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Flexibility in generating sets of finite groups

Scott Harper

Abstract. Let G be a finite group. It has recently been proved that every
nontrivial element of G is contained in a generating set of minimal size if
and only if all proper quotients of G require fewer generators than G. It is
natural to ask which finite groups, in addition, have the property that any
two elements of G that do not generate a cyclic group can be extended
to a generating set of minimal size. This note answers the question. The
only such finite groups are very specific affine groups: elementary abelian
groups extended by a cyclic group acting as scalars.
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1. Introduction. Generating sets for finite groups have attracted the attention
of many authors for decades. In recent years, major developments have been
made drawing on our extensive knowledge of the generating sets of finite simple
groups. One natural question on this topic is: for which finite groups G is
every element contained in a generating set of minimal size d(G)? Completing
a long line of research, this question was recently proved to admit a very
simple answer: the finite groups G such that d(G/N) < d(G) for all 1 �= N �

G. Acciarri and Lucchini [2] proved the case with d(G) � 3 and Burness,
Guralnick, and Harper [4] completed the theorem by proving an influential
conjecture of Breuer, Guralnick, and Kantor [3] regarding the case with d(G) �
2.

The most straightforward example with this generation property is the
elementary abelian group pr. Considered as a vector space, we see that not
only is every nonzero vector contained in a generating set of minimal size
(a basis), but moreover any collection of linearly independent vectors can be
extended to such a generating set. This motivates the following definition.
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Definition. Let G be a finite group. Let d(G) be the minimal size of a generat-
ing set for G. For an integer 1 � k � d(G), we say that G is k-flexible if for any
x1, . . . , xk ∈ G such that d(〈x1, . . . , xk〉) = k, there exists xk+1, . . . , xd(G) ∈ G
such that 〈x1, . . . , xd(G)〉 = G.

We can now rephrase the result of Acciarri–Lucchini [2] and Burness–
Guralnick–Harper [4].

Theorem 1. A finite group G is 1-flexible if and only if d(G/N) < d(G) for all
1 �= N � G.

Remark 1. Let us describe the groups in Theorem 1. (We use Atlas notation,
so p denotes both a prime and the cyclic group of that order.)

(i) If d(G) = 1, then G = p with p prime.
(ii) If d(G) = 2, then, by Lemma 2.1 in [4] and the discussion that follows,

G is one of:
(a) p2 for p prime,
(b) pr:〈g〉 for p prime and g ∈ GLr(p) irreducible,
(c) T r.〈(g, 1, . . . , 1)σ〉 for a nonabelian simple group T , g ∈ Aut(T ),

and an r-cycle σ ∈ Sr.
(iii) If d(G) � 3, then, by [5, Theorem 1.4],

G = {(g1, . . . , gr) ∈ Lr | Mg1 = · · · = Mgr}
for a primitive monolithic group L with monolith M and r = f(d(G)−1)
where f is the function given in [5, Theorem 2.7].

This paper shows that startlingly few 1-flexible groups are also 2-flexible.

Theorem 2. Let G be a finite group with d(G) � 3. Then the following are
equivalent:

(i) G is 1-flexible and 2-flexible,
(ii) G is k-flexible for all 1 � k < d(G),
(iii) G = pr:〈g〉 for a prime p, a scalar g ∈ GLr(p) and r = d(G) − d(〈g〉).

While the class of 1-flexible groups is a large and rich class of soluble and
insoluble groups, including all finite simple groups, adding the assumption of
2-flexibility restricts to a narrow class of supersoluble groups and guarantees
k-flexibility for all 1 � k < d(G).

Remark 2. In Theorem 2, we assume that d(G) � 3. For d(G) = 1, 2-flexibility
is not interesting. For d(G) = 2, we will see in Lemma 2.7 that G is 1-flexible
and 2-flexible if and only if G = p:〈g〉 where p is prime and g ∈ GLr(p) is a
scalar of prime order.

Remark 3. Note that 2-flexibility does not imply 1-flexibility. For example,
if G is the quaternion group Q8, then every proper subgroup of G is cyclic,
so G is 2-flexible, but the nontrivial central element of G is not contained in
any generating pair for G, so G is not 1-flexible. However, observe that Q8 is
a cyclic central extension of 22, which is 1-flexible. Indeed, by Corollary 2.6,
every 2-flexible group is a cyclic central extension of a 1-flexible group.
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2. Proofs. For this section, let G be a finite group such that d(G) � 2. We
begin with some preliminaries.

Lemma 2.1. Let 1 � k � d(G). Assume that G is k-flexible. Let N � G such
that d(G/N) = d(G). Then G/N is k-flexible.

Proof. Write d = d(G) = d(G/N). Let Nx1, . . . , Nxk ∈ G/N and assume
d(〈Nx1, . . . , Nxk〉) = k. Then d(〈x1, . . . , xk〉) = k, so, as G is k-flexible,
there exist xk+1, . . . , xd ∈ G such that 〈x1, . . . , xd〉 = G. Therefore, we de-
duce 〈Nx1, . . . , Nxd〉 = G, so G/N is k-flexible. �

To obtain a partial converse to Lemma 2.1, in Lemma 2.4, let us recall that
the cycliciser of G is

Cyc(G) = {c ∈ G | 〈c, g〉 is cyclic for all g ∈ G}.

The fact that the cycliciser Cyc(G) is a (cyclic) subgroup of G is a consequence
of [1, Lemma 32], which states that if x, y, z ∈ G are such that each of 〈x, y〉,
〈x, z〉, 〈y, z〉 are cyclic, then 〈x, y, z〉 is also cyclic. Lemma 2.2 characterises
Cyc(G).

Lemma 2.2. The cycliciser Cyc(G) is the smallest normal subgroup N � G
such that Cyc(G/N) is trivial.

Proof. Let N = Cyc(G). Let g ∈ G such that Ng ∈ Cyc(G/N). Let h ∈ G
be arbitrary. Then 〈Ng,Nh〉 is cyclic, so there exists k ∈ G with 〈Ng,Nh〉 =
〈Nk〉. Therefore, 〈N, g, h〉 = 〈N, k〉. Now [1, Lemma 32] implies that 〈N, k〉 is
cyclic, so 〈N, g, h〉 is cyclic and thus 〈g, h〉 is cyclic. This means that g ∈ N ,
which proves that Cyc(G/N) is trivial.

Let N � G with Cyc(G/N) = 1. Let x ∈ Cyc(G). For all g ∈ G, 〈Nx,Ng〉 is
cyclic as 〈x, g〉 is cyclic. Hence, Nx ∈ Cyc(G/N), so x ∈ N as Cyc(G/N) = 1.
Therefore, Cyc(G) � N . �
Lemma 2.3. Assume that d(G) � 2. Then d(G/Cyc(G)) = d(G).

Proof. Write Cyc(G) = N and write G/N = 〈Ng1, . . . , Ngd(G/N)〉. Then
G = 〈N, g1, . . . , gd(G/N)〉. As d(G) � 2, the quotient G/N is nontrivial, so
d(G/N) � 1. Since 〈N, g1〉 is cyclic, fix h ∈ G such that 〈N, g1〉 = 〈h〉. Then
G = 〈h, g2, . . . , gd(G/N)〉, which gives us the bound d(G) � d(G/N). Clearly,
d(G) � d(G/N), so d(G) = d(G/N). �
Lemma 2.4. Let 2 � k < d(G). Then G is k-flexible if and only if G/Cyc(G)
is k-flexible.

Proof. Write Cyc(G) = N . First assume that G is k-flexible. Since d(G) � 2,
Lemma 2.3 gives d(G/N) = d(G), so Lemma 2.1 gives that G/N is k-flexible.

Now assume that G/N is k-flexible. Let x1, . . . , xk ∈ G such that
d(〈x1, . . . , xk〉) = k and write H = 〈x1, . . . , xk〉. The image of H in G/N
is isomorphic to H/(H ∩ N). Since H ∩ N � Cyc(H) and d(H) = k � 2,
Lemma 2.3 implies that d(〈Nx1, . . . , Nxk〉) = d(H/(H ∩ N)) = d(H) = k.
Since G/N is k-flexible, there exist elements xk+1, . . . , xd(G) ∈ G such that
〈Nx1, . . . , Nxd(G)〉 = G/N . Since 〈N,xd(G)〉 is cyclic, fix y ∈ G such that
〈N,xd(G)〉 = 〈y〉. Now G = 〈x1, . . . , xd(G)−1, y〉, so G is k-flexible. �
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The following lemma indicates that the case k = 1 does not follow the
pattern described by Lemma 2.4.

Lemma 2.5. Assume that G is 2-flexible. Then G is 1-flexible if and only if
Cyc(G) = 1.

Proof. First assume that Cyc(G) is trivial. Let 1 �= x1 ∈ G. As Cyc(G)
is trivial, x1 �∈ Cyc(G), so there exists x2 ∈ G such that 〈x1, x2〉 is non-
cyclic. Since G is 2-flexible, there exist elements x3, . . . , xd(G) ∈ G such that
〈x1, . . . , xd(G)〉 = G. Therefore, G is 1-flexible.

Now assume that Cyc(G) is nontrivial. Suppose that G is 1-flexible. Let
1 �= x1 ∈ Cyc(G). Then there exist elements x2, . . . , xd(G) ∈ G such that
〈x1, . . . , xd(G)〉 = G. Since x1 ∈ Cyc(G), there exists y ∈ G such that 〈x1, x2〉 =
〈y〉, so G = 〈x1, . . . , xd(G)〉 = 〈y, x3, . . . , xd(G)〉, which is impossible as G has
no generating set of size d(G) − 1. Therefore, G is not 1-flexible. �

Corollary 2.6. Assume that G is 2-flexible. Then G/Cyc(G) is 1-flexible.

Proof. By Lemma 2.2, Cyc(G/Cyc(G)) = 1, so by Lemma 2.5, G/Cyc(G) is
1-flexible. �

We first handle the case where d(G) = 2.

Lemma 2.7. Assume that d(G) = 2. Then G is 2-flexible if and only if G = p2,
G = Q8, or G is presented as 〈a, b | ap = bq

m

= b−1aba−r〉 for p �= q primes
and r > 1 satisfying r | q − 1 and p | rq − 1.

Proof. Observe that G is 2-flexible if and only if every proper subgroup of G
is cyclic. The result now follows from the main theorem of [7]. �

Lemma 2.8. Assume that d(G) = 2. Then G is 1-flexible and 2-flexible if and
only if G = p2 or G = p:〈g〉 where g ∈ GL1(p) has prime order.

Proof. By Remark 1 and Lemma 2.7, the groups in the statement are 1-flexible
and 2-flexible. For the converse, consulting Lemma 2.7 and noting that p2 is
1-flexible and Q8 is not 1-flexible, it remains to show that if G = 〈a, b | ap =
bq

m

= b−1aba−r〉 with p, q distinct primes and r > 1 satisfying r | q − 1 and
p | rq − 1, then m = 1. To do this, note that if m > 1, then 1 �= bq ∈ Z(G) but
G is nonabelian, so bq is not contained in a generating pair of G. �

We now turn to the case where d(G) � 3. We begin with two examples.

Example 2.9. Let p be prime. Let G be the elementary abelian group pr, so
d(G) = r. Let 1 � k � r. As pr is a vector space, given x1, . . . , xk ∈ G, if
d(〈x1, . . . , xk〉) = k, then x1, . . . , xk are linearly independent, so they can be
extended to a basis x1, . . . , xr for G. Thus, G is k-flexible.

Example 2.10. Let r � 2 and p be prime. Let G = pr:〈g〉 for a nontrivial scalar
g ∈ GLr(p). Note that d(G) = r + 1 (see [5, Theorem 2.7]). Let 1 � k � r. We
claim that G is k-flexible.

Let x1, . . . , xk ∈ G such that d(〈x1, . . . , xk〉) = k. Observe that there are
exactly pr distinct G-conjugates of 〈g〉 and that any two of these conjugates
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intersect trivially. Hence, fix a conjugate H of 〈g〉 such that x1, . . . , xk �∈ H.
Write xi = nihi where ni ∈ pr and hi ∈ H; note that ni �= 1 as xi �∈ H.
Fix xk+1, . . . , xr ∈ pr such that 〈n1, . . . , nk, xk+1, . . . , xr〉 = pr and let xr+1

generate H. Let X = 〈x1, . . . , xr+1〉. Then xr+1 ∈ X, so H � X, and for
each 1 � i � k, we have hi ∈ 〈xr+1〉 � X and hence ni = xih

−1
i ∈ X,

so pr = 〈n1, . . . , nk, xk+1, . . . , xr〉 � X, from which we can conclude that
G = pr:H = X = 〈x1, . . . , xr+1〉.
Corollary 2.11. Assume d(G) � 3 and G/Cyc(G) is pr:〈g〉 where p is prime
and g ∈ GLr(p) is a scalar. Then G is k-flexible for all 2 � k < d(G).

Proof. This is a consequence of Lemma 2.4 and Examples 2.9 and 2.10. �
We now show Examples 2.9 and 2.10 to be, in essence, the only examples.

Lemma 2.12. Assume d(G) � 3 and G is 2-flexible. Then every minimal nor-
mal subgroup of G is cyclic.

Proof. Let N be a minimal normal subgroup of G. For a contradiction, sup-
pose that N is noncyclic. By [1, Lemma 32], there exist x1, x2 ∈ N such
that 〈x1, x2〉 is noncyclic. By assumption, there exists x3, . . . , xd(G) ∈ G such
that 〈x1, . . . , xd(G)〉 = G, so 〈Nx1, . . . , Nxd(G)〉 = 〈Nx3, . . . , Nxd(G)〉 = G/N ,
which implies that d(G/N) � d(G) − 2. The main theorem of [6] implies that
G is a nonabelian simple group, which is a contradiction since d(G) � 3. We
conclude that N is cyclic. �
Lemma 2.13. Assume d(G) � 3 and G is both 1-flexible and 2-flexible. Then
G = pr:〈g〉 for a prime p, a scalar g ∈ GLr(p) and r = d(G) − d(〈g〉).
Proof. As G is 1-flexible, as discussed in Remark 1, we know d(G/N) < d(G)
for all 1 � N � G, so by [5, Theorem 1.4],

G = {(g1, . . . , gr) ∈ Lr | Mg1 = · · · = Mgr}
with L a primitive monolithic group with monolith M and r = f(d(G) − 1)
where f is the function given in [5, Theorem 2.7]. Since G is 2-flexible, by
Lemma 2.13, every minimal normal subgroup of G is cyclic, so M = p and we
deduce that L = p:〈λ〉 where λ ∈ GL1(p), so G = pr:〈g〉 where g ∈ GLr(p) is
a scalar. It remains to note that either g = 1 and r = d(G) or otherwise g �= 1
and [5, Theorem 2.7] implies that r = d(G) − 1. �
Theorem 2.14. Let G be a finite group with d(G) � 3. Then the following are
equivalent:

(i) G is 2-flexible,
(ii) G is k-flexible for all 2 � k < d(G),
(iii) G/Cyc(G) = pr:〈g〉 for prime p, scalar g ∈ GLr(p) and r = d(G)−d(〈g〉).
Proof. (iii) =⇒ (ii): This is Corollary 2.11. (ii) =⇒ (i): This is immediately
clear. (i) =⇒ (iii): Lemma 2.1 implies G/Cyc(G) is 2-flexible and Lemma 2.2
implies Cyc(G/Cyc(G)) is trivial, whence Lemma 2.5 implies G/Cyc(G) is
1-flexible, so Lemma 2.13 implies G/Cyc(G) has the claimed structure. �
Proof of Theorem 2. This is an immediate consequence of Lemma 2.5 and
Theorem 2.14. �
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