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ABSTRACT

This review paper provides a recent overview of current international research

that is being conducted into the functional properties of cellulose as a nano-

material. A particular emphasis is placed on fundamental and applied research

that is being undertaken to generate applications, which are now becoming a

real prospect given the developments in the field over the last 20 years. A short

introduction covers the context of the work, and definitions of the different

forms of cellulose nanomaterials (CNMs) that are most widely studied. We also

address the terminology used for CNMs, suggesting a standard way to classify

these materials. The reviews are separated out into theme areas, namely

healthcare, water purification, biocomposites, and energy. Each section contains

a short review of the field within the theme and summarizes recent work being

undertaken by the groups represented. Topics that are covered include cellulose

nanocrystals for directed growth of tissues, bacterial cellulose in healthcare,

nanocellulose for drug delivery, nanocellulose for water purification, nanocel-

lulose for thermoplastic composites, nanocellulose for structurally colored

materials, transparent wood biocomposites, supercapacitors and batteries.

Introduction

The world is facing a very near and present crisis in

terms of climate change and the threat to life. A

dramatic reduction in global greenhouse gas emis-

sions is needed, and in doing so fossil fuels require

significant replacement. Linked to this is a

decarbonization of our materials cycle. Our contin-

ued reliance on fossil fuels, and in particular oil, for

the production of plastics is simply not sustainable.

To this end we need to use sources of materials that

are renewable, sustainable and have at least the

potential to be placed into a closed-loop recycling

system. These criteria are often used as a justification

for the use of cellulose, which is derived from a
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renewable resource, i.e., plants, which in addition

sequester carbon dioxide from the Earth’s atmo-

sphere for its production and can be potentially

returned to the Earth at end-of-life. Nevertheless, this

perfect view of cellulose is not yet realized in prac-

tice, and we are somewhat far yet in reaching this

goal.

Cellulose is a carbohydrate polymeric material,

containing carbon (C), hydrogen (H) and oxygen (O).

It also belongs to a broader class of natural polymeric

materials called polysaccharides, some of which have

similar structures to cellulose, but also include other

atomic groups like nitrogen (N) (e.g., chitin [1]). We

would like to address early on a mistake in the pre-

vious review [2] where it stated that the repeat unit of

cellulose is cellobiose. It is in fact glucose [3], and

cellulose is rather unique among carbohydrates in

that it can be both synthesized from, and hydrolyzed

to, monosaccharides [4]. In synthesis, glucose mono-

mers are polymerized into long chains, forming

anhydroglucose units joined via β-1,4 glycosidic

linkages, as shown in Fig. 1.

The crystalline forms of cellulose are numerous.

For the purposes of this article, the two sub-allo-

morphs of cellulose type I—cellulose Iα and Iβ [5]—

are perhaps the most relevant in that they appear to

different degrees in the various types of native cel-

lulose from plants, some animals (tunicates), and

bacterial forms. The crystal structures of these allo-

morphs have been determined with great accuracy,

in particular their complex and extensive hydrogen

bonding [6, 7]. The hydrogen bonding is often quoted

as the reason for the high axial stiffness of cellulose,

although this is perhaps sometimes overstated, and

quite likely hydrophobic interactions between the

planes of the pyranose rings play a role too, but most

importantly limit solubility [8]. The recalcitrance of

cellulose to common solvents has long been an issue

for its processing, and it is perhaps for this reason,

among many, that the material has been traditionally

‘structured’ by top-down processing, or bottom-up

chemical modification or biosynthesis. Recent

attempts to self-assemble cellulose-like polymers

from enzymatically generated oligomers offer per-

haps new ways of producing nanomaterials [9, 10],

but these approaches are in their infancy, and not yet

suitable for application.

The main forms of cellulose nanomaterials (CNMs)

covered in this review are cellulose nanocrystals

(CNCs), cellulose nanofibrils (CNFs) and bacterial

cellulose (BC); we address the terminology used here

in the ‘‘Cellulose nanomaterial terminology’’ sec-

tion. CNCs are typically produced via the acid

hydrolysis of plant-based and other forms of cellu-

lose to produce rod-like particles (see Fig. 2a),

although many other production routes are possible.

The production and properties of CNCs have been

previously reviewed, and readers are referred to that

publication for more details [13]. CNFs are typically

produced by the mechanical fibrillation of plant cel-

lulose, either via processes such as homogenization,

grinding, or excessive beating of pulp. This generates

fibrillar materials (see Fig. 2b), and the reader is

referred to a previous publication on this subject

(where the material is termed ‘microfibrillated cellu-

lose’) [14]. Finally, BC is typically produced by the

gram-negative bacterium Glucanobacter xylinum and

forms a reticulated network of fibrils, (see Fig. 2c),

similar to CNF, but with ‘juncture’ points between

the fibrils. Again, the reader is referred to a previous

review of BC, and the other forms of CNFs, for more

details [15].

Cellulose is the world’s most used material, and it

has been exploited for many centuries as wood for

fuel and construction, as fibers to produce paper, and

textile materials for clothing, ropes, sails and other

Figure 1 An established convention for the repeated structure of
cellulose (left) showing the ‘Repeated unit’ of glucose (right), with
the correct convention for β-1,4 glycosidic linkages and

highlighting the non- and reducing ends of the chain. Image
reproduced from [3]. Reproduced with permission from [3] (
Copyright Springer-Nature, 2017).
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applications. Our most intimate connection with the

material is with wood, and in fact the very word

‘material’ derives from an old Latin word māteria for

‘trunk of a tree’, which itself derives from the word

māter which means ‘mother’; many other languages

include similar words such as Moeder (Dutch),

Maman (French), Māṁ (ਮ) (Punjabi), Mama (Swahili),

Maa (媽) (Cantonese), and Mutter (German). The use

of this word provides further connection to ‘mother

earth’ a concept that is contained in many indigenous

languages and belief systems. Perhaps this connec-

tion ought to be regained since we are seeking to

protect our planet collectively through sustainability,

and through the use of mother nature’s material—

cellulose.

A review in this journal published in 2010 [2]

quoted the English poet Chaucer. It seems apposite to

now recall the words of the Japanese Haiku author

Matsuo Bashō (1644 – 1694)

“butt of the tree

see in it the cut end

today’s moon”

highlighting the mysteries of wood, or perhaps the

old Kenyan proverb that ‘Sticks in a bundle are

unbreakable.’ This proverb might both suggest collab-

oration is a good thing and that we have had a long

history of understanding the mechanical properties

of wood. Certainly, our relationships with wood are

ancient, and intimately associated with our lan-

guages, as already described. Wood itself is also

probably the oldest composite, and it is well known

that it possesses a hierarchical structure, which has

been well-documented in the literature [16]. The

review we present to you contains work that both

deconstructs the woody and plant materials into

nanomaterials, but also addresses the use and mod-

ification of wood itself, making use of its own

inherent nanostructure. We therefore present to you

a collection of international research on nanocellulose

and its application in a variety of fields. It is truly

staggering how this material has grown in interest,

with publications on ‘nanocellulose’, and citations to

them, growing dramatically over the last decade.

Perhaps it is true to say that many real applications

are still yet to materialize. Charreau et al. [17] have,

however, recently published data on the numbers of

published patents, and their growth since 2010, when

the last review in this series was published [2]. This

growth in the patent literature is truly dramatic, and

nanocellulose is certain to make an impact into many

application areas. This review aims to cover research

that is a prelude to, and underpins, applications of

nanocellulose. Several target areas are covered in the

review, namely healthcare, water security, compos-

ites, and energy. Recent research in these target areas

is discussed, focusing on applications, but also the

fundamental research itself that is, and needs to be

undertaken to underpin this translation to real

products. Each section in this review highlights some

work being undertaken by a selected number of

Figure 2 Example electron microscope images of cellulose
nanomaterials (CNMs); TEM images of a cellulose nanocrystals
(CNCs) obtained via acid hydrolysis of microcrystalline cellulose
[11] b cellulose nanofibrils (CNFs) [2] and c a scanning electron
microscope image of bacterial cellulose (BC) [12]. Figure 2a

reproduced from [11] with permission from the American
Chemical Society ( Copyright American Chemical Society,
2005), Figure 2b from [2] with permission from Springer-Nature
(Copyright Springer-Nature, 2010) and Figure 2c from [11] (CC-
BY Open Access, 2019).
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international groups, but also contexts this with

current work in the field.

Cellulose nanomaterial terminology

Since ‘nanocellulose’ emerged onto the scene as a

material there has been a proliferation of the termi-

nology used to describe these materials. We will aim

to be consistent in our description of nanocellulose

and thereby conform to standards that have been

recently laid out in another comprehensive review of

techniques to analyze what should collectively be

called cellulose nanomaterials (CNMs) [18]. This is

the acronym we will use to refer to the different

forms of ‘nanocellulose’. We will use the terms cel-

lulose nanocrystals (CNCs) and cellulose nanofibrils

(CNFs) to refer to the rod-like and fibrillar cellulosic

materials. Confusingly CNCs have also been called

whiskers, needles and nanocrystalline cellulose

(NCC), and we will avoid such terms. Bacterial cel-

lulose (BC) will also be used as a term, referring to

the fibrillar material produced by the gram-negative

bacteria Glucanobacter xylinum. We will conform to

the international organization for standardization

(ISO) on the terminology used for CNMs [19] where

possible and to otherwise revert to commonly used

terms.

Introduction to nanocellulose in healthcare

Nanocellulose has found suitability in various

healthcare applications, for example, tissue engi-

neering and drug delivery, as well as diagnostic

devices, wound healing, coatings, drug screening and

biosensing [20, 21]. Some key enablers allowing

nanocellulose to be used in healthcare applications

are its biocompatibility and relatively low cost, as

well as its versatility with respect to both the variety

of forms available and its ability to be chemically

modified. While purity and uniformity of different

nanocellulose types (CNFs, CNCs, BC) are dependent

on the starting source and production method, they

generally offer a reliable, chemically defined, and

robust nanomaterial. Plant-based biomaterials can

solve some issues present with animal-derived bio-

materials where poorly defined, complex mixtures,

and high variability from batch to batch suggest

advantages of using exogenous components in

biomedical applications.

All types of nanocellulose have been evaluated

extensively in tissue engineering and drug delivery

applications and this section aims to summarize

some of the newest advances and trends in the area.

For applications in healthcare, BC stands out for its

purity (no hemicelluloses, lignin, etc.) and its ability

to be manipulated following biotechnological pro-

duction pathways; in some product development

areas like implants, wound healing and cell cultiva-

tion/encapsulation, BC has surpassed CNFs and

CNCs as reviewed elsewhere [22]. Additionally, we

highlight how different architectures like micelles,

spheres, patterned surfaces, and 3D-printed shapes,

that are based on nanocellulose building blocks, offer

advantages such as large surface area, high porosity

and enhanced interactions with drugs and cells.

While nanocellulose has been shown to have low

toxicity [23], there are key variables that have been

reported to affect toxicity including size, morphol-

ogy, crystallinity, surface chemistry and stability [24].

Despite the broad consensus on the low toxicity of the

different types of nanocellulose, further studies are

recommended to evaluate this property specific to

each targeted application, as well as long-term

bioaccumulation in the body.

Other important aspects of nanocellulose for

healthcare applications are its in vivo biodegrad-

ability and bioactivity [23, 25, 26]. High crystallinity

celluloses possess low biodegradability and, thus,

may limit their use in some bio-applications. Signifi-

cant efforts have been made to improve biodegrad-

ability through chemical modification [27–29] or

through higher-order arrangement where the struc-

ture degrades but not the nanocellulose itself [30]. It

is also known that pure nanocellulose lacks bioac-

tivity [25]. Consequently, many efforts have focused

on chemical and physical surface modification routes

to provide CNF, CNC, and BC scaffolds with

improved bioactivity [25, 26]. Their effect on cell

culture parameters has been studied and compared

to non-modified nanocellulose forms, demonstrating

significant progress.

Owing to the rich chemical, structural, and mor-

phological diversity of nanocellulose, a vast amount

of research and commercial translation toward

medical applications has been reported. In this sec-

tion, up-to-date information on the use of nanocel-

lulose for tissue engineering and drug delivery

applications is presented. Specifically, the use of

CNFs, CNCs and BC as tissue engineering scaffolds
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for in vitro cell culture and the effect of surface

modification to render nanocellulose bioactive are

summarized. This includes the introduction of

chemical moieties at the surface of nanocellulose to

provide negative or positive surface charges, and the

use of amino acids, proteins, and growth factors, to

enhance cell uptake/adsorption at the scaffold sur-

face and promote cell adhesion, growth, proliferation,

and specific cell morphologies. Additionally, the

effect of nano- and microscale anisotropy within

nanocellulose scaffolds on cell response and aligned

growth is discussed. Nanocellulose offers multiscale

control in both 2D and 3D environments, creating

new opportunities within tissue engineering. As for

drug delivery, the role of nanocellulose as a drug

carrier, co-stabilizer, or release modulator in various

forms including sheets/films, nanoparticles, and

micelles is reported. The use of various types of

nanocellulose-based drug delivery systems is pre-

sented including examples with hydrophilic and

hydrophobic drugs as well as various administration

routes such as oral, transdermal, local and triggered-

release.

Franck Quero (University of Chile, Chile):
tailoring surface chemistry of nanocellulose
scaffolds for in vitro cell culture

Cells modify their behavior dependent on the cues

that they perceive from their microenvironment

[31–33]. One strategy to render the surfaces of several

types of nanocellulose more biocompatible and

bioactive is through surface modification [25, 26].

Chemical moieties, biomolecules, bio-oligomers and

biomacromolecules can be introduced physically or

chemically at the surface of nanocellulose to provide

cell signals. These include positive or negative sur-

face charges as well as cell receptors such as the

amino acid sequence arginine-glycine-aspartic acid.

These signals aim at favoring cell uptake/adsorption

at the surface of nanocellulose scaffolds, and their

effect on cell adhesion, growth, proliferation, and

morphology is typically studied.

Research involving the use of BC and CNCs for

tissue engineering applications was reviewed by

Dugan et al. in 2013 [34]. The surface modification of

BC with bioactive peptide sequences using cellulose-

binding domains was discussed as a strategy to

enhance its bioactivity. The surface charge of CNCs

has also been mentioned as a critical factor to provide

their surface with biocompatibility and bioactivity. It

is known that mammalian cells possess a net negative

charge. As a result, materials with positively charged

surfaces could potentially favor cell uptake by elec-

trostatic attraction. On the other hand, materials with

negatively charged surfaces would minimize cell

uptake due to electrostatic repulsion. The first in vitro

study of CNCs with living cells was by Roman et al.,

where the potential of CNCs as carriers in targeted

drug delivery applications was demonstrated [35].

Mahmoud et al. then modified the surface of CNCs

with fluorescein isothiocyanate or alternatively rho-

damine B isothiocyanate, providing them with neg-

ative and positive surface charges, respectively [36].

CNCs modified with positive surface charges were

found to be uptaken by human embryonic kidney 293

cells, whereas those modified with negative surface

charges were not significantly taken up by both cell

types at a physiological pH. The results were

explained in terms of cell/material surface electro-

static interactions [36]. Cell uptake mechanisms are,

however, more complex, and other scaffold features

need to be considered including local nanofiber

alignment among others, which are discussed in

detail below.

The research group led by Ferraz at Uppsala

University explored the effect of nanocellulose sur-

face charge on human dermal fibroblast (HDF) cell

culture 2D film scaffolds. In their first work, cationic

CNFs and Cladophora nanocellulose were obtained by

glycidyltrimethylammonium chloride condensation,

whereas anionic CNFs and Cladophora nanocellulose

were obtained by carboxymethylation and TEMPO-

oxidation, respectively [37]. The results revealed that

anionic CNF films possessed greater cytocompatibil-

ity than non-modified and cationic CNF films. On the

other hand, anionic Cladophora films better promoted

cell adhesion and viability compared to non-modified

and cationic Cladophora films. The improved cell

adhesion of HDF onto anionic Cladophora films was

attributed to local nanofiber alignment.

In a subsequent study, non-modified, anionic, and

cationic CNF films were evaluated as 2D scaffolds to

direct monocyte/macrophage (MM) responses in the

absence or presence of lipopolysaccharide [38]. The

results suggested that MM cultured onto anionic

CNF films experienced activation toward a proin-

flammatory phenotype. Non-modified CNF films,

however, promoted a mild activation of THP-1

monocyte cells, whereas cationic CNF films behaved
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as a bioinert material. None of the materials were able

to directly activate the MM toward an anti-inflam-

matory response.

In a third study by the same group, the effect of the

negative surface charge density of TEMPO-oxidized

Cladophora nanocellulose on the response of HDF and

human osteoblastic cells was investigated [39]. From

a carboxyl group amount≥260 μmol g−1, equivalent

to a threshold ζ-potential value of -36 mV, TEMPO-

oxidized Cladophora nanocellulose was found to be

cytocompatible, demonstrating that bioinert nano-

materials can be turned bioactive by adjusting the

magnitude of their surface charge density.

More recently, three primary works have studied

the effect of surface charge on cell culture. Films

composed of non-modified, anionic, and cationic

CNFs were obtained by an evaporation-induced

droplet-casting method [40]. Non-modified and

cationic CNFs resulted in 2D surfaces with higher

degrees of local nanofiber orientation compared to

anionic CNFs. With respect to cell viability and pro-

liferation, anionic and cationic CNF surfaces were

found to perform similarly compared to a positive

control surface. Although the use of fibronectin

coating slightly enhanced cell response for all 2D

surfaces, uncoated anionic and cationic CNF surfaces

were found to support cell growth. Cationic CNF

surfaces, along with the presence of CNF alignment,

were found to guide cell growth toward a specific

orientation direction [40]. In a subsequent study by

Pajorova et al. [41], cellulose mesh 3D scaffolds were

coated with either cationic, anionic or a 1:1 mixture of

cationic and anionic CNFs. Cell adhesion, prolifera-

tion, spreading, and morphology were studied by

seeding the 3D scaffolds with either HDF or adipose-

derived stem cells (ADSC). Anionic CNFs promoted

the proliferation of both HDF and ADSC, whereas

cationic CNFs enhanced the adhesion of ADSC. The

cationic and anionic CNF mixture resulted in pro-

moting combined benefits arising from each CNF

type [41]. Lastly, CNFs, CNCs and TEMPO-CNFs

with variations in total surface charge were investi-

gated as coatings for cell culture [42]. TEMPO-CNFs

with a total surface charge of 1.14 mmol g−1 were

found to provide the highest cell viability and adhe-

sion compared to the mechanically isolated CNFs

without chemical pre-treatment, and CNCs, from

which HDF cells were unable to adhere, leading to

low viability [42].

Another strategy to render nanocellulose bioactive

is by binding either amino acids, peptides, or proteins

onto its surface. A first study covalently bound amino

acids to the surface of commercial cellulose filter

membranes [43]. Cationic amino acids including

lysine and arginine were found to enhance cell

adhesion, whereas anionic as well as small amino

acids significantly reduced cell adhesion. In subse-

quent work, the surface of α-cellulose fibrous net-

works was modified by covalent grafting of

hydrophilic, aliphatic and aromatic amino acids onto

their surface by esterification [44]. Aromatic amino

acids, and in particular tryptophan, resulted in

enhanced fibroblast cell spreading. Immobilization of

collagen peptides onto the surface of dialdehyde BC

was proposed by Wen et al. [45] and found to pro-

mote enhanced fibroblast cell adhesion and attach-

ment compared to non-modified BC. Another

investigation by Barud et al. [46] used silk fibroin

proteins to modify the surface of BC, forming a

sponge-like scaffold. This was found to facilitate the

attachment and growth of L-929 cells, where proteins

acted as cell receptors [46].

The research group led by Franck Quero at the

University of Chile have produced protein-function-

alized cellulose fibrils from the tunic of Pyura chilensis

by a top-down approach [47]. As illustrated in Fig. 3,

the CNFs were used to produce films, which were

subsequently evaluated as 2D scaffolds to culture

mouse skeletal C2C12 myoblast cells [47]. Mem-

branes having � 3.1% residual proteins at their sur-

face were found to promote higher cell density and

spreading as well as a more orientated shape cell

morphology compared to membranes constituted of

bleached CNFs. In another work by Zhang et al. [48],

the real-time cell adsorption of cells onto non-modi-

fied and modified CNF films was monitored by

multi-parametric surface plasmon resonance. The

presence of either human recombinant laminin-L521

(natural protein of the extracellular matrix) or poly-L-

lysine at the surface of the CNF films resulted in

enhanced attachment of human hepatocellular carci-

noma cells compared to non-modified CNF films.

Another method to render the surface of CNFs

bioactive has been to modify their surface by polyion

complex formation between negatively charged

TEMPO-oxidized CNFs and positively charged basic

fibroblast growth factors (bFGFS) [49]. In this way,

Liu et al. mimicked the interactions that naturally

exist between bFGFS and heparin sulfate in the
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extracellular matrix. The scaffold was found to

release controlled amount of bFGFS, which was reg-

ulated by both CNF surface chemistry and enzymatic

deconstruction of the scaffolds. This resulted in sig-

nificantly enhanced fibroblast cell proliferation [49].

Instead of tailoring the surface chemistry of

nanocellulose, other features have been reported to

control cell response including multiscale topo-

graphical and multicomponent approaches.

These aspects and their specifics are presented in

the next subsection and could potentially be trans-

lated toward new commercial products in the near

future.

Marcus Johns and Emily Cranston
(University of British Columbia, Canada):
nanocellulose for directional multiscale
tissue engineering

Three-dimensional biophysical and biochemical

interactions between cells and scaffolds modulate the

cell response in terms of proliferation, migration,

differentiation, deposition of extracellular matrix

proteins, and—ultimately—cell survival. These

interactions are dependent on cell surface receptors

and, when cell attachment occurs, are regulated by

integrin pairs that have a defined nanometric spacing

between them [51]. The control of cell alignment via

topographical features has been known since the late

1980s/early 1990s [52–54]. Microscale features with

step changes[10 µm and spacings[2 µm inhibit cell

migration and spreading [55], whilst nanoscale fea-

tures with dimensions\70 nm and spacings between

70 and 300 nm disrupt focal adhesions [56]. Thus,

modification of the tissue engineering scaffold over

multiple length scales is significant in defining the

response of the cells.

This subsection briefly reviews one particularly

promising and emerging area of nanocellulose tissue

engineering, namely the design of scaffolds with

topographical anisotropy at one, or more, length

scales. There are, however, numerous examples in

the literature of nanocellulose scaffolds that do not

exhibit anisotropy that are well suited to biomedical

applications (and tested explicitly in vitro or in vivo)

as reviewed elsewhere [20, 25, 57–66] with many

Figure 3 Tunic of Pyura chilensis from which CNFs were
extracted and used to produce protein functionalized and bleached
cellulose membranes (H1 and B, respectively). Fluorescence
microscopy images show the differentiation of myoblasts that

adhered and grew onto the surface of H1 and B membranes.
Reproduced and adapted with permission from [50] ( Copyright
American Chemical Society, 2019).
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newer reports focusing on 3D printing specifically

[67–71]. Some highlights in the general area of

nanocellulose tissue engineering include: 3D scaf-

folds with controlled bioabsorbability [30, 72]; self-

healing hydrogels for cell delivery [73]; scaffolds that

maintain stem cell pluripotency [74], or guide cell

differentiation [75–79]; hydrogels that support orga-

noid growth [80–83]; and bioinks that enable 3D cell

printing [84–92].

Since all nanocellulose types are anisotropic, being

fiber or filament-like with diameters at the nanoscale

(e.g., BC and CNF), or spindle-like nanoparticles with

all dimensions at the nanoscale (e.g., CNCs), the

design of tissue scaffolds with, at least, short-range

directionality and nano/micro features becomes

possible. Furthermore, long-range directionality and

mechanical anisotropy to direct cell response can be

achieved via topographical patterning of the scaffold

(e.g., soft lithography, 3D printing, templating, elec-

trospinning) or through directed assembly to induce

nanoparticle alignment.

In 2010, Dugan et al. [93] were the first to report

that the nanoscale structure of CNCs could align

myoblast muscle cells (Fig. 4a&b), despite being

orders of magnitude smaller than the cells them-

selves. Straightforward 2D surfaces with spin-coated

(radially oriented) CNCs and no other components

were sufficient to demonstrate this effect [93]. Simi-

larly, the anisotropic deposition of CNCs onto tita-

nium surfaces guided fibroblast proliferation,

Figure 4 aMyotubes stained for myosin one week after induction
of differentiation on aligned CNC surface. Arrow: approx. degree
of CNC alignment, scale bar: 250 µm; b histogram of myoblast
orientation relative to approx. radial axis of CNCs; c representative
confocal image of human dermal fibroblast adhering to BC
substrate with grating microtopography. Orientation of grating
reported in top left corner; d histogram reporting the cell alignment
distribution relative to grating. Error bar:±S.E.; e myoblast cell

adhesion on uniaxially microscale wrinkled POEGMA-CNC
hydrogel sheets with nanoscale parallel-orientated fibers. Scale
bar: 50 µm; f histogram of cell orientation angle relative to
wrinkles. a, b Reprinted (adapted) with permission from [93]
(Copyright American Chemical Society, 2010). c, d Reprinted
(adapted) with permission from [97] (Copyright American Chem-
ical Society, 2015). e, f Reprinted (adapted) with permission from
[109] (Copyright Elsevier, 2021). S.E.=Standard Error.
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offering new opportunities for integrating implants

[94]. Although these features appear too small to

enable cell attachment according to earlier literature,

it has been recently demonstrated that integrin clus-

ters can form across nanofeatures so long as the fea-

ture spacing is\110 nm [95]. It is reasonable to expect

that these integrin clusters arrange themselves in line

with the features, enabling cell alignment. This work

in simple 2D nanocellulose films set the stage for

more complex 2D scaffolds and higher dimensional-

ity structures with optimized physicochemical prop-

erties and a variety of topographies.

Soft lithographical techniques have been utilized in

tissue engineering for almost 20 years [96], however,

the first reported use with nanocellulose was

demonstrated on BC by Bottan et al. [97] in 2015

(Fig. 4c&d). Since then, the patterning of BC is typi-

cally achieved using polydimethylsiloxane with

designed structural features[1 µm [97–100]. Spacings

of 10 µm between features have been used to direct

growth of fibroblasts [97, 99], neuronal cells [98, 100]

and muscle cells [100], whilst having a more limited

impact on keratinocytes [97, 99]. Importantly, struc-

tural control of fibroblast growth via BC scaffolds can

influence scar formation in vivo [101]. Jin et al.

demonstrated that structured pure BC scaffolds with

10 µm stripes reduced fibroblast proliferation, which

limited collagen accumulation. The reduction in col-

lagen, in turn, reduced scar contraction and limited

hypertrophic scar formation [101]. Likewise, Boni

et al. [99] produced similarly structured BC scaffolds

impregnated with silk sericin. The structural features

enabled alignment of fibroblasts whilst the silk ser-

icin enhanced fibroblast and keratinocyte prolifera-

tion in vitro. However, the structural features limited

collagen deposition compared to structurally

unmodified BC, which they suggested enhanced the

potential to limit fibrosis and scar formation [99].

Thus, soft lithographical modification of BC offers

opportunities to produce inexpensive scaffolds and

wound dressings with improved healing properties.

Despite previous publications describing increased

cell alignment with decreased feature spacing of BC-

based materials [97], reports of directly controlling

BC ‘ribbon’ alignment are limited. Wang et al. [102]

have recently demonstrated that alignment could be

achieved via wet-drawn stretching of the BC film.

The gelatin impregnated, aligned films exhibited

enhanced mechanical properties and significantly

improved fibroblast alignment in vitro, with further

enhancement achieved via electric field stimulation

[102].

Alternatively, one may produce aligned fibers via

electrospinning. He et al. produced aligned regener-

ated cellulose fibers (with ca. 200 nm diameters) loa-

ded with CNCs and spun from lithium chloride/

dimethyl acetamide solution [103]. This composition

and processing led to improved tensile properties of

the fibers and enabled aligned growth of dental follicle

cells [103]. The same scaffolds impregnated with bone

morphogenic protein-2 promoted osteogenic differ-

entiation of mesenchymal stem cells in vitro, while

anisotropic fiber orientation promoted cell alignment,

no significant differences in biomarkers (alkaline

phosphatase activity, calcium content) were observed

between aligned and unaligned fibers [104]. However,

in vivo, the aligned fibers enabled aligned collagen

deposition and new cortical bone growth on the

external face of the implant. These responses were not

observed in the unaligned scaffolds, nor in a similar

study using aligned poly(L-lactic acid) nanofibers. As

such, the enhanced response in the CNC loaded sam-

ple was attributed to the improved mechanical prop-

erties observed by the incorporation (and alignment)

of CNCs in the scaffold [104].

The improvement of mechanical properties and

development of nanoscale anisotropy in multicom-

ponent electrospun and 3D-printed scaffolds via

CNC/CNF inclusion has only recently begun to be

explored [105–111]. For example, De France et al.

reported on the facile production of ‘2.5D’ poly(oli-

goethylene glycol methacrylate) (POEGMA)/CNC

scaffolds that enabled microscale control of ‘wrin-

kled’ features, similar to those produced using soft

lithography, via controlled thermal shrinkage while

independently controlling the alignment of the

nanoscale features via electrospinning [109]. Uniaxi-

ally (micro) wrinkled features with parallel-orien-

tated (nano) fibers resulted in aligned myoblast

growth (Fig. 4e&f), whereby CNC content was used

to control the compressive modulus and protein

uptake [109]. Similarly, Huang et al. [110] demon-

strated that they could align oxidized BC along the

direction of extrusion in simple printed structures,

which influenced the orientation of lung epithelial

stem cells. While research into the nanoscale align-

ment of nanocellulose in 3D-printed architectures

through control of shear is still in the initial stages

[112–114], it offers opportunities for the development

of scaffolds that exhibit photoresponsive mechanical
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properties [115], or change shape depending on the

degree of hydration [116].

Nanocellulosic 3D structures with directed cell

growth due to anisotropic microscale topographies

have been achieved via directional freezing to pro-

duce aligned pores within cryogels [117, 118] (as

opposed to the anisotropy resulting from aligned

nanocellulose itself). The effect of pore morphology

on cell response is less well defined than that of 2D

ridges/grooves. For example, Karageorgiou and

Kaplan reported that the optimal pore size to pro-

mote osteogenesis was [300 µm [119], while the

optimal pore diameter for neuronal cells has often

been reported to be \100 µm [120–122]. However,

strategies to control pore size and morphology in

nanocellulosic cryogels are known, including regu-

lation of the gel composition [123–125]; freeze-casting

temperature and/or rate [123, 126]; sol pH [127]; and

nanocellulose morphology [126]. Furthermore, Tetik

et al. [128] have recently incorporated directional

freezing with 3D printing, which enabled the pro-

duction of controlled 3D geometries with aligned

micropores.

Nanoscale anisotropy via alignment of nanocellu-

lose is readily achieved via various techniques [129].

These include shear forces [112, 113, 130–133]; mag-

netic fields [134–137]; electric fields [138–142]; and

material stretching [143–146]. With regard to mag-

netic alignment in 3D scaffolds, De France et al. [147]

showed that anisotropy could be induced in

POEGMA-CNC hydrogels with weak magnetic fields

capable of aligning CNCs quickly, even within a

polymer gel [136]. This enabled alignment of myo-

blasts in a 3D culture. Echave et al. [137] took this

concept further to produce biphasic gelatin hydrogels

that mimicked the tendon-bone interface with mag-

netically aligned CNCs in one section and hydrox-

yapatite in the other. Adipose-derived stem cells

preferentially aligned and expressed tenascin-C

(TNC), a tendon tissue-related biomarker, in the CNC

section, while cells remained disordered and prefer-

entially expressed osteopontin (OPN), an osteogenic

differentiation-related biomarker, in the section con-

taining hydroxyapatite [137].

Unfortunately, there are limited comparative

studies investigating cell responses to different

nanocellulose morphologies. Kummala et al. [42]

have recently examined the response of dermal

fibroblasts on different nanocellulose types (i.e.,

CNCs, a predominantly microfibrillated CNF, and

two predominantly nanofibrillated CNFs). While true

‘nano’-CNFs supported cell attachment and prolifer-

ation, limited cell response was observed on the

microfibrillated CNF and CNC surfaces. However, as

the authors note, one must consider all the variables

involved—including topographical features, surface

chemical group type and degree of modification,

fibril dimensions, tensile properties, and cell type—to

be able to draw conclusions as to the cell response.

This requires modeling to isolate cell response to

specific parameters, such as the regression modeling

performed by Johns et al. [148], and must also take

the growth media into consideration as selective

molecular adsorption will mediate cell-surface inter-

actions [41, 118].

We conclude that topographically anisotropic

nanocellulose scaffolds are promising biobased bio-

materials for enabling cell alignment in both 2D and

3D, impacting—for example—wound healing in vitro

and stem cell differentiation in vivo. Control of the

topographic features at both the microscale and

nanoscale through patterning and nanocellulose

alignment offers new opportunities in regulating

cellular response. Combining these structures with

stimuli-dependent chemistry may present future

opportunities in dynamic/bio-responsive tissue

engineering.

Mudrika Khandelwal (IIT Hyderabad,
India) and Anu Sebastian (CIPET: IPT-
Kochi, India): nanocellulose-based drug
delivery systems

Cellulose has a long history of application in phar-

maceutics owing to ease of availability and a good

compaction property, primarily as an excipient in

oral formulations. Nanocellulose has been shown to

play a variety of roles and offer several advantages in

drug delivery applications, for example, for its

release modulation, as a drug carrier, its improved

mechanical properties, better compaction, and

appropriate rheological modification

[20, 23, 149–151]. It has been shown that the addition

of nanocellulose can control the release of incorpo-

rated drugs to significantly reduce consumption

[152–156]. Nanofibers offer an additional advantage

in terms of mechanical support and improvement of

shelf life by improving oxidative stability [29]. Novel

drug delivery systems such as triggered and targeted

forms have emerged using different types of
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nanocellulose [157, 158]. Most interestingly,

nanocellulose allows easy incorporation of multiscale

therapeutic agents such as nanoparticles, drug

molecules, supramolecular organization and as a

template for the production of other drug carriers

[159–162].

In this subsection, the most up-to-date and relevant

findings in the literature are summarized in Table 1,

describing the nanocellulose type and source, com-

position or formulation, mode of drug delivery, and

key outcomes. The ability of nanocellulose to act as a

drug delivery modulator may be attributed to vari-

ous reasons: aggregation of nanocellulose, interac-

tions between drug molecules and cellulose hydroxyl

groups, as well as cellulose’s ability to modulate the

microstructure and morphology of composite mate-

rials. It has been shown that nanocellulose can be

successfully used for both water-soluble as well as

poorly water-soluble drugs [24, 151, 163]. Nanocel-

lulose can be modified, and in the case of BC, to

hasten as well as delay the release of a drug and offer

a combination of release profiles [164–167].

Nanocellulose has been utilized for various routes of

drug delivery—oral, transdermal, local. There are a

few recent reviews on nanocellulose in drug delivery

[24, 151, 163, 168]; however, an important emerging

concept of triggered or actuated drug delivery

remains less discussed [24, 151, 163, 168].

Suitability of nanocellulose for drug delivery

Given the wide variety of nanocellulose types, it can

be used in various ways in different drug delivery

systems. For example, nanocellulose can be the car-

rier for the drug or act as a delivery modulating

agent. Furthermore, it is important to recognize that

nanocellulose can be obtained or processed in the

form of nanoparticles, microparticles, tablets, aero-

gels, hydrogels, and membranes, enabling varied

modes of drug delivery [169]. The large surface area

and high density of surface hydroxyl groups on

nanocellulose make it conducive for hydrophilic drug

delivery specifically. For hydrophobic drug delivery,

functionalization or the production of composites or

hybrid materials has been shown to be useful

[152, 170, 171].

Despite many advantages, nanocellulose also has

some limitations—namely, moisture sensitivity and

low thermal stability [172]. Significant progress has

been made to improve these properties through pre-

treatments and surface modifications. Aggregation

can be a challenge and may be overcome by

deploying electrostatic effects and steric stabilization

mechanisms [163]. To summarize, surface modifica-

tion pathways have emerged as an important step to

optimizing nanocellulose in drug delivery to 1) carry

the drug; 2) make it suitable for delivering

hydrophobic drugs; 3) prevent aggregation; 4)

improve processability (i.e., by enhancing thermal

stability); and 5) improve shelf life by decreasing

moisture sensitivity [162].

Nanocellulose for various routes of drug delivery

Delivery systems must be developed to administer

drugs using the most suitable route. Different types

of nanocellulose have been used to deliver various

classes of drugs including anticancer, anti-inflam-

matory, analgesics and antibiotics following oral,

transdermal, implantable, and local delivery routes,

as summarized in Table 1. While oral drug delivery is

the most common mode of drug administration, it

suffers from challenges such as the need for high and

frequent doses, and side effects, which need to be

addressed. Nanocellulose has been used for the

delivery of, for example, indomethacin, salbutamol

sulfate, diclofenac, ampicillin, and ranitidine. It has

also been demonstrated that the addition of

nanocellulose to these formulations offers several

benefits such as an increase in the dissolution rate

and oral bioavailability, high drug entrapment effi-

cacy, enabling sustained and controlled drug release,

prolonged drug release in fasted state-simulated

stomach fluid, and good mechanical and viscoelastic

properties [154, 173–176].

Nanocellulose has shown great potential in trans-

dermal as well as topical drug delivery systems

where the drugs are administered through the skin to

achieve therapeutic concentrations. Thus, it allows

the drug to by-pass the gastrointestinal tract and liver

metabolism and enables an effect at lower doses.

Nanocellulose has enabled release modulation, high

drug entrapment, good permeation rates with drugs

such as berberine compounds, diclofenac, providone-

iodine, hydroquinone, ceftriaxone, and crocin

[177–181]. It is important to note that transdermal

delivery works better for small molecule drugs.

Another popular approach is implantable systems

or local drug delivery systems that release the drug at

or near the target site, increasing the effectiveness
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Table 1 Nanocellulose-based drug delivery systems (ordered chronologically)

Nanocellulose
type and
source

Formulation Delivery route Drug loading and release profiles Ref

Plant CNF Indomethacin, Itraconazole
Beclomethasone and CNF

Parenteral, ocular
and transdermal
delivery

Drug loading is about 20—40%, High entrapment
efficiency

Sustained drug release due to the formation of a tight
fiber network around the encapsulated drug entities

Drug release kinetics depends upon the drug type

[186]

BC Berberine hydrochloride
Berberine sulfate and BC

Transdermal
delivery

Berberine sulfate retains more drug than berberine
hydrochloride

Freeze-dried membranes release drug more rapidly in
simulated intestinal fluid

Sustained release of berberine hydrochloride was
slower than for berberine sulfate

[187]

Plant CNF Indomethacin (IMC), CNF,
ethanol

Oral delivery Self-assembly and recrystallization of IMC on the
surface of composite forms a hierarchically ordered
CNF/IMC structure resulting in high loading and
encapsulation efficiency of the drug and prolonged
release

[173]

BC Diclofenac sodium salt (DCF),
BC, and glycerol

Transdermal
delivery

Incorporation of diclofenac in BC membranes provided
similar permeation rates to those obtained with
commercial patches and substantially lower than
those observed with a commercial gel

[178]

BC BC, sodium alginate. ibuprofen
(IBU)

Dual stimuli responsive system
Ibuprofen exhibits an enhanced drug release and
swelling behavior in neutral or alkaline medium and
in the presence of an electric stimulus

[157]

Plant CNC CNC, chitosan, doxorubicin
curcumin

Sustained drug release is observed for doxorubicin with
enhanced release in acidic pH

CNC interacts with hydrophobic drugs like curcumin
and can show sustained release

[188]

BC BC, polyhexanide (PHMB),
povidone-iodine (PI)

Transdermal
delivery

BC loaded with PI shows a delayed release compared to
PHMB due to the high molar mass and structural
changes induced by the insertion of PI into BC

PHMB-loaded BC exhibits a better therapeutic window
than PI-loaded BC

[189]

BC Doxorubicin, BC, calcium
carbonate, carrageenans

Implantable delivery Drug loading is significantly improved in the hybrid BC
system

Drug released faster from the hybrid film with
decreasing pH

Controlled and sustained drug release was observed
which can extend for 1 year

[152]

Plant CNF Polyethyleneimine, CNF,
sodium salicylate

Oral delivery High drug loading is achieved at pH 3 due to
electrostatic interactions

Surface grafting of PEI with CNF results in sustained
drug release

pH and temperature-dependent drug release

[190]

Plant CNC CNC, starch, vitamin B12 Oral delivery CNC gives a retardant effect when combined with
starch

Drug release rate is approximately 2.9 times slower
than starch microparticles

[191]
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Table 1 continued

Nanocellulose
type and
source

Formulation Delivery route Drug loading and release profiles Ref

Plant CNC CNC, hydroquinone Topical delivery CNC is introduced as a suitable carrier for delivery of
the drug to skin

Sustained release of drug from the complex is observed

[180]

Plant CNC CNC, chlorhexidine (CHX) Topical delivery Exhibits good antimicrobial activity and sustained drug
release

[192]

BC BC, ceftriaxone Topical delivery Double layer and 3D fiber network of BC with high
density fiber and entangling

High loading capacity and sustained drug release

[181]

Plant CNC Tris(2-aminoethyl) amine,
Fe3O4, methotrexate

Local (Intratumoral)
delivery

High drug loading, good binding ability, direct target to
cancer cells

Controlled and sustained drug release, pH-responsive-
based drug release

[182]

Nanocellulose
Plant cellulose

Gold nanoparticles,
polyelectrolyte complexes,
diltiazem hydrochloride (DH)

Transdermal
delivery

The film incorporated with 4% GNP-NC exhibits
improved thermo-mechanical properties, water vapor
permeability, drug encapsulation efficiency, and
transparency

[193]

BC BC, salbutamol sulfate (SS) Oral delivery BC capsule shells as an alternative to gelatin-based
shells allows immediate release

Adding release retardant polymer to the core of the
capsule sustains the drug delivery

[194]

BC BC, poloxamer, octenidine Wound dressing Drug delivery was sustained over up to 8 days
Addition of poloxamers-induced octenidine loaded
micelle formation leading to a biphasic and controlled
release profile

[195]

BC and Plant
CNF

BC, CNF, high amylose starch
(RS), pectin (P) Methotrexate
(MTX),

Colonic delivery A better controlled release of MTX is observed from
RS/P-NFC film due to its lower porosity

[196]

BC Poly(N-methacryloyl glycine),
BC, diclofenac sodium salt
(DCF)

Oral and
transdermal
delivery

Controlled and pH-responsive drug delivery is observed
where drug delivery is fast in the intestinal pH

[197]

Plant CNC CNC, oxidized CNC (OCNC),
chitosan nanoparticles
(CHNP),

repaglinide (RPG)

Oral delivery Drug release is dependent on medium pH where
enhanced RPG release is observed at pH 1–2
compared to that at pH 6–8

Increasing the amount of CNC or OCNC results in
slower release of drug with more pronounced effect in
case of OCNC

[176]

Plant CNF Hydroxypropyl
methylcellulose (HPMC),
CNF, ketorolac tromethamine

Transdermal
delivery

HPMC, which is reported to have a faster drug release
on contact with biological fluids, attains a slow and
steady release on adding CNF

Drug release is decreased with the increase of CNF
concentration in the composites

[198]

Plant CNC Alginate, CNC, ampicillin Oral delivery Presence of CNC enhances the release profile of
Ampicillin from alginate due to the free space

[175]

BC Nanostructured lipid carriers
(NLCs-NH), doxorubicin

Intratumoral
delivery

BC-NLCs-NH films revealed sustained drug release,
high drug loading

Significant decrease in the tumor-to-control ratio of
tumor volume ex vivo, with no side effects

[199]
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Table 1 continued

Nanocellulose
type and
source

Formulation Delivery route Drug loading and release profiles Ref

Plant CNC CNC, alginate (ALG), natural
honey, rifampicin,

Oral delivery The presence of CNC in alginate improves drug
entrapment efficiency

ALG-CNC nanoparticles (NPs) exhibits pH-dependent
swelling characteristics and drug release, which is
higher at intestinal pH, sustained drug release profile

[200]

Plant CNC Alginate, magnetic cellulose
nanocrystals (m-CNC)

m-CNC improves swelling degree and decreases drug
release rate

Initial burst release is observed within the first 30 min
and then sustained drug release

[201]

Plant CNC CNC, PVA, curcumin Transdermal (wound
dressing)

Curcumin release studies show that CNC film provides
controlled release of drugs in wounds and a prominent
antibacterial activity

[202]

Plant CNF CNF, anionic CNF,
metronidazole , mucin,
pectin, chitosan

Transmucosal
delivery

Drug release profiles show an initial burst release in all
the films, where most films exhibit a fast release of
drug in 30 min which is important for the treatment of
oral diseases

Maximum drug release of 84.7% at 30 min was
observed for CNF–mucin

[203]

Plant CNF CNF, gelatin, dialdehyde starch
, 5-fluorouracil (5-FU)

Oral delivery Drug loading is stabilized by increasing the strength of
CNF-gelatin composite with dialdehyde starch as the
chemical crosslinker

More controlled and sustained drug delivery is achieved
with an increase in CNF content, DAS content, and
NGDC density, limiting the drug dissolution and
diffusion

[204]

BC BC, crocin Transdermal
delivery

Burst release of crocin was found in direct dissolution
method while with Franz diffusion cells, a slow and
controlled release of drug is obtained

[177]

Plant CNC Poloxamer 407, Pilocarpine
HCl

Ocular delivery Increased gel mechanical strength
Greater the concentration of CNC, better is the
sustained drug release property

[153]

Plant CNF CNF, NaIO4, NaClO2,

piroxicam
Transdermal
delivery

Periodate-chlorite oxidation tunes surface charge
density of CNF

Anisotropic layered nanoporous structure of the
membranes (NF-DCC) holds great potential for
prolonged drug release

[205]

BC BC (cultured in standard
medium & coconut water),
ranitidine

Oral delivery Drug loading and entrapment efficiency is higher for
BNM-CW due to the porous fibrous network of BNM
produced in CW media

Both systems show slow and sustained release

[154]

BC BC, methylglyoxal, manuka
honey (modified graphene
oxide)

Wound dressing Composite shows thermal stability excellent
mechanical strength

Excellent antimicrobial activity against broad spectrum
bacteria making them promising material in chronic
wound dressing

[206]
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and lowering the required dose. Nanocellulose has

been particularly beneficial with local delivery of

diclofenac, doxorubicin, and methotrexate [165, 182].

Another local delivery route explored with nanocel-

lulose is ocular drug delivery, which takes advantage

of nanocellulose gel properties [153].

Nanocellulose has also been explored to produce

stimuli-responsive materials for smart/triggered

drug delivery systems. These materials are sensitive

to specific stimuli which can be a change in humidity,

pH, and light, or the application of an electric or a

magnetic field. For example, multi pH/near-infrared

responsive polydopamine/CNF composites with

calcium ions as crosslinkers have been developed for

drug delivery and wound healing applications [183].

The drug tetracycline hydrochloride could be

released in a controlled fashion on exposure to Near

Infrared (NIR) radiation or lower pH conditions.

Such a system also offers a synergetic effect on

wound healing and is advantageous as it is easy to

fabricate while providing multi-response and sus-

tained release of the drug. CNF-sodium alginate-

based gel macrospheres were developed for intestinal

targeted delivery of probiotics, thereby protecting

them from the acidic conditions of the stomach [184].

A novel dual stimuli responsive drug delivery sys-

tem of aminated nanodextran and carboxylated

nanocellulose deposited on the surface of modified

graphene oxide was prepared by layer-by-layer

assembly [158]. It showed that curcumin can destroy

HCT116 cells upon exposure to NIR radiation. In this

case, the drug was loaded into the nanocomposite

based on hydrogen bonding or π-π stacking and was

released faster in an acidic environment than at an

intestinal pH [158].

A dual responsive hydrogel based on BC and

sodium alginate which reacts to changes in pH and

electric stimuli has been developed [157]. The model

drug, ibuprofen, showed an enhanced release in

a neutral or alkaline medium and in the presence of

Table 1 continued

Nanocellulose
type and
source

Formulation Delivery route Drug loading and release profiles Ref

Plant CNC CNC-sulfate
cetyltrimethylammonium
bromide (CTAB), curcumin

Local delivery Adsorption of CTAB improves the hydrophobicity
carrier of CNCs making it suitable as a hydrophobic
drug

CTAB-CNC system exhibits increased release of
curcumin, maximum antioxidant, and anti-
inflammatory activities

[207]

BC Diclofenac sodium, BC with
different drying methods

Implantable systems Two drying methods are used to tune drug release
kinetics from bacterial cellulose

Swellability (rate, extent), and porosity directly affected
the diffusion of the drug

Oven-dried BC shows sustained release, while freeze-
dried BC showed a burst release

[165]

BC Diclofenac sodium, BC
modified in situ by PEG

Implantable systems PEG is non-incorporating in situ modifier, PEG2000
increased the overall porosity, pore volume and
decreased the specific surface area

A huge burst release for PEG modified BC as compared
to pristine BC

[164]

BC Diclofenac sodium, BC Transdermal
delivery

A combination release was obtained from oven-dried
and freeze-dried BC

[166]

BC Hyaluronic acid microneedles,
BC, rutin

Transdermal
delivery

BC acted as a macromolecular support for the
incorporation of active ingredients

BC increased the mechanical resistance of HA MNs
Rutin introduced into BC kept its antioxidant activity
over 24 weeks

[208]
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an electric stimulus [157]. Another BC-based drug

delivery system was fabricated by chemical oxidative

polymerization of BC and polyaniline [185]. This

resulted in a pH-electro sensitive hydrogel that

showed a slower release of the drug berberine

hydrochloride in acidic conditions thereby protecting

the drug before it is released into the small intestine

for drug absorption, and it also showed accelerated

release on application of an electric potential [185].

Commercialization of healthcare products
incorporating nanocellulose

Several companies have been commercializing med-

ical grade products based on BC (e.g., Membracel®
by Vuelopharma, Epi Nouvelle?® naturelle by

JeNaCell GmbH) and CNFs derived from tunicates (e.

g., Ocean TuniCell®) and wood pulp (e.g., UPM

Biomedicals). Most of these products are based on

non-surface-modified nanocellulose but UPM

Biomedicals now sells a cell culture media product

named GrowDex®-A that consists of surface-modi-

fied CNFs with proteins or peptides. UPM Biomedi-

cals also produces FibDex®, an advanced CNF

wound care dressing that has proven to provide

efficient wound healing in skin graft donor sites

[209]. CELLINK have also developed a series of

bioinks based on CNFs and alginate for the 3D

printing of tissue engineering cell scaffolds. As such,

commercial opportunities exist to move forward with

the use of surface-modified nanocellulose toward

new commercial products.

Surrounding wound dressings with transdermal

drug delivery, application, product development and

commercialization of nanocellulose continues to

advance significantly. Some commercial products

include Biofill®, Bioprocess®, Suprasorb X?PHMB®
and Xcell®. Nanocellulose-based drug delivery

products such as Gengiflex® membranes for dental

implants exist; however, there is a need to push

clinical trials and commercialization of nanocellulose

further [23, 149]. For widespread acceptance of

nanocellulose in drug delivery, a better understand-

ing of the influence and regulation of drug release,

interactions between drug molecules and nanocellu-

lose, as well as possible reduction or destruction of

drug activity and structure is required. In addition,

toxicity needs to be further assessed, likely on a case-

by-case basis [210].

Introduction to nanocellulose and water
purification

Although water is a basic need for all 7.9 billion of us,

access to clean portable water remains a significant

challenge globally. The UN estimates that over one

million people in developing countries do not have

access to clean drinking water and that up to 159

million people around the world consume untreated

water from surface water sources [211]. Yet this water

is often contaminated by toxic levels of heavy metals,

dyes, and hydrocarbons.

This section presents advances in the application of

cellulose in water treatment. We classify the use of

cellulose for water treatment applications into the

following three categories: (i) as the active agent i.e.,

adsorbent, (ii) as a support for adsorbents or cata-

lysts, and (iii) for the enhancement of photocatalyst

performance through reduction of the band gap

energy.

As the active agent, negatively charged (-COO¯)

cellulose materials such as those generated by

TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radi-

cal)-mediated-oxidation or sulfuric acid hydrolysis (-

SO3
2−) can serve as adsorbents for cationic contami-

nants (e.g., metal ions [212–214]). The surfaces of

cellulose fibers may also be functionalized by amine

(-NH2¯), thiol (-SH¯), phosphoryl (-PO3
2−), or sulfate

(-SO3
2−) groups to increase the specificity for specific

elements [215, 216]. In similar fashion, cationically

modified cellulose may be applied as an adsorbent

for anionic pollutants (e.g., As(V), As(III), Cr(VI),

pesticides, and dyes [217, 218]. These approaches

have the advantage of involving relatively simple

modifications to the cellulose fibers [217, 218].

The use of cellulose as an adsorbent support takes

advantage of the physical properties of cellulose, in

particular, its porosity [219]. Pores within and

between fibers can act as nucleation and deposition

sites for adsorbents, reducing their attrition/ loss,

thus increasing the performance and lifespan. Iron

oxides, for instance, are excellent adsorbents for

arsenic, whose contamination of groundwater poses

serious health effects to over 40 million people

worldwide [220]. However, recovery from treated

water poses a significant challenge to the use of iron

oxides for this purpose. Recent work has shown that

iron-oxide-cellulose composites can overcome this

challenge, increasing both the performance and

lifespan of the adsorbent [221]. A similar rationale
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has been employed in the design of catalysts for

advanced oxidative processes, to allow for reuse/re-

cycling of catalysts [222]. Further, it has also been

suggested that cellulose increases catalyst perfor-

mance by providing settling sites for radicals and

pollutants thus increasing their interaction, and the

subsequent degradation of the latter [223], in addition

to preventing catalyst aggregation of the catalyst,

increasing access to active sites on the catalyst surface

[224].

A third way by which cellulose has been applied in

water treatment has been for the enhancement of the

performance of photocatalysts. In the presence of

graphitic structures (e.g., cellulose char), electron–

hole recombination after exposure of the catalyst to

irradiation is hindered, as electrons are instead

quickly captured by the cellulose char [225]. Holes

created in the conduction band (CB) because of this

electron capture result in a higher probability of

the formation of •OH radicals, while electrons in the

biochar combine with oxygen in solution to form

superoxide radicals (•O2 ¯). Cellulose therefore acts

as a sustainable and renewable graphitic source,

improving catalyst performance. Indeed, Fu et al.

[226] found that for the oxidative degradation of

orange II by peroxymonosulfate, the graphitization

degree had a greater influence than surface area and

pore volume of a MnFe2O4-based catalyst.

Anita Etale (University of Bristol, UK):
nanocellulose for water purification

Using locally available agricultural waste biomass

including hemp, and corn stover, various approaches

for the preparation of heavy metal adsorbents have

been explored. In one study, cellulose-supported iron

oxides were prepared and applied for the removal of

As(III), As(V) and Cr(VI) ions. Notwithstanding that

arsenic is considered carcinogenic even at very low

concentrations, over 200 million people in 40 coun-

tries around the world are exposed to drinking water

with As levels above World Health Organisation

guidelines (10 µg L−1) [227]. Although As(V) pre-

dominates (as H2AsO4
− and HAsO4

2−) in oxidizing

conditions, in regions of previous gold mining

activity which are often characterized by reducing

conditions and high sulfate concentrations, arsenic

exists predominantly in the more toxic As(III), as

H3AsO3
0 and H2AsO3

−. Nevertheless, because of

slow redox transformations, both forms often occur

in either redox environment [228].

Anita Etale’s group has explored two strategies for

the use of cellulose in water treatment applications.

The first involves using cellulose as a support mate-

rial for iron oxides which are excellent adsorbents for

arsenic [229]. Preliminary work, however, showed

them to be prone to dissolution so that the prepared

iron oxides ‘leached’ into treated water compromis-

ing both the treatment process and adsorbent lifes-

pan. To address this challenge, iron oxides were

deposited on CNF extracted from hemp fibers.

Importantly, the CNF are thought to be porous [219].

CNF porosity may be the result of dissolution of

lignin and hemicellulose between the lamellae by the

chemical pulping process, or mechanical treatments

e.g., blending and sonication applied to increase fibril

separation. CNF with average pore sizes of � 6 nm

have recently been reported [219]. Manninen et al.

[230] also reported a cumulative pore volume of

1.7 mL g−1 from pore sizes that ranged from\1 –

3 nm in kraft pulp fibers, and from 3 nm to an

undefined maximum between the CNF fibers.

The approach to adsorbent synthesis has, therefore,

involved exploiting these pore spaces as embedment

sites for contaminant adsorbents. In one study, a

cellulose-ferrihydrite composite (Fig. 5a) was syn-

thesized by the deposition of iron oxide onto

TEMPO-oxidized fibrils at pH 10.5. Iron oxides,

including poorly crystalline ones such as ferrihydrite,

have a strong affinity for both As(III) and As(V).

Adsorption occurred primarily by ligand exchange

with surface OH2 and / or OH− resulting in bidentate

binuclear inner-sphere complexes [229, 231]. This

adsorbent displayed efficiencies of[99% for the

removal of As in mine drainage contaminated water

(Fig. 5b). Further, column experiments showed that

1 g of the adsorbent was needed to treat 1L of con-

taminated water. The reduction in absorbance inten-

sity from the OH region (1000 cm−1) on FTIR spectra

(Fig. 5c) suggests that adsorption of both arsenic

species involved some loss of OH as suggested by

Jain et al. [229].

A similar approach was employed in Sillanpää’s

group for the removal of Ni, Cd, Cu, as well as PO4
3−

and NO3
− [232]. Removal of these ions by CNF-cal-

cium hydroxyapatite composites was rapid with[
95% of metal ions adsorbed in the first five minutes of

exposure. Removal efficiencies were also high for

phosphate ions ([85%) and nitrates ([80%).
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Exposure of the same adsorbent to Cr(VI) contami-

nated water also revealed similarly high efficiencies

between pH 5 and 7: 94% of Cr(VI) ions were

removed from solution in the first 5 min [233]. In a

separate study, succinic anhydride was deposited

onto CNF, and the composite investigated for

adsorption of a range of metals (Fig. 5d) [215]. The

results showed maximum metal uptakes ranging

from 0.72 to 1.95 mmol g−1 and following the order

Cd[Cu[Zn[Co[Ni. Adsorption was constant

between pH 3 and 7 for Zn, Cu, and Cd ([95%), and

above 75% for Co and Ni at pH 7. Importantly, 96 -

100% of the adsorption efficiency could be regener-

ated by sonicating the used composite in 1 M HNO3

for 15 s.

A second approach has been through surface

modification of cellulose e.g., via amination [216],

thiolation [234], and cationization. This latter

approach uses two quaternary ammonium salts:

3-chloro-2-hydroxypropyl trimethyl ammonium

chloride (CHPTAC) and glycidyltrimethylammo-

nium chloride (GTMAC), and has been explored

(Fig. 5e) and the resulting materials examined for Cr

(VI) removal (Fig. 5f), and antibacterial activity. The

results showed that at pH 4, 0.1 g of CHPTAC-

modified cellulose removed up to 47% of Cr (VI) ions,

while 72% was adsorbed by GTMAC-cationized cel-

lulose. GTMAC-cationized also displayed consider-

able antibacterial effects, reducing the viability of

Escherichia coli by up to 45% after just 3 h of exposure.

However, Cr(VI) uptake in contaminated water (pH

2.7) was diminished to 22% likely due to competition

from sulfate and selenate ions [235] which are

abundant in mine drainage. Nevertheless, together,

Figure 5 a Scanning electron micrograph of CNF-Fe adsorbent.
b Removal efficiency of the CNF-Fe adsorbent when exposed to
mine-drainage contaminated water c FTIR spectra of CNF-Fe
before adsorption, and after uptake of As(III) and As(V). The box
highlights changes in the surface -OH absorption region before and
after adsorption. d Scanning electron micrograph of succinic
anhydride-modified CNF [215]. e CP-MAS 13C NMR spectra of

unmodified and cationized cellulose with the additional peak at �
52 ppm from (CH3)3 N?- groups of the quaternary amines
highlighted fr(VI) removal efficiency of cationized cellulose. (d) is
reproduced from [215] with permission from Elsevier (Copyright
Elsevier, 2013); e and f are reproduced under the terms of a CC-
BY license from [218]. a–c are unpublished data.
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these results suggest that cationized cellulose can be

applied in the treatment of Cr(VI)-contaminated mine

water particularly if pre-treatments to reduce con-

centrations of other anions are applied.

Supree Pinitsoontorn (Khon Kaen
University, Thailand): carbonized bacterial
cellulose aerogel as an efficient sorbent
for oil-polluted water

Bacterial cellulose (BC) is a class of nanocellulose

with a unique structure and properties, such as a

three-dimensional network of intertwined cellulose

nanofibers, remarkable mechanical properties, high

porosity, and low density [236, 237]. In its original

state, BC is a hydrogel with a significant water uptake

volume (� 99%) [237]. Freeze-drying removes the

water content but still preserves the BC 3D nanofi-

brous network and transforms a hydrogel into an

aerogel. Moreover, pyrolysis of the BC aerogel in an

inert gas atmosphere leads to the carbonization of the

BC nanofibers, thereby forming a carbon nanofiber

aerogel. The carbonized BC (c-BC) aerogel inherits

the BC precursor’s merits, so it still preserves the 3D

continuous architecture, the interconnected nanofi-

brous network, and an extremely high porosity. The

surface area of the carbon nanofibers can reach[400

m2 g−1, with a sizeable porous volume (ca. 3.00 cm3-

g−1) and an ultra-light weight (4–6 mg cm−3) [238].

Furthermore, high-temperature pyrolysis can induce

the hydrophobic/oleophilic properties of the c-BC

aerogel, which makes it an ideal material for oil

sorption.

Oil pollutants are one of the leading global envi-

ronmental problems. Every year, the annual spillage

of petroleum compounds to the marine environment

is over 1.4 million tonnes which has caused catas-

trophic effects on ecological systems [239, 240].

Therefore, a remedy for oil-spills is urgently needed.

Although there are several approaches for treating

oil-spills, the most effective approach is via physical

adsorption, i.e., the use of oil sorbents, which has

been proven to be energy-efficient, highly selective,

environmentally friendly, fast, and recyclable

[241, 242]. Research over the last decade has reported

several types of oil sorbent materials. Carbon aero-

gels have received considerable attention as one of

the most effective materials for adsorption, separa-

tion, and recovery of spilled oil [243, 244]. The carbon

aerogels can be fabricated from various biomass-

based products, such as cotton, bamboo, winter

melon, or waste paper [241]. These aerogels have

been applied for remedying oil-spills and have suc-

cessfully demonstrated a large oil sorption capacity

of up to 100 times of their weight. However, the

preparation processes for such aerogels may involve

severe mechanical and chemical pre-treatments,

which are high in energy consumption, and subject to

environmental concerns. Moreover, high-tempera-

ture pyrolysis may cause frangibility and brittleness

to those biomass-based carbon aerogels [245], which

hinders their practical use for oil recovery. On the

other hand, carbon aerogels from carbonized BC (c-

BC) have advantages over other biomass-derived

materials. The fabrication of c-BC is simple and cheap

without any use of harsh chemicals or complicated

processes. Also, the natural 3D continuous nanofi-

brous architectures of BC make the c-BC material

mechanically robust and flexible. The c-BC aerogel is

typically obtained in a bulky macroscopic form,

which is desirable for easy handling and recycling

after oil sorption. Plus, the shapes and sizes of the

c-BC aerogel are controllable via the bacteria culti-

vation process and scalable for industrial production.

The application of the c-BC aerogel for oil sorption

was firstly reported by pioneering work done by Wu

et al. [246]. They showed that pyrolyzing the BC

aerogel under an argon atmosphere at 700–1300 °C
led to a c-BC aerogel with a density of only 4–

6 mg cm−3 and a high porosity up to ca. 99.7%. The

c-BC aerogel exhibits hydrophobicity and can adsorb

a wide range of oils and organic solvents with

excellent recyclability by direct combustion. The

sorption capacity reached up to 310 times the weight

of the c-BC aerogel. Moreover, it was highly flexible

and mechanically robust. It could also be compressed

to a more than 90% volume reduction and almost

recover to its original shape after release, making a

‘squeezing’ process to recover oil possible [246]. In a

recent study, a c-BC aerogel pyrolyzed at 1200 °C was

compressed to 99.5% strain, and it was able to be

restored elastically to almost its original shape after

release [247]. A detailed surface area and pore-size

study showed that micropores and mesopores (2–

100 nm) occupied a large portion of the pore-size

distribution, providing huge spaces for oil sorption

and leading to high oil sorption capacity. Further-

more, this c-BC aerogel was an excellent thermal

insulator with extremely low thermal conductivity

(0.025 W m−1 K−1) comparable to air [247].
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Several efforts have been reported to increase the

oil sorption capacity of c-BC aerogels by using a

composite approach. c-BC was combined with carbon

nanofibers derived from polyimide (PI) by freezing

the mixture of BC and PI precursor suspension before

imidization and pyrolysis [248]. The resultant carbon

aerogel consisted of a 3D carbon skeleton with a

cellular architecture from carbonized PI, decorated

with 1D c-BC nanofibers. This hierarchical structure

was advantageous for enhancing the compressive

modulus leading to an improved shape-retention

ability due to the effective crosslinking between the

PI carbon skeleton and the c-BC nanofibers. The

aerogel was so stiff that it supported a weight of 200 g

without any noticeable deformation. Moreover, the

combined 3D carbon skeleton and 1D c-BC nanofi-

bers resulted in a reduced pore size and a narrow

pore size distribution, which could be beneficial for

oil sorption [248].

Wan et al. fabricated a c-BC aerogel nanocomposite

with graphene [249]. To facilitate the uniform distri-

bution of graphene in the BC network, an in situ

biosynthesis route under agitated cultivation using a

graphene-dispersed culture medium was employed.

The spherical BC/graphene hydrogel was carbonized

at 800 °C to form a sphere-like c-BC/graphene aero-

gel. The nanocomposite aerogel exhibited an open

honeycomb-like surface pattern consisting of

numerous ridges and large cavities, which increased

the aerogel’s specific surface area and porosity. The

unique nanostructure of the sphere-like c-BC/gra-

phene aerogel is the key to enhance the sorption

capacity (up to 457 times of its weight) for a wide

range of oils and organic solvents [249].

Reduced graphene oxide (rGO) has also been

composited in a c-BC aerogel [250]. This was done by

freeze-casting and freeze-drying of the GO and BC

mixed suspension. The GO nanosheets and BC

nanofibers were uniformly assembled into a porous

and interconnected 3D network. Subsequent pyroly-

sis transformed it into rGO/c-BC aerogel with the

preserved 3D nanostructure where the c-BC nanofi-

bers were still coated on the rGO sheets. The aerogel

density was easily controlled by varying the con-

centration of the precursor in the suspension and the

ratio of GO/BC. The lowest density was found for a

GO/BC ratio of 1:1. The oil sorption capacities of the

rGO/c-BC aerogel ranged from � 300 to 1000 times

of its weight, much higher than most carbon sorbents

[250]. The ultrahigh sorption capacity was attributed

to its low density and high porosity.

Luo et al. devised a new method of preparing c-BC

aerogels containing rGO by a novel BC culturing

process [251]. A thin BC pellicle was used as a sub-

strate in the static culture. The solution containing a

2D few-layer rGO (FrGO) suspension was sprayed

onto the BC substrate to form a thin layer, onto which

BC was grown to consume the sprayed FrGO layer

completely. The process was repeated to form a thick

BC/FrGO layered structure, which was then freeze-

dried and pyrolyzed. The c-BC/FrGO aerogel from

the process exhibited an entangled nanostructure

between the FrGO sheets and c-BC nanofibers, cre-

ating a multi-scaled porous structure and large

specific area. As a result, the c-BC/FrGO aerogel

exhibited mechanical robustness and an extremely

high sorption capacity of 245–598 times its weight for

a range of oils and organic solvents [251]. It also

showed excellent reusability by both squeezing and

combustion, with nearly the same sorption retention.

To assist the collection of a c-BC aerogel for reuse,

regeneration, or recycling after oil sorption, func-

tionalizing the aerogel with magnetic properties is a

very useful and practical approach. A magnetic

functionalized c-BC aerogel can be collected easily in

large quantities with the aid of an applied magnetic

field. Supree Pinitsoontorn and his team at the Insti-

tute of Nanomaterials Research and Innovation for

Energy (IN-RIE), Khon Kaen University, have

explored that concept by using in situ co-precipita-

tion of magnetic Fe3O4 nanoparticles in the BC pel-

licle before converting it into a magnetic c-BC aerogel

[252]. Interestingly, by controlling the concentration

of the initial Fe3O4 precursors, the c-BC nanofibers

were decorated with well-dispersed magnetic

nanoparticles with a Fe/Fe3O4 core–shell structure

(Fig. 6a&b). The core–shell structure increased the

magnetization of the NPs due to the large magneti-

zation of the Fe core. This, in turn, improved the

magnetic attraction ability when subjected to external

magnetic forces. Although magnetic NPs were

impregnated in the c-BC structure, the outstanding

mechanical properties of the c-BC aerogel were still

maintained. The magnetic c-BC aerogel was able to

be compressed up to 90% strain and return to its

original shape after release. This process was repe-

ated up to 100 successive cycles, and the shape of the

aerogel was nearly unchanged from the original state.

Moreover, even with the addition of magnetic NPs,
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the magnetic c-BC aerogels had an ultralightweight

property with a density of only 7.4 mg cm−3, which is

lighter than other magnetic carbon aerogels from

several carbon sources [253, 254]. The oil sorption

capacity of the magnetic c-BC aerogel was still very

high (37–87 times of its weight), which is comparable

to other carbon aerogels from various sources

[254–256]. Also, it can be rendered recyclable several

times by dissolution. The highlight of the magnetic

c-BC aerogel is its ability for magnetic retrieval from

the liquid after sorption. As shown in Figs. 6c&d, the

motion of the magnetic c-BC aerogel in a liquid can

be controlled by an external magnet. The magnetic

force can also lift it out of the liquid after use. This

functionality is beneficial for manipulating the sor-

bents in a large area of polluted water, in a practical

application of this technology.

The magnetic c-BC aerogel could not just be used

for the remediation of an oil-spill but also be applied

to other contaminant adsorption situations. Figure 7

shows a series of images demonstrating the dye

(indigo carmine) sorption capability of the magnetic

Figure 6 a, b TEM micrographs of the magnetic c-BC aerogel
showing the magnetic Fe/Fe3O4 core–shell nanoparticles anchor-
ing on carbon nanofibers. c The sorption experiment and magnetic
retrieval after oil sorption. d The sorption of oil floating on water,

with magnetic manipulation and retraction of the c-BC aerogel.
[252]. Image reproduced from [252] with permission from the
ACS ( Copyright American Chemical Society, 2020).
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c-BC aerogel [257]. The vivid blue color gradually

faded, and the water became clear just like before the

dye was added, indicating the complete dye removal,

as confirmed by UV–Vis analysis. After the process,

the aerogel was magnetically removed from water by

a permanent magnet. The dye-adsorbed c-BC aerogel

can be regenerated by dissolution followed by oven-

drying before reuse. In addition, the magnetic c-BC

aerogel can still be utilized in water treatment

applications for other contaminants such as bisphe-

nol A and Cr(VI) [258, 259].

Yixiao Cai (Donghua University, China):
using cellulose for wastewater treatment
for dyes, heavy metals and desalination

In recent years, various semiconductor/cellulose

composite materials have been widely used in the

degradation of organic dyes in printing and dyeing

wastewater, such as metal oxides (TiO2, ZnO, WO3),

metal sulfides (CdS, ZnS), bismuth-based semicon-

ductors (BiOCl, BiOBr, BiOI, Bi4O5Br2), silver-based

semiconductors (AgBr, AgI, Ag3PO4, AgVO4 and

AgCrO4) and non-metallic semiconductors (graphite,

carbon nitride).

Some studies combine photocatalysis with other

oxidation methods to further strengthen wastewater

treatment. Rajagopal et al. [260] prepared microcel-

lulose (MC) and TiO2 composite materials, combined

with hydrogen peroxide photocatalytic degradation

(TiO2?MC?H2O2), to decolorized wastewater con-

taining multiple dyes under sunlight. They showed

that 99% of high-concentration methylene blue (MB)

dye wastewater (200 mg/L) can be degraded within

150 min, and the removal efficiency of Chemical

Oxygen Demand (COD) can reach 72%. It was high-

lighted that the synergy index of H2O2 assisted

photocatalytic degradation is 3.54, which shows that

the above process coupling has a positive synergistic

effect. Other research that is being developed by Cai

et al. [261] takes advantage of a nanocomposite

strategy, rendering stable cellulose-based hybrid

materials with diverse functionalities for micropol-

lutant removal. Through synergistic oxidation, e.g.,

Figure 7 A series of images demonstrating dye sorption using the magnetic c-BC aerogel, which was magnetically retracted afterward
[257]. Image reproduced from [257] with permission from Springer-Nature ( Copyright Springer-Nature, 2020).
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persulfate activation, photocatalytic water treatment

has been proven to obtain practical value and can be

further developed industrially [261].

As already discussed, heavy metal ions in water

can be removed by adsorption. However, single

physical adsorption can only enrich and transfer

heavy metals but cannot completely remove them.

Semiconductor photocatalysts have redox capabili-

ties, which can change the chemical properties of

heavy metal ions to reduce their toxicity. Taking TiO2

as an example, the mechanism of photocatalysis to

remove heavy metal ions is roughly as follows:1)

nano-TiO2 adsorbs heavy metal ions on its surface, 2)

an ultraviolet lamp is excited to generate photogen-

erated electron–hole pairs, and the electrons transi-

tion to the conduction band and transfer to the TiO2

surface, 3) photogenerated electrons reduce the

adsorbed heavy metal ions to low valence states

(such as chromium, mercury, lead) or elemental

forms (such as silver), the metal ions in the lower

valence state further generate compounds and pre-

cipitate (such as chromium) or further obtain elec-

trons as elemental substances (such as lead, mercury)

and deposit on the surface of TiO2 particles. How-

ever, supporting TiO2 (or other semiconductor pho-

tocatalyst) on the surface of cellulose can improve the

removal efficiency of heavy metal ions. Although the

adsorption of heavy metal ions by the hydroxyl

groups in cellulose contributes to the removal of

metal ions, the adsorption effect is weak. For this,

researchers usually take advantage of chemical

modification or graft copolymerization to introduce

effective adsorption active sites on the surface of

cellulose [262] such as carboxyl groups, amino

groups, and sulfonic acid groups. These groups can

selectively recognize and capture various heavy

metal ions through electrostatic attraction or com-

plexation and chelation coordination effects [263],

thereby improving the photocatalytic removal

efficiency.

Interfacial solar evaporation, which utilizes the

abundant sunlight to evaporate saltwater, has gained

significant attention as an environmentally benign

and sustainable approach. Significant efforts have

been made in realizing supporting substrates that

provide optimal thermal management and unim-

peded water transport to foster high-performance

interfacial solar evaporation. The high degree of

crystallinity of CNMs provides excellent mechanical

stability, and their highly dense surface functional

groups enable direct deposition or adsorption of

various photothermal materials [264, 265]. After

subjecting MoS2/BC bilayered aerogels to vigorous

mechanical agitation, no detachment of photothermal

materials from a BC matrix was observed, and the

bilayered structure remained intact [266]. Besides,

CNMs can be easily processed into nanomicroporous

structures, and this interconnected porous structure

can enhance the light absorption of the photothermal

materials loaded onto these structures because of the

increased light reflection and scattering within the

pores. Jiang et al. prepared carbon nanotube/cellu-

lose composite aerogels as photothermal materials.

Owing to the strong hydrogen bonding between the

ample hydroxyl groups of CNFs and carboxylic

groups of CNTs, these materials were found to be

robust. The ultrahigh porosity of the CNF aerogel

and high light absorption of CNTs led to a 97.5% light

absorbance within the light range from 300 to

1200 nm [267]. In addition, owing to a low thermal

conductivity they provide excellent thermal insula-

tion. The thermal conductivity of a sophisticated

solar evaporator designed by Li et al. was as low as

0.06 W m−1 K−1. This solar evaporator achieved high

evaporation efficiency, up to 85.6% under 1 sun

illumination [267].

Introduction to polymer matrix
biocomposites from well-dispersed
cellulose nanofibers

Cellulose-based plant fibers can be readily used by

themselves to form paper, packaging board materials

and recently molded fibers [268]. Polymer matrix

composites based on the same fibers offer possibili-

ties to improve processing (improved geometrical

complexity, rate of processing etc.), extend the range

of physical properties, and improve the chemical

stability, where the improved moisture stability is

particularly important for engineering applications.

The use of CNFs as a reinforcement is then of obvious

importance: wherein the intrinsic ‘fiber’ properties

should be better than for the plant fibers, specific

nanoscale phenomena may occur such as structural

improvements to the polymer matrix (crystallinity,

orientation, reduced molecular mobility etc.) and it

may become easier to fabricate small-scale

geometries.
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The first effort to make cellulose nanocomposites

with a polymermatrix appears to have been the inves-

tigation by Boldizar et al. [269]. Poly(vinylacetate)

nanocomposite films were prepared from hydrolyzed

and homogenized cellulose pulp, with strongly

improved mechanical properties. Also, hydrolyzed

cellulose pulp was compounded with thermoplastics,

injection molded into specimens for mechanical prop-

erty measurements. The reinforcement effect was bet-

ter than for pulp fiber reinforcement, possibly due to

the higher aspect ratios obtained from the disintegra-

tion of the pulp fibers into nanofibers. The cellulose

nanocomposites field, however, did not really take off

until researchers in Grenoble investigated hydrolyzed

CNCs (then called ‘cellulose whiskers’) as a reinforce-

ment [270, 271], followed by numerous studies, e.g.,

using nanocelluloses from parenchyma cells (potato

tubers etc.), which are covered in a thorough review of

the background to the whole field [272]. Yano and

coworkers then investigated wood-based CNFs com-

bined with poly(phenol formaldehyde) resins [273]

and transparent nanocellulose films with an acrylate

polymer matrix [274]. High optical transmittance and

high mechanical performance is a highly interesting

combination for biocomposites, which provides

uniqueapplicationopportunities,andwillbereviewed

in more detail in subsequent sections. Another impor-

tant category of composites for engineering applica-

tions is ‘cellulose biocomposites’ based on thermosets.

These are suitable for large-scale production, with

nanopaper reinforcement in the form of prefabricated

CNF mats. Epoxy and polyester resins typically used

for glass fiber composites have been reinforced with a

high content of wood CNFs [275, 276], andmechanical

properties were competitive with molded glass fiber

composites [277]. A large collection of mechanical

property data for cellulose nanocomposites have pre-

viously been analyzed [278]. The strongest and stiffest

nanocomposites were those based on a high content of

prefabricated nanopaper reinforcement, and proper-

ties scaled with nanopaper properties and volume

fraction.

Key research and technical goals for the promotion

of nanocellulose applications include scalable pro-

cessing concepts and processing technologies for

cellulose nanocomposites. Numerous technical stud-

ies are disappointing in that the mechanical perfor-

mance does not meet requirements. Properties are

simply not good enough to justify substitution of a

petroleum-based polymer composite reinforced with

glass fibers or mineral fillers. The most common

reason for this first problem is that the CNFs are

agglomerated in the composite, often into microscale

aggregates. Although such a material is based on

nanofibers, it is not nanostructured in a true sense.

The modulus usually still shows improvement,

although the reinforcement can be even lower than

for comparable plant fiber composites. Strength is

often reduced by the presence of aggregates, since

they form stress concentrations which tend to initiate

failure at low strain. A second problem is that cellu-

lose nanocomposites are expected to contribute to

sustainable development, but energy demand and

carbon dioxide emissions related to CNF and

nanocomposites fabrication tend to be high [279],

which needs to be addressed. Holocellulose-based

native CNF is one interesting possibility with low

fibrillation energy, despite the lack of chemical

modification [280]. Finally, the cost of the nanocom-

posite material needs to be competitive with alter-

native materials for a given application. The two last

points (sustainability and cost) mean that the possi-

bilities for chemical modification of nanofibers are

not endless, contrary to many optimistic statements.

A common preparation route for cellulose

nanocomposites is to dissolve the polymer in an

organic solvent, mix in the CNF and then do solvent

casting. In industry, this process could be used for

some coatings, preparation of adhesive films etc., but

it is not appropriate for semi-structural composites.

The solvents used are frequently expensive and could

even be toxic and difficult to recover. Casting from a

hydrocolloidal dispersion is possible, though. The

polymer matrix can be water-soluble, e.g., starch

[281, 282], although this limits the applications. The

polymer can also be distributed in the form of water-

dispersed nanoparticles, as was demonstrated for

PLA [283]. The water-based processing route is again

feasible for coatings and adhesives, and also for

the preparation of some types of nanocomposite films

and barrier layers. Layers of nanocomposite films of

around 100 µm in thickness can be stacked, followed

by hot-pressing into nanocomposite laminates. There

are, however, significant industrial challenges in

processing of the colloids. The concentration of

nanofibers needs to be higher than the 1–2% typically

used in basic research investigations, while preserv-

ing CNF dispersion and limiting the use of chemical

modification to affordable and sustainable technolo-

gies. The removal of a large quantity of water is a
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technical difficulty, and a challenge in terms of cost

and energy demands.

Melt processing of thermoplastic nanocomposites

is of great technical potential. Injection molding of

thermoplastic products is an enormous business and

preferred in the automotive industry, due to the high

processing rates. An important technical problem is

the strong viscosity increase arising from the addition

of CNF to thermoplastics, which can happen at a low

cellulose content. The main reason for this increase is

the large aspect ratio and small dimensions of the

nanofibers. Yano and coworkers have addressed this

by doing some of the pulp fiber disintegration in the

compounding process itself [284]. Since mechanical

properties scale with cellulose content, one limitation

is that a typical reinforcement content is around 10

wt.%, which may be related to melt viscosity

problems.

Thermoset nanocomposite processing is also chal-

lenging. Bulk mixing between liquid thermoset pre-

cursors and CNFs frequently results in their

aggregation, simply because of the CNF-CNF affinity

in such liquids. CNF reinforcement ‘mats’ will have

nanoscale porosity, which means that good wetting is

required for resin impregnation. Thermoset resin

wetting of cellulose is, however, difficult since there

will be water molecules at hydrophilic CNF surfaces

under ambient conditions. Commercial production of

glass fiber/epoxy prepreg utilizes organic solvent

assisted epoxy impregnation, and this works well

also for high content CNF/epoxy [277]. If the

nanocellulose reinforcement is modified by acetyla-

tion [285] or by green chemistry approaches [286],

bulk monomer impregnation is facilitated so that

processing may be feasible and similar to industrial

liquid molding of thermoset composites.

After more than 25 years of cellulose nanocom-

posites research, there is an urgent need to address

challenges to realize large-scale use of nanostruc-

tured cellulose biocomposites (processing, moisture,

performance, cost, sustainability, etc.) and intensify

research and development on credible applications.

In addition, the goals of materials substitution need

to be defined: What are the specific reasons for sub-

stituting existing materials with polymer matrix cel-

lulose nanocomposites? In the following sections,

four cases of importance for the application potential

of cellulose nanocomposites are covered: melt com-

pounding of thermoplastic composites for mass

markets will be addressed, optically transparent

composites based on bacterial cellulose (BC) for

impact protection, transparent wood, which is a

polymer matrix nanocomposite for building and

photonic applications based on nanostructured wood

substrates, and finally functional CNM composites

with structural color.

Kristiina Oksman (Luleå University
of Technology, Sweden): large-scale melt
compounding of cellulose nanocomposites

Melt blending is an important manufacturing pro-

cess, and its development is important for the com-

mercialization of cellulose nanocomposites and

associated products such as automotive parts and

packaging films. However, many challenges need to

be overcome to enable large-scale production [287].

One challenge is the high material cost and com-

plexity of the manufacturing process, which further

increases the total cost of the material. In addition,

the environmental impact of the manufacturing pro-

cess is a vital consideration. Since significant amounts

of energy are required to manufacture promising

biobased cellulose nanocomposites, this has negative

implications for product cost and commercial pro-

duction. For this reason, the use of cellulosic nano-

materials in thermoplastic polymers must be

extensively explored. The improvement in mechani-

cal properties associated with the addition nanocel-

lulose has been a research focus; however, the

addition of nanocellulose can also result in other

benefits. Regardless of the impact on polymer prop-

erties, nanomaterial additives must be optimally

dispersed, distributed, and, in some cases, oriented

within the polymer.

Generally, the manufacturing of nanocomposites is

challenging since nanomaterials have a large surface

energy and tend to agglomerate. CNMs are usually

fabricated via top-down processes in the presence of

water; although these materials initially disperse well

in the water, once they have dried, redispersal is

difficult owing to strong interactions that may

include hydrogen bonding amongst other interac-

tions, but ultimately leading to what is commonly

termed ‘hornification’. CNFs and CNCs form gels at

low concentrations (1 wt.%) because of their tendency

to form networks; however, gels derived from CNCs

are less viscous owing their reduced length. Melt

compounding is a high-temperature nanocomposite

fabrication process in which polymers are heated
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above their melting temperature; this method

restricts the use of CNMs as some are sensitive to

high temperatures. These specific properties of

nanocellulose materials make their use in melt com-

pounding with thermoplastics even more challenging

[287].

Many researchers have reviewed this topic; for

example, Oksman et al., Wang et al., Zheng and Pilla,

and Clemons and Sabo [288–291]. These reviews

explore the developments in the extrusion processing

of cellulose nanocomposites; Oksman et al. [288]

focused on the processing and properties of cellulose

nanocomposites, Wang et al. [289] focused on

potential industrial processes, Zheng and Pilla [290]

focused on melt processing with CNCs, and Clemons

and Sabo focused on the wet compounding of cellu-

lose nanocomposites [291].

In melt blending processes, various components,

such as polymers, additives, and nanocellulose (re-

inforcing agents), are mixed in a compounding

extruder where high temperatures and high shear

forces melt the polymer; a specific screw configura-

tion enables the mixing of the components. Two

types of extruders are used in compounding pro-

cesses: co-rotating and counter-rotating twin-screw

extruders. Co-rotating extruders are preferred

because they are more effective at mixing and dis-

persing the components; they also allow a flexible

screw design, i.e., screws can be tailored to maximize

dispersive, distributive mixing, or minimize shear

forces to preserve fiber length. Co-rotating extruders

are also more effective at removing moisture and

volatiles, which is important if liquids are used as

processing aids. The main challenges in the melt

processing of cellulose nanocomposites are the con-

trolled feeding of nanocellulose materials into the

extruder and the dispersion and distribution of these

nanomaterials in the polymer without degrading the

cellulose or polymer [287, 288]. Different approaches

to the melt processing and associated dispersion of

CNMs have been explored, namely, liquid-assisted

extrusion or wet feeding, dry feeding, and single- or

multi-step processing, including master-batch pro-

cessing and solid-state processing.

Liquid-assisted extrusion

Liquid-assisted extrusion was developed for

nanocomposites derived from clay suspensions and

polyamide 6 (PA6) [292] and used for first time on

cellulose nanocomposites by Oksman et al. in 2006

[293]. Several reports on liquid-assisted extrusion or

wet feeding of cellulose have since been published

[294–302].

In liquid-assisted extrusion processes, CNMs are

suspended or dispersed in water with or without

additives. This suspension is pumped into the

extruder that vaporizes the liquid phase and removes

it via a venting system [292, 293, 295–301]. Karger-

Kocsis et al. [292] listed several benefits of the liquid-

assisted feeding of nanomaterials into the extruder,

including the absence of the necessity for the surface

modification of the nanomaterials—thus avoiding the

degradation associated with surface modifiers,

reduced health risks owing to the suspension of the

nanomaterials in liquid, and their improved disper-

sion because of ‘blow-up’ phenomena caused by the

pressurized liquid evaporating from the melt, par-

ticularly in cases where water is used. Oksman et al.

[287] also mentioned the economic and environ-

mental benefits of the liquid-assisted process associ-

ated with the absence of supplementary treatment

processes such as freeze-drying, which would

increase its energy requirements, processing time,

and risk to human health. CNCs are extremely small

particles that are safer to handle in liquid owing to

risks associated with inhalation.

However, if water-dispersed CNMs are directly

subjected to high-temperature processing, rapid

evaporation can lead to aggregation. Therefore, the

use of processing or dispersion aids, that limit or

prevent agglomeration during the evaporation of

water or solvents, have been explored, such as

polyethylene glycol (PEG) [293], triethyl citrate (TEC)

[294, 295], and prepolymers such as methyl

methacrylate (MMA) [296], polyvinyl alcohol

(PVOH) [297], and glycerol triacetate (GTA) [300].

Figure 8 shows a co-rotating extruder setup and

screw design used for the fabrication of cellulose

nanocomposites. The polymer is fed into the extru-

der, using a gravimetric feeding system, and melted

before the introduction of the nanocellulose-contain-

ing liquid phase. Two atmospheric vents and a vac-

uum vent are used to remove the vaporized liquid

phase. A typical temperature profile for the process

with polylactic acid (PLA) as the polymer matrix is

shown. The screws consist of feeding zones for the

polymer and nanocellulose-containing liquid phase, a

polymer melting zone, and dispersive and distribu-

tive mixing zones ahead of the vacuum vent. The
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total processing time is 30–50 s depending on the

screw speed [297].

Liquid-assisted feeding presents many challenges

such as the high viscosity of the nanocellulose sus-

pensions—which hampers blending especially in the

case of CNFs—and the high amounts of liquid (water

or other solvent) that require removal. A suitable ex-

truder, such as a co-rotating extruder, that effectively

removes the liquid (solvent) should be used. The

degradation of the polymer is also a common concern

in liquid-assisted extrusion; however, provided no

oxygen is available during processing, the polymer

does not degrade. Herrera et al. [295] showed that the

molecular weight of PLA is not affected by the liquid-

feeding of CNFs; this result is consistent with that

reported by Peng et al. [298], who investigated the

reinforcing of PA6.

Geng et al. [296] polymerized MMA-latex onto

CNCs (PMMA-CNC) and used this material to pre-

pare a nanocomposite with PLA. A PMMA-CNC–

water dispersion was pumped into a twin-screw

extruder and mixed with PLA at a low CNC con-

centration. The nanocomposites were then oriented

using a solid-state drawing process. The oriented

nanocomposite exhibited an ultrahigh mechanical

performance. Furthermore, this nanocomposite, con-

taining well-dispersed CNCs, showed strain-respon-

sive behavior, i.e., birefringence that changed with

applied deformation, as shown in Fig. 9.

Peng et al. [298] used a water-assisted extrusion

process to compound CNCs and PA6. They found

that the addition of CNCs does not significantly affect

the mechanical properties of PA6. However, they also

found that CNCs act as a nucleation agent for the

crystallization of PA6, increasing the cell density and

reducing the cell size of the foam during microcel-

lular injection molding. It was also demonstrated that

water-assisted extrusion does not significantly affect

the molecular weight of PA6. Herrera et al.

[295, 299, 300] studied the effect of plasticizers or

dispersing aids on the dispersion of CNMs in PLA

using a liquid-assisted extrusion process. They found

that the addition of plasticizers such as TEC and GTA

effectively enhances the dispersion of CNFs and

CNCs in PLA. Hietala et al. [301] prepared a liquid

mixture of potato starch, plasticizer, and CNFs (up to

20 wt.%) and fabricated thermoplastic starch

nanocomposites using a twin-screw extruder. The

results were interesting in that the mechanical prop-

erties of the composite were similar to those of

polyethylene; however, the added CNFs improved

the moisture stability of the starch which is typically

very moisture sensitive. Yasim-Anuar et al. [302] melt

blended low-density polyethylene (LDPE), CNFs,

and maleic anhydride–grafted polyethylene (MAPE)

—a compatibilizer—using an internal mixer and a

twin-screw extruder. They found that a twin-screw

extruder better disperses CNFs, up to 3 wt.% fraction,

than an internal mixer.

Dry feeding of nanocellulose during extrusion

Several studies have explored the use of dried

nanocellulose powders in extrusion processing., e.g.,

CNCs and CNFs [303–307]. The addition of dried

nanocellulose particles is easier to feed, especially if

Figure 8 Co-rotating twin-
screw extruder setup and
screw design for liquid-
feeding, reproduced from
Bondeson and Oksman [297]
with permission from Elsevier
(Copyright Elsevier, 2007).
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high concentrations are of interest, but there are no

studies showing that dry CNCs can be dispersed in

melt compounding. Typically, the modulus of a

composite prepared using dry nanocellulose increa-

ses slightly with increasing nanocellulose content, but

its strength is inferior, or similar to that of the neat

polymer. For example, Wang et al. [304] used spray-

dried CNFs, PP, and maleic anhydride–grafted

polypropylene (MAPP)—a compatibilizer—to pro-

duce melt-extruded composites containing 3, 10, and

30 wt.% CNFs. The presence of CNFs in PP does not

significantly affect its mechanical properties; the

modulus and strength of composites containing 30

wt.% CNFs are higher and similar, respectively, to

those of neat PP. Microscopy revealed the presence of

large CNF agglomerates in the PP matrix. Venkatra-

man et al. [305] compared the performances of freeze-

and spay-dried CNCs in a process considered

industrially scalable. A polymer (PA11) and dried

CNCs were milled for 6 h before the powdered

mixture was extruded or compression molded.

Despite being time consuming and energy demand-

ing, both processes produced composites with

improved mechanical properties. Leao et al. [306]

produced composites consisting of an acrylonitrile

butadiene (ABS) matrix and 0.5, 1, and 1.5 wt.%

CNCs with different lengths (150 and 220 nm) by

twin-screw extrusion and injection molding. The

CNCs were shown to increase the tensile modulus of

ABS without increasing its strength, and the com-

posite containing 0.5 wt.% CNCs (220 nm) exhibited

the highest modulus. Sarul et al. [307] prepared a

master batch consisting of spray-dried CNCs and a

polymer mixture that was freeze-dried and used to

form composites via direct mixing and twin-screw

extrusion. The mechanical properties of the compos-

ites decreased with increasing CNC content, except in

the case of the composites containing 5 wt.% CNCs,

which exhibited a slightly increased modulus.

Master-batch processing

A master-batch process where a CNM is introduced

in high concentrations into a polymer in solution is

another approach for preparing cellulose-based

nanocomposites. This mixture—master batch—con-

taining high concentrations of CNMs is dried, cru-

shed, and diluted in the extrusion process to the

desired concentration [308–312]. This is a possible

approach to the large-scale fabrication of cellulose

nanocomposites; however, if solvent exchange is

necessary, its environmental impact is significant. For

example, it was found that the mixing of water-dis-

persed polyvinyl acetate (PVAc) latex with CNCs and

CNFs at high concentrations (20 wt.%) promoted the

dispersion of the CNCs and CNFs in the composite

during the subsequent extrusion process [309, 310].

Jonoobi et al. [311] prepared PLA–CNF composites

by mixing an organic solvent-dissolved PLA (of dif-

ferent concentrations) with nanocellulose suspen-

sions, drying and then extruding the mixtures using a

twin-screw extruder. The resulting composites exhi-

bit excellent mechanical properties and enhanced

thermal stability. Jonoobi et al. subsequently investi-

gated the reinforcing effects of acetylated (AC) CNFs

using a similar compounding process and concluded

that the acetylation of CNFs does not further improve

the nanocomposite properties [311]. Correa et al.

Figure 9 Cellulose
nanocomposite consisting of
PLA and CNCs (0.2 wt%)
with MMA-modified surfaces
to aid dispersion, a ultrahigh
mechanical properties and
b strain-responsive
birefringence, reproduced
from Geng et al. [296] with
permission from Elsevier
(Copyright Elsevier, 2020).
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[312] prepared a master batch of PA6 with a high

concentration of CNCs by dissolving PA6 in formic

acid. The aim was to coat the CNCs with PA6 to

improve their thermal stability and enable their

application in high-temperature processing.

Nanocomposites consisting of PA6 and PA6-coated

CNCs (1 wt.%) were prepared using a twin-screw

extruder. It was found that, although well dispersed,

the effect of the CNCs on the modulus and strength

of PA6 was minimal and non-existent, respectively.

Evidently, master-batch processing has advanced;

however, the requisite solvent exchange and disso-

lution of the polymer matrix are not sustainable.

Researchers have extensively studied extruded

cellulose nanocomposites, conducting interesting

research on HDPE, PP, and PA6 nanocomposites,

such as Sato et al. [313], Igarashi et al. [284], Suzuki

et al. [314], and Semba et al. [315]. Sato et al. [313]

compared the wet and dry processing of chemically

modified cellulose, using multiple preprocessing

steps, including mixing and kneading in an extruder

at temperatures below the polymer melting temper-

ature prior to the melt-compounding process. The

cellulose and MAPP (compatibilizer) contents were

kept constant (at 10 and 4.3 wt.%, respectively), while

the degree of chemical modification of the cellulose

was varied. They showed that the chemical modifi-

cation and degree of substitution (DS) of the cellulose

significantly affect the material properties and that

chemically modified CNFs produce better composites

than bead-milled CNFs. The treated cellulose was

fibrillated during kneading but not to nanosized

fibers.

Igarashi et al. [284] further explored the dry pro-

cessing of cellulose nanocomposites; preparing dry

mixtures of chemically pretreated cellulose pulp,

HDPE, MAPP, and CaCO3 using multiple prepro-

cessing steps that were subsequently extruded to

obtain composites. The results were similar to those

reported by Sato et al. [313], who showed that the

cellulose was fibrillated to smaller sizes during pro-

cessing and that the mechanical properties of the

composite were optimized at a DS of 0.43. The dis-

persion and distribution of the cellulose are shown in

X-ray computed tomography images with increasing

DS (Fig. 10a-f); Fig. 10d shows the composite with the

highest mechanical properties. Although the prepro-

cessing steps fibrillated the cellulose, improving the

mechanical properties of the composites, they were

time consuming, involving solvent exchange to an

organic solvent and multiple washing steps with

acetone, ethanol, distilled water, and isopropanol.

Moreover, they did not reduce the cellulose to

nanosized fibers. The preparation of the dry mixture

required multiple steps and its feeding rate into the

extruder was only 50 g/h, which is too slow for an

industrial process.

Semba et al. [315] prepared nanocomposites con-

sisting of refined AC cellulose and PA6. These com-

ponents (PA6 and 10 wt.% AC cellulose) were mixed

in propanol to form a slurry, which was dried and

then melt compounded in a twin-screw extruder

followed by injection molding. The authors reported

a significant increase in the flexural properties of

PA6, and the AC cellulose with DSs of 0.67 and 0.64

produced composites with the highest properties.

Furthermore, the AC cellulose was fibrillated during

the extrusion process and the thermal properties and

heat deflection temperature of the composite were

improved.

High-shear processes

High shear forces have been used in different ways,

in wet and dry feeding processes, to improve dis-

persion, break cellulose agglomerates, and fibrillate

cellulose [316–320]. Suzuki et al. [316] fabricated

nanocomposites with high cellulose concentrations

using a solid-state high-shear process. A wet mixture

of cellulose (50 wt.%), powdered PP, and powdered

MAPP was blended in a twin-screw extruder with a

cooled extruder barrel (0 °C). This process also fib-

rillated the cellulose to sub-micron sized fibers

without melting the polymer. This mixture was then

compounded by melt extrusion. The main outcome of

this study was the fibrillation of cellulose pulp and

the consequent enhanced mechanical properties of

the associated composite, compared with those of

neat PP.

Solid-state pulverization and melt processing is a

multi-step fabrication process that has been

employed by Iyer et al. [318] to prepare cellulose

nanocomposites. A solid-state mixture of nanocellu-

lose and PP was pulverized (and mixed and dis-

persed) at low temperature to avoid melting of the

polymer before the pulverized homogeneous mixture

was compounded through melt processing. They

showed that the nanocellulose was well dispersed in

PP but that it did not significantly affect its

mechanical properties. Venkatraman et al. [319] used
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cryo-milling and planetary ball milling to prepare

master batches consisting of PA6 and high concen-

trations of spray-dried CNCs. Master batches of PA6

and 75 wt.% CNCs and PA6 and 90 wt.% CNCs were

prepared by ball milling. The powdered master bat-

ches were diluted during melt processing to produce

composites with CNC contents of 5 and 10 wt.%. The

properties of these composites were compared with

those of corresponding samples produced by direct

milling and compression molding. The results

showed that the master-batch process produces a

composite with a slightly higher modulus than neat

PA6 but does not realize an improvement in strength.

This study showed that spray-dried CNCs are diffi-

cult to finely disperse in PA6; moreover, the pro-

posed process is very energy demanding as the

milling time was 6 h. Olivera et al. [320] also explored

the solid-state pulverization of CNFs. They mixed

different cellulose nanofibers (10–30 wt.%), with 10

wt.% MAPP and PP, and extrusion mixed and com-

pounded the mixtures at temperatures of 80–100 and

170–180 °C, respectively. They reported improve-

ments in the mechanical properties of the composites,

especially for composites containing 30 wt.% cellu-

lose. It has been shown that solid-state high-shear

processing can effectively disperse cellulose. How-

ever, these processes are very energy demanding and

may not be suitable for large-scale applications.

Sridhara and Vilaseca [321] considered batch pro-

cessing using a thermokinetic mixer to be suitable for

scaling up to an industrial level. They fabricated

nanocomposites by premixing CNF gel (containing 3

wt.% CNFs) with powdered PA6 to realize compos-

ites with CNF contents of 5, 15, and 25 wt.%; these

mixtures were dried and melt compounded in a

thermokinetic mixer before the resulting materials

were milled or pelletized and compression molded.

The mechanical properties of the composites

increased with an increasing CNF content, and the

best properties were found for composites containing

25 wt.% CNFs. This batch process is very fast as the

material melts owing to high shear forces within 20 s.

Considering the latest research efforts on the melt

processing of cellulose nanocomposites, interest in

large-scale processing has increased; however, the

expected breakthroughs have not yet materialized.

Many processes are time consuming, have high

energy and chemical requirements, and are expen-

sive. It is very difficult to finely disperse nanocellu-

lose, at a nanoscale, if composites with high

nanocellulose contents (\1 wt.%) are desired. These

studies were unable to determine whether cellulose

at the nanoscale is a suitable reinforcing material

because its dispersion at a nanoscale level is difficult

in melt-extruded composites. To date, we have not

realized cellulose nanocomposites with properties

Figure 10 Dispersion of fibrillated cellulose in composites with
different DSs. X-ray computed tomography images of a neat
HDPE; composites containing cellulose b DS: 0, c DS: 0.22,

d DS: 0.43, and e DS 0.57; and f) bead-milled fibrillated CNFs
(DS: 0.44), reproduced from Igarashi et al. [284] with permission
from Elsevier (Copyright Elsevier, 2018).
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that cannot be achieved with micrometer natural-

fiber reinforcement.

Techniques to assess the dispersion of CNFs inside

thermoplastic composites, and the use of quantitative

methods of the determination of dispersion and

mixing are few and far between. Some work by

Eichhorn and coworkers have shown that both pho-

toluminescence [322], and Raman spectroscopy [323]

are very useful in quantifying the spatial distribution

and mixing of aggregates in CNF-reinforced ther-

moplastic composites. The relationship between the

size of aggregates, and the mechanical properties of

CNF-thermoplastic composites has also similarly

been quantified using both photoluminescence, and

Raman spectroscopy [324]. It was demonstrated that

in spite of the use of a chemical dispersant, in this

case tannic acid, sufficiently large aggregates of CNFs

still persisted which reduced the fracture toughness

of the composites [324]. It is possible that very low

concentrations of well-dispersed nanomaterials can

impart new functionalities to the polymer (as a

nucleation agent etc.) and is expected to be the focus

of future research on the melt processing of cellulose

nanocomposites.

Koon-Yang Lee (Imperial College, UK): BC
nanopaper-enhanced optically transparent
composites for impact protection

Despite its high Young’s modulus and tensile

strength, one of the main challenges in the commer-

cialization of nanocellulose as reinforcement for var-

ious composite applications is price. A recent market

study reported that most producers will sell CNF gel

at a price of � US$100/kg [325]. Whilst the market

price for BC is not widely reported, a recent techno-

economic analysis on the large-scale production of

BC using an energy-efficient airlift reactor with

modified Hestrin-Schramn medium estimated that

the breakeven price for manufacturing BC was US

$25/kg (a wet BC pellicle containing 99% water)

[326]. Nanocellulose is therefore not cost-competitive

in the high-volume composite market, especially

when a high loading fraction of nanocellulose ([30

vol.-%) is required to achieve significant improve-

ment in mechanical performance [278]. Cheaper

sustainable reinforcing fillers, such as wood flour and

natural fibers, are available for the composite indus-

try [327–330]. It can be anticipated, however, that the

high cost of nanocellulose could be offset by

designing high value composites containing only a

low loading fraction but still offering dramatically

improved mechanical performance that conventional

materials cannot achieve. One such area where

nanocellulose could make a significant impact is their

use to enhance the performance of transparent poly-

meric amour. The entry level for transparent amours

is either monolithic acrylic or laminated polycar-

bonate/acrylic systems. The next choice up is glass-

clad polycarbonate, which offers a significantly

higher level of impact protection but at the expense of

added weight and cost. There are currently no

lightweight polymeric transparent armor solutions

that could bridge the gap between the two levels of

impact protection.

The research group at Imperial College London is

currently working on developing low loading frac-

tion nanocellulose enhanced acrylic systems to close

this property–performance gap. BC is an ideal can-

didate in this context due to its high single nanofiber

tensile properties and its similarity to the refractive

indices of acrylic resins [274], an essential require-

ment to achieve high level of optical transparency in

a composite system [331]. Furthermore, BC is

biosynthesized as pseudo-continuous cellulose

nanofiber network [332–334] with a high specific

surface area ([50 m2 g−1) [335–337]. Therefore, the

introduction of BC into an acrylic resin could create

additional energy-dissipation mechanisms, including

fiber-matrix and fiber–fiber debonding, as well as

fiber re-orientation and fracture. To produce optically

transparent BC-enhanced poly(methyl methacrylate)

(PMMA) composites, Santmarti et al. [338] first press-

dried BC pellicle (Fig. 11a) into a sheet of a BC

nanopaper (Fig. 11b), followed by immersion and

polymerization in a cell-cast mold containing a

methyl methacrylate (MMA) syrup. Such a composite

construct utilizes BC nanopaper as a two-dimensional

reinforcement. While the starting BC nanopaper was

not transparent, the resulting PMMA composite

containing the BC nanopaper was optically trans-

parent (Fig. 11c). The light transmittance of a 3 mm

thick composite was found to be 73% at a wavelength

of 550 nm. Such a high level of optical transparency

was due to the low loading fraction of the BC

nanopaper used (1 vol.-%), the filling up of the pores

within the BC nanopaper structure with PMMA, the

similarity between the refractive indices of BC and

PMMA, as well as the small lateral size of the BC

fibrils.
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Significant improvement in the composite perfor-

mance was achieved even though the BC loading was

only 1 vol.-%. The tensile modulus of the resulting BC

nanopaper-reinforced PMMA composite was mea-

sured to be 4.2 GPa, a 24% increase over the tensile

modulus of neat PMMA. The BC nanopaper-rein-

forced PMMA composite was also found to possess

significantly improved fracture resistance and flat-

wise Charpy impact strength. The initial critical stress

intensity factor (KIc), a measure of resistance to frac-

ture, of the BC nanopaper-reinforced PMMA com-

posite was found to be 1.72 MPa m0.5; a 20% increase

over the KIc of neat PMMA. A 20% increase in flat-

wise Charpy impact strength of the composite was

also observed when compared to neat PMMA. Sant-

marti et al. [338] also investigated whether such

improvements could also be achieved if BC was

uniformly embedded within the PMMA matrix (i.e.,

BC as a three-dimensional reinforcement). The BC

pellicle was first solvent exchanged from water

though acetone into MMA, followed by polymeriza-

tion in a cell-cast mold. While the resulting composite

was also transparent, the mechanical performance of

such a composite performed poorly when compared

to neat PMMA. The KIc and flatwise Charpy impact

strength were found to be only 0.7 MPa m0.5 and

4.7 kJ m−2, respectively; a 50% decrease in KIc and

25% decrease in flatwise Charpy impact strength

compared to neat PMMA.

The mechanical performance of a composite is the

volume-weighted average between the mechanical

properties of the matrix and the reinforcement [339].

In theory, embedding BC uniformly within a polymer

matrix should lead to a PMMA composite with

improved performance as the high modulus and

strength of a single BC nanofiber can be effectively

utilized. However, fractographic analysis revealed

the presence of significant matrix embrittlement

when BC was embedded uniformly within PMMA

(Fig. 12a). When BC was used as a two-dimensional

reinforcement in the form of BC nanopaper, the effect

of matrix embrittlement was minimized due to a

reduced BC-PMMA interface. In addition to this, the

reinforcing effect of such laminated composite

Press-drying
120ºC, 1 t

(a)

Solvent exchanged 
into MMA, followed 
by polymerisation

Direct MMA
impregnation, 
followed by 

polymerisation

(b)

(c)

BC as 3D reinforcement

BC nanopaper as 2D
reinforcement

Figure 11 a BC pellicle with
a water content of � 99 wt%,
b press-dried and well-
consolidated BC pellicle,
followed by methyl
methacrylate (MMA)
impregnation and
polymerization to produce
3-mm-thick BC nanopaper-
enhanced PMMA composites,
and c 3 mm thick BC-PMMA
composites produced from the
solvent exchange of BC
pellicle in water through
acetone into MMA, followed
by polymerization. The BC
loading in all composites was
1 vol%. Reproduced from
[338] with permission from the
American Chemical Society
(Copyright American
Chemical Society, 2019).
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construct stemmed from the mechanical properties of

the BC nanopaper (Fig. 12b), which was found to

possess a high tensile modulus and strength of 19.6

GPa and 188 MPa, respectively, as well as a high KIc

of 11.9 MPa m0.5 [339], which is comparable to a

single aramid fiber; reported to be 6.63 MPa m0.5

[340]. The use of BC nanopaper also removed the

need for complicated solvent exchange or drying

steps, reducing the complexity of composite manu-

facturing. It should be noted that the long dewatering

time of BC (or nanocellulose in general) to produce

(bacterial) cellulose nanopaper, which is often cited

as a bottleneck, could be addressed by reducing the

grammage of the nanopaper or to induce flocculation

of the nanocellulose by the addition of multivalent

salts [341].

Since the loading fraction of BC required to achieve

performance enhancement is low, the resulting BC

nanopaper-PMMA laminated composite construct is

expected to be cost-competitive, increasing its market

uptake for advanced composite applications. How-

ever, there are still some outstanding issues in using

BC nanopaper to enhance the properties of acrylic

resins for impact protection that still need to be

addressed, especially the effect of moisture on the

long-term durability of the laminated construct as

moisture is known to cause unpredictable delamina-

tion even in commercial transparent armor laminates

under ambient service conditions [342]. Furthermore,

the transparency of the BC nanopaper-acrylic lami-

nated construct at elevated temperatures is another

major issue requiring further research.

Lars Berglund and Yuanyan Li (KTH,
Sweden): transparent wood
as an application of nanostructured
biocomposites

Cellulose biocomposites are often considered as

environmentally friendly materials. The introduction

of nanocelluloses is motivated by similar arguments,

yet the energy associated with defibrillation of wood

fibers into nanocellulose (process energy and energy

for chemicals) is very high [343]. Wood substrates

offer some advantages in this respect, provided the

intrinsic cellulosic nanostructures in wood can be

preserved and exploited. The category of wood-

polymer composites, however, is not new; wood has

been impregnated with formaldehyde-based ther-

mosets and commercialized (Impreg®, Compreg®),

and monomers for thermoplastics have also been

impregnated and polymerized in wood substrates

[344]. The new aspect of many recent studies is that

the cellulose nanostructure in the cell wall of the

wood substrate has been preserved and targeted for

functionalization [345].

(a)

(b)

Figure 12 Fracture surface
(single edge notched beam) of
the BC-PMMA composites.
a BC as three-dimensional
reinforcement, whereby a
rough texture without plastic
deformation can be observed
and b BC nanopaper as two-
dimensional reinforcement,
where a laminated construct
can be observed. The scale
bars at low and high
magnifications correspond to
0.5 mm and 25 µm,
respectively. Reproduction of
images from [338] with
permission from the American
Chemical Society ( Copyright
American Chemical Society,
2019).
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Research on transparent cellulose biocomposites

started with studies where thin cellulose nanopaper

films from nanofibers were impregnated by acrylic

monomers and cured [274]. The concept of trans-

parent wood was then suggested for engineering

applications [346, 347]. Wood substrates were delig-

nified to remove the light-absorbing lignin compo-

nent. In the next step, a monomer was impregnated

into the substrate, followed by in situ polymerization

to form a transparent wood biocomposite. Substrates

other than wood have been used subsequently, for

instance wood fibers [348] and bamboo [349]. From

the point of view of cellulose biocomposites research,

these materials are interesting because they combine

structural properties (strength, stiffness) and the

potential for making large structures with high opti-

cal transmittance. Optically transparent biocompos-

ites opens a large field of materials research and

opportunities for applications where semi-structural

composites have photonic functions.

There are substantial challenges for transparent

wood. Although processing is very similar to that of

high-strength glass or carbon fiber composites (resin

impregnation of a porous reinforcement), the added

requirement of avoiding optical defects (voids,

microcracks. cellulose agglomerates, etc.) makes it

demanding. It is also difficult to achieve high optical

transmittance in thick structures of high cellulose

content, since light scattering inside the material is

substantial. The research and materials development

problems are illustrated in Fig. 13. When light

reaches the transparent wood surface only a small

fraction of it is reflected. Inside transparent wood,

however, there is substantial light scattering, both

forward- scattering and in other directions. Scattering

takes place due to a mismatch in refractive index of

phases, from optical defects (e.g., interfacial debond-

ing) and possibly from Rayleigh scattering inside the

cell wall. Very few ballistic photons can go through

the material without scattering. Some light may also

be absorbed by residual lignin. The detailed mecha-

nisms of light propagation are still under investiga-

tion, and the results will support ongoing product

development.

Yano and coworkers have prepared load-bearing

biocomposites by impregnating delignified wood

with polyphenol-formaldehyde thermoset precursors

[351]. Li et al. [347] used NaClO2 delignification for

their transparent wood substrate to reduce light

absorption from lignin whereas Zhu et al. used a

kraft pulping approach [346]. Li et al. [352] further

developed the possibilities by using a lignin-retaining

method, where only lignin chromophores were

removed.

Various polymer matrices have been used for

transparent wood, where the best approaches involve

impregnation of a monomer or thermoset precursor,

including acrylic monomers [347, 353], epoxies [346],

thiol-enes [354], and polyimide [355]. Although it is

well known that the refractive index of the polymer

needs to match the refractive index (RI) of the sub-

strate to reduce scattering, the details of the scattering

mechanisms are not fully understood. This under-

standing will contribute to materials development

efforts. The need to determine the refractive indices

(in two directions) for the wood substrate has led to

an experimental determination of their values [356].

This method is important, since chemical modifica-

tion of the wood substrate will change its RI.

Recently, the scattering in real wood microstructures

from RI mismatches between the wood substrate and

a polymer matrix has been modeled using numerical

Figure 13 a Photograph of
transparent wood [350] and
b schematic of light
transmission in transparent
wood. Images reproduced
from [350] under the terms of
a CC-BY (Open Access)
license.
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methods and real microstructures [357]. This model

can be used to predict haze, transmittance, etc., and

also to analyze the effect of different wood substrate

morphologies, wood content, and material thickness.

Transparent wood is of particular interest because

of its contribution to sustainable development. For

this reason, Montanari et al. [358] developed green

procedures to modify wood substrates for improved

polymer matrix compatibility and reduced moisture

sensitivity. Subsequently, a new biobased acrylic

polymer matrix was synthesized with a suitable RI,

so that a fully biobased transparent wood biocom-

posite was obtained [359]. One of the challenges was

to find chemical approaches which could be used in

the chemically heterogeneous environment of a wood

substrate.

For building materials applications, the mechanical

behavior of transparent wood is important. Jungstedt

et al. [360] measured a modulus of 19 GPa and a

tensile strength of 263 MPa for birch/PMMA com-

posites with 25 vol% wood substrate reinforcement.

The optical transmittance of this composite was still

as high as 70% at a thickness of 1.3 mm. Basic optical

properties have also been investigated, including

anisotropic scattering [361]. Vasileva et al. [362]

reported on interesting polarization effects in trans-

parent wood, where the effect depended on the wood

species used for the reinforcing substrate. Haze was

discussed by Li et al. [363], who pointed out favor-

able effects from high haze. Haze is defined as the

proportion of forward scattered light to the total

forwarded light. Broadband high haze ([80%) can

create a uniform and consistent light distribution for

comfortable living environments [363].

The thickness of transparent wood will have strong

effects on optical transmittance, which is important

for building applications. Chen et al. [364] investi-

gated this effect since the well-known Beer-Lambert

law in principle is not applicable to scattering mate-

rials. A model was developed to predict thickness

effects, as well as a procedure to determine parame-

ters in this model for specific materials. In a previous

study, Li et al. [365] demonstrated how acetylated

wood substrates showed improved transmittance so

that thicker structures could be prepared. Acetylation

will reduce the extent of optical defects, such as

wood/polymer interface debonding and cracks.

Acetylation also facilitates the amount of acrylic

monomer diffusing into the wood cell wall and may

influence the refractive index of the wood substrate.

It has been recently demonstrated how the cell wall

in wood/PMMA composites prepared by solvent-

assisted processing was impregnated by the MMA

monomer so that PMMA becomes distributed at the

nanoscale inside the wood cell wall [366].

The processing of very large structures is desirable

and a requirement for many building applications. A

key problem is that the permeability of liquid resins

in wood substrates is often quite low. A practical

consequence is therefore that thick structures are

difficult to impregnate without the formation of sig-

nificant optical defects. The main strategy suggested

is to use lamination of veneer layers, as was

demonstrated for plywood structures [367] and sub-

sequently in several other studies [368].

Figure 14 suggests potential applications of trans-

parent wood in smart buildings. High haze is a

favorable feature, which allows uniform light distri-

bution and can provide indoor privacy. Although

high haze is beneficial for some applications, the

possibility for low haze extends the range of product

design possibilities. Li et al. [365] reported a smart

window concept where indoor privacy was optically

tuneable through tailoring of transmittance and haze

in thick structures based on clear acetylated trans-

parent wood. Transparent wood is an excellent base

for further functionalization by the addition of func-

tional particles and/or polymers. Montanari et al.

[369] added phase change materials (PCM) to trans-

parent wood, for heat storage purposes. Energy was

adsorbed by the PCM melting during heating. Cool-

ing resulted in heat release by PCM crystallization.

Other examples include the addition of CsxWO3

particles for heat-shielding since transmission in the

near-IR range was reduced [370], and Fe3O4

nanoparticles were used for magnetic transparent

wood to provide electromagnetic interference

shielding [371]. Recently, structural color has also

been combined with optical transmittance. Höglund

et al. [372] precipitated metal nanoparticles inside the

nanoporous wood substrate. This material was then

impregnated with a refractive index-matched thiol-

ene resin, followed by curing. The resulting com-

posite showed structural color from the plasmonic

nanoparticle effect, with only a minor reduction in

the optical transmittance. Mechanical properties were

well preserved. Another smart window concept is

based on the integration of optoelectronic devices.

Lang et al. [373] thus prepared electro-chromic win-

dows by building conjugated-polymer-based devices
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on transparent wood substrates. The device demon-

strated vibrant magenta-to-clear switching (ΔE*=
43.2) between -0.5 and 0.8 V, with a device contrast of

38 Δ%T at a 550 nm wavelength.

Another interesting modification possibility is to

use stimuli-responsive particles. Li et al. [374] first

reported transparent wood from luminescent parti-

cles in the form of quantum dots (QDs). Diffused

luminescence was revealed under UV irradiation,

where the luminescent color obviously depends on

the QDs. Other stimuli-responsive properties have

been developed, for instance by impregnation of

thermo- and photochromic microcapsules [375], and

photoluminescent properties through 1,3,3-

trimethylindolino-60-nitrobenzopyrylospira-based

photoresponsive molecules [376]. One area of appli-

cations is the detection of changes in environmental

conditions. Liu et al. [374] reported tunable room-

temperature phosphorescence through carbon dots

doping for formaldehyde gas detection. The main

research and development challenge is to obtain a

uniform distribution of particles or active polymers

despite the tendency for aggregation during pro-

cessing. In situ particle synthesis [372] is one route to

reduce the problems, compared with direct

infiltration.

For solar cells, high haze is favorable due to

increased length of the light path in the active layer,

leading to improved efficiency. Therefore, transpar-

ent wood was used as light diffuser layer by direct

attachment to a commercial solar cell [377]. Li et al.

[378] instead fabricated a perovskite solar cell on a

transparent wood substrate, for the purpose of

energy positive buildings. Here, the main challenge

was the introduction of the conductive layer since

high optical transmittance, combined with good

interlayer bonding, is required.

Durability and moisture stability are important for

load-bearing building applications. One route is cell

wall bulking of the wood substrate by acetylation

[365] or other anhydrides [358]. This means that also

the transparent wood biocomposites, based on such

substrates [359, 379], will be durable in a moist

environment, although the high cost of polyimides is

a limitation. For long-term durability, the yellowing

problem known for paper needs to be avoided.

Attempts to address this potential problem have been

reported [380].

Transparent wood is also attractive for wave-

guiding photonics applications. Vasileva et al. [381]

reported lasing from transparent wood impregnated

by luminescent rhodamine 6G molecules. It was

found that each fiber functioned as an optical res-

onator. The output signal is the collective contribu-

tion of the fiber-based resonators, which is broadly

due to the fiber dimension variations and structural

heterogeneity.

Optically transparent biocomposites based on cel-

lulose or wood is a class of semi-structural materials

which may combine load-bearing properties with

eco-friendly characteristics, high optical transmit-

tance, and photonics functionalities. The optical

transmission criterion makes it necessary to improve

micro- and nanostructural control during processing

of cellulosic biocomposites. In addition, multifunc-

tional biocomposites open new possibilities for

applications of wood materials.

Figure 14 Examples of
potential functions of
transparent wood in smart
buildings.
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Silvia Vignolini and Bruno Frka-Petesic
(University of Cambridge, UK): functional
CNC composite materials with structural
color

One of the most intriguing properties of nanocellu-

lose is its intrinsic molecular chirality and how it can

impact its behavior at much larger scales [382], which

leads to the ability of CNCs to form functional

materials with remarkable optical properties. The

ability of CNCs to self-assemble into optically func-

tional materials requires good dispersion in a solvent,

usually water, and special care has to be taken to

allow for the self-organization of the liquid crys-

talline order, followed by a removal of the solvent

that preserves the acquired organization [383, 384].

While these conditions are usually easily met when

casting a pure dispersion in a dish, modifying the

formulation or the assembly conditions to gain fur-

ther functionality without compromising on the

assembly abilities represents the main challenge. The

formation of colored films using CNCs has been

introduced by Revol et al. [385, 386] and continues to

be an active field of development, either to increase

functionalities of such photonic films or to develop

their potential as interference pigments by investi-

gating scaling-up options. In this section, a few recent

examples of optical functional materials are

reviewed, leading to significant development in these

two directions.

Optical functional materials

Plain photonic CNC films are usually brittle, and this

has been considered as one of the major limitations to

their practical use. Recently, several strategies have

been proposed to mitigate their intrinsically poor

mechanical resistance. Such strategies usually

involve the co-assembly with a plasticizer that does

not compromise the self-assembly of the CNCs, such

as surfactants [387], a neutral or anionic polymer

[388–390], globular proteins [391], resins or sol–gel

precursors [392, 393]. Two recent examples from

Walters et al. [389] and from Saraiva et al. [390]

showed that a common cellulose derivative,

hydroxypropyl cellulose (HPC), can be successfully

used as a plasticizer for CNC photonic films, signif-

icantly preventing crack growth upon bending with

respect to plain CNC films (Fig. 15a-c). The tensile

testing comparison between CNC/L-HPC 50/50

w/w with plain CNC films showed a clear reduction

in stiffness (2.5 GPa vs 14.4 GPa) and maximum

tensile strength (18.7 MPa vs 68.7 MPa) as well as a

ten-fold increase in maximum strain (4.8% vs 0.5%).

However, the addition of HPC, like most non-volatile

co-solvents, caused a significant redshift [383, 394],

which usually comes with a trade-off on the range of

accessible wavelengths. Another recent work

involved a combination of bio-sourced and biocom-

patible silk fibroin (SF) and CNCs, showing

improvement of uniformity and adhesion of the film,

reminiscent of previous works using PEG to improve

mechanical properties, uniformity, and adhesion on

substrates (Fig. 15d-g) [388, 395]. The use of silk

fibroin thus opens the possibilities of a fully bio-

sourced, protein-based alternative to improve these

properties.

Besides the co-assembly route to manufacture

composite CNC-based materials, several post-treat-

ments applied to plain CNC films have been also

investigated to design original functionalities.

Among them, one simple approach consists of

immersing a CNC film in a prepolymer solution to

produce a polymer-CNC composite. This strategy

was used by Espinha et al. [396] to obtain a laminated

structure with shape-memory properties. A more

interesting and recent example was proposed by

Boott et al. [397], whereby a CNC film was swollen

and infiltrated with a prepolymer to form a mechano-

chromic elastomer (Fig. 16). Importantly, the infil-

trated CNC films were initially prepared in the

presence of 25%w/w glucose to facilitate later the

infiltration of dimethylsulfoxide (DMSO), while

specific slow assembly conditions were used to

minimize the pitch to compensate for the red-shifting

effect of the addition of the infiltrate [398]. After a

first immersion in DMSO, two sequential soaking

treatments were applied, first of 2,2′-azobis(2-
methylpropionitrile) (AIBN)/DMSO solution, and

then with the monomer solution (containing ethyl

acrylate, 2-hydroxyethyl acrylate and AIBN). The

resulting composite elastomer presented clear

mechano-chromic behavior upon stretching, visible

in ambient light and solely caused by the compres-

sion of the pitch in the direction perpendicular to the

applied stretch (and not simply relying on birefrin-

gence-induced Newton colors like in many other

existing reports). A recent follow-up from the same

authors proposed the fabrication of similar
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elastomers with additional shape-memory properties

[399].

Upscaling strategies

The fabrication of CNC-based photonic materials

usually involves laboratory scale processes (e.g.,

small and variable batches, slow processes, casting in

Petri dishes) that do not easily translate to the

industrial scale, limiting the applicability of CNC-

based optical materials in end products.

The use of a roll-to-roll (R2R) approach to deposit

CNCs into films has been proposed in the past but

without any structural color [400, 401]. The high

throughput that is usually desirable makes any fast

deposition incompatible with the formation of a

cholesteric order; a reduced time suggests a high

starting CNC concentration incompatible with a fast

colloidal dynamic, and the resulting high shear

applied near the slot-die aligns the CNCs in an

achiral nematic film [400]. A significant step forward

has been made recently by Droguet et al. [402] using

R2R deposition to produce several meter-long CNC-

based photonic films (Fig. 17a). In this work, a com-

mercially available CNC source was employed

(University of Maine Process Development Center)

and simple pre-treatments were applied, involving

tip sonication and fractionation. The starting sus-

pension was diluted from ca 12%w/w down to 6%w/

w and sonicated, after which it was kept at rest until a

macro-phase separation led to an upper isotropic

phase and a lower cholesteric phase. The upper phase

was discarded, and only the cholesteric phase, con-

taining overall longer CNC particles, was deposited

on a R2R to reduce the self-assembly time

[398, 403, 404]. To reduce further the self-assembly

time, the deposited CNC suspension was slowly

translated through an in-line hot air dryer (T= 20 –

60 °C) at an effective speed of 0.2 mm s−1, allowing

the deposited film to be fully dry about a meter and a

half from the suspension depositing slot-die, effec-

tively reducing the self-assembly times from days to

only a few hours.

The resulting film successfully demonstrated its

relevance as a 100%-cellulose water-stable interfer-

ence pigment after moderate heat treatment, grinding

and size-sorting.

Other interesting strategies involve confinement in

droplets, either in sessile drops or in water-in-oil (w/

o) emulsions. In the first case, selective dewetting was

employed to deposit a CNC suspension onto hydro-

philic spots with slow evaporation under an oil layer,

leading to nearly perfect alignment, without any

color distortion as usually caused by the coffee ring

Figure 15 a–c Photographs of CNC/L-HPC composite films
before (left), during (middle), and after (right) bending. a CNC/L-
HPC 50/50 w/w, b CNC/L-HPC 80/20 w/w, and c CNC/L-HPC
100/0 w/w. (a–c) Reprinted from [389] with permission from The
American Chemical Society ( Copyright American Chemical

Society, 2020). d–g Macroscopic photographs of silk fibroin (SF)
and CNC nanocomposites films obtained by casting suspensions of
increasing SF:CNC v/v ratios: (D) 0:100, (E) 2:98, (F) 15:85,
(G) 20:80. Reproduced from [391] under the terms of the CC-BY
4.0 license.
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stain (Fig. 17b) [405]. While the self-assembly then

takes several days, the order is achieved within half

an hour of the deposition, and a much faster assem-

bly is achievable if the drying is completed in air. In

the second case, w/o emulsions offer a substrate-free

route to self-assembly, whereby the local alignment

of the cholesteric is templated by the emulsion dro-

plets themselves, and the need for casting on large

surfaces when upscaling is suppressed. While this

option was first explored using lab-made CNCs and

gave too large a pitch to reflect in the visible [406], the

recent optimization of the suspension formulation

and exploitation of buckling upon further particle

contraction led to a sufficient pitch compression to

bring the photonic properties into the visible range

and generate blue, green or red microparticles only

made from cellulose (Fig. 17c) [407]. Interestingly, the

blue and green hues were obtained by additional

desiccation treatment, either via exposure to heat or

to polar solvents (isopropanol for green, methanol for

blue).

Overall, these alternative strategies open signifi-

cant routes to industrial manufacturing of CNC-

based photonic materials, each of them with specific

advantages and disadvantages to adapt to the

growing possibilities of co-assembly or post-treat-

ments already available to develop the next genera-

tion of CNC-based optical materials.

Figure 16 Illustration of CNC-based photonic elastomers pre-
pared by impregnation of a CNC film. a preparation, b stretching
direction c mechano-chromic behavior in ambient light (no

polarizers) d Reflectance and e ellipticity. Adapted from [397]
under the terms of the CC-BY 4.0 license.
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Introduction to energy applications
of nanocellulose

Solar cells have the capacity of converting inex-

haustible and renewable solar energy into clean

electricity and supply modern society with clean

energy that promotes the carbon neutrality and sus-

tainable development of our planet [408, 409]. How-

ever, at present, only a small market share has been

obtained for the electricity produced from solar cells.

The widespread application of solar cells in our daily

life is rooted in their cost reduction, environmentally

friendliness, flexibility, and superior power conver-

sion efficiency (PCE). Incorporation of cellulose paper

into solar cells is an alternative solution to address

the above issues [377, 410–413]. Solar cells have been

demonstrated on common paper for more than fif-

teen years [414]. However, common cellulose paper

has proven to be a poor substrate candidate due to its

rough surface, porous structure, and impurities [415],

which results in a complicated production procedure

and a limited PCE (\1%).

Apart from energy conversion applications like

solar cells, nanocellulose can also serve as the basis

for the next-generation of sustainable energy storage

technologies including supercapacitors and batteries

[416]. Since many components of commercial energy

storage devices like separators and carbon electrodes

are fabricated from fossil fuels, their cost increases

year by year with the overutilization of non-renew-

able raw materials [417]. However, the development

of nanocellulose provides a potential but effective

scheme to address this issue, where it can be used as

the separator or the precursor material for carbon

electrodes with enhanced electrochemical perfor-

mance as well as sustainability [418]. In the near

future, all-cellulose-based energy storage devices will

be able to play an important role not only for energy

conversion like solar cells, but also for energy storage

like supercapacitors and batteries.

Zhiqiang Fang (South China University
of Technology), Guanhui Li (South China
University of Technology), and Liangbing
Hu (The University of Maryland): highly
transparent nanocellulose film with tailored
optical haze for solar cells

By tuning the assembly and type of CNMs it is pos-

sible to fully control light transport so to obtain from

Figure 17 Photonic CNC
films made by exploring
different upscaling geometries:
a via roll-to-roll (R2R), and
then converted into glitter after
pealing, heating, and grinding
(image courtesy of Benjamin
E. Droguet); b by confined
self-assembly into sessile
droplets under an oil layer
(adapted from [403] under a
CC-BY license); c by water-
in-oil emulsion and additional
solvent treatments (images
courtesy of Tianheng H. Zhao
and Richard M. Parker).
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transparent to haze to highly scattering materials

[419]. Since the first report of transparent nanocellu-

lose films (also named ‘cellulose nanopaper’) [420],

they have emerged as a promising flexible and green

substrate candidate for solar cells. This is because of

their better optical, mechanical, and barrier proper-

ties and surface smoothness compared with standard

paper [421, 422]. Hu et al. [423] initially demonstrated

the direct fabrication of organic solar cells (OSCs) on

a CNF film substrate that showed a PCE of 0.4%

(Fig. 18a), and the corresponding I-V curve is dis-

played in Fig. 18b. Despite the poor device perfor-

mance, this work first indicated that a CNF film was

an attractive substrate for mechanically supporting

OSCs. Meanwhile, the same group proposed an

optical haze for a transparent CNF film (Fig. 18c & d)

and predicted its potential application in solar cells as

a functional light management layer.

Previous work had focused on the uses of

nanocellulose films as a substrate material for solar

cells. A variety of strategies were adopted to enhance

the PCE of solar cells on nanocellulose film sub-

strates. These have included the use of CNCs [424]

and a mixture with other materials (such as acrylic

resin and cellulose derivatives) [425], surface

modifications of nanocellulose film [424], water-free

manufacturing techniques [426], the use of novel

active materials [427], and exquisite design of the cell

configurations [427]. However, at present, the PCE of

solar cells on nanocellulose film is still less than 5%,

which is much lower than that of devices fabricated

on plastic films; these indicate a PCE of over 21% on a

laboratory scale [428].

To expedite the practical applications of solar cells

on nanocellulose film, constant improvement in their

performance should be given high priority. There-

fore, future endeavor should focus on rationally

engineering barrier properties, water resistance,

weather durability, and surface roughness of the

order of only a few nanometers over surface areas in

the millimeter or even centimeter range. For instance,

the mechanical isolation of CNFs from the cell wall of

natural cellulose fibers produced microscale fibril

bundles and debris in an aqueous suspension, thus

increasing the surface roughness of the substrate,

significantly deteriorating the device’s performance,

or even causing device failure.

Transparent nanocellulose film with high optical

haze can go beyond the mechanically supporting

substrate application and is becoming a functional

Figure 18 a OSCs on CNF
film and their I-V curve (b).
c The images can be clearly
observed when transparent
CNF film closely contacts with
it, indicating high optical
transparency. d The
underneath images become
invisible when the same CNF
film is at a distance of 2
inches, suggesting high optical
haze [423]. Reprinted with
permission from [423] with
permission from The Royal
Society of Chemistry. (
Copyright 2013, Royal Society
of Chemistry).

J Mater Sci (2022) 57:5697–5767 5737



light management layer for solar cells. Generally,

high transparency and high transmission haze (light

scattering) are mutually exclusive. However,

nanocellulose films not only exhibit a � 90% trans-

parency, but have also showed forward built-in light

scattering behavior (Fig. 18a) [423]. These specific

optical properties have allowed nanocellulose films

to manipulate the propagation direction of transmit-

ted light, which has extended applications toward

solar cells as advanced light management layers to

improve the efficiencies of light coupling into

devices.

The interactions of visible light with nanocellulose

plays a significant role in the optical properties of

nanocellulose film. Theoretically, visible light can

easily pass through nanocellulose films with negli-

gible light scattering because the fibril diameters

(3.5 � 30 nm) are much smaller than the wavelength

(400-900 nm) of visible light. Therefore, nanocellulose

films can display a transparent and clear appearance.

However, optical haze is observed in most reported

nanocellulose films (Fig. 18c&d). This abnormal

phenomenon is primarily due to the existence of

scattering particles (e.g., microscale fibril bundles and

debris) derived from the incomplete mechanical

homogenization of wood fibers.

The presence of micro-sized scattering elements

gives rise to refractive index inhomogeneities and

increased surface roughness of the as-prepared

nanocellulose films, thereby increasing the scattering

efficiency and finally indicating an improvement of

optical haze. According to Mie theory, when the

scattering particles have a diameter equal to or larger

than the wavelength of the incident light, most of the

transmitted light will be scattered along the incident

direction.

Transparent nanocellulose films show forward

scattering of light (Fig. 19a). As we can see from

Fig. 19b, c and d, the original CNF suspension (right-

most image in Fig. 19b) has a hazy appearance due to

the occurrence of micro-sized fibril bundles and

debris (Fig. 19d) serving as scattering particles to

enhance the transmission haze (Fig. 19c). However,

after removing these scattering materials by a cen-

trifugation procedure, the nanocellulose suspension

indicated a clear appearance and the green laser

could propagate through the suspension with a nar-

row-angle scattering (middle vials shown in Fig. 19b

and c) [429]. Purified nanocellulose showed a uni-

form distribution of fibril diameters at a nanoscale

level, which contributed to the reduced inhomo-

geneities and surface roughness of the nanocellulose

film that suppressed wide-angle light scattering.

Taking inspiration from previous works, Fang et al.

[430] reported a highly transparent nanostructured

paper with a high haze using micro-/nanocellulose,

exhibiting a transparency of[90% and a transmission

haze of � 60% at 550 nm (Fig. 20a). Through 2,2,6,6-

Figure 19 a Schematic
showing the light scattering
behavior of a transparent
nanocellulose film. b Visual
appearance and c light
scattering behavior of water,
purified CNF dispersion, and
original CNF dispersion (from
left to right). d AFM imaging
showing the morphologies of
original CNFs. Micro-sized
fibril bundles and debris are
marked with red circles
[423, 429] Reproduced from
[429] with permission from
The American Chemical
Society (Copyright 2017,
American Chemical Society).
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tetramethylpiperidine-1-oxyl (TEMPO) oxidization of

wood fibers, micro-/nanocellulose was obtained,

where the microscale cellulose fibers functioned as a

light scattering source to increase the optical haze

while the nanocellulose worked as a filling matrix to

improve the transparency. They also demonstrated

the use of this nanostructured paper in organic solar

cells as a light management layer and a 10% increase

of PCE was achieved (Fig. 20b). Since then, micro-

scale cellulose fibers have been the main raw material

to prepare highly transparent cellulose film with high

haze by bottom-up methods (e.g., filtration [431],

impregnation [432, 433], and surface dissolution of

fibers) due to their strong light scattering behavior

[434].

In conclusion, nanocellulose obtained from

mechanical isolation inevitably produces scattering

particles. A transparent and hazy film with micro-

scale surface roughness was obtained using the

original nanocellulose as a raw material, which can

serve as a functional layer for the improvement in the

PCE of solar cells. Nanocellulose film without

microscale particles (e.g., fibril bundles and debris) is

a desired transparent and clear substrate with

nanoscale surface roughness for solar cells. Despite

much work being devoted to improving the proper-

ties of nanocellulose films, their use in solar cells is

still in its early stages and is not ready for practical

applications. In addition, in comparison with

nanocellulose, microscale cellulose fibers are a much

more suitable starting material to prepare highly

transparent films with high transmission haze for

solar cells as a light management layer due to their

stronger light scattering behavior.

Zhen Xu and Maria-Magdalena Titirici
(Imperial College London, UK), Jing Wang
and Stephen Eichhorn (University of Bristol,
UK), Chaoji Chen (Wuhan University,
China) and Liangbing Hu (University
of Maryland, USA): nanocellulose as basis
for energy storage

Rechargeable batteries and supercapacitors are the

two most popular types of electrochemical energy

storage devices, and they have attracted increasing

attention and enjoyed great success both in academic

research and commercialization over the past few

decades [416, 435–437]. With a high aspect ratio, and

abundant surface functional groups to interact with

ions, nanocellulose is an ideal starting material for

energy storage devices based on ion transport

[438, 439]. It has been widely investigated as various

important functional components in batteries and

supercapacitors, such as current collectors, binders,

electrolytes/separators, and electrodes [439–442]. The

diverse structural tunability of nanocellulose (e.g.,

pores, fibril orientation, fibril diameter/length, sur-

face functional groups, surface charge, surface

energy, and surface wettability, degree of crys-

tallinity, crystal phase structure, etc.) is particularly

attractive for the design of high-performance func-

tional components of batteries and supercapacitors. A

key design principle is to meet the specific parame-

ters depending on the functions of each component of

the device. For example, improving the electrical

conductivity of nanocellulose is critical for current

collector applications, while separators must be

electrically insulating. The combination of a wide

potential window, high ionic conductivity and good

mechanical properties are critical for developing

Figure 20 a Light scattering
behavior of highly transparent
nanostructured paper with high
haze. b The IV curves of the
solar cells with/without
nanostructured paper [430].
Reproduced from [430] with
permission from The
American Chemical Society
(Copyright 2014, American
Chemical Society).
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high-performance nanocellulose-based electrolytes

and separators.

As a common component in batteries and super-

capacitors, the properties of binders directly affect the

properties of electrodes, particularly their mechanical

and electrochemical performances [441–443].

Polyvinylidene fluoride (PVDF) has been one of the

most widely used binders in the most recent batteries

and supercapacitors. This material, however, requires

the use of volatile and toxic/hazardous solvents for

processing. Alternatively, biomass-based binders

such as nanocellulose, and its derivatives, are

‘greener’ and safer to use, and therefore are attracting

increasing interest from the academic and industrial

communities [444]. For example, carboxymethyl cel-

lulose (CMC), as a derivative of the linear polymeric

cellulose with the substitution of hydroxyl groups for

anionic carboxymethyl groups, is widely used as a

water-soluble binder in both the cathodes and anodes

of batteries and supercapacitors [441].

Nanocellulose itself can also be used as binder for

both cathode and anode electrodes. The high aspect

ratio and tunable rheological properties of nanocel-

lulose are desired for electrode manufacturing. Elec-

troactive electrode particles can be wrapped by the

high-aspect-ratio nanocellulose fibrils, forming a

mechanically robust network. Moreover, at a finer

scale, the abundant hydroxyl groups of nanocellulose

fibrils can interact with the electroactive electrode

particles, providing an excellent binding effect.

Kuang et al. [445] demonstrated the excellent binding

effect of nanocellulose (or cellulose nanofiber, CNF)

in their recent work (Fig. 21). They first prepared a

conductive CNF by mixing with carbon black (CB),

which was then used as a binder to ‘glue’ the elec-

troactive electrode (lithium iron phosphate, LFP)

particles, forming a 3D interconnected porous foam

(Fig. 21a). This 3D interconnected porous foam was

further pressed to increase the density of the

nanopaper electrode (Fig. 21b). A TEM image of the

nanopaper showed that the LFP particles were glued

by the CNF/CB network, which provided pathways

for ion and electron transport (Fig. 21c). The

nanopaper electrode demonstrated not only

improved areal capacity over a conventional LFP

electrode with similar thickness, but also excellent

flexibility (Fig. 21d and e). Alternatively, nanocellu-

lose can also be used as a viscosifier to prepare

printable inks for printed electrode fabrication owing

to its unique characteristics such as rich hydroxyl

groups, negative zeta potential, one-dimensional (1D)

fibrous structure, and chemical functionalities

[440, 446, 447]. In these printed electrodes, nanocel-

lulose not only acts as a viscosifier during the print-

ing process, but also as a binder to ‘glue’ the

electroactive electrode particles in the dried state.

Nanocellulose-based separators have been widely

studied and developed. For instance, mesoporous

CNC membranes with high surface areas were pre-

pared by Gonçalves et al. [448] as the separator for

environmentally safer lithium-ion batteries (Fig. 22).

The obtained nanocellulose-based separators exhib-

ited outstanding wettability when soaked with con-

ventional ester-based and ionic liquid-based

electrolytes. Meanwhile, the three-dimensional por-

ous structures formed by nanocellulose can shorten

the ion diffusion pathway, thus obtaining a compet-

itive ionic conductivity of 2.7 mS cm−1. Good com-

patibility of the interface between the electrode and

electrolyte can also be obtained, in comparison with

commercial separators like glass fiber or polypropy-

lene (PP)/polyethylene (PE) membranes. Coupled

with the LiFePO4 cathode, the assembled lithium-ion

batteries can deliver a specific capacity of 122 mAh g–

1 at a 0.5 C and an excellent rate capacity of 85 mAh

g–1 at 2.0 C, indicating the important role of the three-

dimensional porous structures formed by nanocellu-

lose. Meanwhile, the mechanical properties of

nanocellulose-based separators are also superior to

those of commercial separators according to the lit-

erature. In addition, there have been some companies

like the Nippon Kodoshi corporation who have fab-

ricated battery separators made from 100% cellulose

which exhibit good heat resistance, exceptional

porosity, and high liquid retention rates [449].

Therefore, by replacing conventional materials with

nanocellulose-based separators, the development of

real eco-friendly energy storage devices could be

achieved in the near future.

As well as separators, nanocellulose can also be

used as flexible substrates. Combined with a coating

of conductive nanomaterials (carbon nanotubes,

graphene, etc.) on the nanocellulose, free-standing

electrodes can be obtained for energy storage devices

such as supercapacitors [450].

When employed as the precursors, nanocellulose

can also be converted into sustainable carbon mate-

rials for next-generation energy storage devices as

well. For example, Li et al. [451] prepared hollow

hard carbon microtubes derived from renewable
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cotton as high-performance anode materials for the

next-generation of sodium-ion batteries, where the

resulting hard carbon anodes at 1300 °C delivered an

outstanding sodium-ion capacity of 315 mAh g−1 at

0.1 C and a good rate capability as a result of their

unique turbostratic structures. In addition, Xu et al.

[452] developed sustainable hard carbons from CNCs

at a lower carbonization temperature of 1000 °C for

use in sodium-ion batteries. The low-cost hard carbon

anodes derived from nanocellulose displayed a

reversible specific capacity of 256.9 mAh g−1 at a

current density of 0.1 A g−1, which was superior to

the hard carbons obtained from cellulose microfibers

at the same carbonization temperature because the

Figure 21 A flexible nanopaper electrode using nanocellulose
(also called cellulose nanofiber, CNF) as binder. a Schematics
illustrating the hierarchical network structure of the nanopaper
electrode based on the CNF/CB composite conductive percolation
network. The zoom-in shows the decoupled ion/electron transport
pathways through the electrode. b Photographs of the free-
standing nanopaper electrode with 40 mg cm−2 LFP loading and
high compressibility. c TEM image showing the interconnected

network of the nanopaper electrode. d Areal capacity–current
density plots of the nanopaper electrode and conventional LFP
cathode. e Photographs illustrating the foldability of the pouch cell
consisting of the nanopaper electrode as the cathode and Li metal
on copper foil as the anode. Reproduced from [445] with
permission from John Wiley and Sons (Copyright John Wiley
and Sons, 2018).
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layer-by-layer self-assembly of CNCs during the

drying process formed a relatively low surface area to

suppress the formation of a solid electrolyte inter-

phase (SEI). The sodium-ion capacity of the hard

carbons can compete with commercial graphite

anodes for lithium-ion storage by consuming less

energy. Sodium-ion batteries have also widely

aroused interest from the battery community as

promising successors to lithium-ion batteries for grid

energy storage based on abundant sodium resources

[453]. Therefore, nanocellulose-derived sustainable

hard carbons perfectly meet the environmental and

electrochemical requirements of eco-friendly sodium-

ion batteries.

Meanwhile, all-cellulose-based devices have also

been achieved inspired by the hierarchical building

blocks of natural cellulose (Fig. 23) [452]. By coupling

with the cellulose microfiber-derived porous carbon

cathodes using the hydrothermal process and sub-

sequent chemical activation, an all-cellulose-based

sodium-ion hybrid capacitor has been assembled

[452]. This uses a modified cellulose-based gel elec-

trolyte instead of using oil-based feedstocks, and its

capacity reached 58.2 mAh g−1 at 0.2 A g−1 [452]. The

energy density of this all-cellulose-based sodium-ion

capacitor reached 139 Wh kg−1 at a power density of

478 W kg−1, which can bridge the gap between high-

energy batteries and high-power supercapacitors

[452].

As we can see, great efforts have been made to

develop the next generation of sustainable energy

storage devices based on nanocellulose. There are

still some challenges that remain to be resolved. For

the commercialization of energy storage devices

based on nanocellulose, a large-scale production

platform is desirable to be established with decreased

energy consumption [454]. In the meantime, how to

rationally control the chemical and physical proper-

ties of nanocellulose to further enhance the electro-

chemical performance of devices needs to be

considered at a scaled-up level [454]. In addition,

most of the development of nanocellulose research in

batteries and supercapacitors in the past few decades

has been limited to sizes no smaller than the ele-

mentary fibril level, while the fundamental science

and technologies at the molecular level of nanocel-

lulose deserve further exploration [455]. All in all, the

emerging applications of nanocellulose are of obvi-

ous benefits to energy storage toward carbon neu-

trality, but more efforts are needed to overcome

existing shortcomings of technologies enabled by

nanocellulose.

Conclusions

A review of the use of nanocellulose fibers in a

variety of potential applications has been presented,

targeting specifically health, water purification,

composites and energy. The world needs to move to

more sustainable choices for its materials, but not

only that it needs to embed sustainability across all

sectors of the economy. Nanocellulose has the

potential to contribute to sustainability, but there

needs to be careful consideration about the ways in

which it is used in everyday applications, and there

are hurdles to overcome in the embedded energy

costs for its production. This review has

Figure 22 A scanning electron microscopy (SEM) image of
mesoporous cellulose nanocrystal (MCNC) membranes and the
electrochemical performance of obtained lithium-ion batteries

using nanocellulose-based separators [448]. Reproduced from
[448] with permission from John Wiley and Sons (Copyright John
Wiley and Sons, 2017).
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demonstrated the use of CNMs for the directed

growth of tissues, showing that both chemical and

topological cues from these materials could be used

to judiciously design bespoke tissue for implantation.

One of the most common forms of materials for solid

dosage pharmaceuticals is cellulose, in the form of

microcrystalline cellulose. However, it has been

demonstrated that nanocellulose is not just useful for

controlled release in a solid dosage format, but also

for transdermal and implantable systems. There is

potential for nanocellulose to make inroads into

commercial products since the barriers of cost are not

so restrictive in such applications.

Water purification, and the supply of clean water,

is critical to much of the world’s population. It has

been shown that nanocellulose can be very useful in

this respect, and with some chemical modification

can help to clean contaminated water. The develop-

ment of ‘smart’ aerogel materials that can both clean

oil-contaminated water, but also provide a means to

remove the materials after use using magnetic prop-

erties has great potential for real-world applications.

We have also shown that nanocellulose also has the

potential to address other forms of water contami-

nation, such as desalination, removal of dyes, and

heavy metals.

Polymer composites remain a topic of great interest

with respect to nanocellulose. Perhaps one of the

most exciting developments in recent times has been

the ability to use the inherent nanostructure of wood,

combined with suitable resins, to make transparent

materials that could have tremendous benefits for

housing and other buildings. These types of appli-

cation, where carbon can effectively be buried in a

building, while also providing a critical function to

enhance living, have enormous potential to con-

tribute to sustainability. In terms of the industrial

exploitation of composites, it has been made clear

that for any advances to be made there are critical

issues around dispersion and mixing that need to be

addressed. Several in situ methods for the fibrillation

of cellulose have been introduced, but much work is

required to address mechanical performance. One

way to overcome the need to mix the nanocellulose in

a polymer is to use a pre-form. Bacterial cellulose

networks have been demonstrated to be useful in this

respect, although work needs to be done to control

the basis weight of the networks, thereby their

porosity and the achievable resin penetration. The

barrier of cost of the nanocelluloses, over other

materials such as talc and conventional fibers, might

not be such an issue if the target application is care-

fully chosen. In niche applications, such as structural

colored films, the added functional benefit and the

ability to now apply roll-to-roll methods for pro-

duction have real potential, particularly for packag-

ing applications.

Finally, nanocellulose has real potential for energy

storage devices: both as supercapacitors and batter-

ies. Here cost is key, but the potential to make small

devices with a high-power delivery, competing with

conventional materials, is very much a real prospect.

In this way nanocellulose could truly contribute to

the development of new sustainable battery systems,

Figure 23 a Schematic illustration of electrodes and electrolytes
inspired by hierarchical building blocks of cellulose for sodium-
ion capacitors; b galvanostatic charge/discharge (GCD) curves of

all-cellulose-based capacitors [452]. Reproduced from [452] with
permission from John Wiley and Sons (Copyright John Wiley and
Sons, 2019).
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and also with new developments such as the use of

sodium-ion-based systems. The use of the material

for the anode and separators in the latter has been

demonstrated. Large-scale production of such devi-

ces is still a barrier for entry into industrial products,

but we are close to solutions to these issues, perhaps

drawing on the roll-to-roll production methods used

for other applications. When it comes to solar cell

applications, the efficiency of the devices made with

nanocellulose is still not competitive. Nevertheless,

the forward scattering provided by nanocellulose

fiber networks makes these interesting materials

which could be implemented in low-cost devices.

In conclusion then, much has developed in the field

of nanocellulose in the last 10 years since the previous

review was published. There are now several large-

scale manufacturers of materials (both fibrils and

nanocrystals), and so the scaled-up production is no

longer an issue. What is required now are for appli-

cations to be realized, and this can only be aided by a

continued use of basic research to underpin these

developments.
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