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Density depletion and enhanced fluctuations in water near hydrophobic solutes:
identifying the underlying physics

Mary K. Coe, Robert Evans, and Nigel B. Wilding∗

H.H. Wills Physics Lab, University of Bristol, Tyndall Avenue, Bristol BS8 1TL. U.K.

We investigate the origin of the density depletion and enhanced density fluctuations that occur
in water in the vicinity of an extended hydrophobic solute. We argue that both phenomena are
remnants of the critical drying surface phase transition that occurs at liquid-vapor coexistence in the
macroscopic planar limit, ie. as the solute radius Rs → ∞. Focusing on the density profile ρ(r) and a
sensitive spatial measure of fluctuations, the local compressibility profile χ(r), we develop a scaling
theory which expresses the extent of the density depletion and enhancement in compressibility
in terms of Rs, the strength of solute-water attraction εs, and the deviation from liquid-vapor
coexistence δµ. Testing the predictions against results of classical density functional theory for a
simple solvent and Grand Canonical Monte Carlo simulations of a popular water model, we find that
the theory provides a firm physical basis for understanding how water behaves at a hydrophobe.

The term hydrophobicity is used in a variety of dif-
ferent contexts to describe phenomena which are driven
by an aversion to water. Typically the problems of inter-
est are delineated by their characteristic length scales [1].
For instance, when considering the properties of a planar
solid substrate, the degree of hydrophobicity is quantified
by the macroscopic contact angle θ that a sessile water
drop makes with the surface: the extreme hydrophobic
limit corresponds to θ → 180◦ [2]. In soft matter set-
tings, the hydrophobic effect refers to the thermodynamic
tendency of amphiphilic molecules in solution to self as-
semble, while in biology the hydrophobicity of proteins
in an aqueous environment is believed to play a central
role in their folding behaviour [3, 4]. Hydrophobicity is
crucially important for understanding solvation proper-
ties in physio-chemical systems, eg. when hydrophobic
molecular solutes of various sizes are immersed in water
[5–10]. Beyond solubility, one is interested in the pertur-
bations to the water structure that occur in the solute’s
vicinity, see eg. [9, 11–13].

For water near a macroscopic hydrophobic planar sub-
strate, experiments report a region of depleted density
[14–16] whose extent continues to be controversial [17].
Recent studies have revealed new insight: the extreme
hydrophobic limit θ = 180◦ corresponds to a critical sur-
face phase transition known as ‘drying’ [18–20]. When
the substrate-fluid attraction is sufficiently small to yield
the near limiting contact angle, water (or indeed any sol-
vent) develops a vapor (or drying) layer near the sub-
strate surface as the system approaches bulk vapor-liquid
coexistence. Precisely at the drying point, the equilib-
rium thickness of the vapor layer `eq diverges. This can
be quantified by a profile ρ(z) which measures the local
number density at a distance z from the (planar) sub-
strate. However, at standard temperature and pressure
STP (ambient) conditions, water is not quite at coex-
istence; it has a very small but non-zero supersatura-
tion: the chemical potential deviation δµ from coexis-
tence µco is βδµ = β(µ − µco) ≈ 10−3, β = 1/kBT [21].
Accordingly a drying layer of only finite thickness can

form at a strongly hydrophobic substrate. A further
key feature of a critical drying transition is the occur-
rence of pronounced density fluctuations. These are
quantified rigorously by the local compressibility profile
χ(z) = ∂ρ(z)/∂µ|T , which displays a maximum that di-
verges on the approach to the drying point and which,
in common with the divergence of `eq, exhibits critical
scaling behaviour [18, 19, 22]. The nature of the scaling
behaviour, including the values of associated critical ex-
ponents, has recently been found (in the planar case) to
be sensitive to the range of the fluid-fluid and substrate-
fluid interparticle forces [20].

For water near a finite hydrophobic solute, simulations
indicate that when the solute is extended, i.e. the ratio of
solute diameter to water molecule diameter σs/σw & 3,
a region of depleted density develops together with ‘en-
hanced’ density fluctuations. Representative papers are
Refs. [6, 23–29]. Fig. 1, which depicts our Grand Canon-
ical Monte Carlo (GCMC) simulation measurements of
ρ(r) and χ(r) for a monatomic water model (see below)
in contact with a hard spherical solute for two different
radii Rs, exposes clearly and quantifies much more ac-
curately than previous treatments the density depletion
and substantial enhancement of density fluctuations. In-
creasing Rs amplifies both effects. The accompanying
snapshots reveal that the growth in the extent of the
density depletion and in the maximum in χ(r) are asso-
ciated with the appearance of extended vapor bubbles,
strongly fluctuating during the simulation, on the solute
surface. Such effects for finite hydrophobes are remi-
niscent of those occurring at a macroscopic planar sub-
strate near critical drying [19]. (Note also that there is
experimental evidence for nanobubbles at hydrophobic
surfaces: [30, 31]). To date, however, there is no uni-
fying and comprehensive theoretical framework linking
the variety of hydrophobic phenomena that occur across
the disparate length scales extending from nanoscale hy-
drophobes to planar substrates. Specifically, existing the-
ories eg. [6, 29, 32] take no account of the existence and
central role of the critical drying transition that occurs
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FIG. 1. Cross-sections of a snapshot of mw water molecules
(diameter σmw = 0.239 nm) surrounding a hard spherical so-
lute of radius Rs = 2.15 nm (a), and Rs = 4.07 nm (b).
The shade of the mw water molecules lightens the greater
their distance from the cross-sectional plane. The correspond-
ing average local compressibility profiles χ(r) (c) and density
profiles ρ(r) (d), scaled by their bulk values. The profile line
color matches that of the corresponding solute. Temperature
T = 426K, βδµ = 10−3.

in the limit of a planar substrate with vanishing, or very
weak substrate-fluid attraction [18–20] [33].

Using binding potential arguments similar to those of
Refs. [19, 20], we develop a scaling theory that describes
how the extent of the density depletion `eq and the en-
hancement of fluctuations depend on the three quantities
that together control the proximity to the drying point:
namely the supersaturation δµ, the strength of solute-
water attractions εs, and the curvature R−1s of the solute.
By encapsulating the curvature as an effective scaling
field we forge the link between the macroscopic (planar
substrate) limit and the microscopic solute case.

We test our predictions by implementing: i) extensive
classical density functional theory (DFT) calculations for
a solvophobic spherical solute of radius Rs immersed in
a simple (truncated) Lennard-Jones (LJ) liquid and ii)
GCMC simulations of a solute-in-water system using the
popular ‘monatomic water’ (mw) model [34]. In both sys-
tems the thermodynamic conditions are comparable to
ambient water. Our DFT and simulation results confirm
the scaling predictions, and show that the fluctuations
occurring in water near an extended hydrophobic solute

are a remnant of the density fluctuations, characterized
by a diverging parallel correlation length, that occur at
critical drying for a planar substrate.

Our theory follows the treatment of drying at a (very
large) hard-sphere in [35, 36], but we include crucial
solute-fluid attractions and analyze fluctuations using the
local compressibility. We consider ωex(l|Rs), the excess
grand potential per unit area of the solute-fluid interface
that surrounds a solute of radius Rs, as a function of
the thickness ` of the intruding vapor layer. For a liq-
uid governed by short-ranged interparticle forces, e.g. a
truncated LJ model or mw, and long-ranged solute-liquid
interactions, we expect [37](for background see [38–40])

ωex(`|Rs) = γsv + γlv + ae−`/ξ +
b

`2
+ p̃` (1)

where

p̃ = δµδρ+
2γlv
Rs

, (2)

with δρ = ρl − ρv the difference between the liquid and
vapor densities at coexistence. γsv and γlv are the pla-
nar substrate-vapor and liquid-vapor surface tensions,
respectively. The exponential term accounts for short-
ranged fluid-fluid interactions; ξ is the correlation length
of the bulk vapor, and a is a positive coefficient. The term
b/l2 is associated with the long ranged van der Waals
(dispersion) forces existing between the solute and the
fluid. The constant b < 0 is proportional to εs, as de-
scribed in the Supplementary Material (SM) [37] which
also includes refs. [41–50]. p̃ has a natural interpreta-
tion: it is a pressure that combines the supersaturation
with the Laplace pressure from the presence of (an incip-
ient) liquid-vapor interface. The final term in (1) occurs
generally; it does not depend on the choice of potentials.
Minimising ωex(`|Rs) with respect to ` yields an equation
for the equilibrium vapor layer thickness

−`eq(Rs)
ξ

= ln

(
ξ

a

)
+ ln

(
p̃− 2b

[`eq(Rs)]3

)
. (3)

We now omit the explicit dependence of `eq on Rs. The
maximum in the local compressibility χ(r) occurs in the
proximity of r = `eq and is given by [37]

χ(`eq|Rs) =
∂ρ(r)

∂µ

∣∣∣∣
T,l=`eq

= −ρ′(Rs + `eq)
∂`eq
∂µ

∣∣∣∣
T

(4)

where the prime denotes differentiation with respect to
r. Evaluating the derivative w.r.t. µ yields

χ(`eq|Rs) = ξδρρ′(Rs + `eq)

(
p̃− 2b

`3eq

(
1− 3ξ

`eq

))−1
.

(5)
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Critical drying requires a planar substrate (R−1s = 0)
and liquid-vapor coexistence (δµ = 0). Given both con-
ditions, one finds that as b → 0, i.e. the substrate-fluid
attraction εs vanishes and the substrate reduces to a
hard wall, `eq diverges as `eq/ξ = − ln εs + 3 ln(`eq/ξ),
which implies a value of the (adsorption) critical expo-
nent βs = 0. The maximum of the local compressibility is
predicted to diverge like χ(`eq) ∼ ε−1s . Other critical ex-
ponents are laid out in [19]. All divergences are absent if
either of −b (proportional to εs ) or δµ are non-vanishing.

For a solute of finite radius, Eqs. (3) and (5) show
that the dominant effect of the curvature, R−1s , is to in-
troduce an additional effective pressure which shifts the
system away from the critical drying point. Accordingly
R−1s acts with the supersaturation δµ to determine the
value of the scaling field p̃, which together with the value
of εs, hence b, controls deviations from criticality. It
follows that provided the magnitudes of −b, R−1s and
δµ are all sufficiently small, the system is expected to
display near-critical behavior. The range of values of
Rs and εs for which such behaviour arises, follows from
Eq. (5): if 2γlv/Rs � 2b/`3eq, then the local compress-
ibility at coexistence grows as χ(`eq|Rs, δµ = 0) ∼ ε−1s ,
the growth expected for a planar substrate. However,
if 2γlv/Rs � 2b/`3eq, then χ(`eq|Rs, δµ = 0) ∼ Rs; the
curvature constrains dramatically the growth of density
fluctuations.

Eqs. (3) and (5) provide explicit predictions for the
near-critical scaling of `eq and χ(`eq|Rs) with respect to p̃
and b (equivalent to εs). We gain quantitative insight into
the range of parameters for which scaling behaviour oc-
curs, by performing DFT calculations for a simple model
fluid and GCMC simulations of a water model in contact
with a spherical solute.

Our DFT calculations parallel those for infinite planar
geometry [19], modified to treat a spherical solute centred
at the origin as described in the SM [37]. DFT enables
calculation of the profiles ρ(r) and χ(r) for a wide range
of Rs, εs and supersaturations. Results are presented for
a truncated LJ model liquid with well-depth ε and diam-
eter σ at temperature T = 0.775Tc, where Tc is the bulk
critical temperature, and supersaturation βδµ = 10−3,
similar to the value for water at STP. Note that results
are presented in terms of the ratio εsf/ε where the in-
tegrated solute-fluid attraction strength εsf is propor-
tional to the solute particle-fluid particle attractive well
depth εs - see Eq. (11) of the SM [37]. Fig. 2(a,c)
plot the variations of the profiles with Rs for a hard
spherical solute (εs = 0), while fig. 2(b,d) plot the de-
pendence on solute-fluid attraction (εsf/ε) for a fixed
solute radius Rs = 100σ. The results clearly display
near-critical behaviour. Fig. 2(c) reflects extended den-
sity depletion around the solute as Rs is increased (since
δµ > 0 the thickness `eq cannot diverge even in the pla-
nar limit). Similarly the local compressibility shown in
Fig. 2(a) exhibits a peak growing to orders of magnitude

greater than the bulk value as Rs → ∞. As the ra-
dius of the solute is increased, the profiles tend smoothly
to those at a planar wall, confirming that solute curva-
ture is a natural thermodynamic measure of deviation
from critical drying. The behaviour as a function of εsf
(Fig. 2(b,d)) also points to near-critical behavior: reduc-
ing εsf (∝ εs) increases the degree of hydrophobicity lead-
ing to a more extended depleted density region and more
enhanced density fluctuations. For stronger attraction,
i.e. for εsf/ε > 0.6, pronounced oscillations develop in
χ(r) reflecting those in ρ(r) and there is no longer a dis-
tinct maximum signalling solvo/hydrophobic behaviour.
Notwithstanding, for all values of εsf/ε presented in Fig.
(2b) the profiles display behaviour distinct from those
of solvo/hydrophilic systems. This implies that the in-
fluence of critical drying extends much further than just
the critical scaling region. Contour plots, shown in the
SM [37], elucidate further how `eq and χ(`eq|Rs) depend
on Rs and εs.
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FIG. 2. DFT results for (a,b) χ(r), and (c,d) ρ(r), scaled by
their bulk values, for a truncated LJ model liquid in contact
with a spherical solute. Panels (a,c) show the effect of vary-
ing solute radius Rs for constant εsf = 0.0 - the hard sphere
solute. Panels (b,d) show the effect of increasing attraction
εsf for constant Rs = 100σ. In all cases T = 0.775Tc and
βδµ = 10−3. The inset shows how the contact angle θ, per-
taining to bulk coexistence and the planar limit, depends on
εsf .

GCMC simulation studies were carried out for the
monatomic water (mw) model [34] described in the SM
[37]. An accurate determination of the bulk vapor-
liquid line and critical point of the model in the µ − T
plane, was performed using histogram methods following
Ref. [37, 48]. For the study of hydrophobic solutes, we
imposed thermodynamic conditions appropriate to real
water at STP, setting βδµ = 10−3 and T/Tc = 0.464 [51].
Fig. 3 shows ρ(r) and χ(r) measured for solutes with var-
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FIG. 3. GCMC results for (a,b) χ(r), and (c,d) ρ(r),
scaled by their bulk values, for monatomic water (diameter
σmw = 0.239 nm) in contact with spherical solutes. Panels
(a,c) refer to a hard solute for 7 solute radii Rs, spanning
the interval (1.2 : 4.06) nm. Panels (b,d) refer to four val-
ues of the substrate-fluid attraction εsf and constant radius
Rs = 17σmw.

ious Rs and integrated solute-water attraction εsf . Note
we use the same form of solute-fluid attractions as in the
case of DFT, given in Eq. (11) of the SM [37]. For ex-
tended solutes having Rs & 1 nm, a region of depleted
density region emerges accompanied by enhanced den-
sity fluctuations reflected in a pronounced peak in χ(r)
which grows in height and moves further away from the
solute as Rs increases, mirroring the trend observed in
the DFT calculations (Fig. 2). Increasing εsf reduces
the degree of hydrophobicity, decreasing both the extent
of the density depletion and the magnitude of the local
compressibility maximum. Although the range of solute
radii accessible to simulations is much smaller than for
DFT, one sees that for a given solute to water size ra-
tio, the extent of the density depletion and the maximum
in χ(r) are comparable with the DFT results, implying
that the trends, and therefore the physics, found in our
water model simulations mirror those found in the DFT
calculations for a much simpler model system.

We have tested the scaling predictions for `eq and
χ(`eq|Rs), i.e. Eqs. (3) and (5), using both our DFT
and simulation data. For `eq, the linear behaviour shown
in the main panel of Fig. (4a) confirms that within DFT,
(3) is obeyed for sufficiently small values of βδµ, εsf ,
and R−1s . Remarkably, these predictions also appear
to be obeyed down to microscopic values of `eq. Our
mw simulations cannot access very large Rs, and in the
computationally accessible regime the scaling should be
dominated by the Laplace (R−1s ) term entering p̃ in (3)
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FIG. 4. (a,b) DFT results for values of βδµ and Rs span-
ning the intervals (10−6, 10−3) and (10σ,∞) respectively, and
various εsf/ε as shown on the color chart, testing scaling
predictions (3) and (5). (c,d) GCMC results for mw at
βδµ = 10−3, T/Tc = 0.464 testing the scaling predictions in
the computationally accessible curvature limit. The values of
εsf/εmw are given in the legend.

and (5). Fig. (4c) shows that `eq grows as ln(Rs) as
εsf → 0, in accordance with (3). Corresponding results
for χ(`eq|Rs) in Fig. (4b,d) confirm the scaling predic-
tions of (5).

In summary, we have argued that the physics that un-
derlies density depletion and enhanced fluctuations in
water at extended hydrophobic solutes is linked inti-
mately to the critical drying transition that occurs for
a general, strongly solvophobic substrate in the planar
limit at vapor-liquid coexistence. The influence of crit-
ical drying extends over a range of off-coexistence state
points and to solutes of finite radius, leading to near-
critical scaling behaviour, the nature of which we have
clarified. We have identified how, for strongly hydropho-
bic solutes, phenomena at microscopic length scales de-
pend on the solute size and the strength of solute-water
attraction.

This work used the facilities of the Advanced Comput-
ing Research Centre, University of Bristol. We thank F.
Turci for valuable discussions. R.E. acknowledges Lever-
hulme Trust Grant EM-2020-029\4.

∗ Corresponding author: nigel.wilding@bristol.ac.uk



5

[1] D. Chandler, Nature 437, 640 (2005).
[2] J. T. Simpson, S. R. Hunter, and T. Aytug, Rep. Prog.

Phys. 78, 086501 (2015).
[3] Y. Levy and J. N. Onuchic, Annu. Rev. Biophys. Biomol.

Struct. 35, 389 (2006).
[4] S. H. Jamadani, R. Godawat, and S. Garde, Annu. Rev.

Chem. Biomol. Eng. 2, 147 (2011).
[5] D. M. Huang and D. Chandler, J. Phys. Chem. B. 106,

2047 (2002).
[6] K. Lum, D. Chandler, and J. D. Weeks, J. Phys. Chem.

B. 103, 4570 (1999).
[7] D. M. Huang and D. Chandler, PNAS 97, 8324 (2000).
[8] D. M. Huang, P. L. Geissler, and D. Chandler, J. Phys.

Chem. B 105, 6704 (2001).
[9] J. Grdadolnik, F. Merzel, and F. Avbelj, PNAS 114,

322 (2017).
[10] G. Jeanmairet, M. Levesque, V. Sergiievskyi, and

D. Borgis, J. Chem. Phys. 142, 154112 (2015).
[11] B. Song and V. Molinero, J. Chem. Phys. 139, 054511

(2013).
[12] U. Schnupf and J. W. Brady, Phys. Chem. Chem. Phys.

19, 11851 (2017).
[13] X. Huang, C. J. Margulis, and B. J. Berne, J. Phys.

Chem. B 107, 11742 (2003).
[14] M. Mezger, H. Reichert, S. Schöder, J. Okasinski,
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