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Abstract 

Background: The UK Biobank is a large prospective cohort, based in the UK, that has deep phenotypic and genomic 
data on roughly a half a million individuals. Included in this resource are data on approximately 78,000 individuals 
with “non‑white British ancestry.” While most epidemiology studies have focused predominantly on populations of 
European ancestry, there is an opportunity to contribute to the study of health and disease for a broader segment of 
the population by making use of the UK Biobank’s “non‑white British ancestry” samples. Here, we present an empirical 
description of the continental ancestry and population structure among the individuals in this UK Biobank subset.

Results: Reference populations from the 1000 Genomes Project for Africa, Europe, East Asia, and South Asia were 
used to estimate ancestry for each individual. Those with at least 80% ancestry in one of these four continental 
ancestry groups were taken forward (N = 62,484). Principal component and K‑means clustering analyses were used 
to identify and characterize population structure within each ancestry group. Of the approximately 78,000 individu‑
als in the UK Biobank that are of “non‑white British” ancestry, 50,685, 6653, 2782, and 2364 individuals were associated 
to the European, African, South Asian, and East Asian continental ancestry groups, respectively. Each continental 
ancestry group exhibits prominent population structure that is consistent with self‑reported country of birth data and 
geography.

Conclusions: Methods outlined here provide an avenue to leverage UK Biobank’s deeply phenotyped data allowing 
researchers to maximize its potential in the study of health and disease in individuals of non‑white British ancestry.
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Introduction
As the research community strives to understand the 
genetic architecture of disease [1], it has increasingly 
realized the necessity of inclusion and diversity—of eth-
nically, ancestrally, environmentally, and geographi-
cally diverse populations [2–5], not simply to enhance 
knowledge about health and disease, but to insure health 
equity. Epidemiological studies, including genome-wide 
associations studies (GWAS), have been overwhelm-
ingly conducted in European populations [2]. However, 

funding efforts and studies including the Human Hered-
ity and Health in Africa (H3Africa) Initiative [6], the Pop-
ulation Architecture using Genomics and Epidemiology 
(PAGE) Consortium [7], Trans-Omics for Precision Med-
icine Consortium [8], Hispanic Community Health Study 
/ Study of Latinos (SOL) [9], and the All of Us Research 
Program [10] are making concerted efforts to include and 
increase the number of under-represented populations in 
genomic epidemiology studies.

The UK Biobank project (UKBB) has phenotypic and 
genomic data from a prospective cohort of approximately 
500,000 individuals from across the UK [11, 12]. It has 
become an outstanding resource for studies of health and 
disease, and genetic diversity within the UK. While it is 
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made up of around 430,000 “white British ancestry” indi-
viduals, as defined by UKBB, it also contains a wealth of 
diversity from other self-described ethnicities (~ 78,000). 
This is a resource that should be utilized to help expand 
inclusion and diversity in epidemiological studies.

The Pan-UK Biobank, or the Pan-ancestry genetic 
analysis of the UKBB, has leveraged the diversity present 
in UKBB and is freely providing GWAS summary sta-
tistics for over seven thousand phenotypes in six conti-
nental ancestry groups (https:// pan. ukbb. broad insti tute. 
org). The genetic “ancestry” groups identified by Pan-UK 
Biobank and within our study refer to groups of individu-
als with a shared genetic ancestry and demographic his-
tory. Studies and public resources like Pan-UK Biobank 
are vital to the goal of increasing under-represented 
populations and the larger goal of describing and under-
standing the genetic architecture of phenotypic traits 
and disease. However, the limited information on intra-
population structure and non-specific use of covariates 
in Pan-UK Biobank GWAS models may influence asso-
ciation effect estimates. A description of the continental 
diversity and population structure present in the UKBB 
will aid future study design and methodological choice(s) 
and ultimately improve our understanding of how geno-
type influences phenotype.

Here, we describe an approach to define continental 
ancestry groups and provide a description of the struc-
ture and population differentiation within them. We 
define "ancestry” here as genetic ancestry or the complex 
inheritance of one’s genetic material, but in practice we 
will be using methodologies that use genetic similarity to 
identify groups of individuals with high (genetic) affinity 
or likeness [13]. The aim is to identify relatively homog-
enous groups of individuals that approach populations 
consistent with a Hardy–Weinberg model and are result-
antly more appropriate for many of the assumptions built 
into many of the methods used in genomic epidemiology 

studies [14, 15]. We leverage public data from the 1000 
Genomes Project (1KG) [16] to provide reference popu-
lations from four, therein described, super-populations 
or (sub)-continental ancestry groups (CAGs)—namely, 
Africa (AFR), Europe (EUR), South Asia (SAS), and East 
Asia (EAS). We note that we will refer to the groupings or 
clusters of individuals derived by this work, not as popu-
lations, but as groups or clusters of individuals. Further, 
the groups and clusters identified here are used as dis-
crete units, but ancestry does not have decisive bounda-
ries and is a continuum [17–20]. The use of discrete units 
is an analytical simplification. Finally, the overarching 
purpose of our study is to provide a description of the 
population structure present in the UKBB as an aid to 
future research investigating the health of individuals 
from diverse ancestries.

Results
Estimations of continental ancestry
Each of the 78,296 UKBB “non-white British” was 
included in a supervised ADMIXTURE analysis to esti-
mate a proportion of ancestry to each of African (AFR), 
European (EUR), South Asian (SAS), and East Asian 
(EAS) continental ancestry groups (Fig.  1). The propor-
tion of continental ancestry is further illustrated, for each 
individual, within the context of UKBB population struc-
ture on principal components (PC) one and two as pro-
vided by the UKBB (Fig. 2). AFR ancestry (Fig. 2A) runs 
largely parallel with PC1, the major axis of variation. EUR 
ancestry runs at a roughly 135-degree angle (Fig.  2B) 
along PC1 and PC2, while SAS (Fig.  2C) and EAS 
(Fig. 2D) ancestry run, largely, along PC2. Of the approxi-
mately 78,000 UKBB samples included in the ADMIX-
TURE analysis 50,685, 6653, 2782, and 2364 individuals 
had 80% or more of their ancestry attributed to the EUR, 
AFR, SAS, and EAS continental super-populations, 
respectively. These individuals were carried forward into 

Fig. 1 Ancestry estimates for the UKBB non‑white British subset: Estimates of ancestry proportions for each UKBB participant previously labeled 
as non‑white British individuals by UKBB. Ancestry was derived from a supervised ADMIXTURE analysis using four 1000 Genomes reference 
populations—Yoruba in Ibadan, Nigeria for (AFR) Africa, British in England, and Scotland for (EUR) Europe, Indian Telugu in the UK for (SAS) South 
Asia, and Han Chinese South for (EAS) East Asia

https://pan.ukbb.broadinstitute.org
https://pan.ukbb.broadinstitute.org
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further analyses of population structure within these 
continental ancestry groups (CAGs). The 80% threshold 
was chosen to allow some error in the broader continen-
tal classification while also placing a limit on the complex 
structure and admixture evaluated in these subsets. A 
total of 15,812 “non-white British” UKBB study partici-
pants were not included in any of the four CAGs, given 
the methods and cutoffs used here.

Population structure within continental regions
To evaluate the level of population structure among the 
UKBB CAGs, we first re-estimated principal components 

for each, while also projecting individuals from 1KG pop-
ulations from each super-population, respectively, onto 
the newly derived PCs (Fig. 3, Additional file 1: Table S1). 
For each, there is considerable overlap between UKBB 
individuals and 1KG populations, providing some con-
text for the diversity that is present within the UKBB. In 
the AFR continental ancestry group principal component 
one distinguishes West African from East African 1KG 
populations, while PC3 distinguishes among populations 
of West Africa (Fig. 3A). In the EUR continental ancestry 
group, the PCs and 1KG populations illustrate a strong 
North–South axis along PC2, with a similar but less 

Fig. 2 Ancestry proportions on UKBB PCs: Continental A African, B European, C South Asian, and D East Asian ancestry proportions placed on 
principal components one and two, as supplied by the UK Biobank
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distinctive trend on PC1 (Fig. 3B). In the SAS continen-
tal ancestry group, there is a South-North trend along 
PC1, but no remarkable pattern can be attributed to the 
PCs (Fig.  3C). The 1KG sample populations in the EAS 

ancestry group appear to indicate a North–South axis 
along PC1, and a West to East axis along PC2 (Fig. 3D).

Fig. 3 UKBB continental PCs with 1000 Genomes populations: Principal components one through four for each CAG (A African, B European, C 
South Asian, D East Asian). UKBB samples are colored in gray, while the 1KG sub‑populations for each CAG are plotted in other colors, as indicated 
by each legend. The proportion of variation explained by each PC is indicated on each axis
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K‑means clustering of PCs
Given that many population genetics and epidemiologi-
cal analyses, such as genome-wide association studies, 
depend on limited population structure, a common 
desire is to have a relatively homogeneous population 
sample for these analyses. As such, we used an unsu-
pervised algorithm to identify groups of individuals 
that approach Hardy–Weinberg population assump-
tions. To do so, we performed a K-means analysis on 
the top PCs (see Methods, Additional file  2: Fig. S1), 
from each CAG, to identify “K” subclusters or groups 
within each. An optimum number of K-clusters were 
determined by a silhouette analysis (see Methods, 
Additional file 2: Fig. S2). For each CAG, using only the 
UKBB participants, we identified seven, two, four, and 
three K-clusters of individuals for AFR, EUR, SAS, and 
EAS, respectively (Additional file 2: Fig. S3). However, 
for the EUR CAG we chose the second-best K-cluster 
(K = 6) for the remaining analyses to improve our abil-
ity to investigate the utility of this analytical method to 
discriminate population structure (Fig. 4).

Country of birth
To evaluate the informativeness of these K-clusters, we 
mapped each individuals’ country of birth and United 
Nations (UN) geographic regions onto the PCs (Fig.  5 
and Additional file 2: Figures S4–S5). These figures fur-
ther illustrate the diversity and structure present in the 
sample. Each CAG presents an observable degree of 
population structure, and region of birth (ROB) data 
illustrate non-specific associations between CAGs 
and ROB (Fig. 5). For example, a large number of indi-
viduals have an East African ROB but are estimated 
to have more than 80% of their ancestry from South 
Asia (Fig.  5C and G). Nevertheless, ROB data illus-
trate structure across principal components for each 
CAG. Yet to ascertain if there is a correlation among 
the K-clusters identified above and the self-reported 
place of birth we performed a correspondence analy-
sis for each CAG. The analyses indicate a correlation 
between K-means clusters and the UN regions for each 
continent: AFR (Dim1 53.29%, Dim2 41.88%), EUR 
(Dim1 58.25%, Dim2 28.67%), SAS (Dim1 80.00%, Dim2 
18.2%), EAS (Dim1 92.11%, Dim2 7.89%) (Fig.  6A). 
When UN regions for a smaller geographical region 
were substituted, namely country of birth (COB; Addi-
tional file 2: Figs. S6–S9), an attenuated but correlated 
structure remained: AFR (Dim1 28.32%, Dim2 25.02%), 
EUR (Dim1 40.43%, Dim2 31.89%), SAS (Dim1 61.60%, 
Dim2 25.31%), EAS (Dim1 50.49%, Dim2 49.51%) 
(Fig. 6B, Additional file 2: Fig. S10).

Population differentiation
An evaluation of the degree of population differentiation 
within each CAG was performed by estimating Fst, or the 
fixation index between each pair of K-cluster groups and 
1KG populations. All single-nucleotide polymorphisms 
(SNPs) that were included in each CAG’s principal com-
ponent analysis were used here. An average, minimum, 
and maximum estimate was used to summarize the dis-
tribution of estimates between pairs (Fig. 7). Relative to 
the population differentiation observed in the 1KG sam-
ple populations we observed, on average, a small degree 
of population differentiation among AFR and EUR 
K-means clusters, and larger average estimates among 
SAS and EAS groups. Among the UKBB samples, aver-
age Fst estimates indicate that the EAS CAG has the larg-
est amount of population differentiation with an average 
Fst of 0.0133. This is followed by SAS with an average 
estimate of 0.0092, EUR with 0.0037, and finally AFR 
with the smallest average estimate of 0.003. However, we 
note that these estimates were derived from SNPs with a 
European ascertainment bias and as such they may not 
coincide with analyses using an unbiased set of genetic 
variants.

Discussion
Here, we present an analytical pipeline to identify indi-
vidual participants of the UKBB study with diverse and 
under-represented ancestries to be used in genomic 
epidemiology studies. While cohort studies centered in 
diverse geographic locations are essential for elucidating 
the effect of environment and genotype on disease, the 
diversity present in deeply phenotyped studies such as 
the UKBB should be utilized where possible. This study 
presents a description of some of the diversity present 
in the UKBB. Further, the methods presented here pro-
vide an approach to identify subsets of individuals to help 
broaden, inform, and improve the relevance of genetic 
epidemiological studies and their findings for those of, 
in this specific instance, a non-white British ancestry 
(Fig. 8).

Throughout the paper, when we speak of ancestry, we 
are referring to “genetic ancestry,” or individuals who 
share a demographic history [13, 21, 22]. They should, 
at the population level, share a history of mutation, 
genetic drift, recombination, migration, natural selec-
tion, environment, and culture (niche construction [23]). 
As a product, they should have different genetic variants, 
allele frequencies, and patterns of linkage disequilibrium 
across their genomes [24–26].

The need to perform analyses like association stud-
ies, separately in unique ancestral populations, largely 
comes from the need to avoid correlations between 
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phenotype and genetic ancestry, or differences in 
allele frequencies among populations—i.e., population 
structure or population stratification [13, 27, 28]. For 

example, if a disease (or environmentally influenced 
trait) is more frequent in ancestral population “A” than 
it is in “B” and if your association analysis pools these 
ancestral populations together you may erroneously 

Fig. 4 UKBB continental PCs with K‑means clusters: Principal components one through four for each CAG (A African, B European, C South Asian, 
D East Asian) with each individual colored by its assigned K‑means population cluster, as indicated by each legend. The proportion of variation 
explained by each PC is indicated on each axis
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Fig. 5 Principal components for CAG with geographic regions of birth: Principal components one and two for each CAG, with (A–D) individuals 
colored by their region of birth (A–D), and with (E–H) the PC center also colored by region of birth. PC centers were estimated as the average PC1 
and PC2 values for all individuals of that ROB. Regions of birth are denoted in the figure legend, and the proportion of variation explained by each 
PC is indicated on each axis

Fig. 6 Correspondence analysis: Correspondence plots between A K‑means population clusters (colored circles) and regions of birth (gray squares), 
and B K‑means population clusters (colored circles) and country of birth (gray squares) (B). The x‑ and y‑axes are the first and second dimension of 
each correspondence analysis, respectively, with the proportion of variance explained indicated in the parentheses of each axis
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identify any allele that is more frequent in population 
“A” as a genetic variant associated with the disease. To 
avoid these confounding issues, analyses are commonly 
limited to relatively homogenous populations.

In genome-wide association studies, the aim is to 
derive accurate unbiased effect estimates for a genetic 
variant on a trait. However, the task becomes increas-
ingly challenging, as variation in genetic ancestry comes 
with different allele frequencies, genetic backgrounds, 
and environments [29]. Methods such as the inclusion of 

relatedness matrixes and principal components [30–33] 
are used to account for cryptic relatedness and unde-
tected, fine-scale population stratification. In addition, 
they are also used to account for correlations between 
phenotype and genetic ancestry [34, 35]. However, is 
the inclusion of relatedness matrixes or principal com-
ponents enough to control the structure present in the 
CAGs presented here? Or would smaller (K-means clus-
ters) more homogenous populations be better suited to 
epidemiological analyses, like GWAS?

Fig. 7 Fst estimates: The minimum, mean, and maximum fixation index values for each CAG in the 1KG project and the UK Biobank data set. Fst 
values in the 1KG project (A) are between the sub‑populations of each super‑population, while UK Biobank estimates (B) are derived between 
K‑means population cluster of each CAG 

Fig. 8 Graph outlining the possible effects of geographic structure in population genetics: Suppose one might want to use Mendelian 
randomization to study the relationship between neutrophil count and severe malaria caused by P. Falciparum—a disease largely absent in 
European environments. Using summary statistics from a neutrophil count GWAS derived from individuals with European ancestry (Fig. 1A) may 
affect estimates due to geographic structure (Ancestry + Demography + Environment). This can be overcome by running a GWAS in people of 
African ancestry (Fig. 1B)
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The problems introduced by population stratification 
persist even in populations like the “white British” subset 
of the UKBB, where individual genetic variants and poly-
genic scores for individual traits can retain correlations 
with geography, even after correcting for population 
structure [36, 37]. Moreover, when sampling popula-
tions across Europe—where genetic ancestry does mirror 
geography [38, 39]—and meta-analyzing independently 
run GWASs [40], effect estimates appear to retain a bias 
introduced by population structure [41, 42]. These fine-
scale issues exemplify some of the reasons for perform-
ing separate epidemiological analysis, like GWAS, for 
populations with deeper population differentiations, i.e., 
unique ancestries, demographic histories, and environ-
ments. Other challenges and opportunities of population 
structure in biobank scale data are discussed further in 
Lawson et al. [43].

The complications of population stratification and 
opportunities for improving health outcomes for more 
people, even at the continental level, are precisely why 
a description of the structure within each continental 
ancestry group was provided here. Namely, the structure 
present within a CAG, as identified here, may also be too 
great to be properly accounted for with common meth-
odologies and may thus need to be resolved into smaller 
more homogenous groups. At the very least, careful con-
sideration is warranted when interpreting results where 
CAGs are used—because structure matters [44]. The 
unsupervised clustering performed within each CAG is 
not a perfect solution for identifying true “populations”—
an exercise that may in fact be an impractical goal—but 
it is a method to identify groups of individuals with a 
more similar, homogeneous ancestry. Other techniques 
like uniform manifold approximation and projection 
[45] or more explicit leveraging of self-described ethnic-
ity could help improve the identification of homogenous 
groups. Self-described ethnicity is not a synonym for 
genetic ancestry though, as it is a sociocultural construct. 
It would, however, help inform cultural, social, and other 
environmental influences—important aspects of a “popu-
lation”—on phenotypes and disease [22].

In summary, we assigned individuals to continental 
ancestry groups (Figs. 1 and 2); illustrated the structure 
present among individuals within each CAG (Fig.  3), 
identified unsupervised clusters or groups of individuals 
within each (Fig. 4); and demonstrated that those clusters 
have an affinity to regions and countries of birth—i.e., the 
K-means clusters are consistent with geographic struc-
ture and isolation by distance models [46, 47] (Fig.  5). 
Notably, each CAG presents extensive structure, incon-
sistent with a randomly mating population, but rather 
with the sampling of unique, geographically distant 
populations. In particular, East Asian, South Asian, and 

African CAGs have isolated, or discontinuous groups 
of individuals in the UKBB sample, exemplified in the 
K-means clustering analysis (Fig.  4) [19, 20]. For exam-
ple, groups K1 and K3 in the EAS CAG (Fig. 4D) epito-
mize this discontinuous structure as they correspond to 
individuals born on the islands of Philippines and Japan, 
respectively (Fig. 5, Additional file 2: Fig. S8).

The methods employed here do have several limi-
tations: First, a single 1KG population was used to 
represent each of four continental ancestry groups evalu-
ated—Africa, Europe, South Asia, and East Asia. One 
population is a poor proxy for all of the variation present 
in any one (sub)-continent. However, as the 1KG pro-
ject does not have optimal population coverage, includ-
ing more or all the 1KG populations of a CAG would 
still poorly represent all the variation present in a (sub)-
continent and would complicate the assignment of indi-
viduals to a single ancestry group. Second, our analysis 
was limited to four (sub-)continental ancestry groups, 
to the exclusion of the Americas (AMR, a 1KG super-
population). Populations from the Americas often have a 
large and varying amount of recent admixture from vari-
ous European and African populations [26, 48–52]. As 
such, including an AMR population in the ADMIXTURE 
analysis, as a reference population, could confound the 
genetic ancestries being estimated. However, while we 
limit this study to a few, broad, well-characterized ances-
try groups, the approach presented here can be general-
ized to other, specific ancestries.

Third, the UKBB Axiom array used to genotype all 
UKBB participants was designed to optimize impu-
tation of a European population while also including 
genetic variants previously associated with disease and 
other phenotypic traits derived from studies primarily 
conducted in European populations [11, 12]. As a prod-
uct, the genomic data used here will have an ascertain-
ment bias [53] that would influence imputation accuracy 
(although no imputation data were used here), allele fre-
quency distributions, estimates of linkage disequilibrium, 
and diversity and divergence within and among popula-
tions. Each of these may influence estimations of popula-
tion differentiation, principal component estimates, and 
the inferences made from them [54, 55]. Specific study 
designs [56, 57] have been made to remove ascertain-
ment bias in genotype arrays so that unbiased inferences 
could be made for a wider range of genetic ancestries, but 
this was not available here.

Fourth, the principal components illustrated and used 
in the unsupervised K-means clustering analyses were 
derived from the UKBB participants only and resultantly 
represent the diversity (point three) and genetic ancestry 
found in that data set. The inclusion or use of other pub-
lic data sets with more numerous sample populations, 
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that better represent regional, or continental diversity 
will provide alternative patterns of structure. Fifth, we 
are limited by the reference population used in the anal-
yses. While the 1KG data set shall remain an essential 
reference panel for broad analyses like those conducted 
here, researchers with specific continental or geographi-
cally specific research questions could strengthen and 
refine the observations made here by including other 
geographically specific data sets. Finally, the unsuper-
vised K-means clustering analysis is dependent upon the 
number of PCs included in it. Here, the number of PCs 
chosen did have an element of subjectivity (Additional 
file  2: Fig. S1). While analytical methods are available 
to select a number of informative PCs [58], we did not 
implement such methods here. Given that the K-means 
algorithm weights each PC equally, we sought to limit the 
PCs included to only those with the largest proportions 
of variance explained and not necessarily all that are ana-
lytically estimated to be informative.

Conclusions
The approach presented here demonstrates a method to 
leverage the deeply phenotyped and widely used UKBB 
data set to help improve the inclusion and equity of epi-
demiological studies for under-represented populations. 
Careful considerations must be given to the diversity pre-
sent within continental ancestry groups. However, given 
the thousands of individuals present in the genetic ances-
try groups identified here, the UKBB data set shall prove 
insightful for studies of health and disease in populations 
beyond the British Isles. While the methods presented 
here do not describe a perfect solution to identify popu-
lations, we hope that they provide an avenue to leverage 
the diverse data available in UKBB and a methodological 
platform to improve and build upon.

Methods
Description of working environment
All analyses were performed in a Linux environment 
supported by the University of Bristol’s Advanced Com-
puting Research Centre (ACRC) using the following pub-
licly available software packages: PLINK v1.9 and v2.0 
[59, 60], ADMIXTURE v1.3.0 [61, 62], and EIGENSOFT 
v8.0.0 [31, 32]. In addition, bespoke scripts, analyses, and 
figures were run and generated in the R environment 
using version 3.6.2 on the ACRC computer clusters and 
version 4.0.2 (Taking Off Again) on local computers [63].

UK Biobank data
This research has been conducted using the UKBB 
Resource under Application Number 15825, from which 
directly genotyped SNP data (N = 784,256 SNPs) were 
made available. It includes data for a total of 78,296 

individuals identified by UKBB as “non-white British” 
participants—our analyses were restricted to this subset. 
In addition to genotypic data, we also acquired several 
variables of interest (self-described ancestry, country of 
birth) data for this subset of individuals. 365 exclusions 
were made when filtering those with sex chromosome 
mismatch and/or aneuploidy, and outliers with high 
genetic heterozygosity and missing rates [64].

1000 Genomes data
Genetic data (v5a.20130502) from phase three of the 
1KG, which includes data from 5 continental, or 1KG 
described super-populations [Europe (EUR), East Asia 
(EAS), South Asia (SAS), Africa (AFR), and the Ameri-
cas (AMR)], were used to provide reference populations 
for admixture analyses and population structure infer-
ences ([65] http:// ftp. 1000g enomes. ebi. ac. uk/ vol1/ ftp/). 
Our analyses did not include populations from the AMR 
super-population. This is to maintain a simplified analysis 
that avoided the complicating factors of the potentially 
recent admixture events that occurred in the Ameri-
cas. Included in our analyses are five populations from 
1KG super-population label: (AFR), also known as the 
continental Africa ancestry group (1) Yoruba in Ibadan, 
Nigeria (YRI); (2) Luhya in Webuye, Kenya (LWK); (3) 
Gambian in Western Division, The Gambia—Mandinka 
(GWD); (4) Mende in Sierra Leone (MSL); and (5) Esan 
in Nigeria (ESN). Five populations from the super-pop-
ulation label EUR or the continental Europe ancestry 
group: (1) Utah residents with Northern and Western 
European ancestry (CEU); (2) Toscani in Italia (TSI); (3) 
British in England and Scotland (GBR); (4) Finnish in 
Finland (FIN); and (5) Iberian populations in Spain (IBS). 
Five populations from the super-population label SAS or 
the continental South Asian ancestry group: (1) Gujarati 
Indian in Houston, Texas (GIH); (2) Punjabi in Lahore, 
Pakistan (PJL); (3) Bengali in Bangladesh (BEB); (4) Sri 
Lankan Tamil in the UK (STU); and (5) Indian Telugu in 
the UK (ITU). Finally, five populations from the super-
population label EAS or the continental East Asian ances-
try group: (1) Han Chinese in Beijing, China (CHB); (2) 
Japanese in Tokyo, Japan (JPT); (3) Han Chinese South 
(CHS); (4) Chinese Dai in Xishuangbanna, China (CDX); 
and (5) Kinh in Ho Chi Minh City, Vietnam (KHV).

Merging UK Biobank and 1000 Genomes
The directly genotyped data from UKBB were used to 
identify SNPs with the same SNP identifier (RefSNP ID) 
present in the 1KG data set. A total of 718,711 SNPs were 
identified with the same ID and extracted from both 
data sets using PLINK v2.0. The two data sets were then 
merged using the -bmerge function in PLINK v2.0. After 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
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removing problematic SNPs (e.g., multi-allelic, duplicate) 
in the merge step, a total of 718,487 SNPs remained.

Linkage disequilibrium pruning
Prior to ancestry estimation, the merged data set was 
reduced to a set of independent SNPs based on link-
age disequilibrium (LD) estimates using the PLINK v2.0 
function and parameters “–indep-pairwise 50 10 0.025,” 
indicating an  r2 threshold of 0.025, a window size of 
50 kilobases and a window step size of 10 kilobases. In 
addition, 24 previously identified genomic regions with 
extensive linkage disequilibrium were also excluded [66, 
67]. LD estimates in this analysis were limited to unre-
lated individuals from the 1KG YRI population sample. A 
total of 30,320 SNPs remained following LD pruning.

Estimating African, European, South Asian, and East Asian 
ancestry
Four 1KG populations were included as reference popu-
lations in a supervised ADMIXTURE (v1.3.0) analysis. 
They were (1) British in England and Scotland (GBR), 
of the European ancestry (EUR) super-population, (2) 
Yoruba in Ibadan, Nigeria (YRI), of the African ances-
try (AFR) super-population, (3) Indian Telugu in the UK 
(ITU), of the South Asian ancestry (SAS) super-pop-
ulation, and (4) Han Chinese South (CHS), of the East 
Asian ancestry (EAS) super-population. These singular 
population samples were chosen to broadly represent 
each of their four respective continental (super-popula-
tion) ancestry groups, with an average population differ-
entiation (Fst, or fixation index) value of 0.1055 among 
them, as estimated by ADMIXTURE. The supervised 
ADMIXTURE analysis provides, for each UKBB sample, 
a proportion of ancestry for each of the four reference 
populations. Those individuals with at least 80% of their 
ancestry attributed to one continental ancestry group, or 
1KG defined super-population, were carried forward into 
further analyses.

Derivation of continental principal components
Unrelated individuals in each CAG including both 1KG 
and UKBB samples with >  = 80% ancestry to that CAG 
were identified (using all 718,487 SNPs in the overlap-
ping data set, and the PLINK (v1.9) function –rel-cutoff 
and a minor allele frequency (MAF) filter of 0.05 (–maf 
0.05)). Then for each CAG and using all (1KG + UKBB) 
unrelated individuals assigned to the CAG, a list of 
approximately 40 thousand LD-independent SNPs were 
identified (using the PLINK (v2.0) function –indep-
pairwise 50 10 0.025 (–indep-pairwise 50 10 0.02 for 
AFR and –indep-pairwise 50 10 0.05 for SAS) along with 
a MAF filter of 0.01, and the exclusion of the 24 previ-
ously identified genomic regions with extensive linkage 

disequilibrium [66, 67]). New PLINK files including only 
the LD independent SNPs identified in step two were 
subsequently generated. smartrel from the EIGENSOFT 
(https:// github. com/ DReic hLab/ EIG) package was used 
to generate a new list of related individual pairs, along 
with our script “greedy_unrelated_selection.R” to iden-
tify a list of related individuals to exclude from princi-
pal component derivation [31, 32]. An exception this 
step was made for the European CAG as its sample size 
was prohibitively large to run smartrel; instead the list 
of unrelated individuals generated from step one was 
used. Finally, smartpca of the EIGENSOFT package was 
used to estimate principal components (PC), using only 
unrelated UKBB samples. Related and 1KG samples 
were subsequently projected upon these PCs by smart-
pca. Sample outliers were excluded from the PC analy-
sis by smartpca with the following parameters: using 10 
PCs to identify outliers (numoutlierevec), at six stand-
ard deviations from the mean (outliersigmathresh), and 
with 5 outlier removal iterations (numoutlieriter). Addi-
tional file 1: Table S1 provides numbers for each of these 
steps, for each CAG. The EUR CAG was treated uniquely 
due to its larger sample size. Smartpca was run twice as 
described above, once with “fastmode = NO” and then 
with “fastmode = YES.” The former provided estimates of 
the eigenvalues but not the eigenvectors, while the latter 
provided eigenvectors but not eigenvalues.

K‑means clustering of principal components
For each CAG, we estimated the variance explained by 
each principal component (PC) by dividing the eigen-
value of each PC by the sum of all eigenvalues. To iden-
tify the number of top PCs, we generated a scree plot, 
using the variance explained estimates, and identified 
the elbow or valley in each plot (Additional file  2: Fig. 
S1, Additional file 1: Table S2). The top PCs, and the top 
PCs only, were then used in an unsupervised K-means 
clustering analysis (k set from 2 to 20; using the function 
“kmeans()” from the R stats package) to identify clusters 
of UKBB individuals that maximize between cluster sums 
of squares and minimize within cluster sums of squares. 
An optimum number of clusters (k) were identified by sil-
houette analysis using the function “pamk()” from the fpc 
R package (Additional file 2: Fig. S2) [68]. These analyses 
are implemented in our function “DetermineK()” found 
in this study’s GitHub repository.

Correspondence analysis
Each UKBB study participants’ country of birth infor-
mation was placed into United Nations defined geo-
graphic regions (Additional file  1: Table  S3). To 
determine whether the K-means population clusters 
have any relationship with an individual’s country of 

https://github.com/DReichLab/EIG
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birth or country of birth UN-region, we performed 
correspondence analyses (CAs) using the function 
“ca()” from the R package “ca,” for each continental 
ancestry group [38]. In addition, a Chi-square test was 
performed on the contingency table used in the corre-
spondence analysis. Any UN-region or country of birth 
with fewer than 10 observations was excluded. Indi-
viduals for which country of birth information was not 
available were also excluded.

Population differentiation among K‑means population 
clusters
For each CAG, we took the best K-means population 
clusters, as defined by the silhouette analysis, and re-
ran smartpca. However, on this run smartpca provides 
for us only an estimation of the average fixation index 
(Fst) for each pair of populations in the data set, includ-
ing 1KG populations and UKBB K-means clusters. This 
was done with the inclusion of the parameters “fstonly” 
and “phylipoutname” [58], the latter of which provides a 
distance matrix of mean Fst values between populations. 
Estimations of Fst, which range from 0 to 1, provide a 
measure of population differentiation among popula-
tions. In brief, these describe the proportion of total 
variation at a SNP that is explained by variation between 
populations. For any SNP, a value of 0 would indicate that 
minimal variation is attributable to variation between 
populations. A value of 1 would indicate a fixed differ-
ence, i.e., the two populations are both invariable but for 
alternative alleles.
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