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A B S T R A C T   

We analyze how measures of adiposity – body mass index (BMI) and waist hip ratio (WHR) – causally influence 
rates of hospital admission. Conventional analyses of this relationship are susceptible to omitted variable bias 
from variables that jointly influence both hospital admission and adipose status. We implement a novel quasi- 
Poisson instrumental variable model in a Mendelian randomization framework, identifying causal effects from 
random perturbations to germline genetic variation. We estimate the individual and joint effects of BMI, WHR, 
and WHR adjusted for BMI. We also implement multivariable instrumental variable methods in which the causal 
effect of one exposure is estimated conditionally on the causal effect of another exposure. Data on 310,471 
participants and over 550,000 inpatient admissions in the UK Biobank were used to perform one-sample and two- 
sample Mendelian randomization analyses. The results supported a causal role of adiposity on hospital admis
sions, with consistency across all estimates and sensitivity analyses. Point estimates were generally larger than 
estimates from comparable observational specifications. We observed an attenuation of the BMI effect when 
adjusting for WHR in the multivariable Mendelian randomization analyses, suggesting that an adverse fat dis
tribution, rather than a higher BMI itself, may drive the relationship between adiposity and risk of hospital 
admission.   

1. Introduction 

Individuals with higher adiposity, as indexed by measures such as 
body mass index (BMI) and waist hip ratio (WHR), attend hospital more 
frequently than others (Buys et al., 2014; Chen, Jiang, and Mao, 2007; 
Han et al., 2009; Korda et al., 2015; Migliore et al., 2013; O’Halloran, 
2020; Reeves, Balkwill, Cairns, Green, and Beral, 2014). Establishing the 
causal impact of adiposity on hospital admissions is an important step in 
understanding the impacts of adverse weight profiles on the health 
system. This importance stems from a number of considerations. 

In the first instance, BMI (a marker of overall body fat) and WHR (a 
marker of regional adiposity) are associated with increased incidence of 
various diseases (Corbin et al., 2016; Dale et al., 2017; Dalton et al., 
2003; Folsom et al., 2000; Hu et al., 2007; Lyall et al., 2017; Staiano 
et al., 2012; Timpson et al., 2009) and all-cause and cause-specific 
mortality (Srikanthan, Seeman, and Karlamangla, 2009; Staiano et al., 
2012; Wade, Carslake, Sattar, Davey Smith, and Timpson, 2018). 
Moreover, the incidence of adverse adiposity profiles is also increasing 

across the world. World Health Organization statistics identified 39% of 
men and 40% of women as overweight (BMI>25 kg/m2) and 11% of 
men and 15% of women as obese (BMI>30 kg/m2) worldwide (World 
Health Organization, 2016). Additionally, a positive association be
tween BMI and healthcare costs has been identified (Cawley, 2015a; 
Dixon, Davey Smith, and Hollingworth, 2019; Dixon, Hollingworth, 
Harrison, Davies, and Davey Smith, 2020; Finkelstein, 2011; Kent et al., 
2017a; Kent et al., 2017b; Withrow and Alter, 2011). However, obser
vational assessments of the association between adiposity and hospital 
attendance are challenged by endogeneity attributable to unobserved 
confounding and reverse causation, precluding accurate causal infer
ence (Auld and Grootendorst, 2011; Cawley, 2015a, 2015b; Cawley and 
Meyerhoefer, 2012). 

Bias due to reverse causality occurs when the outcome of interest (e. 
g., hospital admissions) also affects the exposure (e.g., BMI). For 
example, obesity-induced disease resulting in hospital admission could 
lead to weight loss. This could bias the association between adiposity 
and hospital attendance towards the null, or, in the most extreme case, 
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result in the conclusion that weight loss leads to hospital admission 
(Flanders and Augestad, 2008). Bias due to confounding occurs when a 
common cause of the exposure and outcome exists and, if measured or 
unmeasured, remains unaccounted for in the model. For example, un
observed or inadequate measures of socioeconomic status may confound 
the association between adiposity and hospital admissions, with the 
observational estimate overstating the true effect. Asaria et al. examined 
hospital episode statistics in the UK and found that lower socioeconomic 
status was associated with greater health-care needs and more frequent 
hospital admissions (Asaria, Doran, and Cookson, 2016), while previous 
studies found that lower socioeconomic status resulted in an on average 
higher BMI and a greater risk of obesity (Adler and Ostrove, 1999; 
Tyrrell et al., 2016). 

In this paper, we introduce the first Mendelian randomization anal
ysis to use hospital admissions as an outcome. We used UK Biobank data 
from over 300,000 adults aged 39–72, with over 550,000 in-patient 
hospital admissions in relation to three related exposures: BMI, WHR 
and WHR adjusted for BMI (WHRadjBMI). Mendelian randomization 
(MR) is an instrumental variable approach that permits the robust 
estimation of the causal effect of an exposure or treatment variable (e.g., 
BMI) on an outcome (e.g., hospital admissions) (Davey Smith and 
Hemani, 2014; Haycock et al., 2016). The identifying assumption of MR 
is the quasi-random allocation of genetic variants from parents to their 
children that occurs at conception. Elements of this variation are known 
to associate with traits such as BMI and WHR, and may be used as 
instrumental variables in causal analyses relating the effects of these 
adiposity-related exposure variables to hospital admission outcomes. 

MR reduces or eliminates problems of confounding and other types 
of bias common to conventional studies of the associations between 
measures of adiposity and healthcare-related resource use. For example, 
MR can rule out reverse causation, since germline variants are deter
mined at conception, and, in principle, should not be affected by con
founding from unmeasured variables, given the quasi-random allocation 
of variants from parents to offspring at conception. 

We employed three broad classes of estimator to assess these causal 
relationships. We first implemented a generalized linear model (GLM) 
version of the familiar two-stage least squares (2SLS) estimator. Our 
outcome was hospital admission counts for subjects observed for varying 
lengths of time, reflecting the duration of follow-up available in our 
outcome data, while accounting for time of recruitment and censoring 
due to end of follow-up or death. As Poisson regression models are linear 
on the logarithmic scale, the second stage of the standard 2SLS instru
mental variable estimator was replaced by a Poisson regression. These 
models were just identified, utilizing a genetic risk score (a single 
summary measure indicating genetic liability to the exposure of interest) 
as a single instrumental variable. 

Valid instrumental variables are associated with the exposure of in
terest, are conditionally independent of known and unknown omitted 
variables, and affect the outcome only via their effect on the exposure 
(the exclusion restriction). The most likely source of violation of these 
assumptions in MR is the exclusion restriction, and for that reason a 
variety of estimators were employed to test the robustness of our results 
to the presence and consequences of any violations of this assumption. 
The second broad class of estimators therefore involved over-identified 
models that allow that exclusion restriction to be relaxed for some or all 
variants, at the cost of other assumptions that we set out below. 

Finally, in addition to testing the direct, individual effect of these 
exposures on admissions, we also implemented multivariable instru
mental variable models, in which the causal effect on one exposure is 
estimated conditional on the causal effect of another exposure. This 
permits evaluation of whether the causal effect of one exposure on ad
missions is mediated by another exposure. For example, this approach 
allows for estimation of the direct effect of BMI on hospital admissions 
that is not mediated via the indirect effect of BMI on WHR, and 
(simultaneously) the direct of effect of WHR that is not mediated by the 
indirect effect of BMI on this outcome. 

Our work extends related analyses of the causal effect of BMI and 
body fat percentage on healthcare costs (Dixon et al., 2020). The Dixon 
et al. paper established that higher BMI is associated with higher hos
pital costs, and that this effect did not appear to be mediated by body fat 
percentage. This new paper aims to make at least four additional con
tributions. The first is to interrogate a mechanism that may underlie this 
association. It is not necessarily obvious that the relationship between 
adiposity and hospital admissions would be the same as the relationship 
between adiposity and costs, since it is possible that adiposity does not 
increase rates of admission. The second is to examine the impact of a 
further adiposity-related exposure (WHR) as a means of testing whether 
regional as well as overall adiposity may contribute to rates of admis
sion. The third is to apply, for the first time, Mendelian randomization 
(MR) as a robust method for causal inference to the literature on the 
association between adiposity and admissions. This literature is impor
tant for the development of inputs into quantitative models that evaluate 
healthcare policies and assess the cost-effectiveness of interventions 
intended to modulate rates of hospital admission in relation to BMI and 
other measures of adiposity. Finally, we introduce, for the first time, a 
quasi-Poisson instrumental variable framework for analyzing a rate 
outcome in an MR study, which will support efforts to model similar rate 
outcomes in other contexts. 

The rest of the paper is set out as follows. We introduce the data used 
for our analysis before describing in detail our methods for estimating 
the direct and indirect effect of these exposures on admissions. We 
conclude with our interpretation of these results. Our results indicate 
that the effect of various measures of adiposity on admission may be 
larger than conventional observational analysis would indicate, and that 
regional adiposity (as indexed by WHR) may play a particularly 
important role in influencing the rate of hospital admissions. 

2. Data 

2.1. UK Biobank data 

The UK Biobank study is a resource of phenotypic, genetic, electronic 
health record and death registry data, collected from over 500,000 in
dividuals, from 2006 to 2010 (Bycroft et al., 2018; Collins, 2012; Sudlow 
et al., 2015). Participants were aged 39–72 years at recruitment and 
were predominantly of White British ethnicity (Sudlow et al., 2015). The 
UK Biobank received ethical approval from the North West-Haydock 
Research Ethics Committee (reference 11/NW/0382). 

For 465,373 participants, information on hospital inpatient admis
sions was available through linked Hospital Episode Statistics (HES) 
data. From this set, 310,471 participants were considered eligible for 
analysis (Fig. 1). Participants were removed when admission informa
tion was incorrect, when the genetic data did not meet the standard of a 
documented in-house quality control procedure (Mitchell, 2019), and 
when BMI and/or WHR measurements were absent. All analyses (both 
observational and instrumental variable models) were restricted to in
dividuals of White British ancestry to avoid confounding by differential 
ancestry under the second instrumental variable assumption. Partici
pants matching one or more of the exclusion criteria were removed (N =
154,902). An overview of all relevant exclusion criteria is given in the 
participant exclusion diagram in Fig. 1, with Table S1 providing a 
cross-table overview of participant overlap for any two exclusion 
criteria. 

2.2. Adiposity measures 

Measures on weight, bio-impedance, height, waist circumference 
and hip circumference were collected at the baseline UK Biobank 
recruitment assessment. Weight and bio-impedance were measured 
using the Tanita BC-418MA body composition analyzer. Standing height 
was measured using a Seca 202 height measure. BMI was calculated as 
weight divided by height squared (kg/m2), and using electrical 
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impedance. When the first measure was unavailable, values were sup
plemented with the latter. WHR was calculated by dividing waist 
circumference by hip circumference, measured with a Wessex non- 
stretchable spurring tape measure (UK Biobank, 2011). BMI and WHR 
values reflect baseline measures of adiposity when individuals were 
recruited into UK Biobank, which occurred on a rolling basis from 2006 
to 2010. They do not reflect intertemporal variation in adiposity. Our 
causal Mendelian randomization estimates reflect the cumulative and 
long-term impact of quasi-random allocation to genetic liability to 
higher or lower adiposity over the life course. 

2.3. Hospital admission counts 

For 465,373 participants, information on hospital inpatient admis
sions ("admitted patient care" or APC episodes) was available through 
linked Hospital Episode Statistics (HES) data. Inpatient admissions 
involve a patient occupying a hospital bed for some period, but do not 
necessarily imply an overnight stay. These data do not include emer
gency admissions or outpatient care episodes. Our data include all 
inpatient care that is publicly funded in both NHS and private hospitals, 
but not privately-funded care in private hospitals. For a given hospital 
admission, a patient may have multiple “episodes” of care. Admissions 
were therefore defined when an individual had episodes starting on 
separate dates, excluding incomplete episodes, episodes with inconsis
tent or overlapping start and end dates, and accounting for patient 
transfers. Code to define the admissions variable is available from 
https://github.com/pdixon-econ/admissions-biobank. 

2.4. Genetic variants 

Estimates for 77 genetic variants associated with BMI at a genome- 

wide significance level (p < 5 × 10-8) in the largest genome-wide asso
ciation study meta-analysis of a combined number of up to 322,154 
individuals of European descent (not including UK Biobank) were ob
tained from the Genetic Investigation of Anthropometric Traits (GIANT) 
consortium (Locke et al., 2015). Individual-level genetic data of suffi
cient quality (Mitchell, 2019) was available from UK Biobank for 76 of 
these 77 SNPs. Genetic variants associated with WHR and WHRadjBMI 
were also obtained from the GIANT consortium, with 39 and 48 SNPs, 
respectively, identified in relation to WHR at p < 5 × 10-8, in a 
meta-analysis of up to 210,088 individuals (Shungin et al., 2015). 

3. Methods 

3.1. Genetic variants as instrumental variables 

Many introductions to MR are available both in general (Davey 
Smith and Ebrahim, 2003; Haycock et al., 2016; Pingault et al., 2018) 
and in relation to health economic outcomes (Dixon et al., 2019; Dixon, 
Davey Smith, von Hinke, Davies, and Hollingworth, 2016; Harrison 
et al., 2020; von Hinke Kessler Scholder et al., 2011; Von Hinke et al., 
2016). Here we briefly review the instrumental variable assumptions in 
the context of MR. 

Certain parts of the genome are subject to variation between in
dividuals in a population. At each of point variation, offspring inherit an 
allele – the specific form of genetic variation – from each of their parents 
according to Mendel’s first and second laws of inheritance. Mendel’s 
first law describes random segregation of alleles from parents to 
offspring. Mendel’s second law describes the independent assortment 
for different traits of these alleles. Together, the two laws imply that 
offspring have an equal chance of inheriting an allele from either parent, 
and that these alleles are inherited independently from one another. The 

Fig. 1. Participant inclusion diagram. Notes: 
Eight exclusion categories are shown with the 
corresponding numbers of participants per 
category. On removal of duplicates a total of 
154902 unique participants were considered 
ineligible for analysis. a) admissions prior to 
study start date, post death/censoring date or 
registered death prior to study start; b) in
dividuals that have a mismatch between 
genetically inferred and reported gender, in
dividuals with sex chromosome types putatively 
different from XX or XY and individuals that are 
outliers in heterozygosity and missing rate; c) 
individuals related to more than 200 other 
participants; d) on exclusion a maximal set of 
unrelated individuals is retained; e) not geno
typed for the exposures of interest (BMI, WHR, 
WHRadjBMI).   
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allocation of these variants is therefore random, conditional on parental 
genomes. 

It is this form of conditionally random allocation and its use as an 
identification mechanism in instrumental variable analysis that is 
known as Mendelian randomization (Davey Smith and Ebrahim, 2003). 
MR may therefore be interpreted as a type of natural experiment, in 
which individuals or groups of individuals are allocated to groups 
indicating higher or lower genetic liability to (for example) higher BMI 
or WHR. Mendelian randomization meets the definition of natural ex
periments used in economics, such as in Di Nardo (DiNardo, 2008), in 
the sense that they refer to serendipitous random assignment of in
dividuals to a treatment or a control group, and outcomes may be 
analyzed in relation to this assignment. Under the assumptions of 
instrumental variable analysis, the quasi-random allocation to genetic 
variation indicating higher or lower levels of adiposity can be used to 
make causal claims about the effect of these types of exposures on 
hospital admissions. 

We study single nucleotide polymorphisms (SNPs), which are one 
form of genetic variation (amongst others) that are subject to inheri
tance under Mendel’s first and second laws. A SNP refers to single 
change in one of the nucleotides that make up the code of the genome. 
Nucleotides in DNA are in turn made up in part of the nucleobases 
(adenine (A), cytosine (C), guanine (G) or thymine (T) which comprise 
this code. A SNP will therefore involve a substitution of one of these 
“letters” in the genetic code for another. The possible versions of the SNP 
at a specific point are the alleles for that location in the genome. Some 
SNPs are associated with the expression of particular traits or pheno
types, including several adiposity-related phenotypes such as BMI and 
WHR. 

The association of SNPs with phenotypes, together with their 
conditionally random allocation from parents to offspring, indicate the 
potential for their analysis as instrumental variables. Humans are 
diploid, meaning that they have two copies of each chromosome. We 
may therefore treat SNPs as count variables – humans may have a SNP 
on both chromosomes (n = 2), only on one (n = 1) or on neither chro
mosome (n = 0). 

Valid instrument variables are associated with the exposure of in
terest, are independent of all confounding omitted variables (whether 
measured or unmeasured) and affect the outcome only via the exposure 
of interest. We briefly unpack these requirements in relation to MR. 

Relevance – the requirement that instruments are not independent of 
exposures – can be determined from genome wide association studies 
(GWASs), which trawl the genome for signals of association between a 
predefined exposure and regions of potential genetic variation 
(McCarthy et al., 2008). Replicated evidence of association from large, 
well-powered GWASs are the most robust means of establishing the 
relevance criterion for specific SNPs. In this study, we only use SNPs that 
meet the relevance requirement for BMI and waist hip ratio. 

The second requirement, that of independence from confounding 
omitted variables, is sometimes interpreted as the requirement that the 
instrument be “as good as randomly assigned” (Angrist and Pischke, 
2009). As genetic variation is determined at conception, it necessarily 
occurs before many later life circumstances and events such as socio
economic status, education level, and the local environment. This en
sures independence from most potential confounding variables. 

Nevertheless, there are a few different means by which this 
assumption might be violated. Events that are connected with the time 
of conception, such as year of birth and sex, may confound this associ
ation. This requirement will also be violated if there are differences in 
subgroups defined by allele frequencies that also differ in disease or trait 
susceptibility. For example, variants in the FTO gene (the first gene to be 
associated with obesity) confer an increased risk of obesity, but the 
prevalence of these variants differs significantly by ancestry (Loos and 
Yeo, 2014). Environments are not necessarily the same between groups 
of different ancestry. Allele subgroups may also become correlated with 
the environment for other reasons. For instance, assortative mating 

describes the mating of genetically similar individuals. Over time, this 
will tend to lead to a non-random clustering of alleles, potentially 
violating this assumption. 

The third requirement for instrumental variable analysis, the exclu
sion restriction, may be violated through two principal mechanisms in 
MR analysis. The first is via so-called linkage disequilibrium, which 
refers to the fact that SNPs in close physical proximity tend to be 
inherited together. Use of one of these SNPs may therefore also reflect 
the effect of other SNPs not intended to be included in the analysis. For 
example, it may be the case that an adiposity-related SNP is in linkage 
disequlibrium with a SNP associated with depression. If this linkage 
disequilibrium is not accounted for, analysis of the adiposity-related 
SNP will unintentionally also include any impact of the depression- 
related SNP. 

The second and more challenging potential violation of this 
assumption is via pleiotropy (Hemani et al., 2018a). Pleiotropy is the 
effect of a genetic variant on more than one phenotype. The exclusion 
restriction will be violated if a SNP associated with (for example) BMI 
also affects the outcome through a BMI-independent channel. For 
example, if a SNP influences both BMI and depression, and the impact of 
depression is not related to BMI, then analysis of the impact of BMI on 
the outcome will be confounded by this separate channel of influence of 
depression on the outcome. This is known as horizontal pleiotropy 
(Davey Smith and Hemani, 2014). The exclusion restriction will not be 
violated if the other phenotype does not affect the outcome, or if the 
other phenotype is an intermediate between the exposure of interest and 
the outcome (the latter is known as vertical pleiotropy). 

3.2. Poisson modeling of admissions data in conventional and 
instrumental variable models 

This section describes our approach to modeling the association 
between hospital admissions and the three measures of adiposity. We 
employed both conventional observational models and instrumental 
variable models. Both types of model implemented versions of Poisson 
regression. 

3.2.1. Poisson modeling of admissions data 
A Poisson regression model applies a generalized linear model with a 

logarithmic link function under the assumption that the response vari
able is Poisson distributed and that the logarithm of the expected value μ 
can be expressed in a linear combination of k parameters (Eq. 1). 

logμ = β1 ∗ x1 + β2 ∗ x2 +…+ βk ∗ xk (1) 

UK Biobank participants were recruited between 2006 and 2010 and, 
for each participant, hospital admissions were counted from recruitment 
to study censoring, with the latter given by either death or 31 March 
2015, the date at which the linked Hospital Episode Statistic data were 
censored for this analysis. We ignored emigration, which is estimated to 
occur at low rates (0.3%) in this cohort (Fry et al., 2017). 

To correct for the varying times on study, the logarithm of observed 
person-years t is added to the linear equation as an offset (Eq. 2). 

logμ = logt+ β1 ∗ x1 + β2 ∗ x2 +…+ βk ∗ xk (2) 

The modeled outcome can now be interpreted as a rate rather than a 
count, as becomes apparent when restructuring Eq. (2) to Eq. (3). 

log
μ
t
= β1 ∗ x1 + β2 ∗ x2 +…+ βk ∗ xk (3) 

Let x1 and β1 represent the exposure BMI and the corresponding 
parameter estimated from the Poisson regression. Then with t in years 
and BMI in kg/m2, the exponent of the coefficient exp(β1) is the factor by 
which the mean value of the outcome is multiplied for a 1 kg/m2 in
crease in BMI. With the remaining variables are held constant, the yearly 
hospital admission rate increases with a factor exp (β1)n for every n unit 
increase in BMI. Values of the coefficient > 1 indicate an increase in 
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admission rate and values < 1 indicate a decrease. 

3.2.2. Multivariable observational analyses 
Observational estimates were obtained by regressing each exposure 

on the outcome in a conventional (i.e. without instrumental variables) 
Poisson regression, with time in UK Biobank as the offset. Unadjusted 
estimates were obtained alongside estimates adjusted for age at study 
entry, sex, and for an additional five categorical variables: alcohol fre
quency (ranging from never to daily or almost daily), days of exercise 
per week (ranging from 0 days to 7 days), educational/ professional 
qualifications, employment (with 57% employed and 35% retired), 
material deprivation as measured by the Townsend deprivation index 
(divided into quintiles, with higher values indicating a greater degree of 
deprivation). To make full use of the available data, we performed 
multiple imputation, which assumes that missing values are missing at 
random, conditional on all covariates included in the imputation model. 
We used a 10-fold imputation approach and pooled the resulting co
efficients and standard errors using Rubin’s rules (Rubin, 1996). 

3.2.3. Instrumental variable Poisson models 
MR methods are traditionally applied to continuous or binary 

outcome data, whereas count data such as hospital admission data is 
frequently modeled using Poisson regression. Here, the outcome was 
given by hospital admission counts for subjects that were observed for 
varying lengths of time. As the Poisson model is linear on the logarith
mic scale, the second stage of the MR regression, which estimates the 
gene-outcome association, can be replaced by a Poisson regression. 

We conducted both one- and two-sample MR analyses. In a one- 
sample framework, a single sample of individual-level genetic and 
phenotypic data may be used to obtain estimates of both the gene- 
exposure association (βexp) and the gene-outcome association (βout). 
External weightings from the GIANT consortium were used for the gene- 
exposure associations. 

The ratio of the coefficients (the Wald ratio) gives the causal IV es
timate: βIV =

βout
βexp

. When a single instrument is used in a linear model, the 

Wald ratio is identical to the two-stage least squares (2SLS) estimate. 
The first stage constitutes a linear regression of the exposure on the 
instrument (gene), while the second stage regresses the outcome on the 
predicted values obtained from the first regression. When the linear 
regression in the second stage is replaced by some non-linear regression, 
this method of estimation is referred to as a two-stage predictor sub
stitution (2SPS). When the second stage regression has an identity link, 
as is the case for linear regression, or a collapsible link, like the Poisson 
log link, 2SPS is equivalent to the Wald ratio approach (Palmer et al., 
2011). Here, we use the Wald ratio approach to obtain the causal IV 
estimate, using a linear regression to obtain βexp and a Poisson regression 
to obtain βout. 

Note that the numerator and the denominator in the Wald ratio need 
not come from the same sample (Angrist and Krueger, 1992). In a 
two-sample MR framework, the exposure and outcome coefficients may 
be obtained from separate, independent samples from similar pop
ulations (Davey Smith and Hemani, 2014; Haycock et al., 2016). This 
approach may offer better efficiency than a one-sample approach if 
larger sample sizes are available when using data from more than one 
sample. A further important advantage is that the two-sample approach 
in particular facilitates methods for testing the sensitivity of results to 
possible violations of the exclusion restriction, as we discuss below. 

We employed one- and two-sample MR models. For both the one- and 
two-sample analyses we implemented a model where the second stage 
linear regression of the outcome, Yadm , on the respective SNPs is 
replaced by a Poisson regression with the person years on study, t, as 
offset. Let βexp be the exposure coefficient obtained from a linear 
regression of the exposure, Yexp , on the genetic instrument or risk score, 
G (Eq. 4), and βout the outcome coefficient on the logarithmic scale 
obtained from a Poisson regression of the outcome, Yout , on the genetic 

instrument, G (Eq. 5). 

Yexp ∼ βexp ∗ G (4)  

log(E[Yout]) ∼ log(t)+ βout ∗ G (5) 

As the Poisson model is linear on the log scale, the two coefficients 
are compatible and a valid ratio can be obtained, with the final IV es
timate, βIV , of the rate coefficient given by the exponent of this ratio (Eq. 
6). 

βIV = exp(
βout

βexp
) (6) 

The coefficient βIV is the factor by which the yearly hospital admis
sion rate increases for each unit of exposure, again with values > 1 
indicating an increase in admission rate and values < 1 indicating a 
decrease. 

The Poisson model assumes an outcome distribution such that the 
outcome mean is equal to the outcome variance. As the hospital 
admission count variance (55.3) was greater than the mean hospital 
admission count (1.89), we used a quasi-Poisson model instead (Ver 
Hoef and Boveng, 2007). Standard errors for the causal IV estimates 
were estimated using Taylor series expansions (Thomas, Lawlor, and 
Thompson, 2007). 

3.2.4. One-sample just-identified Mendelian randomization 
Weighted genetic risk scores (GRS)s were constructed for BMI (76 

SNPs) (Locke et al., 2015), WHR (39 SNPs) (Shungin et al., 2015) and 
WHRadjBMI (48 SNPs) (Shungin et al., 2015). To ensure a meaningful 
interpretation of the score, the exposure-increasing allele for each ge
netic variant was chosen as the effect allele (Wade et al., 2018). For 
every study participant, the dosage for each relevant genetic variant was 
extracted from the UK Biobank genetic data and weighted with the effect 
size reported by the GIANT consortium. Following this, the weighted 
dosages were summed and divided by the sum of all effect sizes, giving, 
for each exposure, a single GRS representing an estimate of the average 
number of exposure-increasing alleles. Estimates were adjusted for age, 
sex and the first 40 genetic principal components (PCAs) in order to 
comply with the second instrumental variable assumption of conditional 
independence (“as good as randomly assigned”). To estimate the effect 
of WHRadjBMI on hospital admissions, we used the residuals of a 
regression of WHR on BMI as an exposure, which gave an estimate for 
the predictive performance of the WHR component that cannot be lin
early predicted by BMI. Additionally, we investigated the effect of the 
exposures BMI, WHR and WHRadjBMI separately in male and female 
study participants. 

We also considered the effects of BMI and WHR when estimated in a 
joint model, using a multivariable MR approach. Multivariable MR aims 
to estimate the causal effect of multiple exposures simultaneously. In 
contrast to univariable MR, which estimates the total effect of an 
exposure on the outcome, Multivariable MR estimates the direct effect of 
each exposure, conditioning on the causal effects of the SNPs on the 
other exposure (Sanderson, Davey Smith, Windmeijer, and Bowden, 
2019). We regressed BMI and WHR separately on the full combined set 
of SNPs and regressed the fitted values of both on hospital admission 
count in a quasi-Poisson regression with time as the offset. Standard 
errors were obtained through a 10,000-fold full-sample bootstrap (Efron 
and Tibshirani, 1993). 

For BMI, estimates of hospital admission rates per year were ob
tained per BMI unit (1 kg/m2) and per BMI standard deviation (SD). For 
WHR, WHRadjBMI, and the WHR residuals, estimates were obtained per 
0.10 WHR unit and per WHR SD. The relevant SDs were calculated 
directly from the UK Biobank data, yielding SDs of 4⋅74 kg/m2 and 0.09 
for BMI and WHR, respectively. 
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3.2.5. Two-sample over-identified summary Mendelian randomization 
We employed a variety of over-identified methods to assess the 

causal relationship between adiposity and hospital admissions in two- 
sample MR analyses. Four two-sample MR approaches were used to 
investigate the effect of BMI, WHR and WHRadjBMI on yearly hospital 
admission rate: (1) the random effects exact weights inverse-variance 
weighted (IVW) estimator (Bowden et al., 2019); (2) the random ef
fects Mendelian randomization Egger (MR-Egger) estimator (Bowden, 
Davey Smith, and Burgess, 2015); (3) the penalized median estimator 
(Bowden, Davey Smith, Haycock, and Burgess, 2016); (4) the weighted 
mode estimator (Hemani et al., 2018a). 

All these approaches make distinct assumptions about if and how the 
exclusion restriction might be violated. Precise technical details are 
available in the respective references. Here, we provide an overview of 
these details and some intuition for their implementation. 

A useful starting point is to approach this type of instrumental var
iable analysis from the perspective of meta-analysis (Bowden and 
Holmes, 2019). If each SNP is treated as the outcome of a natural 
experiment occurring at conception, then an overall effect estimate 
across many SNPs may be obtained by performing meta-analysis. For 
example, for the random effects models, Wald ratios are estimated for 
each SNP separately and combined using a random effects meta-analysis 
approach. The traditional IVW estimator uses weights derived from the 
inverse variance of the SNP-outcome coefficient. Let βj be the Wald ratio 
estimate for some SNP, j, given by the ratio of the SNP-outcome asso
ciation over the SNP-exposure association, estimated by: 

β̂j =
β̂Yj

β̂Xj

. (7) 

Then, the IVW estimate is given by 

β̂IVW =

∑
j β̂

2
Xj

σ− 2
Yj

β̂j
∑

j β̂
2
Xj

σ− 2
Yj

, (8)  

with σ2
Yj 

the variance of the SNP-outcome association. The exact weights 
IVW estimator derives weights in a slightly different way, using a limited 
information maximum-likelihood (LIML) approach in which the weight 
term is allowed to be a function of the causal-effect parameter. This 
approach therefore also ensures the estimator is naturally robust against 
regression-dilution bias (Bowden et al., 2019). 

This approach assumes either that there is no horizontal pleiotropy 
in violation of the exclusion restriction, or that any horizontal pleiotropy 
balances out such that the effect point estimates are not biased. Viola
tions of the exclusion restriction induced by horizontal pleiotropy may 
be apparent if the effect of a SNP or set of SNPs is large relative to the 
mean effect of all SNPs. 

We assessed heterogeneity of this type in two related ways. The first 
was via Cochran’s Q statistic, the two-sample analogue of the Sargan test 
for overidentification. Heterogeneity can be assessed by comparing the 
Q statistic (Eq. 9) to the critical values of a chi-squared distribution. 

Q =
∑J

j=1

1
σ2

Yj

(β̂j − β̂IVW)
2 (9) 

This assumes up to J SNPs; ̂β j and ̂βIVW measure the effect estimate for 
SNP j and the overall inverse variance (IVW) weighted effect over all J 
SNPs, respectively. The variance of the SNP-outcome association is 
given by σ2

Yj
. 

The second, related means of assessing heterogeneity was based on 
Rucker’s Q’ statistic (Bowden et al., 2018a), which should be considered 
in context of the MR-Egger approach. The random effects IVW model 
constrains the overall IVW-regression line to pass through the origin; if 
this were not the case, then some or all variants would be violating the 
exclusion restriction, since the causal effect (absent violations of the 

exclusion restriction) is determined only by the Wald ratio. The random 
effects MR-Egger model does not constrain the intercept to zero. The 
SNP-outcome coefficients are regressed on the SNP-exposure 
coefficients: 

β̂Yj
= β0E+βE β̂Xj

,

with all β̂Xj 
associations oriented to be positive (i.e., the reference allele 

is chosen such that the resulting association is positive). The regression 
is weighted with the inverse variances of the SNP-outcome associations, 
σ− 2

Yj
. The MR-Egger regression intercept, β0E, can be interpreted as the 

average pleiotropic effect of all variants. Verifying whether the observed 
intercept is statistically different from zero serves as a test for horizontal 
pleiotropy (Bowden et al., 2015). 

In essence, this amounts to testing and then conditioning on any 
horizontal pleiotropy, at the cost of further assumptions concerning the 
association between instrument strength and the direct pleiotropic effect 
of variants – on this assumption, see further detail in (Bowden et al., 
2015; Burgess and Thompson, 2017). Rucker’s Q’ statistic may be 
calculated by estimating the MR-Egger model, adjusting for any mean 
pleiotropic effect, and then testing if any residual heterogeneity is 
present. 

The third estimator is the median estimator, which is given by the 
median ratio estimate of ordered Wald ratios. The intuition for this 
estimator is that a consistent estimate will be obtained from the median 
estimate if at least 50% of the SNPs are valid; invalid estimates will 
contribute no weight to the overall estimate, provided that at least this 
proportion of SNPs are valid. The penalized weighted median estimator 
will be consistent when at least 50% of the weights come from valid 
instruments. We report results from the penalized weighted median 
estimator, in which Cochran’s Q statistic is used to quantify heteroge
neity and more heterogeneous, outlying variants are down-weighted 
(Bowden et al., 2016). 

The mode estimate is given by the mode of the Wald ratio estimates 
and will consistently estimate the causal effect even if more than half of 
the SNPs are invalid, provided the largest homogeneous cluster of SNPs 
is valid. Both the weighted median and mode estimators use weights 
derived from the inverse variance of the ratios of the gene-outcome and 
gene-exposure association estimates and are, under different assump
tions, robust to outliers and invalid instruments (Hemani et al., 2018a). 

Gene-exposure association coefficients for the two-sample MR ana
lyses were obtained from the GIANT consortium (Locke et al., 2015; 
Shungin et al., 2015) and gene-outcome association coefficients from the 
UK Biobank data (Bycroft et al., 2018; Collins, 2012; Sudlow et al., 
2015). 

Two-sample MR estimates were obtained for BMI, WHR and 
WHRadjBMI individually and for BMI and WHR jointly in a multivari
able two-sample MR IVW analysis (Sanderson et al., 2019). For BMI, 
estimates of hospital admission rates per year were obtained per BMI 
unit (1 kg/m2) and SD. For WHR and WHRadjBMI estimates were ob
tained per 0.10 WHR unit and SD. SDs were calculated by taking the 
median SD across all studies used to obtain the summary measures, 
giving SDs of 4⋅60 kg/m2 and 0.07 for BMI and WHR, respectively. Plots 
of the two Q statistics (Cochran’s Q and Rucker’s Q’) were calculated for 
each SNP in a leave-one-out analysis and were used for the visual 
identification of outliers, which were removed in a sensitivity analysis 
with the purpose of verifying estimator consistency. 

A threshold of R2 < 0⋅001 to account for linkage disequilibrium (LD) 
was employed for the two-sample MR analyses. Post LD-correction, 64, 
34 and 45 SNPs were retained for BMI, WHR and WHRadjBMI, respec
tively. For the multivariable two-sample MR analysis, 70 SNPS were 
retained after a joint LD adjustment for BMI and WHR. 

All analyses were performed in R version 3.6.1 (R Development Core 
Team, 2014). R packages TwoSample MR (Hemani et al., 2018b), Radial 
MR (J. Bowden et al., 2018b), and MVMR (Sanderson et al., 2019) were 
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used for the two-sample summary Mendelian randomization analyses, 
and Amelia (Honaker, 2019) was used for the multiple imputation per
formed in the conventional multivariable analyses. An R code appendix 
documenting all analytical steps taken is provided in the supplementary 
materials. 

4. Results 

This section sets out the results of the analyses described above. We 
begin with a summary of descriptive statistics and any missingness in 
these variables. We then introduce results from our observational 
analysis, which serve as a useful benchmark against which to judge the 
MR instrumental variable models. We then present the results from the 
one-sample MR using the GRS instruments, before considering the over- 
identified two-sample models that test potential violations of the 
exclusion restriction. We obtained effect estimates per BMI and WHR 
unit and per SD. To facilitate comparisons, we only report estimates per 
SD in the main text and provide per unit estimates in the supplementary 
material. 

4.1. Descriptive statistics 

The 310,471 participants included in the analysis sample had an 
average age of 57⋅40 years (SD: 7⋅99), with a BMI of 27.38 kg/m2 (SD: 
4⋅74) and WHR of 0.87 (SD: 0.09). Of these participants, 53⋅66% were 
female. Average follow-up time was 6⋅05 years (SD: 0.91), with 2.0% of 
patients dying before the end of study. BMI, WHR, sex and age distri
butions were comparable across the UK Biobank and the GIANT con
sortium populations (Bycroft et al., 2018; Locke et al., 2015; Shungin 
et al., 2015). Demographics for the UK Biobank participants are given in  
Table 1. 

A total of 588,147 in-patient hospital admissions were recorded, 
with 79% of participants admitted twice or less, and 47% without a 
single admission. Fig. 2 shows a histogram of the distribution of the 
number of hospital admissions in all patients (A) and in patients with 10 
or fewer admissions (B). Table 2 gives an overview of hospital admission 
counts across BMI categories, WHR quantiles, age quantiles and gender. 

4.2. Observational multivariable analyses 

Poisson multivariable regression models provided evidence that BMI 
and WHR were associated with an increase in yearly hospital admission 
rate (Tables 3 and 4). 

Observational analyses regressing the outcome on both exposures 
simultaneously resulted in attenuated associations, with a 1⋅03-fold in
crease per BMI SD (95% CI: 1⋅02, 1⋅04) and a 1⋅14-fold increase (95% CI: 
1⋅12, 1⋅16) per WHR SD (Table 5). 

For all exposures, estimates derived from adjusted models were 
lower than those from unadjusted models, but with overlapping confi
dence intervals. 

4.3. Association between GRS and exposures 

Table 5 shows the associations between BMI and WHR and the BMI 
GRS, the WHR GRS, and the WHRadjBMI GRS, comprising 76, 39 and 48 
SNPs, respectively. In UK Biobank participants of White British 
ethnicity, each unit increase in BMI GRS was associated with a 0.11 kg/ 
m2 higher BMI (95% CI: 0.11, 0.12), with the GRS explaining 1⋅69% of 
the variance. Each unit increase in WHR GRS was associated with a 0.01 
higher WHR on the 0.10 unit scale (95% CI: 0.01, 0.01), explaining 
0.41% of the variance, while each unit increase in WHRadjBMI GRS was 
associated with a 0.01 increase in WHR on the 0.10 unit scale (95% CI: 
0.01, 0.02), explaining 0.47% of the variance. F-statistics indicated that 
each GRS was a strong instrument for Mendelian randomization ana
lyses (Table 5), with all F-statistics > 1267. 

4.4. One-sample Mendelian randomization analyses 

One-sample MR estimates of the effect of BMI, WHR and WHRadjBMI 
on hospital admission rates were obtained per exposure SD. The IV re
gressions (Table 6), adjusted for age, sex and the first 40 genetic PCAs, 
yielded a 1⋅13-fold increase per BMI SD (95% CI: 1⋅02, 1⋅27) and a 1⋅26- 
fold increase per WHR SD (95% CI: 1⋅00, 1⋅58). Using the WHRadjBMI 
SNPs yielded a 1⋅22-fold increase per WHR SD (95% CI: 1⋅01, 1⋅47). 
Adjusting for BMI in the WHR regression, by using the residuals from a 
linear regression of WHR on BMI as an exposure, resulted in a reduced 
effect of 1⋅16 (95% CI: 0.97, 1⋅39) per SD. We have included the adjusted 
observational estimates from Table 3 for comparison. 

Additionally, we examined the effect of BMI, WHR and WHRadjBMI 
on hospital admission rates across sex (Table 7). While the observational 

Table 1 
Patient demographics at baseline for N = 310,471 patients. For continuous 
variables mean and standard deviation are given, for categorical variables 
counts and percentages per category.  

Characteristic N / 
mean 
(SD) 

% Characteristic N % 

Age at entry 57.402 
(7.988) 

100 Qualifications   

Missing 0 0 A levels/AS levels or 
equivalent 

35,268 11.4 

Sex   College or University 
degree 

96,670 31.1 

Female 166,610 53.7 CSEs or equivalent 17,714 5.70 
Male 143,861 46.3 NVQ or HND or HNC 

or equivalent 
20,418 6.60 

Missing 0 0 O levels/GCSEs or 
equivalent 

69,815 22.5 

BMI 27.385 
(4.743) 

100 Other professional 
qualifications (e.g., 
nursing, teaching) 

15,821 5.10 

Missing 0 0 Missing 54,765 17.6 
WHR 0.872 

(0.09) 
100 Employment   

Missing 0 0 Doing unpaid or 
voluntary work 

1298 0.40 

Alcohol 
frequency   

Full or part-time 
student 

544 0.20 

Daily or almost 
daily 

67,391 21.7 In paid employment 
or self- employed 

175,679 56.6 

Never 19,900 6.4 Looking after home 
and/or family 

8042 2.60 

Once or twice a 
week 

81,161 26.1 Retired 109,314 35.2 

One to three 
times a month 

34,254 11.0 Unable to work 
because of sickness 
or disability 

9043 2.90 

Special 
occasions only 

32,382 10.4 Unemployed 4212 1.40 

Three or four 
times a week 

75,173 24.2 Missing 2339 0.80 

Missing 210 0.10 Townsend 
deprivation   

Days exercise   1st Quint. (− 6.258, 
− 4.014] 

62,055 20.0 

0 days 110,190 35.5 2nd Quint. (− 4.014, 
− 2.945] 

62,002 20.0 

1 day 42,722 13.8 3rd Quint. (− 2.045, 
− 1.683] 

62,028 20.0 

2 days 47,400 15.3 4th Quint. (− 1.683, 
0.709] 

62,030 20.0 

3 days 40,976 13.2 5th Quint. (0.709, 
10.588] 

62,016 20.0 

4 days 19,061 6.10 Missing 341 0.10 
5 days 19,800 6.40    
6 days 5758 1.90    
7 days 10,315 3.30    
Missing 14,249 4.60    

BMI = body mass index, SD = standard deviation, WHR = waist hip ratio. 
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multivariable estimates were comparable for both sexes, the IV analyses 
resulted in noticeably higher point estimates for the male subset of the 
data compared to the female one, but with overlapping 95% confidence 
intervals. For both, the confidence intervals were markedly wider than 
those in the full data. For the female subset of the data (N = 166,610), 
we observed fold increases of 1⋅11 (95% CI: 0.95,1⋅29) per BMI SD and 
1⋅03 (95% CI: 0.86, 1⋅24) per WHR SD, and a fold increase of 1⋅06 (95% 
CI: 0.93, 1⋅22) per WHR SD, when using the WHRadjBMI SNPs. For the 
male subset (N = 143,861), we observed higher fold increases of 1⋅16 
(95% CI: 1⋅00, 1⋅35) per BMI SD, 1⋅60a (95% CI: 1⋅11, 2⋅31) per WHR 
SD, and, for WHRadjBMI, 1⋅50 (95% CI: 1⋅04, 2⋅17) per WHR SD. 

The multivariable one-sample MR analysis (Table 8) showed no 
strong evidence for an independent effect of BMI on hospital admissions 
in the full data, with a fold increase of 1⋅04 (95% CI: 0.93, 1⋅15) per BMI 
SD, when controlling for WHR. Again, we included the adjusted obser
vational effect estimates (from Table 4) for comparison. Conversely, 
there was evidence for an independent effect of WHR on hospital ad
missions, with a fold increase of 1⋅31 (95% CI: 1⋅04, 1⋅67) per WHR SD. 
Instrument strength, as assessed using the conditional Sanderson- 
Windmeijer F-statistic (Sanderson et al., 2019), was sufficient for the 
multivariable Mendelian randomization analysis, with F-statistics of 
38⋅50 and 22⋅89 for BMI and WHR, respectively. 

4.5. Two-sample Mendelian randomization analyses 

The IVW estimator showed evidence for a causal effect of all three 
exposures on hospital admissions (Table 9), at magnitudes consistent 
with the just-identified one-sample MR results. 

For BMI, we observed a fold increase of 1⋅10 (95% CI: 1⋅01, 1⋅19) per 
SD; for WHR, a fold increase of 1⋅20 (95% CI: 1⋅05, 1⋅36) per SD; and for 
WHRadjBMI, a fold increase of 1⋅15 (95% CI: 1⋅03, 1⋅29) per SD. The 
penalized weighted median and weighted mode yielded near identical 
point estimates, albeit with wider confidence intervals that included the 
null. 

The widest confidence intervals were observed for the MR-Egger 
estimates, as is usually the case given the lower power of this esti
mator, since it estimates twice the number of parameters (both the 
intercept and the slope coefficient) compared to the other estimators. 
While for WHR, the MR-Egger point estimate was comparable to the 
previous estimates, it was lower for BMI and WHRadjBMI. The MR- 
Egger intercept indicated no directional pleiotropy. 

Heterogeneity was assessed using Rücker’s Q’ (QR) and Cochran’s Q 
(QC). For all three exposures, the Q-statistics were smaller than the 
number of SNPs used for estimation (QR,BMI=51.29, QC,BMI=52.06; QR, 

WHR=28.64, QC,WHR=28.92; QR,WHRadj=43.80, QC,WHRadj=44.01). 

Fig. 2. Number of hospital admissions per patient. A) All patients (N = 310,471); B) Patients with 10 or less hospital admissions (N = 302,254; 97%).  

Table 2 
Hospital admission counts for 310,471 patients per WHR quantiles, age quantiles, BMI categories and across gender. Shown are the 1st quantile, median, 3rd quantile, 
mean and SD, alongside the number of individuals (N, %) per category.    

Hospital admission count  

N (%) 1st quantile median 3rd quantile mean SD 

WHR       
1st quant [0.45–0.82) 77,564 (25) 0 0 2 1.55 6.45 
2nd quant [0.82–0.87) 78,087 (25) 0 1 2 1.75 6.01 
3rd quant [0.87–0.92) 77,267 (25) 0 1 2 1.9 6.9 
4th quant [0.92–2.13) 77,553 (25) 0 1 3 2.38 9.78 
BMI       
<18.5 1532 (0.5) 0 1 2 2.18 10.9 
[18.5–20) 5563 (1.8) 0 0 2 1.63 4.6 
[20–22.5) 31,446 (10) 0 0 2 1.54 5.79 
[22.5–25) 64,586 (21) 0 0 2 1.68 9.71 
[25–27.5) 74,899 (24) 0 1 2 1.78 6.53 
[27.5–30) 57,841 (19) 0 1 2 1.96 7.01 
[30–35) 53,766 (17) 0 1 2 2.16 6.43 
> 35 20,838 (6.7) 0 1 3 2.66 8.33 
Age       
1st quant [40–51) 77,608 (25) 0 0 1 1.24 7.41 
2nd quant [51–59) 77,608 (25) 0 0 2 1.67 8.2 
3rd quant [59–64) 77,633 (25) 0 1 2 2.03 6.13 
4th quant [64–73) 77,622 (25) 0 1 3 2.64 7.77 
Sex       
Female 166,610 (54) 0 1 2 1.84 7.28 
Male 143,861 (46) 0 1 2 1.96 7.62 

BMI = body mass index, SD = standard deviation, WHR = waist hip ratio’ under the table, as done in the remaining tables. 
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Despite the lack of substantial heterogeneity, we performed a sensitivity 
analysis to investigate the potential presence of pleiotropy driven by 
outlying SNPs. Individual SNPs were identified in a visual inspection of 
leave-one-out plots (Figs. S1-S3) and removed, with 3, 4 and 4 SNPs 
excluded for BMI, WHR, and WHRadjBMI, respectively. The two-sample 
MR analyses were repeated using the reduced set of SNPs, yielding 
comparable point estimates and confidence intervals overlapping with 
those from the original analyses (Table S9). 

A multivariable two-sample IVW analysis of BMI and WHR simul
taneously (Table 10) yielded no strong evidence for an association of 
BMI and the yearly hospital admission rate, with a fold increase of 0.99 
per BMI SD (95% CI: 0.85, 1⋅14), but indicated a strong association 
between WHR and hospital admission rate, with a fold increase of 1⋅30 
per WHR SD (95% CI: 1⋅02, 1⋅65). 

The gene-exposure associations and gene-outcome associations for 
the univariable two-sample MR analyses are given in Tables S11, S12 
and S13 for BMI, WHR, and WHRadjBMI, respectively. The same 
quantities are provided for the multivariable two-sample analysis in 
Table S14. 

4.6. Comparison across methods 

Fig. 3 summarizes the effect of each exposure on yearly hospital 
admission rate, as estimated from traditional multivariable analyses, 
and one- and two-sample MR analyses. 

For all exposures, we observed a higher point estimate for the one- 
sample MR analyses when compared to the traditional analyses. On 
the whole, the estimated effects were consistent across estimators, with 
overlapping confidence intervals, and comparatively wider confidence 

Table 3 
Observational multivariable analyses of the effect of BMI, WHR, and WHR 
adjusted for BMI on yearly hospital admission rate per year in UK Biobank 
participants of White British ancestry (N = 310,471). Effect estimates are pro
vided per BMI SD (SDBMI=4.74) and per WHR SD (SDWHR=0.090).   

Observational 
(unadjusted) 

Observational 
(adjusteda)  

Rateb 95%CI Rateb 95%CI 
BMI (SD) 1.148 (1.133–1.163) 1.077 (1.065–1.091) 
WHR (SD) 1.197 (1.181–1.214) 1.162 (1.144–1.182) 
WHRadjBMI (SD) 1.155 (1.137–1.173) 1.141 (1.120–1.163) 
WHR~BMI residuals 

(WHR SD)c 
1.156 (1.136–1.176) 1.123 (1.102–1.145) 

BMI = body mass index, CI = confidence interval, SD = standard deviation, 
WHR = waist hip ratio, WHRadjBMI = waist hip ratio adjusted for BMI 
a) Adjusted for sex (categorical), age at study entry, alcohol frequency (cate
gorical, from on a daily basis to never), employment (categorical), qualifications 
(categorical), Townsend deprivation score (categorical in quintiles, where 1 is 
not deprived and 5 is very deprived), and days of exercise per week (categorical, 
from 1 to 7). The WHRadjBMI observational analyses also include BMI as a 
predictor. 
b) Estimates (with corresponding 95% CIs) represent the fold increase in yearly 
hospital admission rate per BMI SD (4.74 kg/m2) and per WHR SD (0.090). 
Estimates per BMI and WHR unit are given in Table S2. 

Table 4 
Observational multivariable analysis of the effect of BMI and WHR jointly on 
yearly hospital admission rate in UK Biobank participants of White British 
ancestry (N = 310471). Rates and 95% confidence intervals (95% CI) are given. 
Estimates are provided per exposure SD (SDBMI=4.74 and SDWHR=0.090).   

Observational (unadjusted) Observational (adjusteda)  

Rateb 95% CI Rateb 95% CI 
BMI (SD) 1.084 (1.068–1.100) 1.029 (1.015–1.043) 
WHR (SD) 1.155 (1.137–1.173) 1.141 (1.120–1.163) 

BMI = body mass index, CI = confidence interval, SD = standard deviation, 
WHR = waist hip ratio 
a) The observational analysis regresses the outcome directly on the exposures 
BMI and WHR simultaneously. The Poisson regression is adjusted for sex (cat
egorical), age at study entry, alcohol frequency (categorical, from on a daily 
basis to never), employment (categorical), qualifications (categorical), Town
send deprivation score (categorical in quintiles, where 1 is not deprived and 5 is 
very deprived), and days of exercise per week (categorical, from 1 to 7). 
b) Estimates (with corresponding 95% CIs) represent the fold increase in yearly 
hospital admission rate per BMI SD (4.74 kg/m2) and per WHR SD (0.090). 
Estimates per BMI and WHR unit are given in Table S3 

Table 5 
Association between weighted GRSs for BMI, WHR and WHRadjBMI with BMI 
and WHR in UK Biobank participants of White British ancestry (N = 310,471). 
Effect estimates are provided per unit (BMI) and per 0.1 unit (WHR).   

Effect estimate (95% CI)a P-value R2% F 

BMI GRS (76 SNPs) 
BMI (unit) 0.112 (0.109 – 0.115) < 5 × 10-324 1.69 5326 
WHR (0.1 

unit) 
0.0075 (0.0069 – 0.0081) < 4.04 × 10- 

144 
0.210 654.1 

WHR GRS (39 SNPs) 
BMI (unit) 0.0297 (0.0256–0.0337) < 2.33 × 10-46 0.066 204.4 
WHR (0.1 

unit) 
0.0140 (0.0132 – 0.0148) < 6.40 × 10- 

277 
0.406 1267 

WHRadjBMI GRS (48 SNPs) 
BMI (unit) -0.024 (− 0.0278 to 

− 0.0202) 
< 2.41 × 10-35 0.050 154 

WHR (0.1 
unit) 

0.0141 (0.0134 – 0.0148) < 1.88 × 10- 

322 
0.474 1477 

BMI = body mass index, CI = confidence interval, GRS = genetic risk score, SD 
= standard deviation, WHR = waist hip ratio, WHRadjBMI = waist hip ratio 
adjusted for BMI 
a) Effect estimate, and corresponding P-value represent the change in BMI in 
units (kg/m2) and the change in WHR in 0.1 units per BMI increasing allele (BMI 
GRS) and WHR increasing allele (WHR GRS, WHRadjBMI GRS). Effect estimates 
per BMI and WHR SD are given in Table S4. 
b) R2 values are given in % (e.g., 1.69 here indicates an R2 of 0.0169) 

Table 6 
One-sample MR analyses of the effect of BMI (76 SNPs), WHR (39 SNPs) and 
WHRadjBMI (48 SNPs) on yearly hospital admission rate per year in UK Biobank 
participants of White British ancestry (N = 310,471). Rates and 95% confidence 
intervals (95% CI) are given. Estimates are provided per exposure SD 
(SDBMI=4.74 and SDWHR=0.090).   

Observational 
(adjusteda) 

IV (adjustedb)  

Rated 95%CI Rated 95%CI 
BMI (SD) 1.077 (1.065–1.091) 1.134 

(1.015–1.267) 
WHR (SD) 1.162 (1.144–1.182) 1.255 

(0.997–1.580) 
WHRadjBMI (SD) 1.141 (1.120–1.163) 1.216 

(1.009–1.466) 
WHR~BMI residuals (WHR 

SD)c 
1.123 (1.102–1.145) 1.161 

(0.968–1.391) 

BMI = body mass index, CI = confidence interval, IV = instrumental variable, 
SD = standard deviation, WHR = waist hip ratio, WHRadjBMI = waist hip ratio 
adjusted for BMI 
a) Adjusted for sex (categorical), age at study entry, alcohol frequency (cate
gorical, from on a daily basis to never), employment (categorical), qualifications 
(categorical), Townsend deprivation score (categorical in quintiles, where 1 is 
not deprived and 5 is very deprived), and days of exercise per week (categorical, 
from 1 to 7). The WHRadjBMI observational analyses also include BMI as a 
predictor. 
b) Adjusted for sex, age at study entry, and 40 PCAs 
c) Residuals from linear WHR on BMI regressions are used as an exposure with 
the WHRadjBMI SNPs as instruments 
d) Estimates (with corresponding 95% CIs) represent the fold increase in yearly 
hospital admission rate per BMI SD (4.74 kg/m2) and per WHR SD (0.090). 
Estimates per BMI and WHR unit are given in Table S5. 
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intervals for WHR and WHRadjBMI. 
A similar pattern is observed in Fig. 4, which summarizes the 

multivariable estimator results. Once more, the confidence intervals for 
both exposures overlapped, but with the BMI point estimates more 
closely grouped together. In contrast to the univariable analyses sum
marized in Fig. 3, the one- and two-sample BMI estimate confidence 
intervals now included the null. 

5. Discussion 

We report the first Mendelian randomization (MR) analysis of all- 
cause hospital admissions in relation to adiposity. Our MR results, 
based on analysis of more than 550,000 hospital admissions measured in 
over 300,000 UK Biobank participants, identified a causal effect of a 
higher BMI, WHR and WHRadjBMI on increased hospital admission risk, 
using one- and two-sample MR methods, in both a univariable and 
multivariable MR framework. 

In the multivariable one-sample and two-sample MR analyses, a 
relatively stronger positive effect was observed for WHR than for BMI, 
suggesting that the relationship between adiposity and hospital admis
sions may be driven by a detrimental distribution of fat and adipose 

Table 7 
One-sample MR analyses of the effect of BMI (76 SNPs), WHR (39 SNPs) WHRadjBMI (48 SNPs) on yearly hospital admission rate per year in UK Biobank participants of 
White British ancestry (N = 310,471), per sex (female, N = 166,610; male, N = 143,861). Rates and 95% confidence intervals (95% CI) are given. Estimates are 
provided per exposure SD, with in the female subset SDBMI= 5.12 and SDWHR= 0.070, and in the male subset SDBMI= 4.22 and SDWHR= 0.065.   

Female Male  

Observational (adjusteda) IV (adjustedb) Observational (adjusteda) IV (adjustedb)  

Ratec 95%CI Ratec 95%CI Ratec 95%CI Ratec 95%CI 
BMI (SD) 1.078 (1.061–1.095) 1.108 (0.951–1.292) 1.076 (1.057–1.108) 1.162 (0.999–1.352) 
WHR (SD) 1.112 (1.094–1.13) 1.032 (0.859–1.241) 1.128 (1.108–1.150) 1.597 (1.105–2.309) 
WHRadjBMI (SD) 1.094 (1.074–1.113) 1.062 (0.925–1.219) 1.122 (1.096–1.148) 1.499 (1.035–2.173) 

BMI = body mass index, CI = confidence interval, IV = instrumental variable, SD = standard deviation, WHR =waist hip ratio, WHRadjBMI = waist hip ratio adjusted 
for BMI 
a) Adjusted for age at study entry, alcohol frequency (categorical, from on a daily basis to never), employment (categorical), qualifications (categorical), Townsend 
deprivation score (categorical in quintiles, where 1 is not deprived and 5 is very deprived), and days of exercise per week (categorical, from 1 to 7); 
b) Adjusted for age at study entry and 40 PCAs 
c) Estimates (with corresponding 95% CIs) represent the fold increase in yearly hospital admission rate per BMI SD (5.12 kg/m2 and 4.22 kg/m2, for female and male, 
respectively) and per WHR SD (0.070 and 0.065, for female and male, respectively). Estimates per BMI and WHR unit are given in Table S6. 

Table 8 
Observational multivariable and one-sample multivariable MR analyses of the 
effect of BMI and WHR on yearly hospital admission rate in UK Biobank par
ticipants of White British ancestry (N = 310,471). Rates and 95% confidence 
intervals (95% CI) are given. Estimates are provided per exposure SD 
(SDBMI=4.74 and SDWHR=0.090).   

Observational (adjusteda) IV (adjustedb)  

Ratec 95%CI Ratec 95%CI 
BMI (per SD) 1.029 (1.015–1.043) 1.035 (0.930–1.153) 
WHR (per SD) 1.141 (1.120–1.163) 1.314 (1.037–1.665) 

BMI = body mass index, CI = confidence interval, IV = instrumental variable, 
SD = standard deviation, WHR = waist hip ratio 
a) The observational analysis regresses the outcome directly on the exposures 
BMI and WHR simultaneously. The quasi-Poisson regression is adjusted for sex 
(categorical), age at study entry, alcohol frequency (categorical, from on a daily 
basis to never), employment (categorical), qualifications (categorical), Town
send deprivation score (categorical in quintiles, where 1 is not deprived and 5 is 
very deprived), and days of exercise per week (categorical, from 1 to 7); 
b) Adjusted for sex, age at study entry, and 40 PCAs 
c) Estimates (with corresponding 95% CIs) represent the fold increase in yearly 
hospital admission rate per BMI SD (4.74 kg/m2) and per WHR SD (0.090). 
Estimates per BMI and WHR unit are given in Table S7. 

Table 9 
Two-sample MR analysis of hospital admission rate per year in UK Biobank participants of White British ancestry. Rates and 95% confidence intervals (95% CI) are 
given. Effect estimates are provided per BMI SD (SDBMI=4.6) and per WHR SD (SDWHR=0.07), for MR-Egger (random effects), IVW (random effects, exact weights), 
weighted median and weighted mode analyses of BMI (64 SNPs), WHR (34 SNPs) and WHRadjBMI (45 SNPs). SNPs with an LD R2 < 0.001 have been retained.     

MR-Egger     

IVW (random effects, exact weights) Intercept Slope Penalized weighted median Weighted mode 

BMI (SD) Ratea (95% CI) 1.098 1.004 0.973 1.095 1.095 
(1.009–1.194) (0.997–1.011) (0.759–1.247) (0.930–1.290) (0.915–1.312) 

WHR (SD) Ratea (95% CI) 1.199 1.000 1.185 1.236 1.204 
(1.054–1.364) (0.987–1.014) (0.676–2.079) (0.985–1.550) (0.867–1.167) 

WHRadjBMI (SD) Ratea (95% CI) 1.151 1.008 0.870 1.124 1.076 
(1.028–1.287) (0.995–1.021) (0.541–1.400) (0.941–1.343) (0.819–1.414) 

BMI = body mass index, CI = confidence interval, IVW = inverse variance weighted, MR = Mendelian randomization, SD = standard deviation, WHR = waist hip ratio, 
WHRadjBMI = waist hip ratio adjusted for BMI. 
a) Adjusted for sex, age and the first 40 genetic principal components. Estimates (with corresponding 95% CIs) represent the fold increase in yearly hospital admission 
rate per BMI SD (4.6 kg/m2) and per WHR SD (0.07). Estimates per BMI and WHR unit are given in Table S8. 

Table 10 
Multivariable two-sample MR IVW estimates for the effect of BMI and WHR (70 
SNPs) on yearly hospital admission rate in UK Biobank participants of White 
British ancestry. Rates and 95% confidence intervals (95% CI) are given. Effect 
estimates are provided per BMI SD (SDBMI=4.6) and per WHR SD (SDWHR=0.07). 
SNPs with an LD R2 < 0.001 were retained.   

Ratea 95% CI 

BMI (SD)  0.986 (0.850–1.143) 
WHR (SD)  1.297 (1.022–1.647) 

BMI = body mass index, CI = confidence interval, IVW = inverse variance 
weighted, MR = Mendelian randomization, SD = standard deviation, WHR 
= waist hip ratio 
a) Adjusted for sex, age and the first 40 genetic principal components. Estimates 
(with corresponding 95% CIs) represent the fold increase in yearly hospital 
admission rate per BMI SD (4.6 kg/m2) and per WHR SD (0.07). Estimates per 
BMI and WHR unit are given in Table S10. 
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tissue rather than by BMI itself. WHR has been little investigated pre
viously in the context of hospital admissions, and our results emphasize 
the relevance of considering WHR as a measure of adiposity in addition 
to BMI in this context. Results from sensitivity analyses that relaxed the 
exclusion restriction were broadly concordant across methods relying on 
different assumptions, suggesting that the same causal effect was being 
identified. 

A positive association of BMI and all-cause hospital admissions was 
reported in observational studies investigating populations from the UK 
(Kent et al., 2017b; O’Halloran et al., 2020), Australia (Korda et al., 
2015), Canada (Chen et al., 2007), Italy (Migliore et al., 2013), and the 

USA (Buys et al., 2014; Han et al., 2009). An observational study of 
approximately 1⋅09 million UK women found a yearly hospital admis
sion rate increase of 1⋅12 (95% CI: 1⋅12, 1⋅13) for every 5 kg/m2 in
crease in BMI (Reeves et al., 2014). In just over 300,000 individuals, we 
observed estimates amounting to rate coefficients of 1⋅025 = 1⋅08 (95% 
CI: 1⋅07, 1⋅10), 1⋅14 (95% CI: 1⋅02, 1⋅28) and 1⋅10 (95% CI: 1⋅01, 1⋅21) 
from the multivariable observational, one-sample MR and two-sample 
MR analyses, respectively, giving effect estimates of a magnitude com
parable to those observed previously in UK women from observational 
studies. 

Another observational study, examining the association between 

Fig. 3. Estimates from multivariable observational 
analyses, one-sample MR analyses and two-sample 
MR IVW analyses for exposures BMI, WHR and 
WHRadjBMI per SD unit. Shown are point esti
mates, alongside 95% CIs, for the effect of each 
exposure on yearly hospital admission rate in UK 
Biobank participants of White British ancestry. The 
results are plotted on the log scale, to ensure sym
metrical CIs and comparability of magnitude across 
estimates. Rate estimates and x-axis values are 
given on the rate scale. All Mendelian randomiza
tion analyses were adjusted for age, sex and the first 
40 genetic PCAs. The multivariable observational 
analyses were adjusted for a range of baseline pa
tient characteristics (Table 1). Notes: BMI = body 
mass index, CI = confidence interval, IVW 
= inverse variance weighted, MR = Mendelian 
randomization, SD = standard deviation, WHR 
= waist hip ratio, WHRadjBMI = waist hip ratio 
adjusted for BMI.   

Fig. 4. Estimates from multivariable observa
tional analyses, multivariable one-sample MR 
analyses and multivariable two-sample MR IVW 
analyses for exposures BMI and WHR per SD 
unit. Shown are point, estimates, alongside 95% 
CIs for the effect of each exposure on yearly 
hospital admission rate in UK Biobank partici
pants of White British ancestry. The results are 
plotted on the log scale, to ensure symmetrical 
CIs and comparability of magnitude across es
timates. Rate estimates and x-axis values are 
given on the rate scale. MR analyses were 
adjusted for age, sex and the first 40 genetic 
PCAs. The multivariable observational analyses 
were adjusted for a range of baseline patient 
characteristics (Table 1), with the BMI estimate 
adjusted for WHR and vice versa. Notes: BMI 
= body mass index, CI = confidence interval, 
IVW = inverse variance weighted, MR 
= Mendelian randomization, SD = standard 
deviation, WHR = waist hip ratio.   
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BMI and hospital admissions in 451,320 UK Biobank participants, found 
increases in yearly hospital admission rates, measured per 2 kg/m2 BMI, 
of 1⋅06 (95% CI: 1⋅05, 1⋅07) and 1⋅06 (95% CI: 1⋅05, 1⋅07) for male and 
female never-smokers, respectively (O’Halloran, 2020). We observed 
comparable estimates, with increases across both sexes combined, per 
2 kg/m2 BMI, of 1⋅022 = 1⋅03 (95% CI: 1⋅03, 1⋅04), 1⋅05 (95% CI: 1⋅01, 
1⋅11), and 1⋅04 (95% CI: 1⋅00, 1⋅08), for the multivariable observa
tional, one-sample MR and two-sample MR analyses, respectively. For 
the sex-specific analyses, the estimates were also comparable, with in
creases per 2 kg/m2 BMI of 1⋅03 (95% CI: 1⋅02, 1⋅04) for the multivar
iable observational analyses of both the female and male subsets, and 
increases of 1⋅04 (95% CI: 0.98, 1⋅10) and 1⋅07 (95% CI: 1⋅00, 1⋅16) for 
the one-sample MR analyses of the female and male subsets, respectively 

While the effect of BMI/WHR on hospital admission rate has not 
previously been studied in this context, the effect of BMI on hospital cost 
was examined in a two-sample MR analysis, using data from UK Bio
bank, which largely overlaps with our own study population (Dixon 
et al., 2020). A positive causal effect of BMI on hospital cost was found in 
that study, in line with our own observation of increased hospital ad
missions for higher BMI. 

5.1. Limitations 

MR methods make it possible to avoid certain biases common to 
traditional epidemiological studies, but also face limitations, both in 
terms of interpretation and in terms of potential alternative sources of 
bias. When interpreting the results, it should be noted that MR does not 
estimate an average treatment effect, but rather a local average treat
ment effect (LATE) instead, under the assumption that the effect of IV on 
treatment is, for all IVs, in the same direction for all subjects – the 
condition of monotonicity (Von Hinke et al., 2016). This means that we 
estimated the effect of WHR and BMI in those subjects whose WHR/BMI 
exposure values differ on varying the levels of the respective IVs, under 
the condition that this change occurs in the same direction for all par
ticipants. This is probably a reasonable assumption. 

As the IVs are comprised of genetic markers, which are “assigned” at 
conception, the estimated LATE is a measure of the effects of a lifelong 
exposure to BMI-increasing alleles/WHR-increasing alleles. Addition
ally, we should note that, for all three exposures, a relatively modest 
percentage of variance is explained by the genetic variants, reducing 
statistical power for detecting the effect of a change in BMI/WHR and 
consequently resulting in less precise (Haycock et al., 2016) (albeit 
potentially less biased) estimates. 

A key assumption of MR is that of gene-environment equivalence: 
that genetically influenced BMI and WHR will have the same effect on 
hospital admission risk as, for example, adiposity modified by diet and/ 
or exercise. The included SNPs, however, may not meet the stable unit 
treatment assumption (SUTVA) (Burgess and Thompson, 2015) and, 
therefore, our estimates of the effect of BMI and WHR will not neces
sarily be representative of the increase or reduction in hospital admis
sion rate when adiposity is altered through interventions. 

We were limited to inpatient hospital admissions as the source of 
hospital data linked to UK Biobank at the time of writing. It is possible 
that other forms of hospital and primary care may substitute for inpa
tient care, in which case our estimates may overstate the effect of 
adiposity on overall healthcare admissions and care episodes. On the 
other hand, if inpatient care is complementary to other forms of care, 
then we may have understated effect sizes. In practice, both influences 
may be present. Our results are best interpreted in relation to our 
outcome of inpatient admissions. 

While UK Biobank is a unique and high-quality source, the under
lying demographic structure of the data imposes various restrictions in 
terms of generalizability. The UK Biobank sample is healthier and 
wealthier than the population from which it is drawn and consequently 
is likely to not be representative of the wider UK population. Indeed, we 
observed lower rates of mortality than in the general population (Bycroft 

et al., 2018), better health-related behavior and a higher level of edu
cation (Fry et al., 2017). 

As less healthy individuals are less likely to participate in the study, 
the observed sample may be subject to selection bias (Glymour, 2006; 
Munafò et al., 2018; Spirtes et al., 1993), which will impact the esti
mates obtained from both conventional multivariable analyses and MR 
analyses – where estimates obtained may even be an underestimation of 
the effect of adiposity on hospital admissions in the general population. 
Within the observed sample, 2% of participants died before the end of 
follow-up. It is plausible these individuals were in poorer health and had 
on average worse outcomes (more frequent hospital admissions) than 
those observed for the full length of study, which may also contribute to 
the underestimation of the effect, resulting in a conservative estimate of 
adiposity on hospital admissions. It should also be noted that current 
analyses have been limited to individuals of White British ancestry, and, 
consequently, that the results will not necessarily generalize to other 
ancestral groups. 

A potential further limitation is the possibility of cohort effects. UK 
Biobank participants are aged 39–72 years, giving rise to a range of birth 
cohorts in our data sample. There is some evidence from other sources to 
suggest that SNPs exert a greater influence on BMI for those born in 
more recent decades, possibly because of an increasingly obesogenic 
environment (Hartwig et al., 2018; Walter et al., 2016). In this case, 
other things being equal, our estimates may underestimate the impact of 
adiposity on hospital admissions. 

Additional sources of bias that should be considered in the context of 
MR and the UK Biobank data are assortative mating (Hartwig et al., 
2018; Jacobson et al., 2007; Morris et al., 2019; Tenesa et al., 2016), 
confounding due to population stratification bias (Brumpton et al., 
2020; Haworth et al., 2019; Koellinger and de Vlaming, 2019; Morris 
et al., 2019) and the presence of dynastic effects (Brumpton et al., 2020; 
Fletcher, 2011; Morris et al., 2019), which have all been implicated with 
respect to BMI previously. While we attempted to minimize the impact 
of population stratification with the inclusion of 40 genetic principal 
components, latent data structure may still exist for some exposures such 
as BMI (Haworth et al., 2019). Within-family analysis may address some 
of these issues (Brumpton et al., 2020; Davies et al., 2019), although 
statistical power for this form of modeling is limited given the relatively 
modest available sample sizes of related individuals in UK Biobank 
(Howe et al., 2020). 

6. Conclusion 

This study describes the first Mendelian randomization analysis to 
estimate the causal effect of BMI, WHR and WHRadjBMI on yearly 
hospital admission rates. Results supported the causal role of greater 
adiposity in increasing the risk of hospital admissions. Causal point es
timates were larger than those obtained from conventional observa
tional models, further emphasizing the necessity of exploring policies 
intended to address adverse adiposity profiles. 

Multivariable Mendelian randomization analyses suggested that the 
effect of BMI on hospital admission rates may be mediated by WHR, and 
that an unfavorable fat distribution may drive the relationship between 
increased adiposity and higher hospital admission rates. Additionally, 
we demonstrate that a non-standard outcome like hospital admission 
counts can be successfully modeled using Mendelian randomization 
methods, both in a one-sample and two-sample framework, by replacing 
the second stage regression (modeling the gene-outcome association) 
with a Poisson regression. 
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