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Abstract—Across all sectors, organizations attempt to
make efficiency savings and performance improvements
by incorporating machine learning (ML) into commercial
application services. However, in comparison to traditional
software applications, design, deployment, and mainte-
nance of ML applications is more complicated. In par-
ticular, ML introduces new challenges of data availability,
concept drift, scalability, and technical debt. In this paper,
we introduce some of the practical challenges that arise
when deploying ML applications, and describe potential
solutions. Our analysis is based on experience designing
and deploying a commercial spend classification service.

Index Terms—Spend analysis, ML service, Application
deployment

I. INTRODUCTION

Technology corporations continue to explore ways to
best leverage the potential of artificial intelligence (AI)
and machine learning (ML) in application software.
AI/ML-based applications typically use algorithms to
parse data, learn from it, and make predictions; i.e. the
system learns from data without relying on rule-based
programming. “Big tech” companies such as Google,
Facebook, and IBM, have prioritised AI/ML develop-
ment for many years. More recently, many startups
and small-to-medium enterprises (SMEs) are investing
in the adoption of AI/ML to optimize performance
and functionality. McKinsey estimate the AI/ML-based
market at USD 62.35 billion in 2020, and predict annual
growth of 40% until 2030, with 50% of companies that
embrace AI/ML over the next five to seven years having
the potential to double their cash flow [1].

While commercial opportunity, aligned with avail-
ability of data, affordable data storage, and growth
of processing infrastructure has spurred the growth
of ML-based Software as a Service (SaaS) products,
developers face challenges building reliable ML-based
applications. Normally, the process of building an ML
application begins with developing prototype models,
where a variety of algorithms and methods are explored.
In this step, the accuracy metrics for the prototype

are important indicators for the feasibility of the final
product. Subsequently, the prototype model is further
developed and deployed for use in the live system
using software engineering techniques and tools. For the
deployed system, the success metrics are binary: does
the application succeed or fail in improving human-level
performance. Thus, although the prototype model may
have high accuracy, the deployed application may not be
useful for the end-user. There are various reasons why
an ML system may fail to deliver during deployment,
even if the prototype model is accurate. These factors
include, but are not limited to, differences between test
data and live data, low latency, varying data streams, and
scalability. Additionally, deployed systems also require
continuous monitoring and maintenance, which incurs
high technical debt. It is estimated that these costs
are significantly higher for ML systems than traditional
software applications [2].

Furthermore, ML applications introduce new com-
plexities: ML-based solutions are probabilistic rather
than deterministic in nature; output is a function of ML
model and data; and developers need to keep track of
different versions of the model, hyperparameters, and
accuracy metrics, which becomes more challenging as
data size grows. While traditional software is expected
to be deterministic, ML software will provide different
results as the data profile inevitably changes. Testing
ML systems is another difficulty, as data and its schemas
must be tested along with the software code. Due to
these differences, traditional DevOps practices for soft-
ware engineering, such as continuous integration (CI)
and continuous development (CD), may fail when used
directly for ML application deployment. In addition, the
system requires continuous monitoring and tracking to
enable high performance and quality user experience.

In this paper, we discuss some of the potential chal-
lenges and their solutions in deploying a real-world
application. As a case study, we provide details of a
commercial ML-based spend classification application
that was deployed for Claritum, a UK-based SME. We
discuss research challenges faced while developing the978-1-6654-8303-2/22/$31.00 ©2022 IEEE
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TABLE I
SAMPLE PRINT SPEND DESCRIPTIONS, WITH FIVE CATEGORY LABELS PROVIDED BY EXPERT ANNOTATOR.

Specification Project Item Size Finishing Stock

2 A2 posters one-sided 4-colour 3 A4 posters one-sided 4-colour POS Poster A4 Stock supplied Board

Printed black to face only manilla 110gsm Self seal non window
pocket Boxed in 250’s

Direct mail Envelope C4 Overprint Paper

Super hit basic extreme branding 2883 - black ink. 4 colour
process printed on barrel

Commercial Promo A4 Laminated Paper

TABLE II
PRINT-SPEND CATEGORIES LABELED FOR TRAINING.

Category Instances

Project Commercial, Direct Mail, Logistic, POS, Stationary
Item Booklet, Carriage, Envelope, Fulfillment, Inkjet, Label, Leaflet, Letterhead, NCR, Poster, Promo
Size A1, A2, A3, A4, A5, C4, Double, Simplex
Finishing Continuous, Laminated, Overprint, Stock supplied
Stock Board, Card, Paper, PVC

spend classifier, and provide potential solutions that we
adopted, or could be adopted, for similar applications.
Some challenges are specific to the spend classification
service (SCS) developed for Claritum, while others are
more general in nature.

The rest of this paper is organized as follows. A
description of the SCS platform is introduced in Sec-
tion II. Section III discusses the practical challenges and
their solutions in deploying ML applications. Finally,
conclusions are presented in Section IV.

II. SPEND CLASSIFICATION PLATFORM

This section describes the development of a commercial
Spend Classification Service (SCS). The initial focus
of the service is on print spend, however the final
application will generalise to any spend category. Many
large corporations have significant spend on printed
materials to fulfill their daily activities. For example,
a typical supermarket chain will spend tens or hundreds
of millions of dollars every year on printed items such as
posters, labels, letters, and stickers. Much of this spend
data is uncategorized.1 Generally, spend data is stored in
a company’s procurement system and takes the form of
unstructured free-text specifications. Understanding and
extracting relevant information from this data requires
the skills of spend-analysts with knowledge of the sector
(i.e., print) that is being analyzed.

Table I presents a sample of print spend specifica-
tions. The spend-analyst has categorised the data into
five levels, which are most useful for a spend manage-
ment exercise. These categories are (i) project, i.e., the
general spend area, (ii) item, (iii) size, (iv) finishing, and

1One major supermarket chain reported that up to half of all print
spend invoices may be uncategorized (personal communication).

(v) stock, i.e., the material of manufacture. A summary
of category instances are presented in Table II.

Having knowledge of categorized spend data enables
procurement managers to choose suitable suppliers and
negotiate on price. Traditionally, spend data is cat-
egorized by spend-analysts; human experts with de-
tailed knowledge of the sector. However, the process
is laborious and time consuming. For instance, it took
two working days (16 hours) for a spend-analyst to
annotate 800 rows of the sample data presented in
Table I. A large organization is likely to have millions
of rows of spend data each year. This makes a spend-
analysis exercise costly. However, as such an exercise
usually results in savings of at least 10% of total spend,
the likely rewards easily compensate for this outlay.
Claritum aim to develop an ML-based classifier to
automatically categorize spend data, which will lead to
significant efficiency gains and cost savings; and will
enable smaller companies to benefit from better spend
management.

A view of Claritum’s SCS interface, currently in Beta
release, is presented in Figure 1. The user approves a
row classification by selecting “thumbs up”. Approved
rows are then used to re-train the models in the back-
ground to improve the system performance. In the back-
end, different models, such as SVM, Naive Bayes,
and Random Forest are compared. As the platform is
designed to serve multiple customers, a base model is
made available and distributed to each end-user. Users
then further train personal instances of the model using
their own data and classifications, as shown in Figure 2.
Thus, one public model is shared with all customers
to generate private models for each. The public model
is incrementally improved as the data is accrued from
different sources.



Fig. 1. User interface of BRIGHT Spend Analytics.AI SaaS. Specifications are automatically classified and presented with “traffic light” coloring
to indicate confidence score. Cells with incorrect classifications can be manually corrected, which are then given a confidence score of 100%
(e.g., row 1 item “poster”). Users approve a row by selecting “thumbs up”.

Fig. 2. Retraining process for the platform.

There exists many challenges and practical issues that
need to be solved in categorizing such data and deploy-
ing the ML-application. In the next section, we discuss
a selection of the main challenge. Some are specific to
spend classification, while others are applicable to any
ML application service.

III. CHALLENGES RELATED TO EMPLOYING ML IN
SPEND ANALYSIS APPLICATION

A. Expert data labeling

Data labeling is imperative for training supervised
ML applications. Initial data labelling is performed
manually by domain experts, and may be performed in
parallel by multiple experts. The task of manual data
labeling is often delegated to external expert consultants,
and is generally not performed by the ML applica-
tion developers. Thus, different experts and different
companies are likely to label similar data in different
ways. Therefore, it is important that expert classifiers
are involved in the development process from an early
stage.

B. Short text classification

Spend data is often unformatted text containing a
description of the items purchased. Therefore, it is
prone to errors, spelling mistakes, inconsistencies, and

Fig. 3. Specification length distribution.

idiosyncrasies. Descriptions also tend to be short. A
distribution of description lengths of real-world print
spend data are shown in the Figure 3. We see that the
mode length is less than 10 words, and only a tiny
fraction contain 100 words or more. The classification
of short-text is challenging because descriptions often
lack semantic meaning; they are sparse and have fewer
word co-occurrences; and they do not provide enough
information for good similarity measures between dif-
ferent texts. Short texts are also more ambiguous and do
not contain as much contextual information as longer
paragraphs or documents.

Classification of such text is challenging [3]. Im-
provements can be made by pre-processing text using
regular expressions to extract keywords. Techniques
such as Graph Convolution Neural Networks can also
be used, however the substantial training times [4]
can make these approaches impractical for applications
where models are trained frequently per user.
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C. Long ML product development cycle

The ML product development lifecycle is long and
includes extensive experimentation, data analysis, and
validation steps. A typical ML pipeline is presented in
the Figure 4. The process begins with data acquisition
and expert data annotation, which is a time-consuming
manual process. There is then an iterative cycle of
experimentation to develop a proof-of-concept applica-
tion, where various models are trained and tested for
performance. Subsequently, the application is deployed
using traditional software engineering practices. Once
the application is live, users are able to upload and
classify their own data. However, as this data may
vary significantly from the training data, it is possible
for the application to perform unexpectedly. Therefore,
continuous on-going monitoring is required.

Due to these difficulties, many small-scale enterprises
are reluctant to invest time and money into ML appli-
cation development. As a result, many ML application
proposals are rejected before they leave the drawing
board. To mitigate this problem, methods need to be de-
veloped to enable quick deployment of ML applications
and reduce the overhead of a complex ML development
cycle. Some of the practices that can help developers
are provided below:

1) Automatization of ML processes: Recently, there
has been an introduction of practices to automate steps
of the ML development pipeline, including data acquisi-
tion, experimentation, validation, deployment, monitor-
ing, and up-gradation. Such practices are called MLOps
or AIOps [5] and platforms like MLflow have been
developed to streamline the ML lifecycle [6]. MLOps
allows the continuous integration and continuous deliv-
ery of machine learning products and are found to be
beneficial to developers. However, many data scientists
still use traditional manual processing to develop ap-
plications. Additionally, MLOps practices are immature
and do not cover use cases such as expert annotation for
data labeling, platform interaction with the consumer,
and human-in-the-loop (HITL) in ML cycles. Thus,
automatizing steps of the ML process requires these
additional cases to be adopted as well.

D. Agile Software Engineering Practices

Many application developers and software engineers
adopt agile practices to enable better project delivery,
with rapid updates based on end-user feedback [7].
Often, ML application development teams use agile
software engineering practices to develop and deploy

applications. However, agile development practices need
to be revisited for ML applications, which differ con-
siderably from traditional software applications. Previ-
ously, we have described AgileML, an agile method-
ology for deploying a spend classification application
[8]. AgileML offers benefits of rapid deployment, and
enables users to begin using the ML application at an
early stage of development.

E. Personalized retraining
An ML product is often used by many customers,

each with varying requirements, including patterns,
classes, and hierarchy. Requirements for each individual
customer can also vary over time. To address this issue,
we suggest developing a global model that can then be
further trained locally by each user. To develop and train
the two models together, the following approaches can
be combined and automated:

1) Transfer learning: It is possible to generate a
general “base” model and then utilize transfer learning
to adapt the model for each specific user [9]. Transfer
learning has been used for many application domains.

2) User control: Allow users to define labels before
training the model. Thus, initially, the user interface may
request sample training data, and then based on that
model training, testing, and selection is automated.

3) Model matching: Once a user defines their dataset
and labels, the platform may check existing models
in the system. This may be done using correlation
testing between different text-based datasets. If there is
a significant match above a threshold, the platform may
suggest the possible hierarchy of labels.

These practices require that each user’s specification
is stored separately to avoid data poisoning and allow
each user to access models that have been specifically
trained for them.

F. Extreme multi-label text classification
Extreme multi-label text classification (XMTC) is the

problem where a large number - hundreds of thousands,
or millions - of labels are present in the dataset [10].
This is typical for problems such as spend classification
where there are millions of potential product lines. Such
a large number of labels gives rise to the problems of
data sparsity and scalability. In these scenarios, there are
likely to be many labels - so called “tail labels” - that
have a very small number of positives. XMTC problems
are different from binary or multi-class problems as the
dependency between labels must be leveraged. Items
may also belong to multiple categories.



G. Data acquisition

Often, application developers will have limited data
available for developing ML applications. This occurs
for various reasons. First, the industry that has data
are different from the industries that develop the ap-
plication. Thus, purchasing data can be costly. Second,
data may contain personal or commercially sensitive
information, so users will not be prepared to share.
Third, data can be poisoned and may not be useful.
While unsupervised or semi-supervised methods will
ameliorate some of these issues, these approaches may
not be suitable for applications requiring high accuracy.
Other alternatives include:

1) GANs: Generative adversarial networks (GANs)
could be used for generating synthetic data. GANs
have been successfully applied in various application
domains. However, their application in text data has not
been widely studied [11]. Another problem with GAN is
that they need more processing time. Thus, using GAN
in the pipeline increases the time of processing the text
classifier.

2) FSL: ML methods like One/Few Shot learning
(FSL) enables training of models from a small training
set [12]. However, one of the problems with FSL is that
they have comparatively lower accuracy than supervised
learning. In such a case, based on the nature of spend
data - i.e., short, unstructured text - the parameters
related to FSL like distance function and clustering
methods need to be further investigated.

H. Mitigating technical debt

The proof-of-concept (POC) developed for a ML
application is often performed on sample data. However,
once the system or application is deployed online, issues
of scalability arise. A POC showing high accuracy
graphs and confusion metrics may not be valid when
the system is used on a large scale. Traditional software
systems are deterministic in nature and maintaining and
sustaining the model over a long period of time is not
a complex problem. ML systems, on the other hand,
are probabilistic in nature as the output is associated
with an error level. Due to their non-deterministic
nature developing, maintaining, and sustaining the ML
system is a complex business. ML systems also have
technical debts due to issues like feedback loops and
correction cascades. The technical debt is worse in ML
systems because deploying the number of tasks needed
to develop a new version of the system gets multiplied.

I. Testing/Verification

Traditional software systems are generally static in
nature and thus it’s relatively easy to perform A/B com-
parison testing, or analyze the code coverage of the soft-
ware systems. In comparison, the probabilistic nature of
ML-based software makes testing and verification more
difficult. Furthermore, the performance of ML-based

systems depends upon the data. Besides drift patterns in
the data, there may be various unintentional changes that
can degrade performance. For example, if a company
updates a product code, this may conflict with an older
product code that appears in the training data. Testing of
such inconsistency is difficult and needs to be included
in the ML pipeline. In addition to testing the software
application, the data and its schema also require testing.
For automated ML facilities, i.e. MLOps, the software
itself is divided into several components, responsible
for automatic training, testing, and deployment of the
application. Therefore, the whole pipeline needs to be
automatically tested, which is more difficult than testing
individual components.

J. Reproducibility

For an ML service, a seed model is deployed and then
retrained when new data is collected. The model training
is a repetitive process and the seed model and data
may differ significantly across versions of the trained
model. The latest versions of the model may have high
accuracy metrics of precision, recall, and f-score and
handle the more complex problems containing more
classes. Also, the models trained on a large incoming
data-set handle data pattern variation better. However, as
the ML model is probabilistic they may still not produce
the same results on specific samples. This is problematic
for users that are often not experts in data science as
they may see a sample that was correctly classified
in an earlier version is being incorrectly classified in
a recent model trained on large data and handles the
better problem. Thus, reproducibility is a problem for
ML applications that need to be handled. A simple
solution would be to provide a feedback mechanism to
the user about the average accuracy and how the new
model is solving a complex problem to raise human-
level performance. Another option would be to compare
each new sample if it exists in the training data and copy
the predictions from training data rather than using the
ML model. However, this is a time-consuming process
as the training data and incoming data stream to be
classified grows.

K. Explainability/Interpretability

One of the major hindrances in deploying ML ap-
plications for commercial applications is that they are
black-box in nature. For applications like spend analy-
sis, interpretation of the classification may further aug-
ment the consumer experience. There exist many open-
source explainable ML models like Local Interpretable
Model-Agnostic Explanations (LIME) and Shapley Ad-
ditive Explanations (SHAP) that can be employed to
interpret classification results [13]. Employing these
techniques can help consumers further accelerate the
verification process, as shown in the user interface
presented in Figure 1. However, it is difficult to estimate



the accuracy of these interpretations. For ML models,
classification errors and confusion matrices can de-
scribe model performance, but for LIME and SHAP it’s
difficult to mathematically validate these explanations.
Therefore, it is necessary to include a human-in-the-loop
(HITL) process.

L. Improving base models

In the scenario where a base model is distributed to
different customers and then the models are privately
trained, as shown in Figure 2, a problem that is com-
monly encountered is that the base model lags behind
the privately trained models. Although the base model
can be improved by training as new data is gathered, the
data source may be different than what the consumers
have trained their data on. Thus, the improvement in the
base model by the service provider using a dataset that
may be different than the consumer has, is not an ideal
situation. To mitigate the issue the following approaches
could be adopted:

1) Federated machine learning: It is common for
customers to be reluctant to share data with the devel-
opers, which makes application development difficult.
To mitigate this issue, federated learning needs to be
revisited for developing an application service [14]. Fed-
erated learning may help develop more robust models by
combining various local models of the customers into
a global model. Federated learning requires interfaces
where the local models can be shared to create a global
model. However, there are privacy issues as information,
such as the size of the data a model is trained on, may be
leaked. This needs to be mitigated by adopting different
approaches such as automating the training process and
reducing developer intervention.

2) Secure information sharing: The companies in-
deed hesitate to share their data for training due to
privacy and security issues. However, ML systems are
data-hungry and they need labeled information for train-
ing and making a better ML model. Therefore, standards
to share the domain data between organizations need to
be investigated. Such standards are quite popular in do-
mains like cybersecurity for sharing threat-related infor-
mation. Various governments encourage organizations
to share cyber-threat-related information with each other
[15]. Much research has been done to develop models
such as CYBEX, to share such information between
organizations [15]. Along the same line, the standards
and models to share data securely for ML training, while
preserving user privacy, can be developed. One of the
problems with ML data is that they often are very large
as compared to the domains like cybersecurity and thus
standards need to be developed accordingly.

IV. CONCLUSIONS

This paper has presented a spend analysis application
and its architecture. We presented practical issues that

were faced during the development of this commercial
spend classification service, and discussed approaches
that can be adopted to address some of these issues.
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