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Abstract

Background: Glycemic traits—such as hyperinsulinemia, hyperglycemia, and type 2 diabetes—have been associated with
higher colorectal cancer risk in observational studies; however, causality of these associations is uncertain. We used
Mendelian randomization (MR) to estimate the causal effects of fasting insulin, 2-hour glucose, fasting glucose, glycated
hemoglobin (HbA1c), and type 2 diabetes with colorectal cancer. Methods: Genome-wide association study summary data
were used to identify genetic variants associated with circulating levels of fasting insulin (n¼34), 2-hour glucose (n¼13),
fasting glucose (n¼70), HbA1c (n¼221), and type 2 diabetes (n¼268). Using 2-sample MR, we examined these variants in
relation to colorectal cancer risk (48 214 case patient and 64 159 control patients). Results: In inverse-variance models, higher
fasting insulin levels increased colorectal cancer risk (odds ratio [OR] per 1-SD¼1.65, 95% confidence interval [CI]¼1.15 to
2.36). We found no evidence of any effect of 2-hour glucose (OR per 1-SD¼1.02, 95% CI¼0.86 to 1.21) or fasting glucose (OR
per 1-SD¼1.04, 95% CI¼0.88 to 1.23) concentrations on colorectal cancer risk. Genetic liability to type 2 diabetes (OR per 1-
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unit increase in log odds¼1.04, 95% CI¼1.01 to 1.07) and higher HbA1c levels (OR per 1-SD¼1.09, 95% CI¼1.00 to 1.19) in-
creased colorectal cancer risk, although these findings may have been biased by pleiotropy. Higher HbA1c concentrations in-
creased rectal cancer risk in men (OR per 1-SD¼1.21, 95% CI¼1.05 to 1.40), but not in women. Conclusions: Our results
support a causal effect of higher fasting insulin, but not glucose traits or type 2 diabetes, on increased colorectal cancer risk.
This suggests that pharmacological or lifestyle interventions that lower circulating insulin levels may be beneficial in
preventing colorectal tumorigenesis.

Obesity is an established risk factor for colorectal cancer devel-
opment (1–3) and is invariably characterized by dysregulated
metabolism, such as insulin resistance, hyperinsulinemia, hy-
perglycemia, and type 2 diabetes (4). Extensive epidemiological
research has shown that patients with type 2 diabetes are at
higher colorectal cancer risk than those without diabetes (5,6).
However, recent findings from 2 relatively small Mendelian ran-
domization (MR) studies (both including fewer than 7000 colo-
rectal cancer case patients) did not support a causal
relationship between genetic liability to type 2 diabetes and co-
lorectal cancer (7,8). Prior epidemiologic studies examining how
prediagnostic concentrations of fasting glucose, glucose toler-
ance (the measurement of circulating glucose levels 2 hours af-
ter an oral glucose challenge), and glycated hemoglobin (HbA1c)
relate to colorectal cancer risk have reported conflicting results
(9–15). Numerous epidemiological studies have examined the
associations between circulating levels of insulin and colorectal
cancer risk, with positive associations generally found in stud-
ies that measured circulating levels of C-peptide (a marker of in-
sulin secretion) (16–18), but inconsistent results reported in
studies that directly measured insulin levels (19–24). Possible
explanations for the conflicting results to date include the use
of nonfasting blood samples in some studies, differences in lab-
oratory assays used, and the vulnerability of prior investiga-
tions to the inherent biases of observational studies, such as
residual confounding and reverse causality.

MR uses germline genetic variants as instrumental variables
to allow causal effects of an exposure and outcome relationship
to be estimated. Due to the random assortment of alleles during
meiosis and germline genetic variants being fixed at concep-
tion, MR analyses are less susceptible to conventional con-
founding and reverse causality. To date, a large-scale MR study
examining the associations between multiple glycemic traits
and colorectal cancer has not been reported.

We used 2-sample MR to examine potential causal effects of
glycemic traits on colorectal cancer risk. This involved combin-
ing genetic variants robustly associated with circulating con-
centrations of fasting insulin, 2-hour glucose, fasting glucose
and HbA1c, and type 2 diabetes in genome-wide association
studies (GWAS) and then assessing the association of these var-
iants with colorectal cancer risk in a large consortium including
up to 48 214 colorectal cancer case patients and 64 159 control
patients (25).

Methods

Genetic Determinants of Glycemic Traits

Genetic instrumental variables comprised single nucleotide
polymorphism (SNPs) identified as being robustly associated
with each glycemic trait (at P< 5 � 10�8) from the largest GWAS
of that trait to date (26–29). For circulating concentrations of 2-
hour glucose, fasting glucose, and fasting insulin, the Meta-
Analyses of Glucose and Insulin-related traits Consortium

(MAGIC) GWAS included 63 396, 200 622, and 151 013 partici-
pants, respectively (28). Each glycemic trait was regressed with
body mass index (BMI), study-specific covariates, and principal
components (28). For HbA1c, the GWAS conducted by the Neale
laboratory included 361 194 UK Biobank participants (27) and
used least-squares linear models with sex and the first 10 prin-
cipal components from the UK Biobank sample quality control
(QC) file as covariates. For type 2 diabetes, the GWAS included
74 124 type 2 diabetes cases and 824 006 controls without type 2
diabetes (26). Within each contributing study, all variants were
tested for the association with type 2 diabetes using regression
models, with and without adjustment for BMI, and additionally
adjusted for study-specific covariates as well as principal com-
ponents. Participants were of European ancestry, approximately
55% were women, and aged a mean of more than 50 years. From
the genome-wide significant variants identified in these GWAS
for each glycemic trait, we excluded correlated SNPs based on a
linkage disequilibrium level of R2 less than 0.01 using genotype
data from European individuals from phase 3 (version 5) en-
rolled in the 1000 Genomes Project as a reference panel. The
proportion of variance explained by the genetic instruments for
the glycemic traits ranged from 0.6% to 5.7% (Table 1). We also
estimated the F-statistic, a formal test of whether the propor-
tion of variance explained is sufficiently high for a trait given
the sample size used. In our study, the estimated F-statistic val-
ues were greater than 516 for all genetic instruments. Summary
information on the genetic instruments, and the effect esti-
mates for each individual SNP with concentrations of fasting
insulin (n¼ 34 SNPs), 2-hour glucose (n¼ 13 SNPs), fasting glu-
cose (n¼ 70 SNPs), HbA1c (n¼ 221 SNPs), and type 2 diabetes
(n¼ 268 SNPs), are presented in Table 1 and Supplementary
Tables 1 and 2 (available online).

Data on Colorectal Cancer

Summary data for associations of the glycemic traits with colo-
rectal cancer were obtained from a GWAS of 112 373 partici-
pants (48 214 colorectal cancer cases and 64 159 controls). For
HbA1c, summary data were sourced from a smaller colorectal
cancer GWAS of 85 638 participants (42 886 colorectal cancer
cases and 42 752 controls) that excluded UK Biobank to avoid
sample overlap. The GWAS data were from a meta-analysis that
combined the ColoRectal Transdisciplinary Study (CORECT), the
Colon Cancer Family Registry (CCFR), and studies within the
Genetics and Epidemiology of Colorectal Cancer (GECCO) con-
sortium (30). Imputation was performed using the Haplotype
Reference Consortium r1.1 reference panel. Logistic regression
models were adjusted for age, sex, and study or genotyping
project to specific covariates, including principal components
(of all genetic variants that surpassed quality control filtering)
to adjust for population structure (25). Participants were of
European ancestry, approximately 55% were women, and aged
a mean of more than 50 years. All participants provided written
informed consent, and each study was approved by the relevant
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research ethics committee or institutional review board. The ef-
fect estimates for associations of each individual glycemic trait
related SNP with colorectal cancer from the GECCO, CORECT,
and CCFR meta-analysis are presented in Supplementary Table
1 (available online). For sensitivity analyses, summary-level
data for the associations for glycemic trait related variants with
colorectal cancer were also obtained from a FinnGen consor-
tium GWAS of 2435 colorectal cancer cases and 147 282 non-
cancer cases (31).

Statistical Power

Post hoc statistical power was calculated using an online tool at
https://shiny.cnsgenomics.com/mRnd/. We had sufficient sta-
tistical power (>80%) to detect relatively small causal effect esti-
mates with minimum expected odds ratios (ORs) per 1 SD
ranging from 1.09 to 1.24 for glycemic traits in relation to colo-
rectal cancer risk (Supplementary Table 3, available online).

Statistical Analysis

Two-sample random-effects inverse variance weighted methods
were implemented. Odds ratios were scaled to a 1-SD increase in
log of fasting insulin (mean approximately 57 pmol/mol; SD ap-
proximately 42 pmol/mol), 2-hour glucose (mean approximately 5
mmol/L; SD approximately 0.6 mmol/L), fasting glucose (mean ap-
proximately 6 mmol/L; SD approximately 1.6 mmol/L), and HbA1c
(mean approximately 36 mmol/mol; SD approximately 6.7 mmol/
mol) concentrations; and a 1-unit increase in log odds of type 2 di-
abetes. False discovery rate correction was computed (q-value;
statistical significance level <.05) for the primary analyses—sexes
combined inverse variance weighted models for colorectal can-
cer—using the Benjamini-Hochberg method (32). Heterogeneity
by sex and anatomical subsite (colon, proximal colon, distal co-
lon, and rectum) was assessed by calculating v2 statistics.
Cochran’s Q statistics quantified heterogeneity across individual
SNPs. Sensitivity analyses were conducted to assess and correct
for the presence of horizontal pleiotropy (ie, genetic variants
influencing colorectal cancer via an alternate biological pathway,
independent of the glycemic exposure of interest). To evaluate
the extent to which directional pleiotropy (nonbalanced horizon-
tal pleiotropy in the MR risk estimates) may have affected the
causal estimates, we used MR-Egger regression (33). We also com-
puted odds ratios using the complementary weighted median
method that can provide valid MR estimates under the presence
of pleiotropy when up to 50% of the included instruments are in-
valid (34). The presence of pleiotropy was also assessed using the
MR pleiotropy residual sum and outlier test (MR-PRESSO), in
which outlying SNPs are excluded from the instruments and the
effect estimates are reassessed (35).

The GWAS used for the fasting insulin genetic instrument
adjusted for BMI, however, conditioning on BMI (a heritable
covariable) may introduce bias if BMI is a collider in the path-
way between the genetic instrument of fasting insulin and/or
the genetic instrument to colorectal cancer relationships.
Therefore, we conducted a sensitivity analysis excluding var-
iants related to BMI at the P less than 5 � 10�8 (n¼ 9) level (iden-
tified by searching http://www.phenoscanner.medschl.cam.ac.
uk/; date checked May 2021). For type 2 diabetes, the genetic in-
strument included GWAS estimates unadjusted for BMI, but to
assess the possible influence of collider bias on our MR esti-
mates, we conducted a sensitivity analysis using BMI-adjusted
GWAS summary estimates in the genetic instrument. Finally, in
a sensitivity analysis, separate MR analyses were also con-
ducted using data from the FinnGen consortium, and estimates
were combined with those from our main analyses (GECCO,
CORECT, and CCFR) using fixed-effects meta-analysis.

All statistical tests were 2-sided. Thresholds for nominal sig-
nificance (for the secondary and sensitivity analyses) were set
at P less than .05. All statistical analyses were performed using
the MendelianRandomization R package (36).

Results

Effect of Fasting Insulin and Colorectal Cancer

Higher fasting insulin levels increased colorectal cancer risk (OR
per 1-SD, 1.65, 95% confidence interval [CI]¼ 1.15 to 2.36, q-val-
ue¼ 0.035). Evidence of effect heterogeneity by SNP was found
(Cochran’s Q P¼ 1.6 � 10�7), but little evidence of directional
pleiotropy was detected (MR-Egger intercept P¼ .78). Positive
effect estimates were also found in the weighted median, MR-
Egger, and MR-PRESSO models (Table 2). There was little evi-
dence of heterogeneity by sex in the inverse variance weighted
models (Pheterogeneity ¼ .9), although evidence of pleiotropy was
detected for women in the weighted median and MR-Egger
models. Similar effect estimates were also found for all colorec-
tal cancer subsites (Pheterogeneity for colon vs rectal cancer¼ .98;
Pheterogeneity for proximal colon vs distal colon cancer¼ .98)
(Table 2). In the sensitivity analysis that excluded genetic var-
iants associated with BMI (n¼ 9 SNPs removed), similar strength
positive effect estimates were found (Supplementary Table 4,
available online). Scatter plots (with colored lines representing
the slopes of the different regression analyses) for the fasting
insulin, plus other glycemic traits, and colorectal cancer associ-
ation are presented in Supplementary Figure 1 (available on-
line). A similar association without evidence of heterogeneity (I2

¼ 0%) was found for fasting insulin with colorectal cancer when
estimates using data from GECCO, CORECT, and CCFR and
FinnGen were pooled (OR per 1-SD¼ 1.68, 95% CI¼ 1.12 to 2.23)
(Supplementary Table 5, available online).

Effects of 2-Hour Glucose, Fasting Glucose, and HbA1c
on Colorectal Cancer

We found no evidence of any effects of 2-hour glucose (OR per
1-SD increase ¼ 1.02, 95% CI¼ 0.86 to 1.21, q-value¼ 0.81) or fast-
ing glucose (OR per 1-SD increase¼ 1.04, 95% CI¼ 0.88 to 1.23,
q-value¼ 0.81) on colorectal cancer in the inverse variance
weighted models. Similar null effect estimates were found for
men and women (Pheterogeneity > .2), across anatomical subsites
(Pheterogeneity for colon vs rectal cancer >.2; Pheterogeneity for

Table 1. Summary of the glycemic trait instrument variables used in
this studya

Glycemic trait No. of SNPs Variance explained, %

Fasting insulin (29) 34 0.6
2-hour glucose (29) 13 2.4
Fasting glucose (29) 70 1.4
Glycated hemoglobin

(HbA1c) (27)
221 5.7

Type 2 diabetes (26) 268 2.0

aSNP ¼ single nucleotide polymorphism.
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proximal colon vs distal colon cancer >.3), and for the weighted
median, MR-Egger, and MR-PRESSO models (Table 2).

In the inverse variance weighted model, a positive effect was
found for HbA1c concentration with colorectal cancer risk (OR
per 1-SD increase¼ 1.09, 95% CI¼ 1.00 to 1.19; q-value¼ 0.08),
with similar effects in men and women (Pheterogeneity ¼ 1)
(Table 2). However, evidence of effect heterogeneity (Cochran’s
Q P¼ 2.8 � 10�21) and directional pleiotropy was detected (MR-
Egger intercept P¼ .04), with no evidence of causal effects found
in the weighted median, MR-Egger, and MR-PRESSO models.
Little evidence of heterogeneity was observed across anatomical
subsites (Pheterogeneity for colon vs rectal cancer¼ 0.14;
Pheterogeneity for proximal colon vs distal colon cancer¼ .83). A
positive effect of HbA1c on rectal cancer was found (OR per 1-SD
increase¼ 1.19, 95% CI¼ 1.06 to 1.33), but this effect was attenu-
ated towards the null in the weighted median and MR-Egger
models. For men, however, a positive effect was found for
HbA1c concentration and rectal cancer (OR per 1-SD¼ 1.21, 95%
CI¼ 1.05 to 1.40), with evidence of effect heterogeneity
(Cochran’s Q P¼ 5.9 � 10�4) but little evidence of directional plei-
otropy (MR-Egger intercept P¼ .77). Similar effect estimates
were observed for rectal cancer in men in the weighted median,
MR-Egger, and MR-PRESSO models (Table 2).

Effects of Type 2 Diabetes and Colorectal Cancer

In the inverse variance weighted model, a weak positive effect
was found between genetic liability to type 2 diabetes and colo-
rectal cancer (OR per 1-unit increase in log odds¼ 1.04, 95%
CI¼ 1.01 to 1.07, q-value¼ 0.05), with similar magnitude of
effects by sex (Pheterogeneity ¼ .14) and anatomical subsites
(Pheterogeneity for colon vs rectal cancer¼ .71; Pheterogeneity for
proximal colon cancer vs distal colon cancer¼ .73) (Table 2).
However, no evidence of causal effects was detected in the
weighted median (OR¼ 1.00, 95% CI¼ 0.96 to 1.04) or MR-Egger
models (OR¼ 0.97, 95% CI¼ 0.90 to 1.04), with evidence of effect
heterogeneity (Cochran’s Q P¼ 1.9 � 10�16) and directional plei-
otropy detected (MR-Egger intercept P¼ .04). A similar pattern of
results to the inverse variance weighted model was found when
the MR-PRESSO test detected outlier SNPs were excluded from
the models (Table 2) and when type 2 diabetes GWAS summary
estimates adjusted for BMI were used in the genetic instrument
(Supplementary Table 6, available online).

Discussion

We conducted the largest and most comprehensive study to
date on the effects of multiple glycemic traits with colorectal
cancer risk. We found that higher circulating fasting insulin lev-
els increased colorectal cancer risk, with minimal evidence of
heterogeneity by sex or anatomical subsite found. There was no
evidence of effects of 2-hour glucose and fasting glucose on co-
lorectal cancer risk. Genetic liability to type 2 diabetes and
higher HbA1c concentration also appeared to increase colorec-
tal cancer risk, but horizontal pleiotropy may have influenced
these findings. Higher HbA1c concentrations increased rectal
cancer risk in men.

Many experimental and observational epidemiological stud-
ies have examined the insulin and colorectal cancer relation-
ship. Experimental studies have demonstrated that insulin,
through binding to its cognate receptor or the insulin-like
growth factor receptor, activates the phosphoinositide 3-

kinase-protein kinase B -mammalian target of rapamycin (PI3K–
AKT–mTOR) and Ras-mitogen-activated protein kinase (RAS to
MAPK) pathways, which in turn can lead to downstream cellular
proliferation and protein synthesis in tumor cells (37,38). Rat
models have demonstrated that insulin can induce proliferation
of colorectal epithelial cells and the development of aberrant
crypt foci, the primary neoplastic lesions in colorectal develop-
ment (39). In colonic tumor cells, the expression of the insulin
receptor protein is elevated, particularly isoform A, which
exerts mitogenic effects (40,41).

This experimental evidence is supported by results from epi-
demiological studies that have examined the association be-
tween prediagnostic C-peptide concentrations and colorectal
cancer risk (17). Two US-based prospective studies from the
early 2000s reported positive associations between circulating
C-peptide levels and colorectal cancer risk (16–18). More re-
cently, a meta-analysis of 8 prospective studies reported a
pooled odds ratio of 1.39 (95% CI ¼ 1.04 to 1.87) for the compari-
son of the highest vs lowest C-peptide–level groups (16). Prior
prospective studies that assessed the association between cir-
culating fasting insulin levels and colorectal cancer have
yielded inconsistent results, with positive associations found in
some studies that were attenuated after statistical adjustment
for other colorectal cancer risk factors (19–21), and null results
found in 2 studies that did not measure insulin levels in fasting
blood samples (22,23). The use of nonfasting biospecimens, dif-
ferences in laboratory assays, and the vulnerability of observa-
tional epidemiological studies to confounding or reverse
causality limit causal inference of the fasting insulin and colo-
rectal cancer association. In our MR analyses, we found a posi-
tive effect of fasting insulin on colorectal cancer, with
consistent effect estimates in men and women, according to an-
atomical subsite, and for all the sensitivity analyses that
assessed horizontal pleiotropy. This result, taken together with
experimental data showing mitogenic and antiapoptotic effects
of insulin (37,38), provides supportive evidence of a positive
causal relationship between fasting insulin concentrations and
colorectal cancer.

We found inconclusive evidence of causal effects of glucose
on colorectal cancer. For 2-hour glucose and fasting glucose, our
findings suggesting no evidence of an association are consistent
with some (42,43) but not other (12,14,44) prior prospective ob-
servational studies. For HbA1c concentrations, we found a posi-
tive effect with colorectal cancer, but our sensitivity analyses
indicated that alternate biological pathways (ie, horizontal plei-
otropy) may have influenced this result. However, for rectal
cancer, particularly for men, a positive effect was found that
was robust to all the sensitivity analyses we used to assess the
influence of horizontal pleiotropy. It is unclear why a robust
positive causal effect was found for rectal cancer and for men
only. Growing evidence indicates that the clinical features, ge-
netic architecture, and risk factor profiles may differ for tumors
across different anatomical locations in the colorectum (45–47).
There are also emerging data that risk factors differ between
men and women (45,47). However, we also cannot rule out the
possibility that the HbA1c effect found for rectal cancer in men
only is a chance finding. Additional well-powered studies are
needed to examine the sex-specific relationship between differ-
ent markers of metabolic dysregulation, including hyperglyce-
mia, and risk of colorectal cancer at different anatomical
regions.
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Type 2 diabetes has been consistently associated with higher
risk of developing colorectal cancer in prospective cohort stud-
ies, with a large umbrella review reporting a pooled relative risk
of 1.27 (95% CI ¼ 1.21 to 1.34) for the diabetes vs nondiabetes
comparison (5,6). The results from this study, and those from 2
smaller MR studies (7,8), are generally unsupportive of a causal
relationship between genetic liability to type 2 diabetes and co-
lorectal cancer. Bias from reverse causality or residual con-
founding in the observational studies is a possible explanation
for the divergent findings with the MR estimates. However,
comparing results from these different study designs is chal-
lenging because we examined the genetic liability to type 2 dia-
betes, rather than the disease itself. In contrast, observational
studies have included participants with or without an actual
type 2 diabetes diagnosis. Collectively, our MR results suggest
that elevated levels of insulin—a characteristic of prediabetes
and uncontrolled diabetes—rather than glucose may be driving
the positive association found between type 2 diabetes and co-
lorectal cancer risk reported in observational studies. In support
of this hypothesis, a recent Nurses’ Health Study and Health
Professionals Follow-up Study analysis found that the positive
association between type 2 diabetes and colorectal cancer di-
minished over time as circulating insulin levels lowered (48).
Additional studies are required to further examine which spe-
cific aspects of the pathophysiology of type 2 diabetes may pro-
mote colorectal cancer development.

Our study has several notable strengths. This was the largest
MR study to date to estimate the causal effects of glycemic traits
on colorectal cancer risk. We conducted multiple sensitivity
analyses to examine the possible influence of pleiotropy in bias-
ing our results. Crucially, the positive effects found for fasting
insulin and colorectal cancer were generally robust according to
these various sensitivity analyses. Several limitations of our
study should be noted. First, our use of summary-level data pre-
cluded analyses according to subgroups of other colorectal can-
cer risk factors (eg, BMI, physical inactivity) and examination of
possible nonlinear effects. In addition, the GWAS used to iden-
tify the fasting insulin genetic instruments was adjusted for
BMI, which may have introduced collider bias into our MR esti-
mates. However, we found similar results when we excluded
variants associated with BMI from the fasting insulin genetic in-
strument. Further, similar MR estimates were found for the type
2 diabetes and colorectal cancer association using BMI unad-
justed and adjusted GWAS estimates for type 2 diabetes, sug-
gesting that collider bias had minimal influence on this
relationship. In addition, results from a recent empirical study
suggest that the use of covariate-adjusted GWAS summary esti-
mates should not markedly influence downstream MR effect
estimates (49). Finally, we acknowledge that the null effect esti-
mates we observed in some of our analyses may have been a
consequence of inadequate statistical power. However, our post
hoc power calculation found that we had sufficient power
(>80%) to detect relatively small causal effect estimates (mini-
mum expected ORs per 1 SD ranging from 1.09 to 1.16 for 2-hour
glucose, fasting glucose, HbA1c, and type 2 diabetes with colo-
rectal cancer) (50).

In conclusion, our results support a causal effect of higher
fasting insulin, but not glucose traits and genetic liability to
type 2 diabetes, on colorectal cancer risk. These results suggest
that high circulating insulin levels, rather than high glucose lev-
els, may be the main driver of the positive associations found
between type 2 diabetes and colorectal cancer in observational
studies. The findings suggest that pharmacological or lifestyle

interventions that lower circulating insulin levels may be bene-
ficial in preventing colorectal tumorigenesis.
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