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Abstract  

The socio-economic impact of diseases associated with cognitive impairment is 

increasing. According to the Alzheimer’s Society there are over 850,000 people with 

dementia in the UK, costing the UK £26 billion in 2013. Therefore, research into 

treatment of those conditions is vital. Research into the cerebral endothelial glycocalyx 

(CeGC) could offer effective treatments.                                                                                                                     

The CeGC, consisting of proteoglycans, glycoproteins and glycolipids, is a dynamic 

structure covering the luminal side of the endothelial cells of capillaries throughout the 

body. The CeGC is thicker in cerebral micro vessels, suggesting specialisation for its 

function as part of the blood-brain barrier (BBB).  Recent research evidences that the 

CeGC is vital in protecting fragile parenchymal tissue and effective functioning of the 

BBB, as one particularly important CeGC function is to act as a protective barrier and 

permeability regulator.   

CeGC degradation is one of the factors which can lead to an increase in BBB 

permeability. It occurs naturally in aging, nevertheless, premature degradation has 

been evidenced in multiple conditions linked to cognitive impairment, such as 

inflammation, brain edema, cerebral malaria, Alzheimer’s and recently Covid-19. 

Increasing knowledge of the mechanisms of CeGC damage has led to research into 

preventative techniques showing that CeGC is a possible diagnostic marker and a 

therapeutic target. However, the evidence is relatively new, inconsistent and 

demonstrated mainly in experimental models. 

This review evaluates the current knowledge of the CeGC, its structure, functions, 

damage and repair mechanisms and the impact of its degeneration on cognitive 

impairment in multiple conditions, highlighting the CeGC as a possible diagnostic 

marker and a potential target for therapeutic treatment. 
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1. Introduction 

The capillaries’ role is not just to exchange the metabolites, proteins and other 

molecules from our bloodstream to their targets and vice versa, but to do so in a highly 

efficient and specialised manner to prevent damage and dysregulation of our biological 

systems by having additional components and functions. In unspecialised capillaries, 

such as in heart or lungs, this is achieved through paracellular transport between the 

intercellular spaces of the endothelial cells (ECs) that make up the capillary wall or by 

transcellular transport through the ECs (1, 2). However, for organs like the brain, the 

parenchymal tissue is fragile and requires a more robust cerebral microvascular 

structure to protect it from pathogens and other harmful agents – the blood-brain 

barrier (BBB). Consisting of proteoglycans, glycoproteins and glycolipids, the 

endothelial glycocalyx (eGC) covers the luminal side of the ECs of our capillaries 

within the BBB (3). This dynamic structure plays a key role in the regulation of 

endothelial permeability, microvascular and endothelial physiology, leukocyte 

adhesion and nitric oxide (NO) production (3-5). 

The eGC has been a recent target of research due to its degradation and shedding 

(causality is still disputed) in inflammation, ischaemia and clinical conditions like sepsis 

and cerebral malaria (6), all of which are associated with cognitive impairment. And 

with the current COVID-19 pandemic, cases of prolonged cognitive dysfunction are 

being highly reported – 31% in a UK study (7) and 25% in Wuhan, China (8) – meaning 

a greater understanding of its pathogenic link to neuroinflammation and endothelial 

dysfunction could help to develop effective therapies that would ameliorate the 

symptoms.  

However, due to technological limitations, the study of the cerebral eGC (CeGC) has 

only recently gained traction (9). As well as being an integral segment deep in our 

cerebral structure, it collapses and becomes thinner when studied in vitro (10). This 

has made it problematic to study, meaning attention has turned to other similarly 

functioning systems in the body to assess its possible structure and function, such as 

in the glomerulus in the kidney (11). To date, much research has focused on the 

glomerular eGC (11), though modern innovative techniques, such as  two-photon 

microscopy, atomic force microscope or sidestream dark force imaging, have enabled 

research to start specifically focusing on CeGC. So far it has shown a high level of 

specialisation within the BBB and provided a prospective diagnostic marker and 

possible therapeutic intervention target (2, 12, 13).  

This review will assess the current knowledge and techniques used to establish the 

structure and function of the CeGC. We will also try to establish its connection to a 
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multitude of clinical conditions through its degradation and shedding and discuss its 

therapeutic potential. 

2. The capillaries, endothelium and the BBB 

2.1 Capillaries and the cerebral endothelium 

The capillary structure is highly conserved throughout the body with three distinct 

subdivisions – continuous, fenestrated and sinusoidal (13) – all appearing in various 

parts of the body, indicating a level of specialisation in function. However, further 

specialisation has emerged in select areas throughout the vasculature, creating a 

structure tailored to the demands of the individual tissue or organ (11). The normal 

capillary cell wall is built up of ECs and pericytes, with intercellular spaces for 

unrestricted passage to and from the bloodstream. However, in more complex organs 

like the brain, homeostasis regulation is essential for function. This is achieved with 

the addition of pericytes and astrocytic endfeet that form a complex neighbouring the 

ECs, which support the endothelial barrier and its properties (14). This assembly 

allows multifaceted reactions to a diverse range of stimuli, allowing them to participate 

as a biological interface (15). 

Investigation into the cerebral capillary morphology of the CeGC (2, 16) indicates the 

ECs are interconnected by tight junctions to prevent the unsystematic nature of 

paracellular diffusion (17), resulting in cerebral capillaries forming a continuous EC 

membrane, with solutes transported by ECs expressed transport proteins (17). This 

causes a substantial restriction on passive transport, allowing active control over the 

passage of substances between the blood and the brain, creating the regulation of 

cerebral homeostasis. This structure is called the BBB and is essential for protection 

and regulation within the parenchymal tissue. 

2.2 BBB role, structure and cellular properties 

The healthy physiological functioning of the brain is highly dependent on the cerebral 

microvasculature’s structure, due to its lack of energy reserves and rapidly changing 

metabolic rate. The BBB needs to be able to effectively regulate its permeability for its 

varying demands and need for a regulated homeostasis (18). The BBB has also a 

protective function, as the parenchymal tissue is susceptible to damage, by preventing 

neurotoxic plasma components or pathogens from entering the brain (19). Within the 

microcirculation, regulation of the blood flow through feedback mechanisms for the 

metabolic demands of the brain is a process called neurovascular recoupling (20), 

which coordinates the rate of exchange and delivery of the energy substrates and 

other substances across the BBB through various transport systems (21). These 



 

6 
 

plasma components then, either by crossing back across the BBB or via the 

perivascular spaces, re-enter the bloodstream (22). 

Fundamentally, the BBB is characterised by its receptors, transporters, junctional 

proteins and basement membrane mechanisms, expressing low paracellular and 

transcellular permeability (23). However, research has shown that the BBB is more 

complex than first thought, and points to larger multifaceted incorporation of 

components. This has led to the introduction of a neurovascular unit (NVU) which is 

defined as the unit of the BBB (the central element) along with astrocytes, neurons, 

pericytes and microglia (24, 25). 

Part of the BBB is the eGC, lining the luminal side of the capillaries, whose significance 

for the BBB function has been increasingly recognised. 

3. Endothelial glycocalyx 

The eGC can be defined from the viewpoint of its composition, structure and functions. 

3.1 eGC composition 

There is a consensus about the eGC composition (3, 24, 26-28). The eGC is a two-

layer fibre matrix. The dynamic luminal layer – 460nm-1μm – is a porous gel-like outer 

luminal layer in contact with the blood, consisting mainly (90%) of glycosaminoglycans 

(GAGs), such as heparan sulphate (HS), hyaluronic acid (HA), chondroitin sulphate 

(CS), dermatan sulphate and keratin sulphate. The HA, though not bound to a core 

protein, is hydrophilic, forming the viscous solution on the eGC (29). GAGs carry a 

substantial number of negatively charged binding sites that, depending on sulphation, 

affect protein binding and thereby vascular permeability (30). They are covalently 

bound to proteoglycans such as syndecans (SDCs) which  form the denser mesh-like 

stable endothelial layer – 200-300nm.This core protein is attached to the EC via 

transmembrane domain for SDCs or by a glycosylphosphatidylinositol anchor for 

glypicans and to the adherent HS and HA (31, 32) (see figure 1). 

3.2 eGC structure 

The dynamic interaction between the two layers – a stable endothelial layer, and a 

dynamic luminal layer (14) – determines the eGC function and mechanical properties 

(15). The differences in molecular structure allow the endothelial-derived molecules 

and plasma components to be incorporated and exchanged (14). 
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Figure 1 The structure and molecular components of the glycocalyx. The dynamic luminal layer 

consisting of Heperan Sulphate, Hyaluronan, Chondroitin Sulphate and Plasm proteins are covalently 

bonded to the more stable endothelial layer which consists of proteoglycans anchored to the 

endothelial cell (33) - adapted with author’s permission 

  

As a result of these structural differences, the eGC can exist in three distinct forms 

based on its rigidity and thickness – intact (soft and upright), collapsed (stiff and flat) 

and shed (softer and flat) – depending on the extracellular environment, namely the 

concentration of electrolyte sodium (Na+) which regulates the body’s fluid balance (34). 

High plasma Na+ concentrations stiffen the endothelial cortex, decrease NO release 

and collapse eGC, which is a hallmark of endothelial dysfunction (34, 35). 

An intact eGC (soft and upright) indicates healthy functioning eGC (36, 37). In a 

physiologically healthy extracellular environment, characterised by low Na+, the eGC 

structure is relatively stable, however, it has a constant need to balance the 

biosynthesis of GAGs and the shear-dependent removal of its existing components 

(36, 37). 

A collapsed eGC (stiff and flat) and shed eGC (softer and flat) signify a damaged eGC 

(36) and are likely to adversely affect the vascular system (37). Collapsed eGC is 

caused by the presence of high extracellular Na+. Shed eGC is a result of heparanase 

or tumour necrosis factor α (TNFα) (37) where the pro-inflammatory cytokines 

interleukin-1β (IL-1β) and TNFα are released by high Na+ (35). 

As these eGC structural differences are linked to the ECs function, they are used as 

markers for assessing the healthy functioning of eGC (34). 
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3.3 eGC functions 

Research has shown that eGC performs multiple roles (3) with further roles being 

investigated (11). 

The eGC as a vascular permeability regulator prevents large molecule interaction with 

ECs thus protecting the BBB permeability (1, 3). The eGC structure has been identified 

as an element in maintaining the oncotic gradient (38), with cooperative working with 

junctional proteins and adhesion molecules facilitating this regulation (39). The eGC 

damage is marked by capillary permeability increase, showing barrier properties 

against not only water but also colloids (26). However, the mechanisms behind eGC 

damage impact on vascular permeability need establishing as there are two transport 

pathways: transendothlial and paracellular pathways (26, 40). 

Another role is linked to mechanotransduction and related sensoring shear stress, as 

eGC acts as a mechanoreceptor that responds to the shear stress induced by the 

cerebral blood flow (CBF) (41). The higher shear stress increases albumin uptake, 

altering the eGC properties and increasing its thickness (26, 42) – seen in arteries with 

a much higher pressured CBF compared to capillaries – and NO production which 

dilates vessels leading to the reduction of the adhesion of leukocytes and platelets 

(26, 43). 

An intact eGC has also anticoagulant/anticlotting properties, producing and releasing 

NO (44), and acting as a mechanotransductor affecting flow regulation (3). The ECs 

secrete HS, a large component of the eGC, which enhances the anticoagulant 

properties of the plasma circulating antithrombin, which binds to the HS in the eGC 

(26, 45), allowing a constant CBF.  

An undamaged eGC also regulates cell adhesion by reducing the interaction of plasma 

cells with the ECs surface adhesion molecules – such as intercellular adhesion 

molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) – by limiting 

ligand-receptor interactions that promote the adhesion of leukocytes (46). During an 

infection, this leukocyte recruitment is a vital multi-step process in a host’s 

immunological response (26). The eGC is targeted and shed by inflammatory 

mediators such as histones and proteases, allowing leukocyte adhesion. A healthy 

eGC would provide vascular protection (30) as the constant adhesion of these 

leukocytes would result in a systematic inflammatory state. 

Lastly, the eGC is also an immune cell regulator. The eGC component implicated in 

this role is sialic acid, a monosaccharide present in eGC (47). The sialylated 

glycolipids, glycoproteins and the plasma proteins target immune cells (5, 48), thus 
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contributing to immune system downregulation (47). The desialylation of cancer cells 

was identified as a promising therapeutic target (47). 

These findings show the eGC acts as a receptor for both chemical and physical stimuli, 

reacting to and inducing physiological responses in the vascular endothelium. These 

functions are likely due to its highly dynamic nature and nanomechanical property 

adaptability to minute changes in forces exerted by the bordering bloodstream – the 

shear stress – and any aggravations by vasoactive elements within the bloodstream 

(15). 

The eGC has a vital role in our physiological functioning, therefore the mechanisms 

behind its degradation need to be understood. This could lead to potential therapeutic 

targets. 

4. CeGC damage and amelioration - implications for BBB 

CeGC damage is difficult to assess as it has been predominantly evaluated 

preclinically (49) and, though the CeGC implications in the BBB are proving 

increasingly essential, its study is still fairly limited (50). There is, however, a general 

understanding that the eGC is a dynamic and delicate structure, easily susceptible to 

damage (24, 51, 52). 

4.1 Key CeGC components and mechanisms of their damage 

Studies seem to indicate that the mechanisms of damage are linked to the HA, HS 

and syndecans, predominantly syndecan-1, which are the main shed components 

found circulating in plasma (53). The shed eGC components thus may serve as a 

potential marker for eGC damage and therefore EC injury, and as potential diagnostic 

and prognostic applications in disease states (34, 37). The eGC protection and its 

restoration, if already damaged, is a promising therapeutic target. As the dysfunction 

of the eGC is caused by the shedding, it is highly desirable to develop drugs which 

could increase the synthesis of eGC components, restore them or prevent their 

degradation by enzymes (30). 

HA plays a vital role in eGC permeability, contributing to cell migration and proliferation 

(52); its abundance in the eGC highlights its impact on eGC health. HS stimulates cell 

adhesion and is essential for the regulation of cell interactions, with a shedding of HS 

increasing ECs activation by cytokines, leading to a switch to an inflammatory 

phenotype (3). Then lastly, the heparan sulphate proteoglycan (HSPG) syndecan-1 

has mechanotranduction properties through shear stress mediation. As well as 

phenotypic regulation, its loss induces a pro-inflammatory phenotype in ECs (54). 
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The literature has so far demonstrated several mechanisms of eGC damage, mediated 

by enzymes or proteases. Heparinase is a group of enzymes that cleaves the heparin 

and HS chains through an elimination mechanism, i.e. the degradation of Heparin/HS 

polysaccharides into oligosaccharides, resulting in the HS loss from the eGC (15). The 

HS chains can also be degraded and shortened to an oligosaccharide with 

heparanase (55). The degradation of HA is initiated by a family of enzymes, 

hyaluronidase (HAse) (52). Lastly, metalloproteinases (MMPs) are known to not only 

cleave proteoglycans (such as syndecans-1) directly from the EC membrane, but also 

affect the cleavage of cell surface receptors (11).                               

Though these are so far the most researched components of the eGC, further research 

is still required, but also into the other eGC components. These mechanisms also 

heavily impact the results of studies which needs to be taken into consideration. 

In addition, the eGC degradation also occurs as a result of the body’s natural 

immunological inflammatory response, causing the release of inflammatory cytokines 

such as TNF-α and IL-1β (56). The physiological shear stress of the CBF is a vital 

component of the eGC structure, whilst also, over time, the cause of damage to its 

own mechanosensitive properties (57). The eGC appears to have both pro- and 

antiadhesive functions, making its nanochemical properties essential in leukocyte 

adhesion and inflammatory processes (15). The eGC damage is caused by an influx 

of Na+ via the endothelial sodium channels resulting in a conformational change in the 

cortical actin, hardening the cortex and leading to a reduced NO release and leukocyte 

adhesion facilitation, indicating a development of vascular inflammation (35). 

4.2 CeGC damage and implications for the BBB 

The CeGC damage contributes to BBB breakdown which is considered to be an early 

biomarker of human cognitive impairment (58). Understanding of the factors and 

mechanisms behind how and why the eGC becomes damaged has led to the research 

into preventative therapies (52). 

4.3 Amelioration of CeGC damage 

The mechanisms of prevention are still not clear, however, promising results have 

been found. 

The function of HA in eGC stability leads to the rationale of restoring it to protect a 

damaged eGC (59). A combination of exogenous HA and CS showed improved eGC 

thickness in an enzyme-mediated depleted hamster skeletal muscle model when 

applied together (60). In a rodent model of sepsis, HA administered intravenously 

reduced cytokine levels and sepsis-related injury (61).     
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Heparin exhibits neuroprotective, anticoagulant, anti-inflammatory and 

immunomodulatory properties that preserve and protect the CeGC (62) by being a 

heparinase inhibitor (51). Including unfractionated heparin, crystalloids and antibiotics 

reversed eGC damage in a septic shock model (63), suggesting heparin has a 

neuroprotective effect on the eGC. However, the evidence is still relatively new and 

inconsistent as to heparin’s properties (51).  

Antithrombin lll is a widely prescribed medication for the treatment of sepsis-induced 

disseminated intravascular coagulation (DIC). Though inconclusive, a trend in the 

reduction of mortality with patients receiving antithrombin was seen (64). However, in 

some cases it was administered alongside heparin, meaning there is a need for a large 

randomised controlled trial to decipher antithrombin lll’s role, particularly in sepsis 

models and without heparin treatment (65). 

Metabolic glycoengineering is a developing technique allowing the integration of ‘non-

natural’ sugars into the eGC, providing a platform for the discovery of new ‘sugar-

based’ drugs (66). Regulation of euvolemia and normoglycemia could help minimise 

eGC shedding preoperatively and has protected the eGC in experimental models. 

However, they have not been experimented on and used clinically. 

The importance of studying how to maintain a healthy eGC is emphasised by the wide 

range of clinical conditions that accompany its degradation. 

5. CeGC damage as a possible contributor to cognitive impairment 

Under physiologically healthy conditions, the eGC is a stabilising barrier, preventing 

the leakage of plasma components and inhibiting platelet activation and leukocyte 

adhesion (67). The eGC deterioration is noted in a wide range of clinical conditions. 

Inflammatory conditions appear to be the initial cause of the eGC damage, resulting 

in vasodilation dysregulation, tissue edema and a harmful increase in vascular 

permeability (68). Alterations to the cerebral microvascular structure, BBB 

permeability and neurovascular coupling have also been associated with numerous 

neurological disorders such as AD (69).   

5.1 Aging 

BBB permeability increases as a normal part of the aging process. Though aging is 

linked to cognitive decline, it is not necessarily linked to cognitive impairment. It is, 

however, one of the factors that can contribute to it. Multiple eGC studies show a 

reduction in thickness with age (70), and deterioration in advanced age in 

cardiovascular disease (70). The main theories of the BBB permeability increase lie in 

hypertension and endothelial inflammation (71). With BBB damage accelerated in 
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individuals with mild cognitive impairment (72), aging negatively impacts ECs function 

in cerebral arteries and parenchymal arterioles (73). Within the cerebral 

microvasculature, it is particularly the BBB of the hippocampus (HP) that appears to 

be much more susceptible to damage and predisposed to age-related vascular 

dysfunction (72). Interestingly, another study, on the contrary, found the CeGC of the 

HP was actually thicker than other areas of cortical CeGC. This suggests not only a 

structural difference between CeGCs but also between them and the other eGCs 

throughout the body (74). There seem to be limited studies researching the direct role 

of the CeGC in aging. 

5.2 Inflammation 

Inflammation is a complex process in response to the body’s immunological response 

to infection and damage. It occurs in many conditions linked to cognitive impairment, 

as the ECs are a central modulator to the inflammatory response and processes (75). 

CeGC research supports the hypothesis that inflammation is mediated by leukocyte 

adhesion to the ECs when the eGC has become degraded or shed (52). Studies on 

CeGC of rats showcased glial activation, adhesion molecules and proinflammatory 

cytokines in the HP and significantly higher levels of ICAM-1, VCAM-1 and 

cyclooxygenase-2 (COX-2) within the cerebral cortex after cardiac arrest (52). These 

findings support earlier work which evidenced that syndecan-1 plays a role in the 

endothelial phenotype regulation, as its decrease or loss leads to a switch to pro-

inflammatory phenotypes (54), meaning that inflammation both contributes and is 

related to multiple other conditions. 

5.3 Cerebrovascular/neurological conditions 

5.3.1 Ischemia reperfusion injury and brain edema 

Characterised as tissue damage due to a lack of oxygenation, ischemia reperfusion 

(I/R) injury is a reversible condition where the resumed oxygen supply increases 

reactive oxygen species (ROS) production. A combination of both oxygen deprivation 

and ROS increase results in membrane damage, altered membrane permeability, 

metabolic dysregulation, organ dysfunction and finally cell death (76). With eGC 

degradation being the earliest form of structural damage in I/R (77), a limited study 

into delayed cerebral ischemia (DCI) found increased levels of syndecan-1 and an 

increased adhesion of ICAM-1 and VCAM-1 to the ECs, facilitating the 

neuroinflammatory processes (78). I/R injury can lead to the development of a brain 

edema, categorised as a fluid build-up leading to swelling, further compounding the 

brain injury. Emerging evidence indicates that, as well as being linked to inflammation, 

the increased BBB permeability – potentially caused by CeGC damage - negatively 

affects the neurological outcome and exacerbates the brain edema symptomology 
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(52). Preservation of the CeGC seems to improve the neurological outcome of patients 

(52), and heparin ameliorates cerebral edema (51) and I/R injury (79, 80). 

 

5.4 Responses to infection and infectious diseases 

5.4.1 Cerebral malaria 

Cerebral malaria (CM) is a parasitic infection with a multi-faceted pathogenesis. The 

parasite Plasmodium.falciparum appropriates erythrocytes resulting in endothelial 

activation and systemic inflammation leading to CeGC dysregulation (81, 82). CM 

arises when untreated malaria develops into severe malaria, with a comorbidity with 

multiorgan failure, metabolic deregulation and anaemia (83).The infections disrupt the 

BBB, a prerequisite for the development of CM (84).  The eGC reduces binding 

between CD36-transfected cells with the CD36-binding P.falciparum-infected 

erythrocytes, with the eGC degradation leading to their adhesion to the receptors (85) 

(see figure 2). Image analysis of transmission electron microscopy (TEM) has 

indicated coagulation and inflammation dysregulation was due to specific endothelial 

receptor binding of endothelial protein C receptor (EPCR) and ICAM-1 (86). Plasma 

levels of HA and sulphated GAGs could be used as a proxy marker for eGC shedding 

(49). However, other microcirculations within the body also contain an eGC that can 

be shed in a stressful physiological state, meaning that the eGC shedding cannot be 

directly linked to CeGC shedding (87). 

Three treatments have been tested to alleviate CM and its symptoms. Corticosteroids 

such as dexamethasone and adjunctive antithrombin-3 (AT3) are shown to prevent 

CM progression, reduce inflammation as well as inhibit eGC shedding. The third 

treatment of Batimastat (a BB94 treatment), though positive, is limited (88). 
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Figure 2 Breakdown of the eGC during malaria infection. The erythrocytes are in orange, with the 

purple nuclei representing the intracellular parasites. (A) Shows a healthy and intact eGC. (B) Shows 

the adhesion of the Plasmadium-infected erythrocytes, initially binding to the outer border of the eGC, 

onto the proteoglycans. (C) Shows a shedding and loss of the eGC, allowing direct adhesion to the 

glycoproteins and receptors on the endothelial surface. (89) – reproduced with author’s permission 

  

5.4.2 Sepsis 

With three progressive stages – sepsis, severe sepsis and septic shock – this 

condition has a mortality rate above 50% for the most severe cases (90). This clinical 

syndrome results from a dysregulated and exponentially harmful immunological 

response to an infection, and is associated with acute organ dysfunction (91).  Acute 

delirium, a cognitive impairment activated by BBB-penetrating cytokines (92) persists 

even after hospital discharge (93). Brain damage as a result of IL-1β-dependent 

neuroinflammation in early sepsis (94), showed decreased eGC thickness is a positive 

predictor for mortality in patients admitted with sepsis to ICU (6). The same study 
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revealed the eGC shedding as a principal pathophysiological mechanism, resulting in 

microvascular dysfunction and multiple organ failure (see figure 3). ROS such as NO 

and other proteases cause further eGC disruption, providing a significant site of 

sepsis-induced injury (26). After shedding, uncovered adhesion molecules on the 

endothelial surface induce leukocyte adhesion resulting in circulatory dysfunction, 

platelet aggregation and thrombus formation, (95). The eGC degradation also 

accelerates inflammation, hypercoagulation, capillary leakage and decreases vascular 

responsiveness. This negatively impacts blood flow, reducing oxygen delivery leading 

to organ failure (30). 

Further evidence shows eGC fragments, such as HS hexa- and octasaccharides, lead 

to sepsis’s cognitive dysfunction (96, 97). These fragments interact with growth factors 

and soluble proteins, such as brain-derived neurotropic factors (BDNF), and are 

heavily linked to memory, cognition and the HP, which suffers volume loss and BBB 

dysfunction in sepsis (96). Apart from HS as a superficial marker of eGC damage (98), 

there is a focus on syndecan-1 because it is a core transmembrane protein anchored 

and bound to HS (98), positively correlated with sepsis severity (99). There are 

conflicting results, with studies reporting HS levels rising proportionately quickly 

compared to syndecan-1 (100). whereas others found high syndecan-1 levels upon 

admission (101). These inconsistent results indicate different mechanisms to eGC 

damage and pathologies affecting the eGC and its components in diverse ways. 

Alongside infectious diseases, there are neurological conditions that appear to be 

caused or exacerbated by these mechanisms.  
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Figure 3 Comparison of the microcirculation between a healthy control vs. an endotoxin 

administration sepsis model. Using in vivo intravital microscopy, the healthy control shows clear 

boundaries for circulation under normal conditions. In the sepsis model, damage to the ECs can be 

seen with an adhesion of leukocytes and platelet accumulation showing a decrease in blood flow and 

suggests a degraded glycocalyx. (26) – reproduced with author’s permission 

 

5.4.3 COVID-19   

The current coronavirus disease (COVID-19) pandemic, caused by the virus Severe 

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is primarily a respiratory 

disease but has shown to have a wide-ranging spectrum of clinical presentations: from 

asymptomatic patients to critically ill cases with a high fatality rate (102). Alongside the 

lungs, it is able to inflict severe damage on multiple other organs in the human body. 

Most notably, the CNS and brain are appearing to seem to be secondary targets (103) 

with studies indicating a neurological disturbance in COVID-19 patients (103). Though 

knowledge of the pathogenesis of COVID-19 is still limited, studies are showing 

endothelial dysfunction being a central element in the more severe COVID-19 cases 

(104, 105). 

COVID-19 primarily targets and binds to the angiotensin-converted enzyme-2 (ACE-

2) receptors to attach and gain cell entry, therefore it is used as a significant 

determinant of viral entry and pathogenesis of COVID-19. ACE-2 has been found to 

be highly expressed in both endothelial cells (106, 107) and pericytes (108). Though, 

expressed in varying levels throughout the body, there is evidence indicating its 
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expression in various regions of the brain (109) such as stem-cell derived neurons 

(110), neuronal and glial cells (109) and the temporal lobe and HP (111). The latter 

two regions being highly involved in the pathology of AD in terms of affecting memory 

and cognition. It is worth nothing that two other extra entry receptor routes have been 

identified: Basigin (CD147) (112) and Neuropilin (NRP1) (113). Both of which 

coincidentally are also highly expressed in endothelial cells and pericytes (114). 

Alongside inflammation from our body's immune response, there is evidence of 

neuroinflammation in particular, that is of interest due to the endothelial dysfunction 

found in severe COVID-19 cases (115). Elevated levels of cytokines have been 

located in the cerebrospinal fluid of patients reporting symptoms of neurological 

dysfunction (116). As well as post-mortem brain endothelial cells being detected close 

by to reactive gliosis markers could suggest this injury resulting from 

neuroinflammation (117). CeGC in relation to COVID-19 has been mentioned in some 

reviews (118). One of the closest measures to the CeGC was performed by Rovas 

(119) who has shown COVID-19 patients suffered both capillary and GC damage. With 

the use of SDF imaging, he found there was a marked density decrease of the 

sublingual micro-vessels.  

With these results it is hard however to establish the initial cause of these neurological 

disturbances. The endothelial dysfunction could arise as a direct consequence of 

interaction with the virus. Or it could be achieved post-infection due the rise in 

cytokines and inflammatory response of the body against the virus (120). 

5.5 Neurodegenerative disorders 

There are more than 850,000 people with dementia in the UK. The cost of dementia 

in the UK in 2013 was £26 billion and is expected to grow as it is forecasted that the 

number of people with dementia in the UK could exceed two million by 2051 (121). 

Therefore, any research into possible treatment of those conditions is important. 

Neurodegenerative disorders are mentioned together with inflammation and aging, but 

they have been rarely studied in terms of the CeGC, probably due to current 

techniques not directly measuring the CeGC (122) and the difficulty of studying it in 

isolation. 

5.5.1 Subcortical vascular dementia 

Subcortical vascular dementia (SVD) is the most common vascular dementia subtype. 

CeGC research indicates capillary stalling is increased and associated with CeGC loss 

in SVD (123), showing CeGC as a possible mediator for capillary stalling and possible 

target for SVD treatment (123). 
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5.5.2 Alzheimer’s 

Identification of the HP’s BBB susceptibility to damage is of particular interest in 

research into AD, particularly the more frequent sporadic AD (SAD), with the 

condition’s pathology tightly linked to the HP and the ever-increasing diagnosis of AD 

and other dementia subtypes (124). Observations suggest the initial problem is 

microvascular endothelial damage, causing increased BBB permeability allowing 

substrates to enter through the capillary wall, and inducing perivascular brain damage 

(125) which precedes and exacerbates the development of neurological conditions. 

Research indicates a positive correlation between HA accumulation and AD 

neuropathology (122). However, studies into BBB function in older individuals and 

patients with diagnosed cerebral microvascular disease produced varying results 

(126), with only one dementia study investigating the results by disease severity in the 

1980’s. However, with only 22 AD and 29 multi-infarct dementia participants, the study 

is limited, making its results inconclusive (127). Research into dementia is not 

straightforward with dementia subtypes overlapping (128). The role of HSPGs and HS 

in AD has been attracting attention (129), with HSPGs promoting Aβ and tau 

fibrilization and protecting against proteolytic breakdown (130), which suggests a 

relationship between AD features and heparinase expression (131). 

To enable a more systematic study of the role of cerebral microvasculature in AD, a 

physiologically relevant three-dimensional in vitro human neural cell culture 

microfluidic AD model, which mimics BBB dysfunction, has been developed (132). 

However, it is not a model specifically for the CeGC. 

5.5.3 Familial Alzheimer’s disease 

Familial Alzheimer's disease (FAD), with no known treatment (133), is a sub-category 

of AD with a prevalence of only 5% of AD cases (134) and a genetic predisposition to 

familial mutations (135) in at least three generations (134). FAD is caused by the 

mutation in three genes – amyloid precursor protein (APP), presenilin 1 (PSEN1) and 

2 (PSEN2) – but the molecular reasons for this mutation are not clear (136). Research 

indicates that PSEN1 is the catalyst of the γ-secretase protease that produces Aβ from 

APP and the mutations are shown to increase Aβ42/Aβ40 ratio which leads to FAD (136-

139). 

BBB damage in FAD has been evidenced in several studies. Two in vitro studies using 

human cells showed that PSEN1 mutation alters the level of tight junctions' proteins 

and found Aβ deposits in the brain (140) identifying that PSEN1 mutation is more 

detrimental to BBB than PSEN2 mutation (141). Another in vitro study, using 5xFAD 

mice, showed the BBB damage at four months of age and that exosome derived from 

human neural stem cells reversed the BBB damage (142). However, to our knowledge 
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there are no studies of how CeGC dysfunction contributes to the pathogenesis of FAD, 

which is most likely due to the current challenges of techniques and limitations in the 

tissues available in research. 

6. Challenges of researching CeGC and trends   

6.1 Methods, techniques and subjects/tissues used to study CeGC    

The main challenge of studying the CeGC is that it is highly fragile and very vulnerable 

to damage (15) which has complicated any examination to date. 

Research has so far used several methods (ex vivo, in vivo, in vitro), visualisation 

techniques (e.g. staining, two-photon microscopy) and subjects/tissues (cells, animal 

models, humans) to assess the CeGC structure, composition and thickness. Only a 

brief review will be provided as more detailed overviews are provided elsewhere (3, 

143, 144). 

6.1.1 Methods and visualisation techniques   

Current ex vivo techniques using post-mortem tissues to evaluate the CeGC and 

cerebral microcirculation mainly involve microscopic evaluation of staining to analyse 

structural changes (145-148). The most commonly used conventional stains are 

lanthanum nitrate (2), fluorescein isothiocyanate-linked wheat germ agglutinin (FITC-

WGA) (146), Nissl (149) or a mixture of lanthanum and dysprosium (LaDy) (150). 

However, some are not CeGC specific (2) or they alter the CeGC (2, 148, 150). The 

staining is then analysed by, for instance, TEM (150) or light and electron microscopy 

(151). Recently there have been attempts to use frozen post-mortem samples without 

staining analysed by cryogenic transmission electron microscopy (cryo-TEM) (152-

155)  which could address the above issues. There are also efforts to develop models 

to reflect the in vivo actuality, such as in situ cells derived from the preparations of ex 

vivo tissue (156) or a development of three-dimensional cell culture models (157). Ex 

vivo techniques, though useful, are unable to provide functional analysis of both the 

eGC and microcirculation. 

In vivo studies have seen the most recent advances. The spatial resolution of confocal 

microscopy enables detailed direct visualisation of the structure and composition of 

eGC (158) but the major challenge is the sample preservation by, e.g., formaldehyde 

which distorts the eGC (144). Two-photon laser scanning microscopy (TPLSM) has 

enabled direct visualisation of eGC both ex vivo and in vivo (1, 3, 143, 159). It records 

real-time images of single cortical capillaries, has good resolution, enhanced 

penetration depth (due to using long wavelength red photons which reduce scattering), 

low phototoxicity and an ability to section optical images (3, 143, 144, 160). 
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Sidestream dark force (SDF) imaging (161) enables visual mapping of 

microcirculations with a relatively safe, quick and straightforward non-invasive imaging 

technique, with the addition of Glycocheck software enabling analysis of the CeGC 

(14). Its limitation is that it measures the eGC indirectly by visualising the erythrocytes 

within the blood flow at the perfused boundary region (PBR) (1, 162). This allows 

unpredictable variables to distort the results, such as the effects of anaesthetics, any 

haemodynamic variations or intravascular volume variations (14). This is, however, an 

improvement, as previously the CeGC thickness was only sparsely evaluated due its 

collapse in ex vivo conditions. With most of the techniques mentioned focusing on the 

structure of the eGC, the molecular components still need to be studied.  A versatile 

technique, atomic force microscope (AFM), is able to differentiate between the cell 

layers and, applied to eGC, it characterised the nanochemical properties on the eGC 

surface on a nanometre scale (163). 

6.1.2 Tissues / subjects of eGC study 

Further challenge is presented by comparing the CeGC thickness and structure using 

endothelial cells cultured in vitro with studying humans and animal, both in vivo and 

ex vivo. 

In vitro studies of cells are valuable, however, they have shown the eGC composition 

and structure differ due to a lack of long-term shear stress in cells cultured in vitro (5, 

164), with the eGC thickness substantially reduced in vitro (42, 165) or the slower 

recovery of eGC thickness in vitro suggesting that standard cell culture conditions do 

not provide the cellular conditions required for maintenance of the eGC in vitro (166). 

As a result, the validity of cultured cells has been recently questioned (144). 

Post-mortem tissues used in ex vivo studies (see also above) have proved beneficial, 

but they cannot provide functional analysis (74). In addition, the eGC thickness is 

reduced due to damage caused by sample handling, and control of external variables 

is challenging. This was demonstrated by the comparison in mice using the two 

methods that showed the layer in the in vivo study was thicker, suggesting the eGC 

layer was damaged by the ex vivo method (159). 

In vivo study of human subjects would be ideal but due to ethical and other 

considerations the animal models are often used instead. Animal tissues/subjects 

allow a higher degree of observation, manipulation and control, but results may not be 

fully applicable to humans (50). For instance, AD mice models (167), such as the 

commonly used 5xFAD mouse model, cannot encompass all the aspects of the AD 

pathology (168-171), even with an aggressive Aβ pathology and cognitive impairment. 

In addition, there are no standard operating procedures for identification of appropriate 
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AD models for different experiments, meaning results then depend on the used 

methods which can make the experiments difficult to repeat (168). 

6.1.3 Assessment of cognitive function 

Various tests can be used to determine the impact of the CeGC degradation on 

cognition. The Mini-mental state examination (MMSE) (135) is frequently used with 

human participants, though Montreal cognitive assessment (MoCA) is considered by 

some more sensitive (172). Regarding mice studies, Morris water maze (MWM) is a 

well-established test for measuring deficits in spatial memory and learning and has 

been routinely used with AD mice models such as 5xFAD (173-175). 

6.1.4 Summary 

With most research conducted on animal tissues ex vivo, it is becoming clear that to 

obtain precise and uninfluenced quantification of the CeGC we need to analyse living 

cells in situ and mainly humans in vivo (15), and techniques need to become more 

specific and sensitive (11). 

Research currently focuses more on either the sublingual vasculature (SV) or the 

glomerulus (11). However, to progress our understanding of the cerebral 

microvasculature and CeGC, brain tissues should be used. 

Though all the techniques have advantages and disadvantages, progress is being 

made in our understanding of the CeGC structure, mechanics and role. 

6.2 Future research requirements 

Future research should start determining variations in the CeGC components, what 

determines its permeability and dynamic nature, and what the mechanisms of 

dysregulation and repair are (74). There is also an issue of causality (51, 52) as we 

see a pattern of CeGC damage closely correlated with inflammation and other clinical 

conditions with cognitive impairment (6), yet it is still unclear whether eGC damage is 

the cause or a reaction. And though it is believed that the eGC thickness is proportional 

to its selectivity, this remains to be fully investigated. Ideally, BBB permeability 

changes before and during disease progression would be assessed in long-term 

human studies of patients predisposed to or at a higher risk of developing cerebral 

microvascular disease (126). 

Overall, in the last half a decade, there has appeared to be a shift in focus towards our 

understanding of the BBB and its component, CeGC (9), with research shifting from 

more traditional neuronal factors towards a more integrative paradigm with an 

increasing emphasis on cell-cell signalling (176). 
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7. Conclusion 

Interest in the BBB and its component, the CeGC, has been increasing in the last half 

a decade, shedding light on their functions and revealing their diverse and dynamic 

nature. The eGC structure and molecular properties enable its wide range of functions, 

all vital to the proper functioning of the vascular system and organs that depend on it. 

The eGC ability to adapt through the changes in its morphology between the different 

capillaries and locations show a specialisation to the varying demands of the body. Its 

natural degradation occurs as part of aging, alongside degradation related to 

infections, neurological disorders and cerebrovascular conditions, the symptomology 

of which has a recurring theme of cognitive impairment. This interest has most likely 

been sparked by the improvement in visualisation techniques, which have become 

clearer, more precise and less invasive, permitting the movement towards in vivo 

studies into the cerebral microcirculations so that the CeGC structure can be studied 

instead of inferred. From its understanding, a diagnostic biomarker as well as a 

potential therapeutic intervention for patients may be identified.   
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