ya-s }’N—l—s]
Yies  Ya-s Yn-2-5

YTy = YT 6+ Ve (9)

then



and if the expected value E{¥T¢} = 0 then unbiased
answers will be obtained. In terms of the correlations being

-used, the equation

Rs+l - Rs Rs-l Q
(10)
Rs+z an Rs
is being solved. Once again a collocation fit of four cor-
relation points is used. However the points are shifted away

from those containing the corruption provided that delay s is
large enough. Least squares is the special case whens = 0.

(¢) Correlation Fit (CF)

The correlation-fit method was developed {3, S] with the
philosophy of trying to improve upon the problems that the
least-squares method incurs in terms of a fir to the correla-
rions. Considering the same system as above, the difference
eq (S) relaring the correlations is extended columnwise
however the first p rows are ignored assuming that they
contain corrupted values. The matrix equation

Rp-H = Rp Rp-| [—‘ al] + Rye(p + 1)
de-} R;,wr Rp — dy Rye \ p + 2)
Ruasp Ryvasp—1 Ruasp- R,.(NA +p)
or
=xf+g (11)

is obtained and minimizing 27Q in a similar fashion to the
usual LS approach gives a CF estimate of
o= (x"x)'x"r (12)

which is theoretically unbiased provided p is large enough.
Correlation fit therefore improves upon the problems that
least squares has by missing out those correlations that are
corrupted and also by being able to fit an arbitrary number
of correlations in the fit. Least squares is the special case
where p = 0 and NA = 2. A variant of CF has appeared
in the literature called the over-extended Yule-Walker (OYW)
method [6] which allows an arbitrary number of correlations
but does not miss out any of the corrupted equations.

More than the minimum number of points required are
used by CF, so a collocation fit is not performed and smooth-
ing occurs in the fit.

(d) Double Least Squares

The approach considered here is a variant of the tech-
nique used by Ibrahim [1] and also Juang and Pappa [7] to
produce much better parameter estimates, especially for the
damping values. The usual LS approach can be shown to
always produce a positive bias on the damping estimates for
the one degree of freedom case, and this finding is usually
borne out in practice on much more complicated systems.

if the system equations are multiplied by a data matrix

™" where
(bAT = l:ys Ya cae Y ]
Yz Y3 .. Yu=r

then
Ty = ¢l + T (13)

and the matrix is using a time shift of one data point
(effectively s = —1 in the IMDQO method). If the expected
value E{® "¢} = 0 then

g = (™) ¢y (14)
In terms of the correlations used it is found thar

Ro A = R—l R—z Q
(15)
R, R, R.,

It can be demonstrated that for the one-DOF case the bias
upon the damping value is always negative. This generally
occurred in the studies mentioned above. The DLS method
averages the LS estimate with the estimate just derived with
the hope that the bias of the two estimates will cancel out.
It is possible to formulate the DLS method so that only a
fraction more computation is used than the LS method on
its own.

In practice the bias does not disappear as the amount of
bias is dependent upon the sampling rate. For a large number
of points per cycle the bias will remain negative. Again this
has been found in practice as it 1s usually the lower frequency
modes that are investigated. However it is feasible for a
positive damping bias to occur.

(e) Total Least Squares (TLS)

The LS method minimizes the square of the error on the
measurement vector y in the system equation. [t therefore
assumes that there is no error in the ¢ matrix which is
obviously an erroneous assumption as it contains measure-
ment values as well. The TLS method {8] minimizes "¢ for
the ¢ matrix as well as the y vector by letting

efe=(y"—070") (y—948)
= (-871f¢70 o7y [-6"] (16)
SACAE |

so the eigenvalue decomposition

¢7¢ ¢y | [-e]=r[-¢"

©-

(17)

T

y'e

1<

12
—_
—

- - -

exists. When the smallest eigenvalue is taken, the corre-
sponiding eigenvector gives the # value that minimizes 7. By
setting the solution in such a fashion the columns of the ¢
matrix are minimized as well as the error on the y vector. If
there is no noise on the system then it is the zero elgenvector
of the TLS matrix that is being found,

It is possible to formulate the solution using the singular
value decomposition which gives better numerical charac-
teristics to the solution, The TLS approach has been used for
the modal-analysis problem in both the time [9] and fre-
quency [10] domains. A method developed by Yang {11] is
essentially the same.

In terms of correlations the TLS eigenvalues decomposition
becomes
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(Ro—A) Ry R, 11=0
R, (Ro=X\) R -8 (18)
R, R, (Ro—\)
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Fig. 1—Autocorrelations fitted by methods for one-DOF
system
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Fig. 2—Damping scatter bands tor one-DOF system (10 Hz,
one percent), no overspecification. LS and DLS techniques
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Fig. 3—Damping scatter bands for IMDO method. One-DOF
system; no overspecification
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so the error spike on R, is included in the fit. Thus for white-
noise corruption, total least squares will give unbiased
estimates. A collocation fit similar to the LS method is being
performed but the error spike is ficted through as well.
Figure 1 shows how different combinations of autocorrelations
are fitted for a single-DOF system by the methods discussed
above.

3. Overspecification of the Mathematical
Model

All of the above methods can make use of overspecification
if required. Two purposes are served by such a procedure:
(1) when a real structure is tested the model order is un-
known so overspecification is needed to determine the model
size and (2) overspecification serves to reduce the bias.

It is essential for the LS-based techniques to use such a
measure otherwise very poor estimates are found. Any
improvement in the LS values will consequently also be
found by DLS estimates. A collocation fit is still used through
the correlation values, however more points are employed.
The ‘spike’ is essentially modeled by a combination of
spurious modes at various frequencies leaving the rest of the
curve to be represented by the desired mode.

Both LS and IMDO use 4* M points for the collocation
fit of the autocorrelarions. Theoretically the CF and IMDO
approaches only need overspecification to determine the sys-
tem modes. However in practice less scatter is obtained upon
the estimates when it is employed.

The TLS technique was originally developed assuming that
the true model order was known a priori. When over-
specification is used, the drop in the singular values indicates
what the order of the model should be. The technique
estimates the ‘zero’ eigenvalues which each provide a minimiza-
tion of the cost function. Each of the ‘zero’ eigenvectors
provides a solution, so a problem now arises as to which of
the ‘zero’ eigenvectors should be taken for the estimate.
Spurious modes still remain in the solution, though an
indication of the rank of the model is given.

4. Statistical Comparison of Methods

The approach used for the comparison was that used in
Ref. 5. Responses for systems with known modal parameters
were generated and then corrupted by sequences of Gaussian
random noise. The noise to signal ratio was taken as the
ratio of the rms of the noise sequence to the rms of the noise
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free response expressed as a percentage. Thirty different
noisy responses were analyzed for each test case in order to
examine the statistical behavior of the estimates. The sample
mean and standard deviation of the 30 damping results were
calculated and significance bands to a given level of con-
fidence centered on the mean found. The results from a
particular case can be considered to be unbiased to a certain
level of confidence (95 percent in this paper) if the true
damping value lies within the probability band. Although the
scatter of the results will not be emphasized here, a greater
width of a confidence band infers a greater scatter in the
estimate.

A 256-point response for a single-mode system with a
natural frequency of 10 Hz and critical damping of one
percent was generated with a sampling interval of 0.02
seconds. This simple system is used to illustrate the charac-
teristics of the various techniques. To provide a more
difficult test for the methods, a 256-point response of a five-
mode system with natural frequencies of 8, 10, 12, 14 and
16 Hz and critical damping values of one percent was
generated in a similar fashion with the sampling interval also
set at 0.02 seconds.

The N/S ratios considered here, especially for the single-
DOF case, are higher than would be usually expected to
occur in practice. However the extreme conditions not only
show the robustness of the methods, but also serve to illustrate
more clearly the behavior of the methods.

(a) One Degree of Freedom Results

The effect of increasing the amount of noise on the LS
estimates with no overspecification is shown in Fig. 2.
Whereas the bias upon the LS damping estimate is positive
and increases very rapidly, the alternarive approach suggested
in section 2(d) produces a negative bias which also quickly
gains in magnitude. However by combining the two estimates
the DLS estimate can be seen to give much better damping
values, though they do tend to give a slight negative bias.

The number of correlations fitted by the IMDO approach
remains the same as LS, but correlations at different lag
values are used. Figure 3 shows how increasing the value of
s initially decreases the bias and eliminates it when s = 3.
The scartter increases as more correlations are missed out and
also there is a tendency for bias to reappear if the value of s
is set too high.
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Fig. 5—Damping scatter bands for LS, CF and TLS methods.
One-DOF system, no overspecification

When the number of correlations used in the fit is increased,
the effect on the damping bias is quite marked. Starting with
the LS estimate in Fig. 4, the OYW method reduces the bias
by using more correlations. It can be seen however that some
bias still remains even when a large number of correlations
are used. By removing the correlations containing corruption
from the calculation the CF method obtains unbiased answers,
The amount of scatter on the results reduces initially as more
correlation lag values are used for the fit, though when a
large number are involved in the fit, the scatter tends to
increase slightly.

Figure S shows that it is possible for both the CF and TLS

" methods to give unbiased estimates up to quite high levels of

noise. It can be noted that the damping band for the TLS
method is about twice as wide as that of the CF technique.

Much better results are abtained, as expected, by the LS
methods when overspecification is allowed. The bias de-
creases as the model size is increased though, as Fig. 6
shows, a large model does not guarantee unbiased damping
estimates. Of course the reduction in bias is achieved at the
expense of extra computation and also by having to eliminate
the spurious modes. It can be seen that the DLS estimates
remain unbiased throughout and that there is a reduction in
the amount of scatter. Similarly the TLS results also stay un-
biased throughout but the scatter tends to vary.
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It is noted in section 3 that when overspecification is used
for the TLS rechnique there is a number of ‘zero’ eigen-
vectors that all theoretically give the correct estimate. Values
of the frequency and damping from all of the ‘zero’ eigen-
vectors for the ten-percent noise case when the model order
is assumed to be 20 are shown in Fig. 7. Whereas the varia-
tion in the frequency is less than +0.06 percent, the varia-
tion of the damping values is more marked, values between
0.77 percent and 1.14 percent being found. There is no
particular rule as to which of the ‘zero’ eigenvalue gives the
most accurate estimates. For the overspecified case considered
in this work, the first ‘zero’ eigenvector was always taken.

(b) Five Degree of Freedom Results

When applied to the 5-DOF case, the methods tended to
behave in a similar way to the single-DOF case. It was found
that the dampings were much more sensitive to corruption
and rhus the results are given only up to a five-percent N/§
ratio. In order to save on space, only the results for the 14-
Hz mode are given. The behavior of the other modes is
similar.

Figure 8 shows the effect of increasing the size of the com-
putational model on the damping estates of the 14-Hz mode.
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Fig. 8—Damping scatter bands for LS, DLS and TLS

methods. Five DOF; 14-Hz mode; five-percent noise
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As with the single-mode case considered above, the LS
estimates are very poor until a substantial amount of over-
specification is applied. Meaningless results were obtained
when the LS method was used without any overspecification.
There is a dramatic decrease in the amount of bias when the
model order was increased. The TLS technique similarly gave
very poor answers for a model size of five DOF, but with an
increase in the model order unbiased estimates of the damp-
ing values were found. The DLS approach gave much better
estimates for a model size of five DOF which became un-
biased with an increase in model size. It can be seen that the
scatter in the TLS estimates is greater than that of the other
two methods.

In Fig. 9 it can be seen that the CF method with P = 10
and NA = 20 gave unbiased estimates without any over-
specification. When the model order was increased the
amount of scatter was reduced, however a slight amount of
bias occurred when the model size was set at ten DOF. The
IMDO technique with s set at ten (P = 10) produced
meaningless estimates with a five-DOF model. And although
the six-DOF estimate is unbiased, there is a very large
amount of scatter. The scatter reduces as the order is in-
creased but then bias occurs. Only by the time that the model
is twice the system size has the bias been virtually eliminated.

Finally, Fig. 10 shows the time that each method takes to
perform 30 different test cases for increasing model orders.
The IMDO method takes the same amount of computation
as the LS technique and the OYW approach uses the same
amount of computation as the CF method when the same
number of correlations are used in the curve fit. It can be
seen that the LS method rakes:the smallest amount of time;
although due to the way that the DLS technique was imple-
mented it only uses fractionally more computation. As the
model order increases the TLS method becomes increasingly
more time consuming as it is dependent upon an eigensolver.
Although the CF technique is more expensive than the LS
method, it must be remembered that to ger a corresponding
amount of accuracy the LS method must use a much larger
model than CF and hence more computarion.

5. Discussion

When considering the autocorrelation curve fits that are
performed, the methods generally behaved as they were
expected to. Although the single-mode case provides a good
illustration of the behavior of the methods, when multi-DOF
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systems are considered the behavior of the modes is not so
clear cut. Some of the modes may be unbiased for one
particular condition whereas others may still be biased.

The LS method showed itself to be particularly sensitive to
noise as a fic through only 4* M correlation lag points is
being performed. Overspecification results in more correla-
tion points being curve ficted which in turn leads to better
estimates. The IMDO method fits the same number of
collocation points but uses those suffering from less corrup-
tion. It can be seen that the rechnique gave a much greater
amount of scatter on the estimates than the LS approach.
Although the correlation values at low lag values suffer from
corruption to a greater extent than those at higher lags, they
contain the most information about the system. So taking
out the low lag values will tend to result in more scatter on
the estimates. Both LS and IMDO find it difficult to give
relatively good estimates unless there is quite a large increase
in the model order.

The DLS method gave very good estimates considering
that it merely takes the average of two very poor estimates.
When overspecification was employed unbiased damping
values with small scatter were obtained. An added bonus is
that only a very small increase in the amount of computa-
tion over that of LS is required.

The results obtained for the CF technique show that it is
capable of returning unbiased estimates without the use of
overspecification. However there is a tendency for the tech-
nique to produce a fair amount of scatter, though nowhere
near as much as with the IMDO. Hewever it can also be
seen that the use of the method is not simply a case of
missing out the first 2¥M lags and including a lot more
correlations in the fit. A compromise needs to be made
between including autocorrelations of low-lag values in order
to include a lot of information abourt the system, and taking
out enough correlations to avoid most of the corruption.
Correlation values for high lag values tend to include little
good information about the system so their inclusion leads
to some bias.

Although theoretically the CF approach should give the
‘best’ estimates, it is difficult to achieve in practice as the
optimum number of lags needed to be used and missed out
is not clear. Multi-DOF data provide particular difficulties
as some modes behave differently than others in different
test criteria.

The TLS method performed fairly well and gave much
betrer estimates than the LS method which was expected as
the error on R, is included in the fit. Overspecification was
required to give good damping values as only the same
number of correlation points are fitted through as used with
the LS method. Surprisingly there was quite a lot of scatter
in the estimates. Possibly this is due to there being a multi-
plicity of zero eigenvectors which all give parameter estimates.
Whether all these estimates should be examined is unclear,

but this would certainly increase the amount of computation
required. As the model order increases the time required
increases at a much grearer rate than the other techniques.

Conclusions

The least-squares, instrumental-matrix with delayed-
observations, double-least-squares, correlation-fit and total-
least-squares methods were compared in terms of the auto-
correlations that are curve fitted. The theoretical comparison
was supported by a statistical comparison upon simulated
one- and five-DOF systems, [t was found that the latter
three methods performed best in the presence of noise,
liowever there were some- difficulties in implementation.
Further investigation of the behavior of these methods is
required.
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