
                          Appshaw, P., Seddon, A. M., & Hanna, S. (2022). Scale-Invariance in
Miniature Coarse-Grained Red Blood Cells by Fluctuation Analysis.
Soft Matter, 18(9), 1747-1756. https://doi.org/10.1039/d1sm01542g

Publisher's PDF, also known as Version of record
License (if available):
CC BY
Link to published version (if available):
10.1039/d1sm01542g

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Royal Society of
Chemistry at https://doi.org/10.1039/D1SM01542G. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1039/d1sm01542g
https://doi.org/10.1039/d1sm01542g
https://research-information.bris.ac.uk/en/publications/6d662124-c2a2-4b20-b82b-1a880feb39ff
https://research-information.bris.ac.uk/en/publications/6d662124-c2a2-4b20-b82b-1a880feb39ff


Soft Matter

 PAPER 
 Paul Appshaw  et al . 

 Scale-invariance in miniature coarse-grained red blood cells 

by fluctuation analysis 

ISSN 1744-6848

rsc.li/soft-matter-journal

Volume 18

Number 9

7 March 2022

Pages 1739–1956



This journal is © The Royal Society of Chemistry 2022 Soft Matter, 2022, 18, 1747–1756 |  1747

Cite this: Soft Matter, 2022,

18, 1747

Scale-invariance in miniature coarse-grained red
blood cells by fluctuation analysis†

Paul Appshaw, *a Annela M. Seddonb and Simon Hannaa

To accurately represent the morphological and elastic properties of a human red blood cell, Fu et al.

[Fu et al., Lennard-Jones type pair-potential method for coarse-grained lipid bilayer membrane

simulations in LAMMPS, 2017, 210, 193–203] recently developed a coarse-grained molecular dynamics

model with particular detail in the membrane. However, such a model accrues an extremely high

computational cost for whole-cell simulation when assuming an appropriate length scaling – that of the

bilayer thickness. To date, the model has only simulated ‘‘miniature’’ cells in order to circumvent this,

with the a priori assumption that these miniaturised cells correctly represent their full-sized

counterparts. The present work assesses the validity of this approach, by testing the scale invariance of

the model through simulating cells of various diameters; first qualitatively in their shape evolution, then

quantitatively by measuring their bending rigidity through fluctuation analysis. Cells of diameter of at

least 0.5 mm were able to form the characteristic biconcave shape of human red blood cells, though

smaller cells instead equilibrated to bowl-shaped stomatocytes. Thermal fluctuation analysis showed the

bending rigidity to be constant over all cell sizes tested, and consistent between measurements on the

whole-cell and on a planar section of bilayer. This is as expected from the theory on both counts.

Therefore, we confirm that the evaluated model is a good representation of a full-size RBC when the

model diameter is Z0.5 mm, in terms of the morphological and mechanical properties investigated.

1 Introduction

The red blood cell (RBC) is the simplest and most well
researched blood-borne cell, making it an ideal candidate on
which to develop techniques in whole-cell computational
modelling.1–3 It is a highly deformable, ‘‘rubbery’’ cell, able to
recover its shape after squeezing through very narrow capillaries.4

The RBC is primarily comprised of a 2-component membrane,
enclosing a cytoplasm fluid interior. The cell membrane is solely
responsible for the elastic response of the cell due to the entirely
viscous nature of the cytoplasm,5 with the cytoplasm instead
responsible for the volume incompressibility of the cell.6

The membrane is composed of a lipid bilayer and distinct
cytoskeleton network bound to its inner surface, connected by
transmembrane proteins. As the membrane thickness is much
lower than the diameter of the whole cell, it has three-
dimensional structure describable by two-dimensional elastic
parameters.7 The resistance to bending of the cell is then

characterised by the bending rigidity B. The lipid bilayer is
essentially a two-dimensional fluid-like structure embedded in
three-dimensional space, resistant to bending, but unable to
sustain in-plane shear stress due to its highly diffusive nature.8

Conversely, the cytoskeleton resists shear deformation but has
negligible bending resistance. Therefore, the bending rigidity of
the whole-cell is dominantly produced by the bilayer, and should
be measurable solely from a plane of bilayer lipids.8–10

Measuring the bending rigidities of mesoscopic vesicles
such as the RBC has been of experimental interest for decades,
prompting development of many competing techniques.11–15

When observed in vitro, the RBC membrane is seen to flicker,
now understood to be its experiencing stochastic thermal
fluctuations.16 The first quantitative analysis of this phenom-
enon was performed by Brochard and Lennon in 1975.11 Using
phase-contrast microscopy, they extracted the bending rigidity
from the power spectrum of fluctuations, pioneering the
methodology of fluctuation analysis (spectroscopy). To improve
upon the measurement accuracy, fluctuation analysis has been
under continued development ever since, and successfully
applied to a wide range of mesoscopic vesicles.17–23 When
performed experimentally, a camera captures consecutive snap-
shots of the cell membrane in the focal plane of the microscope
(so-called ‘‘contours’’), allowing the bending rigidity to be
calculated from analysis of their thermal undulations over time.
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In 1995, Strey et al.24 approximated B = 4 � 10�19 J from the
excitations of just four orthogonal points on the RBC
membrane. Faucon and Mitov21,25 introduced consideration
of the reduced membrane tension to account for conservation
of the vesicle surface area and volume. Using their method,
Rodrı́guez-Garcı́a determined B = 2.7 � 0.6 � 10�19 J from
healthy RBCs, and Gracia et al.14 B = 2.25 � 0.8 � 10�19 J from
lipids extracted from the RBC membrane.

Computational RBC models have been developed under
many different formalisms. To date, the most popular have
been those most computationally efficient, namely continuum
methods such as the finite element method (FEM), and the
aggressively coarse-grained (CG), dissipative-particle-dynamics
(DPD).2,3,26 However, with the ever increasing power of High
Performance Computing (HPC) facilities, CG models of higher
resolution and complexity have seen increasing popularity;
notably the coarse-grained-molecular-dynamics (CGMD) RBC
model developed successively by Drouffe et al.,27 Yuan et al.28

and Fu et al.29 In this CGMD formalism, the molecules com-
prising the bilayer, cytoskeleton and transmembrane proteins
are explicitly represented as CG particles that interact through
Lennard-Jones-like potentials and Hookean bindings. To give
meaningful separation between the two distinct membrane
components, the length-scale of the system is defined by the
thickness of the cell bilayer (5 nm). The elastic properties are
dictated by the broader physics of the complete system and not
explicitly specified in the interaction potentials. Conversely,
comparative DPD and continuum RBC models require the
a priori knowledge of elastic moduli, made explicit within their
model functions.30,31 Therefore, the CGMD model is unique in
allowing evolution of these properties, crucially enabling the
testing of how elastic parameters change under new stimuli.

However, CGMD cell models such as this are very computa-
tionally expensive, due to their high resolution requiring a very
large number of particles to comprise a full-scale cell. There-
fore, they have historically had simulations restricted to only
small patches of membrane.8,32 Only recently has a full-scale
CGMD RBC been modelled in its entirety31. Despite being
an implicit-fluid model with notable care taken to ensure compu-
tational efficiency, simulating the full-scale cell (consisting of
3.2 million particles) for 100 000 time-steps on 20 CPU cores still
took on the order of a day. An alternative approach has been
to simulate cells in ‘‘miniature’’, as has been done to date
with the whole-cell CGMD model of Fu et al.29,33 To increase
computational efficiency, cells are built from a far smaller number
of particles. However, as the same high resolution length scaling
is maintained, the physical cell size is significantly reduced.
To our knowledge, such CGMD models of RBCs have only
been validated qualitatively by studying their shape at rest and
under flow conditions, with no quantitative verification of this
‘‘miniature cell’’ approach yet conducted.

1.1 Aims

The present work gives, to the best of our knowledge, the first
quantitative assessment of the ‘‘miniature cell’’ approach to the
CGMD RBC model of Fu et al.29 We do this by measuring the

bending rigidity B through fluctuation analysis, confirming its
scale invariability in the whole-cell, and dominance by the lipid
bilayer. Firstly, the simulation methodology is outlined, before
attempting the evolution of initially spherical cells of various
model diameters to a biconcave stable state. The evolved whole-
cell systems then have many contours recorded over an order of ms,
allowing determination of B from fluctuation analysis. These
results are then assessed against mechanical-cell and RBC
theory along with past in vitro studies, to discuss the invariance
of aspects of the model to the physical cell diameter.

2 Materials and methods
2.1 RBC model

The model used in this work is that of Fu et al.,29 who built
upon the lipid membrane model of Yuan et al.28 The model is
that for a CGMD, 2-component RBC, with explicit representations
of the lipid bilayer, cytoskeleton, and internal and external
fluid particles (see Fig. 1A). The lipid bilayer is represented as a
one-particle-thick monolayer of CG spherical particles, each
representing a large number of constituent lipids. In determining
a distance dependant function for lipid-lipid interactions in
the bilayer, it is challenging to find a form that produces
the correct diffusion of particles. It has been shown that the
classical 12-6 Lennard-Jones (LJ) potential only produces two
membrane phases, a solid at low temperatures and gas at high
temperatures.34 At small separations the inter-particle forces are
too strong to permit particle diffusion, and at large separations
too weak to keep particles bound together. To provide the
intermediate fluid phase necessary to allow such behaviour, a
two branch interparticle function can be adopted.28

This work adopts the lipid–lipid interaction potential of
Yuan et al.,28 hereafter referred to as the Yuan potential. The
Yuan potential has been shown to represent well the mechanical
properties of a RBC bilayer membrane, including a diffusive
fluid phase, due to the separation of attractive and repulsive
branches.29 It has an orientational dependence which allows
the complex lipid hydrophobicity to be represented, being
essential for the self-assembly of the bilayer in an aqueous
environment.8,35 The membrane properties of spontaneous
curvature c0, bending rigidity B and diffusivity D are conveniently
characterised by three Yuan model parameters, y0, mY and z
respectively. y0 signifies the most energetically favourable
angular configuration between particles, with mY weighting the
energy penalty for deviation away from this. z controls the slope
of the attractive branch of the potential. The potential also
features the LJ-like parameters of length s, energy well depth e
and cut-off radius rc. See S1 of the ESI† for further detail on the
formalism of the potential.

While bilayer–bilayer interactions are managed by the Yuan
potential, all other particle–particle interactions operate
through classic 12-6 LJ potential functions. Assuming a typical
RBC curvature c0 B �0.5 m�1, the membrane curvature is para-
meterised as siny0 =�1.41� 10�3 36,37 (see S1 of the ESI† for detail
on this calculation). A Hookean harmonic bond-potential is also
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used to couple the transmembrane proteins of the lipid bilayer
to the cytoskeleton. The characteristic biconcave RBC shape
can only be attained if the in-plane shear elastic energy is
relaxed to zero, achieved in the biological cell by the constant
structural remodelling of the spectrin network.8 In silico this
can be achieved by modifying the equilibrium bond length in
the bond-potential so that the bond energy is initially zero, thus
the cytoskeleton is initially stress free. The equilibrium bond
length is made to be a variable corresponding to the initial
bond lengths between each particle pair, rather than a constant
as in the standard Hookean potential.29 The cell is then able to
relax to a biconcave shape. The model parameterisation used is
summarised in Table 1, generally following Fu et al.29 However,
the particle masses set by Fu et al. fail to reproduce comparative
elastic and diffusive properties in our simulations. Instead,
better agreement is found with the mass of all membrane

particles
1

2
sm, and all other particles sm.

Simulations are run utilising the LAMMPS molecular
dynamics coding package,38 operated as a library within
Python. LAMMPS handles the thermodynamic evolution of
the system, while particular biophysical calculations are
performed in the parent Python code. Nose–Hoover algorithms
are used for thermostat and barrostot thermodynamics, as
documented by Shinoda et al.39 Initial particle configurations
are input from an independent Python code which generates a
3D ‘‘supercell’’ volume containing the configuration of pseudo-
particle types as required (see Fig. 1B), alongside particle
classifications interpretable by LAMMPS. Simulations are
performed in the system of non-dimensionalised LJ units.
However, to compare results with past in vitro studies,

quantities must then be converted to SI units. In the presented
formalism, each variable i has an associated dimensional
conversion parameter si which relates the non-dimensional
‘‘model’’ LJ unit (denoted iM) to ‘‘real’’ SI unit (denoted iR).
For example, the conversion of a length r from LJ units to
meters is denoted rR[m] = sr[m]rM. All simulations were run on
1–4 nodes of the local supercomputer, with each node having
two 14 core 2.4 GHz Intel E5-2680 v4 (Broadwell) CPUs, and
128 GB of RAM. See S2 and S3 of the ESI† for detail on the
conversion of each physical unit and benchmark of the model
respectively.

Table 1 Default pair potential parameters for each CG particle interaction
type within the model, all given in LJ units. The mass of each CG particle
type is also given. ‘‘Fluid’’ refers to both internal and external solvent.
‘‘Bilayer’’ refers to the lipids and transmembrane proteins. ‘‘Cytoskeleton’’
refers to spectrin, junction complex and ankyrin particles. In our imple-
mentation, some properties of the cell were found to be poorly repre-
sented by particular values from Fu et al.29 Alternate values used here are
those marked by a *

Particle interaction
Pair
potential s e rcut z mY sin y0

Fluid–fluid LJ 2.7 0.2
Fluid–cytoskeleton LJ 1.0 0.2
Cytoskeleton–cytoskeleton LJ 1.0 0.2
Bilayer–bilayer Yuan 1.0 1.0 2.6 4 3 �1.41 � 10�3*
Bilayer–cytoskeleton LJ 1.0 0.2
Bilayer–fluid LJ 1.0 0.2

Particle type mM

Bilayer, cytoskeleton 0.5*
fluid 1.0*

Fig. 1 (A) Pictorial representation of the RBC membrane components, showing the cytoskeleton network attached to the lipid bilayer. Actin junction
complexes (actin protofilament and protein band-4.1) connect the spectrin tetramers. The cytoskeleton is tethered to the lipid bilayer via transmembrane
proteins – immobile band-3 at the spectrin–ankyrin binding sites and glycophorin at the actin junctional complexes. (B) Graphic of our pre-evolved
(spherical) RBC, with each CG particle type shown in colour: (red) lipids, (orange) trans-membrane proteins, (green) spectrin tetramers, (black) junction
complexes, (yellow) ankyrin, (purple) internal fluid and (grey) external fluid. The graphic is split into two mirror halves, to make the distinct particle types
clearer visually. The particles described in (B) are highlighted in (A) by opaque circles of corresponding colour.
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2.2 Planar fluctuation analysis

As RBC lipid membranes have a thickness much less than the
diameter of the whole cell, they are classically describable as
thermally fluctuating 2-dimensional sheets, with elastic energy
dependant on their bending rigidity B and tension S.12 Furthermore,
the lipid bilayer dominates the bending rigidity of the whole
cell, as the internal plasma is entirely viscous and the cytoske-
leton has negligible rigidity compared to the bilayer. Therefore,
the bending rigidity of the whole cell should be representable
solely from a planar patch of lipid membrane.7,8,32

The bending rigidity of a planar membrane patch can be
calculated by planar fluctuation analysis, from its height
fluctuation spectrum.12 In the Monge representation, the height
spectrum of the square planar membrane is given by h(r) �
h(x, y) = zi � hhi, being the offset in height from the average
across the entire membrane hhi.40 The height of a cell zi is
defined simply by the mean height of all particles within its
bounds. Performing a 2D fast Fourier transform (FFT) on h(r)
then gives the fluctuation spectra

hq ¼
1

N

XN
i¼1

hðrÞeiq�r; (1)

with power spectrum h|hq|2i by the squared modulus of the
resulting q-space height grid, averaged over many equilibrium
configurations.41 In the continuum limit, this equates to

hq
�� ��2D E

¼ kBT

L2ðSq2 þ Bq4Þ; (2)

where q is the norm of the wavevector q = 2p(nx, ny)/L, and L is
the side length of the patch. The bending rigidity of the bilayer
can then be simply determined from a fit of the mean-squared-
amplitudes against q on a tensionless membrane (S = 0).

2.3 Whole-cell fluctuation analysis

Once each cell has been equilibrated to its stable state, vesicle
fluctuation analysis can be performed to determine the bending
rigidity of the whole-cell. Simulations of the stable-state cells
record the passive thermal fluctuations within series of contours:
two-dimensional slices of membrane as seen from a top down
view. As the biconcave regions were prompted to develop
through the z axis, contours are taken in the (x, y) plane, thus
having radial fluctuations measured in the plane of the disc.
To remove stochastic rotation of the vesicle, the net angular
momentum of membrane particles is set to zero at the start of
each time-step. As fluctuation analysis is non-invasive, the
orientation and centre-point of the cells then remain approxi-
mately fixed throughout the simulations. For each cell, contours
are taken every 1000 steps (20 ms), for 1000 contours in total.

As we have direct access to the coordinate data of each CG
particle constituting our simulated vesicle, a contour detection
algorithm is not necessary. Instead, we determine a contour
from the explicit position data of our CG lipids at a given time.
Each lipid particle in the vesicle membrane at time t has
Cartesian coordinates r(x, y, z, t). Converting to spherical
coordinates in the equatorial cross-section (at y = p/2) gives

its radial position rðf; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

p
at angle

f = tan�1(y/x) around the membrane disc, relative to the
midpoint of the vesicle (x0, y0, z0 = 0, t). The midpoint is simply
defined as the centre of the maximum and minimum x and y
coordinates of all lipids within the membrane, x0 = (xmax� xmin)/2
and y0 = (ymax � ymin)/2 respectively, approximately equivalent to
the centre of mass.

The angular distribution of a contour 0 r f r 2p is
segmented into Nf segments fi, each having radius r(fi, t)
simply defined by the lipid within that segment at the largest
radius. The f-average radius of a particular contour is
expressed as r(t) = hr(fi, t)i. Fig. 2 shows an example polar
plot of a contour. While our simulations are not subject to the
resolution limit incurred through optical microscopy, a similar
limit is instead imposed by our level of coarse-graining. As we
maintain the same level of coarse-graining between all cells
(defined by length unit sr = 5 nm) but simulate cells of different
diameter, the larger cells comprise more particles and thus
have a greater potential ‘‘resolution’’ in their contours.
To maintain consistency between cells, we therefore make the
number of radial arcs Nf depend on DM. As the contour
circumference is pDM and the lipid–lipid spacing is Bsr, there
will be approximately pDM CG lipids cosmprising a contour.
For the resolution to be sufficient, the number of contour
segments must be a minimum of half the number of particles
comprising that contour, meaning Nf 4 pDM/(2sr). Rounding
the numbers slightly, we thus define Nf = 3.6DM.

Once the simulations have completed and all the contours
have been recorded, a separate Python code is used for their
analysis. The method employed is that developed successively
by Faucon et al.,21 Mitov et al.,25 and Melerard et al.42

By decomposing the contour fluctuations into the spherical
harmonics basis, their mean square amplitude can be
derived to be

jUm
n ðtÞj2

� �
¼ kBT

B

1

ðn� 1Þðnþ 2Þ½�Sþ nðnþ 1Þ�; n � 2 (3)

Fig. 2 Example polar contour from a DM = 100 cell, with radial distribution
over Nf = 3.6DM = 360 angular segments. The inset plot shows the flattened
distribution, with the ratio of the radius to the mean radius given against angle.
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with reduced membrane tension �S ¼ SR2=B.21 The mode n = 0
corresponds to variations in the mean vesicle radius, and n = 1 to
variation in the centre of mass. Neither of these are relevant for
the fluctuation analysis, so only modes n Z 2 are considered.

To establish a connection between the experimentally observable
two-dimensional contour slices and three-dimensional model
that leads to eqn (3), the angular auto-correlation function
(ACF) is introduced. Use of the angular ACF acts to correct
for this dimensional simplification, mitigating almost all
associated error in the intermediate modes; the modes that
are most useful to experimentalists.21 For a given contour, the
angular ACF is given by42

xðg; tÞ ¼ 1

2pR0
2

ð2p
f¼0

rðfþ g; tÞ � rðtÞ½ � r	ðf; tÞ � rðtÞ½ �df; (4)

with angular segment about the contour g, and reference radius
R0 = (3V0/(4p))1/3 taken as that defined by a perfect sphere of
the same volume as the cell V0. To a very good approximation, the
cell volume and surface area remain constant.21 Expanding the
ACF as a Legendre polynomial series, the coefficients Bn(t) can be
related to h|Um

n (t)|2i by

hBni ¼
2nþ 1

4p
Um

n ðtÞ
�� ��2D E

; (5)

where their mean is taken over many contour configurations.
The constants B and �S can then be determined from a w2 fit of
hBni against n. See S4 of the ESI† for a more thorough description
of the analysis method.

3 Results
3.1 Cell equilibration

To test the miniature-cell methodology, whole-cells are generated
at various model diameters DM, with smaller cells comprising
proportionally fewer CG particles. Before fluctuation analysis can
be performed, the cells must first be evolved to their biconcave
stable state. Each cell is initially generated as a spherical configu-
ration of CG particles suspended within a fluid of water-like CG
particles. The cell membrane is generated as two concentric
spherical shells of bilayer and inner cytoskeleton, enclosing an
internal CG fluid representing the cytoplasm. Largely following Fu
et al.,29 each particle type is then thermodynamically activated
sequentially as follows:


 An isothermal–isobaric (NPT) ensemble is applied to the
external water over 25 000 steps. Concurrently, the canonical
ensemble (NVT) is applied to the internal fluid, only being
under the influence of a thermostat.

 The spectrin, ankyrin and junctional complexes of the

cytoskeleton are then equilibrated with the NPT ensemble over
25 000 steps.

 Finally, the lipids and transmembrane proteins in the bilayer

are equilibrated using the NVT ensemble over 50 000 steps.
Each cell is equilibrated from its initially spherical state with

time-step length t = 0.02st, pressure PM = 0.05, and temperature
ramping from TM = 0.02–0.23.29 Under the default parameter-
isation of Table 1, the shape evolution was found to introduce
significant instabilities, and often result in the cells ‘‘popping’’.
To prevent this, some model parameters are changed specifically
for these initial shape evolution simulations: the membrane
particles have their mass increased to sm, and the energy well
depth in the Yuan potential is increased to e = 1.5, to temporarily
strengthen the lipid bindings.

Membrane folding is then induced by reducing the initial
number of internal fluid particles NIF,0 to a final number NIF

(see Table 2). Small, equal and opposite forces are also applied
to circular areas on each XY face of the cell to promote
biconcave indents to manifest perpendicular to the XY-plane.
Particles are deleted gradually to a final fraction of internal
fluid particles nIF = NIF/NIF,0, differing with cell size. The rate of
compression has an effect on both the equilibrium shape and
stability of the transition.7,29 All cells have NIF reduced at a
constant rate of 3% every 5000 time-steps, determined to be
most conducive to achieving a biconcave final state. The concave
regions of the cells then develop gradually with the compression.
Deviation from this rate results in alternative unwanted vesicle
transitions such as to prolate, dumbbell rods, or inward or
outward budding.7

Only cells with diameter DM
Z 100 (DR

Z 0.5 mm) were able
to achieve a biconcave discocyte final state, with smaller cells
instead relaxing to bowl-shaped stomatocytes (see Table 2).
The degree of biconcavity in a healthy RBC can be characterised
by the volume–radius ratio V/R3 = 1.57.37 An optimal particle
fraction nIF for each cell is found by slowly deleting internal
fluid particles until a target volume-radius ratio is reached.
To achieve a consistent volume–radius ratio between cell sizes nIF

is found to be inversely proportional to DM. Furthermore, below a

Table 2 Equilibrated final states of each RBC cell size, with final ratio V/R3 achieved from chosen compression fraction nIF. The number of bilayer to total
particles is also given, as well as the number of steps run in the compression stage of the simulation

Final state

DM 50 75 100 125 150
V/R3 2.02 1.90 2.08 2.03 2.00
nIF 0.68 0.49 0.42 0.37 0.32
Bilayer particles 8346 18 704 33 400 52 069 75 156
Total particles 34 944 114 592 269 296 521 437 896 703
Compression steps 55 000 85 000 95 000 105 000 115 000
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critical ratio V/R3 t 1.9 the internal fluid becomes unable to fill
the region between the two enclosing membrane edges, closing
the gap. This critical ratio does not appear to have a direct
relationship with cell-size. However, the effect is more
pronounced for the biconcave cells, being suppressed in the
bowl-shaped DM o 100 (DR o 0.5 mm) cells. To maintain
consistency between cells, nIF is chosen such that cells are
compressed to V/R3 = 2.0 � 0.1, slightly higher than that of a
physical RBC. However, cells of diameter DM

Z 100 still achieved
morphologies closely resembling those of a healthy human RBC
(see Table 2).

3.2 Planar fluctuation analysis

To measure the bending rigidity of the lipid bilayer specifically,
planar fluctuation analysis is performed on a two-dimensional
patch of CG lipids. A square patch of isolated lipid membrane
of side lengths LM = 120 is generated, suspended within a
super-cell volume of dimensions {LX, LY, LZ}M = {122.0, 122.0,
32.4}. Simulations of this system are run over 2 � 106 steps of
length t = 0.001st, equilibrated using a Berendsen barostat
such as to achieve zero surface tension. To approximate the
bending rigidity, the height fluctuation spectra of the patch is
determined by eqn (1). On length-scales shorter than the
thickness of the membrane, protrusion modes dominate the
fluctuation spectra and eqn (2) breaks down.40 To avoid this,
the membrane is mapped to a discrete 2D grid of size Nq

2 such
that the unit grid size l = L/Nq is greater than the thickness of
the membrane: namely l = 2sr. Fig. 3 shows the resulting
spectrum in the small wave-number region, where a fit of
eqn (2) determines B2D = 18.3kBT, matching closely the result
of B = 18kBT by Fu et al.29

A further use of this planar bilayer system is to determine
the system time-scale, through measuring the mean-squared-
displacement (MSD).8 Comparing the resolved diffusivity

against a typical value for an RBC bilayer reveals the approximate
simulation time scale of st = 80 ns, matching closely with the
previous value st = 100 ns of Fu et al.29 See S2.1 of the ESI† for
detail on this calculation.

3.3 Whole-cell fluctuation analysis

To calculate the bending rigidity of the stable RBCs, the whole-cell
fluctuation analysis is employed on the evolved cells. The coeffi-
cients hBn(t)i are taken from the mean of 6 repeat simulations of
each cell size, with standard error taken in that mean. In the
bending dominated regime, the relaxation time of a mode n in a
cell of radius R can be approximated as

tn �
4ZR3

Bn3
; (6)

with viscosity of the surrounding solvent Z.15,20 This shows the
relaxation time of a mode to increase proportionally to the cube of
the cell radius. Statistical significance in the lower modes
thus becomes increasingly difficult to achieve at larger cell size.
Therefore, we perform fits of eqn (5) across different modal
regimes, with the minimum modes considered being higher with
larger cell size (see Table 3). Fig. 4 shows the resulting spectra for
the DM = 50 (DR = 0.25 mm) and 150 (0.75 mm) cells, and the
bending rigidity as calculated by eqn (5). This clearly shows the
stable modal region, gradually shifting to higher modes with
increasing cell size. Modes n t 10 have notably poorer statistics
and are more dependant on the tension �S, causing an over-
estimation in B. There is also a notable cutoff at nB 30, beyond
which B exponentially falls, indicating a resolution limit. The
surface tension fit poorly, likely due to a combination of high
error in the coefficients, and fits being performed at high modal
regimes where the surface tension is insignificant. Therefore, we
performed the fits fixing an assumed approximation �S ¼ 0.43

To confirm that these modal ranges produced non-correlated
coefficients hBni, the time-lag ACF was generated over extended
simulations of the DM = 50 (DR = 0.25 mm) and DM = 150 (DR =
0.75 mm) cells. Within these chosen spectral ranges, no notable
correlation was seen within the first 1000 contours.

From Fig. 5, there does not appear to be any notable
relationship between B and D within the bounds of error,
indicating B to indeed be invariant to the physical cell diameter
across the sizes tested. While there appears to be a slight
increase at DM 4 150 (DR 4 0.75 mm), we do not believe this
to be significant considering the much larger uncertainty in
measurement of these largest cells. The mean rigidity across all

Fig. 3 Plot showing the fluctuation spectrum of the planar lipid patch in
the low q limit, with best fit giving the bending rigidity. Membrane
configurations are taken every 1000 steps, and discarded if the surface
tension is calculated to be greater than �0.01sF/sr offset from zero.

Table 3 Fitting results across all tested cell sizes within the given modal
ranges

DM DR (mm) nmin nmax B (kBT) Reduced-w2

50 0.25 4 24 17.0 � 0.9 3.2
75 0.375 5 28 17.3 � 0.8 8.6
100 0.5 5 29 18.9 � 0.6 5.2
125 0.625 8 29 16.3 � 0.7 1.6
150 0.75 10 29 18.0 � 0.7 2.6
175 0.875 13 29 19.5 � 1.0 1.8
200 1.0 14 29 19.6 � 2.0 7.0
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cells is determined to be B3D = 17.9 � 0.4kBT. However, there is
more scatter about the mean than can be accounted for by the
calculated error for multiple cell-sizes. This is most likely due to
an under-representation of the error. For example, the complex
evolved morphological differences between each cell-size may
have introduced measurement error that has not been possible
to account for. Given our energy unit se = 1.76 � 10�20 J, our
mean bending rigidity of B3D = 17.9 � 0.4kBT = 3.15 � 10�19 J
matches well with the literature on healthy human RBCs (2–9 �
10�19 J14,16,44). Furthermore, the result from the analysis on the
two-dimensional patch of bilayer (B2D = 18.3kBT) also falls
within the margin of error of B3D. Therefore, we have shown
the model correctly reproduces the theory on both counts:

(1) the bending rigidity is invariant to the cell diameter, and
(2) the bending rigidity of the whole cell can be represented
solely from a planar section of its bilayer.

4 Discussion

The primary goal of this work has been to study the scale
invariance of the employed CGMD RBC model, to help justify
the use of miniaturised cells in future studies. As hoped, we
have observed invariance to cell size in both the cell morphology
and in the bending rigidity as calculated through fluctuation
analysis. However, the CG nature of the model did introduce
limitations on the morphology and contour resolution. Cells of
different physical diameter were found to evolve to different total
morphology (biconcave discocyte or stomatocyte), and cells of
the same size would also develop varied non-axial deformities
within these shapes. For example, cells would develop as non-
axial discocytes where the cell thickness was non-uniform, or
having concave regions of varying depth and shape. Only cells of
DM

Z 100 evolved to the characteristic biconcave discocyte shape
of a healthy RBC, with smaller cells relaxing to bowl-shaped
stomatocytes (see Table 2). This variation in morphology is most
likely due to the number of degrees of freedom available from
the number of constituent CG particles. Smaller cells are com-
prised of fewer particles, thus will have fewer degrees of freedom
for their configuration, making them less versatile to shape
transitions. Therefore, we consider it reasonable to have found
a lower DM limit on the cells able to form the more complex
biconcave shape, and a complex relationship between DM and
optimal internal fluid fraction nIF.

Similarly, the CG nature of the model introduced a
resolution limit on the fluctuation spectra. However, by applying
the fluctuation analysis to contours of relative decomposition
Nf = 3.6DM, a measurable range of modes was achieved for all
cell sizes tested. Noise in the analysed spectra was notably higher
for DM 4 150 (DR 4 0.75 mm), resulting in larger uncertainties in

Fig. 4 Example results from the DM = 50 (DR = 0.25 mm) and DM = 150 (DR = 0.75 mm) cells, with (A) fitting over the spectrum of coefficients hBn(t)i, and
(B) the bending rigidity B as calculated by eqn (5).

Fig. 5 Bending rigidity B as calculated from the whole-cell fluctuation
analysis at different cell diameter. The error is from the standard error in
the mean from 6 repeats of each cell size. Blue arrows indicate the shape
variation, with only DM

Z 100 (DR
Z 0.5 mm) cells being biconcave

discocytes.
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measurement of B. Considering the longer relaxation times in
these larger cells this is not surprising, as they would require
significantly longer simulation times to avoid producing poorer
statistics. Computational limitations from poor model scaling
(see S3 of the ESI†) made this unfeasible, thus also the reliable
testing of cells of DM 4 200 (DR 4 1.0 mm). Considering this, the
bending rigidity as measured by whole-cell fluctuation analysis
is determined to be invariant to RBC scale based on the
measured range of 0.25–1.0 mm diameter.

4.1 Experimental differences

When applying fluctuation analysis, there are some notable
differences between the methodology when applied in silico to
in vitro. Fundamentally, the bending rigidity of a vesicle is
extracted by measuring the spatial undulations of its
membrane over time. This is achieved experimentally through
light microscopy, where a camera captures consecutive images
of a vesicle over a chosen exposure time. As a microscope only
allows visualisation in its focal plane, one is experimentally
limited to capturing two-dimensional contour slices of the
vesicle. The inherently three-dimensional analysis must then
be simplified to the two-dimensional contours available, with
the error this introduces being relative to the discrepancy of a
vesicle from being spherical. As our simulations provide direct
access to the fully three-dimensional position data of the
constituent particles, this experimental restriction is not forced
upon us. However, the purpose of this work is to verify that the
utilised model correctly represents certain properties of the
physical cell. By approaching this through comparison against
past in vitro studies, it is best to emulate those experimental
methods as closely as possible. Therefore, we still restrict
ourselves to the same two-dimensional contour analysis, to
best compare our results against such experimental studies.

There are many other benefits to not requiring a camera,
notably in the potential resolution of a contour. As cameras
have a finite resolution, there is then an upper limit to the
fidelity at which a point on the membrane can be determined
by optical microscopy. Experimentally, once a digital image of
the cell has been captured, the radial profile of the membrane
must be extracted by some form of ‘‘contour detection
algorithm’’. This is typically performed by classifying peaks in
a grey-level intensity spectrum across the image. A fluctuation
of wavelength shorter than the pixel size or resolution will then
not be detectable. The early approaches of Faucon et al.21 and
Duwe et al.45 achieved accuracies of 100 nm and 250 nm
respectively, of the order of the image pixel (being around
100 nm). By using more precisely the sigmoid-shape of the
grey-level profile, Pecreaux et al.15 achieved an order of magnitude
improvement, with radial measurements of the contour within
10 nm. Our having direct access to the particle positions bypasses
these considerations. However, we have instead a comparable
resolution-like limit from our level of coarse-graining. Each of our
spherical CG lipids is sr = 5 nm in diameter, also with minimum
inter-particle separation of sr. This then implies a comparable
maximum resolution to that of Pecreaux et al.15 We observed a
hard resolution limit at n = 30, lower than implied from our CG

resolution. The wavelength of a mode is l B pDM/n. The 30th
mode thus has a wavelength l B 5sr for the DM = 50 cell and
l B 16sr for the DM = 150 cell. If our resolution limit was
sr = 5 nm as expected, we should theoretically be able to measure
modes in their 100’s. This discrepancy is most likely due to the
discrete particle nature of the model.

Cameras introduce a further source of error in their aperture
time (shutter speed) tSS: the length of time over which light is
collected to take the image. The higher the mode of a fluctuation,
the higher its frequency and the shorter its relaxation time.
Therefore, tSS introduces a limit to the wave-numbers detectable,
with only fluctuations having a longer lifetime being measurable
(tn 4 tSS). From eqn (6), for a typical camera exposure time of
tSS = 33 ms measuring fluctuations of an 8 mm diameter RBC of
B = 10�19 J in a solvent of Z = 10�3 kg m�1 s�1, this corresponds to
a lower limit of n B 4.15

While our simulations are not limited by a cameras shutter
speed, they are notably more constrained by the total exposure
time – the length of time over which contours are taken. The
lower the mode, the longer its relaxation time thus the longer
time it takes to gain sufficient statistics in its spectrum of
configurations. While in vitro experiments are able to collect
thousands of contours over minutes (2000 contours over
1 minute,15 3–4000 contours over B2 minutes,23 15 000 contours
over 10 minutes42), we are heavily constrained by our model
timescale st. To maintain numerical stability in the simulations,
the shortest time-step size possible was t = 0.02st = 1.6 ns.
To simulate just 5 seconds of the DM = 150 cell would then take
up to 40 days to complete (see S3 of the ESI† for a benchmark).
From eqn (6), it will take B1000 time-steps for the 5th mode
in our DM = 150 cell to complete a single relaxation. Therefore,
it is not possible for us to gain comparable statistics in the
lower modes.

Fundamentally, this combination of considerations of
contour resolution, shutter speed and exposure time define
the spectral-range of modes best considered in fluctuation
analysis. Fluctuations of wavelength shorter than the optical
resolution are not detectable, and those rapid relaxation times
will be shorter than can be captured within a cameras shutter
speed. In practice, this means that light microscopy is unable to
reliably measure modes n \ 20.46 Conversely, our comparatively
high resolution and lack of a shutter speed allows reliable
measurement at higher mode numbers (n t 30). However, our
very short exposure time heavily limits our ability to gain
statistical significance in the lower modes, becoming even more
pronounced with increasing cell size. Therefore, we analysed
spectral ranges relative to the cell-diameter. Each cell had
contours recorded every 1000 time-steps, for a total of 1000
contours. From eqn (6), this then equates to measuring at least
1500 full fluctuations in each assessed mode. However, even on a
state of the art HPC, it was infeasible to simulate cells more than
just an 1/8th the diameter of a full-scale RBC for a sufficient
time to gain statistically meaningful results from this analysis.
This highlights the computational challenges faced when
attempting whole-cell CGMD simulation, and practical benefit
of the miniature-cell approach.
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5 Conclusion

The scale invariance of a CGMD model for a single RBC has
been tested in silico, first qualitatively through the shape
evolution, then quantitatively through fluctuation analysis. By
evolving cells of various diameter from their initially spherical
configurations, those of DM

Z 100 (DR
Z 0.5 mm) were found

able to develop the characteristic biconcave discocyte shape of a
healthy RBC. The passive thermal fluctuations of all evolved
cells were then observed in their equatorial contours, and the
bending rigidity calculated through fluctuation analysis using
the angular ACF. The theory on RBC mechanics states that: (1)
the bending rigidity of cells of micron-order diameter should be
invariant to size; and (2) that the bending rigidity of the whole-
cell should be equivalent to that of an isolated plane of its lipid
bilayer. The model successfully represented the theory on both
counts. No notable relationship was found between the rigidity
and cell size over the range 50 r DM r 200 (0.25 r DR r
1.0 mm) tested, and the value B2D = 18.3kBT determined from
the lipid plane fell within the margin of error of the mean from
the whole-cell analysis B3D = 17.9 � 0.4kBT. However, the very
short exposure time computationally feasible at the larger
cell sizes resulted in poor statistics for cells DM 4 150 (DR 4
0.75 mm), with significant increase in the measurement
uncertainty. Therefore, we conclude the use of miniature
CGMD cells of 100 r DM r 150 best able to reproduce the
morphological and elastic responses of an RBC in silico, in the
properties tested. This finding supports the use of the
miniature cell approach in further studies, with its considerable
computational advantages opening up numerous possibilities
in simulations of physically larger, more numerous and
more complex CGMD cellular systems than have been performed
to-date.
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P. Bothorel, in Advances in Supramolecular Chemistry Vol.
2, ed. G. W. Gokel, Jai Press, Greenwich, 1992, pp. 93–139.

26 V. Rajagopal, W. R. Holmes and P. V. S. Lee, Wiley Inter-
discip. Rev.: Syst. Biol. Med., 2018, 10, e1407.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
Ja

nu
ar

y 
20

22
. D

ow
nl

oa
de

d 
on

 3
/2

4/
20

22
 8

:2
1:

42
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://www.bris.ac.uk/acrc/
http://www.bris.ac.uk/acrc/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1sm01542g


1756 |  Soft Matter, 2022, 18, 1747–1756 This journal is © The Royal Society of Chemistry 2022

27 J. Drouffe, A. Maggs and S. Leibler, Science, 1991, 254,
1353–1356.

28 H. Yuan, C. Huang, J. Li, G. Lykotrafitis and S. Zhang, Phys.
Rev. E: Stat., Nonlinear, Soft Matter Phys., 2010, 82, 011905.

29 S.-P. Fu, Z. Peng, H. Yuan, R. Kfoury and Y.-N. Young,
Comput. Phys. Commun., 2017, 210, 193–203.

30 D. A. Fedosov, B. Caswell and G. E. Karniadakis, Biophys. J.,
2010, 98, 2215–2225.

31 Y.-H. Tang, L. Lu, H. Li, C. Evangelinos, L. Grinberg, V. Sachdeva
and G. E. Karniadakis, Biophys. J., 2017, 112, 2030–2037.

32 H. Li and G. Lykotrafitis, Biophys. J., 2014, 107, 642–653.
33 M. Becton, R. D. Averett and X. Wang, Biomech. Model.

Mechanobiol., 2019, 18, 425–433.
34 I. R. Cooke, K. Kremer and M. Deserno, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2005, 72, 011506.
35 H. Noguchi, J. Phys. Soc., 2009, 78, 041007.
36 C. Pozrikidis, Math. Med. Biol., 2005, 22, 34–52.

37 D. Hartmann, Biomech. Model. Mechanobiol., 2010, 9, 1–17.
38 A. P. Thompson, S. J. Plimpton and W. Mattson, J. Chem.

Phys., 2009, 131, 154107.
39 W. Shinoda, M. Shiga and M. Mikami, Phys. Rev. B: Condens.

Matter Mater. Phys., 2004, 69, 134103.
40 Z.-J. Wang and D. Frenkel, J. Chem. Phys., 2005, 122, 234711.
41 M.-J. Huang, R. Kapral, A. S. Mikhailov and H.-Y. Chen,

J. Chem. Phys., 2012, 137, 055101.
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