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On the Finite Element Discretization of Continuous
Tow-Sheared Structures

Calum J. McInnes∗, Reece L. Lincoln†, Alberto Pirrera‡, Byung Chul Kim§, and Rainer M. J. Groh¶

Bristol Composites Institute, University of Bristol, Queen’s Building, University Walk, Bristol, BS1 8TR, UK

Tow-steered laminates, those in which the fiber angle varies as a function of in-plane
coordinates, represent a substantial numerical modeling problem. In the Continuous Tow
Shearing (CTS) process, the tows are deformed by in-plane shearing that generates a non-linear
orientation-thickness coupling, which needs to be accounted forwhen analyzingCTS structures.
In this manuscript, an investigation into the Finite Element discretization of CTS structures
is conducted to ascertain the most appropriate element choice in terms of computational cost
and accuracy. First, natural frequency and buckling eigenvalue analyses are conducted on
constant-thickness flat plates and thin-walled cylinders ([±45/0/90]s layup), in order to set a
baseline. Next, multiple discretization strategies are implemented to investigate a CTS plate
and a thin-walledCTS cylinder bymeans of two- and three-dimensional shell elements, in linear
frequency and buckling analyses. Two CTS stacking sequences are considered, with the first
([±0〈0|70〉10]2s) having identical steering across plies, and the second with variable steering
across plies ([±0〈0|70〉10/±90〈0|70〉10]s) to increase the discretization difficulty. The use of
three-dimensional shell elements allows for greater fidelity in representing the geometry of a
CTS structure, as they allow the asymmetric thickness build-ups to be discretized accurately.
We show that three-dimensional shell elements enable the use of lower mesh resolutions whilst
maintaining solution accuracy, in comparison to two-dimensional shell element meshes of the
same geometric in-plane resolution. Moreover, a relation between element type and mesh
resolution is presented to appropriately align element centroids and nodal coordinates, for
two- and three-dimensional shell elements, respectively, with the maxima of a specific thickness
distribution.

I. Nomenclature

�8 = Planar area of 8th mesh iteration
! = Plate and cylinder longitudinal dimension
; = Length of single shearing period
# = Number of plies in laminate
= = Shearing periodicity
=e = Number of elements in mesh
=e
8

= Number of elements comprising 8Cℎ mesh iteration
' = Cylinder radius
)0 = Starting fiber reference path angle, taken clockwise from q

)1 = Ending fiber reference path angle, taken clockwise from q

C0, C = Tow thickness of a ply pre- and post-shearing, respectively
C8 = Thickness of 8Cℎ mesh iteration
Clam = Laminate total thickness
, = Plate transverse dimension
\ = Local fiber angle taken from global G-axis
o = Angle made with horizontal axis of a trigonometric circle
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(a) Tow Steering by AFP (b) Tow Steering by CTS

Fig. 1 Tow deformation mechanisms to achieve tow steering along a reference path by in-plane bending using
AFP (a) in-plane shearing using CTS (b). Reproduced from Ref. [7].

_fr
8
, _fr

5
= Frequency eigenvalue of the 8Cℎ and final mesh iteration
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= Buckling eigenvalue of the 8Cℎ and final mesh iteration
q = Angle from global G-axis of part which denotes unsheared direction

II. Introduction

In aerospace structural applications, composite materials are widely adopted due to their desirable properties, such as
high specific stiffness and strength. Such properties allow for increased payload fractions and improved fuel efficiency

for both air and space vehicles. Commonly employed composite design philosophies rely on fibers within each ply of
a laminate being straight and aligned along load paths to meet set design criteria, such as stiffness and strength [1].
The inherent material anisotropy of composites allows for the potential of local tailoring with improved alignment
between fiber orientation and load path [2]. Stiffness variations can be introduced in a laminated structure by a number
of methods, such as overlapped patches and ply drop-offs [2]. Most novel is the concept of Variable Angle Tow (VAT)
composite structures, where the fiber angle varies with position in a ply [3].

The most commonly investigated method of manufacturing VAT composites is the Automated Fiber Placement
(AFP) process [4]. AFP has typically been the process of choice due to its ease of adoption in industrial settings
and its ability to deposit material onto curved tool surfaces [5]. However, AFP-manufactured VAT structures are
prone to process-induced defects, such as fiber wrinkling and resin rich areas [6]. The presence of defects is due to
the fundamental material deformation mechanism when steering material tows by AFP—the steering being achieved
through in-plane bending of the tows along a curvilinear reference path [7]. This in-plane bending mechanism of the
material causes buckling on the inner and straightening on the outer radii of the material tow [7], as shown in Figure 1.
Both buckling and straightening of the material tow result directly in wrinkles and resin rich areas which can reduce
structural performance [6]. Furthermore, these defects represent a significant complication to modeling. Indeed, while
buckling and straightening can be limited or even eliminated by controlling a tow’s steering radius, by bending material
tows when steering by AFP, a fiber reference path cannot be tessellated and thus tow gaps or overlaps must be created to
complete a single ply. Therefore, the presence of gaps and overlaps cannot be avoided and, in addition to wrinkles and
resin rich areas, further compounds to reduce strength and increase modeling difficulty, especially in the discretization of
geometries for definition of a Finite Element (FE) mesh [8]. Moreover, prediction of the location of such manufacturing
features and defects is not trivial. For modeling such structures, Fayazbakhsh et al. proposed a “defect layer method” to
reduce the stiffness of elements that represented regions of tow gaps or overlaps by increasing the element thickness [9].

When modeling perfect AFP tow-steered structures, Labans et al. utilized a simple discretization methodology to
model VAT cylinders buckling under axial compression. A number of perpendicular partitions along the longitudinal
axis of the cylinder were introduced to the two-dimensional shell elements, henceforth referred to as conventional
shell elements’, mesh to assign regions of constant layup [10]. This method did not account for any manufacturing
induced defects in the AFP modeling strategy but showed reasonable correlation to experimental results. Similarly,
Rouhi et al. [11] assigned a number of constant fiber angle bands around the circumference of a VAT cylinder under

2



bending-induced buckling. Rouhi et al. [11] employed 8-node conventional shell elements. However, due to the lack
of thickness variations, 4-node shell elements would have been equally valid for modeling. Generally, the method by
Labans et al. [10] is only valid for tow-steering along the cylinder’s longitudinal axis, whereas the method by Rouhi et
al. [11] is valid for tow steering around the circumference. Additionally both Labans et al. [10] and Rouhi et al. [11]
employed conventional shell elements in their investigations. Labans et al. [10] used a simple 4-node shell and Rouhi et
al. [11] used an 8-node shell. Rouhi et al. [11]’s use of 8-node shell elements posses the ability for additional degrees of
freedom to be defined at an internal mid-body node [12]. The reasoning for the use of 8-node shells by Rouhi et al. [11]
was not commented on, however the additional nodes may allow for greater discretization of the in-plane stiffness
variations of tow-steered structures. Overall, from a modeling perspective, these methods produce a numerically coarse
description of the spatial variation in fiber orientation, allowing for all plies of a tow-steered laminate to be steered
in one direction only, and do not consider process-induced defects. Subsequently, Tatting et al. found element-wise
assignment of fiber angles to be most appropriate for modeling VAT cylinders [13]. When compared directly to Labans’
and Rouhi’s methods, Tatting’s method assigned constant layups per element on a tow-steered mesh, which allowed for
a far greater level of control over the geometric discretization of a tow-steered structure.

As the structural performance of VAT structures by AFP manufacture suffers under presence of process-induced
defects, a new process for tow steering, Continuous Tow Shearing (CTS), was developed by Kim et al. [7]. CTS
employs a fundamentally different material deformation mechanism to manufacture tow-steered structures than the
AFP process. Instead of bending material tows, the CTS process shears them in-plane [7], see Figure 1. Due to the
mechanics of material shearing, no defects, such as those seen in AFP manufactured structures, are caused by CTS. The
in-plane shearing of material tows allows for VAT laminates to be manufactured without gaps or overlaps due to the
perfect tessellation of a reference path across a ply. Of additional benefit, perfect tessellation allows for comparatively
simpler structural modeling methodologies to be used when seeking to accurately identify material distribution in a
CTS structure for subsequent discretization [7].

A mechanical consequence of the in-plane shearing of material tows by the CTS process is the change of their
thickness. Geometrically, this material thickness change is related to the shearing angle imposed by the CTS process,
where the shearing angle is simply the difference between the steering direction, controlled by q, and the local fiber angle,
\. The increase in thickness of a ply of a CTS structure can be calculated by simply assuming volume conservation of a
tow pre- and post-shearing, with Eq. (1) denoting the thickness increase [7]:

C = C0 · sec(\ − q). (1)

where, C and C0 are the thickness of the ply post- and pre-shearing, respectively. The maximum shearing angle achievable
by the CTS process is \ − q = 70°, as demonstrated by Kim et al. [14]. The relation between positional fiber angle and
thickness across a non-dimensionalized half shearing period is visualized upon inspection of Figure 2, where, dependent
upon the magnitude of shearing, a consequential thickness increase arises.

It is of note that this orientation-thickness coupling is not to the detriment of structural performance, such as the
process-induced defects present in AFP manufactured tow-steered structures. As Kim noted, the thickness buildup could
be exploited to provide enhanced stiffness over a straight tow comparison [7]. This potential for increased structural
performance by embedding stiffening features into a laminate was investigated by Lincoln et al., who studied embedded
longitudinal stringers and circumferential hoops on a thin-walled cylinder to decrease structural sensitivity to geometric
imperfections under axial compression [15]. Subsequently, Lincoln et al. utilized a genetic algorithm to optimize
cylinders to identify the potential for structural imperfection insensitivity [16].

Tow-steered structures have thus been the subject of numerous FE studies, however little formal investigation into the
most accurate element choice for FE modeling of CTS tow-steered structures exists, due to a widespread continuation of
choices taken from AFP studies. When FE modeling CTS structures, authors such as Lincoln et al. [15, 16], Kim et
al. [17], Groh and Weaver [18], use degenerated shell elements. This manuscript shall refer to these degenerated shell
elements as ‘conventional shell elements’ (S4 or S4R in Abaqus CAE). It is believed that the reason for this element
choice in modeling is twofold. Firstly, it allows for the most straightforward discretization of a tow-steered reference
path; and, secondly, it is a continuation of the S4R element choice when modeling AFP tow-steered structures, such
as that employed by White et al. [19]. For FE modeling tow-steered structures with no thickness variation, i.e. those
manufactured by AFP, a conventional 4-node element choice is sufficient to capture the variation in fiber angle across a
ply. However, this manuscript investigates the need for accurate geometrical representation of the out-of-plane thickness
variation of CTS tow-steered laminates by utilizing three-dimensional shell elements, referred to as ‘continuum shell
elements’ in Abaqus CAE, for increased accuracy in geometric approximation.
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Fig. 2 Mechanical coupling of fiber orientation and thickness pre- and post-shearing for an arbitrary 〈)0 |)1〉
tow-steered ply of linear angle variation by CTS. Note maximum shearing angle of 70° corresponds to a 3×
increase in thickness. Furthermore, this inherent mechanical coupling is non-linear.

This manuscript is structured as follows. Subsection II.A outlines the notation required for tow steering of a
composite ply by CTS. Section III outlines a methodology for formulating FE models of CTS structures. The method is
subsequently implemented in Abaqus CAE for two common structural elements: a flat plate and a thin-walled cylinder
under two load cases: frequency and compression buckling. Section V presents numerical results into the use of
continuum over convectional shell elements when modeling CTS structures. Firstly, a consideration of element type for
modeling constant-angle, constant-thickness structures is presented to contextualize the later work. This work is an
investigation into the potential for solution performance benefit when meshing CTS structures with three-dimensional,
henceforth referred to as ’continuum’ shell, over the commonly used conventional shell elements. As CTS structures are
both variable angle and variable thickness, the additional node definition of continuum shell elements is identified as
a potential modeling choice that better discretizes the thickness variations present in CTS structures. This improved
discretization allows for coarser continuum than conventional shell element meshes to be used in analyses. The use of
coarser meshes gives benefits to design studies which involve large computational runs. Finally, Section VI summarizes
the key findings of the manuscript and makes closing recommendations for modeling strategies for CTS structures.

A. CTS Ply Definition
The design of a VAT laminate by CTS requires a notation for the consistent definition of fiber path variation within a

ply. This manuscript employs a linear fiber angle variation, which is the lowest-order variation one can employ and is
defined by

\ (G) =
{
q + )1−)0

;/2 G + )0, if 0 ≤ G ≤ ;
2

q + )0−)1
;/2 (G −

;
2 ) + )1, if ;2 < G ≤ ;

(2)

where q represents the angle from the global G-axis, and )0 and )1 represent clockwise angles from q at two locations of
the domain with linear fiber angle variation in between. The shearing period over coordinate G in the direction of q
occurs over period length ;. The period length is directly controlled by the steering direction, where if q = 0°, ; is equal
to the global G-direction dimension of the structure. Similarly if q = 90°, ; is equal to the global H-direction dimension.

Moreover, due to the aforementioned orientation-thickness coupling of material tows when tow steering by CTS,
a consideration of thickness variation must be made. The thickness of a material tow steered by the CTS process is
denoted previously in Eq. (1). The notation used throughout this manuscript is extended from that initially proposed by
Gürdal et al. [20] and adapted for use in CTS structures by Lincoln et al. [15], where a single steered ply with linear
variation in fiber angle is denoted by

q〈)0 |)1〉= (3)

where periodicity is introduced to repeat a single fiber angle variation, )0→ )1→ )0, in the steering direction, q. This
periodicity is denoted by =, where the maximum potential periodicity is controlled by the minimum steering radius
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(a) q = 0°, = = 1 (b) q = 90°, = = 2

Fig. 3 Periodic steering of a unit cell upon a thin-walled cylinder, visualized for the two steering directions
considered; (a) q = 0° and (b) q = 90°. Note if )1 > )0 the thickness build-ups will occur at the middle of the
shearing period.

of the CTS process [14] and the steering direction. In this manuscript a q = 0° steering direction denotes steering
along the part G-axis. This notation is visualized in Figure 3, whereby a cylindrical tow-steered path has been unrolled
and the directional periodic variation in fiber angle between )0 and )1 across a ply is visualized for the two steering
directions chosen in this manuscript, q = 0° and q = 90°. The number of thickness build-ups in a ply is controlled by
the periodicity of the fiber path.

III. Model
Modeling methodologies are developed for discretizing by two-dimensional conventional shell (S4R in Abaqus

CAE) or three-dimensional continuum (SC8R in Abaqus CAE). A script is implemented in MATLAB R2021b [21] to
produce Abaqus 2018 [12] input files which are submitted to the numerical solver. The primary difference in usage of
these elements is in the through-thickness node definition in the element assignment. Conventional shell elements only
require node definition at the reference surface of a three-dimensional body. Comparatively, continuum shell elements
require node definition for the full three-dimensional body.

Firstly, the geometry of a structure (a flat plate and thin-walled cylinder are considered in this manuscript) is
defined by numerical discretization to generate nodes for construction of the FE mesh. Conventional shell element
nodal coordinates for a flat plate are required only in the G-H plane. Whereas for a cylinder, nodes are given (G, H, I)
coordinates, in which the cylinder coordinates are found as

(G1, H1, I1) = (G, ' cos o, ' sin o) (4)

to give a cylinder of radius '. 4-node conventional shell elements (S4R) are formulated by a meshing algorithm
which assigns elements through a counterclockwise numbering convention [12]. Comparatively, 8-node continuum
shell elements (SC8R) formulation requires an additional layer of nodal coordinates for element definition, where the
additional layer of nodes, for a cylinder is computed as simply

(G2, H2, I2) = (G, (' + Clam) cos o, (' + Clam) sin o) (5)

where Clam is the total thickness of the laminate, geometrically defined as # × C, here # is the number of plies in the
laminate.
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(a) Axial Tow Steering by CTS (b) Circumferential Tow Steering by CTS

Fig. 4 Steering of angles to give fiber angle distributions in the axial direction by (a) q = 0° and circumferential
by (b) q = 90° on a thin-walled cylinder of dimensions ! = ' = 1m. Note the periodicity of the resulting pattern
in spatial angle variation and hence ability to extract constant-angle ‘slices’. Note, all angles are taken with
respect to the G-axis, following the convention of Lincoln [15]

To model CTS structures, which are both variable-angle and variable-thickness, the notation presented in Section II.A
is implemented by inferring that constant fiber angle ‘slices’ may be taken of the structure upon discretization due to the
perfect tesselation of material tows by the CTS process. For example, consider Fig. 4a, where the material tows are
being steered along the cylinder’s longitudinal axis. A constant fiber angle can be extracted around the circumference
due to tessellation. Similarly, for circumferential steering in Fig. 4b, constant fiber angle ‘slices’ can be assigned. The
geometry of these constant-angle ‘slices’ is formulated by consideration of both the structural geometry and CTS layup
design. This notion of constant fiber angle ‘slices’ is similar to that of the partitioning method used by Labans et al. [10].
However, this method employs a far finer discretization, such that each element within a mesh is assigned unique
properties depending upon the chosen CTS layup design and the element’s position . To further aid computational
efficiency in model formulation, a ply-level unit cell can be defined. From Fig. 4, it is clear that the logical choice of a
unit cell for a ply is a single shearing period, i.e. a single )0→ )1→ )0 variation. The formulation of a unit is visualized
in Fig. 3 for a thin-walled cylinder. Additional modeling efficiency can be introduced if considering laminates which
follow conventional design rules, such as being balanced and/or symmetric. A balanced or symmetric laminate reduces
the number of unique spatial variation computations by a factor of 2. If combined a balanced and symmetric laminate
reduces the unique computations by a factor of 4.

The element type chosen for structural modeling dictates whether fiber angles must be computed at element centroids
only or also at nodal locations. A current limitation of the commercial FE software employed in this work, Abaqus 2018,
is that only a single fiber angle can be assigned per ply within a section. There is potential within Abaqus CAE to assign
stiffness matrices at integration points by means of full integration shell elements and user subroutines [12]. However,
this will incur additional computational cost in the software pre-processor as multi-thread operation is currently not
supported, unlike in the solver [12]. Thus, for the reduced integration elements chosen within this work the calculation
of fiber angles at nodes is for continuum shell element geometry definition not section assignment. Irrespective of
element type chosen, the fiber angle must be computed at the element centroids for section assignment.

In addition to computation of fiber angles at nodes and element centroids, the corresponding thickness variations
must be also represented due to the orientation-thickness coupling of tow steering by CTS. For thickness computation,
through-thickness dummy nodes and centroids are utilized to represent the required offsets due to a thickness variation.
The positional thickness is found by simple summation of these dummy nodes as Eq. (6) and 7, and as such can reflect
the potential for layup offset in either the positive or negative I-direction.

C (G,,) =
#∑
:=1

C:0 · sec((\: (G,,) − q: ) (6)
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Table 1 Material properties of MTM-43/T800, reproduced from [16]

�1 �2 �12 �13 a12 �23 d C0

(GPa) (GPa) (GPa) (GPa) (GPa) (kg/m3) (mm)
122 7.32 4.9 4.9 0.31 3.23 1590 0.13

Fig. 5 Load introduction for critical buckling load computation of thin-walled cylinder and flat plate. Arrows
show direction of load with respect to global coordinate system. Note orientation of global coordinate system.

C (!, H) =
#∑
:=1

C:0 · sec((\: (!, H) − q: ) (7)

IV. Problem Definition
Both a unit tow-steered CTS flat plate and thin-walled cylinder (!plate = ,plate = !cylinder = 'cylinder = 1m) are fully

geometrically discretized by the prior methodologies to investigate the potential benefit of additional node definition
by use of continuum shell elements. These two structures are chosen due to wide applicability to aerospace design
scenarios and, more pertinently, the increase in geometrical curvature. The carbon-epoxy material system used in this
manuscript is MTM-43/T800, with orthotropic properties presented in Table 1.

All structures in this manuscript are laminates where the bottom-most ply is stacked onto a tool surface such that the
element normal is directed outwards. Furthermore, the structures are subjected to a linear eigenvalue approximation of
both natural frequency and critical buckling load; two common aerospace design drivers.

When computing fundamental frequency each structure has no constraints on any edge, hence edges Γ1 and Γ2

(see Fig. 5) on the thin-walled cylinder are free; similarly, edges Γ1, Γ2, Γ3 and Γ4 on the flat plate are free. For
each structure an eigenvalue prediction of resonant frequency is conducted in Abaqus Standard. Comparatively, when
computing critical buckling loads of each structure constraints must be enforced. The buckling setup of both structures
follows two classical structural mechanics problems. Namely, axial compression buckling of a thin-walled cylinder and
compression buckling of a simply supported plate. Thus, to numerically represent these problems boundary conditions
are introduced to allow only vertical translation on edge Γ1 of the thin-walled cylinder, with edge Γ2 is fully fixed. All
edges of the flat plate are free to translate and rotate in-plane but not out-of-plane. The general buckling problem setup
is visualized in Fig. 5, where the edges Γ1, Γ2, Γ3 and Γ4 are identified and the loading conditions are specified. Models
are formulated with both conventional and continuum shell elements. Both conventional and continuum shell elements
have equal degrees of freedom (DOF), where conventional shells posses 3 translational and 3 rotational DOFs per node.
Comparatively continuum shell elements have 3 translational DOFs per node. Constant-thickness meshes are iteratively
increased in resolution from 10 × 10 to 200 × 200 in increments of 10 × 10 to study the effects of element choice on
eigenvalue convergence for both linear frequency and buckling analysis. Comparatively, the variable thickness nature
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Table 2 CTS Layups Considered. Resulting thickness build-ups are presented in Fig. 6.

Number Layup
1 [±0〈0|70〉10]2s

2 [±0〈0|70〉10/±90〈0|70〉10]s

Table 3 Meshes required for 1% convergence for constant-thickness structures. N.B. run time refers to solver
CPU time and converged mesh refers to a mesh of =2 elements.

Structure Analysis Element Type Converged Mesh Run Time (s)
Plate Frequency S4R 20 1

SC8R 20 2
Plate Buckling S4R 50 1

SC8R 70 1
Cylinder Frequency S4R 50 3

SC8R 30 3
Cylinder Buckling S4R 100 139

SC8R 110 313

of CTS structures is expected to require finer meshes than that for constant-thickness structures, hence meshes are
iteratively increased in resolution from 50 × 50 to 600 × 600 in increments of 25 × 25.

The objective of this manuscript is to consider whether the use of continuum shell elements represents a worthwhile
modeling consideration when studying CTS structures. As CTS structures are variable angle, and more pertinently,
variable thickness, it is expected that there is potential for the use of coarser meshes when using continuum shell
elements. It is hypothesized that coarser continuum than conventional shell meshes may be employed due to the ability
of continuum shell elements to more accurately discretize the thickness variations of CTS structures. By accurate
capture of the thickness variations, comparatively fewer elements may be used and thus a reduction in computational
solution time is expected.

V. Results
Firstly, in subsection V.A, an investigation into the use of conventional and continuum shell elements is considered

for constant-angle, constant-thickness structures. These constant-angle, constant-thickness structures represent a simple
discretization problem of ‘standard’ laminated structures. Next, in subsection V.B, a comparison of two CTS tow-steered
structures (flat plate and thin-walled cylinder) is made to identify the need for modeling with elements that allow for
full geometrical discretization. For each structure type, two CTS stacking layup designs of increasing discretization
difficulty are investigated. Hence, each model is discretized by conventional and continuum shell elements, and accuracy
is subsequently compared to a mesh of fine resolution. In this manuscript convergence is defined when

|1 − (_8/_ 5 ) | ≤ 0.01, (8)

where _8 and _ 5 are the resulting eigenvalues of the current (8) and the final ( 5 ) mesh iteration. The effects of increasing
mesh resolution, defined by number of elements per unit area, i.e. =e

8
/�8 , where =e

8
and �8 are the number of elements

and planar area of the 8Cℎ mesh iteration are investigated.

A. Constant-Thickness Structural Discretization By Shell Elements
In the analysis of constant-thickness, constant-angle plate with layup [±45/0/90]s, the choice between continuum

and conventional shell element shows no difference when undertaking a linear eigenvalue frequency analysis. The
effects of increasing mesh resolution upon solution accuracy is presented in Fig. 7.

As presented in Fig. 7, there exists few cases where the use of conventional over continuum shell elements, or
vice-versa, represents a significant avenue for increased computational solution efficiency. As is evident, the outlier in
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(a) Layup 1 ([±0〈0|70〉10]2s) Flat Plate (b) Layup 2 ([±0〈0|70〉10/±90〈0|70〉10]s) Flat Plate

(c) Layup 1 ([±0〈0|70〉10]2s) Thin-Walled Cylinder (d) Layup 2 ([±0〈0|70〉10/±90〈0|70〉10]s) Thin-Walled Cylin-
der

Fig. 6 Thickness build ups resulting from Layups 1 and 2 presented on the flat plate and thin-walled cylinder.
Meshes are 400 × 400 for the flat plates in (a) and (b). The thin-walled cylinders, presented in (c) and (d)
need comparatively finer meshes for accurate thickness build-up representation due to the larger unrolled
dimensions, i.e. !plate = ,plate = !cylinder = 'cylinder = 1m, thus �plate = !×, and �cylinder = !×2c', and hence
are represented by 600 × 600 meshes. All figures denote thickness computations at nodal locations by use of
continuum shell elements. Note Layup 1 corresponds to thickness build-ups aligned in the global H-direction due
to steering in the G-direction. Additionally, the mixed steering of Layup 2 renders thickness build-ups aligned in
both the global G- and H- directions. Regardless of steering directions the magnitude of the thickness build-ups
is constant.
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(a) Constant-thickness Plate Frequency
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(b) Constant-thickness Cylinder Frequency
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(c) Constant-thickness Plate Buckling

0 1000 2000 3000 4000 5000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1% Convergence

(d) Constant-thickness Cylinder Buckling

Fig. 7 Constant-thickness structure eigenvalue approximation of frequency and buckling eigenvalues for each
considered structure (flat plate and thin-walled cylinder). Mesh resolutions required for 1% convergence of
resulting linear frequency and buckling eigenvalues are presented in Table 3.
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the data is the cylinder buckling analyses, presented in Fig. 7d. Cylinder buckling, in comparison to the other analyses is
the most difficult to approximate and as such, both the mesh resolutions and run time requirements are substantially
greater. When comparing the constant-thickness cylinder, Fig. 7d to the other three figures, Figs. 7a, 7c and 7b, it is clear
that the rate of convergence for both element types is slower than that presented for the others. Moreover, the continuum
shell element mesh required for 1% convergence is only 21% finer, yet the run time requirement is 125% greater. Thus,
the relation between mesh resolution and run time is highly non-linear, whereby a single iteration later requires a
substantially higher solver time. It is expected that the curvature of the constant-thickness cylinder compounded with
complex mode shapes arising during buckling contributes to this increased required meshing resolution and resulting
run times.

Both the constant-thickness plate frequency and buckling analyses presented in Figs. 7a and 7c show similar
behavior. The constant-thickness plate frequency analyses shows no benefit to either element types, both element types
achieve 1% convergence at the same mesh resolutions. The plate, implicitly, is flat and the mode shapes arising are
simple, hence coarse meshes can be used. The meshes required are only fine enough to capture the mode shape, which
the two element types achieve equally well. Moreover the plate buckling analyses implies, from a mesh resolution view,
that the use of continuum shell elements is preferred to conventional shell elements. However, comparing the run times
between the conventional and continuum shell element solutions for flat plate buckling presented in Table 3, shows that
the run times are equal. Indeed, both run times are equal and low, and thus for these analyses there is little benefit to one
element choice over another.

The constant-thickness cylinder frequency analyses presented in Fig. 7b, show behaviors similar to those discussed
prior for the constant-thickness plate frequency and buckling analyses. The use of continuum shell elements allows for
coarser meshes to be used yet, again, the run time does not show significant benefit. For these coarse mesh resolutions,
30 × 30 elements, the use of continuum shell elements better approximates the curvature of the cylinder, however there
is no run time benefit due to the quick solution computation, which is equal between element types.

For modeling buckling of the constant-angle, constant-thickness cylinder, Fig. 7d, the continuum shell elements
begin with similar magnitudes of error to that in the flat plate buckling, Fig. 7c. The primary difference in the response
between plate and cylinder buckling is in the rates of convergence. The rate of convergence of the plate is greater
than that of the cylinder, where the plate converges upon the 1% criterion at lower mesh resolutions than the cylinder.
The cylinder buckling meshes achieve 1% convergence at 100 × 100 and 110 × 110 elements for the conventional and
continuum shell elements, respectively. Hence, across both structures it is apparent that greater mesh resolution is
required for convergence when investigating structural buckling. Moreover, the rate of convergence for both plate and
cylinder vibration is greater than that exhibited under buckling.

B. Variable Thickness Structural Discretization By Shell Elements
The effects of increasing mesh resolution on accuracy of resulting linear frequency and buckling eigenvalues

for a flat plate and thin-walled cylinder are presented in Fig. 8. For each structure type, two CTS stacking layup
designs of increasing discretization difficulty are investigated, where Layup 1 and Layup 2 refer to [±0〈0|70〉10]2s
and [±0〈0|70〉10/±90〈0|70〉10]s respectively. For all analyses, the initially investigated element size is based on the
recommendation by Meyer-Piening et al. for cylinder buckling: 0.5

√
'C, where ' is cylinder radius and C is wall

thickness [22]. However, this element size recommendation is for use in isotropic cylinders, hence for the highly
anisotropic stiffness variations of CTS cylinders it is a useful first-order approximation of mesh density only, not for
exact heedance. If this recommendation were followed, it would produce a mesh of such inadequacy that it would not lie
within the G-axis range of the presented plots in Fig. 8a. Hence, this motivated the need for iterative refinement of the
meshes until sufficient convergence within 1% is achieved.

As presented in Fig. 8a, the conventional shell elements appear to outperform the continuum shell elements for
both considered CTS layups for the plate frequency analysis. The conventional shell element model meets the 1%
convergence two iteration earlier than the continuum shell element model. The difference in run time does not scale
linearly with mesh resolution, hence accuracy is to be sought where possible. This run time nonlinearity is also present
in the analysis of constant-angle, constant-thickness structures presented in Section. V.A. The CTS plate frequency
analysis indicates that conventional shell elements should be employed in this particular analysis case where convergence
is achieved sooner. Earlier convergence allows for coarser meshes and hence comparatively shorter run times per model
and thus a more computationally efficient FE modeling tool. In the case of free vibration of CTS plates, the element
choice appears to follow that presented prior in Section V.A. For the case of plate free vibration, conventional elements
are in fact the superior choice. Moreover, the free vibration of both CTS cylinders also shows similar response to that
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Fig. 8 Variable thickness structure eigenvalue approximation of frequency and buckling eigenvalues for each
considered structure (flat plate and thin-walled cylinder). Mesh resolutions required for 1% convergence of
resulting linear frequency and buckling eigenvalues are are presented in Table 3. Note regions of maximum
convergence behavior, i.e. results at low mesh resolutions, are highlighted on each figure as to better identify
superior element choices.
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Table 4 Meshes required for 1% convergence for variable-thickness structures. N.B. run time refers to solver
CPU time and converged mesh refers to a mesh of =2 elements.

Structure Analysis Layup Element Converged Mesh Run Time (s)
Plate Frequency 1 S4R 75 4

SC8R 125 12
2 S4R 75 5

SC8R 125 12
Plate Buckling 1 S4R 125 27

SC8R 300 23
2 S4R 125 25

SC8R 225 10
Cylinder Frequency 1 S4R 175 18

SC8R 200 33
2 S4R 125 11

SC8R 100 9
Cylinder Buckling 1 S4R 75 26

SC8R 225 617
2 S4R 200 233

SC8R 175 196

in Section V.A, where the rates of convergence are similar between element types, but the continuum shell elements
begin with greater accuracy than the conventional shell elements. Thus, there is little benefit to the greater thickness
discretization permissible by continuum shell elements.

The benefits of using continuum over conventional shell elements for extracting the critical buckling load of the
CTS plates is evident in Fig. 8c, albeit for run time only. This counter-intuitive response is similar also to that discussed
prior in Section. V.A, where a finer mesh resolution does not necessarily imply a greater run time. For example, the
iteration which achieves the 1% convergence for variable angle, variable thickness plate buckling, for both Layup 1 and
2 require a finer continuum shell element mesh. However, this finer mesh has a lower run time than that found in the
conventional shell element solutions. This is particularly evident where the conventional shell element model allows
for a 40% coarser mesh, but this comes with a 2.5 times increase in run time. Thus, in general a fine mesh does not
necessarily render a greater run time, this is contradictory to what one would presume.

Considering Fig. 8b it is evident that the use of continuum shell elements is of better argument when inspecting
Table 4. The continuum shell elements, for Layup 2 ([±0〈0|70〉10/±90〈0|70〉10]s) achieve 1% convergence with lower
run times than for conventional shell elements. In the case of Layup 2, the mesh resolution required and run time
is below that found in the variable angle, variable thickness flat plate frequency and buckling models. The run time
benefits of continuum shell elements for layup 2 thin-walled cylinder frequency analysis is 18%. Moreover, when
comparing Layups 1 and 2 directly for thin-walled cylinder frequency analysis it is clear that Layup 1 represents a more
computationally expensive solution to obtain. Moreover, the notation of Layup 2, [±0〈0|70〉10/±90〈0|70〉10]s, denotes
a grid-like thickness build-up pattern. This resulting pattern gives equal stiffness variations in both directions on the
plate and cylinder. Comparatively Layup 1, [±0〈0|70〉10]2s, denotes transverse or hoop-like thickness build-ups. Hence,
Layup 1 has greater stiffness in one direction, this is the transverse and circumferential directions for the plate and
cylinder respectively. A stiffness inequality is evidently harder to capture, hence the difference between Layup 1 and 2
eigenvalue results. Furthermore, there is greater potential for mode changes in Layup 1 for increasing mesh density,
where the resulting frequency eigenvalues converge slower than those for Layup 2 due to the stiffness asymmetry present
in Layup 1.

In the buckling of CTS cylinders, the continuum shell element shows benefit for Layup 2, which is identical to that
seen in the frequency analysis of CTS cylinders. For Layup 1, the conventional shell element model converges at rather
coarse mesh resolutions (75 × 75). For Layup 2, the continuum shell demonstrates promising results where a coarser
mesh is used to achieve the 1% convergence criterion and as such attains a 15% faster run time. The mixed steering
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angles of Layup 2, (q1 ≠ q3), which cause the grid-like thickness build-ups can be better discretized by continuum shell
elements and hence a lower mesh resolution and run time are achieved.

Upon inspection of Fig. 8, one can observe that the convergence behavior of the variable thickness structures does not
behave as classically expected, i.e. a smooth exponential decay, such as that seen prior in Fig. 7 for the constant-thickness
structures. Instead a non-classical convergence behavior arises due to nuances within the FE discretization algorithm.
This non-classical behavior manifests as oscillations to the decay function. These oscillations are present for all
variable thickness structures in this manuscript and is not a feature of a single data set only, but of the discretization
methodology. However, note that the magnitude of these oscillations decrease as mesh resolution increases. This
decrease in oscillations as mesh resolutions increase is due to the relative location of a discretized constant-angle ‘slice’
to the true analytical thickness variation.

Essentially, the continuum shell elements can capture the minima of the global thickness profile of the CTS
structure as the first and last minima corresponds to G = 0 and G = !, respectively, for q = 0°. However, as the
orientation-thickness coupling is highly non-linear it is pertinent to capture the maxima of the global thickness variation,
as both Layup 1 and 2 are highly periodic this is not always assured. The continuum shell element nodes will capture
the maxima at select meshes, not all. Moreover, due to the thicknesses of conventional shell elements being assigned by
their centroid location, these elements asymptotically approach the maxima of the thickness variation. Thus, as there is
inherent variation in the thickness discretization whereby maxima and minima are under and over approximated this has
a direct influence upon the stiffness of the discretized structure. As both linear buckling and frequency eigenvalues are
driven by stiffness, an under approximation of the maximum thickness results in a under approximation of the maximum
stiffness. Hence, as the buckling eigenvalues are proportional to stiffness this results in a lower resulting buckling load,
and as such, a premature drop in the accuracy of a mesh iteration. This also holds true for the frequency eigenvalues.

This oscillatory phenomena is presented visually in Fig. 9, for a low periodicity layup ([±0〈0|70〉1]2s) on the flat
plate as a test case. The maximum element thickness, found by conventional shell element centroid locations approaches
the continuum shell element maximum nodal thickness, which is a perfect discretization of the true variable thickness
geometry in Fig. 9a. Comparatively, Fig. 9b shows a switch between the conventional and continuum shell element
discretizations, where the continuum shell elements now asymptotically approach the conventional shell element models.
Thus, if an element centroid, in the case of conventional shell elements, does not lie upon a line of maximum thickness
then the minimum and maximum thicknesses of the mesh are over and under discretized, respectively. Effectively,
an inadequacy arises to the approximation of the global thickness minima and maxima. An ideal mesh allows for
the (G, H) - coordinates of the continuum shell element nodes to reside on these lines of maximum thickness. Such
an ideal mesh is formulated with an even number of elements in the case of continuum shell elements. As a basic
example, consider a single )0→ )1→ )0 shearing period. An even number of elements will allow for the continuum
shell element nodes to capture both starting, )0, and ending, )1, angles of the period by locating nodes coincident
with the thickness minima and maxima. Furthermore, the conventional shell elements, asymptotically converge to the
continuum shell discretization, due to the centroids being out-of-phase with the thickness minima and maxima by a half
element. However, if the number of elements in the mesh is odd, the )0→ )1→ )0 period is under approximated by the
continuum shell elements as the nodes are misaligned with the thickness minima and maxima of the period. In this case,
the conventional elements capture the maxima in the thickness profile accurately as the centroid of the conventional shell
element is coincident with these points. However, note it is only the maxima that is captured perfectly, there still exists a
half element misalignment to the conventional shell elements due to the centroid being inherently located at the center
of an element. Hence, meshes presented in Fig. 8 comprising of an odd number of elements represent solutions which
under approximate the maximum stiffness of the discretized structure and as such render a lower resulting frequency of
buckling eigenvalue from the analyses. This misalignment of nodes and thickness maxima is visualized in Figs. 10 and
11 for even and odd total element counts, respectively.

Hence, there exists three potential solutions to remedy this modeling phenomena. As the oscillations decrease with
increasing mesh resolution the phenomena can be mitigated by those meshes which exceed 1% convergence, i.e. at
fine mesh resolutions. This, however, is a computationally inefficient solution. To improve modeling efficiencies, if
modeling with conventional shell elements meshes with an odd total element count are recommended. Likewise, if
modeling with continuum shell elements meshes with an even total element count are recommended to achieve earlier
convergence by exploiting element geometries.

Overall, it is clear that all analyses of CTS structures are of increased discretization difficulty in comparison to
the constant-thickness analyses presented in Section V.A. In general, the conventional shell element results in quicker
convergence and faster run times for Layup 1, where steering and thickness build ups occur in one direction only. For
Layup 2, on the other hand, the continuum shell generally lead to faster convergence and quicker run times. This is

14



0 0.5 1 1.5 2 2.5 3 3.5 4

10
5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
S4R

SC8R

1% Convegence

(a) Even total number of elements in mesh

0 0.5 1 1.5 2 2.5 3 3.5

10
5

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
S4R

SC8R

1% Convegence

(b) Odd total number of elements in mesh

0 0.5 1 1.5 2 2.5 3 3.5 4

10
5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
S4R

SC8R

1% Convegence

(c) Mixed odd and even numbers of elements in mesh

Fig. 9 Maximum thickness discretization of 8Cℎ mesh iteration of conventional (S4R) and continuum (SC8R)
shell element models for a low periodicity, [±0〈0|70〉1]2s, CTS plate of dimensions ! = , = 1m. The oscillatory
convergence of (c) is due to the number of elements varying between odd and even counts. If the mesh consists
of an even number of elements, such as that presented in (a), the continuum shell elements can perfectly capture
the true thickness variation of the CTS structure, comparatively the conventional shell asymptotically approach
the continuum shell element discretization. (b) presents odd total element counts in a mesh. This odd number
of elements allows the conventional shell elements to capture the true thickness variations, as evident by the
switching of the traces between (a) and (b). Hence, the oscillatory convergence of (c) occurs due to misalignment
of periodicity lines with constant-angle ‘slices’ at odd element counts in the case of the continuum and even in
the case of the conventional shell elements.
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(a) Even conventional element count (b) Even continuum element count

Fig. 10 Even element counts for a demonstratory shearing period in the I − H plane for q = 90, where the
conventional shell elements in (a) cannot capture the maximum of the thickness distribution, <0G(C8), as the
angles and thus thicknesses are computed at the element centroids, identified by blue crosses). Comparatively,
the continuum shell elements in (b) align the nodes with the region of maximum thickness.

(a) Odd conventional element count (b) Odd continuum element count

Fig. 11 Odd element counts for an demonstratory shearing period in the I − H plane for q = 90, where the
conventional shell elements in (a) can capture the maximum of the thickness distribution, <0G(C8), as the angles
and thus thicknesses are computed at the element centroids, identified by blue crosses, which are aligned with
the region of maximum thickness. Comparatively, the continuum shell elements in (b) cannot capture the region
of maximum thickness due to being out-of-phase by half an element.
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likely due to the fact that Layup 2 has a more complicated layup with some plies being steered axially and others
transversely/circumferentially. This steering scheme creates a highly non-uniform grid-like thickness distribution that is
more difficult to model using a single reference plane per element (conventional shell element) than a discretization of
the top and bottom surfaces of the laminate (continuum shell element). As such intricate designs with grid-like thickness
variation can readily occur in comprehensive optimization studies for various load cases, use of the continuum shell
element is generally recommended to give an accurate representation of the asymmetric thickness build-ups of CTS
structures. Moreover, one must carefully consider the repercussions of chosen element type on the discretization ability
of an employed method. It is critical that, in the case of conventional shell element usage, that the element centroids lie
upon a line of maximum thickness. Comparatively, the nodes of a continuum shell element must be coincident with the
maxima of the resulting thickness variations when steering by CTS.

VI. Conclusion
This manuscript has investigated the need for modeling with continuum over conventional shell elements for

both CTS plates and cylinders with two laminate layups of increasing discretization difficulty. These two structures
were chosen due to the increase in surface between a flat plate and thin-walled cylinder. The analysis type selected
was both fundamental frequency approximation and critical buckling load determination of the two structures under
classical boundary conditions for two different element types. Modeling with both 4-node conventional and 8-node
continuum shell elements was undertaken to investigate the hypothesis of increased discretization of the inherent
variable thickness geometry of CTS structure due to the non-linear orientation-thickness coupling. In summation, there
exist computational benefits for using additional representation of the thickness variations present when analyzing
CTS tow-steered structures in certain procedures. Continuum shell elements show increased computational efficiency
for plate buckling and cylinder frequency where lower computational cost is required to solve the linear eigenvalue
problems. Hence, it is recommended that any convergence analysis undertaken in a modeling investigation be between
multiple element types as there may exist benefits of additional node definition in an FE model. The primary benefit of
continuum shell element usage is in the superior discretization of the periodic variable thickness of CTS structures.
Overall, the potential benefit of superior thickness capture diminishes as mesh resolution increases, the conventional and
continuum shell element models converge to an equal result. However, in general accuracy versus run time is the most
common consideration to be made in FE modeling when selecting element types. Run time is especially a consideration
when conducting design studies, parametric variation or heuristic optimization methods. Thus, the run time savings of
continuum elements present the potential for more rapid design iterations in a computational framework. Future work
will extend the work to include consideration of imperfections in the analyses where imperfections can interfere with the
resulting mode shapes. Hence, if continuum shell elements can give reliably accurate solutions and arrive at consistent
mode shapes regardless of imperfections this will further strengthen their use. Moreover, it is expected that further
computational efficiencies can be found if meshes are locally refined around the thickness peaks. The non-linearity of
the fiber orientation-thickness coupling implies a critical region around the the thickness peaks where a locally refined
mesh could be implemented whilst maintaining coarse meshes in-between. Furthermore, adaptive meshing can be
expected to provide a highly optimized mesh for a given CTS layup and structural geometry and hence give a model that
finds the miniminum run time with coarsest mesh. This optimum mesh produced by adaptive meshing is expected to be
the most computationally efficient mesh possible.
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