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Abstract 
Motivation: Metabolomics is an increasingly common part of health research and there is need for pre-
analytical data processing. Researchers typically need to characterise the data and to exclude errors 
within the context of the intended analysis. While some pre-processing steps are common, there is 
currently a lack of standardization and reporting transparency for these procedures.  
Results: Here we introduce metaboprep, a standardised data processing workflow to extract and char-
acterise high quality metabolomics data sets. The package extracts data from pre-formed worksheets, 
provides summary statistics and enables the user to select samples and metabolites for their analysis 
based on a set of quality metrics. A report summarising quality metrics and the influence of available 
batch variables on the data is generated for the purpose of open disclosure. Where possible, we pro-
vide users flexibility in defining their own selection thresholds.  
Availability and implementation: metaboprep is an open-source R package available at 
https://github.com/MRCIEU/metaboprep 
Contact: d.a.hughes@bristol.ac.uk or laura.corbin@bristol.ac.uk 
Supplementary information: Supplementary data are available at Bioinformatics online. 

 
 

1 Introduction  
In the last decade, the study of chemical products arising from biological 
processes has moved from chemometrics to epidemiology (Ala-Korpela, 
2015). In particular, the use of metabolomics as a functional read-out of 
an individual’s current health is becoming increasingly popular (Miggiels 
et al., 2019). With rapid advances in technology and bioinformatics ena-
bling the quantification of hundreds or even thousands of metabolites from 
a single biological sample, there is potential for these measurements to 
reveal valuable insights into biology and health. Both mass spectrometry 
(MS) and nuclear magnetic resonance (NMR) are common technologies 
used in these untargeted studies. Typically, laboratories have their own 
established protocols in sample preparation, generation of standards and 
controls, and corrections for instrument and run day variability. Work is 
also underway to develop a common set of best minimum practices and 

reporting standards for laboratories to apply to ensure metabolomics data 
generation is robust and to enable harmonization across laboratories 
(Beger et al., 2019; Evans et al., 2020). As a result, researchers are now 
able to access high quality curated metabolomics data at scale.  
 
After data generation by core facilities and prior to statistical analysis, re-
searchers perform a series of data characterisation and pre-analytical prep-
aration steps. These may include (1) the identification of samples of poor 
quality, (2) the identification of metabolites that have unfavourable statis-
tical properties and/or may not provide sufficient data for study analyses, 
and (3) the characterisation of statistical properties of the data that may be 
relevant to downstream analyses. The latter is needed to help inform deci-
sions involving data normalizations, transformations and analytical con-
siderations that revolve around missing data.  
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Based on both our own experience and emerging literature published in 
this area (Barnes, 2020; Monnerie et al., 2020), it is clear that approaches 
for post-acquisition, pre-analytical data processing are varied both within 
and across analytical platforms. The general lack of methodological stand-
ardisation makes combining and comparing data and results across studies 
difficult, thus impairing cross-study inference. Into this context, papers 
and researchers have recently called for standardisation and transparency 
in reporting of metabolomic studies (van Roekel et al., 2019; Long et al., 
2020; Karaman, 2017; Begou et al., 2018; Playdon et al., 2019). To some 
extent, this situation mirrors that seen in the field of genomics a decade 
ago; here, researchers responded with the development of standard proto-
cols supported by open-source software tools such as EasyQC (Winkler et 
al., 2014). Under the assumption that, as in genomics, collaboration and 
independent replication will be key in the utilisation of metabolomics data 
going forward, it is important that this field progresses in optimising work-
flows and recognising where consistency can be achieved. In addition, 
whilst useful contributions have been made to facilitate improved trans-
parency in the reporting of pre-analytical data processing (Considine and 
Salek, 2019), it is clear that much needs to be done in this area (Considine 
et al., 2018).  
 
This paper introduces metaboprep, an R package developed to help those 
working with curated metabolomics data to achieve transparent and in-
formed processing of their study sample data prior to statistical analysis. 
The package provides a detailed summary of the data, highlighting prop-
erties relevant both to setting sample/metabolite filtering criteria and to 
downstream analytical choices. metaboprep can process any flat text data 
file containing curated metabolomics data with minimal formatting. In ad-
dition, the metaboprep package is currently able to process data as sup-
plied by two of the main biotech companies operating in this sector – 1H-
NMR data from Nightingale Health© (Helsinki, Finland) and ultra-high-
performance liquid chromatography-tandem mass spectrometry (UPLC-
MS/MS) data from Metabolon (Research Triangle Park, NC, USA). We 
demonstrate the use of metaboprep using the Born in Bradford (BiB) co-
hort, including 1,000 pregnant women with UPLC-MS/MS data (Metabo-
lon), and The Avon Longitudinal Study of Parents and Children 
(ALSPAC), a birth cohort with 3,361 samples collected during early adult-
hood and analysed by NMR (Nightingale Health). 

2 Materials and Methods 
2.1 Overview 
Metaboprep is an R package designed to standardise the steps involved in 
preparing population level metabolomics data sets for statistical analysis. 
It was written using R (version 3.6.0) (R Core Team, 2019), is dependent 
upon R version 3.4.0 or greater, and is available on GitHub 
(https://github.com/MRCIEU/metaboprep). A README is available on 
the metaboprep GitHub page that provides detailed instructions for run-
ning the metaboprep pipeline, as well as a Wiki page with details of the 
pipeline itself (Supplementary Data 1). All analyses performed in this 
manuscript used R (version ≥ 3.4.0); code is available on the repository 
providing a walk-through of the metaboprep package. There is also an ex-
ample data set provided on the GitHub repository for users to test and ex-
plore the utility of metaboprep. Data used here is available upon applica-
tion from BiB and ALSPAC. 
 
2.2 Data processing and filtering pipeline 
When run in its entirety, the metaboprep package performs six main ac-
tions: (1) extracts and processes (un)targeted metabolite data from source 
files, saving datasets in a standard tab-delimited format for use elsewhere; 

(2) performs, when necessary, median normalisation across (platform) 
batches; (3) generates summary statistics from the initial raw data set 
which are exported to a standard tab-delimited text file; (4) performs sam-
ple and metabolite filtering according to user-defined thresholds and using 
a standard pipeline; (5) repeats the generation of summary statistics but on 
the filtered data set; (6) and finally summarises the data in an HTML re-
port while also reporting on the influence of available batch variables. An 
overview of the workflow is shown in Figure 1 and a brief description 
given below. A log file is generated detailing each step taken in the pipe-
line including the filtering thresholds defined by the user and the number 
of samples or metabolites excluded at each step.  

 
Fig. 1. Brief description of the metaboprep pipeline. Along the top, the five primary 
steps the pipeline takes are outlined. The column on left provides an outline of the steps 
for the generation of summary statistics while the right provides an outline of the steps 
taken for sample and metabolite filtering. Common abbreviations used are: `dme` for de-
rived measures excluded; SD for standard deviations; `X` which denotes a threshold vari-
able that is defined by the user in the pipeline parameter file; PC for principal compo-
nents. 

 
2.3 Running the R package 
The package can be run via the command line using a parameter file but 
can also be run in an interactive mode using the functions built within. The 
parameter file contains key information for running the pipeline including 
the project name, the path to the source data directory, the input file names, 
the platform the metabolomics data is derived from and the preferred fil-
tering thresholds. Thresholds and parameters to be provided include: (1) 
the fraction of metabolite missingness retained, (2) the fraction of sample 
missingness retained, (3) the total sum abundance (TSA) threshold in 
standard deviations from the mean, (4) the outlier value threshold in inter-
quartile range unit distance from the median for each metabolite, (5) a 
character indicator on how to treat outliers in the principal component 
(PC) analyses, (6) a hierarchical clustering dendrogram tree cutting height 
in absolute Spearman’s rho units for data reduction prior to generation of 
PCs, (7) the PC threshold for identifying outlying samples in standard de-
viations from the mean, (8) a binary character declaring if derived varia-
bles should be excluded (TRUE or FALSE), and (9) a character declaring 
a column name that should be used to perform batch normalisations. 
 
2.4 Data Extraction 
Input data files can be in one of two possible formats, (1) excel spread-
sheets as supplied by Nightingale Health or Metabolon; (2) appropriately 
formatted tab-delimited text files (examples of these can be found on the 
GitHub repository). When an excel spreadsheet is provided as the source 
data, the package extracts (a) the (semi-) quantified metabolite data, (b) 
the associated sample metadata (e.g., technical batch information, sample 
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identifiers) and (c) the associated metabolite metadata (e.g., metabolite 
class/pathway, HMDB identifier) and writes each ‘raw’ (i.e., unaltered) 
data set to its own tab-delimited text file. Alternatively, the user can pro-
vide their (a) metabolite data, (b) optional sample metadata, and (c) op-
tional metabolite metadata, as appropriately formatted text files (.csv or 
.txt). The text files can contain metabolite abundance data from any plat-
form. If samples are run in batches, this information can be provided in 
the pre-formatted text files or in commercial excel spreadsheets. Special 
considerations are made for certain metabolites when the data is derived 
from the commercial platforms of Metabolon or Nightingale Health. In the 
case of Metabolon data, metabolites labelled as “xenobiotics” are ex-
cluded from calculations relating to sample missingness and do not follow 
the same processing pipeline as other metabolites. In the case of Nightin-
gale Health data, many of the data summary and filtering steps are carried 
out having (optionally) excluded derived measures, which include several 
measures expressed as percentages or ratios.  
 
2.5 Data summary 
A data summary is generated twice by the package. Once on the raw, un-
altered dataset or where necessary on the normalised dataset and again on 
the filtered (analysis ready) dataset. The summary includes a series of 
sample- and metabolite-based summary statistics. We use ‘sample’ here 
as a generic term that in many studies will mean the same as participant 
as analyses to generate metabolite data will have been run on one sample 
per participant. However, as some studies will have repeat samples drawn 
over time from the same participants, sample, as used here means each 
individual sample on which metabolites are measured. Sample-based sum-
mary statistics include (1) an estimate of sample missingness, calculated 
as the proportion of missing (‘NA’) data and (2) total sum abundance 
(TSA; often referred to as total peak area (TPA) for those familiar with 
mass spectrometry data), calculated for each sample by summing stand-
ardised (z-transformed and re-centred to the absolute value of the data sets 
minimum) values across all metabolites. Metabolite TSA provides an es-
timate of the total (measured) metabolite concentration in the sample. 
Sample missingness is estimated using (a) all metabolites and again (b) to 
the exclusion of any defined list of metabolites, such as xenobiotics or 
derived measures. Sample TSA is estimated using (a) all metabolites and 
(b) again using only those metabolites with no missing data. Additionally, 
an outlier occurrence count, or an integer count of the total number of 
times an individual’s metabolite value is more than five interquartile range 
unit distances from the median metabolite concentration, is calculated and 
provided in the sample-based summary statistics file. Finally, subsequent 
to the estimation of metabolite summary statistics and the identification of 
representative metabolites, sample PCs are estimated, and the top 10 PCs 
provided in the summary data. This latter step is detailed below. Metabo-
lite-based summary statistics include metabolite missingness, sample size 
(n) or the count of individuals without missing (`NA`) data, and numerous 
other descriptive statistics including mean, standard deviation, skew, and 
the coefficient of variance. A direct measure of each metabolites’ data dis-
tribution conformity to normality is provided by an estimate of Shapiro’s 
W-statistic, provided for both untransformed and log10 transformed data 
distributions. In addition, for each metabolite, a count of the number of 
outlying samples is provided as a further indication of skewness.  
 
For the purposes of defining correlation structure and identifying a subset 
of approximately independent or ‘representative’ metabolites from the 
complete set of metabolites, a data reduction step is performed. These 
analyses provide users with a count of the effective number of metabolites 
in their data set, which could be used for multiple testing correction, as 

well as a list of ‘representative’ metabolites. In the case of Nightingale 
Health NMR data or other data containing ratios of metabolites, derived 
measures can be excluded from this step. Further, data are restricted to 
common metabolites such that only those that are (a) variable and (b) have 
less than or equal to 20% missingness are included. A dendrogram is then 
constructed (‘stats’ package hclust() function, with method ‘complete’) 
based on a Spearman’s rho distance matrix (1-|Spearman’s rho|). A set of 
‘k’ clusters (groups of similar metabolites) are identified based on a user-
defined tree cut height (default 0.5 and equivalent to a Spearman’s rho of 
0.5), using the function cutree() from the ‘stats’ package. For each ‘k’ 
cluster the metabolite with the least missingness is then tagged as the rep-
resentative metabolite for that cluster. Representative metabolites are 
identified by 1’s in the metabolite summary statistics file in the column 
“independent_features_binary”. 
 
A principal component analysis (PCA) is conducted to evaluate inter-in-
dividual variability in metabolomic profiles. This sample-based analysis 
uses only the reduced set of approximately independent ‘representative’ 
metabolites, as identified in the correlation analysis described above. 
Strictly for the purposes of deriving the PCs, missing values are imputed 
to the median and data then standardised (z-transformed) so that the mean 
equals zero and the standard deviation equals one for each metabolite. The 
variance explained for each PC is extracted and an estimate of the number 
of PCs (n) to retain is estimated, by both the acceleration factor and paral-
lel analysis with the function nScree() from the ‘nFactors’ R package. The 
estimate of n derived by the acceleration factor, with a defined minimum 
of two, is used to identify sample outliers, i.e., those that deviate too far 
from the mean on those n PCs. By default, the outlier threshold is defined 
as five standard deviations from the mean, but this can be set by the user. 
In addition, if there is a concern that a few outlying metabolite values for 
a sample are causing that sample to be a PC outlier, users can choose - for 
the purposes of the PCA – to rerun the analysis with outliers converted to 
NAs or winsorized. Choosing the former option will result in the subse-
quent imputation of these values to the median (along with other missing 
values, as described above). 
 
The summary statistics described above are written to two tab-delimited 
text files, one for samples and one for metabolites, and additionally once 
for the raw dataset and once for the filtered dataset. In addition, key sta-
tistics are reported (including graphically) in an HTML report (see below).   
 
2.6 Data filtering 
The next step in the pipeline is to derive a version of the metabolomics 
dataset which has undergone sample and metabolite filtering according to 
the user specifications provided in the parameter file (flow diagram in 
Supplementary Figure S1). The first step is to remove, first samples, and 
then metabolites with extremely high rates of missingness (>=80%). In the 
second step, missingness is recalculated and sample and metabolite exclu-
sions are made according to the user-defined thresholds for missingness 
with a default suggested value of 0.2 or 20%. Sample exclusions are then 
made on TSA, using only metabolites with complete data, according to 
user-defined thresholds with a suggested default of five standard devia-
tions from the mean. Then, using all remaining samples and metabolites, 
the clustering and sample PCA steps described previously (as part of the 
data summary) are repeated. Results of the PCA are used to identify sam-
ple outliers for exclusion, defined as those that lie more than the user-de-
fined threshold from the mean on n PCs where n is defined by the accel-
eration factor (as described previously). The default suggested threshold 
value is five standard deviations from the mean. This post-filtering version 
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of the metabolite data is then passed back through the data summary pro-
cedure described above and finally exported in flat text format.  
 
The most appropriate thresholds for sample and feature missingness will 
depend on both the total sample size and the intended analysis and we 
recommend users carefully consider the thresholds they set. Additionally, 
sample metabolome profile exclusions (TSA and PCA) are set at five 
standard deviations from the mean, as we have observed this to be a rea-
sonable threshold to exclude samples that perform poorly, when sampling 
a random, presumptively healthy population. If sampling something like a 
case-control study design where extremes are perhaps expected or indeed 
a study sample with known substructure (e.g., different sample types) it 
would be advisable to evaluate the distributions presented in the HTML 
report (see below) and consider modifying these parameters.  
 
2.7 HTML report 
The standardised HTML report (designed for inclusion in papers in order 
to facilitate data description and hence transparency) includes the project 
name, the platform, a workflow image, data summaries, and analysis of 
batch effects on key properties of the data – missingness and TSA. The 
data summary includes (1) an overview of the raw dataset: (1a) a visual of 
missingness in the data matrix, (1b) samples and metabolite missingness 
distributions; (2) an overview of the filtering steps: (2a) an exclusion sum-
mary, (2b) metabolite data reduction summary, and (2c) a PC plot illus-
trating sample structure and identifying potential sample outliers; (3) a 
summary of the filtered dataset: (3a) count of remaining samples and me-
tabolites, (3b) distributions for sample missingness, metabolite missing-
ness, and TSA, (3c) a metabolite clustering dendrogram highlighting the 
representative metabolites, (3d) a metabolite data reduction summary, (3e) 
a PC plot of sample structure, (3f) histograms for Shapiro W-statistic es-
timates across untransformed and log10 transformed metabolite abun-
dances, and (3g) a summary of sample and metabolite outliers. The report 
also includes an evaluation of the relationship between key sample prop-
erties (missingness rates and TSA) and potential batch variables, as pro-
vided by the user. Such variables might include sample storage box iden-
tifier, run day, super- and sub-pathway, sampling data and time, and MS 
run mode. How these batch variables associate with missingness and TSA 
is illustrated in a series of boxplots that include an estimate of the variance 
explained by the batch, derived from a univariate analysis of variance and 
estimation of eta-squared using sums of squares. In addition, all the iden-
tified batch variables are placed in a type II multivariate analysis of vari-
ance and again the variance explained by each is summarised by the eta-
squared statistic.  
 
A power analysis for continuous and binary traits is provided based on the 
sample size of the dataset and using functions from the ‘pwr’ R package. 
If researchers are interested in the relationship between metabolites and a 
continuous trait (for example, weight), power estimates are provided as-
suming a general linear model, whereas for the case of binary analyses 
(e.g., case/control) calculations are based on a two-sample t-test (allowing 
unequal sample sizes). The aim of these power calculations is to demon-
strate the loss of power that can be expected because of varying degrees 
of missing data (i.e., as actual sample size decreases). Finally, the last step 
of the metaboprep pipeline is to write a PDF that contains, for each me-
tabolite, a scatter plot identifying outlying data points and a histogram of 
the same values and a table that includes selected summary statistics. To-
gether, the HTML and the PDF provide a quick overview and reference 
for the dataset. 
 
 

2.8 Example datasets 
2.8.1 Born in Bradford – Mass Spectrometry 
The Born in Bradford (BiB; https://borninbradford.nhs.uk/) study is a pop-
ulation-based prospective birth cohort based in Bradford, United King-
dom. Full details of study methodology have been reported previously 
(Wright et al., 2013). Ethical approval for the study was granted by the 
Bradford National Health Service Research Ethics Committee (ref 
06/Q1202/48), and all participants gave written informed consent. For the 
data used in this example, women of White British (N=500) or Pakistani 
(N=500) ancestry were selected to have samples analysed on the basis of 
their having complete data on a set of pre-specified variables, including 
valid pregnancy fasting and post-load glucose measures, and both them 
and their index child having genome-wide data available (as described 
previously (Taylor et al., 2021) and in Supplementary Figure S2). Sam-
ples were collected during pregnancy at around 24-28 weeks’ gestation. 
Participant characteristics are shown in Supplementary Table S1. 
 
The untargeted metabolomics analysis of over 1,000 metabolites was per-
formed on these samples at Metabolon, Inc. (Durham, North Carolina, 
USA) on a platform consisting of four independent ultra-high-perfor-
mance liquid chromatography-tandem mass spectrometry (UPLC-
MS/MS) runs. Detailed descriptions of the platform can be found in Sup-
plementary Methods and in published work (DeHaven et al., 2010; 
Evans et al., 2009; Taylor et al., 2021). The resulting datasets comprised 
a total of 1,369 metabolites, of which 1,000 were of known identity 
(named biochemicals) at the time of analysis. This dataset will be referred 
to throughout as BiB_MS-1. 
 
2.8.2 Avon Longitudinal Study of Parents and Children - NMR 
The Avon Longitudinal Study of Parents and Children (ALSPAC; 
http://www.bristol.ac.uk/alspac/) is a prospective birth cohort study, based 
in the former region of Avon, United Kingdom. Detailed information 
about the methods and procedures of ALSPAC can be found in Supple-
mentary Methods and in published work (Fraser et al., 2013; Boyd et al., 
2013; Northstone et al., 2019). Ethical approval for the study was obtained 
from the ALSPAC Ethics and Law Committee and the Local Research 
Ethics Committees (a full list of all ethical approvals relating to ALSPAC 
are available online: http://www.bristol.ac.uk/alspac/researchers/re-
search-ethics/). Specifically ethical approval for the clinic in which sam-
ples were collected for this work was granted by the National Research 
Ethics Service Committee South West – Frenchay (14/SW/1173). Consent 
for biological samples has been collected in accordance with the Human 
Tissue Act (2004). 
 
NMR-derived metabolomics data were derived for 3,361 EDTA-
plasma/serum samples collected from 3,277 unique individuals during the 
age 24 years clinic visit. Participant characteristics are shown in Supple-
mentary Table S2. Quantification of selected circulating lipids, fatty ac-
ids, and metabolites was performed using a 1D proton (1H) NMR spec-
troscopy-based platform from Nightingale Health (Helsinki, Finland). 
Spectra were acquired using standardised parameters using two NMR ex-
periments or ‘molecular windows’ to characterise lipoproteins, low mo-
lecular weight metabolites and lipids. Further information relating to the 
data derivation can be found in Supplementary Methods and has been 
described previously (Inouye et al., 2010; Soininen et al., 2015, 2009). 
Raw metabolomics data pre-processing and quantification were as previ-
ously described (Soininen et al., 2015; Inouye et al., 2010; Soininen et al., 
2009). The resulting dataset comprised a total of 225 metabolites (includ-
ing 78 derived measures); this dataset will be referred to throughout  
as ALSPAC_F24. 
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Table 1. Summary statistics for the initial, raw (pre-filtered) BiB_MS-1 
and ALSPAC_F24 datasets. 

 
The table provides details on the platform, sample size, sample, and metabolite 
missingness, total sum abundance (TSA) for samples, and outlier counts, the per-
cent of metabolites that may be considered normal distributed and an estimate of 
the number of representative metabolites in the data set. *calculated after the exclu-
sion of derived variables in the Nightingale Health dataset and of xenobiotics in the 
Metabolon dataset. 

3 Results 
We used data from two established population-based cohorts (BiB_MS-1 
and ALSPAC_F24) and two different analytical platforms (Metabolon and 
Nightingale Health) to demonstrate the utility of metaboprep. The sum-
mary HTML reports generated for each dataset can be found as Supple-
mentary Data 2 and 3, respectively. The single core machine run times for 
the datasets were 3 and 10 minutes for ALSPAC_F24 and BiB_MS-1, re-
spectively. An overview of each dataset based on the summary statistics 
generated by metaboprep prior to filtering are shown in Table 1. The 
choice of user-defined thresholds used in our analyses and the resulting 
exclusions made are summarised in Table 2. Based on the thresholds used 
here, 15 and 3 samples were excluded from BiB_MS-1 and 
ALSPAC_F24, respectively. No metabolites were excluded from 
ALSPAC_F24 whilst metabolite missingness criteria resulted in 24% of 
metabolites being excluded from BiB_MS-1. An example summary figure 
of the filtered data, which can be found in each HTML report, can be seen 
in Figure 2. Here, the BiB Metabolon data set illustrates unexpected and 
pronounced sample sub-structure made obvious by the metaboprep steps 
(Figure 2) (see Discussion). 

4 Discussion 
In this paper, we have presented metaboprep, an R package for use by 
researchers working with curated, high quality, metabolomics data and de-
veloped in the context of population health research. The package enables 
metabolomics data from different platforms to be extracted, processed, 
summarised and prepared for subsequent statistical analysis within a 
standardised and reproducible workflow. This work was motivated by the 
need for increased consistency and transparency in the pre-analytical pro-
cessing of data across cohorts and studies, but also acknowledges that a 
‘one size fits all’ approach is unlikely to be feasible given the range of 

study designs being employed. Metabolomics is a growing field within 
population sciences, with application to a vast array of hypotheses. As 
such, research groups have differing approaches to data preparation, 
which can make results hard to interpret and compare across studies. It is 
important to understand the properties of metabolomics data in order that 
suitable pre-analytical processing steps can be performed, and down-
stream analytical results interpreted appropriately. When combined with 
the ongoing efforts of individuals (Zhang et al., 2020) and organisations 
such as the Metabolomics Quality Assurance and Quality Control Consor-
tium (mQACC) (Beger et al., 2019; Evans et al., 2020) to improve the 
quality of data being delivered to researchers by laboratories, we hope the 
use of transparent processing pipelines, such as metaboprep, will drive up 
the quality and transparency of metabolomics research in epidemiology. 
 

 
Fig. 2. Summary figure found in each HTML report for the filtered data set. There 
are seven figures in this BiB data set summary figure. (1) The distribution of sample miss-
ingness. (2) The distribution for feature missingness. (3) The distribution for total sum 
abundance, at complete features only. (4) A hierarchical clustering dendrogram based on 
absolute Spearman rho distances (1-rho) and cut at a tree cut height (red horizontal line) 
defined by the user. Blue branches on the dendrogram denote the features specified as 
‘representative’ features used in the PCA. (5) A table of the number of metabolites used at 
each step of the dendrogram and PCA analysis. (6) A scree plot of the variance explained 
for each principal component also identifying the number PCs estimated to be informative 
(vertical lines) by the Cattel's Scree Test acceleration factor (red, n = 2) and Parallel Anal-
ysis (green, n = 49). (7) A PC plot of the top 2 principal components for each sample. The 
number of metabolites used in the analysis are again indicated in the title of the PC plot. 
Individuals in the PC plot were clustered into 4 kmeans (k) clusters, using data from the 
top two PCs. The kmeans clustering and color coding is strictly there to help provide 
some visualization of the major axes of variation in the sample population(s). 

 
In the proposed pipeline, considerations were made for two specific con-
ditions within two platforms currently available. It is difficult to mitigate 
against future developments, but the metaboprep approach is able to ac-
commodate specific flags as they appear. In this case, xenobiotics – com-
mon in the Metabolon dataset, and derived variables – common in the 
Nightingale Health dataset. Xenobiotics are exogenous metabolites (i.e., 
not produced by the body), such as drug compounds and a quantified 
measure indicates presence of the exogenous compound. Consequently, 

Summary statistic BiB_MS-1 ALSPAC_F24 

Platform Metabolon Nightingale Health 
No. of samples 1000 3361 

No. of metabolites 1369 225 
Sample statistics     
% sample missingness*  
(min, median, max) 

11.85, 18.45, 26.81 0.00, 0.00, 12.24 

Total sum abundance at complete metabo-
lites (min, median, max) 

1.85, 2.35, 2.98 
(x103) 

3.99, 4.31, 4.75 
(x103) 

Count of outlying data points per sample  
(min, median, max) 0, 5, 105 0, 0, 48 

Metabolite statistics     
% metabolite missingness (min, median, 
max) 0, 2.6, 100 0.00, 0.00, 1.71 

Count of outlying data points per metabo-
lite  
(min, median, max) 

0, 2, 99 0, 2, 344 

% with W statistic >=0.95   15.49 42.22 
% whose W-statistic decreases following 
log10 transformation 

9.2 44.89 

No. of representative metabolites 512 24 
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they can have very high rates of missingness, while still being critically 
informative to a study as the majority with missing data will be a true ‘no’ 
for exposure to the exogenous compound. For this reason, we do not ex-
clude xenobiotics on the basis of high missingness but would advocate 
affording them special consideration in any downstream statistical anal-
yses. For example, these metabolites might best be evaluated within a 
presence/absence framework rather than by analysis of relative abun-
dance. In data from Nightingale Health, derived variables are metabolite 
traits that are a summary of two or more other metabolites (possibly al-
ready represented in the dataset) or ratios of two or more metabolites. 
These variables can introduce bias in estimates of sample missingness 
(where a single metabolite is missing, any derived measures based on that 
metabolite will also be missing) and may not be appropriate to retain when 
identifying a set of representative metabolites for the data set. We allow 
the user to include or exclude the derived variables in the pipeline at their 
discretion.  

Table 2. Results of sample and metabolite filtering based on default ex-
clusion thresholds 

Filtering step Exclusion 
threshold 

BiB_MS-1 ALSPAC_F24 

Raw dataset  
(pre-filtering) 

 1000 samples 
1369 metabolites 

3361 samples 
225 metabolites 

1. extreme sample  
missingnessa 

>=80% 0 0 

2. extreme metabo-
lite  
missingnessa 

>=80% 96 0 

3. sample  
missingnessa* 

>=20% 3 0 

4. metabolite  
missingnessa* 

>=20% 236 0 

5. sample total sum 
abundanceb* 

>5SD 1 3 

7. PCA outliersc,d* >5SD 11 0 
Final dataset  
(post-filtering) 

 985 samples 
1037 metabolites 

3358 samples 
225 metabolites 

 
PCA, principal component analysis; SD, standard deviations. a Calculated after ex-
cluding metabolites in the xenobiotic class from Metabolon data and derived 
measures from Nightingale Health data; b derived from complete metabolites only; 
C excluding metabolites with >20% missingness; d using the representative metabo-
lites only and excluding on the number of PCs determined by the acceleration fac-
tor with a minimum of two PCs; *user defined threshold. Rows in blue are sample 
filtering steps. 
 
One of the most commonly implemented pre-analytical steps is filtering 
based on missingness. Missingness is defined as the proportion of data 
with no value and can vary hugely within a dataset (0-99.9% missing). 
Typically, researchers filter metabolites on missingness to remove metab-
olites that exhibit evidence of technical error, or where the proportion of 
missingness introduces downstream analytical difficulties. Conversely, 
the filtering of samples based on missingness helps identify samples that 
may have been of poor quality or mishandled before or during the metab-
olomic assay(s). However, without external data the nature of the miss-
ingness, and the extent to which removal of samples or metabolites intro-
duces more or less bias than not excluding these (and possibly imputing 
missing data) is unclear (Hughes et al., 2019) and will vary by sample size 
and the intended main research questions. Deciding upon appropriate 
missingness thresholds can be critical to a study and some caution and 
consideration is warranted. This results from the variety of reasons for 
missing data in this context – e.g. the technology, signal to noise ratios, 
signal intensity, error (Do et al., 2018) (for further discussion on missing-
ness see Supplementary Discussion). Crucially, missingness might also 
represent true absence and thus be informative for some biological 

hypotheses, for example, differential missingness by class (e.g., case/con-
trol status or sex). For this reason, our workflow allows uses to define the 
thresholds they want to apply for missing samples and metabolites, the 
thresholds for these two can be different and either or both can be zero (no 
exclusions based on missing data). This allows researchers to repeat the 
workflow with different thresholds to explore the extent that these influ-
ence main analysis results.   
 
TSA is a sample-based metric estimated for the purposes of identifying 
samples with broad quality issues, such as handling errors (i.e., differing 
concentrations of sample) and is calculated by summing values across all 
metabolites. This metric is, by definition, correlated with missingness 
rates, so is estimated a second time here using only complete metabolites 
with this latter metric being used in the exclusion step. In order to guard 
against selection bias, the implementation of this exclusion step should be 
considered carefully and within the context of the study design. There may 
be situations whereby a high (or low) TSA is indicative of a true biological 
state, rather than of any technical issue. For example, if the coverage of 
the metabolomics platform is skewed towards a class of metabolite, e.g., 
lipids, then certain characteristics of individuals in the study sample may 
be correlated with the TSA measure, e.g., body fat percentage. Alterna-
tively, if a study design were to include data from various tissues, then the 
TSA distribution may be bimodal and basing exclusions on standard de-
viations from the mean may be difficult if not inappropriate. For these 
reasons, the TSA distribution is provided in the HTML report for assess-
ment by the user who may then choose to explore the sensitivity of down-
stream analyses to the application of different thresholds.  
 
The proposed workflow provides information relating to structure within 
the study sample. This is done by implementation of sample-based PCA 
with summary data provided in the summary statistic files and correspond-
ing plots for visual inspection. Only metabolites with limited missingness 
(<20%) are included in these analyses to avoid the need to implement a 
probabilistic PCA whilst limiting the introduction of error by the simpli-
fied (median-based) imputation – an imputation used strictly for deriving 
PCs. Furthermore, data reduction to remove highly correlated metabolites 
is considered necessary to ensure that the estimated PCs are not driven by 
any common, highly correlated metabolite classes, pathways, or clusters. 
Taking this approach, the PCs should provide an equally represented, 
broad perspective of variation in the data. If a sample is mishandled, the 
assumption would be that all assayed variables would be perturbed, and 
this would be evident in the PCA. However, it is possible that a few ex-
treme values can push a sample to be an outlier in PC analyses. As such, 
users can have outlying values turned into NAs or winsorized to the max-
imum of all remaining values prior to the PCA to insure they are not re-
moving a sample because of a few errant observations. Outlying values 
that are optionally turned into NAs or winsorized are not an output of 
metaboprep, they are merely internal steps taken for the estimation of PCs.  
Just as discussed with missingness and TSA metrics, proper consideration 
for thresholds is important here too. Outliers may be biologically relevant 
and gross structure may be present if multiple tissues, populations, or spe-
cies are sampled. If that is the case, just as for TSA, then thresholding on 
standard deviations from the mean may be a difficult if not inappropriate 
filtering step. However, if you are anticipating a homogenous sample but 
observe clustering (as in Figure 2 PC plot), then you should attempt to 
identify the source of the clustering and potentially re-consider your PCA 
sample filtering threshold. 
 
Three pre-processing steps that the metaboprep pipeline does not, cur-
rently, incorporate is modification of outlying data points (winsorization 
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or truncation), data transformation and imputation. Each of these topics 
bring with them their own particular issues and considerations that are be-
yond the scope of the current package. We will however note that while 
log transformations appear to be commonly applied to metabolomics data 
sets – 64% of COMETS (The Consortium of METabolomics Studies) re-
sponding cohorts claim to routinely log transform their data (Playdon et 
al., 2019) – we routinely observe that this does not always generate an 
approximate normal distribution and at times can make data distributions 
less normal. Shapiro W-statistics (a metric for normality) are provided 
alongside outlier flags in the summary statistic file for metabolites and the 
distribution of W-statistics for the raw and log-transformed data is pro-
vided in the PDF report. We encourage use of this information to aid de-
cisions regarding the most appropriate data transformation(s), given the 
intended statistical analyses. These considerations should also include the 
research question, including whether the metabolites are exposures or out-
comes, and the planned main analyses.  
 
To date, the metaboprep package has only been used to process H1 NMR 
and LC-MS metabolomics data and Olink (proximity extension assays) 
proteomics data derived from serum or plasma. Whilst we do not antici-
pate any issues in processing data derived from other platforms (GC-MS) 
or sources (urine, tissue), users should consider carefully whether the as-
sumptions we make are appropriate in these scenarios. The same is true if 
the package is used for processing small samples (n<20), where steps such 
as estimating means, medians, correlation coefficients and data quality 
metrics may not perform optimally due to decreased precision. We reiter-
ate that the workflow presented here does have its compromises. As high-
lighted above, data preparation does not end with the running of this work-
flow but with the careful evaluation of the data reports provided by it. Go-
ing forward, metaboprep will be developed to address evolving needs, 
starting with additional functionality to enable direct read-in of the new 
(since 2021) format datafiles supplied by Metabolon. Perhaps unsurpris-
ingly, given the rapid increase in use of metabolomics data in epidemiol-
ogy, parallel efforts are being made to improve analytical efficiency, such 
as the recent release of the R package maplet (Metabolomics Analysis 
PipeLinE Toolbox) (Chetnik et al., 2021), and to construct pipelines for 
combining metabolomic datasets across cohorts (Viallon et al., 2021); any 
future developments of metaboprep will necessarily be made within this 
context. Our package does not provide any tools for statistical analysis or 
downstream interpretation, and therefore, we anticipate that metaboprep 
will be used in conjunction with complementary tools such as MetaboAn-
alyst (Pang et al., 2021), which provides a broader set of functions to aid 
raw MS spectra processing as well as post-analytical biomarker analysis. 
 
In conclusion, in the interests of open science and to encourage collabora-
tion we present a first release of metaboprep, an R package that we hope 
to develop further in response to feedback from the community. In this 
paper, we have avoided making definitive recommendations regarding 
thresholds that should be used since these should be chosen in the context 
of the specific study design and research question. We encourage those 
working with curated metabolomics data to use our package to enhance 
their understanding of the characteristics of their metabolomics data, its 
structure and how these properties could impact on downstream statistical 
analyses and importantly, to report their findings alongside the results of 
their main analyses.  
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