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AN EIGENSYSTEM REALIZATION
ALGORITHM USING DATA COR-
RELATIONS (ERA/DC) FOR
MODAL PARAMETER
IDENTIFICATION"

J.-N. Juang,'J. E. CooPErRz AND J. R. WRIGHT?

Abstract. A modification to the Eigensystem Realization Algorithm (ERA) for
modal parameter identification is presented in this paper. The ERA minimum order
realization approach using singular value decomposition is combined with the
philosophy of the Correlation Fit method in state space form such that response
data correlations rather than actual response values are used for modal parameter
identification. This new method, the ERA using data correlations (ERA/DC),
reduces bias errors due to noise corruption significantly without the need for model
overspecification. This method is tested using simulated five-degree-of-freedom
system responses corrupted by measurement noise. It is found for this case that,
when model overspecification is permitted and a minimum order solution obtained
via singular value truncation, the results from the two methods are of similar
quality.

Key Words—System identification, modal testing, system realization, data correla-
tion fit, modal parameter identification.

1. Introduction

The identification of modal parameters for flexible structures from ex-
perimental data is frequently carried out using methods which operate in the
time domain. Typically a curve fit to free decay response data is performed,
based on a difference equation or state space mathematical model for the
structure. Often, data from multiple inputs and outputs are analyzed simul-
taneously to allow repeated or very close natural frequencies to be identified.
The resulting mathematical model yields global estimates for the modal frequen-
cies and dampings, the complex (i.e. damped) mode shapes and the modal
participation factors (i.e. initial modal amplitudes). The model may then be used
for comparison with theory, for control design, etc.

A common drawback of these time domain methods is that they produce
biased estimates when noise is present and the true model order used. There
are various approaches used in the system identification field for reducing bias
(Eykhoff, 1974). Firstly, a noise model can be used (e.g. Maximum Likelihood,
Generalized Least Squares) but, because the solution is iterative and the
number of unknowns is significantly increased by the noise model parameters,
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such methods have not generally been applied in modal testing. Secondly, it is
possible to reduce bias by overspecification of the model order used in the
solution (e.g. Repeated Least Squares) but additional spurious results are
generated and need to be rejected via some criteria. This overspecification
principle is used in some of the common time domain modal testing techniques.
Thirdly, it is possible to eliminate or minimize the effect of the terms that cause
bias using methods such as Instrumental Variables and Correlation Fit (Cooper
and Wright, 1985). The Correlation Fit method, which is non-iterative and does
not rely upon model overspecification, is potentially suitable for modal testing
and was shown in Cooper and Wright (1985; 1986) to compare favorably to other
approaches. In essence, the method is a curve fit to data correlations.

A further least squares modal testing method is the Eigensystem Realization
Algorithm (ERA) (Juang and Pappa, 1985) developed at the NASA Langley
Research Center. This state space method makes use of model overspecifica-
tion in the initial stage in order to reduce bias. Spurious results are minimized by
including the singular value decomposition in its formulation to transform the
problem to one of minimum order. In practice, it appears that the process of
reducing an overspecified model order by singular value truncation has beneficial
effects of reducing bias.

It was pointed out in Cooper and Wright (1986) that it is possible to replace
the Least Squares element in many time domain methods by the Correlation Fit
approach. In this paper the ERA and Correlation Fit philosophies have been
combined to produce the Eigensystem Realization Algorithm using Data Cor-
relations (ERA/DC), to study whether the identification obtained using the ERA
can be improved upon. The basic formulation of the ERA/DC is presented and
results are obtained for simulated five-degree-of-freedom system response data
corrupted with measurement noise. The performance of the ERA and ERA/DC
is discussed in relation to the accuracy of modal damping estimates.

Nomenclature
A : state transition matrix
b input matrix
C : output matrix
D : diagonal matrix of singular values
E., : block selection matrix
H(k) : block data matrix
L, : identity matrix of order ¥
i, 7, k, | :integer counters
m : number of inputs
O : null rectangular matrix
P : orthonormal matrix
@ : orthonormal matrix
q : initial lag value
R () : correlation matrix
7 : correlation lag increment
s; : data sample integer

t; - data sample integer
U(q) : block correlation matrix
U* : pseudo-inverse of U(q)
u(k) : input vector
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Ve, V, : observability matrices
W., W,, Wg: controllability matrices
x(k) : state vector
Y (k) : output matrix
y(k) : output vector
a, f:integers defining number of correlation blocks
Y : integer defining matrix dimensions
1, & :integers defining number of matrix blocks
[ : number of outputs

2. Basie formulation

A finite-dimensional, discrete time, linear, time invariant dynamic system
can be represented by the state-variable equations,

x(k+1) = Ax(k) + Bu(k), (1)
y(k) =Cx(k), B=1,2, (2)

where x is an n-dimensional state vector, u is an m-dimensional input or control
vector and y is an [-dimensional output or measurement vector. The integer & is
the sample indicator. The state transition matrix A characterises the dynamics
of the system. For flexible structures, the matrix A is a representation of mass,
stiffness and damping properties.

A special solution to the state-variable equations (1) and (2) is the impulse
response function (known as the Markov parameter),

Y(k) = CA*'B, k=1,2, ", (3)

where Y(k) is an [Xwm matrix whose columns are the impulse response
corresponding to the m inputs. A similar expression exists for the initial state
response.

The problem of minimal system realization is as follows; given the functions
Y(k) from measurements, construct a set of constant matrices [A, B, C]in
terms of Y(k) such that the identities of Eq. (3) hold and the order of A is
minimum.

The Eigensystem Realization Algorithm with Data Correlations (ERA/DC)
begins in a similar way to the ERA (Juang and Pappa, 1985) by defining the
(E+1) by (n+1) block data matrix (or generalized Hankel matrix)

Y(k) Yk+t) Y(k+t,)
Y(51+k) Y(Sl+k+t1) ¢
H(k-1) = & . ; 5 4)
Y(set+k) T Y(sg+k+ty)
‘where s; =1, 2, -+, Eand ¢; 1=1, 2, -+, n) are arbitrary integers (see

Juang and Pappa, 1986). Note that it is possible to write the block data matrix,
and the subsequent analysis, using the more general form of Juang and Pappa
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(1986). From Egs. (3) and (4) it can be shown that

c
CA”
s ke . £
Hk) = VeA" Wy, Ve = | . 5)
and W, = [B, A"B, ---, A"B]

where Vg and W, are observability and controllability matrices of dimensions
(§+1)Ixn and nX(n+1)m respectively. If the rank of V¢ and W, is » then the
nth order system defined by [A, B, C]is controllable and observable.

Whereas the standard ERA method proceeds from this point using the block
data matrix H(0), the ERA method with Data Correlations (ERA/DC) requires
the definition of a square matrix of order Y=(&+1)/,

R(q) = H(@H'(0) = VEA"W, W,V = VAW, (6)
where W.=W, W, Vs'. The matrix R(g) consists of approximate auto correla-
tions of outputs and cross correlations between outputs, at lag time values in the
range ¢ *sg, summed over the m inputs. An (a+1) by (8+1) block correlation
matrix is then formed,

R(g+7) R(g+27) :
U(Q) - : .
rlaten == U R(g+ (et B)n)
o
V.A"
=| % AW, AW, -, AT
VA«
= VaWﬁv (7)

where ¢ is an integer chosen to avoid correlation terms which give rise to bias
when noise is present, r is an integer chosen to prevent significant overlap of
adjacent R blocks. The integers « and f define how many correlation lags are
included in the analysis. The matrices V,, and Wy can be called block correlation
observability and controllability matrices of dimension («¢+1)¥Xn and
nX(B+1)Y respectively.

The ERA/DC process continues with the factorization of the block correla-
tion matrix U(g) (as opposed to H(0) in the ERA) using singular value
decomposition so that

Ulg) = PDQ’, (8)

where the columns of P((a+1)Yx#x) and Q((Bf+1)Y%xn) are orthonormal and D
is an nX#n diagonal matrix containing the n singular values of U(g) that are
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considered significant, based on some truncction criteria such as maximum
signal/noise ratio (see Juang and Pappa, 1986). Note that the above factorization
is approximate if noise is present because the discarded singular values are

non-zero.
The pseudo-inverse U#* of the matrix U(q), after the singular value

truncation, is defined by
UlgpU*U(g) = Ug). (9)
It can be shown using Eqgs. (7) and (9), that
U* = QD'P’ (10)
and also, using Egs. (7) and (9), that
WsU*V, = 1,, (11)

where I, is an identity matrix of order n. Define E,"=[I, 0] and Eyrz (L, g] as
block selection matrices where I, is an identity matrix of order ¥, and 0 and 0 are
null matrices with appropriate dimensions. Following a similar approach to that
presented in Juang and Pappa (1985), a minimum (or reduced) order realization
of dimension # can be obtained, with the aid of Egqs. (6)-(11), from

R(g+j) = E,'UG+)E, = E,V,AWsE,
= E, Vo [WsU*V A (W, U*V IW4E,
- E),TPD%[D%PTVQAJ’ W,jc;)zfl’]zﬁQ"Ey
= E),sz)%[p’Tl’-P'fU(qJr 1)QD’%]"D%Q”ET (12)

This is the basic formulation of the realization for the ERA/DC. Since from Eq.
(6),

R(qg+j) = V:A(A'W,), (13)
then by comparison with Eq. (12) it follows that the triple
1 I N 1
[D *P"U(q+1)QD ?, D*Q'E,, E,'PD"]

is a minimum realization of [A, A’W,, V¢]. Now, using Eq. (5) for H(0) an
expression of W, can be found since V¢ is of rank #. The output matrix C and
input matrix B can thus be identified from the first / rows of V; and the first m
columns of W, respectively. Hence a realization for [A, B, C] can be shown to
be [D-Y?P"U(q+1)QD~"?, D Y*P'E_H(0)E,, EPTPDUZ]. This realization
then leads to a transformed set of state variable equations since the two sets of
matrices are related by a transformation.

The system frequencies and dampings may then be computed from the
eigenvalues of the realized state transition matrix as for the ERA in Juang and
Pappa (1985). The eigenvectors allow a transformation of the realization to
modal space and hence the determination of the complex (or damped) mode
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shapes and the initial modal amplitudes (or modal participation factors). The
modal amplitude coherence and modal phase collinearity (Juang and Pappa,
1985) are accuracy indicators which are calculated to indicate any spurlous
modes present due to imperfect singular value truncation.

It is worth pointing out that while the ERA is, in essence, a least squares fit
to the impulse response measurements, the ERA/DC involves a fit to the output
autocorrelations and crosscorrelations over a defined number of lag values. It is
very similar to the Correlation Fit method but expressed formally as a minimum
order state space realization. It may be shown that ERA is a special case of
ERA/DC when g=a=p=0, provided that (§+1)=#. This is because the ERA
formulation could be written in terms of a decomposition of the correlation
matrix R (0)=H(0)H'(0) instead of H(0) itself.

It can also be shown that the bias terms affecting the ERA when “white”
measurement noise is present can, in principle, be omitted in the ERA/DC by
choosing g=sz+1 (see Eq. (7)). The integer ¢ may be determined by sensor
characteristics such as covartance matrix. In order to avoid overlap of adjacent
correlation terms in the block correlation matrix, it is required that r<sz+1
(see Eq. (7)). The structure of the R (¢) matrix and hence the block correlation
matrix is significantly affected by the choice of the parameter & When £=0 so
s =0, the structure is simplest, but does not necessarily yield the best answer.

3. Numerical simulation

To illustrate the behavior of the ERA and ERA/DC, results from the analysis
of a simulated five-degree-of-freedom system (z=10) will be presented. The
impulse responses are corrupted by 2[%] measurement noise (based on the rms
values of signal and noise) and 30 responses with different noise samples are
analyzed so that parameter means and standard deviations may be estimated;
this process is sometimes referred to as a Monte Carlo Simulation (Juang and
Pappa, 1986). The mean damping estimates will be presented since damping is
far less easy to identify accurately than natural frequency.

The system chosen is a single input/single output (SISO) case (I=m=1) with
distinct eigenvalues. The natural frequencies are 0.159, 0.318, 0.477, 0.636 and
0.795 [Hz] and all the modal dampings are 1[%] critical. In the model, the initial
modal amplitudes and modal contributions to the output were chosen to be the
same for each mode. The displacement response of the system to an impulse
was generated without noise for 512 data samples at a sample interval of 0.4
[sec] and is shown in Fig. 1. The response is then corrupted by samples of
random noise and the resulting data sequences analyzed by the two methods.

3.1 Results from the ERA A selection of ERA results from data with 2[%]
noise is shown in Table 1 for varying dimensions of the H(0) matrix. The
number of columns in H(0) ((n+1)m where m=1) is chosen to be a measure of
the number of points of the decay included in the analysis whereas the number of
rows ((§+1)! where [=1) is chosen to indicate the initial model order prior to
any singular value truncation, i.e., a measure of model overspecification. It is
clear from Table 1 that the mean damping values show significant bias when the
initial model order is not overspecified (i.e. (£+1)/=#=10) and that the results
deteriorate somewhat when more columns are added due to the inclusion of
noisier data. When the initial model order begins to be overspecified
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Fig. 1. Noise free impulse response.

Table 1. Mean damping results for the ERA

H(0) Matrix Mean [%] damping value

Rows Columns Model Mode2 Mode3 Moded4d Modeb
El+1 nn+n

10 50 10.2 12.3 9.94 3.69 1.20

150 9.24 12.9 19.0 8.42 1.53
250 9.08 12.5 18.5 21.8 1.83
11%* 50 1.40 1.51 1.34 1.11 1.01
150 1.50 1.86 1.69 1.27 1.03
250 1.64 2.26 2.08 1.44 1.05
12* 50 1.01 1.03 1.03 1.02 1.00
150 1.02 1.04 1.05 1.03 1.00
250 1.02 1.07 1.08 1.05 1.01
15* 50 0.99 1.00 1.00 1.00 1.00
150 1.00 1.00 1.00 1.00 1.00
250 1.00 1.00 1.00 1.00 1.00

*Singular value truncation at order 10 carried out.

((E+1)I=11,12,15) and singular value truncation carried out, the results
improve dramatically and the bias disappears by (§+1)/=15. It is well known
(Eykhoff, 1974; Cooper and Wright, 1986) that overspecification of the model
order reduces bias errors due to noise but additional “spurious or noise modes”
are generated. These spurious modes are identified and rejected afterwards
using accuracy indicators (see Juang and Pappa, 1986) in the ERA. It is seen
“that, in the ERA, the use of singular value decomposition for rank determination
and reduced order realization largely overcome the bias without generation of
spurious results. To show the similarity in results obtained with the two
approaches (i.e. overspecification with and without singular value truncation),



12 J.-N. Juang, J. E. COOPER AND J. R. WRIGHT

Table 2. Mean damping results for the ERA
without singular value truncation

H(0) Matrix Mean [%] damping value

Rows Columns Mode 1 Mode?2 Mode3 Moded Modeb
El+1 nn+n

12 50 1.01 1.03 1.03 1.01 1.00
150 1.02 1.04 1.05 1.02 1.00
250 1.03 1.07 1.08 1.04 1.01

Table 2 shows similar results to those in Table 1 for (§+1)I=12 but with the
realization not being of minimum order.

It should be noted when interpreting the tables of results that a mean
damping value close but not equal to 1{%] may not actually be biased because of
the statistical uncertainty associated with the estimate (Cooper and Wright,
1986).

While the ERA will yield results in this case of comparatively well separated
modes for relatively few data points (n+1 as low as 20), in general it is
important to use a significant portion of the decay (say 250 points—see Fig. 1)
so as to include information on any low frequency beating due to close modes.

3.2 Results from the ERA/DC A selection of ERA/DC results from data
with 2[%] noise is shown in Table 3. The R(q) matrices which are the blocks in
U(q) were chosen to be of dimension /X[ (i.e. 1 1 in this case) by making £=0;
that simplifies the matrix structure considerably. The lag increment r in Eq. (7)
was chosen to be 1 and the starting lag ¢ taken as zero so no correlation terms
were omitted. The approximate correlation terms were computed using
250(=n+1) data points. The integer B allowed variation of the number of
correlation lag values included in the identification whereas the integer «
indicated the degree of any initial model overspecification prior to singular value
truncation.

Table 3 shows that when the initial model order is not overspecified (i.e.
(a+1)Y=n=10 where Y=(5+1)/=1), there is a considerable improvement in
the results as the number of columns ((f+1)V) in U(0) increases from 10, i.e.,
as more correlation lag values are included. Indeed the bias is virtually
eliminated without the need for overspecification and singular value truncation.
This is a feature of the Correlation Fit method (Cooper and Wright, 1986), upon
which the ERA/DC is based. Note that the results obtained using the 10x 10
U(0) matrix in ERA/DC are not the same as those from the 10x250 H(0)
matrix in ERA because only 1Xx1 R(q) blocks were used; however; the results
are the same for the special case when 10Xx10 R(g) blocks are used (i.e.
(§+1)I=10 or §=9 for the ERA/DC).

Although the bias can be largely removed without the need for overspecifica-
tion, the results in Table 3 for (a+1)Y=11, 12, 15 show that a further
improvement is obtained when the solution is slightly overspecified and addition-
al singular values truncated as for the ERA. For the same quality of results, the
overspecification does not have to be as great for the ERA/DC as for the ERA.
This feature may be significant for more complex and noisy data cases where the
required ERA overspecification is servere.
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Table 3. Mean damping results for the ERA/DC

Note & = 0; no lags omitted, ¢ = 0; (n+1)n = 250

U0) Matrix Mean [%] damping value

Rows Columns Mode ]l Mode2 Mode3 Moded4 Mode5
ay+y  Py+y

10 10 16.2 — 11.3 4.16 0.52
11 1.71 — 6.18 0.29 0.94
12 0.84 0.47 2.17 0.70 0.97
13 0.97 1.03 1.15 1.00 1.01
15 0.99 1.06 1.11 1.03 0.99
20 1.06 1.06 1.08 1.02 1.00
30 1.02 1.06 1.07 1.03 1.00
40 1.00 1.08 1.08 1.02 1.00
11 10 1.71 - 6.18 0.29 0.94
11%* 12 1.02 1.03 0.97 0.98 1.01
20 1.00 1.00 1.00 1.00 1.00
30 1.00 1.00 1.00 1.00 1.00
12 10 0.84 0.47 2.17 0.70 0.97
12%* 12 1.03 1.08 0.96 0.94 1.01
20 1.00 1.00 1.00 1.00 1.00
30 1.00 1.00 1.00 1.00 1.00
15 10 0.99 1.06 1.11 1.03 0.99
15%* 12 1.00 1.01 1.00 1.00 1.00
20 1.00 1.00 1.00 1.00 1.00
30 1.00 1.00 1.00 1.00 1.00

*Singular value truncation at order 10 carried out.

From theoretical considerations of the ERA/DC, it was expected that a
choice of ¢>0 would have omitted the zero lag autocorrelation, which is
corrupted by the mean square of the measurement noise, from the analysis and
thus reduced the bias. However, the behavior of the ERA/DC results for
increasing ¢ was not clear cut and the definite benefit seen using the equivalent
parameter in the correlation Fit method for a two degree of freedom data case
(Cooper and Wright, 1986) was not obtained. This feature of the ERA/DC is
probably connected with the nature of the autocorrelation of the underlying
signal in that significant low lag information is omitted as ¢ is increased. Further
investigation 1s required.

3.3 Further comments In order to compare the relative ability of the ERA
and ERA/DC to determine the order of the system from overspecified matrices,
the normalized singular values were obtained for a single noisy response. The
ERA values for H(0) (15x250) were [1.0, 0.95, 0.74, 0.69, 0.59, 0.55, 0.49,
0.46, 0.43, 0.38, 0.0087, 0.0085, 0.0081, 0.0077, 0.0071] and the square roots
-of the ERA/DC singular values for U(0) (15x20) were [1, 0.96, 0.73, 0.70,
0.58, 0.56, 0.49, 0.46, 0.42, 0.40, 0.0297, 0.0752, 0.138, 0.0130, 0.0109]. The
square root is necessary for easy and fair comparison. In this case the ERA
results show a more definite “drop” beyond the 10th singular value. The



14 J.-N. JUuaNg, J. E. COoOPER AND J. R. WRIGHT

ERA/DC “drop” varies according to the number of lags used and the block size of
the R(g) matrix. The inclusion of higher lag correlation data means that the
effective signal/noise ratio for the U(0) matrix decreases.

The results shown in this paper indicate that both the ERA and ERA/DC yield
equally good results for this data case provided that initial model overspecifica-
tion and singular value truncation are used. This is perhaps not surprising upon
study of the methods since the ERA can be thought of as using a square
correlation matrix H(0)H"(0) of order at least n. However the ERA/DC uses, in
general, a rectangular correlation matrix with at least # rows but an arbitrary
number of columns (which need not usually be much larger than #), the detailed
structure of the matrix depending upon the R (g) block size (Y xY). Thus, when
the ERA uses an overspecified initial model order, additional correlation
information is included (rather than adding extra lags in the ERA/DC) and this
information is retained during the transformation of the matrices to a reduced
order.

The relative performance of the two methods needs further consideration,
particularly for data where modes are close, the model order may be high and
multiple inputs and outputs used. Also, the effect of the block size of the R(q)
matrix in the ERA/DC needs evaluation.

4. Conclusion

A modification of the ERA which uses data correlations rather than response
values has been presented. This method (ERA/DC) has been compared to the
ERA for simulated five-degree-of-freedom data corrupted by measurement
noise. The results indicate the ERA/DC can reduce bias without model overspe-
cification. However, when overspecification is permitted and singular value
decomposition used to obtain a minimum order realization, both methods give
equally good results for the data used. The ERA/DC needs further evaluation to
see if it can provide any improvement over the ERA when applied to more
complex data.
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