
                          Davey Smith, G. (2022). Characterising metabolomic signatures of
lipid-modifying therapies through drug target mendelian
randomisation. PLoS Biology, 20(2), [e3001547].
https://doi.org/10.1371/journal.pbio.3001547

Publisher's PDF, also known as Version of record
License (if available):
CC BY
Link to published version (if available):
10.1371/journal.pbio.3001547

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via PLoS at
https://doi.org/10.1371/journal.pbio.3001547 .Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1371/journal.pbio.3001547
https://doi.org/10.1371/journal.pbio.3001547
https://research-information.bris.ac.uk/en/publications/0eebbfda-a920-4d14-99ea-8cf32ff2e3d7
https://research-information.bris.ac.uk/en/publications/0eebbfda-a920-4d14-99ea-8cf32ff2e3d7


METHODS AND RESOURCES

Characterising metabolomic signatures of

lipid-modifying therapies through drug target

mendelian randomisation

Tom G. RichardsonID
1,2*, Genevieve M. LeydenID

1,3, Qin Wang4, Joshua A. Bell1,

Benjamin Elsworth1, George Davey SmithID
1☯, Michael V. HolmesID

4☯

1 MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of

Bristol, Oakfield House, Oakfield Grove, Bristol, United Kingdom, 2 Novo Nordisk Research Centre,

Headington, Oxford, United Kingdom, 3 Bristol Medical School: Translational Health Sciences, Dorothy

Hodgkin Building, University of Bristol, Bristol, United Kingdom, 4 MRC Population Health Research Unit

(PHRU), Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health,

University of Oxford, Oxford, United Kingdom

☯ These authors contributed equally to this work.

* Tom.G.Richardson@bristol.ac.uk

Abstract

Large-scale molecular profiling and genotyping provide a unique opportunity to systemati-

cally compare the genetically predicted effects of therapeutic targets on the human metabo-

lome. We firstly constructed genetic risk scores for 8 drug targets on the basis that they

primarily modify low-density lipoprotein (LDL) cholesterol (HMGCR, PCKS9, and NPC1L1),

high-density lipoprotein (HDL) cholesterol (CETP), or triglycerides (APOC3, ANGPTL3,

ANGPTL4, and LPL). Conducting mendelian randomisation (MR) provided strong evidence

of an effect of drug-based genetic scores on coronary artery disease (CAD) risk with the

exception of ANGPTL3. We then systematically estimated the effects of each score on 249

metabolic traits derived using blood samples from an unprecedented sample size of up to

115,082 UK Biobank participants. Genetically predicted effects were generally consistent

among drug targets, which were intended to modify the same lipoprotein lipid trait. For

example, the linear fit for the MR estimates on all 249 metabolic traits for genetically pre-

dicted inhibition of LDL cholesterol lowering targets HMGCR and PCSK9 was r2 = 0.91. In

contrast, comparisons between drug classes that were designed to modify discrete lipopro-

tein traits typically had very different effects on metabolic signatures (for instance, HMGCR

versus each of the 4 triglyceride targets all had r2 < 0.02). Furthermore, we highlight this dis-

crepancy for specific metabolic traits, for example, finding that LDL cholesterol lowering

therapies typically had a weak effect on glycoprotein acetyls, a marker of inflammation,

whereas triglyceride modifying therapies assessed provided evidence of a strong effect on

lowering levels of this inflammatory biomarker. Our findings indicate that genetically pre-

dicted perturbations of these drug targets on the blood metabolome can drastically differ,

despite largely consistent effects on risk of CAD, with potential implications for biomarkers

in clinical development and measuring treatment response.
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Introduction

Cardiovascular disease (CVD), including coronary artery disease (CAD) and ischaemic stroke,

is the leading cause of death worldwide [1]. Circulating lipoprotein lipid concentrations are of

central importance to the aetiology of CAD [2,3]. For example, clinical trials [4] and studies of

human genetics [5–7] converge to support a causal role of apolipoprotein B (apoB) and low-

density lipoprotein (LDL) cholesterol concentrations in the initial development and subse-

quent progression of CAD.

Pharmacological therapies that target the metabolism of blood lipids are routinely used for

the prevention and treatment of CVD and are among the most widely prescribed medicines in

the world [8]. Interestingly, drug targets that modify concentrations of LDL cholesterol (for

instance, statins, acting on HMG-CoA reductase [HMGCR]) and those designed to modify

high-density lipoprotein (HDL) cholesterol (for instance, cholesteryl ester transfer protein

[CETP] inhibitors) and triglycerides (for instance, angiopoietin-like protein 3 [ANGPLT3]

inhibitors) act on discrete pathways involved in lipid metabolism. Therefore, while each of these

drug classes has proven [9–11] or emerging [12–15] efficacy for CVD risk reduction, their

effects on the blood lipidome and metabolome are likely to vary considerably. This has implica-

tions on understanding which biomarkers to measure (for instance, during clinical develop-

ment in randomised controlled trials) and on gauging markers of treatment response [16].

In this study, we sought to estimate the effects of lipid-modifying therapeutic targets on the

blood metabolome to better characterise their impact on biomarkers related to CVD risk

reduction. We constructed genetic instruments for drug targets that are either currently

licenced or under development and grouped them according to their primary lipid of pharma-

cological focus: LDL cholesterol, HDL cholesterol, or triglycerides. We then compared the

genetically predicted effects of therapeutic targets on CAD risk, before evaluating their effects

on circulating lipoprotein lipid concentrations newly measured at large scale in the UK Bio-

bank (UKB) study through the application of drug-target mendelian randomisation (MR)

[17–19] (Fig 1).

Fig 1. A schematic representation of the drug-target MR approach undertaken in this study using, for instance,

HMGCR variants to proxy for HMG-CoA reductase inhibition (the mechanism of action of statin therapy) to

estimate its genetically predicted effect on CAD. Genetic variants robustly associated with a lipoprotein lipid trait

(for instance, LDL cholesterol) based on P< 1 × 10−6 within 100 kbs of encoding genes were identified as genetic

proxies for perturbing therapeutic targets. A sensitivity analysis restricted to 50 kbs on either side of encoding genes

was also undertaken in this study. CAD, coronary artery disease; kbs, kilobases; LDL, low-density lipoprotein; MR,

mendelian randomisation.

https://doi.org/10.1371/journal.pbio.3001547.g001
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Results

Genetic instrumentation of lipid-modifying drug targets to estimate their

therapeutic effects on coronary artery disease and type 2 diabetes risk

We conducted genome-wide association studies (GWAS) on measures of LDL cholesterol (n =
328,111), HDL cholesterol (n = 300,528), and triglycerides (n = 328,498) in the UKB using bio-

chemistry measures of these traits. Sample sizes were determined based on standard exclusion

criteria (see Materials and methods), as well as excluding participants with measures of meta-

bolic traits derived from a newly available nuclear magnetic resonance (NMR) platform in

UKB. This was to avoid overlapping samples in our planned MR analyses of metabolic traits,

which has been reported to potentially lead to overfitting in estimates [20]. Instrumental vari-

ables for 8 drug targets were identified using results of these GWAS for planned MR analyses.

These were PCSK9, HMGCR, and NPC1L1 [4] (using LDL cholesterol results), CETP (using

HDL cholesterol results), and APOC3, ANGPTL3, ANGPTL4, and LPL [15,21] (using triglycer-

ide results). In total, we identified 137 instruments based on P< 1 × 10−6, r2 < 0.1, and a win-

dow size of 100 kbs either side of the 8 genetic loci responsible for encoding the lipid-

modifying targets evaluated in this study (S1 Table).

Two-sample MR analyses were undertaken using the inverse variance weighted (IVW)

method while accounting for the correlation between instruments [22,23] (Fig 1). Using results

on 60,801 CAD cases and 123,504 control from the CARDIoGRAMplusC4D consortium, we

found strong evidence of a genetically predicted effect for each therapeutic target on CAD risk

(based on false discovery rate (FDR)< 5%) with the exception of ANGPTL3 (S2 Table and Fig

2), in keeping with prior findings [5,24–28]. Likewise, analyses on type 2 diabetes (T2D) risk

using results from a GWAS of 74,124 cases and 824,006 controls from the DIAMANTE consor-

tium supported previous findings (S2 Table). For instance, this included a genetically predicted

adverse effect for the HMGCR score with T2D risk (OR = 1.64, 95% CI = 1.22 to 2.20, P = 0.001),

whereas a protective effect was found for the LPL score (OR = 0.73, 95% CI = 0.66 to 0.80,

P = 6.05 × 10−10). There was additionally strong evidence of a genetically predicted effect on

Fig 2. A forest plot visualising the genetically predicted effects of lipid-modifying drug targets on risk of CAD

and T2D using MR. Estimates are colour coded based on the lipoprotein lipid trait estimates used to derive genetic

scores. Each genetic score was oriented to mimic the putative effects of drug targets on lipoprotein traits, meaning that

effect estimates correspond to relative odds of disease per 1 SD change in either lower LDL cholesterol, higher HDL

cholesterol, or lower triglyceride levels via each specific drug target. Note that in the case of CETP, we are not ascribing

causal effects to HDL cholesterol—rather, we are orientating CAD/T2D effect estimates corresponding to a genetically

predicted increase in HDL cholesterol arising from pharmacological inhibition of CETP. The data underlying this

figure can be found in S2 Table. CAD, coronary artery disease; CETP, cholesteryl ester transfer protein; HDL, high-

density lipoprotein; LDL, low-density lipoprotein; MR, mendelian randomisation; SD, standard deviation; T2D, type 2

diabetes.

https://doi.org/10.1371/journal.pbio.3001547.g002
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T2D risk for the ANGPTL4 score (OR = 0.62, 95% CI = 0.50 to 0.76, P = 2.65 × 10−6). F-statistics

did not indicate that drug target scores were prone to weak instrument bias (F = 58.3 to 297.1)

(S2 Table). Genetically predicted effects on LDL cholesterol, HDL cholesterol, and triglycerides

based on UKB biochemistry measures in the participants with NMR metabolites data (i.e., non-

overlapping with the partitioned sample, which instruments were selected in) can be found in

S3 Table.

Systematic evaluation of genetically predicted therapeutic target effects on

metabolic traits

Next, we applied our GWAS pipeline to all 249 metabolic traits measured by targeted high-

throughput NMR metabolomics from Nightingale Health (biomarker quantification version

2020) in the separate subset of UKB participants with these measures. Sample sizes after QC

ranged between n = 110,051 to n = 115,082 (S4 Table). In total, there were 2,814 genetic vari-

ants robustly associated with at least one measure (based on the conventional GWAS cutoff

P< 5 × 10−8) across 721 independent genetic loci (S5 Table). All of the 249 metabolic traits

were represented among these findings (i.e., each trait quantified by the NMR platform had at

least one SNP association at GWAS levels of significance) with the majority having dozens of

independent variants associated with their levels (median: 74 variants, interquartile range: 27

variants) (S6 Table).

Systematically estimating genetically predicted effects of each lipid-modifying target in turn

on each of the 249 metabolic traits using MR identified a total of 1,588 effects robust to

FDR< 5% corrections (S7–S14 Tables). Investigating the robustness of our results to a more

stringent instrument selection criteria (i.e., 50 kbs either side of encoding genes as compared

to 100 kbs in our main analyses) provided strong evidence of homogeneity between genetically

predicted drug-target effects in the original analysis (S1–S8 Figs).

A subset of these estimates related to lipoprotein particle, cholesterol, and triglyceride con-

centrations across the 8 drug targets have been highlighted in Fig 3. Broadly, the LDL choles-

terol modifying targets (HMGCR, PCSK9, and NPC1L1) provided evidence of genetically

predicted effects on lower levels of very low-density lipoprotein (VLDL), intermediate density

lipoprotein (IDL), and LDL-related particle concentrations, but typically weak evidence on

HDL-related markers (with the exception of very large HDL particles, for which genetic instru-

ments for both HMGCR and PCSK9 showed strong evidence of lowering). For example, the

strongest evidence identified using the PCSK9 score was on large LDL particle concentrations

(Beta = 0.96 SD reduced per 1-SD lowering in LDL cholesterol, 95% CI = 0.87 to 1.04,

P = 3 × 10-113). The concentration of cholesterol within lipoprotein particle subclasses tended

to mimic the associations identified for lipoprotein particle concentration. In contrast, gener-

ally weaker effects of genetic instruments for HMGCR, PCSK9, and NPC1L1 were identified

for triglyceride concentrations within the same lipoprotein particle subclasses.

Orientated to a lowering of CAD risk, the HDL cholesterol modifying target CETP pro-

vided evidence of lower genetically predicted effects on VLDL and LDL circulating concentra-

tions. Notably, comparatively larger effects were identified on lipoprotein particle

concentration and cholesterol concentrations within HDL subclasses with positive associations

identified for these HDL-related traits. In contrast, marked heterogeneity was found in relation

to triglycerides concentrations, with genetically predicted estimates suggesting an effect on

higher very large and large HDL-C concentrations and on lower levels of medium and small

HDL concentrations.

Genetically predicted triglyceride modifying targets (APOC3, ANGPTL3, ANGPTL4, and

LPL) markedly lowered triglyceride concentrations across the spectrum of lipoprotein

PLOS BIOLOGY Genetically predicted effects of drug targets on circulating metabolic traits
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subclasses—this was in contrast to genetic instruments for HMGCR, PCSK9, NPC1L1, and

CETP where effect estimates were weaker and tended to be on both sides of the null. For lipo-

protein particle and cholesterol concentrations, lowering effects of triglyceride modifying tar-

gets were typically found for the VLDL-related traits, with an inflection point at IDL seen for

ANGTPL4, APOC3, and LPL but not for ANGPTL3.

A comparison of these analyses repeated in the youngest and oldest subgroups using indi-

vidual-level data from unrelated individuals within UKB (both n = 30,000) can be found in S9

Fig. Overall metabolic signatures did not appear to drastically differ between these strata

defined by age, suggesting that treatment with statins was unlikely to lead to major perturba-

tions in the effect estimates we present. While overall trends did not typically vary from those

identified in the full sample, these findings suggest that analyses, which directly adjust for con-

tingent factors within UKB, such as statin medications, are likely to introduce collider bias

into their findings (as proposed previously [29]).

We also identified differing signatures between drug target classes for non-lipoprotein

lipid–related traits. For instance, LDL lowering targets typically provided weak evidence of a

genetically predicted effect on glycoprotein acetyls (GlycAs), a marker of inflammation (for

instance, PCSK9: Beta = 0.01, 95 CI% = −0.06 to 0.08, P = 0.78). In contrast, all triglyceride

lowering targets (i.e., ANGPTL3, ANGPTL4, APOC3, and LPL) provided strong evidence of a

genetically predicted effect on lowering GlycA (for instance, LPL: Beta = −0.43, 95 CI% =

−0.37 to −0.48, P = 9 × 10−50), as well as CETP. All drug target estimates on GlycA have been

collated in S15 Table. Although GlycA is an adjunct of inflammation, we also provide geneti-

cally predicted effects of each target on C-reactive protein (CRP), measured using the bio-

chemistry in the same participants with measures of NMR metabolites, given that it is a more

widely and clinically used biomarker of inflammation (S16 Table). Similar directions of effect

Fig 3. Forest plots illustrating the genetically predicted effects of lipid-modifying drug targets on measures of

circulating metabolite concentrations using NMR in the UKB study. Effect estimates are based on an SD change in

the genetically predicted drug target scores oriented to reflect therapeutic intervention (i.e., lower LDL cholesterol,

lower triglycerides, and higher HDL cholesterol). Scores were derived using genetic variants robustly associated which

lipoprotein lipid traits (as indicated in each target’s legend) at each encoding gene’s region. The data underlying this

figure can be found in S7–S14 Tables. CETP, cholesteryl ester transfer protein; HDL, high-density lipoprotein; IDL,

intermediate density lipoprotein; LDL, low-density lipoprotein; NMR, nuclear magnetic resonance; SD, standard

deviation; UKB, UK Biobank; VLDL, very low-density lipoprotein.

https://doi.org/10.1371/journal.pbio.3001547.g003
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for targets on GlycA were found on CRP, although the only target to provide evidence of an

effect robust to multiple comparisons was ANGPTL3 (Beta = −0.22, 95 CI% = −0.39 to −0.04,

P = 0.02).

Genetically predicted metabolic effects for drug targets in comparison to

statin medication

We systematically compared the genetically predicted effects of each drug target on all 249

metabolic traits with HMGCR acting as a proxy for statin therapy. For comparative purposes,

estimates were scaled in accordance with their respective effect estimates on CAD as reported

in S2 Table. In general, we identified strong evidence of concordance between the other LDL

cholesterol lowering therapies (PCKS9 and NPC1L1) with the HMGCR score (r2 = 0.91 and r2

= 0.79, respectively). Fig 4A illustrates the linear trend identified between genetically predicted

effects of PCSK9 and HMGCR on metabolic markers. S10 Fig contains the corresponding plot

for NPC1L1.

In contrast, comparisons with the HDL cholesterol raising (CETP) (r2 = 0.09) (Fig 4B) and

triglyceride lowering (APOC3, ANGPTL3, ANGPTL4, and LPL) (all r2� 0.02) targets provided

weak evidence of concordance with the HMGCR score. Fig 4C visualises this general lack of

concordance using the LPL and HMGCR score comparison as an exemplar. Broadly, both the

LPL and HMGCR scores provided evidence of genetically predicted effects on higher levels of

various triglyceride-rich VLDL-related traits (highlighted in green). However, conversely, the

LPL score typically provided stronger evidence of an effect on HDL-related traits (highlighted

in red), which was generally not the case for the HMGCR score. As expected, both scores pro-

vided weak evidence of an effect on non-lipid-related traits (highlighted in orange). All other

figures generated from this analysis for the other targets in comparison to the HMGCR score

can be found in S11–S13 Figs. There was also typically good concordance among metabolomic

profiles derived from drug targets within the same lipoprotein lipid class, for instance, when

comparing all pairwise combinations of triglyceride lowering drug targets (S14–S19 Figs).

These findings were similar to those reported previously by a study conducted by Wang and

colleagues [28], for example, with very strong concordance between ANGPTL4 and LPL pro-

files identified (r2 = 0.96 by Wang and colleagues compared with r2 = 0.99 in this study). This

is likely attributed to the large sample size harnessed in the study by Wang and colleagues (n =
61,240), which is also the case in this current study. APOC3, which was not evaluated by this

previous study, likewise had a similar metabolomic profile as the other triglyceride lowering

targets assessed (for instance, LPL and APOC3 r2 = 0.94).

Fig 4. A comparison of distributions between genetically predicted drug target effects (A) PCSK9, (B) CETP, and (C)

LPL on metabolic traits using NMR in the UKB study. In each figure estimates are compared with the results from the

HMGCR score. Effect estimates were scaled in accordance with the corresponding effects of these genetically predicted

drugs targets on risk of CAD, which is why axes vary between plots. Points are coloured based on subcategories of

metabolic traits indicated in the figure legends. The data underlying this figure can be found in S7, S8, S10, and S14

Tables. CAD, coronary artery disease; CETP, cholesteryl ester transfer protein; HDL, high-density lipoprotein; IDL,

intermediate density lipoprotein; LDL, low-density lipoprotein; NMR, nuclear magnetic resonance; SD, standard

deviation; UKB, UK Biobank; VLDL, very low-density lipoprotein.

https://doi.org/10.1371/journal.pbio.3001547.g004
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Discussion

In this study, we explored the genetically predicted metabolic effects of modifying LDL, HDL,

and triglycerides via drug targets that are either well established, recently licenced, and/or

under development [30–33]. Our findings demonstrate that drug targets that principally act to

modify LDL cholesterol (for instance, statins, PCSK9 inhibitors, and ezetimibe) have broadly

similar effects on the blood metabolome. In contrast, effects of drugs designed to modify HDL

cholesterol and triglycerides had very different effects on metabolic biomarkers, even when

scaled to the same difference in risk of CAD. These findings provide a catalogue of genetically

predicted pharmacological effects on the blood metabolome, which serves to illustrate the het-

erogeneity between different lipid-modifying therapies, highlighting the need for rich pheno-

typing of lipoprotein lipids in developing assays that gauge treatment response.

Our findings illustrate the tapestry of metabolic biomarker associations that are predicted

to be downstream consequences of pharmacological modification of a therapeutic target.

While these findings do not provide evidence of causation of these metabolic biomarkers,

rather, they employ drug target MR as a means of characterising therapeutic effects on the

metabolome [34,35]. Such diverse effects can then potentially be triangulated [36] to explore

patterns of metabolomics where signatures are consistent with cardiovascular risk reduction.

In-depth investigations into the independent causal role of specific metabolic traits at a granu-

lar level can then be explored using approaches such as multivariable MR [37]. For example,

one might construct genetic instruments for biomarkers that are downstream consequences of

HMGCR inhibition and conduct de novo multivariable MR analyses of these traits in order to

identify the mediating mechanisms beyond apoB or LDL cholesterol. While previous studies,

including those that we conducted, identified apoB as the fundamental driver of lipid-medi-

ated CVD [7], a greater understanding of the causal components should facilitate new avenues

of investigation and resultant pharmacological development. We identified important differ-

ences in the genetically predicted effects of some therapeutic targets on risks of CAD and T2D.

HMGCR, NPC1L1 and PCSK9 all lowered risk of CAD, yet HMGCR, and to a lesser extent

NPC1L1 and PCSK9, increased risk of T2D (as presented in Fig 2). In contrast, ANGPTL4 and

LPL were genetically predicted to lower risks of both CAD and T2D. Comparisons of these

therapeutic targets on detailed measurements using omics approaches such as those employed

in this study may clarify the underlying aetiological mechanisms driving these differences and

aid in the development of medicines that are protective for both vascular and metabolic dis-

eases. For example, by exploring disease-specific effects of genetically instrumented drug tar-

gets and partitioning metabolic biomarkers according to such, it may be possible, through

approaches such as multivariable MR, to identify in finer detail which metabolic biomarkers

are causally implicated in CVD and metabolic disease. Additional approaches including

“reverse-MR” [38,39], where genetic instruments for liability to disease are explored for their

metabolomic signatures, may reveal biomarkers on the causal pathway to disease. Integration

of these types of genetic epidemiological avenues of investigation are likely to resolve disease-

specific roles of these metabolic biomarkers and, consequently, facilitate new therapeutic tar-

gets for clinical development. Additionally, our results provide granular insight into the geneti-

cally predicted effects on the plethora of circulating metabolic traits investigated in this study.

For instance, the triglyceride lowering targets evaluated in this study typically provided strong

evidence of an effect on GlycAs, a marker of inflammation, whereas in contrast, the LDL cho-

lesterol lowering targets provided weak evidence of an effect on this circulating metabolic trait.

This suggests that, although triglyceride lowering medications may not provide the same mag-

nitude of effect towards lowering CAD risk as LDL lowering therapies, they may yield addi-

tional benefit towards reducing inflammation. Given that the role of inflammation in CVD is
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gaining traction as an orthogonal avenue of therapeutic potential, such effects of TG-modify-

ing therapies on inflammation biomarkers offer potential therapeutic indications, which may

have roles beyond CVD.

One of the striking findings is the general consistency of associations between drug targets

and particle concentration and cholesterol concentration (likely owing to the high correlation

between these phenotypic traits) and the divergence between particle and cholesterol concen-

tration and triglycerides concentration. This was most notable when comparing drugs across

their primary lipid indication—i.e., drugs that were developed on the basis of LDL cholesterol

lowering tended to have modest associations with a general reduction in triglyceride concen-

trations across lipoprotein particles. In contrast, HDL cholesterol raising variants in CETP
were identified to have effects on lower triglycerides in apoB containing lipoproteins, whereas

for HDL particles, triglycerides were increased in very large and large HDL particles and

reduced in medium and small HDL particles. Our CETP genetic score also had a genetically

predicted effect on lower IDL and LDL lipoprotein particle and cholesterol concentrations,

which has not been reported by previous MR evaluations of this target [19,40]. Possible expla-

nations for this include the much larger number of genetic instruments leveraged in this study

(n = 57), in comparison to previous studies that harnessed n� 3 instruments, as well as per-

forming analyses on a much larger sample size of individuals with NMR metabolites data in

this work (n = 115,082).

For the drug targets where triglycerides metabolism was the primary lipid of pharmacologi-

cal focus for development, triglycerides concentrations were lower across the lipoprotein parti-

cle spectrum. Since most of these drug targets demonstrated genetic evidence of CAD

lowering, one might draw conclusions from such heterogeneity of triglycerides effects across

these lipid-lowering therapies indicative that perhaps triglycerides were less important and

that it was cholesterol or lipoprotein particle concentration (indexed, for instance, by apoB

concentrations) that mediated these causal effects. However, previous multivariable MR analy-

ses that included triglycerides, apoB, and LDL-C in the model demonstrated a direct effect of

triglycerides consistent with a potential causal role of triglycerides in CAD [7,41] using the

same dataset from the CARDIoGRAMplusC4D consortium as analysed in this study [42].

Thus, while our findings illustrate pronounced heterogeneity in cholesterol and triglyceride

lipoprotein lipid concentrations arising from genetically predicted pharmacological inhibition

of lipid modifying drug targets, drawing causal conclusions from such perturbations is non-

trivial and requires MR of the individual phenotypes, as described previously.

The findings presented here have been made available by large-scale phenotyping using

NMR-targeted metabolomics in UKB in combination with GWAS genotyping. Such data pro-

vide resolution of lipoprotein lipids at scale and enable genetic analyses of the type we present.

The value of metabolomics may be to offer signatures of treatment response, which can then

be used to guide pharmacological treatment. Such may be of utility from an early stage—for

instance, during Phase I, II, and III clinical trials, where biomarkers are often used as a means

of measuring treatment response across different concentrations of drugs [17], and postmar-

keting, when assessing interindividual response to treatment. Equally, our study has notewor-

thy limitations. For example, although previous studies have used similar criteria for

instrument selection for the gene-based drug scores used in this study, we are unable to rule

out genetic confounding as a potential source of bias in our analyses. Our analyses were also

based on the European subset of the UKB study, and, therefore, evaluations in individuals of

non-European ancestry would be valuable to investigate how representative our findings in

diverse populations. Furthermore, we have used common genetic variants associated with

lipoprotein lipid traits as a source of genetic instruments in this work. Future endeavours har-

nessing genetic effects on molecular traits (for instance, circulating proteins) or rare (and
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potentially highly penetrant) genetic variants may yield alternate strands of evidence to com-

plement (or contradict) our results. In particular, these alternative approaches to genetic

instrument selection for may identify a more powerful proxy for targets such as ANGPTL3

[43].

In summary, our study characterises the repertoire of genetically predicted lipid-modifying

therapies on the blood metabolome. These findings demonstrate the widespread metabolic

perturbance that arises from genetically evaluated modifications of therapeutic targets and het-

erogeneity between discrete classes of drugs, especially when their primary lipid trait differs.

Such findings may be useful to illustrate the utility of drug target MR in gauging the predicted

effects of drugs on omics traits to guide dose-ranging studies during clinical development and

as a marker of treatment response.

Materials and methods

Instrument identification

Genetic instruments for each lipid-modifying drug target were selected by undertaking GWAS

of lipoprotein lipid traits measured using a conventional biochemistry assay in UKB [44].

These included HDL cholesterol (field 30760), LDL cholesterol (field 30780), and triglycerides

(field 30870). Details on genotyping quality control, phasing, and imputation in UKB have

been described previously [45]. Briefly, GWAS were undertaken after excluding individuals

with sex-mismatch (derived by comparing genetic sex and reported sex) or individuals with

sex-chromosome aneuploidy were excluded from the analysis (n = 814). Next, a K-mean clus-

tering algorithm was applied to remove UKB participants of non-European descent (based on

K = 4) and also those with withdrawn consent leaving a maximum sample size of n = 463,005.

Individuals who had measures of metabolic traits derived from a newly available NMR plat-

form in UKB were also excluded from these GWAS (up to n = 121,727 participants) to avoid

overlap with outcome samples (a potential source of bias in MR due to overfitting [20]). LDL

cholesterol, HDL cholesterol, and triglycerides were normalised using inverse rank-normalisa-

tion such that their mean was 0 and their standard deviation was 1. We used the BOLT-LMM

(linear mixed model) software with adjustment for age, sex, fasting status (i.e., the interval

between consumption of food or drink and blood samples being taken), and a binary variable

denoting the genotyping chip used in individuals (the UKBB Axiom array or the UK BiLEVE

array) [46]. BOLT-LMM uses a linear mixed effect model to account for the population struc-

ture within UKB, which is why principal components were not included as covariates in the

model. All analyses were conducted under UKB application #15825.

Final instrument selection for all 8 drug targets was based on results obtained from the

GWAS of HDL cholesterol (to instrument CETP), LDL cholesterol (to instrument PCSK9,

HMGCR, and NPC1L1 [4]), and triglycerides (to instrument APOC3, ANGPTL3, ANGPTL4,

and LPL [15,21]). A selection criteria of genetic variants with P< 1 × 10−6, which were located

within a 100-kbs region either side of encoding genes, was applied to select instruments. This

window size was selected to reduce the likelihood of including instruments proximal to other

genetic targets, which may influence these lipoprotein lipid traits via alternate biological path-

ways (i.e., horizontal pleiotropy). We conducted linkage disequilibrium (LD) pruning for vari-

ants such that they had r2 < 0.1 using a reference panel of 503 European individuals enrolled

in the 1,000 Genomes Project phase 3 (version 5) [47]. We additionally set out to identify

genetic instruments for PPARA as a proxy for triglyceride modification through fibrates,

although our GWAS only identified a single variant associated with triglyceride levels at this

gene’s locus. We did not carry this target forward into downstream analyses given the chal-

lenges for genetic confounding of conducting gene-centric MR analyses with a single genetic
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instrument, particularly in gene dense regions where the function of each gene is not well

understood, which may hinder inference [48].

Genome-wide association studies of metabolic traits, coronary artery

disease, and type 2 diabetes

We applied the same GWAS pipeline described above to all 249 metabolic traits measured by

targeted high-throughput NMR metabolomics from Nightingale Health (biomarker quantifi-

cation version 2020) in UKB. These analyses were conducted under UKB project #15825. Mea-

sures were taken using nonfasting EDTA plasma samples (aliquot) obtained from a random

subsample of 121,584 UKB participants. Sample sizes on the 249 metabolic traits for GWAS

after QC ranged between n = 110,051 to n = 115,082 UKB participants. A full summary of sam-

ple sizes can be found in S3 Table. Each metabolic trait was normalised to have a mean of 0

and standard deviation of 1 using inverse rank-normalisation as above allowing comparisons

to be made between derived effect estimates. As before, all GWAS were adjusted for age, sex,

fasting time, and genotyping chip.

Among these biomarkers were various lipoprotein lipids and their concentrations within

14 subclasses, fatty acids, ketone bodies, glycolysis metabolites, and amino acids (see S3

Table). Further details have been described previously [49]. Additionally, we conducted a

GWAS of CRP measured using the biochemistry assay in UKB on the subset of participants

with NMR metabolic traits. Ethical approval for this study was obtained from the Research

Ethics Committee (REC; approval number: 11/NW/0382), and informed consent was collected

from all participants enrolled in UKB.

Genome-wide summary-level estimates on CAD risk were obtained from a previously con-

ducted GWAS from the CARDIoGRAMplusC4D consortium [42]. CAD cases in this consor-

tium were defined as myocardial infarction, acute coronary syndrome, chronic stable angina,

or coronary stenosis >50%. In total, there were 60,801 cases and 123,504 control assembled by

CARDIoGRAMplusC4D across 48 studies, which did not include the UKB study. Genetic esti-

mates on T2D were extracted from a previous GWAS from the DIAMANTE consortium con-

sisting of 74,124 cases and 824,006 controls of European ancestry [50].

Statistical analysis

Drug-target mendelian randomisation. Univariable MR analyses were firstly undertaken

to estimate the genetically predicted effects of each therapeutic target on risk on CAD. Esti-

mates were derived by applying the IVW method while accounting for the correlation between

instruments using the same reference panel as above [22,23]. Further details on this approach

have been described previously [22]. Briefly, we calculated the pairwise correlations between

all variants included in genetic scores. These were then incorporated into the standard error

terms of test statistics for the summary-level weighted generalised linear regression MR

models.

This approach was then applied systematically to estimate the genetically predicted effects

of each target on each of the 249 metabolic traits in turn. Analyses were conducted in a two-

sample data setting to ensure that our sample of UKB participants from which instruments

were identified (i.e., the non-NMR subset of UKB) did not overlap with individuals analysed

in the GWAS of metabolic traits in UKB. To account for multiple testing, FDR corrections

were applied for each drug target analysed as a heuristic to highlight the most noteworthy find-

ings with strong statistical support based on current sample sizes, although all results are

reported in the Supporting information (S1–S19 Figs, S1–S16 Tables). We repeated this analy-

sis restricting our instrument selection criteria to a 50-kbs window around encoding genes for
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targets to assess the robustness of our findings to genetic confounding (i.e., variants influenc-

ing metabolic traits via neighbouring genes).

Comparison between different drug target effects across metabolome-wide traits. We

initially compared effect estimates for a subset of lipid concentrations across drug targets using

forest plots. More comprehensive comparisons on metabolome-wide results (i.e., on all 249

traits) were illustrated using scatter plots proposed previously to compare pairwise estimates

between 2 targets with metabolic traits coloured based on their subcategories [28]. For com-

parative purposes, we scaled all metabolite estimates using a scaling factor based on each tar-

get’s corresponding genetically predicted effect on CAD risk. We used HMGCR estimates as

our baseline comparison for each of the other 7 drug targets given the widespread adoption of

statin therapy to treat individuals at elevated risk of CVD. Comparisons between HMGCR esti-

mates and those for each of the other scores were evaluated using generated R2 values as

applied previously [28]. R2 values are the coefficients of determination estimating the quotient

of the variances of the fitted values and observed values of the dependent variable using a linear

regression model. Here, it describes the linear fit for the estimates on metabolic traits between

the 2 drug targets assessed.

As a sensitivity analysis, we used individual-level data from UKB to investigate whether the

genetically predicted effects of drug targets on lipoprotein lipid concentrations varied among

participant subgroups stratified by their age. As described previously [29], this approach per-

mits the investigation of whether putative contingent factors in UKB may influence conclu-

sions without directly conditioning of them. For example, in this study, we might anticipate

that the influence of statin medications on metabolic markers may distort effect estimates.

However, adjusting for this factor either as a covariate or by stratifying participants on it is

likely to induce collider bias into analyses, which is recognised to potentially undermine causal

inference [51]. As such, we partitioned the unrelated European sample from UKB into the

youngest (range from 40 to 54 years) and oldest (range from 61 to 71 years) subgroups

(both n = 30,000), where the number of reported participants taking statin medications was

5.6% and 27.7%, respectively. Instruments for drug targets were then constructed as genetic

risk scores using individual-level data from UKB and analysed against each measure of lipo-

protein lipid concentrations in turn using linear regression adjusted for age, sex, and the top

10 principal components.

All plots in this study were generated using the R package “ggplot2” [52]. MR analyses were

conducted using the R package “MendelianRandomization” [53]. All analyses were under-

taken using R (version 3.5.1).
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