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Abstract
Training machine learning models with the only
accuracy as a final goal may promote prejudices
and discriminatory behaviors embedded in the
data. One solution is to learn latent representa-
tions that fulfill specific fairness metrics. Differ-
ent types of learning methods are employed to
map data into the fair representational space. The
main purpose is to learn a latent representation of
data that scores well on a fairness metric while
maintaining the usability for the downstream task.
In this paper, we propose a new fair representation
learning approach that leverages different levels
of representation of data to tighten the fairness
bounds of the learned representation. Our results
show that stacking different auto-encoders and
enforcing fairness at different latent spaces result
in an improvement of fairness compared to other
existing approaches.

1. Introduction
Representation learning has made a significant mark in the
field of Machine Learning (ML) over the past decade. It
has technologies that extract useful information or features
from data to improve the classification or predictive perfor-
mance of models, or even generate new synthetic realistic
data. Several applications for different kind of tasks have
emerged such as, machine translations (Baltrušaitis et al.,
2018), anomalies detection (Rivera et al., 2020), objects and
actions recognition (Papageorgiou & Poggio, 2000), etc.

ML models are widely used in real life to make decisions
that can affect people’s lives, e.g., loan applicant, college ad-
mission, criminal justice, hiring, etc. Models trained with bi-
ased data can lead to unfair decisions (Mehrabi et al., 2019).
In fact, these models mainly rely on human-generated data
to learn patterns that are then used to make predictions on
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the new unseen data. However, real-world data are already
tainted by prejudices and unfair decisions (historical bias),
which reflect the flaws of our society. Historical bias is one
origin of algorithmic bias. Another source of algorithmic
bias is the representation bias (Mehrabi et al., 2019). It
arises when certain groups of the population are underrep-
resented within the data. For example, a facial recognition
model trained with data containing considerably more white
faces than black faces will tend to be less accurate when
used on black faces. To this end, the algorithmic bias occurs
when biases in the data are learned by the model and there-
fore lead to unfair decisions (Dwork et al., 2012; Kenfack
et al., 2021; Hardt et al., 2016).

One approach to mitigate the impact of biases from the data
is the fair representation learning. With this technique, the
input data is mapped into a new representation which is
enforced to satisfy a given fairness metric while maintain-
ing the utility of the representation as much as possible.
The learned representation can then be used for any down-
stream task such as classification or data generation, with
better chances of yielding fair results. Existing works by
Madras et al.; Edwards & Storkey used adversarial learning
to enforce the fairness of the representation with respect to
statistical parity. They used an auto-encoder as a generator
whose aim is to learn a latent space such that an adversary
cannot predict the sensitive feature (gender, race, etc.) from
the learned latent representation. In Madras et al., the au-
thors proposed a learning objective for other fairness metrics
such as equalized odds and equal opportunity (section 2)
with theoretical bounds of fairness.

This work builds on top of the previous works where we
propose a fair representation learning approach based on
adversarial stacked auto-encoders. However, our proposed
approach leverages different level of representation of the
input data to tighten the fairness bounds of the learned rep-
resentation. In fact, the success of deep networks can be
attributed to their ability to exploit the unknown structure in
the input distribution to discover useful features at multiple
levels. In this multi-level representations, the higher-level
learned features are defined in terms of lower-level features
(Bengio et al., 2013). For instance, Khan et al. Khan & Fraz
showed that performing data augmentation in the feature
space (and at different level of representation), can improve
predictive performances of the neural network. Similarly,
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a generative model proposed by Huang et al. Huang et al.
leveraged different level of representation to improve the
quality of the generated images. Applying fairness at a
given level does not guarantee that information about the
sensitive attribute is removed, as it may not all be presented
at the given level.

In essence, we hypothesize that the above arguments may
also be useful for improving fairness, which was confirmed
by our empirical results. Intuitively, the main idea is to
approach an optimal adversary via sequential learning in
which one adversary is used to enforce fairness on a low-
level representation. This low-level representation is then
used as input for a higher-level representation on which
another adversary is trained to enforce fairness on that rep-
resentation by improving the previous adversary.

The reminder of the paper is organized as follow. In Sec-
tions 2 and 3, we present related work and background,
respectively. In Section 4, we introduce our fair representa-
tion learning approach that tightens the fairness bounds. In
Section 5, we present empirical results which show the ef-
fectiveness of our learned representation on several real-life
datasets. In Section 6, we conclude the paper.

2. Related Work
Pre-processing techniques are used to mitigate biases from
the data by enforcing a given fairness property while main-
taining the utility of the predictions. The objective of fair
representation learning is to learn a representation of the
data that is most likely to produce fair results for down-
stream tasks. In (Zemel et al., 2013), the authors presented
the first fair representation learning approach which removes
dependencies on the sensitive attribute by mapping input
data to new points called prototypes. Prior work in this
direction focuses on statistical parity, equalized odds, and
equal opportunities.

The goal is to learn a representation that will remove all
the dependencies in regards to the sensitive attribute from
the training data, while retaining as much information as
possible. In (Louizos et al., 2016), the authors proposed the
Variational Fair Auto-Encoder (VFAE), a variant of varia-
tional auto-encoder that maps the input data into a latent
space while discarding information about the sensitive at-
tributes from the data as much as possible. Thus the sensitive
attributes are treated as nuisance variable. To do this, the
authors (i) used a factorized prior p(z)p(s) where z is the
latent representation and s is the sensitive attribute, and (ii)
added a regularization term to encourage the independence
between z and s using maximum mean discrepancy.

In (Edwards & Storkey, 2015), the authors proposed an ap-
proach to learn fair representation using adversarial learning
to enforce demographic parity. Similarly, in Beutel et al., the

authors explored the particular fairness levels achieved by
the algorithm from (Edwards & Storkey, 2015) and showed
how other fairness metrics can be achieve by varying the
distribution of the adversary’s input. Madras et al. Madras
et al. extended the previous work by proposing adversarial
objectives that yield fair and transferable representations
that in turn admit fair classification outcomes. They pro-
vided adversarial objective functions for each fairness metric
that upper bounds the unfairness of arbitrary downstream
classifiers in the limit of adversarial training.

In this work, we propose a new fair representation learning
approach built upon previous works, which aims to improve
the fairness of models through stacked adversarial learning.
We enforce fairness at different levels of representation in
order to tighten the fairness bounds of the final representa-
tion.

3. Background
In this section, we introduce fairness notions used through-
out this paper and concepts related to fair representation
learning and adversarial learning.

3.1. Fairness

Consider a training data D = {X,Y, S}, where xi ∈ Rn

is the feature vector, yi ∈ {0, 1} is the label, and S is the
binary protected attribute (e.g., gender, race, etc.). Learning
a fair representation means mapping the input data X into a
new representation X ′ such that X ′ will satisfy one of the
following fairness criteria:

• Statistical parity: It is also known as Demography
parity (∆DP ). This fairness criteria promotes the inde-
pendence between the predictor outcome (Ŷ a function
of X ′) and the sensitive attribute. Ŷ⊥ S, i.e., a pre-
dictor satisfies the statistical parity if P (Ŷ |S = 0) =
P (Ŷ |S = 1) (Dwork et al., 2012). For example, a
loan approval system will achieve statistical parity if it
does not deny loans to men more often than to women.
A drawback of this fairness criterion is that it allows
unqualified applicants to be selected as long as the ac-
ceptance rate is the same for both groups. However,
when the sensitive attribute correlates with the target
variable, a drop in accuracy can be observed.

• Equalized Odds: In contrast to ∆DP , Equalized Odds
(EO) promotes the conditional independence between
the prediction outcome and the sensitive attribute given
the class label (Ŷ⊥S|Y ). A predictor outcome Ŷ
trained with X ′ satisfies EO if P (Ŷ = y|S = 0, Y =
y) = P (Ŷ = y|S = 1, Y = y),∀y ∈ {0, 1}. In other
words the False Positive Rate (FPR) and the True Pos-
itive Rate (TPR) of groups should be the same. One
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advantage of equalized odds is that it admits the per-
fect model Ŷ = Y (Hardt et al., 2016; Verma & Rubin,
2018).

• Equal opportunity: Similar to EO, Equal opportu-
nity (EOpp) only considers the case where Y = 1
(Ŷ⊥S|Y = 1). A predictor outcome Ŷ satisfies EOpp
if P (Ŷ = 1|S = 0, Y = 1) = P (Ŷ = 1|S = 1, Y =
1). In other words, groups should have the same TPR.

It is worth noting that the predictor trained with fairness
constraints are less accurate than the ones trained without
it (Kamishima et al., 2011). Thus fairness comes at the
expense of accuracy. A desired property is to provide fair
representation with lower fairness accuracy trade-off.

3.2. Adversarial Learning

Inspired by the game theory, adversarial learning consists of
two neural networks (generator and discriminator) trained
in an adversarial manner. The generator’s (G) goal is to
fool the discriminator (D) by sampling as realistic examples
as possible such the discriminator –which the goal is to
distinguish between fake samples and real samples–, will
not be able to make the difference between examples G(z)
sampled from G using the random noise vector z and real
examples x. Thus, G and D play a min-max game with
value function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x)[log D(x)]

+ Ez∼pz
[1− log D(G(z))]

(1)

where D seeks to maximize this quantity while G seeks to
minimize it.

4. Methods
In this section, we describe the architecture of our proposed
model and the training procedure. Figure 1 presents an
overview of the architecture and the training process.

4.1. Model Architecture

Our main idea is to stack different Encoders (Ei), Decoders
(Di), classifier fi, and adversary (hi), in order to get differ-
ent levels of representation of the input data. The intuition
here is that, different level of representation can exhibit
different details of information from the data. Enforcing
fairness at a given level does not guarantee that fairness
bounds are tight enough, unless the adversary is an optimal
one, which may not be available in non-convex settings. Our
goal is to approach this optimal adversary in an incremental
may.

At a each level i, we have different components: the learned
representation zi yielded by the encoder Ei, the correspond-
ing decoded representation z′i produced by the decoder Di,
the adversary network fi that enforces the fairness of that
representation and the predictor network hi that enforces the
utility of the representation. z0 represents the input data X ,
and z′0 the final reconstructed output (X ′). The overall loss
at each level i is defined as the linear combination of three
loss terms: the reconstruction loss (Lrec

Ei,Di
), the adversary

loss (Ladv
fi

) and the predictor loss (Ladv
hi

):

L(Gi, Di, fi, hi) = αLrec
Ei,Di

+ βLAdv
fi + γLClass

hi
(2)

In the above equation, α, β and γ are the weights associated
with each loss. Thus, Lrec

Ei,Di
is the loss of reconstructing

the encoded representation zi by the decoder Di. For the
reconstruction loss we use the Root Mean Squared Error
(RMSE): Lrec

Ei,Di
= 1
|X| ||z

′
i −Di(Ei(zi−1))||22. The adver-

sarial loss is to enforce the representation to satisfy certain
fairness constraint. For instance, to satisfy statistical parity,
the adversary loss is defined as cross entropy loss:

Ladv
fi =

1

|X|
∑

s,ŝ∈S,Ŝ

s · log(ŝ+ (1− s) · log(1− ŝ)) (3)

The adversary network at the level i tries to minimize the
loss of predicting the sensitive attribute S from the encoded
representation zi, while the predictor and the generator (typ-
ically auto encoder) try to maximize it. The losses of pre-
dictor and adversary can be defined as cross entropy loss
or using loss functions proposed in (Madras et al., 2018) to
satisfy equalized odds and equal opportunities. Thus at each
level, we have the following min-max problem:

min
Gi,Di,hi

max
fi
L(Gi, Di, fi, hi) (4)

To have a different representation at each level, we vary
the dimension of each latent space, from higher to lower
dimensions (|zi| > |zi+1|).

4.2. Model training

At a given level i, we realize the classifier, auto-encoders and
adversary as neural networks and alternate gradient decent
and ascent steps to optimize their parameters according to
4. First the encoder-classifier-decoder takes a gradient step
to minimize L (Equation 4) while the adversary fi is fixed,
then fi takes a step to maximize L with fixed auto encoder
and classifier. We use a relaxation of adversary objectives
proposed by (Madras et al., 2018; Beutel et al., 2017), i.e.,
to achieve Equalized Odds, in addition to the latent space
z, we passed the class label Y to the adversary. To achieve
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Figure 1. Adversarial Stacked Auto-Encoders architecture

Equal Opportunity, the loss function (Eq 4) is computed
only using samples where Y = 0.

The training is performed sequentially, starting with an ini-
tial latent representation z1 trained using the input data.
During the first training, the adversary f1 enforces fairness
(typically ∆DP , ∆EO, or ∆EOpp) of the lower level rep-
resentation z1. Afterwards, a new latent space of lower
dimension z2 (higher level representation) is stacked, and
uses the pre-trained representation z1 as input.

The number of stacked layers on which the fairness con-
straints are imposed depends on the depth of the neural
network and are specified as a hyper parameter. In the exper-
iments, we used a Multi Layers Perceptron (MLP) network
for the encoder and decoder with one hidden layer. Initially,
fairness is applied on the hidden layer (z1), then the output
layer (latent space) is stacked and used as the final repre-
sentation (z2). In the testing phase, we get rid of all the
decoders, adversaries, and classifiers. Only the encoders are
used to map the input data into the fair space.

5. Experiments
We present experiments on two standard real world datasets
widely used for fair classification as suitable benchmarks
to compare the performance of different machine learning
methods: The Adult Income dataset (Asuncion & Newman,
2007) has 48843 instances of demographic information of
American adults, described with 14 features. The target
variable indicates whether individual’s income is larger than
50K US dollars. The German credit dataset (Jeff et al.)
has 1000 instances of bank account information represented
by 20 features with the aim to classify bank account hold-
ers into credit class good or bad. For both datasets, we
use gender as the single protected (sensitive) attribute. We
demonstrate the effectiveness of our approach compared to
standard fair representation learning techniques. The stan-

dard (vanilla) approach is fair representation learning with
fairness applied only to one latent space.

5.1. Fair Classification

Figure 2 shows the fairness results of the MLP trained with
the representation obtained by our approach compared to the
representation produced by the vanilla approach (Learning
Adversarial Fair Representation − LAFR) and MLP trained
with original input data (MLP-unfair). For the vanilla ap-
proach, we used a network architecture with one hidden
layer of 20 units, and latent space of 8 units for Adult dataset,
15 hidden units and 8 output units for the German dataset.
We trained models with the same architecture using LAFR
approach and our approach with two levels of representation,
i.e., we trained an adversary on the hidden layer and then
stacked the output layer and trained another adversary on it.
We used single-hidden-layer neural networks for each of our
classifier and adversary with 20 hidden units. The equation
4 is optimized using Adam optimizer (Kingma & Ba, 2014)
with learning rate of 0.01, a batch size of 64, trained for 150
epochs for Adult dataset and 1000 for the German credit.
We run the experiment seven times with different values of
β (1, 2, 3, 5, 15), with α = 0 and γ = 1.

Similar to the process used by Madras et al., we cre-
ated a feed-forward model which consisted of our frozen,
adversarially-learned encoders followed by an MLP with
one hidden layer, with a loss function of cross entropy with
no fairness modifications. We reported the mean over all
runs per β and we used a validation procedure to evalu-
ate. The results shows that representation produced by our
model always lower bounds the fairness of standard ap-
proaches. This shows that our approach provides tighter
fairness bounds. However, since the main objective of our
work is to improve the fairness, a decrease in accuracy is
observed compared to the standard approach, which we
attribute to the trade-off between fairness and accuracy.
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Figure 2. Accuracy-fairness trade-offs of classification tasks on the German (first row) and Adult (second rows) datasets. Our learned
representation always lower bounds the fairness results of the representation learned by vanilla approach (LAFR). It shows that the
fairness bounds of our approach is more tight. However, we can observe a slight decrease in accuracy compared to other representations.

5.2. Classification on Downstream Tasks

Table 1. Comparison of ∆DP on classification tasks using logistic
regression and random forest model on Adult and German datasets

MODEL UNFAIR LAFR OURS

ADULT
LOGISTIC REGRESSION 0.53± 0.008 0.51± 0.009 0.21± 0.004
RANDOM FOREST 0.54± 0.001 0.49± 0.001 0.25± 0.007

GERMAN
LOGISTIC REGRESSION 0.36± 0.08 0.33± 0.09 0.08± 0.04
RANDOM FOREST 0.27± 0.03 0.23± 0.06 0.11± 0.05

Learning fair representation is a model-agnostic approach
to mitigate unfairness, i.e., the learned representation can
be used for any downstream task and not only for neural
network based models. We tested linear and non-linear mod-
els on representation produced by our model and standard
approach. We trained the representation using the network
architecture described in previous section, without hyper-
parameter tuning and using α = 0, β = 1, γ = 1. We
also trained models on the original dataset without fairness
constraints.

Table 1 shows ∆DP reported from 5-fold cross validations
on Adult and German datasets. Results shows that the rep-
resentation produced by our model also provides better fair-
ness performances when trained using classical machine
leaning algorithms such as Linear Regression and Random

Forest. We observed similar results for other fairness met-
rics (EO, EOpp).

6. Conclusion
In this paper, we showed that applying fairness at different
levels of representation improves the fairness performance
of the learned representation. In this regard, we proposed
an adversarial stacked auto-encoder architecture which ex-
pose different level of representation of the input data, on
which several adversary networks are trained sequentially
to tighten the fairness bounds of the final representation
(lowest level representation).

Our empirical results show that this approach outperforms
standard adversarial fair representation learning approach
in terms of fairness. Intuitively, our learning process lead
to learning an optimal adversary in incremental way. How-
ever, stabilizing adversarial training of fair representations
remains an important issue that we plan to address in our
future work.
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