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Abstract
Elevation data are fundamental to many applications, especially in geosciences. The latest global
elevation data contains forest and building artifacts that limit its usefulness for applications that
require precise terrain heights, in particular flood simulation. Here, we use machine learning to
remove buildings and forests from the Copernicus Digital Elevation Model to produce, for the first
time, a global map of elevation with buildings and forests removed at 1 arc second (∼30 m) grid
spacing. We train our correction algorithm on a unique set of reference elevation data from 12
countries, covering a wide range of climate zones and urban extents. Hence, this approach has
much wider applicability compared to previous DEMs trained on data from a single country. Our
method reduces mean absolute vertical error in built-up areas from 1.61 to 1.12 m, and in forests
from 5.15 to 2.88 m. The new elevation map is more accurate than existing global elevation maps
and will strengthen applications and models where high quality global terrain information is
required.

1. Introduction

Topographic information, described here as digital
elevation models (DEMs), are crucial inputs for a
diverse range of applications in fields such as demo-
graphy [1], ecology [2, 3], geomorphology [4, 5],
glaciology [6, 7], hydrology [8–10], soil science [11]
and volcanology [12, 13]. At the global scale, eleva-
tions are measured from space using near-infrared,
radar and visible sensors, and then georectified and
stored in a gridded storage structure. DEMs exist at
the global scale, or near-global scale, at 3 arc second
(∼90 m), and more recently 1 arc second (∼30 m)
grid spacing. The global DEMs at 3 arc second grid
spacing include the widely used Shuttle Radar Topo-
graphy Mission (SRTM) [14], as well as MERIT [15],
TanDEM-X 90 [16, 17] and Copernicus GLO-90. At
1 arc second, products include ASTER GDEM (v3)
[18], ALOS World3D AW3D30 (v3.2) [19], SRTM

[14], NASADEM [20] and most recently Copernicus
GLO-30 [21] (herewith referred to as COPDEM30).

The acquisition period, sensor type, processing,
post-processing and geographical extent varies
between DEMs [22]. As a result, accuracy, and
therefore suitability, for a given application varies.
COPDEM30, and the underlying TanDEM-X data, is
the most recent and accurate global DEM [23–25].
COPDEM30 can accurately resolve most features,
with Guth and Geoffroy [25] going as far to say
COPDEM30 should become the ‘gold standard’ for
global DEMs. Hence COPDEM30 was chosen as the
basis of this work for producing a global bare-earth
DEM.

DEMs can be broadly separated into digital sur-
face models (DSM), which measures the upper sur-
face of trees, buildings and other man-made features,
and digital terrain models (DTMs) which measures
the elevation of the ground surface, or the ‘bare-earth’
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[26]. Each DEM has a different abstraction of the
real surface. The presence of tree and building bias in
DEMs is problematic in some applications, particu-
larly in hydrology, where artifacts in the DEM can act
as dams that change overland flow pathways. It is up
to the user to decide which abstraction is best for their
application, and they can be guided by the numerous
accuracy assessment studies [27–30].

DEMs at the global scale fall towards the DSM
end of the DSM-DTM spectrum. The MERIT DEM
is an exception, as tree height bias has been removed,
along with absolute bias, speckle noise and striping.
Therefore, MERIT DEM is closer to a DTM than
other global DEMs. Other examples of tree height
bias being removed are in the quasi global Coastal-
DEM [31] and vegetation removal from SRTM of
O’Loughlin et al [32], Zhao et al [33] or Magruder
et al [34]. Although there have been promising recent
developments [35], the removal of buildings from
MERIT at the global scale has not yet occurred, and
thus MERIT cannot be considered completely as a
DTM. With the rich amount of auxiliary data related
to global building and forest coverage now available,
there is increasing potential to utilise machine learn-
ing techniques to remove trees [31], buildings [35, 36]
or both [37–39], although to date these studies are
limited to the local or quasi global scale. Machine
learning allows us to ‘learn by example’ by building
empirical models from the data alone and is particu-
larly well suited to non-linear settings [40].

Using machine learning techniques, we remove
building and tree height bias from COPDEM30 to
create a new data-set called FABDEM (Forest And
Buildings removed Copernicus DEM). The new data-
set is available between 60◦ S and 80◦ N at 1 arc
second (∼30 m) grid spacing and is the first global
DEM to remove both trees and buildings. We valid-
ate against reference elevation data and compare it to
other global DEMs. Many applications where repres-
entation of the terrain is important will benefit from
the improved resolution and accuracy of FABDEM
compared to existing global DEMs. This is especially
true of flood inundationmodelling, where the terrain
is a key determinant of water flows and hence loca-
tions of flooding.

2. Methods

2.1. Random forest regression
This study uses random forest regression models,
which are popular in similar large-scale applications
in remote sensing [41]. Random forest regression
has recently been used for forest correction of SRTM
[42], urban correction of MERIT [35] and correcting
SRTM in New Zealand [39]. However to date, cor-
rection of DEMs using random forest models has not
been utilised at the global scale.

In the preliminary stage of this study, we assessed
generalized linear models (GLMs) and generalized

additive models (GAM). Neural networks have also
been used successfully at the quasi-global scale for the
CoastalDEM [31] and at the local scale [37–39]. We
found random forests to be accurate, computation-
ally efficient and robust, hence an appropriate choice
for this application.

Random forests take a ‘divide and conquer’
approach by combining outcomes from a sequence
of regression decision trees, and are particularly pop-
ular as they have few parameters to tune, are robust
to over-fitting and are robust to small and large data-
sets [43, 44]. Accuracy is measured by ‘out of bag
error’ which estimates error computed on reference
data set aside prior to building the random forest
model. In this study, 25% of the reference data are set
aside for validation.We utilise a GPU accelerated ran-
dom forest implementation in python which shows
enhanced computational efficiency compared toCPU
equivalents [45].

Once amachine learning algorithm is selected, the
other key ingredients are a comprehensive reference
data-set for training the model, and predictor vari-
ables. In machine learning, predictors or features are
input variables used to predict the reference data or
the target variable, hence predictors must be concep-
tually relatable to the application.Different predictors
are used in the forest and buildings correction mod-
els, described further in sections 2.4 and 2.5.

2.2. Correction workflow
The workflow of producing FABDEM is shown in
figure 1. This consists of three stages: (1) data pre-
paration, consisting of processing predictor data and
reference DEMs; (2) Random forest correction, done
separately for forests and buildings removal and (3)
post-processing, to merge the corrected DEMs, fill
unrealistic pits and apply smoothing filters. Each step
of the workflow is described below, as well as the
data contributing towards themachine learning based
correction.

2.3. Data preparation
All data used in the FABDEM production were pro-
cessed and regridded to the COPDEM30 grid (EPSG
4326 projection, at 1 arc second horizontal grid spa-
cing). The predictor data and reference DEMs were
then compiled into a tabular data format used by the
random forest model.

Predictor data that were determined to be use-
ful in estimating anomalies in the DSM associated
with buildings and trees were chosen. The key data-
sets describing forest height, forest cover and build-
ing footprints have a similar resolution (10–100m) to
COPDEM30, allowing them to provide information
at the grid-cell level. Predictor variables are described
in the respective sections on Forests and Buildings
removal (2.4 and 2.5) and the full list of predictors
are listed in supplementary table S1 (available online
at stacks.iop.org/ERL/17/024016/mmedia).
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Figure 1. Schematic of the workflow to create FABDEM. Data preparation is followed by the forest and building corrections,
before merging the corrected surfaces and post-processing.

An extensive search of LiDAR DTM data was car-
ried out to select reference data for training the ran-
dom forest algorithm. We specified that LiDAR data
should have an accuracy of <1 m which comfortably
adheres to the recommendation that reference data
should be at least three times more accurate than the
DEM [46]. A visual inspection of the data was initially
implemented as a first quality check. LiDAR DTMs
from 12 countries were selected to use in training the
random forest algorithm, see supplementary table S2
for details of each data set. This reference data cov-
ers a wide range of climatic zones and urban areas,
thus allowing us to use our approach at a global scale.
A map showing spatial distribution of these data sets
is included in supplementary figure S1. The refer-
enceDEMswere reprojected to theCOPDEM30 hori-
zontal grid and to the COPDEM30 vertical coordin-
ates (EGM2008), using geoid models specifying the
vertical datum used in each reference DTM.

2.4. Forest removal
We use a random forest model to predict the dif-
ference between COPDEM30 elevations and terrain
elevations from a reference data (LiDAR) for fores-
ted regions. Therefore, variables are needed to estim-
ate the height of the forest and the canopy cover-
age of the forest. The characteristic of the forest is
important as the penetration of the radar signal used
in COPDEM30 penetrates the tree canopy differently
depending on the characteristics of the tree and the
radar characteristics [47, 48].

The predictor data for forest height is taken from
the Global Forest Canopy Height 2019 data-set [49].
Global Ecosystem Dynamics Investigation (GEDI)
LiDAR data onboard the International Space Station
[50] has been integrated with Landsat GLAD ARD
[51] data to create an estimate of forest canopy height
at 30 m grid spacing. Coverage is limited to the extent
of GEDI footprint-based measurements, which are

collected between 51.6◦ N and 51.6◦ S. A separate
predictor variable, tree cover fraction from theCoper-
nicus Global Land Service collection 3 epoch 2015
[52] was used to characterise canopy coverage of each
100 m cell globally. To decide where the regression
model was applied, cells where both the forest height
was greater than 3 m and tree cover was greater than
10% were considered forested for the vegetation cor-
rection algorithm below 52◦ N.

In regions outside the Global Forest Canopy
Height 2019 data-set (above 52◦ N), we estimated
canopy height using ICESat-2 L3A Land and Veget-
ation Height (version 4) ATL-08 data [53]. The
‘h_canopy’ and h_canopy_mean’ variables were used,
representing the top of canopy and mean canopy
height respectively [54]. The ATL-08 terrain meas-
urements have a reported bias of −0.07 to 0.18 m
[55, 56]. ICESat-2 records with non missing-values
over land were used. Additionally, records were dis-
carded if h_canopy was greater than 50 m and for
h_canopy values between 30–50 m, if the layer_flag
was equal to 1. Values between ICESat-2 canopy
height measurements were interpolated to increase
the coverage of canopy height estimates. Cells with
canopy coverage >10% from the Copernicus Global
Land Service Collection were considered forested and
used in the forest correction algorithm above 52◦ N.

Additional predictor variables for the machine
learning model were created by applying several
image processing tools implemented in Whitebox-
Tools [57]. These filters were applied to both the
COPDEM30 elevations and the tree height data, to
detect features such as edges, anomalies or variabil-
ity that might be due to forests. For example, a sobel
edge detector filter with a 3× 3 window was applied,
and an unsharp filter was applied to emphasize edges,
while reducing noise. Filters computing the differ-
ence between gaussian filters of varying sizes were
also computed. Lastly, a bilateral edge-preserving
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smoothing filter and gaussian filters to emphasize
long-range variability were applied to the forest
height variable only.

An overview of the data-sets used to train the
model and their filtered versions are in table S1 of the
supplementary material, and the number of samples
per country of LiDAR data are in table S2.

2.5. Buildings removal
A separate random forest model was built to pre-
dict the differences between COPDEM30 elevation
and terrain elevation from LiDAR for urban areas.
Multiple predictor data-sets were used for building
removal to characterise factors relating to building
height, for example building footprints, population
and socio-economic indicators. In their urban correc-
tion of MERIT DEM, Liu et al [35] reported limita-
tions of the transferability of their model due to the
relatively small training data-set being unable to cap-
ture the variability of buildings in urban areas, leading
to overestimation particularly in smaller cities. Hence
in this study, we use a range of independent data-sets
to increase the applicability of our model.

Predictor data-sets include information on pop-
ulation density (WorldPop [58]), travel times [59],
night-time lights [60], urban building footprints
(World Settlement Footprint [61]), built-up areas
per capita, GDP and average greenness (GHS-UCDB
R2019A [62]). Further detail on these predictor vari-
ables is given in the supplementary text S2 and
table S1.

Data on building footprints and density from
OpenStreetMap were not used due to the lack of
global consistency [63] and the low importance of the
variable(s) in other location specific random forest
based DEM correction studies [35, 39]. Log trans-
formations were applied to population, GDP per area
and travel times. As for the forest correction, fil-
ters (difference of gaussians, sobel and unsharp) were
applied, but in this case to detect edges of urban areas
or taller buildings in COPDEM30. The number of
samples per LiDAR country for building removal are
detailed in table S2.

2.6. Post processing
Correction surfaces simulated through random forest
models for both forest and buildings were subtracted
fromCOPDEM30 to get the terrain elevations. There-
fore, as illustrated in figure 1, two intermediate lay-
ers were produced—COPDEM30 Building removed
and COPDEM30 Forest removed. The COPDEM30
Building removed and COPDEM30 Forest removed
layers were subsequently merged, taking the min-
imum value at each pixel. Locations adjacent to the
COPDEM30water-bodymask (WBM),were handled
separately, without buildings or forest removal being
applied. This was to ensure that coastline/riverb-
ank pixels were not overly lowered, but were kept
consistent with the surrounding terrain. Locations

underneath the WBM had no modifications made
and are essentially identical to the COPDEM30
values.

Additional steps were applied to correct areas
that had been corrected too much, or areas where
pixels were noisy. Firstly, to remove artifacts out-
side building and forest corrected areas, pits up to
4 pixels in size were filled. In building and forest
removed areas, large depressions were filled, but not
higher than the original COPDEM30 (after filling
small pits in the COPDEM30 of up to 100 pixels in
size). Only pixels that had been adjusted (i.e. Building
and Forested) were filled. Noise in the DEM was sub-
sequently reduced by running an adaptive filter twice,
and then a bilateral filter. An adaptive filter is effect-
ive at removing speckle noise [64], and was used in
MERIT DEM [15]. A bilateral filter is an edge pre-
serving smoothing filter [65] that preserves edges of
features but reduces short-scale variation. These fil-
ters were implemented in WhiteBoxTools [57].

Further smoothingwas done for pixels adjacent to
the WBM, with a 5× 5 pixel median filter applied to
non-water pixels, with a subsequent single pit filling
step. This step was necessary as we noted COPDEM30
contained incidences of pits. Finally, all smoothed
sections of the DEM (values adjacent toWBM,WBM
and all other land pixels) were combined to create
FABDEM.Guidance of parameter selection for the fil-
ters are limited at the scale of global DEMs [66, 67],
as studies predominantly focus on finer grid spa-
cing LiDAR data [68–70]. Therefore, parameters were
selected using an extensive trial and error approach.

3. Results and discussion

To demonstrate the utility of the FABDEM data-set
we validate the DEM against reference elevation data,
as well as comparing against other global DEMs. We
use two sources of reference data. (1) LiDAR data
from 12 countries (listed in supplementary table 2)
and (2) ICESat best estimates of the ground ter-
rain, randomly sampled from locations around the
globe. Additionally, reference data over Florida, USA
(not used in training) was obtained for a visual
comparison.

We note here that the reference LiDAR data used
for validation in section 3.2 are the same as the train-
ing data. A random sample of 1000 points per tile that
contains LIDAR data were used for validation. These
sampled points were taken from the whole reference
LiDAR dataset. Similarly, the training data was ran-
domly sampled from the reference dataset (see table
S2 for details), so some of the validation points were
also used for training. However, the ICESat elevation
data are not used for training, and are evenly distrib-
uted across the globe, so give an independent estimate
of errors across all terrain types.

Other global DEMs were also compared
against FABDEM: the original COPDEM30,
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Figure 2. Histograms comparing FABDEM with COPDEM30 and MERIT DEM against reference data. 1000 grid cells are
sampled per 1◦ × 1◦ tile containing reference data. Note that the reference data used here are the same data-set used for training
the machine learning models, but are a different random sample.

Table 1. Error statistics comparing COPDEM30, FABDEM and MERIT DEM against reference DEMs for each of the correction
methods. Comparisons are only made for land cells where the FABDEM correction of the respective type was applied. ME is mean error,
MAE is mean absolute error and RMSE is root mean squared error.

Area DEM ME MAE RMSE 90% Error Error %<2 m

COPDEM30 0.86 1.61 2.87 3.54 74.77%
Urban FABDEM −0.08 1.12 2.33 2.39 86.37%

MERIT DEM 1.74 3.59 7.15 6.86 42.73%
COPDEM30 2.93 5.15 7.98 12.51 35.52%

Forest FABDEM 0.20 2.88 4.96 6.67 55.07%
MERIT DEM 2.37 5.47 8.06 12.08 26.72%
COPDEM30 0.72 3.49 7.73 9.64 62.46%

Boreal Forest FABDEM −0.11 2.55 6.66 5.51 68.70%
MERIT DEM 1.14 9.38 19.62 24.24 33.58%

MERIT DEM [15], CoastalDEM [31] and NASA-
DEM [20]. Particular focus is made of the compar-
ison against MERIT DEM, as MERIT DEM has had
errors from vegetation removed, and is thus most
similar to FABDEM.

3.1. Split-sample validation
When building the random forest models, 75% of
the data samples were used for training the mod-
els and 25% of the data samples were kept back and
used for validation only. This approach is known as
split-sample or out of bag validation, and is useful
to ensure the model is not being over-fitted and has
some applicability outside of the training set.

For the urban correction, the reference COP-
DEM30 data had a mean absolute error (MAE) of
1.72 m, which was reduced to 0.94 m for predictions
on the training sample, while predictions on the val-
idation sample had MAE of 1.35 m. For the forest
model (south of 52◦ N), the split-sample validation
results were: MAE of 7.2 m for the COPDEM30 data,
MAE of 3.52 m in predictions on the training sample,
and MAE of 6.55 m in predictions on the validation
sample. Finally, for the boreal forest model (north
of 52◦ N), the split-sample validation results were
MAE of 3.77 m for COPDEM30 data, MAE of 1.72 m
in predictions on the training sample, and MAE of
3.24 m in predictions on the validation sample.

In each case, the errors in the validation samples
are greater than the training samples, but reduced
compared to the COPDEM30 data. The results for the
split-sample validations above are errors against ref-
erence data for the random forest model predictions
before any post-processing is applied. So we validate
separately on the final DEM after post-processing.

3.2. Global comparison
Figure 2 shows histograms of errors of FABDEM,
COPDEM30 and MERIT DEM against reference
data. Panels (a)–(c) show errors for urban, forest
areas (south of 52◦ N) and boreal forest areas (north
of 52◦ N) respectively. These consistently have lower
errors in FABDEM compared to COPDEM30 and
MERIT DEM, showing the benefit of both the newer
COPDEM30 data-set compared to elevations based
on SRTM, and the effectiveness of the forests and
buildings correction applied for FABDEM. Table 1
presents some statistics corresponding to the histo-
grams in figure 2. FABDEM has median errors close
to 0 m, and the lowest errors in each of the statistics,
showing a improvement on both COPDEM30 and
MERIT DEM.

Figure 3 shows errors compared to ICESat-2
L3A Land and Vegetation Height (version 4) ATL-08
data [53]: for all land pixels (a) and over flood
plains (b). Flood plains were delineated using the
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Figure 3. Histograms comparing FABDEM with COPDEM30 and MERIT DEM against ICESat2 ‘h_te_best_fit’ elevations. 1000
samples are taken from each of 1900 randomly selected 1◦ × 1◦ tiles across the globe (10% of tiles). (a) Compares all land cells
and (b) compares cells identified as flood plain in the GFPLAIN250m data-set [71].

Table 2. Error statistics comparing COPDEM30, FABDEM and MERIT DEM against ICESat2 elevation data for land points, floodplain
points (defined by the GFPLAIN250m data-set), canopy cover and population density. ME is mean error, MAE is mean absolute error
and RMSE is root mean squared error.

Cells DEM ME MAE RMSE 90% error Error %<2 m

COPDEM30 0.71 6.37 14.32 19.70 57.99%
Land points FABDEM −0.07 3.41 11.13 8.85 67.50%

MERIT DEM 0.81 4.81 13.13 12.55 60.90%
COPDEM30 0.17 4.04 10.21 14.29 71.14%

Floodplain FABDEM −0.03 2.03 7.87 4.90 80.42%
MERIT DEM 0.66 2.35 8.04 5.61 80.19%
COPDEM30 0.98 4.22 12.95 11.16 62.42%

Populated
(<5000 km2)

FABDEM 0.35 3.50 12.46 8.88 70.32%

MERIT DEM 0.75 4.14 12.90 10.23 62.96%
COPDEM30 1.90 4.99 14.33 12.73 50.90%

Populated
(>5000 km2)

FABDEM 0.19 3.94 13.75 9.90 61.31%

MERIT DEM 0.85 4.35 14.16 11.72 59.04%
COPDEM30 0.55 3.41 11.89 9.43 69.96%

Canopy cover:
10%–50%

FABDEM 0.20 2.92 11.53 7.59 75.96%

MERIT DEM 0.71 3.84 12.74 9.60 68.57%
COPDEM30 12.09 14.03 26.70 26.55 13.33%

Canopy cover:
>50%

FABDEM 0.45 6.10 22.17 12.76 35.29%

MERIT DEM 2.95 8.14 23.60 17.72 30.81%

GFPLAIN250m data-set [71]. We use the ICESat-2
‘h_te_best_fit’ variable in this evaluation, which is the
best estimate of terrain elevation [72, 73]. ICESat-2
ATL-08 canopy and ground surface data are pro-
cessed in 100 m segments where a suitable number of
photons are present, resulting in features not always
being detected that are in the 1 arc second DEMs.

As both non-urban and non-forested pixels
(which are not corrected) are considered, the histo-
gram of FABDEM and COPDEM30 are very similar,
with both showing errors closer to 0 m compared to
MERIT DEM. Table 2 presents some statistics corres-
ponding to the histograms in figure 3, and some addi-
tional categories based on population density and
forest canopy cover. The COPDEM30 and FABDEM

distributions are centered around 0 m error, but have
a relatively long tail. The MERIT DEM distribution
is centered around 1 m error, which is reflected by
the worst median error for floodplains, at 0.66 m,
compared to −0.03 m of FABDEM. There are fewer
large errors inMERIT DEM and FABDEM compared
to COPDEM30, as reflected by the lower RMSE and
90% error values and higher % error <2 m values.
Indeed, over floodplains, FABDEMandMERITDEM
have very similar error <2 m at 80.42% and 80.19%
respectively, with FABDEM having slightly better
RMSE and 90% error values suggesting the tail of
the error distribution is not quite as long as MERIT
DEM. This is likely to be due to FABDEM having
urban areas removed.
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Figure 4. Comparison of different DEMs over a region of Florida, USA including Miami. Domain covers 80.5◦–80◦ W,
25.7◦–26◦ N. US_NED is the US national elevation data-set (note some of the western extent of this image is not LiDAR).

Figure 5. Comparison of different DEMs over a region of the Netherlands. Domain covers 5.268◦–5.582◦ E, 51.595◦–51.934◦ N.
AHN3 is the Netherlands national elevation data-set (as per table S2). Note, some water areas are masked out and shown as grey
in the AHN3 panel.

The spatial distribution of median biases in COP-
DEM30 and FABDEM compared to ICESat is shown
in figure S2. This highlights the large scale biases in
COPDEM which are removed in FABDEM. Regions
do exist with biases remaining in FABDEM, including
areas of steep terrain, however these areas also corres-
pond to higher biases in ICESat [74].

In populated areas, FABDEM has the lowest
median error, RMSE and 90% error, with the
improvement over COPDEM30 most evident in the
densest populated areas (>5000 km2) where the

median error of FABDEM is 0.19 m compared to
1.90 m in COPDEM30. The correction in forested
areas is best for denser canopy coverage (>50%), with
a median error of 0.45 m for FABDEM compared
to 2.95 m in MERIT DEM and 12.95 m for COP-
DEM30. In this case, The RMSE and error <2 m is
still relatively high for FABDEM suggesting the tails
of the distribution have not been completely correc-
ted, but still much improved from COPDEM30 and
MERIT DEM. Therefore, the statistical results sug-
gest FABDEM is the most accurate global DEM for

7
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Figure 6. Comparison of different DEMs over Fitzroy River, Rockhampton, Australia. Domain covers 150.25◦–150.475◦ E, 23.3◦

−23◦ S. LiDAR is referenced in table S2. Note that above 20 m, CoastalDEM does not have corrections applied.

Figure 7. Comparison of different DEMs over part of the Mekong delta. Domain covers 106◦–106.8◦ E, 10◦–10.35◦ N. We did
not have access to ground truth LiDAR imagery for comparison at this location.

all types of cell assessed, with median error ranging
from−0.11 to 0.45 m and error statistics significantly
better than other global DEMs.

3.3. Visual evaluation
To qualitatively establish the benefits of the correc-
tions applied for FABDEM, we show spatial maps
of reference data and five different global DEMs
including FABDEM. Four locations are shown—one
(Miami, USA), comparing against a reference DEM
not included in the training of the random forest
model; two (Netherlands and Australia), which were
included in the training of the random forest models;

and one (Mekong delta), where the global DEMs are
compared in the absence of a high quality local DEM.

In the first comparison, figure 4 shows part of
Florida, USA, covering Miami. FABDEM produces
the closest comparison to the US NED reference
DEM. There are particular locations where arti-
facts from buildings remain in FABDEM, particularly
along the coastal areas, however these are reduced
compared to the COPDEM30. Similar artifacts are
also present in the other global DEMs. Secondly,
figure 5 shows a region of the Netherlands around
the province of North Brabant, and sections of the
Waal and Meuse rivers. Here again, the removal of
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buildings and forests is evident in the comparison
with COPDEM30. There are still some features not
completely removed, particularly in the south-west of
this domain, however, FABDEM again gives a more
accurate comparison with the reference DEM com-
pared to the other global DEMs. Thirdly, figure 6
shows a region in Australia, including part of the
Fitzroy river near Rockhampton. This is a rural area
where most of the correction seen between FABDEM
andCOPDEM30 is due to forests in the northern part
of this domain. COPDEM30 and FABDEM addition-
ally show amuch clearer picture of the contours rivers
and the floodplains in this domain compared to the
other global DEMS. Finally, figure 7 shows part of
the Mekong delta in Vietnam. FABDEM again has
a substantial amount of correction compared to the
COPDEM30, and is more consistent with the eleva-
tions of MERIT DEM, with FABDEM providing finer
detail and better connectivity of the river channels.

4. Conclusion

This study presents the development of a new global
DEMat 30m grid-spacing, with artifacts from forests
and buildings removed (FABDEM). The use of ran-
dom forest machine learning models is a power-
ful tool to estimate anomalies in the terrain due to
human settlements and forests. The median errors in
FABDEM are close to zero and the absolute errors are
reduced by up to half in our evaluation against refer-
ence DEMs.

Using the gold standard of global terrain data,
the Copernicus GLO-30 DEM, gives this data-set
an advantage over currently available global DEMs,
many of which are derived from the 2000s era SRTM
data-set. In comparison to other global DEMs, we
find that FABDEM has smaller errors, and import-
antly resolves fine scale floodplain features which are
not resolved by the SRTM based DEMs.

The correction procedure applied in the machine
learning model relies on there being sufficient
information in the predictor variables to character-
ise the artifacts we are aiming to correct (forests and
building heights). In this study we sourced high qual-
ity public data-sets available at a global scale. How-
ever, these data-sets do have uncertainties and errors.
This is evident in the visual evaluation, for example
showing some artifacts from buildings which are not
completely removed. Inclusion of more accurate pre-
dictor variables in the future will allow for improve-
ments to the machine learning corrections in the
future. The underlying Copernicus GLO-30 DEM
was found to still have some random artifacts and
pits, which were mostly removed by our processing
but not completely. Seasonal vegetation anomalies
are further difficult to predict. The user should note
that the correction is applied in built and forested
areas only, and should thus be mindful when using

the data in areas where errors aremore likely to occur,
particularly in areas of steep slopes.

In addition to the predictor variables, reference
elevations for training data are key to producing
accurate predictions in a machine learning model.
A model using training data from one region of the
worldmay be prone to over-fitting and can not neces-
sarily be transferred to other regions. Hence for this
study, we used a carefully selected set of reference
DEMs from12 countries around theworld to increase
the applicability of our models.

FABDEM has notable benefits compared to exist-
ing global DEMs, resulting from the use of the new
Copernicus GLO-30 DEM and a machine learning
correction of forests and buildings. This makes it
preferable for many purposes where a bare-earth rep-
resentation of terrain is needed, such as in hydrology
and flood inundation modelling.
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