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a b s t r a c t 

Federated Learning (FL) is an efficient and secure machine learning technique designed for 

decentralized computing systems such as fog and edge computing. Its learning process em- 

ploys frequent communications as the participating local devices send updates, either gra- 

dients or parameters of their models, to a central server that aggregates them and redis- 

tributes new weights to the devices. In FL, private data does not leave the individual local 

devices, and thus, rendered as a robust solution in terms of privacy preservation. However, 

the recently introduced membership inference attacks pose a critical threat to the impec- 

cability of FL mechanisms. By eavesdropping only on the updates transferring to the center 

server, these attacks can recover the private data of a local device. A prevalent solution 

against such attacks is the differential privacy scheme that augments a sufficient amount 

of noise to each update to hinder the recovering process. However, it suffers from a signif- 

icant sacrifice in the classification accuracy of the FL. To effectively alleviate the problem, 

this paper proposes a Digestive Neural Network (DNN), an independent neural network at- 

tached to the FL. The private data owned by each device will pass through the DNN and 

then train the FL. The DNN modifies the input data, which results in distorting updates, in 

a way to maximize the classification accuracy of FL while the accuracy of inference attacks 

is minimized. Our simulation result shows that the proposed DNN shows significant perfor- 

mance on both gradient sharing- and weight sharing-based FL mechanisms. For the gradient 

sharing, the DNN achieved higher classification accuracy by 16.17% while 9% lower attack 

accuracy than the existing differential privacy schemes. For the weight sharing FL scheme, 

the DNN achieved at most 46.68% lower attack success rate with 3% higher classification 

accuracy. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

https://doi.org/10.1016/j.cose.2021.102378 
0167-4048/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

https://doi.org/10.1016/j.cose.2021.102378
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2021.102378&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.cose.2021.102378
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 c o m p u t e r s  &  s e c u r i t y  1 0 9  ( 2 0 2 1 )  1 0 2 3 7 8  

1

C
g
l
t
i
m
d
p
i
s

c
f
c
m
l
m
a
c
i
r
c
t
a
i

c
M
t
s
g
e  

i
v
m
t
t
t
b
i
m  

2
i
e  

a
d
t
t
a
m

r

c
t
w
c
t
t
t
t
d
s
d
c
s
i
f
r  

2  

c
s
c
Z

v  

2
c
t
b
p
a  

Z
s
b
m
n
c

t
v
p
i
b
r
g
t
n
o
t
m
t
g
c

. Introduction 

onventional ML approaches for distributed data require ag- 
regation of the data into a single repository. This is particu- 
arly problematic for several reasons. Not only the congrega- 
ion requires excessive network resources, but the data center 
tself also requires a frequent update from mobile devices to 

ake the up-to-date data available for proper training. The 
ata often includes privacy-sensitive information, entailing a 
rivacy concern on the fabrication of a monolithic data repos- 

tory. Moreover, from the ML perspective, a huge dataset can 

low down the learning speed. 
In contrast, Federated Learning (FL) is a decentralized Ma- 

hine Learning (ML) algorithm that is more suited to learn 

rom distributed data ( McMahan et al., 2017 ). The learning pro- 
ess in FL involves a central server and multiple participating 
obile devices. It begins with the server’s coordination of the 

earning model with the participating devices. In each com- 
unication round, the server broadcasts parameters gener- 

ted from its global model to the devices. Each device then 

opies the parameters into their local model and trains it us- 
ng the private data. The device generates updates, either pa- 
ameters or gradients depending on the type of the FL proto- 
ols, that includes changes in the local model and sent it back 
o the server. To this end, FL intrinsically resolves the privacy 
nd efficiency problems as the devices need to send a piece of 
nformation rather than whole data for training purposes. 

The reason that FL is secure (despite it involves frequent 
ommunication) is because extracting private data from an 

L model is infeasible. However, recent studies have shown 

hat retrieving private training data from an ML model is pos- 
ible. The membership inference attack is an adversarial al- 
orithm designed to recover training data of an ML model ( Li 
t al., 2020; Liang et al., 2018; Shokri et al., 2017 ). Shokri et al.
dentified that it is possible to recognize a sample in a pri- 
ate training dataset only by assessing the output of an ML 
odel ( Shokri et al., 2017 ). An over-fitted classifier model 

ends to yield higher classification confidence for samples of 
he training data. The authors trained shadow models in order 
o exploit this divergent behavior of the target model. Followed 

y the initial work, several research results have identified var- 
ous techniques to recover private information from a target 

odel ( Hisamoto et al., 2020; Salem et al., 2019; Shokri et al.,
017; Yeom et al., 2018 ). The membership inference attack typ- 
cally has either a white-box or a black-box assumption ( Salem 

t al., 2019; Yeom et al., 2018 ). In the black box assumption, the
ttacker can only feed inputs and observe the resulting pre- 
iction vector. On the other hand, attackers can fully access 
he target model in the white box assumption. It is obvious 
hat the white box assumption is stronger than the black box 
ssumption since the attacker can fully investigate the target 
odel. 
✩ The preliminary version of this paper was accepted in IEEE Internat
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FL is more vulnerable to the inference attack than the 
onventional ML since its training topology divulges parame- 
ers during communications. Accordingly, the attack with the 
hite-box setting can be more critical in FL as the attackers 

an have full access to the parameters and gradients of the 
arget model. Nasr et al. designed a membership inference at- 
ack against FedAvg algorithm ( Nasr et al., 2019 ). They showed 

hat a malicious device could send a malicious update to make 
he target model reveal private information more easily. A gra- 
ient resulting from the stochastic gradient descent algorithm 

uggests a direction in which model parameters need to be up- 
ated. This direction in gradient is strongly correlated with the 
orresponding mini-batch of the training data. For these rea- 
ons, other attacks have also exploited gradients shared dur- 
ng decentralized training in FedSgd. To this end, deep leakage 
rom gradients is one crucial example where it is possible to 
ecover raw training data from the gradient updates ( Zhu et al.,
019 ). It updates a data sample so that a gradient of the sample
an have a smaller distance from a captured gradient. Similar 
tudies have demonstrated that training data can be fully re- 
overed through alternative approaches ( Geiping et al., 2020; 
hao et al., 2020 ). 

Existing works use differential privacy to protect the pri- 
acy of FL ( Agarwal et al., 2018; Geyer et al., 2017; Wei et al.,
020 ). Although FL with differential privacy is proven to 
onverge, it compromises the classification accuracy of the 
rained model ( Geyer et al., 2017 ). Therefore, encryption has 
een used as an alternative solution as well as other security 
rotocols for FL to eliminate the exposure of raw updates to an 

dversary ( Dong et al., 2020; Liu et al., 2019; Phong et al., 2017;
hang et al., 2020a ). However, incorporating a cryptographic 
cheme incurs computational overhead and could potentially 
ecome bottleneck throughout the learning process. In sum- 
ary, both differential privacy and cryptographic schemes are 

ot sufficient because they either degrade the accuracy or pro- 
essing speed. 

In this paper, we propose a novel FL scheme with Diges- 
ive Neural Network (DNN). DNN is a set of sequential con- 
olutional neural networks that have identical input and out- 
ut dimensions. A mini-batch is transformed within the DNN 

nto another form, hence we denote it as the digested mini- 
atch. Each mobile device has a DNN and a collaborative neu- 
al network. The collaborative neural network accepts the di- 
ested mini-batch and yields a corresponding prediction vec- 
or. Each device collects updates from its collaborative neural 
etwork using the digested mini-batch. The DNN is trained 

n digestive loss, conjunction of distance loss and classifica- 
ion loss. Using the digestive loss, the DNN produces digested 

ini-batch that has features useful for classification and has 
he maximum distance from the original mini-batch. The di- 
estive loss is controlled with a threshold value, which can be 
hosen by the FL service provider to offer various privacy lev- 
ls. The proposed DNN achieves high classification accuracy 
nd low attack success rate than FL schemes with differential 
ional Conference on Communications (ICC’21) 
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Fig. 1 – Various FL protocols with adversary performing membership inference attack. 
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privacy. The proposed DNN is applicable to both FedAvg and
FedSgd, and is robust against the state-of-the-art membership
inference attacks. 

The contributions of this paper are summarized as follows:

• A novel DNN is proposed to defend against inference at-
tacks in FL by transforming input data into an unrecogniz-
able, yet trainable data. The proposed scheme has a negli-
gible effect on the accuracy. 

• Scalability of the proposed scheme has been demonstrated
with experiments on both gradient sharing FL (FedSgd) and
parameter sharing FL (FedAvg). 

• Convergence stability for the proposed scheme is illus-
trated. 

• Experimental analysis on the train-ability of the digested
mini-batch is demonstrated with t-distributed Stochastic
Neighbor Embedding (t-SNE) ( Maaten and Hinton, 2008 ). 

• To assess the resilience against the membership inference
attack, pre-trained models are utilized to quantify the re-
semblance of the recovered data and original data. 

The rest of the paper is organized as follows. Section 2 in-
troduces the backgrounds and preliminaries of this research.
Section 3 introduces our proposed scheme, Digestive Neural
Network (DNN) with a federated learning scheme. In Section 4 ,
we show the experimental results. Section 5 provides related
work. Finally, conclusions are drawn in Section 6 . 

2. Preliminaries 

In this section, we describe the fundamentals of federated
learning, inference attacks, and the differential privacy. 

2.1. Federated learning 

The FedAvg ( McMahan et al., 2017 ), a method updating pa-
rameters, and FedSgd ( Shokri and Shmatikov, 2015 ), a method
updating gradients, are two prevalent FL protocols. Fig. 1 de-
scribes the training protocol for both of them. Let D i be an i -th
participating device and d i be a private dataset of i -th device,
where i ∈ { 1 , 2 , · · · N} . We denote FL scheme as a comprehen-
sive terminology for federated learning that includes every D i

and a central server C with a training protocol. Each D i has
its private dataset d i along with its local model h i which has
identical structure with the central server’s model h c . Each h i is
parameterized by w i , and gradient of w i is g i,b which is defined
as follows: 

g i,b = 

∂L 

(
h i 

(
w i , x i,b 

)
, y i,b 

)
∂x i,b 

, (1)

where L is cross-entropy loss and 

(
x i,b , y i,b 

)
are b-th mini-batch

data samples. We define mini-batch data a set of data samples
that satisfy 

(
x i,b , y i,b 

) ∈ d i and 

⋃ N/B 
b=1 

(
x i,b , y i,b 

) = d i . 
In FedAvg, each device trains its local model ∀ (x i,b , y i,b ) ∈ d i .

After training, device sends w i from h i directly to the central
server. The central server obtains the aggregated parameter W
as follows: 

 = 

1 
N 

N ∑ 

i =1 

w i , 

w c ← W. 

The central server exchanges w c with W and distributes W to
all devices. Each device replaces its w i with W and continues
the protocol. 

In FedSgd protocol, each device sends g i to the central
server. The central server aggregates all gradients to G , and
executes gradient descent on the h c . Mathematically, this can
be described as follows: 

G = 

1 
N 

N ∑ 

i =1 

g i,b , 

w c ← w c − γ G, 

where γ is a learning rate. The w c is then distributed back to
all devices. Devices replace their w i with w c . 



4 c o m p u t e r s  &  s e c u r i t y  1 0 9  ( 2 0 2 1 )  1 0 2 3 7 8  

a
c
i
s
c
l

2

A
h  

T
m
b
m
t
p
m
v
i
b
l

b
t
t
o
p
d
s  

T
a
b
t

t
s  

T
f
t
s
t
i
m
i

s
s
t
o
h  

g

a

2

C
d

l
t
t
t
d
i
a
r
t

t
a
d
o
g
i  

o
l  

ε

P

t
v
j

3
s

3

F
s
b
r
r
c
c
p
h  

T
r
D
d  

T
d  

t
t
n
c
o
i
fi
m
fi
t
a

The main difference between the two protocols is the type 
nd the frequency of the update. FedAvg performs communi- 
ation once per a training epoch. Whereas devices participat- 
ng in FedSgd communicate for every 

(
x i,b , y i,b 

)
. For theses rea- 

ons, FedAvg is often incorporated in FL scheme with wireless 
ommunication, while FedSgd is often used for collaborative 
earning in distributed computing units ( Lim et al., 2020 ). 

.2. Inference attack 

 successfully trained ML model predicts unseen data with 

igh accuracy using features learned from its training dataset.
his implies that the performance of an ML model is deter- 
ined by its training dataset. Therefore, it is possible to trace 

ack what kind of samples exist in the training data of an ML 
odel based on its performance. This introduces a significant 

hreat to the dataset itself. The adversary can recover sam- 
les in a commercially available dataset by analyzing the ML 
odel trained on the dataset. Also, if the dataset includes pri- 

ate information, then the adversary may divulge the private 
nformation from the dataset. As the title suggests, the mem- 
ership inference attack is an adversarial algorithm that ana- 

yzes a target ML to discover samples of the training dataset. 
There are two assumptions on the target model for mem- 

ership inference attack; the black-box and the wite-box. In 

he black-box setting, the adversary cannot have access to the 
arget model. The adversary is only allowed to observe the 
utput prediction vector from the corresponding input sam- 
le. Based on the model’s behavior, the adversary analyzes the 
istributions of the dataset. Whereas the white-box setting as- 
umes that the adversary has full access to the target model.
he adversary has access to a fully functioning target model 
nd can compute gradient or inference. Therefore, the white- 
ox attack is more destructive than the black-box attack since 
he assumption provides more knowledge to the adversary. 

Pivotal research conducted on membership inference at- 
ack introduced an effective performance on discriminating 
amples that are in the training dataset ( Agarwal et al., 2018 ).
he authors of the research developed a membership in- 

erence attack model based on neural networks. To mimic 
he target model’s behavior, the authors trained a number of 
hadow models. Using the shadow model, the authors trained 

he attack model that determines whether a given sample is 
ncluded in the target’s training dataset. The ML model shows 

ore prediction confidence on samples that are in the train- 
ng dataset. 

The red box on the left top of Fig. 1 depicts an adver- 
ary conducting the membership inference attack on the FL 
cheme. The adversary A is targeting the D 1 and eavesdrops on 

he update from the D 1 . The A eavesdrops w 1 or g 1 depending 
n the FedAvg or FedSgd protocol respectively. The adversary 
as its attack model a that is trained on either w 1 or g 1 . The
oal of the a can be defined mathematically as follows. 

 ( x ) = 

{ 

1 if x ∈ d i 
0 otherwise 

.3. Differential privacy 

onstructing a dataset involves data sanitation. That is, the 
ata should not include any information that leads to the 
eakage of one’s private information. However, with a sophis- 
icated set of queries, it is possible to extract private informa- 
ion from the data. An example can be querying the hospi- 
al records. Although names of patients are removed from the 
ataset, it is possible to identify particular individuals by us- 

ng multiple datasets. If a patient living in a particular area has 
 unique pattern of disease, using other data, it is possible to 
etrieve the individual’s information. This attack is known as 
he linkage attack. 

To prevent privacy abuse, differential privacy has been in- 
roduced. The differential privacy hides the contribution of 
 particular sample on a query. Dwork et al. proposed an ε- 
ifferential privacy ( Dwork, 2006 ) to assure the confidentiality 
f a statistical dataset based on how much contribution a sin- 
le data point has on a query. Formally, ε-differential privacy 
s defined as follows. Let D 1 and D 2 are two datasets that have
ne sample difference. Let A is a randomized algorithm and 

et S is a subset of the output of A . The algorithm A provides
-differential privacy under the following equation: 

 r [ A ( D 1 ) ∈ S ] ≤ exp ( ε ) · P r [ A ( D 2 ) ∈ S ] 

Thus, the dataset provider can inject ε amount of noise into 

he dataset to achieve differential privacy. The differential pri- 
acy is highly scalable as the definition can be utilized by in- 
ecting noise into the parameters of ML models. 

. Proposed digestive neural network based 

ecure federated learning against inference attack 

.1. Baseline overview 

ig. 2 illustrates the proposed DNN scheme with FL. The 
cheme consists of a single central server and multiple mo- 
ile devices. Each device has a DNN and a collaborative neu- 
al network, while the central server only has the collabo- 
ative neural network. The collaborative neural network is a 
lassifier; the architecture accepts multi-dimensional data by 
onvolutional neural networks and yields a one-dimensional 
rediction vector. Devices and the central server must have a 
omogeneous architecture of collaborative neural networks.
his is because only the parameters of collaborative neu- 
al networks are communicated during the protocol. The 
NN accepts multi-dimensional data and produces multi- 
imensional data with identical dimensions with the input.
he parameters of the DNN are not shared. More precisely, the 
evices do not reveal the DNN to the communication channel.

The arrow signs in Fig. 2 depict our proposed training pro- 
ocol for DNN. A mini-batch of private training data sequen- 
ially passes through the DNN and the collaborative neural 
etwork. The DNN digests features of the given mini-batch into 
ompletely different domains to remove private information 

f the data. The digested mini-batch needs to exclude original 
nformation and must contain features useful for high classi- 
cation accuracy. The collaborative network receives digested 

ini-batch and optimizes its parameter to improve the classi- 
cation accuracy of the digested data. To increase the predic- 
ion accuracy of the collaborative neural networks, both DNN 

nd collaborative networks need to be trained cooperatively. 
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Fig. 2 – Overview of FL procedures with the proposed scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each device prepares an update to send to the central
server, using its collaborative neural network. The update is
generated only using digested mini-batch and collaborative
neural networks. After every device finishes sending its up-
date, the server distributes new parameters obtained from the
aggregation of all the updates. Mobile devices train their DNN
based on the updated collaborative neural network. Training
of DNN is determined by the digestive loss, a conjunction of
the classification loss, and the distance loss controlled by a
threshold. The goal of the digestive loss is to maximize the dis-
tance between the original mini-batch and the digested mini-
batch while including crucial information within the digested
mini-batch for high classification accuracy. The classification
loss is a cross-entropy loss and the distance loss focuses to
increase the distance between input mini-batch and digested
mini-batch. More specifically, the distance loss increases the
distance between gradients of mini-batch and digested mini-
batch for FedSgd, while it increases the pixel-wise distance of
mini-batch and digested mini-batch for FedAvg protocol. Af-
ter updating DNN, each device proceeds to the next training
round. It is worth mentioning that the proposed DNN applies
to both FedAvg and FedSgd protocols. A detailed description of
each training protocol of the proposed scheme is illustrated in
a subsequent section. 

The adversary in FedSgd and FedAvg utilizes gradient up-
date and parameter update from the target device. Further-
more, the adversary in FedSgd eavesdrops gradient update to
recover the mini-batch. To this end, the proposed FL scheme
with DNN prevents the attack since the target device gener-
ates the gradient from the digested mini-batch. This entails
the adversary to recover information that is irrelevant to the
original mini-batch. The adversary in FedAvg is assumed to al-
ready possess a portion of the target device’s private training
data. Therefore, the adversary trains an attack model that can
identify a given sample’s membership of the target device’s
dataset using eavesdropped parameters and the known por-
tion of the private training data. The proposed FL scheme with
DNN mitigates the attack since the parameter update from
the target device is trained on the digested mini-batch. This
makes the adversary’s knowledge of private data totally use-
less. This also entails the adversary to train the attack model
on a completely erroneous environment and mitigates the at-
tack that is aimed at properly identifying the private training
data. 

3.2. Training protocol: FedSgd 

Fig. 3 depicts the procedure of a communication round in the
training protocol of the proposed scheme with FedSgd proto-
col. A communication round begins with training of the col-
laborative neural network h C,i followed by training of the DNN
h D,i . Let S be a central server and I be a set of all devices par-
ticipating in the training. In a communication round t, device
i ∈ I gets a mini-batch (x i,t , y i,t ) from its private dataset. We
denote mini-batch after passing the digestive network as x ′ i,t ,
which is x ′ i,t = h D,i 

(
x i,t 

)
. In training collaborative neural net-
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Fig. 3 – Training protocol of the proposed scheme on FedSgd. 
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ork, the device obtains gradient g i,t using classification loss 
 c from the collaborative neural network, where g i,t is defined 

s follows: 

 i,t = 

∂L c 

(
h C,i 

(
x ′ i,t 

))
∂w i,t 

. (2) 

The gradient g i,t is an update for the server S that dis- 
ributes the new parameter w t+1 after receiving and accumu- 
ating g i,t from all the participating devices. The server con- 
ucts a step in gradient descent with a learning rate τ as fol- 

ows: 

 t+1 = w t − τ
1 
| I | 

I ∑ 

j=1 

g i,t . (3) 

Once mobile devices receive the w t+1 for their collabora- 
ive neural networks, each device trains its DNN. The training 
bjective of the DNN is to digest the data so that the attack 
lgorithm fails to recover the original data. Simultaneously,
 

′ 
i,t needs to contain recognizable features for the collabora- 
ive neural network to make accurate predictions. To achieve 
oth requirements, we present the loss L D defined as follows: 

 D = L c + max ( α − L d , 0 ) , (4) 

here L c is a classification loss and L d is a distance loss. L c is
esponsible for assisting the collaborative neural network to 
ncrease the classification accuracy, while L d updates DNN to 
iscourage the attack. We define a threshold α to properly reg- 
late L d as the static influence of L d impairs the convergence 
f the entire FL scheme. L d requires g C i,t , g 

D 
i,t and L c , where g C i,t ,

 

D 
i,t are the gradients of the collaborative neural network on 

 i,t and x ′ i,t , respectively. Gradients and losses are derived from 

he same mini-batch that were used to train the collaborative 
etwork. Mathematically, two gradients can be represented as 
ollows: 

 

C 
i,t = 

∂L c 
(
h C,i 

(
w i,t , x i,t 

))
∂w i,t+1 

, (5) 

 

D 
i,t = 

∂L c 

(
h Ci 

(
w i,t x 

′ 
i,t 

))
∂w i,t+1 

. (6) 

he digestive loss L D only updates the DNN. Furthermore,
raining of the digestive network does not affect the collabora- 
ive neural network and vise versa. After every device updates 
ts DNNs, mobile devices collect the next mini-batch for the 
ubsequent communication round. 

.3. Attack scenario: FedSgd 

e suppose an adversary defined in ( Geiping et al., 2020; Zhao 
t al., 2020; Zhu et al., 2019 ) for attacking the FedSgd proto-
ol. The adversary eavesdrops on the communication channel 
nd acquires w i,t and g j ∈ I ,t . It is assumed that the adversary 
oes not possess any prior knowledge of each device’s private 
ataset but does have enough computing resources to fabri- 
ate a data sample and derive a gradient using the acquired 

eights w i,t . When the adversary eavesdrops g j,t and w i,t+1 , it 
enerates a random data sample x adv , y adv and starts to min- 
mize the distance of gradient of x adv with the eavesdropped 

 j,t . The adversary updates the random data sample to mini- 
ize the optimization goals: 

rg min 

x adv 

∥∥∥∥∥ ∂L c 
(
y adv , h C,adv 

(
w i,t , x adv 

))
∂w i,t 

− g j,t 

∥∥∥∥∥
2 

. (7) 

hat is, the attacker updates x adv and y adv so that the gradient 
f x adv can be similar to the g i,t . Iterating the process alters x adv 

o be analogous to x i,t . 
The attack model presented in ( Geiping et al., 2020 ) mini- 

izes cosine similarity between two gradients. The intuition 
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behind the cosine similarity is that the gradient suggests a
direction to optimize the neural network with respect to the
mini-batch. Finding a data sample that suggests the same di-
rection produces the original data. A detailed formulation of
the direction in optimization problem is defined as follows,
where 

〈
x, y 

〉
/ || x || · || y || is cosine similarity of x and y : 

arg min 

x ∈ [ 0 , 1 ] n 
1 −

〈
∂L c ( y adv ,h C,adv ( w i,t ,x adv ) ) 

∂w i,t 
, g j,t 

〉
∥∥∥∥ ∂L c ( y adv ,h C,adv ( w i,t ,x adv ) ) 

∂w i,t 

∥∥∥∥ ·
∥∥∥g j,t 

∥∥∥ . (8)

In the simulations, we experimented with both attackers
to examine the effectiveness of the two attacks and compare
them with our proposed defense mechanisms. 

3.4. Digestive loss: FedSgd 

The digestive loss consists of L d and L c , which are responsible
for improving privacy and accuracy, respectively. The design
of L d starts from scrutinizing the attack scenario. A gradient-
based attack minimizes the distance between a target gradi-
ent and a gradient from the dummy data. The DNN originated
from an intuition of reversing the attack process using a neu-
ral network architecture. To this end, the optimization goal of
the DNN is to increase the distance of the two gradients. The
update from device i is g i,t , which is defined as in Eq. 2 and it is
the gradient of x ′ i,t with respect to the h C,i . Thus, when an ad-
versary launches a successful attack using g i,t , it will recover
x ′ i,t . To prevent the attack, we need to convert g i,t to pose diffi-
culty in processing the attack algorithm. Moreover, even if the
attack algorithm successfully recovers the x ′ i,t , recovering x ′ i,t 
is of no use if x i,t � = x ′ i,t . In other words, it does not give any
advantage to the adversary. 

Thus, we propose pushing 
∂h C,i 

(
x ′ i,t 

)
∂w C,i 

far from 

∂h C,i ( x i,t ) 
∂w C,i 

. This
will introduce difficulty to the adversarial algorithm as push-
ing the gradient increases the distance that the adversarial
algorithm has to minimize. Accordingly, pushing makes x ′ i,t � =
x i,t as two data will produce two distant gradients. This way,
the adversary will not be able to recover private information
of x i,t from x ′ i,t as it is completely different from x i,t . To achieve
this, we propose an optimization goal of h D,i as follows: 

∂h C,i 
(
h D,i 

(
x i,t 

))
∂w C,i 

= max 
x i,t 

( 

dist 

( 

g i,t , 
∂h C,i 

(
w C,i , x i,t 

)
∂w C,i 

) ) 

. (9)

The x ′ i,t generates gradient g i,t that has significant difference

with 

∂h C,i ( w C,i ,x i,t ) 
∂w C,i 

. To optimize h D,i for successful generation of

x ′ i,t , the distance loss that contributes to update h D,i , is defined
as follows: 

L d = −
dist 

( 

∂L c ( h C ( w i,t+1 x i,t ) ) 
∂w i,t+1 

, 
∂L c 

(
h C 

(
w i,t+1 ,x 

′ 
i,t 

))
∂w i,t+1 

) 

∣∣h C ∣∣ . (10)

The distance loss is defined as an average distance between
two gradients normalized by the size of the h C,i . It updates the
h D,i so that the gradient of x ′ i,t can be distant from the gradient
of the x i,t . The difference between the two gradients is deter-
mined by various distance metrics, including cosine similar-
ity, Minkowski distance with p = 1 and p = 2 . We denote the
Minkowski distance with p = 2 , or Euclidean distance as L2
and Minkowski distance with p = 1 as L1, as they are L p norm
of differences ( Friedrich, 1910 ). 

In the proposed FL scheme, the constant presence of L d im-
pairs the global convergence of all mobile devices. Thus we in-
troduce a threshold α to control the influence of L d over the
scheme. As in Eq. (4) , L d becomes 0 when it exceeds α. This
keeps distance of gradients of x ′ i,t and gradient of x i,t to stay
farther than α. Unlike L d , L c has a constant influence on the
training of DNN to maintain high accuracy. 

3.5. Training protocol: FedAvg 

Devices participating in the FedAvg algorithm upload weight
parameter of their local neural networks after training for an
epoch. The central server distributes averaged weights to all
the devices. The training protocol of the proposed scheme in-
cludes training of both collaborative neural network and di-
gestive neural network without violating the underlying Fe-
dAvg algorithm. Fig. 4 depicts the training protocol of i -th de-
vice participating in the FL of the proposed scheme for FedAvg
algorithm ( McMahan et al., 2017 ). The training is divided into
two phases. In training a collaborative neural network, each
device freezes the digestive neural network and trains only
the collaborative neural network. Whereas in training the di-
gestive neural network, each device freezes the collaborative
neural network and trains only the digestive neural network. 

The initial phase is training collaborative neural network
h C,i . First each device inputs its private data x i , y i into its own
digestive neural network h D,i and collaborative neural net-
work h C,i . The device then derives only updates from its h C,i

using cross-entropy loss L c from the outputs. After training
for an iteration on whole data, the device sends its trained pa-
rameters of w i,t to the central server. As the central server re-
ceives all parameters from all the devices, the server averages
parameters and distributes the newly updated parameter. 

The second phase is training the digestive neural network
h D,i . Similar to the proposed scheme on FedSgd, the digestive
neural network needs to transform the original mini-batch x i
into a totally divergent mini-batch, however, it yet needs to
contain proper features that can assist the classification per-
formed in the collaborative neural network. After receiving a
new parameter from the server, the device freezes the param-
eter of h C,i . For each mini-batch x i collected from the private
data, the device obtains digested data x ′ i by passing x i through
the digestive neural network h D,i . Using x i and x ′ i , the device
calculates the distance loss L D where L d is a batch-wise mean
distance between x i and x ′ i . This will maximize the pixel-wise
distance between x i and x ′ i . Also, the device sends its digested
data x ′ i to the collaborative neural network and obtains cross-
entropy loss L c . Two losses are aggregated into L D and used
for updating the digestive neural network. 

L D = L c + max ( α − L d , 0 ) , (11)

The digestive loss is controlled by a threshold value α. If the
distance loss is greater than the threshold value, the distance
loss is deactivated. After deactivation, the DNN minimizes the
classification loss only. 
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Maximize 
 

Digestive 
neural network 
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neural network 

Central server 
 

Distribute 

Training collaborative
neural network

Training digestive 
 neural network
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 Upload 

Collaborative 
neural network 

Private Data

Fig. 4 – Training protocol of the proposed scheme on FedAvg algorithm. 
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.6. Attack scenario: FedAvg 

e define the adversary attacks on the FedAvg protocol us- 
ng the passive global attacker in ( Nasr et al., 2019 ). The goal
f the passive global attacker is to build an attack model that 
an identify whether a data sample is included in the target 
evice’s training dataset. The attack model is a binary classi- 
er that predicts the membership of the input sample. The 
ttacker already has a portion of the target’s data and the 
ttacker has enough computing resource to simulate a neu- 
al network with the target’s parameters. In the designated 

raining rounds, the attacker eavesdrops on the parameter up- 
ate from the target device. It saves the parameter to its local 
torage until the FL protocol is completely executed. After ac- 
uiring parameters from all the training rounds, the attacker 
rains its attack model using the target’s training data that the 
ttacker already has. Then the attacker extracts gradient, fea- 
ure map, and output from neurons and loss values by simu- 
ating the target’s neural network. The attack model is trained 

n a supervised manner. Let A is an attack model, d t is a tar- 
et device’s private dataset, and let ( x t , y t ) ∈ d t is a member 
ata of d t and ( x ′ , y ′ ) / ∈ d t is non-member data. The adversary 

s assumed to have a partial dataset d a,t ⊂ d t that satisfies 
 a,t � = d t . The adversary aims to infer the unknown portion 

f the dataset d u,t = d � a,t . We also assume the target model 
ith target’s weight h t ( w t ) . Then the attacker forms the attack 
ataset as follows: 

 atk = { ( x i , y i , z ) ∀ ( x i , y i ) ∈ d a,t } ∪ { 
(
x j , y j , z 

)
} , (12) 

 = 

{ 

1 if ( x k , y k ) ∈ d a,t 

0 otherwise . 
(13) 

The attacker uses d atk for training the attack model using 
radient, loss value, feature maps and output of the target 
odel as follows: 

 k = h t ( w t , x k ) , (14) 

 k = L ( h t ( w t , x k ) , y k ) , (15) 

 k = 

∂L ( h t ( w t , x k ) , y k ) 
∂x k 

, (16) 

f k = { h n,t ( w t , x k ) ∀ h n,t ∈ h t } . (17) 

here h n,t is the k -th layer of the target model. Thus h n,t ( x k , y k )
epresents the feature map of k -th layer. The attacker trains 
he attack model to build the following binary classifier. 

 ( x k , y k , o k , l k , g k , f k ) = 

{ 

1 if ( x k , y k ) ∈ d t 
0 otherwise 

(18) 

hat is, the attacker tries to optimize A to predict the mem- 
ership of ( x k , y k ) . 

.7. Digestive loss: FedAvg 

imilar to the FedSgd, the digestive loss consists of distance 
oss L � and classification loss L c . In FedAvg, The L d directly 
erives the mathematical distance of a data sample x and the 
orresponding digested sample x ′ . The L d attempts to increase 
ixel-wise distance between the x and x ′ . By iteratively opti- 
izing the DNN using L d converts DNN so that DNN delivers 

 

′ to the collaborative neural network. Mathematically, it can 

e defined as follows: 

 d = −dist ( x, x ′ ) 
| x | . (19) 
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Table 1 – Simulation configurations for digestive network. 

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 

K S K S K S K S K S K S 

32 1 32 2 32 1 32 1 32 2 32 2 
32 1 32 2 16 1 64 1 16 2 64 2 
32 1 32 1 16 1 64 1 16 1 64 1 
32 1 32 0 16 1 64 1 16 0 64 0 
32 1 32 0 32 1 32 1 32 0 32 0 

K: Number of kernels, S: Strides 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The difference between the two samples is determined
by various distance metrics, including cosine similarity and
Minkowski distance with p = 1 and p = 2 . We will denote
Minkowski distance with p = 2 , or Euclidean distance as L2,
and Minkowski distance with p = 1 as L1, as they are L p norm
of the differences ( Friedrich, 1910 ). 

The goal of the attacker of FedAvg protocol is to infer the
portion of the target’s private data using another portion of the
data that the attacker already has. Therefore, DNN delivers x ′

that is totally different from the x for training the collaborative
neural network. Thus, the attacker will receive the parameters
of the collaborative neural network that was trained on com-
pletely different data x ′ than what the attacker currently has.
This fails the training of the attack model as the data the at-
tacker has, is different from the x ′ . 

4. Experiment results and evaluation 

We simulated the proposed scheme in various conditions
and quantified the performance of the DNN. The simulation
was conducted with different architectures of DNNs including
three different distance metrics. The detailed configuration of
DNN is described in Table 1 . The DNN includes five residual
blocks. Each block includes three convolutional layers with a
residual path. Each row in Table 1 is a configuration for the
residual block. The number of kernels in convolutional layers
is determined by K, and S determines to downsample and up-
sampling. Columns of S indicate strides for convolutional lay-
ers. S = 2 means that the corresponding block includes a con-
volutional layer that downsamples the input mini-batches di-
mensions in half. S = 0 means the output of the corresponding
block will be double of the size of the input mini-batch. S = 1
indicates that the output dimension is identical to the input
dimension. 

The experiment involves six different types of architec-
tures for DNNs. Each type is selected to measure the varying
performance of the proposed scheme according to the archi-
tecture of the DNNs. All residual blocks in type 1 have identi-
cal kernel sizes as well as identical feature map dimensions.
Residual blocks in type 3, 4, 5, and 6 have varying kernel sizes
while type 2, 5, and 6 include blocks that reduce and increases
feature maps. 

We simulated our attack on both FedSgd and FedAvg proto-
cols. For FedSgd, we simulated FL with | I| = 5 using aforemen-
tioned multiple DNNs and resnet-20 as collaborative neural
networks ( He et al., 2016 ). Every FL scheme is trained for 300
epochs with batch sizes of 32 and a learning rate of 1 e − 4 .
After training multiple FL schemes, we simulated the attack
algorithm suggested in the previous section. The attack sim-
ulation runs the attack algorithm to recover 100 private data
instances. 

For the FedAvg algorithm, we simulated FL with | I| =
3 and randomly selected 30,000 private data instances for
each device from the CIFAR-100 dataset with allowing dupli-
cates. The simulation incorporates same DNN, but we used
AlexNet ( Krizhevsky et al., 2012 ) as our collaborative neu-
ral network architecture. Every FL scheme is trained for 300
epochs with a batch size of 64 and a learning rate of 1 e − 3 .
The training conditions and hyperparameters are selected to
be in compliance with the attack algorithm. Moreover, we
implemented the passive local attacker for FedAvg introduced
in ( Melis et al., 2019 ). Every FL scheme is implemented by Py-
torch on workstation i7 with four RTX 2080 TI GPUs. 

In this section, we also evaluate the performance of the
FL by comparing accuracy and attack success rates. The ac-
curacy denotes model performance on the test data whereas
the attack success rate indicates how the model is robust to
an attack. As aforementioned, we simulated the attack algo-
rithm for both FedSgd and FedAvg protocol. For the FedSgd
protocol, the attack success rate is measured by comparing
the similarity of original data and the data resulting from 100
attack simulations. The similarity is measured in terms of ac-
curacy predicted by a pre-trained classifier that can classify
the original dataset with high accuracy. The high prediction
accuracy of a pre-trained classifier means that the attack al-
gorithm successfully reconstructed data that contains similar
visual features to the original data. Thus high attack success
rate means the model is not defending well against the attack.
The low attack success rate, on the other hand, shows that the
attack simulation has failed to generate a data sample that
has visually analogous features. For the FedAvg algorithm, we
simulated the passive local attacker. Furthermore, the attack
model is a binary classifier that predicts the membership of
the sample, and the attack success rate is directly obtained
by the accuracy of the attack model. The lower accuracy of
the attack algorithm indicates that the attack model could not
determine whether a given sample is included in the private
training dataset. On the other hand, a higher attack success
rate indicates that the attack model is certain whether a given
sample is a member of the training data. 

For both FedSgd and FedAvg, we trained the models with
differential privacy. The differential privacy model injects a
predefined amount of noise into the updates. For FedAvg, the
noise is added to the parameter update while for the FedSgd
model, noise is added to the gradient of the data. We trained
the differential privacy models for the same training epochs
and same batch size to make an exact and fair comparison
with the proposed schemes. Also, we simulated attacks on dif-
ferentially private models to compare the attack success rate
for Differential private models and the proposed DNN. 

4.1. Performance analysis: accuracy and attack success 
rate on FedSgd 

We first compare the accuracy and attack success rate of the
FL with differential privacy on the FedSgd protocol. Table 2
shows the accuracy and attack success rate of plain and vari-



10 c o m p u t e r s  &  s e c u r i t y  1 0 9  ( 2 0 2 1 )  1 0 2 3 7 8  

Fig. 5 – Test accuracy per epoch for plain and differential privacy, and proposed scheme with type 1 digestive neural 
networks on CIFAR10 and SVHN dataset. 

Table 2 – Accuracy and attack success rate of plain and 

differential privacy models. 

Scheme CIFAR 10 SVHN 

Accuracy 

Attack 
success 
rate Accuracy 

Attack 
success 
rate 

Plain 
model 

70.620 19.0 77.631 20.0 

δ2 = 1e-4 69.620 18.0 73.087 17.0 
δ2 = 1e-3 68.130 17.0 70.200 15.0 
δ2 = 1e-2 64.280 17.0 54.141 26.0 
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Table 3 – Performance of proposed scheme with L2 dis- 
tance metric. 

Digestive type α Accuracy attack success rate 

Type 1 1e-1 82.448 10.0 
Type 2 1e-1 78.320 11.0 
Type 3 1e-1 82.416 11.0 
Type 4 1e-1 85.794 10.0 
Type 5 1e-1 78.080 9.0 
Type 6 1e-1 77.894 9.0 
Type 1 1e-2 81.476 8.0 
Type 2 1e-2 77.262 8.0 
Type 3 1e-2 83.704 10.0 
Type 4 1e-2 82.728 7.0 
Type 5 1e-2 78.682 8.0 
Type 6 1e-2 77.740 9.0 
Type 1 1e-3 83.018 14.0 
Type 2 1e-3 78.218 10.0 
Type 3 1e-3 83.334 8.0 
Type 4 1e-3 82.778 9.0 
Type 5 1e-3 78.098 11.0 
Type 6 1e-3 77.248 11.0 
Type 1 1e-4 81.960 12.0 
Type 2 1e-4 78.914 15.0 
Type 3 1e-4 82.934 12.0 
Type 4 1e-4 82.438 13.0 
Type 5 1e-4 77.822 17.0 
Type 6 1e-4 78.240 17.0 
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us differential privacy schemes on the CIFAR-10 and SVHN 

atasets. The plain scheme (with no differential privacy) is 
n FL scheme without any defensive mechanisms whereas 
ifferential privacy schemes use an additive Gaussian noise 
ith variance δ2 to ensure data privacy. As differential privacy 

chemes add noise to the gradient updates, the accuracy de- 
reases as the level of noise increases. Instead, the attack suc- 
ess rate decreases as the noise level increases, meaning that 
econstruction of data through attack simulation was unsuc- 
essful as noise level increases. 

Fig. 5 illustrates the performance of each scheme over 
raining epochs. We compared plain scheme, differential pri- 
acy scheme, and three proposed schemes with distance met- 
ics of L1, L2, and cosine similarity. All proposed schemes in 

he graph had type 1 DNN and a threshold of α= 1e-1. The 
raph shows that the proposed schemes, regardless of differ- 
nt distance metrics, achieved high accuracy than the rest of 
he schemes. This is because the DNN is not only responsi- 
le for the digestion of the data but also contributes to the 
mprovement in accuracy. Also, the proposed scheme showed 

ast convergence on both CIFAR-10 and SVHN datasets, while 
lain and differential privacy schemes showed slow conver- 
ence. The graph also shows the downside of differential pri- 
acy schemes which is the drop in the accuracy of the differ- 
ntial privacy schemes as compared to the plain model. 

Table 3 shows the accuracy and attack success rate of the 
roposed scheme, including various DNNs. The simulation is 
onducted to analyze the effects of various DNN types intro- 
uced in Table 1 as well as various α values on FedSgd protocol.
ll schemes in the table had L2 as a distance metric. 

Comparing Tables 2 and 3 , it is clear that the proposed 

cheme achieved higher accuracy and lower attack success 
ate than the differential privacy schemes. Moreover, the pro- 
osed scheme had 7% to 15% higher accuracy than the plain 

cheme. This is because the digestive neural network not only 
ontributes to the digestion of the input data but also con- 
ributes to reducing the classification loss. Also, the proposed 

cheme had a lower attack success rate, the attack success 
ate of 10.0 indicates that the reconstructed data do not have 
ny feature similar to the original data. Furthermore, the pre- 
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Table 4 – Accuracy and attack success rate comparisons over various α values on CIFAR-10 dataset. 

Digestive type α L1 L2 sim 

Acc Att acc Acc Att acc Acc Att acc 

Type 1 1e-1 83.158 16.0 82.448 10.0 81.532 8.0 
Type 1 1e-2 81.064 13.0 81.476 8.0 81.672 9.0 
Type 1 1e-3 81.002 13.0 83.018 14.0 81.716 13.0 
Type 1 1e-4 81.060 9.0 81.960 12.0 82.912 15.0 
Type 2 1e-1 79.240 4.0 78.320 11.0 78.604 14.0 
Type 2 1e-2 78.606 14.0 77.262 8.0 78.834 12.0 
Type 2 1e-3 78.438 6.0 78.218 10.0 78.034 4.0 
Type 2 1e-4 78.594 11.0 78.914 15.0 78.418 14.0 
Type 4 1e-1 82.218 10.0 85.794 10.0 82.808 8.0 
Type 4 1e-2 82.724 9.0 82.728 7.0 82.636 7.0 
Type 4 1e-3 82.756 10.0 82.778 9.0 81.326 11.0 
Type 4 1e-4 81.950 6.0 82.438 13.0 82.486 13.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

trained classifier for measuring attack success rate makes a
random guess to the reconstructed data. 

Table 3 implies that the types of architecture and thresh-
old α determines both accuracy and attack success rate. The
reduction of α correlates with the attack success rate. This is
because the α determines the training of L d . A small value of
α puts less burden on models than high α where in case of
higher α, the models have to maintain L d up to α. After L d 

reaches α, models train DNN only to minimize the classifica-
tion error. Thus, models with smaller α achieve higher accu-
racy as they can train their DNN for assisting classification
more pervasively than the schemes with high α. Conversely,
the models with high α need to contribute themselves more to
maintain L d up to α. Although this degrades the classification
accuracy, it makes the scheme more robust to the inference
attack on FedSgd. 

The types of architecture also have a varying impact on the
accuracy and attack success rate of the model. The reduction
of dimensions has a negative effect on accuracy. Simulation of
type 2 only shows degradation in classification accuracy, but
not in the attack success rate. On the other hand, type 4, an ar-
chitecture with larger kernels showed a relatively lower attack
success rate than other models while not showing a decrease
in the classification accuracy. Effects resulting from a reduc-
tion in dimensions and large kernels are independent as sim-
ulations of type 6 show effects from both configurations. 

From the observation, we have narrowed down to conduct
another simulation that only includes type 1, 2, and 4 for the
rest of the experiments. The selected types show distinctive
effects than other types. Table 4 shows the classification ac-
curacy and the attack success rate of the proposed scheme
with various types, α, and distance metrics. We can see that
types and α show similar effects even when the distance met-
rics are different. Also, effects from α and effects of architec-
ture types are independently affecting the accuracy. The accu-
racy degradation resulting from α is seldom observable in the
proposed schemes with type 4. Since type 4 has wider kernel
sizes, the accuracy degradation from the smaller α has been
counterbalanced by the architecture. Table 5 shows an identi-
cal experiment conducted on SVHN dataset. Unlike CIFAR-10,
effects resulting from using type 4 have not been observed.
Moreover, the attack success rate of the type 4 digestive neu-
ral network on the SVHN dataset is almost similar to the pro-
posed schemes with the type of digestive neural networks. 

4.2. Performance analysis: accuracy and attack success 
rate on FedAvg 

Table 6 shows the performance and the attack success rate of
plain FedAvg protocol and the attack success rate. The abso-
lute accuracy of the plain FedAvg is low since the neural net-
work for the FL is AlexNet. The Alexnet without batch normal-
ization tends to significantly suffer from overfitting problems.
We can see that the accuracy of differential private models is
slightly degraded from the plain model as noise added to the
parameter update affects the global accuracy of the model. 

The attack success rate is more important as it shows how
differential privacy defends the attack on FL. The attack suc-
cess rate on the plain scheme is 98.74% while the attack on
differential privacy models is around 74%. The attack success
rate drops significantly. The differential privacy with the high-
est variance of 1 e − 1 reduces the attack success rate signifi-
cantly. However, the differential privacy model with the vari-
ance of 1 e − 1 is not desired as classification accuracy is sig-
nificantly low. 

Table 7 shows the classification accuracy and the attack ac-
curacy of the proposed scheme with various DNN on FedAvg
protocol. We used the same DNNs defined in Table 1 . Along
with the previous simulations, we focused on type 1, 2, and
4 DNNs that have a particular behavior associated with their
structure. With various α values, the proposed DNN converted
the input mini-batch into the digested mini-batch. It can be
seen that the DNN does not affect the classification accuracy
significantly as DNN is also trained for reducing the classifica-
tion error. Also, the collaborative neural network trains itself
to increase classification accuracy. Similarly, with the applica-
tion of FedSgd protocol, the proposed DNN converts the un-
derlying features in original data into different features. The
attack success rate substantiates the fact that the DNN com-
pletely converts the image feature. Furthermore, the adver-
sary trains the attack model using half of the samples of the
target device. However, most of the experiments had an attack
success rate of less than 10%. This shows that in most cases,
the attack model failed to identify the other half of the data
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Table 5 – Accuracy and attack success rate comparisons over various α values on SVHN dataset. 

Digestive type α L1 L2 sim 

Acc Att acc Acc Att acc Acc Att acc 

Type 1 1e-1 92.307 15.0 92.338 14.0 92.411 9.0 
Type 1 1e-2 92.273 13.0 92.745 11.0 92.384 16.0 
Type 1 1e-3 92.331 17.0 92.189 8.0 92.086 17.0 
Type 1 1e-4 92.382 6.0 92.974 20.0 92.441 7.0 
Type 2 1e-1 88.692 18.0 88.843 7.0 89.368 14.0 
Type 2 1e-2 88.989 9.0 88.949 17.0 88.408 15.0 
Type 2 1e-3 87.735 11.0 88.916 16.0 90.209 10.0 
Type 2 1e-4 89.593 14.0 88.794 10.0 78.172 16.0 
Type 4 1e-1 92.205 14.0 91.927 19.0 92.437 16.0 
Type 4 1e-2 92.492 16.0 92.059 15.0 92.430 12.0 
Type 4 1e-3 92.402 17.0 92.740 9.0 92.494 14.0 
Type 4 1e-4 92.957 7.0 92.501 9.0 91.901 12.0 

Table 6 – Accuracy and attack success rate of passive local 
attacker on plain model and differentially private models 
on CIFAR-100 dataset. 

Scheme Accuracy attack success rate 

Plain model 26.80 98.74 
δ2 = 1 e − 4 26.84 74.15 
δ2 = 1 e − 3 22.46 72.27 
δ2 = 1 e − 2 22.07 76.64 
δ2 = 1 e − 1 10.01 49.37 
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hat was transformed through the DNN. This shows that even 

hough the attack algorithm extracts information from the 
arget’s collaborative neural network, the attack model failed 

o extract crucial information for identifying the digested data 
sing the original private data. 

.3. Analysis on distance loss 

istance loss is one of the most crucial components of our 
roposed scheme. Throughout the training, the goal was to 
aintain the distance loss higher than α. Fig. 6 shows the 

hange in the average distance losses of five models through- 
Table 7 – Accuracy and attack success rate of passive local attac

Digestive type α L1 

Acc Att acc 

Type 1 1e-1 18.73 37.58 
Type 1 1e-2 24.73 49.37 
Type 1 1e-3 21.74 6.349 
Type 1 1e-4 22.52 2.235 
Type 2 1e-1 23.33 62.05 
Type 2 1e-2 21.53 3.125 
Type 2 1e-3 20.28 9.494 
Type 2 1e-4 22.96 4.451 
Type 4 1e-1 25.68 8.4454 
Type 4 1e-2 25.25 14.750 
Type 4 1e-3 27.44 8.069 
Type 4 1e-4 21.98 26.167 
ut the training epochs. Architecture types and α values affect 
he formation of distance loss. In α = 1 e−1 , the model updates
he digestive loss rapidly up to 1 e − 1 . Exceeding that point,
he influence of distance loss in digestive loss is neglected.

e have anticipated that the distance loss will decrease af- 
er exceeding α, though it did not decrease after it exceeded 

ts requirements. This is because of the sequential nature of 
he training protocol. DNNs and collaborative neural networks 
re trained sequentially. Thus, although the DNN rapidly in- 
reases distance loss, the collaborative network adapts itself 
o the DNN and vice versa. Thus after exceeding the α, dis- 
ance loss never decreases as the collaborative network has 
lready adapted itself. A similar rapid increment of distance 
oss is observed in simulations with α = 1 e − 2 . Type 4 showed
 moderate increment in the distance loss. The slow incre- 
ent may contribute to the highest accuracy as collaborative 

eural networks could adapt themselves to digested feature 
omain. 

When α is too small, such as 1 e −4 , a rapid surge in the dis-
ance loss is not observed. Fig. 6 (d) is an example where initial
istance loss is already bigger than α. In such cases, the di- 
estive network is only minimizing classification loss whereas 
he distance is automatically slightly increased as the training 
ontinues. This implies that increasing classification accuracy 
ker on FedAvg with proposed DNN. 

L2 sim 

Acc Att acc Acc Att acc 

23.02 5.755 21.31 12.20 
23.75 9.237 23.53 11.65 
24.25 6.448 23.64 14.933 
23.77 6.369 21.28 5.657 
26.35 13.865 29.56 2.987 
19.35 8.979 31.07 13.92 
22.87 3.679 23.36 21.34 
28.79 8.030 25.32 9.237 
25.90 5.894 22.56 2.690 
24.62 12.50 22.90 7.183 
23.75 9.138 25.02 8.930 
25.08 5.835 23.42 12.26 
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Fig. 6 – Distance loss per epoch on proposed scheme with L2 distance metric. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and increasing the distance of gradients are not inconsistent.
That is, minimizing the distance loss does not increase the
classification loss. Moreover, training for increasing classifica-
tion accuracy assists in an increase in distance loss. 

From the same graph, different effects caused by various
types of DNN are illustrated. The distance loss incremented
by the collaborative neural network is significantly affected by
the feature map sizes. Architecture types, including feature
map reduction, not only suffered from classification accuracy
but also showed a slow increment in the distance loss. 

Fig. 7 shows how the distance loss is shaped with respect
to different alpha values under different distance metrics. In
every scheme, simulation with alpha = 1 e − 1 showed a rapid
increment of distance in the early training period. Since dis-
tance metrics are all different, α = 1 e − 1 does not have an
identical impact on the model as well. The α = 1 e − 1 already
is too small to be a threshold for the proposed schemes with
cosine similarity. Thus distance losses for all experiments on
the similarity are at a similar level as they do not have to up-
date their DNN based on the distance loss. 

The proposed DNN on FL scheme offers a better FL environ-
ment for an FL service provider. FL service provider who incor-
porates differential privacy within its FL scheme has to decide
the adequate level of noise for securing the whole scheme.
The accuracy degradation due to the presence of noise is in-
evitable for the FL service provider and every mobile device.
Under the FL scheme with the proposed DNN, the FL service
provider can select the level of privacy by selecting the proper
 

α. The level of α has little effect on the classification accuracy.
That is, the service provider can choose the desired α values
with little concern for the performance of the FL scheme. 

4.4. Attack simulations on digestive neural networks 

The aforementioned experiments have substantiated that the
proposed scheme can defend against the membership in-
ference attack more effectively than the differential privacy
scheme. Here we investigate in further detail, the details of the
relationship between the attack algorithm and the proposed
scheme. Table 8 shows the process of the attack initiated on
the plain, differential privacy, and our proposed schemes with
various types, threshold, and distance metrics. The attack al-
gorithm generates an initial random image and repetitively
updates the image so that the image can have more similar
gradients with the target gradients. 

The attack on the plain scheme has successfully recovered
the image. Moreover, the recovered image retains similar vi-
sual features with the ground truth. On the other hand, an
attack on differential privacy with δ2 = 1 e − 4 also showed
that the attack algorithm has recovered the image that con-
tains relatively similar features to the ground truth. While the
attacks on the proposed scheme have reconstructed images
that do not contain any representative features that are simi-
lar to the ground truth. This confirms that our proposed DNN
is operating as we designed. The DNN pushes the input mini-
batch so that it can have a dissimilar gradient with the original
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Fig. 7 – Distance loss with respect to various α and training epochs in different distance metrics. 
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radients. Pushing the gradients also alters the visual features 
f the original image into totally disparate features. This is 
hy our proposed scheme is more secure than the differential 
rivacy scheme. Even the attack algorithm successfully recov- 
rs the image using gradients, the resulting image already has 
otally different features from the original data. The attacker 

ay successfully obtain data; however, will not be able to ex- 
ract any private information based on the analysis of totally 
ifferent features than what the attacker is looking for. 

Table 9 shows visualization of the digested data from the 
riginal data. The digested data is the output of the DNN. The 
ollaborative neural networks receive this mini-batch from 

he DNN and send gradients to the server based on the mini- 
atch data. Thus, a successful membership inference attack 
n the gradient will reconstruct these data. Thus the attacker 
ardly will gain any meaningful information from the mini- 
atch data. More importantly, the digestion of data is con- 
ucted locally. Thus unless the attacker can sneak into the 
ystem of a participating mobile device, recovering ground 

ruth from digested data would not be possible. 

.5. Train-ability of the digested data 

e had a curiosity about how our proposed scheme could 

chieve higher accuracy on the CIFAR-10 and SVHN datasets 
ith the DNN. To find what caused this, we incorporated t- 
istributed Stochastic Neighbor Embedding (t-SNE) to see how 

he model is perceiving its data. The t-SNE is a dimension- 
lity reduction algorithm that converts multi-dimensional 
ata into two-dimensional data without losing spatial rela- 
ionships within high-dimensional data. The algorithm often 

orms clusters by placing data points with high similarity to- 
ether and placing data points of low similarity far apart. 

We analyzed each model by applying t-SNE to the output of 
he last convolutional layer of each model. This illustrates the 
isualization of the learned representation of input data. Since 
ll models have identical architecture and hyper-parameters 
ith identical epochs of training, the learned representation 

an reveal the learnability of a given dataset. To quantify the 
earned representation without any bias, we conducted exper- 
ments only on the test data of the CIFAR-10 dataset. 

Fig. 8 illustrates a visual depiction of the reduced dimen- 
ion by t-SNE. We analyzed plain, differential private schemes 
ith two proposed schemes with the highest accuracy. A dot 

n the figure represents a data point in a dataset, and the color
enotes its class. In the figure, plain and differential privacy 
ith δ2 = 1 e − 2 , δ2 = 1 e − 3 do not show clear clusters.
e can consider noise added to the update in the differential 

rivacy scheme as noise added to the data. This shows that 
ata is too sophisticated to differentiate using convolutional 

ayers’ learned representations. On the other hand, clusters 
re vividly visible on t-SNE analysis in the proposed schemes.
his indicates that feature extraction of the digested data is 
asier and more easily separable than the differential privacy 
chemes. The DNN actually converts the CIFAR-10 dataset, so 
hat the convolutional layers in collaborative neural networks 
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Table 8 – Progress of attack simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The authors simulated the attack on a real-world dataset. De- 
can extract features effectively. The digested data may seem
like random noise, however, it actually converted the dataset
better so that the collaborative network can take advantage of
it. 

5. Related works 

In this section, we outline the existing work pertaining to in-
ference attacks on ML and FL, and privacy preservation tech-
niques in FL. 

5.1. Membership inference attack on machine learning 
models 

Membership inference attack, or inference attack, can target
various ML algorithms over various environments. Cai et al.
proposed an inference attack on basic classifiers trained on
social network graph data ( Cai et al., 2018; Li et al., 2021 ).
For an inference attack on deep learning models, Shokri et al.
proposed a scheme to identify training data by inspecting a
model ( Shokri et al., 2017 ). The authors leveraged a typical be-
havior of an overfitted model. When a sample from training
data is given, an overfitted model shows higher confidence
than a generalized model. By assessing this different behav-
ior, the attack model determines if a given datum is included
in the training data of a victim model. To train the attack
model, multiple shadow models were incorporated to simu-
late the behavior of the target model. Unlike the initial in-
ference attacks that required multiple shadow models, the
data transferring attack by Salem et al. found out that the
inference attack can be accomplished by only one shadow
model ( Salem et al., 2019 ). The authors proposed three differ-
ent approaches with an attack model that does not require
any training for inference. They reported that statistical anal-
ysis on the posteriors is sufficient to explain if a sample is in-
cluded in the training data. Another similar work ( Yeom et al.,
2018 ) showed that the overfitting of the target model is a suffi-
cient condition, not a necessary condition for inference attack.
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Table 9 – Digested Image of α = 10 . 
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iating from using the shadow model, Lenio et al. proposed an 

ttack based on white-box assumptions ( Leino and Fredrik- 
on, 2020 ). They identified that an overfitted model only uses 
ertain features to make an inference. 

.2. Membership inference attack on FL 

L is more vulnerable to inference attacks than other ML algo- 
ithms. In non-collaborative learning, training is processed se- 
urely. However, in FL, the training process is exposed through 

 communication channel, allowing inference attacks to ex- 
loit the training process. Nasr et al. defined possible adver- 
aries against parameter sharing FL scheme ( Nasr et al., 2019 ).
he authors defined an active and a passive attacker who 
xploits the communication protocol of the victim FL. The 
assive attacker only observes the communication channel 
nd snatch parameter update to launch an inference attack 
gainst a participant of the FL. The active attacker actively 
articipates in the FL protocol to induce the victim to reveal 
ore information. However, the attack model for the passive 

ttacker needs a substantial amount of data and extensive 
raining. Melis et al. proposed an alternative approach of defin- 
ng privacy leakage in the FedAvg scheme ( Melis et al., 2019 ).
eature analysis through deep neural network examine fea- 
ures that are insignificant for classification objective. The at- 
ack successfully showed the extraction of private informa- 
ion. The proposed attack demonstrated its effectiveness on 

n ethnicity classifier based on the LFW dataset. The model 
uccessfully identified the presence of glasses or sunglasses 
n the training data. 

Generative Adversarial Networks(GAN) are also leveraged 

o extract private information from the model ( Hitaj et al.,
017; Zhang et al., 2020b ). Hitaj et al. demonstrated the fea- 
ibility of constructing a GAN-based attack model. The attack 
odel maliciously participates in the training protocol to train 

he generative model effectively. However, there is no guaran- 
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Fig. 8 – t-SNE analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tee that the generated samples are identical to the original
samples in the training data. Similarly, Wang et al. installed
an additional validation step to quantify how similar the syn-
thetic data are compared to the original data in the training
set. 

In FedSgd, a different approach is proposed where deep
leakage from gradients exploits gradient updates from the de-
vices ( Zhu et al., 2019 ). In FedSgd, each gradient update from
devices includes a direction to enhance the current parame-
ter with respect to its mini-batch data. The attack model gen-
erates a random data sample and calculates the gradient of
the sample with respect to the newest model distributed by
the central server. The attack model continuously updates the
 

sample so that the distance of the victim’s gradient and the
gradient from the sample can decrease. This induces the sam-
ple to be identical to the original sample in the victim’s train-
ing dataset. Furthermore, some works focused on increasing
the stability of the attack ( Geiping et al., 2020; Zhao et al.,
2020 ). Instead of Euclidean distance by deep leakage from gra-
dients, inverting gradients used cosine similarity to match
directions. 

5.3. Privacy protection mechanisms on FL 

Differential privacy has been widely used to dissuade privacy
breaches in FL. Differential privacy is implemented on FL as an
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dded noise to its updates ( Agarwal et al., 2018; Geyer et al.,
017; Jayaraman et al., 2018; Wei et al., 2020 ). In ( Wei et al.,
020 ), the authors showed that FL models could converge 
n the presence of differential privacy. However, most of the 
chemes suffer from performance degradation. 

Alternatively, cryptographic approaches are utilized to se- 
ure FL. To this end, homomorphic encryption has been ap- 
lied to FL to enhance privacy ( Dong et al., 2020; Fang et al.,
021; Liu et al., 2019; Phong et al., 2017; Zhang et al., 2020a; 
hang et al., 2020 ). The advantage of homomorphic encryp- 
ion is that arithmetic calculation is possible on encrypted 

ata. However, it requires significant computational resources.
 number of studies tried to reduce the computation cost 
f homomorphic encryption. For instance, in ( Zhang et al.,
020a ), the authors utilized the quantization of parameters 
o reduce overhead. Similarly, ElGamel homomorphic encryp- 
ion is usually used for lightweight computation on limited 

etwork bandwidth in the Internet of Things (IoT) environ- 
ent ( Fang et al., 2021 ), and the Chinese remainder theorem is 

lso used for reducing the size of gradient update ( Zhang et al.,
020 ). 

As aggregation is one of the most crucial components in 

L, it is essentially important to secure aggregation. To date,
ifferent works have focused on the aggregation security of 
L ( Fang et al., 2020; Li et al., 2020; Tran et al., 2021 ). Fang et
l. incorporated multi-party computation to enable aggrega- 
ion of average encrypted weight updates in the FedAvg al- 
orithm ( Fang et al., 2020 ). Similarly, Chain-PPFL proposed a 
oken-based system with chaining participants to counter the 
onest-but-curious server ( Li et al., 2020 ). 

. Conclusion 

n this paper, We proposed DNN and its training protocol in a 
ollaborative setting for secure and effective FL training. The 
roposed scheme testified its performance by showing higher 
lassification accuracy while a lower attack success rate than 

ifferential privacy models. The paper has substantiated the 
calability of the proposed scheme as it shows high perfor- 
ance on both FedAvg and FedSgd protocols. Also, the pa- 

er demonstrated the experimental analysis on the success- 
ul performance of the proposed scheme on FL. In the future,
e plan to identify the relationship between distance loss and 

lassification loss in order to clarify the relationship between 

lassification accuracy and attack success rate. 
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