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We analyze the local wave-number (LWN) model, a two-point spectral closure model for turbulence, as
applied to the Rayleigh-Taylor (RT) instability, the flow induced by the relaxation of a statically-unstable density
stratification. Model outcomes are validated against data from 3D simulations of the RT instability. In the first
part of the study we consider the minimal model terms required to capture inhomogeneous mixing and show
that this version, with suitable model coefficients, is sufficient to capture the evolution of important mean global
quantities including mix-width, turbulent mass flux velocity, and Reynolds stress, if the start time is chosen
such that the earliest transitions are avoided. However, this simple model does not permit the expected finite
asymptote of the density-specific-volume covariance b. In the second part of the study, we investigate two forms
for a source term for the evolution of the spectrum of density-specific-volume covariance for the LWN model.
The first includes an empirically motivated calibration of the source to achieve the final asymptotic state of
constant b. The second form does not require calibration but, in conjunction with enhanced diffusion and drag
captures the full evolution of all the dynamical quantities, namely, the mix-layer growth, turbulent mass-flux
velocity, Reynolds stress, as well as the desired behavior of b.

DOI: 10.1103/PhysRevE.104.025105

I. INTRODUCTION

Statistical models for turbulence with pointwise correla-
tions as variables are known as single-point models and are
widely used in many practical and industrial applications. Ex-
amples include those in the Reynolds-averaged Navier-Stokes
(RANS) family of models [1,2], such as the k-ε [3] and k-ω
models [4,5], where k is the energy (velocity autocorrelation),
ε is the energy dissipation rate, and ω is the specific dissi-
pation rate. A similar single-point phenomenological model
was introduced by Besnard, Harlow and Rauenzahn [6]; such
models form the basis of turbulent mixing models in many
multi-physics codes widely in use for industrial and research
applications [7]. However, single-point models have difficul-
ties with predicting phenomena such as strong transients or
density variations [8–11]. This is because they do not have
information on the multiple scales generated by nonlinearities
that are intrinsic to turbulence. Thus, certain flow properties
may be better described using two-point statistical models
which by definition have variables depending on two points
in space, and hence on the scale defined by their separa-
tion distance. Indeed as computational power increases, there
are efforts toward building more accurate turbulence models
beyond the well-understood workhorse RANS single-point
models [12]. A recent comprehensive review on the status of
turbulence modeling is given in [13].

In this paper we examine one such model to study two-
point statistics of turbulence, and we refer to this model as
the local wave-number (LWN) model. This model is based
on Ref. [6] which described a spectral model for single-fluid
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turbulence. This model was extended to describe two-fluid
variable density turbulence in Refs. [14–16]. In particular,
we focus on the Rayleigh-Taylor (RT) instability generated
at a perturbed interface between a heavy and a light fluid,
subjected to an acceleration opposing the mean density-
gradient [17–23]. In such a configuration, the flow exhibits
several interesting properties that are in general difficult to
model—first, the variable-density turbulence has large den-
sity fluctuations relative to the mean, second, the mix layer
grows in thickness as the flow evolves, and third, the flow is
statistically inhomogeneous and anisotropic.

The study of constant density (single-fluid) homogeneous
isotropic turbulence via practical (realizable) spectral mod-
els began with eddy damped quasinormal closure (EDQNM)
introduced in Refs. [24,25], with further developments for
homogeneous flows in Refs. [26,27]. The modeling of
anisotropic contributions in homogeneous turbulence has also
been amenable to the EDQNM framework [28–31] with more
recent extensions to strongly anisotropic, homogeneous flow,
with Unstably Stratified Homogeneous Turbulence (USHT)
[32], and shear-driven and buoyancy-driven turbulent flows
[29]. EDQNM models of buoyancy-driven Boussinesq flows
have been studied in Refs. [33–35] for the USHT system.

EDQNM is a more elaborate model than LWN. The for-
mer includes non-local interactions in the wave-number space
in the closure of the nonlinear terms while the latter is
strictly local. While EDQNM is a more complex mathematical
framework than LWN, it nevertheless does not lend itself
to extension to the more general variable-density case [6].
Following [16] we studied homogeneous, variable-density
turbulence in previous work [36] using the LWN model. In
that work, it was shown that the LWN model captures the time
evolution of the statistics of variable-density homogeneous
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isotropic turbulence across large variation of density ratios be-
tween the participating fluids. The LWN model has also been
shown to produce good agreement with experimental data in
the case of homogeneous sheared and strained turbulence [37]
and in anisotropic flows [38]. Nonstationary inhomogeneous
turbulence using the shear-free mixing layer (SFML) has been
studied using the two-point spectral closure model developed
for the purpose [6,39]. Thus for the particular considerations
in RTI of variable-density, nonstationarity and inhomogeneity,
the LWN model, though simpler, offers some advantages to
EDQNM. The constraint of locality of triadic interactions in
LWN has not presented significant drawbacks to practical
implementation of the model and indeed makes it a more
computable choice when compared to EDQNM.

We follow the approach of Refs. [14,15], which formulates
the evolution of an RT layer using three time-varying quanti-
ties, a Reynolds stress tensor R̂i j (y, k, t ), a velocity associated
with mass flux, âi(y, k, t ) (i and j denote the Cartesian compo-
nent components), and the covariance of density and specific
volume, b̂(y, k, t ). Here y is the vertical height of the domain
and k is the wave number in the direction perpendicular to the
vertical, and t is the time. On average, the flow is isotropic in
the horizontal plane. Therefore, the functions do not depend
on the wave vector k, but on its modulus |k|. This covariance
parameter can be understood as a measure of mixedness in the
system, i.e., b̂(y, k, t ) has a high value in a segregated domain,
and gradually decreases as the fluids mix.

The work presented here is a first effort at a minimal
augmentation of the model in Ref. [36] to capture inhomoge-
neous flow physics. In particular we are interested in statistical
properties of the flows and do not attempt to correlate to
physical features such as bubble-spike dynamics which form a
complementary approach [40–42]. In the first part of the paper
we consider terms corresponding to a Leith-type [43] spatial
diffusion for each of the dynamical variables. Other additional
terms relative to the homogeneous case, like the spatial advec-
tion terms, are also retained because they are exact. Although
this version is quite successful at recovering aspects of the
physics, some deficits appear particularly in the fidelity to the
density-specific-volume covariance. Therefore, in the latter
part of the paper, we include options for a kinematic source
term in the evolution equation for the covariance of density
and specific volume.

The objective of this work is to highlight the roles of the
different terms (derived and heuristic) in the LWN equations
for inhomogeneous mixing and motivate further refinement
based on the insights gathered. The numerical simulations
data against which the model predictions are compared, are
generated using MOBILE [44,45,48], following the implicit
large-eddy simulation (ILES) methodology of Refs. [46,47].
MOBILE integrates the incompressible variable-density mis-
cible equations of fluid motion and has been successfully
used to study systems with Atwood numbers up to 0.9 [48].
Throughout this study the resolution of the LWN model cal-
culation is identical (in the number of modes and in the grid
resolution) to that of the ILES simulations. This permits a
valid comparison between the two without needing to resort
to very high resolution simulations.

The outline of the paper is as follows: in Sec. II we in-
troduce the model, and explain the physical significance of

the various terms involved. In Sec. III we give details of our
numerical setup and details of the MOBILE simulations. In
Sec. IV we show results from comparison against MOBILE
data for the simplest model, and establish the importance
of various terms in the different flow regimes. We discuss
the model results for the RT system across three different
density-ratios between the participating fluids. In Sec. V we
show results for a modified LWN model with a source term
for the density-specific-volume-covariance. Finally, in Sec. VI
we provide a discussion and summary and point toward future
model development.

II. MODEL EQUATIONS AND IMPLEMENTATION

We will follow the development proposed for single-fluid
incompressible flow by Besnard et al. [6], and subsequently
adapted for variable-density flow by Refs. [14,15]. We first
decompose the flow-field variables, i.e., density ρ, velocity u,
and pressure p into their mean and fluctuating parts as follows:

ρ = ρ + ρ ′, (1)

u = u + u′, (2)

p = p + p′, (3)

where the overbar denotes the mean, and the primes the fluctu-
ations about the mean. In the case of variable-density flows, it
is useful to work with the mass-weighted averages introduced
by Favre. The Favre-averaged velocity ũ is

ũ = ρu
ρ

. (4)

Let u′′ denote the fluctuation about this Favre averaged veloc-
ity ũ. Then we have

u = ũ + u′′. (5)

If we apply the standard Reynolds decomposition to ρu, then
we get

ρu = ρ u + ρ ′u′, (6)

since u′ = 0 and ρ ′ = 0. Using Eq. (4) we then obtain

ρũ = ρ u + ρ ′u′,

ũ = u + ρ ′u′

ρ
. (7)

We define a velocity a associated with the net turbulent mass
flux as follows:

a = ρ ′u′

ρ
, (8)

So, ũ = u + a. (9)

From Eq. (7) then, we can define a as the flux of mass relative
to ũ.

For two arbitrary points x1 and x2 in space, the mass-
weighted Reynolds stress tensor is defined as

Ri j (x1, x2) = 1
2 [ρ(x1) + ρ(x2)]u′′

i (x1)u′′
j (x2). (10)
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Defining the specific volume as υ(x) = 1
ρ(x) and its fluctua-

tions υ ′(x) defined with respect to the mean specific-volume,
the velocity associated with the turbulent mass-flux is defined
as

ai(x1, x2) = −u′′
i (x1)ρ(x1)υ(x2), (11)

and the covariance of the density and specific-volume is de-
fined as

b(x1, x2) = −ρ ′(x1)υ ′(x2). (12)

Alternatively, these two points can be expressed in terms of
a center of mass x = 1

2 (x1 + x2), and separation r = x1 − x2

vectors. The corresponding Fourier transform, in terms of the
wave vector, k, associated with scale r,

R̃i j (x, k) =
∫

Ri j (x, r)e−ik·rdr, (13)

ãi(x, k) =
∫

ai(x, r)e−ik·rdr, (14)

b̃(x, k) =
∫

b(x, r)e−ik·rdr. (15)

To simplify further, we average over the sphere in k space
to obtain

R̂i j (x, k) =
∫

R̃i j (x, k)
k2d�k

4π
, (16)

âi(x, k) =
∫

ãi(x, k)
k2d�k

4π
, (17)

b̂(x, k) =
∫

b̃(x, k)
k2d�k

4π
, (18)

where d�k = sin θ dθ dφ for 0 � θ � π ; 0 � φ � 2π .
Henceforth, we will use R̂i j , âi, and b̂ to denote the spectral
quantities at a particular time t , and will omit their respective
arguments. Following Steinkamp et al. [14] we write the mass
and momentum conservation equations for variable-density
flows driven by gravity in the y direction as follows:

∂ρ

∂t
+ ∂ρũy

∂y
= 0, (19)

∂ρũy

∂t
+ ∂ρũyũy

∂y
= −∂ p

∂y
+ ρg − ∂Ryy

∂y
. (20)

Here, Ryy(y, t ) = ∫
R̂yy(y, k, t )dk is the vertical component

of the Reynolds stress tensor. The equations we use for our
comparison studies are obtained by multiplying quantities
such as υ with Eq. (19) or ũy with Eq. (20), and integrating
to get the ensemble-averaged correlation variables defined in
Eqs. (10) and (11). The equations for the correlation vari-
ables can then be simplified by taking Fourier transforms
across each homogeneous plane in the RT system. In the
three dimensional RT system, the direction of gravity is y,
and the interface lies on an x-z plane. For practical purposes,
we consider the x-z plane to be homogeneous, and thus take
Fourier transforms across those planes. The vertical (y) di-
rection is, however, inhomogeneous, and in this direction we
retain a physical-space representation (see Fig. 1 for details).
The detailed derivation of the LWN system is presented in
Refs. [14,15], and here we simply summarize the governing
equations, removing the source term when considering the RT
system. Defining R̂nn(y, k, t ) as the trace of R̂i j (y, k, t ), the
final set of evolution equations for the correlation variables
are as follows:

∂R̂nn(y, k, t )

∂t
= −∂R̂nnũy

∂y
+

∫ +∞

−∞
2ây

∂ p

∂y
[k exp (−2k|y′ − y|)]dy′ + ∂

∂k

[
k�−1

(
−Cr1R̂nn + Cr2k

∂R̂nn

∂k

)]

−2R̂yy
∂ ũy

∂y
+ Cd

∂

∂y

(
υt

∂R̂nn

∂y

)
(21)

∂R̂yy(y, k, t )

∂t
= −∂R̂yyũy

∂y
+

∫ +∞

−∞
2ây

∂ p

∂y
[k exp (−2k|y′ − y|)]dy′ + ∂

∂k

[
k�−1

(
−Cr1R̂yy + Cr2k

∂R̂yy

∂k

)]

−2R̂yy
∂ ũy

∂y
+ Cd

∂

∂y

(
υt

∂R̂yy

∂y

)
+ Cm�−1

(
δi j

3
R̂nn − R̂yy

)
(22)

∂ ây(y, k, t )

∂t
= −ũy

∂ ây

∂y
+ b̂

ρ

∂ p

∂y
− [

Cr p1k2
√

ân̂ân̂ + Cr p2�
−1]ây − R̂yy

ρ2

∂ρ

∂y
+ Cd

∂

∂y

(
υt

∂ ây

∂y

)

+ ∂

∂k

[
k�−1

(
−Ca1ây + Ca2k

∂ ây

∂k

)]
(23)

∂ b̂(y, k, t )

∂t
= ∂

∂k

[
k�−1

(
−Cb1b̂ + Cb2k

∂ b̂

∂k

)]
+ Cd

∂

∂y

(
υt

∂ b̂

∂y

)
, (24)

where the turbulence frequency �−1 =
√∫ k

0
k2R̂nn

ρ
dk, and the

turbulent viscosity υt = ∫ ∞
0

√
kR̂nn
ρ

dk
k2 . In Eqs. (21)–(24) the

respective dynamical variables R̂nn, R̂yy, ây, and b̂ are func-
tions of the vertical height y, the horizontal wave number k
and the time t . We drop the explicit arguments for brevity.
In Eqs. (21)–(24), the variables are functions of time, but

the time argument is dropped for brevity. Here and in what
follows, the arguments y and k are implicit unless otherwise
specified. Cd is the spatial diffusion coefficient.

In Eq. (21), R̂nn(y, k, t ) may be integrated to obtain
planar averaged values Rnn(y, t ) = ∫

R̂nn(y, k, t )dk. Simi-
larly, Ryy(y, t ) = ∫

R̂yy(y, k, t )dk, ay(y, t ) = ∫
ây(y, k, t )dk,

and b(y, t ) = ∫
b̂(y, k, t )dk. Here t is the time. Rnn(y, t ) is
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FIG. 1. Visualization of the density field in the MOBILE simulation run R3 at times (a) τ = 0; (b) τ = 0.42; (c) τ = 3.164; (d) τ = 5.19;
(e) τ = 6.5; (f) schematic of the LWN system, with a slice-through visualization from 3D simulations at τ = 5.19. LWN variables such as
Rnn(y, τ ) = ∫

R̂nn(y, k, τ )dk, ay(y, τ ) = ∫
ây(y, k, τ )dk and b(y, τ ) = ∫

b̂(y, k, τ )dk at τ = 5.19 are shown in the same plot, and these plots
show that the maximum value of all these variables occur at the center-plane of the RT system. The horizontal length Lx = 2π cm and the
vertical length Ly = 8π cm. Rnn(y, τ ) has units of g cm−1 s−2, ay(y, τ ) has units of cm s−1, g has units of cm s−2 and ρ1, ρ2, ρ has units of
g cm−3. b(y, τ ) is a dimensionless quantity

related to the turbulent kinetic energy E (y, t ) in the following
way:

E (y, t ) = 1

2ρ
Rnn(y, t ). (25)

The first term on the right-hand side (RHS) of Eq. (21),

i.e., − ∂R̂nnũy

∂y is the advection term. The second term is the
pressure-velocity transport term, and is responsible for the
onset of instability and turbulence. In this study we use
the “nonlocal” formulation of the pressure gradient term,
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∫ +∞
−∞ 2ây

∂ p
∂y [k exp (−2k|y′ − y|)]dy′, which couples ây with

the mean pressure gradient and is the principal driving term in
the equation for R̂nn. The “nonlocal” or integral formulation
in physical space helps characterize instantaneous propaga-
tion of pressure waves from one physical location to another.
The nonlocal integral is evaluated as a function of the ver-
tical coordinate y in our code. It is obtained by summing
over the integrand from 0 to y for each y. The third term
∂
∂k [k�−1(−Cr1R̂nn + Cr2k ∂R̂nn

∂k )] accounts for the energy cas-
cade in k space. The term with the coefficient Cr1 has a
“wavelike” contribution to the cascade, whereas the term with
the Cr2 coefficient makes a diffusive contribution. The Cr1

term is deemed “wavelike” because by retaining only the Cr1

term on the RHS, we obtain a wave equation (a hyperbolic
equation) after taking a second derivative of R̂nn with respect
to time. Cr1 > 0 gives rise to a forward cascade in k space,
and Cr2 > 0 results in both forward and reverse cascades. The
fourth term, 2R̂yy

∂ ũy

∂y , is also a driving term which accounts for
the coupling of Ryy with the gradients in velocity. The final

term, Cd
∂
∂y (υt

∂R̂nn
∂y ), accounts for spatial diffusion and is de-

rived from the velocity triple correlation term in the equation
of motion of the Reynolds stress tensor components Ri j .

Equation (22) is the equation for the vertical component,
R̂yy, of the Reynolds stress tensor and shares its form with

Eq. (21). The first term on the RHS, − ∂R̂yyũy

∂y , represents ad-
vection and the second,

∫ +∞

−∞
2ây

∂ p

∂y
[k exp (−2k|y′ − y|)]dy′,

is a principal drive term. The third term represents the energy
cascade and has an equivalent in R̂nn(y, k, t ). The fourth term

2R̂yy
∂ ũy

∂y is another drive term, and the fifth, Cd
∂
∂y (υt

∂R̂yy

∂y ),

represents spatial diffusion of R̂yy.
The final term in Eq. (22) describes the rate of return to

isotropy. The main contribution of the coefficient Cm is a
redistribution of energy between components of the Ri j tensor.
A high value of Cm draws the distribution closer to equality
amongst the three diagonal components, whereas a low value
of Cm biases the energy toward R̂yy(y, k). Though we note that
Cm may not be constant in all circumstances, possibly varying
with Atwood number or with the rate at which isotropy is
restored in the flow, in the present study we set Cm = 1,
following previous literature [14].

The equation for the turbulent mass flux velocity, ây

[Eq. (23)], has a similar form to both Eqs. (21) and (22).
Advection in ây by the velocity field ũy is represented by

−ũy
∂ ây

∂y , while b̂
ρ

∂ p
∂y is the production term for ây(y, k, t ). Here,

b̂(y, k, t ) couples directly to the pressure-gradient to produce
ây(y, k, t ). The term [Cr p1k2

√
ân̂ân̂ + Cr p2�

−1]ây applies drag
to ây(y, k, t ). This is a modeled term introduced in Ref. [14]
to account for drag perpendicular to the interface, denoted as
Cr p1, and correspondingly Cr p2 denotes drag parallel to the

interface. The other term driving ây(y, k, t ) is − R̂yy

ρ2
∂ρ

∂y , and
provides a flux opposite to the density gradient. The final two
terms on the RHS of Eq. (23) describe spatial diffusion and
energy cascade, respectively.

Finally Eq. (24) describes the evolution of the spectrum of
the covariance of density and specific volume, b̂. The cascade
and spatial diffusion terms are similar in form to the previous
equations.

The spectral model calculations presented in this paper are
performed with a code using a MacCormack scheme [49]
which is second order accurate in both space and time, and
employs a two-step methodology. Each of these steps uses
single-sided differences for the first order derivatives, a left-
biased stencil for the first step and a right-biased one for the
second. The code uses a logarithmic grid for a modified wave
number

z = zs ln

{
k

k0

}
,

where, following Ref. [6], we take k0 and zs to be unit scale
factors. We employ a specific choice of variables in the cas-
cade terms, {kR̂nn, kR̂yy, kâi, kb̂}, that retains a conservation
form when expressed in terms of z rather than k. It follows
that the values of the integrals of the spectral quantities are
easily determined, e.g.,

Rnn(y, t ) =
∫ +∞

0
R̂nn(y, k, t )dk

=
∫ +∞

−∞
R̂nn(y, z, t )

k0

zs
exp

{ z

zs

}
dz, (26)

with similar definitions of integral quantities Ryy(y, t ), b(y, t ),
and ay(y, t ). Setting k0 = 1 and zs = 1 gives

Rnn(y, t ) =
∫ +∞

−∞
exp (z)R̂nn(y, z, t )dz,

where exp(z)R̂nn(y, z, t ) = kR̂nn(y, k, t ). The boundary con-
ditions at k = 1 and k = kmax are Neumann (zero flux) as
are those at y = 0 and y = Ly, where Ly is the height of the
domain.

The LWN model for inhomogeneous RT fluid mixing can
as written here be thought of as the minimal necessary aug-
mentation of the corresponding equations for homogeneous
turbulence to take account of inhomogeneity. It includes a
Leith-type diffusion term [43] that accounts for inhomo-
geneous growth and the spreading of b̂(y, k) in a manner
analogous to that for R̂nn(y, k) and ây(y, k).

In presenting results we will use integral quantities
for analysis. These quantities are b(y, t ) = ∫

b̂(y, k, t )dk,
ay(y, t ) = ∫

ây(y, k, t )dk, and Rnn(y, t ) = ∫
R̂nn(y, k, t )dk.

Here t is the simulation time. In our study, the Atwood number
of the system is defined as A = ρ2−ρ1

ρ2+ρ1
, where ρ1 is the density

of the light fluid and ρ2 is the density of the heavy fluid.
One important metric in our study is the mix-width of the RT
system. The mix-width W (t ) is obtained from the position of
contours of volume fraction, and for robustness is here taken
to be

W (t ) = y|αh=95% − y|αh=5%, (27)

where y|αh=95% denotes the domain height at which the vol-
ume fraction of the heavy fluid (αh) is 95% and y|αh=5%

denotes the same for a 5% volume fraction.
As presented, the LWN model for inhomogeneous RT

fluid mixing can be thought of as the minimal necessary
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TABLE I. Table showing system parameters used in the MOBILE simulations for runs R1,R2, R3. Nx, Nz are the two horizontal resolutions
and Nv is the vertical resolution. Lx, Lz are the domain lengths in the two horizontal directions and Ly is the domain height (vertical direction).
ρ1 and ρ2 are the densities of the light and heavy fluids, respectively. t ′ = 1√

Ag/Lx
denotes a typical timescale for the flow.

Run A Nx Nz Nv Lx [cm] Lz [cm] Ly [cm] g[cm s−2] ρ1[g cm−3] ρ2[g cm−3] t ′[sec]

R1 0.25 256 256 512 2π 2π 4π 2.0 1.0 1.667 3.5
R2 0.1 256 256 1024 2π 2π 8π 2.0 1.0 1.228 5.6
R3 0.05 256 256 1024 2π 2π 8π 2.0 1.0 1.105 7.9

augmentation of the corresponding equations for homoge-
neous turbulence to take account of inhomogeneity. It is the
least elaborate two-point formulation for variable-density, and
includes a Leith-type diffusion term [43] that accounts for in-
homogeneous growth and the spreading of b̂(y, k) in a manner
analogous to that for R̂nn(y, k) and ây(y, k).

III. IMPLICIT LARGE EDDY SIMULATION:
DESCRIPTION OF THE MOBILE CODE

We briefly review the numerical methods employed in
the ILES of variable density turbulent flows. The RT sim-
ulations were performed using MOBILE [44,45,48,50], a
three-dimensional, hydrodynamic solver. MOBILE solves
the incompressible Navier-Stokes equations, and adjusts the
pressure field to conserve volume. In MOBILE, compu-
tational expediency is achieved through decomposing the
incompressible governing Eqs. (28) and (29) given below
into hyperbolic (advective transport), and nonhyperbolic (dif-
fusion and viscous dissipation) and elliptic (pressure and
velocity correction) components.

∂ρ

∂t
+ ∂

∂xi
(ρui ) = 0, (28)

∂

∂t
(ρui ) + ∂

∂xi
(ρuiui + pδi j ) = ρgi, (29)

∂

∂xi
ui = 0. (30)

MOBILE employs a split, high-order advection scheme
using a fractional step approach composed of a sequence of
one-dimensional updates of the conserved variables (mass
and momentum) along the X, Y, and Z coordinate directions.
Following Strang [51], a sequence of sweeps [X-Y-Z-Z-
Y-X] results in a net truncation error which is close to
second order in time. MOBILE has been shown to accurately

predict global flow features such as symmetry break-down of
rising bubbles and spikes in the single mode RT simulation
at Atwood numbers upto 0.5 [44]. Further, MOBILE has
been validated for several fluid mixing and transport prob-
lems including single-mode and multimode Rayleigh-Taylor
flows up to Atwood A = 0.9 [44,45,48,50], Kelvin-Helmholtz
instability [44], lock-release gravity currents [44], systems
with unusual geometries [45], jet flows with background flows
[52,53], and systems with variable acceleration [54]. For ad-
ditional details on these methods and codes, the reader is
referred to Refs. [44,45,48,50]. While MOBILE may be used
in both DNS and ILES modes, the simulations in this paper
employ the ILES approach. When used in DNS mode, the
dissipation of kinetic energy is dominated by an explicit rep-
resentation of physical viscosity. In contrast, ILES exploits
numerical dissipation of kinetic energy (and scalar fluctua-
tion energy) and corresponds closely to the use of a subgrid
turbulence model where the scale filter is applied at the grid
scale implicitly by the numerical method. Such a simula-
tion strategy has the additional benefit of being monotonicity
preserving, and this is an essential property to faithfully rep-
resent sharp material interfaces in two-fluid mixing. It has
been shown [55] that such simulations correspond to the high
Reynolds number (and Schmidt number Sc = 1) limit, where
the flow has exceeded the Reynolds number (Re) threshold
[56] for mixing transition, beyond which several key mixing
properties have been observed to lose their dependence on
Re. In this study, we have examined the performance of the
LWN model in this high Re, Sc = 1 limit by comparison with
the ILES calculations, while the extension to finite Re (and
nonunity Sc) will be pursued in follow-up studies.

Parameters for three MOBILE computations used to test
and validate the LWN model are tabulated in Table I. The
Atwood numbers range from low to moderate and the grid
resolution in all cases remains fixed. The acceleration due

FIG. 2. (a) The mix-width W (τ ) (in cm); (b) mean Rnn(y = 0, τ ) (in g cm−1 s−2) for M1, M2, M3, and M4; (c) relative error of Rnn(y = 0, τ )
for M1 and M2 with respect to Rnn(y = 0, τ ) for M3. showing convergence as resolution is increased. The system coefficients are given in the
first three rows of Table II.
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TABLE II. Table summarizing parameters for test case at three resolutions, and the coefficients used. The previously studied homogeneous
case is also tabulated to indicate the coefficients optimized for that study [36]. Nk and Nv are the horizontal (spectral) and vertical resolutions,
respectively. A is the Atwood number and g denotes the acceleration due to gravity. dkmax is the maximum value of the spectral discretization.
We use a logarithmic discretization in the spectral space. t ′ = 1√

Ag/Lx
denotes a typical timescale for the flow.

Test case A g[cm s−2] Lx [cm] Ly [cm] Nk dkmax[cm−1] Nv Cr1 Cr2 Cd Cr p1 Cr p2 t ′[sec]

M1 0.5 2.0 62.8 30.0 140 0.1 120 0.12 0.06 0.03 1.0 1.0 7.92
M2 0.5 2.0 62.8 30.0 140 0.1 240 0.12 0.06 0.03 1.0 1.0 7.92
M3 0.5 2.0 62.8 30.0 140 0.1 480 0.12 0.06 0.03 1.0 1.0 7.92
M4 0.5 2.0 62.8 30.0 140 0.1 960 0.12 0.06 0.03 1.0 1.0 7.92
Homogeneous 0.05 1.0 2π – 1024 – 0.12 0.06 0.0 1.0 1.0 1.0

to gravity is fixed at 2.0 cm/s2 and density of the lighter
fluid is fixed at ρ1 = 1.0 g cm−3. In each case, we eventu-
ally nondimensionalize the time t with the typical Atwood
dependent timescale t ′ = 1√

Ag/Lx
in each case, and Lx is the do-

main length in the horizontal direction x̂. The nondimensional
time is τ = t

t ′ . Thus, R̂nn = R̂nn(y, k, t ) = R̂nn(y, k, τ ), R̂yy =
R̂yy(y, k, t ) = R̂yy(y, k, τ ), ây = ây(y, k, t ) = ây(y, k, τ ), b̂ =
b̂(y, k, t ) = b̂(y, k, τ ). Similarly, for the integrated quanti-
ties, Rnn = Rnn(y, τ ), Ryy = Ryy(y, τ ), ay = ay(y, τ ) and b =
b(y, τ ) unless otherwise mentioned.

In Fig. 1 we show visualization of the density field ob-
tained from the MOBILE simulation over a range of times.
The profiles of ay(y), b(y) and Rnn(y) are overlaid at time
τ = 5.19. While presenting the results, we note that b(y, τ ) is
a dimensionless quantity, and thus we do not provide explicit
dimensions of b(y, τ ). Unless otherwise mentioned, Rnn(y, τ )
has units of g cm−1 s−2, ay(y, τ ) has units of cm s−1, g has
units of cm s−2 and ρ1, ρ2, ρ has units of g cm−3. Note that
the corresponding spectral quantities will have the follow-
ing units: b̂(y, k, τ ) has units of cm, ây(y, k, τ ) has units of
cm2 s−1, and R̂nn(y, k, τ ) has units of g s−2.

IV. RESULTS

In this section, we seek to compare the results from the
LWN model with MOBILE simulations. We first demonstrate
that the LWN model code converges as numerical resolution
is increased.

A. Test case

We configure our LWN model for an idealized RT system
starting with an analytically specified initial spectrum and
demonstrate that our implementation exhibits convergence
with grid refinement for the relevant metrics. The initial b̂(y =
0, k) has the following functional form [15]:

b̂(y = 0, k) = γ1km

1 + γ2km+ 5
3

(31)

and R̂yy(y, k, τ = 0) = 0 and ây(y, k, τ = 0) = 0. The two
constants γ1 and γ2 are chosen to ensure that the maximum
of b̂ occurs at k = 1 and the initial spectral integral b(y)
corresponds to equal volume fraction of the two fluids in
the y = 0 cell. This particular functional form of b̂(y = 0, k)
was used previously in Ref. [57], so that when k is small,
b̂(y = 0, k) ∼ km, and when k is large, b̂(y = 0, k) ∼ k− 5

3 ,
following the anticipated power-law scaling of the turbulent
kinetic energy spectrum within the inertial range. In Figs. 2(a)
and 2(b) we demonstrate convergence of the mix-width W (τ )
and Rnn(y = 0, τ ) with grid refinement in physical space. In
Fig. 2(c) we plot the relative error in Rnn(y = 0, τ ) for the runs
M1 and M2 with respect to Rnn(y = 0, τ ) of the most refined
grid, i.e., M3. As the plot shows, the relative error goes to 0
asymptotically with time. The system coefficients are given in
the first two rows of Table II.

B. Comparison with MOBILE simulations

An extensive literature on the topic, encompassing the full
breadth of theory, experiments and numerical simulations,

FIG. 3. (a) Visualization of population of 2D-spectral modes in the kx-kz plane at the centerline of the domain, (b) amplitude h0(x, y) (in
cm) in physical space; (c) time-evolution of mix-width W (τ ) (in cm) obtained from the MOBILE data showing the exponential and nonlinear
growth stages; the black dotted line shows the start time for LWN calculations.
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FIG. 4. Initial spectral data for LWN taken from MOBILE R1 at τ = 0.42 (blue line): (a) b̂(y = 0, k) [cm], (b) ây(y = 0, k) [cm2 s−1], and
(c) spectra for R̂nn(y = 0, k) [g s−1]. The spectral data are taken at the central line: y = 0.

e.g., Refs. [58–60], has shown that RT instability is a com-
plex mixing phenomenon with three stages of evolution, a
linear, a weakly nonlinear and a fully nonlinear turbulent
stage. Any small perturbations present at the initial condi-
tion grow exponentially in the linear stage, after which they
interact with each other in the nonlinear stage, with a final
transition to turbulence. The mix-layer grows exponentially
in the first stage and later grows as τ 2, where τ = t/t ′ is the
nondimensionalized time, in the final turbulent stage. In this
subsection we specify the stage of the flow evolution in MO-
BILE that we take as an initial condition for the LWN model
calculations.

For all our model calculations, early-time perturbation
spectra from MOBILE calculations were used to initialize the
model. The multimode perturbation imposed at the interface
separating the two fluids [59] can be obtained by the function

h(x, z, t = 0) =
∑
ky,kz

⎡
⎢⎢⎢⎣

ak × cos(kxx) × cos(kzz)

+bk × cos(kxx) × sin(kzz)

+ck × sin(kxx) × cos(kzz)

+dk × sin(kxx) × sin(kzz)

⎤
⎥⎥⎥⎦. (32)

Here h(x, z, t ) is the amplitude of perturbation in the horizon-
tal x-z plane. kx and kz are wave numbers in the two horizontal
directions. h0RMS ∼ 3.0 × 10−4Lx is the RMS amplitude, and
with the spectral amplitudes ak , bk , ck , dk chosen randomly
chosen within narrow-band spectrum in wave-number space
in the range 32 � k � 64 as shown in Fig. 3(a). The amplitude
profile h0(x, y) in physical space is shown in Fig. 3(b). The
initial amplitudes were converted to volume fraction pertur-
bations.

We choose as the initial condition for evolution of the
LWN model a nondimensional time τ0 = 0.42, where t ′ =
1/

√
Ag/Lx is the characteristic timescale of the flow. At this

time, the mix-layer as calculated by the data is approaching
the end of the early growth stage, as shown in Fig. 3(c).
Immediately thereafter, the growth rate smoothly transitions
from that associated with the initial interface spectrum to a
fully nonlinear development. As we show later in the paper,
this time is close to the position of the peak of the mean b(y =
0, τ ) evolution. The simple version of the LWN model does
not contain a kinematic source term in the equation for b(y, τ )
[see Eq. (24)]. Since there is no mechanism in the LWN model
to represent these earliest stages of growth, particularly the
initial growth of b̂, the modeled mix-layer goes directly into

the quadratic nonlinear regime [61]. Therefore, we start the
model calculations at a time when the MOBILE mix-layer
has settled out of its early transients. As we show later in the
paper, this time is also close to the position of the peak of the
mean ay(y = 0, τ ) evolution.

At the chosen time τ0, the b̂(y = 0, k), ây(y = 0, k),
and R̂nn(y = 0, k) spectral initial conditions for the model
as obtained from the MOBILE data are shown in Fig. 4.
Here the lowest wave number k0 = 2π

Lx
, where Lx is the do-

main length (see Fig. 1). The y �= 0 planes are initialized
from the MOBILE spectra in a similar manner. The max-
imum wave number is kmax = 128 due to the de-aliasing
operation [62].

1. Results from the LWN model: A = 0.25

The coefficients used to compute a series of LWN runs
for A = 0.25 are listed in Table III. We keep the spectral
transfer coefficients Cr1 and Cr2 fixed to the values obtained
in the homogeneous turbulence study of Ref. [36]. In T1–
T4 we vary the spatial diffusion coefficient Cd , keeping the
drag coefficients Cr p1 and Cr p2 fixed at 1.0, their value in the
homogeneous variable-density case (see last line of Table II).
Figure 5(a) shows that the mix-layer width is underpredicted
compared to the MOBILE data (blue dashed line) for T1–T4,
and relatively insensitive to large changes in Cd . In Figs. 5(b),
5(c) and 5(d) we see that as Cd is increased, b(y = 0, τ ) de-
cays faster, and growth of both the magnitude of ay(y = 0, τ )
and Rnn(y = 0, τ ) is suppressed at later times. It appears that
Cd roughly O(1) is a reasonable choice.

TABLE III. Table summarizing comparison study of LWN model
against the MOBILE data (run R1). The set of coefficients inside
the red box gives the best agreement between the LWN model and
MOBILE results that were obtained in this study.

Run A τ0 Cr1 Cr2 Cd Cr p1 Cr p2

T1 0.25 0.42 0.12 0.06 0.03 1.0 1.0
T2 0.25 0.42 0.12 0.06 0.1 1.0 1.0
T3 0.25 0.42 0.12 0.06 0.5 1.0 1.0
T4 0.25 0.42 0.12 0.06 1.0 1.0 1.0
T5 0.25 0.42 0.12 0.06 0.5 0.08 0.08
T6 0.25 0.42 0.12 0.06 0.5 0.2 0.2

T7 0.25 0.42 0.12 0.06 0.5 0.5 0.5
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FIG. 5. (a) Mix-width (in cm) from the MOBILE data (R1, blue dashed line) and that from the LWN model calculations (T1 orange, T2
green, T3 red, T4 purple); (b) b(y = 0, τ ); (c) ay(y = 0, τ ) (in cm s−1); (d) Rnn(y = 0, τ ) (in g cm−1 s−2).

In Figs. 6(a)–6(c) we present mean profiles of b(y, τ ),
ay(y, τ ), and Rnn(y, τ ) at τ = 5.3 for the runs T1–T4. At
τ = 5.3 the mixing layer evolution is in the quadratic growth
regime of the mix-layer evolution. At this time mixing be-
tween the fluids is already well developed, and since there is
no source term in the b̂ equation [Eq. (24)], b(y, τ ) profiles,
which are increasing underpredicted for increasing Cd , con-
tinue to decay with time.

Figure 6(b) shows that the rounded-top or “domelike”
shape of ay(y, τ ) gradually becomes broader as we increase
Cd but in so doing, the magnitudes of ay(y, τ ) away from
the center-line, are increasingly underestimated by the LWN
model. However, the spread of the profiles is fairly close to the
MOBILE predictions. The profiles for Rnn(y, τ ) [Figs. 6(c)]
also broaden as Cd is increased, an their peak value decreases
at the center-line.

Based on the studies so far, Cd = 0.5 yields the optimum
agreement between LWN and the data with respect to the mix-
layer width and individual profiles of ay(y, τ ) and Rnn(y, τ ).
We carry out further investigations by fixing this value of
Cd and jointly varying Cr p1 and Cr p2, (T5–T7 in Table III).
We see in Fig. 7(a) that as we increase Cr p1 and Cr p2, the
rate of growth of mix-layer becomes slower eventually under-
predicting the growth relative to the data for Cr p1 > 0.5. In
Fig. 7(b), we report a comparison of the growth rate α cal-
culated according to Ref. [63], α = Ẇ 2

4AgW , where W is the
width of the mixing layer. α for the LWN run is calculated
for the coefficient set T7 (see Table III) with Cr p1 = 0.5. In
Fig. 7(d) we compare the evolution of ay(y = 0, τ ) for the
different values of Cr p1 and Cr p2. As expected, the growth of
ay(y = 0, τ ) is slower as the drag coefficients Cr p1 and Cr p2

are increased. Since ây(y, k) provides the principal driving

FIG. 6. Profiles of (a) b(y, τ ), (b) ay(y, τ ) (in cm s−1), and (c) Rnn(y, τ ) (in g cm−1 s−2) at time τ = 5.3 for the MOBILE data (R1, blue
dashed line) and that from the LWN model calculations (T1 orange, T2 green, T3 red, T4 purple).
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FIG. 7. (a) Mix-width (in cm) from the MOBILE data (R1, blue dashed line) and that from the LWN model calculations (T1 orange, T2
green, T3 red, T4 purple) (b) comparison of mix-width growth rate α(τ ) for the case Cr p1 = 0.5 in (a); (c) b(y = 0, τ ); (d) ay(y = 0, τ ) (in
cm s−1); (e) Rnn(y = 0, τ ) (in g cm−1 s−2).

force to R̂nn(y, k) through the pressure-gradient term, R̂nn(y, k)
growth rate also decreases as Cr p1 and Cr p2 are increased
[Fig. 7(e)]. However, slower growth of R̂nn(y, k) increases the
turbulence timescale � and thus b̂(y, k) decays slower as Cr p1

and Cr p2 are increased [Fig. 7(c)].
We thus arrive at a reasonable “best” (though not

rigorously optimized) set of coefficients Cd = 0.5, and
Cr p1,Cr p2 = 0.5 with run T7 in Table III. With this choice we
show that indeed the mixing evolution away from the center-
line is also captured quite well. Figures 8(a), 8(b) and 8(c) we
show, respectively, the evolution with time of b, ay, and Rnn at
various horizontal planes in the domain, y = 0, y = ±0.06Ly

and y = ±0.1Ly. In particular, ay(y = 0, τ ) agrees very well
with the simulation. Both Ryy (not shown) and Rnn growths

are somewhat overpredicted, although predictions of Ryy fare
better than Rnn. The LWN underpredicts b(y = 0, τ ) across
each of these planes, presumably due to the lack of a source
term, which motivates the discussion in Sec. V.

With this set of coefficients roughly optimized for A =
0.25, we carried out further calculations with the LWN model
at lower values of Atwood number 0.1 and 0.05 to assess the
dependence of our choices on A, if any. Both calculations
were initialized at same nondimensional time τ0 = 0.42 of
the data. Figure 9 shows that the model performs just as
well for A = 0.05 flows as it does for the A = 0.25 with
no further re-tuning. The same is true for A = 0.1 (results
not shown). This is reassuring since it says that, at least at
low to moderate A the model does not require any change

FIG. 8. Results of comparison between MOBILE calculation (R1, dashed lines) and that from the LWN model calculation (T7, solid
lines) at center-plane, and at distances of 6%Ly and 10%Ly from the center. Plots of (a) b(y, τ ), (b) ay(y, τ ) (in cm s−1), and (c)Rnn(y, τ ) (in
g cm−1 s−2).
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FIG. 9. Results of comparison between MOBILE data R3 (dashed line) and LWN calculations (T7, solid lines) (a) Mix-width (in cm)
comparison; results at center-plan and at distances of 6%Ly and 10%Ly from the center of (b) b(y, τ ), (c) ay(y, τ ) (in cm s−1), and (d) Rnn(y, τ )
(in g cm−1 s−2).

in coefficients to operate. It is also consistent with the fact
that the model does not have A-dependent assumptions built
into it.

V. GROWTH AND SATURATION OF b
IN THE LWN MODEL

We have noted that the LWN model does not predict the
correct magnitude of the b(y, τ ) profile for τ > 1, and we
attribute the decay of b(y, τ ) to the omission of a source term
in equation [Eq. (24)] for b(y, τ ). Previous efforts on RT
using spectral turbulence models [6,14,15,63–65] stress the
importance of maintaining the centerline b, i.e., b(y = 0, τ ) at
a constant value. Indeed, Refs. [14,15] introduced a kinematic

source term in an ad hoc manner to maintain b(y = 0, τ )
(see Ref. [14]). With access to detailed simulations we
can solidify this notion further. In Fig. 10(a) we plot the
time-evolution of b(y=0)

max[b(y=0)] as obtained from MOBILE
simulations and we find independence of b(y = 0) across
the Atwood number range studied. Furthermore, simulations
show that b(y = 0, τ ) saturates at b(y=0)

max[b(y=0)] ∼ 1
3 . Motivated

by this observation, and as a first attempt to reduce model
errors in b(y = 0, τ ), we modified the LWN model to keep
b(y = 0, τ ) constant at its final steady-state value observed
in [Fig. 10(b)]. This modified model shows much improved
predictions for b(y = ±0.06Ly, τ ) and b(y = ±0.1Ly, τ ),
especially compared with Fig. 7(b). This is consistent with

FIG. 10. (a) Plots of b(y=0)
max[b(y=0)] for different Atwood numbers from MOBILE data R1, R2, R3. (b) Comparison of b(y = 0, τ ) among

results from MOBILE data R1 (blue dashed line), modified LWN (orange line with circles), and LWN (green line). (b) Comparison of ay(y =
0, τ ) (in cm s−1) for the same runs.
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FIG. 11. The evolution of b(y, τ ) at the the center-plane and at
two distances away from the centerplane, computed using a source
term as in Eq. (33), for two different start times, (a) τ = 0.42 (run
PT1, Table IV) and (b) τ = 0.0 (run PT2, Table IV).

the new data-motivated “source” term that we now hold
constant at the centerline, and over time the Cd -weighted
diffusion spreads the signal outwards.

With the above modifications to the model, other quanti-
ties such as ay(y = 0, τ ) [see Fig. 10(c)] and Rnn(y = 0, τ )
(not shown here), both at the centerline and outward from it,
change very little. This approach is not entirely satisfactory
from the point of view of the evolution equations.

Motivated by single-point studies of variable-density RT
[66–68] we can improve our approach further by modifying
the b̂(y, k, t ) equation as follows:

∂ b̂(y, k, t )

∂t
= −2(b(y) + 1)

ρ
ây

∂ρ

∂y

+ ∂

∂k

[
k�−1

[
−Cb1b̂ + Cb2k

∂ b̂

∂k

]]

+Cd
∂

∂y

(
υt

∂ b̂

∂y

)
, (33)

where the first term on the right-hand side is the spectral
extension of the form of the source term used in single-point
studies [66–69], with ây = ây(k, y, t ) = ây(k, y, τ ) and b(y) is
the integrated value of b̂ at y. Again, the explicit arguments
are dropped for brevity.

With coefficients unchanged, the results of incorporating
this source term on b̂ is shown in the top two panels of
Fig. 11 for two different start times (initial conditions). The
first start time is at τ = 0.42 as before and the second is at

TABLE IV. Table summarizing comparison study of LWN model
against the MOBILE data (run R1).

Run A τ0 Cb1 Cb2 Cd Cr p1 Cr p2

PT1 0.25 0.42 0.12 0.06 0.5 0.5 0.5
PT2 0.25 0.0 0.12 0.06 0.5 0.5 0.5
PT3 0.25 0.0 0.12 0.12 2.0 2.0 2.0

τ = 0, in anticipation of better transition capture with a source
term. The first thing to note is that both cases show initial
growth of b followed by an asymptote to roughly 0.06. Model
calculations corresponding to lower A (R2, R3s) were also
observed to saturate to correspondingly lower b(y = 0, τ ).
In all cases the final value of the b(y = 0, τ ) was the same
for a given flow irrespective of initial (start) time, but larger
than for the MOBILE simulation. The mix-width evolution
with the source term included is shown in Fig. 12 for both
start times. The mix-layer as predicted by the LWN model is
overpredicted in both cases although the expected t2 behavior
is recovered. As we show below, it is possible to get a better
agreement for the mix–width by re-tuning of Cd , Cr p1, Cr p2,
and Cb2.

The saturation value of b(y = 0, τ ) achieved by the model
is roughly 6 times the value of b(y = 0, τ ) achieved by the
MOBILE calculation. When the spatial diffusion coefficient
Cd is small, there is a tendency of b(y = 0, τ ) to relax to the
“configurational” or the no–mix value of b. The configura-
tional or “no-mix” value of b(y = 0, τ ) is defined as [15,57]

FIG. 12. The evolution of mix-layer (in cm), for two different
start times, (a) τ = 0.42 (run PT1, Table IV) and (b) τ = 0.0 (run
PT2, Table IV).
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FIG. 13. Results of comparison between MOBILE data R1 (dashed line) and LWN calculations (run PT3 in Table IV, solid lines) (a) Mix-
width (in cm) comparison; results at center-plane and at distances of 6%Ly and 10%Ly from the center of (b) b(y, τ ), (c) ay(y, τ ) (in cm s−1),
and (d) Rnn(y, τ ) (in g cm−1 s−2).

b = α1α2(ρ1−ρ2 )2

ρ1ρ2
, where α1 and α2 are the volume fractions

of the light and heavy fluids, respectively. b(y = 0, τ ) attains
the configurational or “no-mix” value at α1 = α2 = 0.5 (the
configurational b = 0.067 for ρ1 = 1.0 and ρ2 = 1.667 as in
our case) during late times. Similar spectral turbulence models
[15,57] have also observed this same tendency to relax toward
the configurational value of b(y = 0, τ ). The MOBILE sim-
ulation results are not purely immiscible. Therefore, it is not
surprising that the final value of b(y = 0, τ ) is overpredicted
by the model (Fig. 11). The impact on other quantities of
interest such as mix-width (see Fig. 12), ay(y = 0, τ ) and
Rnn(y = 0, τ ), of the overprediction in the final b(y = 0, τ ) is
therefore not unexpected. The coefficients for these runs are
provided in Table IV (runs PT1 and PT2).

With further tuning of the spatial diffusion coefficient
(Cd ), the spectral transfer coefficient of b̂(y, k, τ ), i.e., Cb2,
and the drag coefficients of ây(y, k, τ ), i.e., Cr p1 and Cr p2,
we arrive at a much improved comparison for the different
metrics under study (Fig. 13). The coefficients are given in
Table IV (run PT3). As is shown in Fig. 13(a), the trend of
the mix-width evolution is captured by the LWN model. The
centerline b(y, τ ) [Fig. 13(b)] remains overestimated, but the
qualitative behavior is captured. Similarly, the evolution of
ay(y, τ ) [Fig. 13(c)] and Rnn(y, τ ) [Fig. 13(d)] are captured
by the LWN model.

While further tuning of coefficients could optimize among
the main metrics, the important thing to note with this source
term for b̂(y, k, τ ) is that it successfully captures the evolu-
tion of the mix-width [Fig. 13(a)], the qualitative evolution

of b(y, τ ) [Fig. 13(b)], ay(y, τ ) [Fig. 13(c)], and Rnn(y, τ )
[Fig. 13(d)], both at the center-plane and elsewhere in the
mix-layer.

VI. DISCUSSION AND CONCLUSIONS

In this study of Rayleigh-Taylor instability, we have
compared the LWN model with the results from implicit
large-eddy simulations using MOBILE. Comparisons of
plane-averaged quantities and the time-evolution of their spa-
tial distribution have been made of mix-layer width, the
time-evolutions of the specific volume and density fluctuation
correlation b(y, τ ), the mass-flux velocity ay(y, τ ), and the
trace of the Reynolds stress Rnn(y, τ ). Although the LWN
model has previously been applied to homogeneous turbu-
lent problems, this is the first study using initial conditions
comprising high wave-number, narrow-band density inter-
face perturbations that are a prerequisite for the study of
the classical Rayleigh-Taylor instability. Following on from
the homogeneous, isotropic variable-density two-point model
presented in our previous work [36], the enhancements to
the model presented in this paper provide the most com-
pact feasible representation of behaviors in inhomogeneous
turbulence.

We separated our study into two parts in order to attempt
to isolate the physics associated with the main model ca-
pabilities. The first part was an assessment of the minimal
augmentation of the model required to capture inhomo-
geneous mixing. This yielded excellent outcomes for the
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FIG. 14. (a) Comparison of ay(y = 0, τ ) (in cm s−1) among re-
sults from MOBILE data (blue dashed line), and LWN runs with
Cd = 0.5 (orange line), Cd = 1.0 (green line), Cd = 1.5 (red line),
and Cd = 2.0 (purple line). All other coefficients are same as in run
T7. (b) Comparison of Rnn(y = 0, τ ) (in g cm−1 s−2) for these runs.

mix-width and mass flux velocity ay over a modest range
of A without additional tuning. Of note is the sensitivity to
the spatial diffusion coefficient, Cd , in predicting the correct
profile of the turbulent mass flux velocity ay(y, τ ). When Cd

is small, the dominant processes governing the turbulence
are the inertial range scale-to-scale transfers of R̂nn, R̂yy, ây, b̂
that in the LWN model are represented in k-space, and the
baroclinic drive due to the pressure and density gradients [see
Eqs. (21)–(24)]. None of these terms directly induce spreading
of the mean ay(y, τ ) profiles, and thus we find [see Fig. 6(b)]
that it acquires a rounded-top or “domelike” shape. Inevitably,
larger values of Cd make spatial diffusion more rapid, produc-
ing smoother distributions in space.

The simplest LWN model yields larger magnitudes of
Rnn(y = 0, τ ) [see Fig. 8(d)] compared to MOBILE sim-
ulation. Careful optimization of the Cd coefficient gives a
somewhat better agreement on this parameter, but then ay(y =
0, τ ) becomes underpredicted [see Figs. 14(a) and 14(b)].
While it may be possible to select a separate Cd for each
variable, or modify the Leith model [70], such fine-tuning lies
outside the scope of the present paper.

Another important factor that controls the quality of com-
parison of the variable Rnn is the selection of a suitable
return-to-isotropy coefficient, Cm. As we mention in Sec. II,
Cm in Eq. (22) governs the distribution of energy between the
components of the stress tensor Ri j and in setting Cm = 1.0
we fix Ryy(y, τ ) ∼ 0.4Rnn(y, τ ) at all times. The quality of
comparison between model and simulation is rather better
for Ryy than for Rnn. This is because a close match for the
mass flux velocity ay results in a better prediction of Ryy.

However, we find in the simulations that Ryy ∼ cRnn, where
c is a constant between 0.6 and 0.8 depending on the flow
regime, and so energy is preferentially contained in Ryy. In
contrast, the model energy is approximately equidistributed.
As discussed in Ref. [39], bias in the Reynolds stress is
known to be a feature in the development of anisotropic flows
and so its appearance here is consistent with the problem
configuration. In principle, a biased distribution of energy
amongst the Reynolds stress components is sensitive to Cm,
but there are intrinsic limitations in the spectral model with
respect to anisotropic flows, for which more detailed study
has been proposed in Refs. [70,71]. In the asymptotic case,
ay ∼ τ and Rnn ∼ τ 2, which we do observe in the present
study.

The LWN model as implemented in the first part of the
study did not predict the correct magnitude of the b(y, τ )
profile for τ > 1, and we attributed the decay of b(y, τ ) to
the omission of a source term in equation [Eq. (24)] for
b(y, τ ). Since there is no term in the b̂(y, k) equation [Eq. (24)]
for growth of b̂(y, k), it must decay with time, reducing the

strength of production b̂(y,k)
ρ

∂ p
∂y of ây(y, k), and decreasing its

growth rate. On the contrary, we note that for 0.42 < τ < 1,
b(y, τ ) agrees well very well with simulation results, and
the growth of ay(y, τ ) in the model is commensurate with
the growth of ay(y, τ ) in the simulation through τ ∼ 4 and
later. This apparent contradiction may be attributed to the
additional spectral production term for ây(y, k) in [Eq. (23)],

( R̂yy (k)
ρ2

∂ρ

∂y ). In the nonlinear flow regime τ > 1, the mixing
between the two fluids becomes important, and the k-space
transport and drag terms in ây(y, k) [Eq. (23)] offer a balance
with the production term. Thus ay(y, τ ), Rnn(y, τ ) and the
evolution of the mix-layer width are captured reasonably well
even though b(y, τ ) is underpredicted at this later stage. A
similar mechanism in a single-point formulation is described
in Ref. [72].

The second part of the study was an effort to improve the
model with a suitable source term for b̂ which would help
sustain an asymptotic value and also capture early transitional
regimes. An accurate prediction of b(y, τ ) is thought to be
essential for any study involving variable-density flow, and as
discussed in Refs. [63,64], b(y, τ ) should achieve an asymp-
totic steady-state. Our study in Sec. V shows that LWN is
indeed capable of capturing the early and asymptotic evolu-
tion of b(y, τ ), when a suitable kinematic source term is used
in the model. The choice and inclusion of kinematic source
term, as well as careful tuning of the spatial diffusion (Cd ) and
the drag (Cr p1,Cr p2) coefficients has enabled the LWN model
to capture the evolution of the mix–layer, ay(y, τ ), Rnn(y, τ )
and b(y, τ ).

The current version of the source term is a simple extrap-
olation from the single-point form which integrates to the
latter for consistency. The source term could in principle be
made more sophisticated with better spectral characteristics
[57,73]. However, this involves a convolution which is not
straightforward to compute or implement in a practical model
so we leave this for future research.

Our approach to this analysis, of separating two compo-
nents of the model, reveals that it remains difficult to achieve
equal fidelity simultaneously across all variables. Without the
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source term for b̂ we were able to obtain good quantitative
values for mass flux velocity and the mix-width by starting at
not too early times. With the source term, additional mixing
physics was captured at early times and for the final state of b,
as was the Reynolds stress with adequate diffusion, but some
aspects of the previously adequate results were compromised,
for example the growth of ay. Further improvement might be
had with additional calibration, depending on the user priori-
ties and the flow to be modeled. However, it remains the case
that this is a second-order statistical model which has intrinsic
limitations relative to the full turbulent dynamics, even if it is
an improvement in some respects over single-point models.
While the goal of this paper is not to provide an optimal
or universal set of coefficients, we have nevertheless shown
that the elements of this model show significant promise in

capturing the key physics of inhomogeneous Rayleigh-Taylor
mixing.
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