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Abstract
This paper introduces the pipeline to extend the largest dataset in egocentric vision, EPIC-KITCHENS. The effort culminates
in EPIC-KITCHENS-100, a collection of 100 hours, 20M frames, 90K actions in 700 variable-length videos, capturing long-
term unscripted activities in 45 environments, using head-mounted cameras. Compared to its previous version (Damen in
Scaling egocentric vision: ECCV, 2018), EPIC-KITCHENS-100 has been annotated using a novel pipeline that allows denser
(54% more actions per minute) and more complete annotations of fine-grained actions (+128% more action segments). This
collection enables new challenges such as action detection and evaluating the “test of time”—i.e. whether models trained
on data collected in 2018 can generalise to new footage collected two years later. The dataset is aligned with 6 challenges:
action recognition (full and weak supervision), action detection, action anticipation, cross-modal retrieval (from captions), as
well as unsupervised domain adaptation for action recognition. For each challenge, we define the task, provide baselines and
evaluation metrics.

Keywords Video dataset · Egocentric vision · First-person vision · Action understanding · Multi-benchmark large-scale
dataset · Annotation quality
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1 Introduction and Related Datasets

Since the dawn of machine learning for computer vision,
datasets have been curated to train models, for single tasks
from classification (Deng et al. 2009; Carreira and Zisserman
2017) to detection (Lin et al. 2014;Gu et al. 2018), captioning
(Karpathy and Fei-Fei 2015; Xu et al. 2016) and segmenta-
tion (Zhou et al. 2017; Perazzi et al. 2016). Increasingly,
datasets have been used for novel tasks, through pre-training
(He et al. 2019;Mettes et al. 2016), self-supervision (Noroozi
and Favaro 2016; Vondrick et al. 2018) or additional annota-
tions (Gupta andMalik 2016;Heilbron et al. 2018). However,
task adaptation demonstrates that models overfit to the data
and annotations (Zhai et al. 2019; Moltisanti et al. 2017).

Alternatively, one dataset can be enriched with multiple
annotations and tasks, aimed towards learning intermediate
representations through downstream and multi-task learn-
ing on the same input. This has been recently achieved for
autonomous driving (Zhou et al. 2019; Geiger et al. 2012;
Cordts et al. 2016; Neuhold et al. 2017; Yu et al. 2018;
Huang et al. 2018; Caesar et al. 2019; Yogamani et al. 2019)
and scene understanding (Zamir et al. 2018; Silberman et al.
2012). For example, Zamir et al. (2018) contains 26 tasks
ranging from edge detection to vanishing point estimation
and scene classification.

In comparison, the number of tasks proposed for action
and activity understanding datasets (Damen et al. 2018; Gu
et al. 2018; Heilbron et al. 2015; Rohrbach et al. 2015; Zhou
et al. 2017; Rohrbach et al. 2012) remainsmodest. Often, this
is limited by the source of videos in these datasets. YouTube
(Heilbron et al. 2015; Zhou et al. 2017) and movies (Gu et al.
2018; Rohrbach et al. 2015) typically contain curated videos,
with edited shots. However, attempts to define multiple chal-
lenges for these datasets have been exemplary. ActivityNet
(Heilbron et al. 2015) is the most popular video challenge,
evaluated for localisation, dense captioning (Krishna et al.
2017) and object detection (Zhou et al. 2019). Similarly, AVA
(Gu et al. 2018) has challenges on action localisation and
active speaker detection (Roth et al. 2019).

Several leading egocentric datasets (Pirsiavash and
Ramanan 2012; Damen et al. 2014; Fathi et al. 2012;
De La Torre et al. 2008; Li et al. 2015) showcased the
unique perspective and potential of first-person views for
action recognition, particularly hand-object interactions. In
2018, the introduction of the largest-scale dataset EPIC-
KITCHENS (Damen et al. 2018) has transformed egocentric
vision, not only due to its size, but also the unscripted nature
of its collection and the scalable nature of the collection
pipeline. In this paper, we present EPIC-KITCHENS-100,
a substantial extension which brings the total footage to 100
hours, capturing diverse unscripted and unedited object inter-

actions in people’s kitchens.1 As shown in Fig. 1, the actions
capture hand object interactions with everyday objects in
participants’ kitchens. The unscripted nature of the dataset
results in naturally unbalanced data, with novel composi-
tions of actions in new environments. While challenging,
the dataset is domain-specific (i.e. kitchen-based activities),
offering opportunities for engaging domain knowledge. We
offer two-level annotations for nouns and verbs in interac-
tions (e.g. “carrot/courgette → vegetable”, “put/throw/drop
→ leave”) to utilise such priors.

Importantly, we propose a refined annotation pipeline that
results in denser and more complete annotations of actions
in untrimmed videos. This pipeline enables various tasks
on the same dataset; we demonstrate six in Sect. 4, with
baselines and evaluation metrics that focus on understanding
fine-grained actions and offer benchmarks which can support
research into better modelling of video data.

2 Data Collection and Scalable Pipeline

In this section, we detail our collection and annotation effort.

DataCollectionWecollect additional footage as follows:we
contacted participants from EPIC-KITCHENS-55 to record
further footage. Of the 32 participants in (Damen et al. 2018),
16 subjects expressed interest in participating. Interestingly,
half of these (8 subjects) had moved homes over the past
two years. We also recruited 5 additional subjects, increas-
ing the total number of subjects and kitchen environments to
37 and 45 respectively. All participants were asked to col-
lect 2–4 days of their typical kitchen activities, as in (Damen
et al. 2018). We collect footage using a head mounted GoPro
Hero7 black. This is two generations newer than the cam-
era used in EPIC-KITCHENS-55, with a built-in feature for
HyperSmooth video stabilisation. Sample frames are shown
in Fig. 1, with selected frames of the same action in returning
and changing kitchens.

Annotation Pipeline An overview of the pipeline can be
seen in Fig. 2.

(a) Narrator Previously, for EPIC-KITCHENS-55, we used
a non-stop narration approach, where each participant nar-
rated their previous action while watching the future actions
in the running video. We found this resulted in increased
mental load and some actions being missed or misspoken. To
improve upon this approach, we take inspiration from Gygli
and Ferrari (2019), where objects in images are annotated
by pointing and speaking and propose temporal ‘pointing’
which we refer to as ‘pause-and-talk’. By allowing partic-

1 We will refer to the previous edition as EPIC-KITCHENS-55 in ref-
erence to the number of hours collected and annotated.
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Fig. 1 Left: Frames fromEPIC-KITCHENS-100 showcasing returning
participants with returning or changing kitchens (top) as well as new
participants (bottom). Right: Comparisons between recordings from [1]
and newly collected videos, with selected frames showcasing the same

action. Note object location differences in ‘returning’ kitchens (e.g.
microwave relocated). We show the same action performed in ‘chang-
ing’ kitchens (e.g. same participant preparing pizza or filtered coffee in
a new kitchen)

ipants to pause the video to speak as well as take breaks,
we hope to increase accuracy and density of actions, whilst
still allowing for a scalable narration approach. We built an
interface to facilitate collecting such narrations from the par-
ticipants (Fig. 2a), which includes a video player, synced
with audio recordings.2 Participants watch the video and
press a key to pause while they narrate the action in their
native language. As previously observed in Damen et al.
(2018), using the native language ensures the narrations use
the correct vocabulary in describing the actions. The video
restarts on key release. Note that the narrator still watches the
video once, maintaining the targeted scalability of the anno-
tation pipeline, but removes the mental overload of narrating
past actions while watching future actions. This allows for
short and overlapping actions to be captured in addition to
enabling error correction, as participants can listen to, delete
or re-record a narration. Fig. 2 shows an ongoing narration,
demonstrating density (ticks on the slider).

(b) Transcriber We perform transcription of audio nar-
rations, followed by translation (if applicable): first, we
transcribe all narrations and then translate the unique tran-
scriptions into English using a hired translator for correctness
and consistency. The approach we used to transcribe nar-
rations in Damen et al. (2018) had issues where workers
failed to understand some audio narrations due to the lack

2 Our tool is available at https://github.com/epic-kitchens/epic-
kitchens-100-narrator

of any visual information. To mitigate this, we build a
new transcriber interface containing three images sampled
around the timestamp (Fig. 2b). We find that images increase
worker agreement and alleviate issues with homonyms (e.g.
‘flower’ and ‘flour’). Each narration is transcribed into a
caption by 3 Amazon Mechanical Turk (AMT) workers
using a consensus of 2 or more workers. Transcriptions were
automatically rejected if the cosine similarity between the
Word2Vec (Mikolov et al. 2013) embeddings was lower than
an empirical threshold of 0.9. When AMT workers fail to
agree, the correct transcription was selected manually. Cap-
tions were then spell checked and substitutions were applied
from a curated list of problematic words (e.g. ‘hob’ and
‘hop’), further reducing errors.

(c) Parser We use spaCy (Honnibal and Montani 2017)
to parse the transcribed captions into verbs and nouns
(Fig. 2c) and manually group these into minimally overlap-
ping classes as we did in our previous work. We reworked
this to improve parsing of compound nouns and missing
verbs/nouns. Additionally, all annotations (including those
we collected previously from EPIC-KITCHENS-55) were
re-parsed using the updated pipeline. To cluster the verbs
and nouns, we adjust previous clusters to reduce ambiguities
between classes. For example, we group ‘brush’ and ‘sweep’
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Fig. 2 Annotation pipeline: a narrator, b transcriber, c temporal segment annotator and d dependency parser. Red arrows showAMT crowdsourcing
of annotations (Color figure online)

into one verb class, and introduce noun classes that did not
exist before such as ‘lentils’.

(d) Temporal Annotator We built an AMT interface for
labelling start/end times of action segments (Fig. 2d). Anno-
tators completed a quick tutorial on annotating temporal
bounds before they labelled 10 consecutive actions. To create
the bounds of the action segment, we use the same approach
as we did previously but increased the number of workers
from 4 to 5 to improve quality. Note that in the untrimmed
videos there might be consecutive instances of the same
action. These will be indicated by repeated narrations. We
thus request that annotators mark the temporal bounds of
each instance, prompted by the timestamp. This avoids the
merging of instances of the same action.

Quality Improvements Our EPIC-KITCHENS-100 scal-
able pipeline focuses on denser and more accurate anno-
tations. We compare different parts of the pipeline to our
previous one in Appendix B. Here, we show improved qual-
ity of annotations both numerically and through an example.

Figure 3 (left) compares the narration method we used in
Damen et al. (2018) to the new pipeline over several metrics.
Our ‘pause-and-talk’ narrator produces more densely anno-
tated videos; fewer gaps and more labelled frames; actions
are shorter; and exhibit higher overlap. The narration times-
tamps are also closer to the relevant action, with a higher
percentage being contained within the action and a smaller
distance to remaining timestamps outside the action.

Figure 3 (right) shows two video sections, of equal length,
annotated by the same participant, one using non-stop nar-
rations and the other with ‘pause-and-talk’. The number of
annotated actions increased from 20 to 56, with short actions
(such as ‘turn on tap’) often missed in the previous pipeline.
We demonstrate these through two examples. The first shows
amissed action of picking up a bag off the floor that had been
dropped, and the second shows a missed closing cupboard
action. In the sequence from ‘pause-and-talk’, all actions
including closing the cupboard were successfully narrated
thanks to our ‘pause-and-talk’ pipeline. By narrating more
actions, the start/end times also become more accurate as it
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Fig. 3 Comparing non-stop narrations (blue) to ‘pause-and-talk’ narrations (red). Right: timestamps (dots) and segments (bars) for two sample
sequences. ‘pause-and-talk’ captures all actions including short ones. Black frames depict missed actions (Color figure online)

Fig. 4 Frequency of verbs (top) and nouns (bottom), grouped by category. Each bar is linearly split: solid represents instances from newly-collected
videos and washed-out from original videos

is more obvious to the AMT annotators what each narration
refers to.

3 Statistics, Scalability and the Test of Time

EPIC-KITCHENS-100 contains 89,977 segments of fine-
grained actions annotated from 700 long videos. Footage
length amounts to 100 hours. Table 1 lists the general statis-
tics, separating those from the videos collected previously
to the newly collected videos. Note that all previous narra-
tions have been re-parsed using the new pipeline (Fig. 2b–d).
EPIC-KITCHENS-100 rescales our previous dataset with
almost double the length with 1.8x hours and 2.3x action

segments. Comparisons to other datasets are presented under
relevant benchmarks in Section 4.

In Fig. 4 we show the frequency of verb (97) and noun
(300) classes in the dataset. These are grouped into cate-
gories (13 verb and 21 noun categories), sorted by size. For
example, verbs ‘wash’, ‘dry’, ‘scrape’, ‘scrub’, ‘rub’, ‘soak’
and ‘brush’ are grouped into a clean verb category. The plots
show a clear long-tail distribution. The contribution of each
class from source videos (Damen et al. 2018) and extension
are also shown. New verb classes (e.g. ‘lock’, ‘bend’) and
noun classes (e.g. ‘orange’ and ‘hoover’) are only present in
the newly-collected videos.

We enrich our dataset with automatic spatial annotations
using two models. The first is Mask R-CNN (He et al. 2017)
trained on MSCOCO (Lin et al. 2014). The second is hand-
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Fig. 5 Top: Sample Mask R-CNN of large objects (col1: oven), hands
(labelled person), smaller objects (col2: knife, carrot, banana, col3:
clock, toaster, col4: bottle, bowl), incorrect labels of visually ambiguous
objects (col3: apple vs onion) and incorrect labels (col3: mouse, col4:

chair). Bottom: Sample hand-object detections from Shan et al. (2020).
L/R = Left/Right, P = interaction with portable object,O = object. Mul-
tiple object interactions are detected (col2: pan and lid, col4: tap and
kettle)

Fig. 6 Test of time and scalability test results

object interactions from Shan et al. (2020), trained on 100K
images from YouTube along with 42K images from three
egocentric datasets (Damen et al. 2018; Sigurdsson et al.
2018; Li et al. 2015) of which 18K are from our videos
(Damen et al. 2018). It detects interacted static and portable
objects as an offset to hand detections. Example annotations
are shown in Fig. 5, and the number of annotations is given
in Table 1. While we do not use these annotations to report
results, we believe these 66M masks, 31M hand and 38M
object bounding boxes could facilitate future models for spa-
tial (or spatio-temporal) attention.3

Splits We split the videos into Train/Val/Test with a ratio of
roughly 75/10/15. Each video, with all its action segments,
is present in one of the splits, and the Test split contains
only newly-collected videos. We use re-parsed videos from
the original EPIC-KITCHENS test sets as the new valida-
tion set.4 Our Val/Test splits contain two interesting subsets,
which we report on separately:

3 Correctness of bounding boxes for hands and objects has been eval-
uated by Shan et al. (2020)—see acknowledgements. Performance of
R-CNNmasks has not been quantitatively evaluated and these are error-
prone.
4 We no longer split the test set into seen and unseen kitchens, but
instead report on relevant evaluation metrics for each challenge.

– Unseen Participants Our Val and Test splits contain par-
ticipants not present in Train: 2 participants in Val, and
another 3 participants in Test. These contain 1,065 and
4,110 action segments respectively. This subset helps
evaluate the generalisability of the models across the var-
ious benchmarks.

– Tail Classes We define these (for verbs and nouns) to be
the set of smallest classes whose instances account for
20% of the total number of instances in training. A tail
action class contains either a tail verb class or a tail noun
class. These are 86/228/3,729 verb/noun/action classes.

Scalability and the Test of Time As we rescale EPIC-
KITCHENSwith additional videos, we carry out two investi-
gations: (a) how models trained on videos from Damen et al.
(2018) perform on videos collected two years later, and (b)
how models’ performance scales with additional annotated
data. We call these the test of time and the scalability tests
respectively.

Figure 6 includes results for both investigations, evalu-
ated on the task of action recognition (definition and models
fromSect. 4.1).We separate overall results (left) from unseen
participants (right). For all models, comparing the first two
bars demonstrates that models trained solely on videos from
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Damen et al. (2018) do not withstand the test of time. For
the same model, performance drops significantly when new
data is evaluated. This highlights a potential domain gap,
which we discuss next. We assess scalability by gradually
adding new data in training. Results demonstrate a signifi-
cant improvement, albeit saturating when 50% of new data
is added, particularly for unseen participants. This highlights
the need for better models and more diverse data rather than
merely more data. This can be particularly observed as the
unseen participants data benefits even less when scaling. We
tackle the gap to new environments and participants next.

Unravelling the Domain Gap As defined in the early work
on speech recognition (Ueberla 1997), “A domain D is a
(often infinite) set of samples such that each sample satis-
fies a property PD”. A domain gap is present when at least
one property differs between the samples of two domains.
Domain gaps have been a frequent source of frustration for
a wide range of learning tasks, where models are trained
on samples from one domain, and thus under-perform when
deployed in a different domain. This is also known as sample-
selection bias (Heckman 1979). Sampling bias is a common
cause for a domain gap between datasets, which cannot easily
be removed during dataset collection, as noted in (Torralba
and Efros 2011). The most obvious domain gaps stem from
changes in locations (Oberdiek et al. 2020), viewpoints (Zhai
et al. 2017), labels (Hsu et al. 2020) and participants (Stein
and McKenna 2013). However, there are often more subtle
causes, such as differences in capture methodology (Saenko
et al. 2010) or due to changes in objects, environments and
actions over time.

The concept of a compound domain gap has recently been
introduced in Liu et al. (2020), where the target domain is
a compound of multiple domains without domain labels.
As stated by Liu et al. (2020), this is a more realistic
scenario resulting from unconstrained data collection. In
EPIC-KITCHENS-100, each video in the extension offers
a compound domain gap due to changes in one or more of
the following properties:

– Hardware and capturing as in Saenko et al. (2010); Gong
et al. (2012). Extended footage uses a newer camera
model with onboard video stabilisation.

– Locations as in Oberdiek et al. (2020). As indicated in
Section 2, eight subjects have moved home resulting in
changing surroundings but keeping the appearance of
many objects and tools. Additionally, unseen participants
capture footage in new environments where the appear-
ance of objects and surroundings differ.

– Participants as in Stein and McKenna (2013). Hand
appearance and individual behaviours exist in the exten-
sion which are not in the original footage. Ta
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– Short-term temporal offsets as inWulfmeier et al. (2018),
where time-of-day can affect scene lighting, and some
background objects change position (e.g. on the counter
for one video, put away in a cupboard for a later video).

– Long-term temporal offsets as in Carlevaris-Bianco et al.
(2016); Maddern et al. (2017). EPIC-KITCHENS-100 is
filmed 2 years after EPIC-KITCHENS-55. In the same
environment, changes such as wear and tear, new objects
and different object positions are observed (see Fig. 1
right). Participant behaviour can also change over time.

While we have domain labels for some of these properties
(e.g. recording camera, location, time-of-day and participant
ID), other property changes can vary between samples, with-
out associated labels. It is particularly difficult to associate
labels with changes in behaviour or object appearances, for
example. We publish these properties with the dataset when
present. Importantly, we explore this compound domain gap,
without using property labels, using a newchallenge on unsu-
pervised adaptation for action recognition (Sect. 4.5).

4 Challenges and Baselines

In this section, we define 6 challenges on our dataset, two
modified from Damen et al. (2018), namely action recog-
nition (Sect. 4.1) and anticipation (Sect. 4.4). We introduce
four new challenges: weakly-supervised action recognition
(Sect. 4.2), action detection (Sect. 4.3), unsupervised domain
adaptation for action recognition (Sect. 4.5) and action
retrieval (Sect. 4.6).Whilemanyworks have addressed one or
more of these challenges, they are typically explored using
different datasets. Our annotation pipeline (from captions
and single timestamps to segments and classes—Fig. 2) can
be used to define multiple challenges, potentially jointly. In
this section, we only scratch the surface by reporting on
each challenge independently. For readability, we include all
implementation details in Appendix C, and we published all
our baseline models and evaluation scripts.

4.1 Action Recognition

Definition As in Damen et al. (2018), we consider a video
segment (ts, te) as the start and end frames in a video. We
aim to predict (v̂, n̂, â) as the verb/noun/action classes of the
action in this segment. We consider overlapping segments
independently.

Related Datasets Several datasets have been collected to
focus on action recognition, from Soomro et al. (2012),
Kuehne et al. (2011) to recent large-scale ones (Gu et al.
2018; Kay et al. 2017; Monfort et al. 2020; Goyal et al.
2017; Zhao et al. 2019; Sigurdsson et al. 2016), all offering

a challenge with a held-out test set. In Table 2, we com-
pare EPIC-KITCHENS-100 to these non-egocentric datasets
across a range of facets. Ours is the only dataset of unscripted
activities, of comparable size to those collected from scripted
or curated (YouTube) videos.

EvaluationMetricsWe report Top-1/5 Accuracy on Val and
Test sets.

Baselines and Results In Table 3, we report results of five
state-of-the-art recognition models (Wang et al. 2016; Zhou
et al. 2018;Kazakos et al. 2019;Lin et al. 2019; Feichtenhofer
et al. 2019) in addition to a random chance baseline. We use
the Train set to report on Val, optimising hyper-parameters.
We then fix these, and train on both the Train and Val sets in
order to report on the Test set. Figure 7 shows success and
failure examples, using examples from the Val set.

4.2 Weakly-Supervised Action Recognition

Definition As in Sect. 4.1, the goal is to recognise the action,
i.e. predict (v̂, n̂, â), in a trimmed action segment during
testing. Distinctly, we use single timestamps instead of tem-
poral boundaries during training. Let A = (Ai )

N
i=1 be the

action instances contained in an untrimmed training video,
each Ai = (t, v, n, a) is labelled with only one timestamp
t roughly located around the action, along with verb/noun
classes. We utilise the narration timestamps from our collec-
tion pipeline as t .

Related Datasets and Types of Supervision Previous
weakly-supervised approaches utilised video-level or tran-
script supervision, where the set (Wang et al. 2017; Singh
and Lee 2017; Nguyen et al. 2018; Liu et al. 2019; Nguyen
et al. 2019; Narayan et al. 2019) or sequence (Bojanowski
et al. 2014; Huang et al. 2016; Ding and Xu 2018; Richard
et al. 2018; Chang et al. 2019; Li et al. 2019) of actions in the
video are used in training, without temporal bounds. Table 4
compares EPIC-KITCHENS-100 to datasets trained with
weak-supervision. When considering the number of classes
(and instances) per video, EPIC-KITCHENS-100 offers a
significant challenge. For example, ActivityNet (Heilbron
et al. 2015) videos contain 1 class and 1.5 action instances
on average, whereas in EPIC-KITCHENS-100, videos con-
tain 53.2 classes and128.5 instances.Video-level supervision
is only sufficient for datasets with a few classes per video
(Heilbron et al. 2015; Jiang et al. 2014), while transcript
supervision (Marszalek et al. 2009; Kuehne et al. 2014)
expects no overlap between actions. Both types of weak
supervision are insufficient in our case.

Alternatively, single-timestamp supervision is gaining
popularity due to the scalability and performance balance
(Moltisanti et al. 2019; Bearman et al. 2016; Mettes et al.
2016; Chéron et al. 2018). We follow this trend as it fits
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naturally with our narration timestamps collected using
‘pause-and-talk’.

Evaluation Metrics We follow the same metrics as in
Sect. 4.1.

Baselines and ResultsWe consider two baselines. The first,
“Fixed segment”, uses a segment of fixed length centred on
the timestamp. The second is our previous work (Moltisanti
et al. 2019), where sampling distributions, to select training
frames from the untrimmed videos, are initialised from single
timestamps, and refined based on the classifier’s response.5

Both are trained end-to-end using a TSN backbone (Wang
et al. 2016) and results can be seen in Table 5.Moltisanti et al.
(2019) improves the fixed segment baseline by 1–3% top-1
accuracy across Val and Test. The fully supervised upper
bound is TSN, reported in Table 3. Comparatively, weak
supervision performs 11% worse than strong supervision on
top-1 action accuracy in Val and Test. Using roughly aligned
single timestamps is challenging when actions are short and
overlapping. EPIC-KITCHENS-100, with its dense actions,
provides an interesting benchmark to develop new models
for weak-supervision.

4.3 Action Detection

Definition All other challenges in Section 4 consider a
trimmed segment (ts, te) from the test video as input. This
assumption is limiting, as labelled start/end times of actions
are unlikely to be present for new test videos. In this chal-
lenge, we aim to detect and recognise all action instances
within an untrimmed video, as in Heilbron et al. (2015).
Given a video, we predict the set of all action instances
Â = { Âi }Mi=1, where Âi = (t̂s, t̂e, v̂, n̂, â) is an action detec-
tion tuple including the predicted start and end times (t̂s, t̂e)
and the predicted classes (v̂, n̂, â). During training, we use
the set of ground-truth action annotations A. Note that the
ground-truthA and predicted Â sets can be of different sizes.
This definition is closely related to temporal segmentation
(Lea et al. 2017), but segmentation assumes non-overlapping
segments and is thus unsuitable for EPIC-KITCHENS-100.

Related Datasets Table 4 compares EPIC-KITCHENS-100
to popular datasets for temporal action detection and seg-
mentation. EPIC-KITCHENS-100 presents the largest chal-
lenge, when considering the combined metrics of: average
video length, average instances per video and overlapping
instances. Compared to datasets with overlapping segments,
it has a larger number of instances per video and is also longer

5 The distributions aremodelledwith a plateau function, initialisedwith
a fixed width and slope, and centred around the annotated timestamp.
These are refined from the classification scores iteratively. More details
in Moltisanti et al. (2019)

123



International Journal of Computer Vision (2022) 130:33–55 43

Table 5 Weakly-supervised action recognition results

Split Baseline Overall Unseen Participants Tail Classes
Top-1 Top-5 Top-1 Top-1
Verb Noun Act. Verb Noun Act. Verb Noun Act. Verb Noun Act.

Val Fixed segment 44.86 37.97 20.30 84.62 65.41 39.35 37.37 29.20 14.36 25.85 18.89 10.50

(Moltisanti et al. 2019) 47.18 38.23 22.24 85.66 66.20 40.87 40.94 30.33 17.56 27.10 19.31 10.86

Test Fixed segment 43.93 38.01 20.38 82.54 65.85 39.25 40.70 34.79 18.17 21.26 13.57 07.18

(Moltisanti et al. 2019) 46.59 37.33 21.79 82.97 65.78 40.83 42.80 32.29 18.37 21.81 14.28 08.23

Table 6 Temporal action detection results in mAP (%)

Split Baseline Task Mean Average Precision (mAP)
@0.1 @0.2 @0.3 @0.4 @0.5 Avg.

Val BMN (Lin et al. 2019) + SlowFast (Feichtenhofer et al. 2019) Verb 10.83 09.84 08.43 07.11 05.58 08.36

Noun 10.31 08.33 06.17 04.47 03.35 06.53

Act. 06.95 06.10 05.22 04.36 03.43 05.21

Test BMN (Lin et al. 2019) + SlowFast (Feichtenhofer et al. 2019) Verb 11.10 09.40 07.44 05.69 04.09 07.54

Noun 11.99 08.49 06.04 04.10 02.80 06.68

Act. 06.40 05.37 04.41 03.36 02.47 04.40

(in hours) than all datasets with higher average instances per
video.

Evaluation Metrics In line with (Heilbron et al. 2015), we
use mean Average Precision (mAP) by computing the aver-
age of the AP values for each class. A predicted segment
matches a ground truth segment if their Intersection over
Union (IoU) is greater than or equal to thresholds ranging
from 0.1 to 0.5.

Baselines and Results We consider a two-stage baseline.
Action proposals are first obtained usingBoundaryMatching
Networks (BMN) (Lin et al. 2019), which are then classified
using SlowFast (Feichtenhofer et al. 2019) (model trained as
in Sect. 4.1). Results in Table 6 highlight that action detection
is particularly challenging on this dataset, especially with
respect to higher IoU thresholds. The qualitative example
in Fig. 8 shows that our videos in EPIC-KITCHENS-100
contain actions of varying lengths, which adds further chal-
lenges.

4.4 Action Anticipation

DefinitionWeaim to predict (v̂, n̂, â) as the verb/noun/action
classes of the action, by observing a video segment of
arbitrary duration τo seconds (observation time) ending τa
seconds (anticipation time) before the action’s start, ts . We
set τa = 1. We expect models addressing this task to rea-
son on observed sequences of actions, the current state of the
world (e.g., what objects are visible) and the possible goal of
the camera wearer.

Related Datasets Table 4 also compares EPIC-KITCHENS-
100with other datasets used for action anticipation (Rohrbach
et al. 2012; Patron-Perez et al. 2010; De Geest et al. 2016;
Jiang et al. 2014; Kuehne et al. 2014; Stein and McKenna
2013; Li et al. 2015). Our dataset is the largest in hours and
classes, and is unscripted, which is critical for meaningful
anticipation models, and for in the wild testing.

EvaluationMetricsWe report results using class-mean top-
5 recall (Furnari et al. 2018). The top-k criterion accounts
for uncertainty in future predictions, as with previous antic-
ipation efforts (Koppula and Saxena 2016; Lee et al. 2017;
Bhattacharyya et al. 2019). Class-mean allows for balancing
the long-tail distribution.

Baselines and Results We use our prior work RU-LSTM
(Furnari and Farinella 2020) as a baseline. In Table 7, RU-
LSTM performs better for nouns compared to verbs, but
shows that tail classes are particularly challenging for antic-
ipation. Figure 9 demonstrates the baseline struggles where
the next active noun/verb are ambiguous.

4.5 Unsupervised Domain Adaptation for Action
Recognition

DefinitionUnsupervised DomainAdaptation (UDA) utilises
a labelled source domain and learns to adapt to an unla-
belled target domain. We use videos recorded in 2018 as the
labelled source, and use newly collected videos as unlabelled
target (i.e. without any of the accompanying annotations).
The action recognition task itself follows the definition in
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Fig. 7 Qualitative action recognition results for various baselines

Fig. 8 Qualitative results of action detection. Predictions with confidence > 0.5 are shown with colour-coded class labels (see legend). Since the
baseline predicts overlapping segments, the predictions are displayed over four rows for ease of viewing

Table 7 Action anticipation results reported in class-mean top-5 recall (%)

Split Baseline Overall Unseen Participants Tail Classes
Verb Noun Act. Verb Noun Act. Verb Noun Act.

Val Chance 06.39 02.00 00.20 14.35 02.88 00.51 01.64 00.24 00.05

RU-LSTM (Furnari and Farinella 2020) 27.76 30.76 14.04 28.78 27.22 14.15 19.77 22.02 11.14

Test Chance 06.17 02.28 00.14 08.14 03.28 00.31 01.87 00.66 00.03

RU-LSTM (Furnari and Farinella 2020) 25.25 26.69 11.19 19.36 26.87 09.65 17.56 15.97 07.92

Fig. 9 Qualitative action anticipation results

Sect. 4.1. The difficulty of this challenge stems from the fact
that the source and target domains come fromdistinct training
distributions due to the collection of videos two years later .
Changes in location, hardware and long-term temporal off-
sets are the main sources of the domain shift (see Sect. 3).
A method which is able to perform this task well provides
a number of practical benefits, most notably the elimination
of labelling time and expense when collecting new videos,
in the future.

Related Datasets UDA datasets have traditionally used
images (Saenko et al. 2010; Venkateswara et al. 2017; Peng
et al. 2017, 2019), with recent attempts to use video (Jamal
et al. 2018; Chen et al. 2019; Qi et al. 2018) adapting across
public datasets (e.g. UCF to Olympics). EPIC-KITCHENS-
100 is the first to propose a within-dataset domain adaptation
challenge in video. Video-based UDA raises additional chal-
lenges, such as aligning temporal information across domains
(Jamal et al. 2018), attending to relevant transferable frames
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Table 8 Comparison of domain adaptation classification datasets.

Dataset Train Test Classes SD M AAL Year Real/Syn

Image

Office (Saenko et al. 2010) 4110 N/A 31 1 3 N/A 2010 Real

ImageCLEF (Caputo et al. 2014) 2400 600 12 5 1 N/A 2014 Real

Office↔ Home (Venkateswara et al. 2017) 15500 N/A 65 4 1 N/A 2017 Real

VisDA-C (Peng et al. 2017) 280157 N/A 12 3 1 N/A 2017 Real/Syn

DomainNet (Peng et al. 2019) 363534 37706 345 6 1 N/A 2019 Real/Syn

Source Target Test*

Video

UCF↔ HMDB (small) (Xu et al. 2016) 482 350 150 5 2 1 4.7 ± 2.5 2018 Real

UCF↔ Olympic (Jamal et al. 2018) 601 250 54 6 2 1 6.6 ± 4.5 2018 Real

UCF↔ HMDB (full) (Chen et al. 2019) 1438 840 360 12 2 1 4.0 ± 5.8 2019 Real

IEMOCAP→ AFEW (Qi et al. 2018) 6611 795 N/A 4 2 2 N/A 2018 Real

Kinetics↔ Gameplay (Chen et al. 2019) 43378 2625 749 30 2 1 N/A 2019 Real/Syn

EPIC-KITCHENS-100 16115 26115 5909 3369 16 3 2.8 ± 5.2 2020 Real

*Note that Test* refers to ‘Target Test’ SD: Subdomains. M: Modalities. AAL: Average Action Length

(Chen et al. 2019), and avoiding non-informative background
frames (Pan et al. 2020).

Table 8 shows EPIC-KITCHENS-100 provides several
advantages over other video-based datasets: largest number
of instances, classes, subdomains, and ismulti-modal (Munro
and Damen 2020). Additionally, it has a compound domain
gaps resulting from the test of time (i.e. recording data two
years later).

Splits This challenge assesses models’ ability to adapt to
additional footage without labels. We thus define the follow-
ing splits; Source: labelled training data from 16 participants
(collected in 2018) and Target: unlabelled footage from the
same 16 participants collected in 2020. This ensures the gap
in the domains is related to the capturing of the data ‘two
years later’. We further split target videos into: Target Train
and Target Test. The first are unlabelled videos used during
domain adaptation, while the second are videos used for eval-
uation, as in Peng et al. (2017). Number of action instances
per split are reported in Table 8.

Evaluation We use the same evaluation metrics as Sect. 4.1
on Target Test.

Baselines and ResultsWe present lower and upper bounds:
“Source-Only”, where labelled source data is used for train-
ing and no adaptation to target data is attempted, and two
upper bounds: “Target-Only”, where labelled target data is
used and “Source+Target” where all training data is used
with associated labels. Neither of these are UDA methods,
but offer an insight into the domain gap.

Table 9 reports the results for the baselines. These use
extracted features from TBN (Kazakos et al. 2019) trained
on source. We use the code of Temporal Attentive Align-
ment (TA3N) (Chen et al. 2019), modified to consider
multi-modal features (RGB, Flow and Audio), to report
results. These show significant performance improvement
when using multi-modal data compared to single modality
models of RGB, Flow and Audio. The domain gap is evident
when comparing the lower and upper bounds. TA3N is able to
partially decrease this gap, providing a 2.5% improvement in
verb accuracy and 2.4% in nounswhen usingmultiplemodal-
ities. Recent work (Planamente et al. 2021) showed that RGB
andAudio exhibit different levels of robustness to the domain
gap in EPIC-KITCHENS-100. The best performing submis-
sions for this challenge in 2021 exploited multi-modalities
for domain adaptation (Yang et al. 2021; Plizzari et al. 2021).
Fig. 10 visualises the multi-modal feature space showing
limited overlap between source and target. TA3N aligns the
features demonstrating the capability of UDA.

4.6 Multi-Instance Action Retrieval

Definition Given a query action segment, the aim of video-
to-text retrieval is to rank captions in a gallery set, C , such
that those with a higher rank are more semantically relevant
to the action in the video. Conversely, text-to-video retrieval
uses a query caption ci ∈ C to rank videos. Different from
other challenges in Sect. 4,we here use theEnglish-translated
free-form captions from the narrations (Fig. 2b).
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Table 9 Unsupervised domain
adaptation results with lower
(source-only) and the upper
bounds of target-only and
source+target

Modality Baseline Top-1 Acc. (%) Top-5 Acc. (%)
Verb Noun Act. Verb Noun Act.

RGB Source-Only 32.8 21.2 10.7 72.6 43.9 22.6

TA3N (Chen et al. 2019) 32.1 21.6 11.1 71.7 44.1 22.5

Target-Only 39.7 32.3 18.3 80.8 56.2 34.0

Source+Target 41.1 33.0 18.8 80.4 58.5 35.2

Flow Source-Only 42.8 19.2 12.7 74.5 38.5 23.8

TA3N (Chen et al. 2019) 43.2 20.1 12.8 74.5 41.2 25.0

Target-Only 53.8 26.7 20.2 84.2 49.1 34.5

Source+Target 52.4 27.3 19.8 82.4 50.3 35.4

Audio Source-Only 31.4 12.8 8.5 64.8 28.4 16.0

TA3N (Chen et al. 2019) 32.0 13.3 8.9 66.0 29.1 16.5

Target-Only 41.7 19.1 13.4 77.2 39.6 23.6

Source+Target 41.8 19.8 13.8 77.1 40.6 24.3

RGB+Flow +Audio Source-Only 44.4 25.3 16.8 69.7 48.4 29.1

TA3N* (Chen et al. 2019) 46.9 27.7 19.0 72.7 50.7 30.5

Target-Only 59.1 40.3 30.4 85.0 65.0 47.8

Source+Target 59.4 41.9 31.3 85.3 66.6 49.2

*Modified to consider multi-modal features

Fig. 10 UMAP (McInnes et al. 2018) of feature spaces shows better
alignment through UDA baseline.

Splits We use the Train split from Table 1. As access to the
captions are required for both video-to-text and text-to-video
retrieval, the Val set is used for evaluating this challenge to
allow the held-out Test set for all other challenges to remain
intact. We consider all the videos in Val, and all unique cap-
tions, removing repeats.

Related Datasets In datasets that are commonly used for
retrieval (Xu et al. 2016; Rohrbach et al. 2015; Zhou et al.
2017; Chen and Dolan 2011), captions are considered rele-
vant if they were collected for the same video, and irrelevant
otherwise. This commonapproach ignores the semantic over-
lap between captions of different videos that contain identical
or similar actions. These datasets thus assume videos to be
distinct from one another. In instructional video datasets
(Zhou et al. 2017; Miech et al. 2019), the corresponding
YouTube subtitle is only considered relevant, again ignor-

ing semantic overlap or similarities to other actions. Note
that the large-scale HowTo100M [117] dataset has only been
used for pre-training, due to being webly supervised and thus
noisy. The dataset does not include a val/test set.

In this challenge, we use the class knowledge from
Sect. 3 to define caption relevancy. This allows us to con-
sider captions “put glass” and “place cup” as semantically
relevant—an opportunity not available in other retrieval
datasets.

EvaluationMetrics To evaluate this challenge, relevancy of
a retrieved caption (or video) to the query item needs to be
assessed. We consider the case where a query video contains
the action of someone cutting a pizza using a cutter. We
want captions: a “cutting a pizza using a cutter”, b “cutting a
pizza slice”, c “slicing a pizza” to all bemore relevant than d
“cutting a pizza using a knife” which in turn ismore relevant
than both e “cutting a vegetable” or f “picking up a pizza
slice”. Critically, g “opening a fridge” should be considered
irrelevant.

Mean Average Precision (mAP) has been used in other
retrieval works (Wray et al. 2019; Rasiwasia et al. 2014;
Kang et al. 2015; Cao et al. 2017), yet it only considers rel-
evance between items to be binary. Because of this, (a–c)
would be considered (equally) relevant captions. However,
we would also like to consider non-binary relevance where
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n (d) is more relevant than (e) which in turn is more relevant
than (g). We thus also report results using normalised Dis-
counted Cumulative Gain (nDCG) (Järvelin and Kekäläinen
2002). This metric allows for non-binary relevance between
captions. We define the relevance, R, as the mean IoU of
the verb and noun classes, giving a value between 0 and 1,
where 0 is irrelevant (no overlap in verb/noun classes) and 1
is extremely relevant. From the example above, 1 = R(a,a)
≥ R(a,b) = R(a,c) ≥ R (a,d) ≥ R (a,e) = R (a,f) ≥ R (a,g)
= 0. We then use R to calculate nDCG as in (Järvelin and
Kekäläinen 2002) (see appendix C.6 for full definition).

Baselines andResultsAs in Sect. 4.5, we use TBN (Kazakos
et al. 2019) features trained on the Train split. Table 11 pro-
vides results for two baselines and the chance lower bound.
Multi-Layer Perceptron (MLP) uses a 2-layer perceptron to
project both modalities into a shared action space with a
triplet loss. Our previous work JPoSE (Wray et al. 2019) dis-
entangles captions into verb, noun and action spaces learned
with a triplet loss. JPoSE sees a significant boost in per-
formance over MLP. Figure 11 shows qualitative retrieval
results on four examples using both MLP and JPoSE for
text-to-video retrieval. JPoSE is able to retrieve more correct
videos than MLP, but both methods still struggle on longer
captions. Importantly, this dataset offers the first opportunity
for action retrieval that considers semantic similarity.

5 Conclusion and FutureWork

We presented our large-scale egocentric dataset EPIC-
KITCHENS-100, through an annotation pipeline that is
scalable and is of higher quality than previous approaches.
We defined six challenges, providing leaderboard base-
lines. Dataset and leaderboards are available at http://epic-
kitchens.github.io.

These 6 challenges have been chosen to facilitate progress
in open topics within video understanding. They also high-
light interesting parts of our collection and annotation
pipeline. For example, retrieval uses our free-form captions,
while unsupervised domain adaptation for action recogni-
tion builds on collecting footage two years later. Our dense
annotations of overlapping actions make detection in long
untrimmed videos particularly challenging. While this paper
addresses each challenge independently, successful methods
that address one challenge (e.g. detection) are likely to prove
advantageous for better performance in another (e.g. antici-
pation). Combining all challenges with unsupervised domain
adaptation would enable future deployment in new environ-
ments without additional labels.

In publishing this manuscript we hope that people can not
only utilise this large-scale dataset in their ongoing research,
but also build on our novel pipeline in collecting our dataset.
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Table 11 Multi-Instance
retrieval results

Baseline mAP nDCG
vid→txt txt→vid Avg. vid→txt txt→vid Avg.

Chance 5.7 5.6 5.7 10.8 10.9 10.9

MLP 43.0 34.0 38.5 50.1 46.9 48.5

JPoSE (Wray et al. 2019) 49.9 38.1 44.0 55.5 51.6 53.5

Fig. 11 Qualitative results for text-to-video action retrieval. Top 3 retrieved videos and the semantic relevancy R of the top 50 retrievals (red:
irrelevant, green: relevant) (Color figure online)

The proposed ‘pause-and-talk’ narrator, publicly available,
as well as our visually-supported transcription interfaces can
prove advantageous for other large-scale collection efforts.

DataReleaseStatementDataset sequences, extracted frames
and optical flow are available under Non-Commercial Gov-
ernment Licence for public sector information at the Uni-
versity of Bristol data repository: http://dx.doi.org/10.5523/
bris.2g1n6qdydwa9u22shpxqzp0t8m
Annotations, models, evaluation scripts, challenge leader-
boards and updates are available at: http://epic-kitchens.
github.io
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Appendices

A Video Demonstration

We provide a video demonstration of our annotation pipeline
and six challenges. Our video utilises a single sequence,
showcasing the annotation pipeline first, as the sequence
progresses. We demonstrate the ‘pause-and-talk’ narrator,
transcription and translation steps, then parsing and class
mapping. We then showcase the two automatic annotations
provided with our dataset.

The video demonstrates predictions from our six chal-
lenges. This showcases baseline results, but on a train-
ing sequence demonstrating ‘near perfect’ performance as
opposed to current baseline performance. This aims to high-
light the potential of EPIC-KITCHENS-100 and the link
between these challenges. Our Video demonstration is avail-
able at: https://youtu.be/MUlyXDDzbZU

B Further Collection Details

In this section we provide further details of how EPIC-
KITCHENS-100 was collected including comparing to the
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annotation pipeline from our previous work (Damen et al.
2018).

Camera Settings for CollectionHeadmounted GoPro Hero
7 was used for data collection filming at 50fps with video
stabilisation. Our choice of 50 fps avoids overhead light
flickering visible in Damen et al. (2018) that occurs due to
the difference between frame rates and the national grid fre-
quency.

Narration ‘pause-and-talk’ interface Fig. 12 contains a
more detailed look at our proposed ‘pause-and-talk’ narra-
tor. Annotators had a number of options to help with the
recording, including whether or not to hear the audio from
the captured video while narrating, and the ability to change
the speed of the video. They could also play, redo or delete
recordings they had already made.

Asmentioned inSect. 2, this led to denser andmore correct
annotations, as annotators were able to pause the video while
providing annotations, avoiding any missed annotations of
critical actions.

Transcription Thanks to our ‘pause-and-talk’ narrator, each
audio clip contained a single action narration, whereas for-
merly speech chunks were combined into 30 second clips.
In Damen et al. (2018), Amazon Mechanical Turk (AMT)
workers had to translate and transcribe this audio narration
in a single step. To ensure correctness and consistency, we
split the transcription from the translation steps. The set of
non-English transcriptionswas first agreed bymultiple anno-
tators and then translated in one go by a hired translator.

Additionally, we provided images during the transcription
step centred around the timestamp collected by the ‘pause-
and-talk’ Narrator at {−0.25s, 0s,+0.25s} to improve con-
text (see Fig. 1b).

TemporalAnnotator Previously, initial start/end timeswere
obtained by automatic alignment of captions using YouTube
automatic subtitling API. This is problematic as it assumes
action length is the same as the narration length. We adopt
a different approach here starting from our accurate single
timestamps produced by our proposed ‘pause-and-talk’ nar-
rator. We developed a temporal segment annotation interface
(see Fig 1d), where annotators start from this rough-time
stamp and annotate the start/end time. We also increased the
number of annotators per segment to 5, compared to 4 used
in Damen et al. (2018). This resulted in higher agreements
between annotators.

C Challenges’ Implementation Details

In this section we include the implementation and training
details for all of the baselines, to enable replication of our

results. Additionally, for some challenges, further details are
provided such as definition of evaluation metrics.

C.1 Action Recognition

Implementation and Training DetailsWe use our publicly
available PyTorch (Paszke et al. 2019) model definitions of
TSN (Wang et al. 2016), TRN (Zhou et al. 2018) and TSM
(Lin et al. 2019). We use ResNet-50 backbones for all mod-
elswith publicly available initialisations - these are ImageNet
weights for TSN andTRNandKineticsweights for TSM.We
train two instances of each model: one with 8 RGB frames
as input, and the other with 8 stacks of 5 (u, v) flow fields
computed using TV-L1 (Zach et al. 2007). We use two-way
output in the last layer, one to predict verbs and the other to
predict nouns with an average verb/noun loss. Actions are
predicted as the most likely verb-noun combinations com-
puted by combining softmaxed verb/noun scores.

We train each model for 80 epochs using SGD with
momentum 0.9 and a learning rate of 0.01 decayed at epochs
20 and 40 by a factor of 10. TSN and TRN models are
trained on 8 GPUs with a batch-size of 128, whereas TSM
used a batch-size of 64 on 4 GPUs. We apply a weight
decay of 0.0005 to all weights in the models, drop out with
p = 0.7, and clipping gradients above 20. We use center-
crop evaluation. TheRGBandoptical flowmodels are trained
individually, and predictions are averaged pre-softmax dur-
ing inference.

For TBN, we use the publicly available PyTorch (Paszke
et al. 2019) model fromKazakos et al. (2019).We train using
a batch size of 64, 6 segments, and drop the learning rate at
epoch 40 and 60. All unspecified hyperparameters remain
unchanged.

For SlowFast (Feichtenhofer et al. 2019), we use the
publicly available PyTorch (Paszke et al. 2019) model. We
modify the model to have a two-way output for verbs and
nouns, and train itwith the average verb-noun loss.Weuse the
SlowFast 8x8, ResNet-50 backbone, initialised from Kinet-
ics pretrained weights also provided by Feichtenhofer et al.
(2019). A 1 second clip randomly sampled from the video is
used as input to the model during training. We train for 30
epochs using SGD with momentum 0.9 and a learning rate
of 0.01 decayed at epochs 20 and 25 by a factor of 10. The
model is trained on 8 GPUs with a batch-size of 32, using a
weight decay of 0.0001 to all weights in the model and drop
out with p = 0.5. We freeze all batch-normalisation layers’
parameters and statistics during training. During testing, we
uniformly sample 10 clips (1s each) from each video, and a
single center crop per clip, and average their predictions.
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Fig. 12 Components of our ‘pause-and-talk’ annotation tool

C.2 Weakly-Supervised Action Recognition

Implementation and Training DetailsWe use our publicly
available PyTorch (Paszke et al. 2019) code from Molti-
santi et al. (2019) for both baselines. This uses TSN (Wang
et al. 2016) with Inception backbone and batch normalisa-
tion (Ioffe and Szegedy 2015), pre-trained on Kinetics-400
(Carreira and Zisserman 2017). Predictions employ standard
late-fused two-stream approach at test time (RGB and Flow
models are trained independently). This uses 25 RGB frames
(or optical flow stacks) for testing.

We set a length of 5 seconds for the fixed-length segment
baseline. For this baseline, frames are sampled randomly
from equally sized segments (as proposed in Wang et al.
(2016)). For the baseline from Moltisanti et al. (2019) train-
ing frames are selected using the sampling distributions
which are iteratively updated. For both baselineswe sample 5
frames for training. The ADAM (Kingma and Ba 2014) opti-
miser is used with initial learning rate equal to 0.0001 halved
twice during training, and report results after 80 epochs.
We changed the parameters from Moltisanti et al. (2019) as
follows: w = 2.5 seconds and s = 0.75, updating the distri-
butions every 5 epochswith (λc, λw, λs) = (0.5, 0.25, 0.25).

We set CL h = 1 and CL z = 0.25. Update proposals are
generated with τ ∈ {0.5, 0.85}, discarding proposals with
length less than 10 frames.

C.3 Action Detection

Implementation and Training Details We train Boundary
Matching Network (BMN) (Lin et al. 2019) using the pub-
licly available implementation to produce temporal action
proposals.6 BMN is trained using TSN-based features, as
in action recognition. As proposed in Lin et al. (2019), we
rescale the feature sequence of each video to the length of the
observation window lω. Since the proposed dataset contains
videos of different lengths, we choose a large observation
window lω = 400 and set the maximum action length to
D = 400. To limit the amount of memory required at train-
ing time, we set the number of sample points to N = 4. We
train one model on the Train set for 9 epochs, which max-
imizes performance on Val. We use this model to report on
both Val and Test. We apply Soft Non-Maximum Suppres-
sion with the parameters suggested in Lin et al. (2019) to

6 https://github.com/JJBOY/BMN-Boundary-Matching-Network
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reduce the number of overlapping proposals and retain the
top scoring 1, 000 instances per video.

Each proposal is then classified using the SlowFast Net-
workwith implementation details as in SectionC.1. Note that
we classify proposals on the validation set using the SlowFast
model trained only on the training set, whereas we classify
proposals on the test set using the model trained on the union
of the training and validation sets.

C.4 Action Anticipation

Implementation and Training DetailsWe follow our prior
work (Furnari and Farinella 2020) training a TSN model to
extract RGBandFlow features, using the same hyperparame-
ters recommended in Furnari and Farinella (2020). The RGB
model has been trained for 95 epochs, while the optical flow
branch has been trained for 132 epochs, whichmaximise per-
formance onVal. Object-based features are extracted running
the object detector from Furnari and Farinella (2020), trained
on manually-annotated object bounding boxes from our pre-
vious edition Damen et al. (2018). The RU-LSTM model is
trained using the provided implementation with SGD and a
fixed learning rate of 0.01. The single-modality RGB, optical
flow and object branches are pre-trained with sequence com-
pletion respectively for 88, 95, and 98 epochs, then fine-tuned
for the anticipation task for 86, 81 and 7 epochs respectively.
The full architecture with modality attention is trained for
29 epochs. These maximise performance on Val. All other
parameters are kept as their default values in the public code
from Furnari and Farinella (2020), The same model is used
to report both on Val and Test.

Impact of current action on anticipation Predicting a
future action given the currently observed one provides a
strong prior. To assess this, we created three co-occurrence
matrices for verbs, nouns and actions. Each matrix M is con-
structed such that M[i, j] reports the number of times class
j is observed after class i in the training set considering
τa = 1 as the anticipation time. At test time, we rely on the
last observed action i to predict the most frequent 5 actions
following i (corresponding to the 5 largest values of the i th

row of M). Note that this calculation requires knowledge of
the observed action from the ground truth, thus cannot be
considered a baseline, as it cannot be replicated in inference.
We found that this oracle knowledge of the current action
obtains 20.84%, 25.00% and 8.92% for Top-5 verb, noun and
action labels respectively on the validation set. These num-
bers are significantly larger than the chance baseline (6.39%,
2.00%, 0.20%) from Table 7 but still lower than the ones of
the RU-LSTM baseline (27.76%, 30.76%, 14.04%). These
results suggest that, while the prior is indeed a strong one,
as you would hope for meaningful sequences of actions, the

considered baseline is going beyond recognising the current
action and applying an action sequence prior.

C.5 Unsupervised Domain Adaptation (UDA) for
Action Recognition

Validation Splits for Hyper-parameter Tuning As the tar-
get domain is unlabelled, no labelled data is available for
hyper-parameter tuning. Therefore, we split the training data
to define a Source Val and Target Val splits with data col-
lected by 4 of the 16 participants. Of these, 2 participants
are of returning kitchens and 2 of changing kitchens. The
Source Train and Target Train are thus composed of the 12
remaining participants.

For hyper-parameter tuning,models are trainedon labelled
data fromSourceVal and unlabelled fromTarget Val. The per-
formance on Target Val can be used to asses the impact of
different hyper-parameters.

To obtain the results for the leaderboard and accompa-
nying challenge, a new model is trained on Source Train
and unlabelledTarget Train, using the hyper-parameters opti-
mised from the validation split. This model is evaluated on
Target Test to obtain results.

Note on zero-shot actions Due to the unscripted nature of
the data collection, a negligible number of verb and noun
classes in the target domain are not present in the source
domain, 0.2% and 2.3% respectively. We have not removed
these to maintain the same splits used in other challenges.
Additionally, 9.46% actions (exact verb-noun combinations)
did not exist in the targets domain, these are referred to as
the zero-shot actions. Note it is still possible to predict these
actions as both verbs and nouns were present in the source
domain.

Implementation and Training Details We train the TBN
feature extractor on the union of Source Train and Source
Val. We make these features publicly available. We use the
available code from Chen et al. (2019), to train and evalu-
ate ‘Source-Only’ as well as ‘TA3N’ baselines. We modify
the code to consider multi-modal input, by concatenating
the features from all modalities as input. This automatically
increased the number of parameters in the first fully con-
nected layer.

We improve the performance of TA3N by initialising the
domain discriminators before the gradients are reversed and
back-propagated. In our implementation, the domain dis-
criminators’ hyper-parameters are annealed similar to that
in Ganin et al. (2016):

η = 2

1 + exp(−p)
− 1 (1)
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where p is the training progress that linearly increases from 0
to 1. The domain discriminator hyperparameters are annealed
up to the value specified in TA3N, i.e. λs = 0.75η, λr = 0.5η
and λt = 0.75η. The weighting of the categorical entropy on
the target domain is set to γ = 0.003. Models are trained for
30 epochs at a learning rate of 3e−3 reduced by a factor of
10 at epochs 10 and 20.

C.6 Multi-Instance Action Retrieval

Evaluation Metrics We define the Relevance R between
a video, xi , and a caption, c j , as given by the averaged
Intersection-over-Union of the verb and noun classes:

R(xi , c j ) = 1

2

( |xv
i ∩ cv

j |
|xv

i ∪ cv
j |

+ |xNi ∩ cNj |
|xNi ∪ cNj |

)
(2)

where xv
i is the set of verb classes in the video and cNj is the

set of noun classes in the caption.
The nDCG can be calculated for a query video, xi , and the

ranked list of gallery captions,Cr , as theDiscountedCumula-
tive Gain (DCG) over the Ideal Discounted Cumulative Gain
(IDCG):

nDCG(xi ,Cr ) = DCG(xi ,Cr )

I DCG(xi ,Cr )
(3)

with the DCG being given by:

DCG(xi ,Cr ) =
|Cr |∑
j=1

R(xi , c j )

log( j + 1)
(4)

To calculate the I DCG(xi ,Cr ), we need the ground truth
ranking between video xi and captions Cr . To do this, we
first find the relevance between video xi and every cap-
tion in Cr as follows: {R(xi , c j ); ∀c j ∈ Cr )}. We then
construct Ĉr , the ground truth ranking of captions, by sort-
ing these in descending order of relevance. Note that if
R(xi , c j ) = R(xi , ck) then c j and ck are ordered based on
their unique ID due to the stable sort used, and similarly for
the method to be evaluated. Finally, the I DCG is calculated
using I DCG(xi ,Cr ) = DCG(xi , Ĉr )).

nDCG can be similarly defined for a query caption, ci
and a gallery set of videos Xr .

Implementation and Training Details For video features
we use 25 RGB, Flow and Audio features extracted uni-
formly from TBN (Kazakos et al. 2019). We make these
features publicly available. Features from each modality are
temporally averaged and then concatenated to provide the
final feature vector for each video, with size 3072. Text fea-
tures come from word2vec (Mikolov et al. 2013) trained on
the wikipedia corpus with an embedding space of size 100.

TheMLPbaseline uses a 2 layer perceptronwhich projects
both the visual and textual features into the same embedding
space. We set the final embedding size to 512 and the size of
the hidden units is 1280 and 78 for visual/textual respectively
(halfway between initial feature size and output space size).
MLP is trained for 100 epochs with a batch size of 64 and a
learning rate of 0.01. Triplets are sampled randomly using the
semantic relevance used when calculating mAP/nDCG (i.e.
verb and noun class are identical), with triplets being sampled
every 10 iterations. The triplet loss terms for all four pairs
of modalities are set to 1.0, apart from the the text-to-visual
weight which is assigned a weight of 2.0.

We use our public code of JPoSE (Wray et al. 2019) .
Each Part-of-Speech embedding is modelled off of the MLP
baseline, but using the part-of-speech relevancies defined in
Wray et al. (2019) (e.g. for the verb embedding the verb class
between two captions must be the same). The final embed-
dings are concatenated and fed into a final fully connected
layer with sharedweights for the action embedding. The verb
and noun embedding spaces have an output embedding size
of 256, with the resulting action embedding space having
an output size of 512. Triplets are independently resampled
(randomly) every 10 epochs. A batch size of 64 is used with a
learning rate of 0.01 and the model is trained for 100 epochs.
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